In vivo assessment of respiratory burst inhibition by xenobiotic exposure using larval zebrafish

Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies...

Full description

Saved in:
Bibliographic Details
Published inJournal of immunotoxicology Vol. 17; no. 1; pp. 94 - 104
Main Authors Phelps, Drake W., Fletcher, Ashley A., Rodriguez-Nunez, Ivan, Balik-Meisner, Michele R., Tokarz, Debra A., Reif, David M., Germolec, Dori R., Yoder, Jeffrey A.
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 01.01.2020
Taylor & Francis Ltd
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1547-691X
1547-6901
1547-6901
DOI10.1080/1547691X.2020.1748772

Cover

Abstract Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 h post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17β-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system.
AbstractList Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 h post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17β-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system.
Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 h post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17β-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system.Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 h post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17β-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system.
Currently assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 hr post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17β-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels, and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system.
Author Phelps, Drake W.
Reif, David M.
Germolec, Dori R.
Fletcher, Ashley A.
Tokarz, Debra A.
Yoder, Jeffrey A.
Rodriguez-Nunez, Ivan
Balik-Meisner, Michele R.
AuthorAffiliation 1 Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
4 Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
2 Comparative Medicine Institute, North Carolina State University, Raleigh, NC
3 Department of Biological Sciences, North Carolina State University, Raleigh, NC
6 National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC
5 Bioinformatics Research Center, North Carolina State University, Raleigh, NC
AuthorAffiliation_xml – name: 2 Comparative Medicine Institute, North Carolina State University, Raleigh, NC
– name: 3 Department of Biological Sciences, North Carolina State University, Raleigh, NC
– name: 4 Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
– name: 6 National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC
– name: 5 Bioinformatics Research Center, North Carolina State University, Raleigh, NC
– name: 1 Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
Author_xml – sequence: 1
  givenname: Drake W.
  orcidid: 0000-0001-8350-5626
  surname: Phelps
  fullname: Phelps, Drake W.
  organization: Comparative Medicine Institute, North Carolina State University
– sequence: 2
  givenname: Ashley A.
  orcidid: 0000-0003-2626-4867
  surname: Fletcher
  fullname: Fletcher, Ashley A.
  organization: Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University
– sequence: 3
  givenname: Ivan
  orcidid: 0000-0002-9947-8981
  surname: Rodriguez-Nunez
  fullname: Rodriguez-Nunez, Ivan
  organization: Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University
– sequence: 4
  givenname: Michele R.
  surname: Balik-Meisner
  fullname: Balik-Meisner, Michele R.
  organization: Department of Biological Sciences, North Carolina State University
– sequence: 5
  givenname: Debra A.
  orcidid: 0000-0002-1802-7346
  surname: Tokarz
  fullname: Tokarz, Debra A.
  organization: Center for Human Health and the Environment, North Carolina State University
– sequence: 6
  givenname: David M.
  orcidid: 0000-0001-7815-6767
  surname: Reif
  fullname: Reif, David M.
  organization: Bioinformatics Research Center, North Carolina State University
– sequence: 7
  givenname: Dori R.
  surname: Germolec
  fullname: Germolec, Dori R.
  organization: National Toxicology Program, National Institute of Environmental Health Sciences
– sequence: 8
  givenname: Jeffrey A.
  orcidid: 0000-0002-6083-1311
  surname: Yoder
  fullname: Yoder, Jeffrey A.
  organization: Center for Human Health and the Environment, North Carolina State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32407153$$D View this record in MEDLINE/PubMed
BookMark eNqFUkuPFCEY7Jg17kN_gobEi5dZoYGmiYnRbHxMsokXTfaGQH_MMOmGEbrHHX-9jDOzcfegJ0hRVRQfdV6dhBigqp4TfElwi18TzkQjyc1ljesCCdYKUT-qznb4rJGYnNztyc1pdZ7zCuNaEoqfVKe0ZlgQTs-q7_OANn4Tkc4Zch4gjCg6lCCvfdJjTFtkppRH5MPSGz_6GJDZolsI0fg4eovgdh3zlABN2YcF6nXa6B79ApO083n5tHrsdJ_h2WG9qL59_PD16vPs-sun-dX765nlhI8z5rDrLGaOthSkJrVkjjUd70TTGSOxxJ2zIAkHSQ1uG1GeRnRnW0aEs5bTi2q-9-2iXql18oNOWxW1V3-AmBZKp5K3B8UFaW1jSaMNZq0EjZklrAZpoLNGQvF6u_daT2YoWBlK0v090_snwS_VIm6UYJhLTorBq4NBij8myKMafLbQ9zpAnLIq42eYStriQn35gLqKUwplVIUlWE1Fg0Vhvfg70V2U40cWwps9waaYcwKnrB_17rtKQN8rgtWuNupYG7WrjTrUpqj5A_Xxgv_p3u11PriYBv0zpr5To972Mbmkg_VZ0X9b_AYeqNuT
CitedBy_id crossref_primary_10_1080_1547691X_2024_2343362
crossref_primary_10_3390_nano13142112
crossref_primary_10_1007_s11270_021_05204_1
crossref_primary_10_1016_j_scitotenv_2022_153983
crossref_primary_10_1007_s12665_024_11582_6
crossref_primary_10_1016_j_gexplo_2024_107426
crossref_primary_10_1016_j_chemosphere_2022_135251
crossref_primary_10_1007_s12011_023_03654_8
crossref_primary_10_1016_j_scitotenv_2021_145403
crossref_primary_10_1080_1547691X_2023_2176953
crossref_primary_10_1016_j_jim_2024_113797
Cites_doi 10.1016/bs.ctdb.2016.11.012
10.1093/toxsci/kfv105
10.1007/s002449900309
10.1016/j.aquatox.2018.06.002
10.1136/adc.2005.088500
10.1016/j.jim.2004.06.016
10.1016/0300-483X(95)03235-8
10.1016/j.vetimm.2016.08.001
10.1371/journal.pone.0138949
10.1021/tx2003799
10.3109/1547691X.2012.696743
10.1093/toxsci/kfp229
10.1093/toxsci/kfx146
10.1016/0300-483X(89)90037-1
10.1002/ame2.12022
10.2131/jts.41.1
10.1101/pdb.prot069633
10.1016/j.mrrev.2014.04.003
10.1002/cne.23938
10.1093/carcin/bgs182
10.1007/s13530-018-0364-2
10.1016/j.cbi.2012.06.005
10.1016/j.molmed.2007.02.001
10.1016/S1016-8478(23)07374-0
10.1016/j.aquatox.2018.03.026
10.1177/1091581813492829
10.1111/wrr.12366
10.3389/fimmu.2017.00060
10.1007/s00277-018-3465-8
10.7554/eLife.17551
10.1038/nature12111
10.1080/01621459.1955.10501294
10.1016/S0009-9236(99)70054-8
10.1128/IAI.01201-08
10.1016/j.ntt.2014.08.008
10.1007/978-1-4939-8549-4_12
10.1016/j.cellimm.2015.01.018
10.1002/jat.3029
10.1016/j.molimm.2011.10.002
10.3389/fimmu.2018.02279
10.1016/S0022-1759(99)00146-5
10.1021/jf303387d
10.1016/S0952-7915(99)00052-7
10.1177/0960327106070453
10.4049/jimmunol.170.5.2374
10.1016/j.tox.2011.08.015
10.1016/j.jaad.2005.07.059
10.1016/j.bmcl.2016.03.088
10.1182/blood.V98.10.3087.h8003087_3087_3096
10.1161/01.STR.0000249008.18669.5a
10.1016/j.chom.2012.07.009
10.1242/dmm.019992
10.1002/aja.1002030302
10.1038/nrmicro2128
10.1289/EHP2662
10.1016/j.taap.2013.05.006
10.1016/j.lfs.2006.01.015
10.3109/10408444.2014.882291
10.1016/B978-0-12-812431-4.00019-1
10.1002/(SICI)1097-0177(199904)214:4<323::AID-AJA5>3.0.CO;2-3
10.1371/journal.pone.0104414
10.1080/10406638.2014.991042
10.1016/j.cotox.2017.08.002
10.1111/j.1574-695X.2007.00355.x
10.1182/blood-2006-05-024075
10.1016/0022-1759(92)90008-H
10.1124/mol.105.011841
10.1093/toxsci/kfy291
10.1016/S0145-305X(03)00103-4
10.1016/bs.mcb.2016.08.002
10.1124/jpet.116.232629
10.1016/bs.mcb.2016.04.015
10.1210/er.2007-0001
10.1242/dev.126.17.3735
10.1002/jlb.67.3.396
10.1016/bs.mcb.2016.03.022
10.1093/toxsci/kft235
10.1006/faat.1997.2381
ContentType Journal Article
Copyright 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020
2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2020
– notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
NPM
3V.
7T5
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1080/1547691X.2020.1748772
DatabaseName Taylor & Francis Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
AIDS and Cancer Research Abstracts
Immunology Abstracts
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1547-6901
EndPage 104
ExternalDocumentID oai_doaj_org_article_5718c6c16ab0489ea04c142e9bedcb9e
PMC7405951
32407153
10_1080_1547691X_2020_1748772
1748772
Genre Research Article
Journal Article
GroupedDBID ---
00X
0YH
29K
4.4
53G
5GY
7X7
8FI
8FJ
ABDBF
ABUWG
ACGEJ
ACGFS
ACUHS
ADBBV
ADCVX
ADRBQ
ADXPE
AENEX
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARJSQ
BABNJ
BCNDV
BENPR
CCPQU
CS3
D-I
EBD
EBS
EDH
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
H13
HMCUK
HZ~
M4Z
O9-
OK1
PIMPY
PROAC
SV3
TDBHL
TFDNU
TFL
TFW
TUS
UKHRP
V1S
~1N
AAYXX
CITATION
PHGZM
PHGZT
5VS
AALIY
AWYRJ
BPHCQ
BVXVI
CAG
COF
DEIEU
DTRLO
DZHFC
EJD
M44
NPM
PQQKQ
QRXOQ
3V.
7T5
7XB
8FK
AZQEC
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c515t-4f0fdc04f383e9a1294f46d5d76dbb9090dfce915e93b08675471adc8417fcc53
IEDL.DBID 7X7
ISSN 1547-691X
1547-6901
IngestDate Wed Aug 27 01:02:20 EDT 2025
Thu Aug 21 18:29:38 EDT 2025
Fri Sep 05 09:55:58 EDT 2025
Mon Jun 30 13:35:02 EDT 2025
Wed Feb 19 02:31:23 EST 2025
Tue Jul 01 04:30:37 EDT 2025
Thu Apr 24 23:12:05 EDT 2025
Wed Dec 25 09:08:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords endocrine disrupting compounds (EDC)
Chemical screen
polycyclic aromatic hydrocarbons (PAH)
reactive oxygen species (ROS)
high throughput
phagocyte
lead
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-4f0fdc04f383e9a1294f46d5d76dbb9090dfce915e93b08675471adc8417fcc53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors made equal contributions to these studies and the order of their names is arbitrary.
ORCID 0000-0001-8350-5626
0000-0002-6083-1311
0000-0002-1802-7346
0000-0003-2626-4867
0000-0001-7815-6767
0000-0002-9947-8981
OpenAccessLink https://www.proquest.com/docview/2474237607?pq-origsite=%requestingapplication%
PMID 32407153
PQID 2474237607
PQPubID 3933140
PageCount 11
ParticipantIDs informaworld_taylorfrancis_310_1080_1547691X_2020_1748772
proquest_miscellaneous_2404039380
doaj_primary_oai_doaj_org_article_5718c6c16ab0489ea04c142e9bedcb9e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7405951
proquest_journals_2474237607
crossref_citationtrail_10_1080_1547691X_2020_1748772
crossref_primary_10_1080_1547691X_2020_1748772
pubmed_primary_32407153
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationTitle Journal of immunotoxicology
PublicationTitleAlternate J Immunotoxicol
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
– name: Taylor & Francis Group
References Liu W (CIT0040) 2018; 41
CIT0072
CIT0071
CIT0030
CIT0074
CIT0073
CIT0032
CIT0076
CIT0031
CIT0075
CIT0034
CIT0078
CIT0033
CIT0077
Razmara A (CIT0055) 2005; 289
CIT0070
CIT0036
CIT0035
CIT0079
CIT0038
Herbomel P (CIT0021) 1999; 126
CIT0039
CIT0083
CIT0082
CIT0041
CIT0085
CIT0084
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0081
CIT0080
Planchart A (CIT0052) 2016; 33
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
Lee J (CIT0037) 2007; 23
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0017
CIT0019
CIT0061
CIT0060
CIT0063
CIT0062
CIT0065
CIT0020
CIT0064
CIT0023
CIT0067
CIT0022
CIT0066
Goody M (CIT0018) 2013; 79
CIT0025
CIT0069
CIT0024
CIT0068
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0078
  doi: 10.1016/bs.ctdb.2016.11.012
– ident: CIT0014
  doi: 10.1093/toxsci/kfv105
– ident: CIT0027
  doi: 10.1007/s002449900309
– ident: CIT0083
  doi: 10.1016/j.aquatox.2018.06.002
– ident: CIT0001
  doi: 10.1136/adc.2005.088500
– ident: CIT0022
  doi: 10.1016/j.jim.2004.06.016
– ident: CIT0063
  doi: 10.1016/0300-483X(95)03235-8
– ident: CIT0065
  doi: 10.1016/j.vetimm.2016.08.001
– ident: CIT0077
  doi: 10.1371/journal.pone.0138949
– ident: CIT0041
  doi: 10.1021/tx2003799
– ident: CIT0020
  doi: 10.3109/1547691X.2012.696743
– ident: CIT0046
  doi: 10.1093/toxsci/kfp229
– ident: CIT0081
  doi: 10.1093/toxsci/kfx146
– ident: CIT0064
  doi: 10.1016/0300-483X(89)90037-1
– ident: CIT0070
  doi: 10.1002/ame2.12022
– ident: CIT0059
  doi: 10.2131/jts.41.1
– ident: CIT0045
  doi: 10.1101/pdb.prot069633
– ident: CIT0035
  doi: 10.1016/j.mrrev.2014.04.003
– ident: CIT0080
  doi: 10.1002/cne.23938
– volume: 79
  start-page: e50667
  year: 2013
  ident: CIT0018
  publication-title: J Visualized Exp
– ident: CIT0044
  doi: 10.1093/carcin/bgs182
– ident: CIT0019
  doi: 10.1007/s13530-018-0364-2
– ident: CIT0032
  doi: 10.1016/j.cbi.2012.06.005
– ident: CIT0043
  doi: 10.1016/j.molmed.2007.02.001
– ident: CIT0073
– volume: 23
  start-page: 198
  year: 2007
  ident: CIT0037
  publication-title: Mol Cells
  doi: 10.1016/S1016-8478(23)07374-0
– ident: CIT0042
  doi: 10.1016/j.aquatox.2018.03.026
– ident: CIT0085
  doi: 10.1177/1091581813492829
– ident: CIT0061
  doi: 10.1111/wrr.12366
– ident: CIT0079
  doi: 10.3389/fimmu.2017.00060
– ident: CIT0006
  doi: 10.1007/s00277-018-3465-8
– ident: CIT0053
  doi: 10.7554/eLife.17551
– ident: CIT0023
  doi: 10.1038/nature12111
– volume: 41
  start-page: 2028
  year: 2018
  ident: CIT0040
  publication-title: Intl J Mol Med
– volume: 289
  start-page: H1843
  issue: 5
  year: 2005
  ident: CIT0055
  publication-title: Am J Physiol
– ident: CIT0012
  doi: 10.1080/01621459.1955.10501294
– ident: CIT0011
  doi: 10.1016/S0009-9236(99)70054-8
– ident: CIT0076
  doi: 10.1128/IAI.01201-08
– ident: CIT0058
  doi: 10.1016/j.ntt.2014.08.008
– ident: CIT0013
  doi: 10.1007/978-1-4939-8549-4_12
– ident: CIT0030
  doi: 10.1016/j.cellimm.2015.01.018
– ident: CIT0034
  doi: 10.1002/jat.3029
– ident: CIT0031
  doi: 10.1016/j.molimm.2011.10.002
– ident: CIT0049
  doi: 10.3389/fimmu.2018.02279
– ident: CIT0010
  doi: 10.1016/S0022-1759(99)00146-5
– ident: CIT0039
  doi: 10.1021/jf303387d
– ident: CIT0005
  doi: 10.1016/S0952-7915(99)00052-7
– ident: CIT0047
  doi: 10.1177/0960327106070453
– ident: CIT0074
  doi: 10.4049/jimmunol.170.5.2374
– ident: CIT0060
  doi: 10.1016/j.tox.2011.08.015
– ident: CIT0051
  doi: 10.1016/j.jaad.2005.07.059
– ident: CIT0008
  doi: 10.1016/j.bmcl.2016.03.088
– ident: CIT0038
  doi: 10.1182/blood.V98.10.3087.h8003087_3087_3096
– ident: CIT0062
  doi: 10.1161/01.STR.0000249008.18669.5a
– ident: CIT0084
  doi: 10.1016/j.chom.2012.07.009
– volume: 33
  start-page: 435
  year: 2016
  ident: CIT0052
  publication-title: ALTEX
– ident: CIT0075
  doi: 10.1242/dmm.019992
– ident: CIT0028
  doi: 10.1002/aja.1002030302
– ident: CIT0015
  doi: 10.1038/nrmicro2128
– ident: CIT0004
  doi: 10.1289/EHP2662
– ident: CIT0071
– ident: CIT0029
  doi: 10.1016/j.taap.2013.05.006
– ident: CIT0048
  doi: 10.1016/j.lfs.2006.01.015
– ident: CIT0016
  doi: 10.3109/10408444.2014.882291
– ident: CIT0068
  doi: 10.1016/B978-0-12-812431-4.00019-1
– ident: CIT0082
  doi: 10.1002/(SICI)1097-0177(199904)214:4<323::AID-AJA5>3.0.CO;2-3
– ident: CIT0024
  doi: 10.1371/journal.pone.0104414
– ident: CIT0002
  doi: 10.1080/10406638.2014.991042
– ident: CIT0017
  doi: 10.1016/j.cotox.2017.08.002
– ident: CIT0050
  doi: 10.1111/j.1574-695X.2007.00355.x
– ident: CIT0056
  doi: 10.1182/blood-2006-05-024075
– ident: CIT0057
  doi: 10.1016/0022-1759(92)90008-H
– ident: CIT0025
  doi: 10.1124/mol.105.011841
– ident: CIT0054
  doi: 10.1093/toxsci/kfy291
– ident: CIT0033
  doi: 10.1016/S0145-305X(03)00103-4
– ident: CIT0003
  doi: 10.1016/bs.mcb.2016.08.002
– ident: CIT0009
  doi: 10.1124/jpet.116.232629
– ident: CIT0036
  doi: 10.1016/bs.mcb.2016.04.015
– ident: CIT0067
  doi: 10.1210/er.2007-0001
– volume: 126
  start-page: 3735
  year: 1999
  ident: CIT0021
  publication-title: Development
  doi: 10.1242/dev.126.17.3735
– ident: CIT0072
– ident: CIT0026
  doi: 10.1002/jlb.67.3.396
– ident: CIT0066
  doi: 10.1016/bs.mcb.2016.03.022
– ident: CIT0069
  doi: 10.1093/toxsci/kft235
– ident: CIT0007
  doi: 10.1006/faat.1997.2381
SSID ssj0029130
Score 2.2478888
Snippet Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including...
Currently assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 94
SubjectTerms 17β-Estradiol
Benzo(a)pyrene
Chemical screen
Danio rerio
Embryos
endocrine disrupting compounds (EDC)
Fertilization
Flow cytometry
high throughput
Homology
Immune response
Immune system
Immunotoxicity
Innate immunity
lead
Leukocytes (neutrophilic)
Macrophages
Methoxychlor
phagocyte
Phenanthrene
polycyclic aromatic hydrocarbons (PAH)
Pyrene
Reactive oxygen species
reactive oxygen species (ROS)
Respiratory burst
Teratogenicity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QD4gL4s1AQUHiOjDZZPI4AqIqSOVEpb2FPNmRVrNVd1oVfj32vNitkPbCNY_RxHYcO3Y-E_I2oRhE7ssUjCrBImalFiGW2nHlddJeSHyNfPZNnp6Lr8t6uVPqC3PCBnjggXDgsDMdZGDSeRA2k1wlAhOLZHyKwZuE2rcy1eRMja6WYX2VEbAPVCkNW05vd3T1HtuwCXzDRYX5PFqpxd6p1IP334Iu_ZcBejuPcudgOnlA7o8WJf0wrOQhuZPaR-Tu2Rgzf0x-fGnpdXO9oW4G4aSbTC__xtgpEHbb0aZdNb7P4KL-F71JLSI0wUdpurnY4EUixST5n3SN5YTW9DeGnHOzXT0h5yefv386Lce6CmUA66UrRa5yDJXI4J0m4-DEF1nIWEclo_cGqBlzSIbVyXAPLo8CijEXgxZM5RBq_pQctZs2PSeU6yyjNBn0phS5rl3lmMsa63k4brQqiJjoasMIOo61L9aWjdikEzssssOO7CjIu3naxYC6cWjCR2TaPBhBs_sGECU7ipI9JEoFMbsst11_Z5KHAieWH_iB40k-7KgFtnYh1JB1BHR4M3fD_sWgjGvT5grHgBrlhuuqIM8GcZpXwXt3u-YFUXuCtrfM_Z62WfUY4QoMcTCeX_wPurwk93Cpw8XTMTnqLq_SKzDFOv-633V_AOkzLZU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgL4t1AQUbiGojXjh9HQFQLUjlRqZyM7djdlVZJtUmrwq9nJi-6FagHjklsK_aM5-EZf0PIm4hsUHGfx2BUDhYxy7UIVa4dV15H7YXE28hHX-XyWHw5KadswnZMq0QfOg1AEb2sxs3tfDtlxL0Dra-kYSfg3S0KzMjRYCLeJncWCvQNsHTxfTn7XIb15UawS459pks8_xpmRz31KP7XMEz_ZoleT6i8oqEOH5D7o2lJ3w-88JDcivUjcvdoDJ4_Jj8-1_RifdFQN6Nx0ibR7Z9gO4UVbju6rldr36dyUf-TXsYaoZpgUBovzxo8UaSYLX9KN1hXaEN_Yew5rdvVE3J8-Onbx2U-FljIA5gxXS5SkapQiARuajQOVL9IQlZlpWTlvSlMUaUQDSuj4R58HwUrxlwVtGAqhVDyp2Svbuq4TyjXSVbSJBCgUqSydIVjLmks7OG40SojYlpXG0b0cSyCsbFsBCmdyGGRHHYkR0bezt3OBviNmzp8QKLNjRE9u3_RbE_tuBltCQo5yMCk8yDATHSFCEwsovFAQm9iRsxVktuuPzxJQ6UTy2_4gYOJP-woDlq7EGpIP4J1eD1_ho2M0RlXx-Yc24A85YbrIiPPBnaaZ8F7v7vkGVE7jLYzzd0v9XrVg4UrsMjBin7-H1N6Qe7h43DwdED2uu15fAmmWOdf9ZvtN1gNKfI
  priority: 102
  providerName: Taylor & Francis
Title In vivo assessment of respiratory burst inhibition by xenobiotic exposure using larval zebrafish
URI https://www.tandfonline.com/doi/abs/10.1080/1547691X.2020.1748772
https://www.ncbi.nlm.nih.gov/pubmed/32407153
https://www.proquest.com/docview/2474237607
https://www.proquest.com/docview/2404039380
https://pubmed.ncbi.nlm.nih.gov/PMC7405951
https://doaj.org/article/5718c6c16ab0489ea04c142e9bedcb9e
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLbYJiFeEHcCozISr2Fx7fjyhBjaVJA2IcSk8hRsx14rVUlps2nbr8cncdJ1QuzVuSj2OT7-ziXnQ-iDAzUoqUmdVSINiJikktkylZoKI500jMPfyCenfHLGvk3zaQy4rWNZZW8TW0Nd1hZi5AdjJroKDvFp-ScF1ijIrkYKjR20RwISAeoGMd04XIq0XCMBJYiUKzLt_-CR2QGMwVDwEMcZVPVIIcZbZ1Pbwv9OA9N_wdC71ZS3jqfjJ-hxxJX4c6cIT9EDVz1DD09i5vw5-v21wpfzyxrroRUnrj1ebTLtOCzvusHzajY3bR0XNtf4ylXQpym8FLurZQ3hRAyl8ud4AaRCC3wDiWc_X89eoLPjo59fJmlkV0htwDBNynzmS5sxH3xUp3Q495lnvMxLwUtjVKay0lunSO4UNcHxEWHFiC6tZER4a3P6Eu1WdeVeI0yl5yVXPlhPznye60wT7SWwemiqpEgQ69e1sLH1ODBgLAoSO5T24ihAHEUUR4I-Do8tu94b9z1wCEIbbobW2e1AvTov4k4s8nAaW24J1yZYL-V0xixhY6dMEKFRLkHqtsiLpo2c-I7mpKD3fMB-rx9FtAXrYqO5CXo_XA67GFIzunL1BdwTjClVVGYJetWp0zAL2jrdOU2Q2FK0rWluX6nms7ZTuAhwPEDoN___rLfoEUyiCyzto91mdeHeBajVmBHayX5NRu2uGqG9w6PT7z9GbdjiLwKbJ7w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXxJtAASPBMTQPJ7YPCPGqdmm3p1bam7Edu7vSKll2t6XlR_EbmclruxWip17tJLIzb894PkLeOmSDIjWhs5KH4BHHoWC2CIVOuRFOGJbjbeTRYT44Zt_H2XiL_OnuwmBZZacTa0VdVBbPyHcTxpsKDv5x_jNE1CjMrnYQGg1b7LuLXxCyLT8MvwJ93yXJ3rejL4OwRRUILdjuVch85AsbMQ-xmZMa7B3zLC-ygueFMTKSUeGtk3HmZGrA4ecZ6G9dWMFi7q1FlAhQ-bcYphhBfvh4HeDJuMY2Aa-Eh7mMx92NIRHt4hgOQUSaRFhFJDhPNmxhDRlwpWHqv9zeq9Wbl8zh3n1yr_Vj6aeG8R6QLVc-JLdHbab-EfkxLOnZ9Kyium_9SStPF-vMPgVyLld0Wk6mpq4bo-aCnrsS-0LBR6k7n1d4fEmxNP-EzhDEaEZ_Y6LbT5eTx-T4Rv77E7JdVqV7RmgqfF7k0oO2zpnPMh3pWHuBKCI6lYIHhHX_Vdm21TkibsxU3HZE7cihkByqJUdA3vevzZteH9e98BmJ1j-MrbrrgWpxolrJVxlYf5vbONcGtKV0OmI2ZomTBkhopAuIvExytapPanwDq6LSaxaw0_GHanXPUq0lJSBv-mnQGpgK0qWrTvEZUN6pTEUUkKcNO_W7SOsgP0sDwjcYbWObmzPldFJ3Jufg_oPL_vz_y3pN7gyORgfqYHi4_4LcxQ01h1o7ZHu1OHUvwc1bmVe1bFHg1xsW5r9u6GFs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSBUXxLuBAkbiGojXjh9HXqst0IoDlcrJ-NmNtEpWu9uq8OsZ50W3AvXANY6j2DOe-cYef4PQq5DUwFObB6dEDoiY5JI5n0tDhZVBWsbTbeTDIz47Zp9OyiGbcN2nVaYYOnZEEa2tTot76eOQEfcGvL7gipxAdDcpUkaOBIh4E90qJcBzUOni-2yMuRRpy42kLnnqM1zi-ddnttxTy-J_hcP0b0j0akLlJQ81vYvu9NASv-104R66Eer7aPewPzx_gH4c1Pi8Om-wGdk4cRPx6s9hO4YZXm9wVc8r26ZyYfsTX4Q6UTXBR3G4WDZpRxGnbPlTvEh1hRb4Vzp7jtV6_hAdTz9-ez_L-wILuQMYs8lZLKJ3BYsQpgZlwPWzyLgvveDeWlWowkcXFCmDohZiHwEzRox3khERnSvpI7RTN3XYQ5jKyD1XEQwoZ7EsTWGIiTIV9jBUSZEhNsyrdj37eCqCsdCkJykdxKGTOHQvjgy9HrstO_qN6zq8S0IbX07s2e2DZnWq-8WoS3DIjjvCjQUDpoIpmCNsEpQFEVoVMqQui1xv2s2T2FU60fSaH9gf9EP35mCtJ0x06UcwDy_HZljI6XTG1KE5S--APaWKyiJDjzt1GkdB27i7pBkSW4q2Ncztlrqat2ThAhA5oOgn_zGkF2j364ep_nJw9Pkpup1auj2ofbSzWZ2FZ4DKNvZ5u-5-A3eqLJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vivo+Assessment+of+Respiratory+Burst+Inhibition+by+Xenobiotic+Exposure+Using+Larval+Zebrafish&rft.jtitle=Journal+of+immunotoxicology&rft.au=Phelps%2C+Drake+W.&rft.au=Fletcher%2C+Ashley+A.&rft.au=Rodriguez-Nunez%2C+Ivan&rft.au=Balik-Meisner%2C+Michele+R.&rft.date=2020-01-01&rft.issn=1547-691X&rft.eissn=1547-6901&rft.volume=17&rft.issue=1&rft.spage=94&rft.epage=104&rft_id=info:doi/10.1080%2F1547691X.2020.1748772&rft_id=info%3Apmid%2F32407153&rft.externalDocID=PMC7405951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-691X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-691X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-691X&client=summon