In vivo assessment of respiratory burst inhibition by xenobiotic exposure using larval zebrafish
Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies...
Saved in:
Published in | Journal of immunotoxicology Vol. 17; no. 1; pp. 94 - 104 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
01.01.2020
Taylor & Francis Ltd Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 1547-691X 1547-6901 1547-6901 |
DOI | 10.1080/1547691X.2020.1748772 |
Cover
Abstract | Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 h post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17β-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system. |
---|---|
AbstractList | Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 h post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17β-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system. Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 h post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17β-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system.Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 h post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17β-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system. Currently assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 hr post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17β-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels, and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system. |
Author | Phelps, Drake W. Reif, David M. Germolec, Dori R. Fletcher, Ashley A. Tokarz, Debra A. Yoder, Jeffrey A. Rodriguez-Nunez, Ivan Balik-Meisner, Michele R. |
AuthorAffiliation | 1 Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 4 Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 2 Comparative Medicine Institute, North Carolina State University, Raleigh, NC 3 Department of Biological Sciences, North Carolina State University, Raleigh, NC 6 National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 5 Bioinformatics Research Center, North Carolina State University, Raleigh, NC |
AuthorAffiliation_xml | – name: 2 Comparative Medicine Institute, North Carolina State University, Raleigh, NC – name: 3 Department of Biological Sciences, North Carolina State University, Raleigh, NC – name: 4 Center for Human Health and the Environment, North Carolina State University, Raleigh, NC – name: 6 National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC – name: 5 Bioinformatics Research Center, North Carolina State University, Raleigh, NC – name: 1 Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC |
Author_xml | – sequence: 1 givenname: Drake W. orcidid: 0000-0001-8350-5626 surname: Phelps fullname: Phelps, Drake W. organization: Comparative Medicine Institute, North Carolina State University – sequence: 2 givenname: Ashley A. orcidid: 0000-0003-2626-4867 surname: Fletcher fullname: Fletcher, Ashley A. organization: Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University – sequence: 3 givenname: Ivan orcidid: 0000-0002-9947-8981 surname: Rodriguez-Nunez fullname: Rodriguez-Nunez, Ivan organization: Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University – sequence: 4 givenname: Michele R. surname: Balik-Meisner fullname: Balik-Meisner, Michele R. organization: Department of Biological Sciences, North Carolina State University – sequence: 5 givenname: Debra A. orcidid: 0000-0002-1802-7346 surname: Tokarz fullname: Tokarz, Debra A. organization: Center for Human Health and the Environment, North Carolina State University – sequence: 6 givenname: David M. orcidid: 0000-0001-7815-6767 surname: Reif fullname: Reif, David M. organization: Bioinformatics Research Center, North Carolina State University – sequence: 7 givenname: Dori R. surname: Germolec fullname: Germolec, Dori R. organization: National Toxicology Program, National Institute of Environmental Health Sciences – sequence: 8 givenname: Jeffrey A. orcidid: 0000-0002-6083-1311 surname: Yoder fullname: Yoder, Jeffrey A. organization: Center for Human Health and the Environment, North Carolina State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32407153$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUkuPFCEY7Jg17kN_gobEi5dZoYGmiYnRbHxMsokXTfaGQH_MMOmGEbrHHX-9jDOzcfegJ0hRVRQfdV6dhBigqp4TfElwi18TzkQjyc1ljesCCdYKUT-qznb4rJGYnNztyc1pdZ7zCuNaEoqfVKe0ZlgQTs-q7_OANn4Tkc4Zch4gjCg6lCCvfdJjTFtkppRH5MPSGz_6GJDZolsI0fg4eovgdh3zlABN2YcF6nXa6B79ApO083n5tHrsdJ_h2WG9qL59_PD16vPs-sun-dX765nlhI8z5rDrLGaOthSkJrVkjjUd70TTGSOxxJ2zIAkHSQ1uG1GeRnRnW0aEs5bTi2q-9-2iXql18oNOWxW1V3-AmBZKp5K3B8UFaW1jSaMNZq0EjZklrAZpoLNGQvF6u_daT2YoWBlK0v090_snwS_VIm6UYJhLTorBq4NBij8myKMafLbQ9zpAnLIq42eYStriQn35gLqKUwplVIUlWE1Fg0Vhvfg70V2U40cWwps9waaYcwKnrB_17rtKQN8rgtWuNupYG7WrjTrUpqj5A_Xxgv_p3u11PriYBv0zpr5To972Mbmkg_VZ0X9b_AYeqNuT |
CitedBy_id | crossref_primary_10_1080_1547691X_2024_2343362 crossref_primary_10_3390_nano13142112 crossref_primary_10_1007_s11270_021_05204_1 crossref_primary_10_1016_j_scitotenv_2022_153983 crossref_primary_10_1007_s12665_024_11582_6 crossref_primary_10_1016_j_gexplo_2024_107426 crossref_primary_10_1016_j_chemosphere_2022_135251 crossref_primary_10_1007_s12011_023_03654_8 crossref_primary_10_1016_j_scitotenv_2021_145403 crossref_primary_10_1080_1547691X_2023_2176953 crossref_primary_10_1016_j_jim_2024_113797 |
Cites_doi | 10.1016/bs.ctdb.2016.11.012 10.1093/toxsci/kfv105 10.1007/s002449900309 10.1016/j.aquatox.2018.06.002 10.1136/adc.2005.088500 10.1016/j.jim.2004.06.016 10.1016/0300-483X(95)03235-8 10.1016/j.vetimm.2016.08.001 10.1371/journal.pone.0138949 10.1021/tx2003799 10.3109/1547691X.2012.696743 10.1093/toxsci/kfp229 10.1093/toxsci/kfx146 10.1016/0300-483X(89)90037-1 10.1002/ame2.12022 10.2131/jts.41.1 10.1101/pdb.prot069633 10.1016/j.mrrev.2014.04.003 10.1002/cne.23938 10.1093/carcin/bgs182 10.1007/s13530-018-0364-2 10.1016/j.cbi.2012.06.005 10.1016/j.molmed.2007.02.001 10.1016/S1016-8478(23)07374-0 10.1016/j.aquatox.2018.03.026 10.1177/1091581813492829 10.1111/wrr.12366 10.3389/fimmu.2017.00060 10.1007/s00277-018-3465-8 10.7554/eLife.17551 10.1038/nature12111 10.1080/01621459.1955.10501294 10.1016/S0009-9236(99)70054-8 10.1128/IAI.01201-08 10.1016/j.ntt.2014.08.008 10.1007/978-1-4939-8549-4_12 10.1016/j.cellimm.2015.01.018 10.1002/jat.3029 10.1016/j.molimm.2011.10.002 10.3389/fimmu.2018.02279 10.1016/S0022-1759(99)00146-5 10.1021/jf303387d 10.1016/S0952-7915(99)00052-7 10.1177/0960327106070453 10.4049/jimmunol.170.5.2374 10.1016/j.tox.2011.08.015 10.1016/j.jaad.2005.07.059 10.1016/j.bmcl.2016.03.088 10.1182/blood.V98.10.3087.h8003087_3087_3096 10.1161/01.STR.0000249008.18669.5a 10.1016/j.chom.2012.07.009 10.1242/dmm.019992 10.1002/aja.1002030302 10.1038/nrmicro2128 10.1289/EHP2662 10.1016/j.taap.2013.05.006 10.1016/j.lfs.2006.01.015 10.3109/10408444.2014.882291 10.1016/B978-0-12-812431-4.00019-1 10.1002/(SICI)1097-0177(199904)214:4<323::AID-AJA5>3.0.CO;2-3 10.1371/journal.pone.0104414 10.1080/10406638.2014.991042 10.1016/j.cotox.2017.08.002 10.1111/j.1574-695X.2007.00355.x 10.1182/blood-2006-05-024075 10.1016/0022-1759(92)90008-H 10.1124/mol.105.011841 10.1093/toxsci/kfy291 10.1016/S0145-305X(03)00103-4 10.1016/bs.mcb.2016.08.002 10.1124/jpet.116.232629 10.1016/bs.mcb.2016.04.015 10.1210/er.2007-0001 10.1242/dev.126.17.3735 10.1002/jlb.67.3.396 10.1016/bs.mcb.2016.03.022 10.1093/toxsci/kft235 10.1006/faat.1997.2381 |
ContentType | Journal Article |
Copyright | 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020 – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 0YH AAYXX CITATION NPM 3V. 7T5 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1080/1547691X.2020.1748772 |
DatabaseName | Taylor & Francis Open Access CrossRef PubMed ProQuest Central (Corporate) Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea AIDS and Cancer Research Abstracts Immunology Abstracts ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1547-6901 |
EndPage | 104 |
ExternalDocumentID | oai_doaj_org_article_5718c6c16ab0489ea04c142e9bedcb9e PMC7405951 32407153 10_1080_1547691X_2020_1748772 1748772 |
Genre | Research Article Journal Article |
GroupedDBID | --- 00X 0YH 29K 4.4 53G 5GY 7X7 8FI 8FJ ABDBF ABUWG ACGEJ ACGFS ACUHS ADBBV ADCVX ADRBQ ADXPE AENEX AFKRA ALIPV ALMA_UNASSIGNED_HOLDINGS ARJSQ BABNJ BCNDV BENPR CCPQU CS3 D-I EBD EBS EDH EMOBN ESX F5P FYUFA GROUPED_DOAJ H13 HMCUK HZ~ M4Z O9- OK1 PIMPY PROAC SV3 TDBHL TFDNU TFL TFW TUS UKHRP V1S ~1N AAYXX CITATION PHGZM PHGZT 5VS AALIY AWYRJ BPHCQ BVXVI CAG COF DEIEU DTRLO DZHFC EJD M44 NPM PQQKQ QRXOQ 3V. 7T5 7XB 8FK AZQEC DWQXO H94 K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c515t-4f0fdc04f383e9a1294f46d5d76dbb9090dfce915e93b08675471adc8417fcc53 |
IEDL.DBID | 7X7 |
ISSN | 1547-691X 1547-6901 |
IngestDate | Wed Aug 27 01:02:20 EDT 2025 Thu Aug 21 18:29:38 EDT 2025 Fri Sep 05 09:55:58 EDT 2025 Mon Jun 30 13:35:02 EDT 2025 Wed Feb 19 02:31:23 EST 2025 Tue Jul 01 04:30:37 EDT 2025 Thu Apr 24 23:12:05 EDT 2025 Wed Dec 25 09:08:57 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | endocrine disrupting compounds (EDC) Chemical screen polycyclic aromatic hydrocarbons (PAH) reactive oxygen species (ROS) high throughput phagocyte lead |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c515t-4f0fdc04f383e9a1294f46d5d76dbb9090dfce915e93b08675471adc8417fcc53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors made equal contributions to these studies and the order of their names is arbitrary. |
ORCID | 0000-0001-8350-5626 0000-0002-6083-1311 0000-0002-1802-7346 0000-0003-2626-4867 0000-0001-7815-6767 0000-0002-9947-8981 |
OpenAccessLink | https://www.proquest.com/docview/2474237607?pq-origsite=%requestingapplication% |
PMID | 32407153 |
PQID | 2474237607 |
PQPubID | 3933140 |
PageCount | 11 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_1547691X_2020_1748772 proquest_miscellaneous_2404039380 doaj_primary_oai_doaj_org_article_5718c6c16ab0489ea04c142e9bedcb9e pubmedcentral_primary_oai_pubmedcentral_nih_gov_7405951 proquest_journals_2474237607 crossref_citationtrail_10_1080_1547691X_2020_1748772 crossref_primary_10_1080_1547691X_2020_1748772 pubmed_primary_32407153 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Abingdon |
PublicationTitle | Journal of immunotoxicology |
PublicationTitleAlternate | J Immunotoxicol |
PublicationYear | 2020 |
Publisher | Taylor & Francis Taylor & Francis Ltd Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd – name: Taylor & Francis Group |
References | Liu W (CIT0040) 2018; 41 CIT0072 CIT0071 CIT0030 CIT0074 CIT0073 CIT0032 CIT0076 CIT0031 CIT0075 CIT0034 CIT0078 CIT0033 CIT0077 Razmara A (CIT0055) 2005; 289 CIT0070 CIT0036 CIT0035 CIT0079 CIT0038 Herbomel P (CIT0021) 1999; 126 CIT0039 CIT0083 CIT0082 CIT0041 CIT0085 CIT0084 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0081 CIT0080 Planchart A (CIT0052) 2016; 33 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 Lee J (CIT0037) 2007; 23 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0017 CIT0019 CIT0061 CIT0060 CIT0063 CIT0062 CIT0065 CIT0020 CIT0064 CIT0023 CIT0067 CIT0022 CIT0066 Goody M (CIT0018) 2013; 79 CIT0025 CIT0069 CIT0024 CIT0068 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0078 doi: 10.1016/bs.ctdb.2016.11.012 – ident: CIT0014 doi: 10.1093/toxsci/kfv105 – ident: CIT0027 doi: 10.1007/s002449900309 – ident: CIT0083 doi: 10.1016/j.aquatox.2018.06.002 – ident: CIT0001 doi: 10.1136/adc.2005.088500 – ident: CIT0022 doi: 10.1016/j.jim.2004.06.016 – ident: CIT0063 doi: 10.1016/0300-483X(95)03235-8 – ident: CIT0065 doi: 10.1016/j.vetimm.2016.08.001 – ident: CIT0077 doi: 10.1371/journal.pone.0138949 – ident: CIT0041 doi: 10.1021/tx2003799 – ident: CIT0020 doi: 10.3109/1547691X.2012.696743 – ident: CIT0046 doi: 10.1093/toxsci/kfp229 – ident: CIT0081 doi: 10.1093/toxsci/kfx146 – ident: CIT0064 doi: 10.1016/0300-483X(89)90037-1 – ident: CIT0070 doi: 10.1002/ame2.12022 – ident: CIT0059 doi: 10.2131/jts.41.1 – ident: CIT0045 doi: 10.1101/pdb.prot069633 – ident: CIT0035 doi: 10.1016/j.mrrev.2014.04.003 – ident: CIT0080 doi: 10.1002/cne.23938 – volume: 79 start-page: e50667 year: 2013 ident: CIT0018 publication-title: J Visualized Exp – ident: CIT0044 doi: 10.1093/carcin/bgs182 – ident: CIT0019 doi: 10.1007/s13530-018-0364-2 – ident: CIT0032 doi: 10.1016/j.cbi.2012.06.005 – ident: CIT0043 doi: 10.1016/j.molmed.2007.02.001 – ident: CIT0073 – volume: 23 start-page: 198 year: 2007 ident: CIT0037 publication-title: Mol Cells doi: 10.1016/S1016-8478(23)07374-0 – ident: CIT0042 doi: 10.1016/j.aquatox.2018.03.026 – ident: CIT0085 doi: 10.1177/1091581813492829 – ident: CIT0061 doi: 10.1111/wrr.12366 – ident: CIT0079 doi: 10.3389/fimmu.2017.00060 – ident: CIT0006 doi: 10.1007/s00277-018-3465-8 – ident: CIT0053 doi: 10.7554/eLife.17551 – ident: CIT0023 doi: 10.1038/nature12111 – volume: 41 start-page: 2028 year: 2018 ident: CIT0040 publication-title: Intl J Mol Med – volume: 289 start-page: H1843 issue: 5 year: 2005 ident: CIT0055 publication-title: Am J Physiol – ident: CIT0012 doi: 10.1080/01621459.1955.10501294 – ident: CIT0011 doi: 10.1016/S0009-9236(99)70054-8 – ident: CIT0076 doi: 10.1128/IAI.01201-08 – ident: CIT0058 doi: 10.1016/j.ntt.2014.08.008 – ident: CIT0013 doi: 10.1007/978-1-4939-8549-4_12 – ident: CIT0030 doi: 10.1016/j.cellimm.2015.01.018 – ident: CIT0034 doi: 10.1002/jat.3029 – ident: CIT0031 doi: 10.1016/j.molimm.2011.10.002 – ident: CIT0049 doi: 10.3389/fimmu.2018.02279 – ident: CIT0010 doi: 10.1016/S0022-1759(99)00146-5 – ident: CIT0039 doi: 10.1021/jf303387d – ident: CIT0005 doi: 10.1016/S0952-7915(99)00052-7 – ident: CIT0047 doi: 10.1177/0960327106070453 – ident: CIT0074 doi: 10.4049/jimmunol.170.5.2374 – ident: CIT0060 doi: 10.1016/j.tox.2011.08.015 – ident: CIT0051 doi: 10.1016/j.jaad.2005.07.059 – ident: CIT0008 doi: 10.1016/j.bmcl.2016.03.088 – ident: CIT0038 doi: 10.1182/blood.V98.10.3087.h8003087_3087_3096 – ident: CIT0062 doi: 10.1161/01.STR.0000249008.18669.5a – ident: CIT0084 doi: 10.1016/j.chom.2012.07.009 – volume: 33 start-page: 435 year: 2016 ident: CIT0052 publication-title: ALTEX – ident: CIT0075 doi: 10.1242/dmm.019992 – ident: CIT0028 doi: 10.1002/aja.1002030302 – ident: CIT0015 doi: 10.1038/nrmicro2128 – ident: CIT0004 doi: 10.1289/EHP2662 – ident: CIT0071 – ident: CIT0029 doi: 10.1016/j.taap.2013.05.006 – ident: CIT0048 doi: 10.1016/j.lfs.2006.01.015 – ident: CIT0016 doi: 10.3109/10408444.2014.882291 – ident: CIT0068 doi: 10.1016/B978-0-12-812431-4.00019-1 – ident: CIT0082 doi: 10.1002/(SICI)1097-0177(199904)214:4<323::AID-AJA5>3.0.CO;2-3 – ident: CIT0024 doi: 10.1371/journal.pone.0104414 – ident: CIT0002 doi: 10.1080/10406638.2014.991042 – ident: CIT0017 doi: 10.1016/j.cotox.2017.08.002 – ident: CIT0050 doi: 10.1111/j.1574-695X.2007.00355.x – ident: CIT0056 doi: 10.1182/blood-2006-05-024075 – ident: CIT0057 doi: 10.1016/0022-1759(92)90008-H – ident: CIT0025 doi: 10.1124/mol.105.011841 – ident: CIT0054 doi: 10.1093/toxsci/kfy291 – ident: CIT0033 doi: 10.1016/S0145-305X(03)00103-4 – ident: CIT0003 doi: 10.1016/bs.mcb.2016.08.002 – ident: CIT0009 doi: 10.1124/jpet.116.232629 – ident: CIT0036 doi: 10.1016/bs.mcb.2016.04.015 – ident: CIT0067 doi: 10.1210/er.2007-0001 – volume: 126 start-page: 3735 year: 1999 ident: CIT0021 publication-title: Development doi: 10.1242/dev.126.17.3735 – ident: CIT0072 – ident: CIT0026 doi: 10.1002/jlb.67.3.396 – ident: CIT0066 doi: 10.1016/bs.mcb.2016.03.022 – ident: CIT0069 doi: 10.1093/toxsci/kft235 – ident: CIT0007 doi: 10.1006/faat.1997.2381 |
SSID | ssj0029130 |
Score | 2.2478888 |
Snippet | Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including... Currently assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including... |
SourceID | doaj pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 94 |
SubjectTerms | 17β-Estradiol Benzo(a)pyrene Chemical screen Danio rerio Embryos endocrine disrupting compounds (EDC) Fertilization Flow cytometry high throughput Homology Immune response Immune system Immunotoxicity Innate immunity lead Leukocytes (neutrophilic) Macrophages Methoxychlor phagocyte Phenanthrene polycyclic aromatic hydrocarbons (PAH) Pyrene Reactive oxygen species reactive oxygen species (ROS) Respiratory burst Teratogenicity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QD4gL4s1AQUHiOjDZZPI4AqIqSOVEpb2FPNmRVrNVd1oVfj32vNitkPbCNY_RxHYcO3Y-E_I2oRhE7ssUjCrBImalFiGW2nHlddJeSHyNfPZNnp6Lr8t6uVPqC3PCBnjggXDgsDMdZGDSeRA2k1wlAhOLZHyKwZuE2rcy1eRMja6WYX2VEbAPVCkNW05vd3T1HtuwCXzDRYX5PFqpxd6p1IP334Iu_ZcBejuPcudgOnlA7o8WJf0wrOQhuZPaR-Tu2Rgzf0x-fGnpdXO9oW4G4aSbTC__xtgpEHbb0aZdNb7P4KL-F71JLSI0wUdpurnY4EUixST5n3SN5YTW9DeGnHOzXT0h5yefv386Lce6CmUA66UrRa5yDJXI4J0m4-DEF1nIWEclo_cGqBlzSIbVyXAPLo8CijEXgxZM5RBq_pQctZs2PSeU6yyjNBn0phS5rl3lmMsa63k4brQqiJjoasMIOo61L9aWjdikEzssssOO7CjIu3naxYC6cWjCR2TaPBhBs_sGECU7ipI9JEoFMbsst11_Z5KHAieWH_iB40k-7KgFtnYh1JB1BHR4M3fD_sWgjGvT5grHgBrlhuuqIM8GcZpXwXt3u-YFUXuCtrfM_Z62WfUY4QoMcTCeX_wPurwk93Cpw8XTMTnqLq_SKzDFOv-633V_AOkzLZU priority: 102 providerName: Directory of Open Access Journals – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgL4t1AQUbiGojXjh9HQFQLUjlRqZyM7djdlVZJtUmrwq9nJi-6FagHjklsK_aM5-EZf0PIm4hsUHGfx2BUDhYxy7UIVa4dV15H7YXE28hHX-XyWHw5KadswnZMq0QfOg1AEb2sxs3tfDtlxL0Dra-kYSfg3S0KzMjRYCLeJncWCvQNsHTxfTn7XIb15UawS459pks8_xpmRz31KP7XMEz_ZoleT6i8oqEOH5D7o2lJ3w-88JDcivUjcvdoDJ4_Jj8-1_RifdFQN6Nx0ibR7Z9gO4UVbju6rldr36dyUf-TXsYaoZpgUBovzxo8UaSYLX9KN1hXaEN_Yew5rdvVE3J8-Onbx2U-FljIA5gxXS5SkapQiARuajQOVL9IQlZlpWTlvSlMUaUQDSuj4R58HwUrxlwVtGAqhVDyp2Svbuq4TyjXSVbSJBCgUqSydIVjLmks7OG40SojYlpXG0b0cSyCsbFsBCmdyGGRHHYkR0bezt3OBviNmzp8QKLNjRE9u3_RbE_tuBltCQo5yMCk8yDATHSFCEwsovFAQm9iRsxVktuuPzxJQ6UTy2_4gYOJP-woDlq7EGpIP4J1eD1_ho2M0RlXx-Yc24A85YbrIiPPBnaaZ8F7v7vkGVE7jLYzzd0v9XrVg4UrsMjBin7-H1N6Qe7h43DwdED2uu15fAmmWOdf9ZvtN1gNKfI priority: 102 providerName: Taylor & Francis |
Title | In vivo assessment of respiratory burst inhibition by xenobiotic exposure using larval zebrafish |
URI | https://www.tandfonline.com/doi/abs/10.1080/1547691X.2020.1748772 https://www.ncbi.nlm.nih.gov/pubmed/32407153 https://www.proquest.com/docview/2474237607 https://www.proquest.com/docview/2404039380 https://pubmed.ncbi.nlm.nih.gov/PMC7405951 https://doaj.org/article/5718c6c16ab0489ea04c142e9bedcb9e |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLbYJiFeEHcCozISr2Fx7fjyhBjaVJA2IcSk8hRsx14rVUlps2nbr8cncdJ1QuzVuSj2OT7-ziXnQ-iDAzUoqUmdVSINiJikktkylZoKI500jMPfyCenfHLGvk3zaQy4rWNZZW8TW0Nd1hZi5AdjJroKDvFp-ScF1ijIrkYKjR20RwISAeoGMd04XIq0XCMBJYiUKzLt_-CR2QGMwVDwEMcZVPVIIcZbZ1Pbwv9OA9N_wdC71ZS3jqfjJ-hxxJX4c6cIT9EDVz1DD09i5vw5-v21wpfzyxrroRUnrj1ebTLtOCzvusHzajY3bR0XNtf4ylXQpym8FLurZQ3hRAyl8ud4AaRCC3wDiWc_X89eoLPjo59fJmlkV0htwDBNynzmS5sxH3xUp3Q495lnvMxLwUtjVKay0lunSO4UNcHxEWHFiC6tZER4a3P6Eu1WdeVeI0yl5yVXPlhPznye60wT7SWwemiqpEgQ69e1sLH1ODBgLAoSO5T24ihAHEUUR4I-Do8tu94b9z1wCEIbbobW2e1AvTov4k4s8nAaW24J1yZYL-V0xixhY6dMEKFRLkHqtsiLpo2c-I7mpKD3fMB-rx9FtAXrYqO5CXo_XA67GFIzunL1BdwTjClVVGYJetWp0zAL2jrdOU2Q2FK0rWluX6nms7ZTuAhwPEDoN___rLfoEUyiCyzto91mdeHeBajVmBHayX5NRu2uGqG9w6PT7z9GbdjiLwKbJ7w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXxJtAASPBMTQPJ7YPCPGqdmm3p1bam7Edu7vSKll2t6XlR_EbmclruxWip17tJLIzb894PkLeOmSDIjWhs5KH4BHHoWC2CIVOuRFOGJbjbeTRYT44Zt_H2XiL_OnuwmBZZacTa0VdVBbPyHcTxpsKDv5x_jNE1CjMrnYQGg1b7LuLXxCyLT8MvwJ93yXJ3rejL4OwRRUILdjuVch85AsbMQ-xmZMa7B3zLC-ygueFMTKSUeGtk3HmZGrA4ecZ6G9dWMFi7q1FlAhQ-bcYphhBfvh4HeDJuMY2Aa-Eh7mMx92NIRHt4hgOQUSaRFhFJDhPNmxhDRlwpWHqv9zeq9Wbl8zh3n1yr_Vj6aeG8R6QLVc-JLdHbab-EfkxLOnZ9Kyium_9SStPF-vMPgVyLld0Wk6mpq4bo-aCnrsS-0LBR6k7n1d4fEmxNP-EzhDEaEZ_Y6LbT5eTx-T4Rv77E7JdVqV7RmgqfF7k0oO2zpnPMh3pWHuBKCI6lYIHhHX_Vdm21TkibsxU3HZE7cihkByqJUdA3vevzZteH9e98BmJ1j-MrbrrgWpxolrJVxlYf5vbONcGtKV0OmI2ZomTBkhopAuIvExytapPanwDq6LSaxaw0_GHanXPUq0lJSBv-mnQGpgK0qWrTvEZUN6pTEUUkKcNO_W7SOsgP0sDwjcYbWObmzPldFJ3Jufg_oPL_vz_y3pN7gyORgfqYHi4_4LcxQ01h1o7ZHu1OHUvwc1bmVe1bFHg1xsW5r9u6GFs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSBUXxLuBAkbiGojXjh9HXqst0IoDlcrJ-NmNtEpWu9uq8OsZ50W3AvXANY6j2DOe-cYef4PQq5DUwFObB6dEDoiY5JI5n0tDhZVBWsbTbeTDIz47Zp9OyiGbcN2nVaYYOnZEEa2tTot76eOQEfcGvL7gipxAdDcpUkaOBIh4E90qJcBzUOni-2yMuRRpy42kLnnqM1zi-ddnttxTy-J_hcP0b0j0akLlJQ81vYvu9NASv-104R66Eer7aPewPzx_gH4c1Pi8Om-wGdk4cRPx6s9hO4YZXm9wVc8r26ZyYfsTX4Q6UTXBR3G4WDZpRxGnbPlTvEh1hRb4Vzp7jtV6_hAdTz9-ez_L-wILuQMYs8lZLKJ3BYsQpgZlwPWzyLgvveDeWlWowkcXFCmDohZiHwEzRox3khERnSvpI7RTN3XYQ5jKyD1XEQwoZ7EsTWGIiTIV9jBUSZEhNsyrdj37eCqCsdCkJykdxKGTOHQvjgy9HrstO_qN6zq8S0IbX07s2e2DZnWq-8WoS3DIjjvCjQUDpoIpmCNsEpQFEVoVMqQui1xv2s2T2FU60fSaH9gf9EP35mCtJ0x06UcwDy_HZljI6XTG1KE5S--APaWKyiJDjzt1GkdB27i7pBkSW4q2Ncztlrqat2ThAhA5oOgn_zGkF2j364ep_nJw9Pkpup1auj2ofbSzWZ2FZ4DKNvZ5u-5-A3eqLJA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vivo+Assessment+of+Respiratory+Burst+Inhibition+by+Xenobiotic+Exposure+Using+Larval+Zebrafish&rft.jtitle=Journal+of+immunotoxicology&rft.au=Phelps%2C+Drake+W.&rft.au=Fletcher%2C+Ashley+A.&rft.au=Rodriguez-Nunez%2C+Ivan&rft.au=Balik-Meisner%2C+Michele+R.&rft.date=2020-01-01&rft.issn=1547-691X&rft.eissn=1547-6901&rft.volume=17&rft.issue=1&rft.spage=94&rft.epage=104&rft_id=info:doi/10.1080%2F1547691X.2020.1748772&rft_id=info%3Apmid%2F32407153&rft.externalDocID=PMC7405951 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-691X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-691X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-691X&client=summon |