Volumetric MRI of the lungs during forced expiration
Purpose Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung...
Saved in:
Published in | Magnetic resonance in medicine Vol. 75; no. 6; pp. 2295 - 2302 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.06.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.25798 |
Cover
Abstract | Purpose
Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack‐of‐stars gradient echo acquisition and compressed sensing reconstruction.
Methods
A technique for dynamic three‐dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data.
Results
Dynamic three‐dimensional images can be captured at sub‐150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of
4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements.
Conclusion
Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three‐dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295–2302, 2016. © 2015 Wiley Periodicals, Inc. |
---|---|
AbstractList | Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction.
A technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data.
Dynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements.
Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016. © 2015 Wiley Periodicals, Inc. Purpose Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction. Methods A technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data. Results Dynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of [Formulaomitted] mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements. Conclusion Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016. Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction.PURPOSELung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction.A technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data.METHODSA technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data.Dynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements.RESULTSDynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements.Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016. © 2015 Wiley Periodicals, Inc.CONCLUSIONDynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016. © 2015 Wiley Periodicals, Inc. Purpose Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction. Methods A technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data. Results Dynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6 ×4.6 ×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements. Conclusion Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016. © 2015 Wiley Periodicals, Inc. Purpose Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack‐of‐stars gradient echo acquisition and compressed sensing reconstruction. Methods A technique for dynamic three‐dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data. Results Dynamic three‐dimensional images can be captured at sub‐150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements. Conclusion Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three‐dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295–2302, 2016. © 2015 Wiley Periodicals, Inc. |
Author | Altbach, Maria I. Li, Zhitao Jeffries, Lindsie Cortopassi, Felipe Pandey, Abhishek Oliva, Isabel Martin, Diego R. Trouard, Theodore P. Berman, Benjamin P. Bilgin, Ali |
AuthorAffiliation | 2 Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA 3 Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA 1 Program in Applied Mathematics, University of Arizona, Tucson, Arizona, USA 4 Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA |
AuthorAffiliation_xml | – name: 2 Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA – name: 4 Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA – name: 1 Program in Applied Mathematics, University of Arizona, Tucson, Arizona, USA – name: 3 Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA |
Author_xml | – sequence: 1 givenname: Benjamin P. surname: Berman fullname: Berman, Benjamin P. organization: Program in Applied Mathematics, University of Arizona, Arizona, Tucson, USA – sequence: 2 givenname: Abhishek surname: Pandey fullname: Pandey, Abhishek organization: Department of Electrical and Computer Engineering, University of Arizona, Arizona, Tucson, USA – sequence: 3 givenname: Zhitao surname: Li fullname: Li, Zhitao organization: Department of Electrical and Computer Engineering, University of Arizona, Arizona, Tucson, USA – sequence: 4 givenname: Lindsie surname: Jeffries fullname: Jeffries, Lindsie organization: Department of Biomedical Engineering, University of Arizona, Arizona, Tucson, USA – sequence: 5 givenname: Theodore P. surname: Trouard fullname: Trouard, Theodore P. organization: Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA – sequence: 6 givenname: Isabel surname: Oliva fullname: Oliva, Isabel organization: Department of Medical Imaging, University of Arizona, Arizona, Tucson, USA – sequence: 7 givenname: Felipe surname: Cortopassi fullname: Cortopassi, Felipe organization: Department of Medical Imaging, University of Arizona, Arizona, Tucson, USA – sequence: 8 givenname: Diego R. surname: Martin fullname: Martin, Diego R. organization: Department of Medical Imaging, University of Arizona, Arizona, Tucson, USA – sequence: 9 givenname: Maria I. surname: Altbach fullname: Altbach, Maria I. organization: Department of Medical Imaging, University of Arizona, Arizona, Tucson, USA – sequence: 10 givenname: Ali surname: Bilgin fullname: Bilgin, Ali email: bilgin@email.arizona.edu organization: Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26140699$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9v1DAQxS1URP_AgS-AInEBpLS2Y8f2qYIKStUuSBWUo-U4461LYi92QrvfnrS7LVAB4jSH-b2neW-20UaIARB6SvAuwZju9anfpVwo-QBtEU5pSbliG2gLC4bLiii2ibZzvsAYKyXYI7RJa8JwrdQWYmexG3sYkrfF7PSoiK4YzqHoxjDPRTsmH-aFi8lCW8DVwicz-Bgeo4fOdBmerOcO-vzu7aeD9-XJx8Ojg9cnpeWEy7IxnAvZNg0jRjTEtq0RGDvXAAVwtKKSSVI32GFoGwncMivBcekaXjvbmmoHvVr5jmFhlpem6_Qi-d6kpSZYX0fXU3R9E32C91fwYmx6aC2EIZmfgmi8_n0T_Lmex--aEFUzoqrJ4cXaIcVvI-RB9z5b6DoTII5ZE6GwqqUi4j9QqXBVCcYm9Pk99CKOKUy9XVOSUooVn6hnv15_d_btpyZgbwXYFHNO4LT1w803pjC--2MhL-8p_lXe2v3Sd7D8O6hnp7NbRblS-DzA1Z3CpK-6FpXg-suHQy2O35wpdsy1qn4AaQjRnQ |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1088_1361_6560_acc0cd crossref_primary_10_1002_mp_13987 crossref_primary_10_2214_AJR_17_17802 crossref_primary_10_1002_jmri_25576 crossref_primary_10_2200_S00914ED2V01Y201904SPR017 |
Cites_doi | 10.1118/1.2836423 10.1002/mrm.24751 10.1016/j.acra.2008.07.021 10.1002/mrm.1241 10.1002/mrm.10173 10.1183/09031936.97.10102427 10.1002/mrm.22302 10.1097/01.rli.0000113795.93565.c3 10.1109/TSP.2002.807005 10.1183/09031936.96.09122640 10.1016/j.ejrad.2007.08.007 10.1002/mrm.21391 10.1002/1522-2594(200101)45:1<24::AID-MRM1004>3.0.CO;2-6 10.1136/thx.37.9.676 10.1002/mrm.21106 10.1016/j.media.2005.04.002 10.1002/mrm.25072 10.1002/mrm.25272 10.1002/mrm.24143 10.1002/mrm.24389 10.1109/TMI.2006.885337 10.2147/COPD.S2639 10.1002/mrm.20682 10.1002/mrm.24980 |
ContentType | Journal Article |
Copyright | 2015 Wiley Periodicals, Inc. 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO 5PM ADTOC UNPAY |
DOI | 10.1002/mrm.25798 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 2302 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:11964193 PMC11964193 4052693361 26140699 10_1002_mrm_25798 MRM25798 ark_67375_WNG_7KBV94K5_9 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Phoenix Chapter of the ARCS Foundation (B.P.B.) – fundername: NHLBI NIH HHS grantid: R01 HL085385 – fundername: NCI NIH HHS grantid: R33 CA099074 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c5158-ba5578dbb41a7b1cdda700ffbe2eef23284816b0f0edb8e5c4c8ef58fb56fcda3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Wed Aug 20 00:12:43 EDT 2025 Thu Aug 21 18:38:27 EDT 2025 Fri Jul 11 12:23:53 EDT 2025 Fri Jul 11 08:59:10 EDT 2025 Fri Jul 25 12:31:56 EDT 2025 Sun Apr 06 01:21:05 EDT 2025 Thu Apr 24 22:55:22 EDT 2025 Wed Oct 01 02:05:15 EDT 2025 Wed Jan 22 16:25:03 EST 2025 Sun Sep 21 06:19:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | pulmonary compressed sensing spirometry forced expiration |
Language | English |
License | 2015 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5158-ba5578dbb41a7b1cdda700ffbe2eef23284816b0f0edb8e5c4c8ef58fb56fcda3 |
Notes | ark:/67375/WNG-7KBV94K5-9 istex:F6550B31F50D9A65E74EAF4798613EF360CD38E4 Phoenix Chapter of the ARCS Foundation (B.P.B.) ArticleID:MRM25798 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/11964193 |
PMID | 26140699 |
PQID | 1788222095 |
PQPubID | 1016391 |
PageCount | 8 |
ParticipantIDs | unpaywall_primary_10_1002_mrm_25798 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11964193 proquest_miscellaneous_1790968917 proquest_miscellaneous_1789033744 proquest_journals_1788222095 pubmed_primary_26140699 crossref_citationtrail_10_1002_mrm_25798 crossref_primary_10_1002_mrm_25798 wiley_primary_10_1002_mrm_25798_MRM25798 istex_primary_ark_67375_WNG_7KBV94K5_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2016 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: June 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Hansen MS, Sørensen TS. Gadgetron: an open source framework for medical image reconstruction. Magn Reson Med 2013;69:1768-1776. Chen GH, Tang J, Leng S. Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection datasets. Med Phys 2008;35:660-663. Peng X, Ying L, Liu Q, Zhu Y, Liu Y, Qu X, Liu X, Zheng H, Liang D. Incorporating reference in parallel imaging and compressed sensing. Magn Reson Med 2015;73:1490-1504. Voorhees A, An J, Berger KI, Goldring RM, Chen Q. Magnetic resonance imaging-based spirometry for regional assessment of pulmonary function. Magn Reson Med 2005;54:1146-1154. Möller HE, Chen XJ, Saam B, Hagspiel K, Johnson GA, Altes TA, de Lange EE, Kauczor HU. MRI of the lungs using hyperpolarized noble gases. Magn Reson Med 2002;47;1029-1051. Plathow C, Ley S, Fink C, Puderbach M, Heilmann M, Zuna I, Kauczor HU. Evaluation of chest motion and volumetry during the breathing cycle by dynamic MRI in healthy subjects: comparison with pulmonary function tests. Invest Radiol 2004;39:202-209. Gibson G. Pulmonary hyperinflation a clinical overview. Eur Respir J 1996;9:2640-2649. Khare K, Hardy CJ, King KF, Turski PA, Marinelli L. Accelerated MR imaging using compressed sensing with no free parameters. Magn Reson Med 2012;68:1450-1457. Takahashi M, Fukuoka J, Nitta N, Takazakura R, Nagatani Y, Murakami Y, Otani H, Murata K. Imaging of pulmonary emphysema: a pictorial review. Int J Chronic Obstruct Pulmon Dis 2008;3:193-204. Feng L, Grimm R, Block KT, Chandarana H, Kim S, Xu J, Axel L, Sodickson DK, Otazo R. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 2014;72:707-717. Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M. ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 2014;71:990-1001. Ajraoui S, Lee KJ, Deppe MH, Parnell SR, Parra-Robles J, Wild JM. Compressed sensing in hyperpolarized 3He lung MRI. Magn Reson Med 2010;63:1059-1069. Eichinger M, Tetzlaff R, Puderbach M, Woodhouse N, Kauczor HU. Proton magnetic resonance imaging for assessment of lung function and respiratory dynamics. Eur J Radiol 2007;64:329-334. Clausen J. Measurement of absolute lung volumes by imaging techniques. Eur Respir J 1997;10:2427-2431. Fessler JA, Sutton BP. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans Signal Process 2003;51:560-574. Chen Q, Mai VM, Bankier AA, Napadow VJ, Gilbert RJ, Edelman RR. Ultrafast MR grid-tagging sequence for assesment of local mechanical properties of the lungs. Magn Reson Med 2001;45:24-28. Armstrong JD, Gluck EH, Crapo RO, Jones HA, Hughes JMB. Lung tissue volume estimated by simultaneous radiographic and helium dilution methods. Thorax 1982;37:676-679. McKusick KA, Wagner H, Jr, Soin JS, Benjamin JJ, Cooper M, Ball WC, Jr. Measurement of regional lung function in the early detection of chronic obstructive pulmonary disease. Scand J Respir Dis Suppl 1974;85:51. Sundaram TA, Gee JC. Towards a model of lung biomechanics: pulmonary kinetics via registration of serial lung images. Med Image Anal 2005;9:524-537. Bammer R, Aksoy M, Liu C. Augmented generalized SENSE reconstruction to correct for rigid body motion. Magn Reson Med 2007;57:90-102. Preussmann KP, Weiger M, Bornert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651. Hollingsworth KG, Higgings DM, McCallum M, Ward L, Coombs A, Straub V. Investigating the quantitative fidelity of prospectively undersampled chemical shift imaging in muscular dystrophy with compressed sensing and parallel imaging reconstruction. Magn Reson Med 2014;72:1610-1619. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195. Tokuda J, Schmitt M, Sun Y, Patz S, Mountford CE, Hata N, Wald LL, Hatabu H. Lung motion and volume measurement by dynamic 3D MRI using 128-channel receiver coil. Acad Radiol 2009;16:22-27. Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the golden angle ratio for time-resolved MRI. IEEE Trans Med Imaging 2007;26:68-76. 1982; 37 2013; 69 2012 2015; 73 2008 2008; 35 2008; 3 2001; 45 2003; 51 2001; 46 2010; 63 2007; 57 2007; 58 2002; 47 1974; 85 1997; 10 2004; 39 2005; 9 2005; 54 2014 2007; 64 2012; 68 2014; 72 2014; 71 2009; 16 1996; 9 2007; 26 e_1_2_6_10_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 McKusick KA (e_1_2_6_4_1) 1974; 85 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M. ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 2014;71:990-1001. – reference: Chen Q, Mai VM, Bankier AA, Napadow VJ, Gilbert RJ, Edelman RR. Ultrafast MR grid-tagging sequence for assesment of local mechanical properties of the lungs. Magn Reson Med 2001;45:24-28. – reference: Clausen J. Measurement of absolute lung volumes by imaging techniques. Eur Respir J 1997;10:2427-2431. – reference: Fessler JA, Sutton BP. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans Signal Process 2003;51:560-574. – reference: Ajraoui S, Lee KJ, Deppe MH, Parnell SR, Parra-Robles J, Wild JM. Compressed sensing in hyperpolarized 3He lung MRI. Magn Reson Med 2010;63:1059-1069. – reference: Hansen MS, Sørensen TS. Gadgetron: an open source framework for medical image reconstruction. Magn Reson Med 2013;69:1768-1776. – reference: Plathow C, Ley S, Fink C, Puderbach M, Heilmann M, Zuna I, Kauczor HU. Evaluation of chest motion and volumetry during the breathing cycle by dynamic MRI in healthy subjects: comparison with pulmonary function tests. Invest Radiol 2004;39:202-209. – reference: Peng X, Ying L, Liu Q, Zhu Y, Liu Y, Qu X, Liu X, Zheng H, Liang D. Incorporating reference in parallel imaging and compressed sensing. Magn Reson Med 2015;73:1490-1504. – reference: Bammer R, Aksoy M, Liu C. Augmented generalized SENSE reconstruction to correct for rigid body motion. Magn Reson Med 2007;57:90-102. – reference: Takahashi M, Fukuoka J, Nitta N, Takazakura R, Nagatani Y, Murakami Y, Otani H, Murata K. Imaging of pulmonary emphysema: a pictorial review. Int J Chronic Obstruct Pulmon Dis 2008;3:193-204. – reference: Chen GH, Tang J, Leng S. Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection datasets. Med Phys 2008;35:660-663. – reference: Preussmann KP, Weiger M, Bornert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651. – reference: Eichinger M, Tetzlaff R, Puderbach M, Woodhouse N, Kauczor HU. Proton magnetic resonance imaging for assessment of lung function and respiratory dynamics. Eur J Radiol 2007;64:329-334. – reference: McKusick KA, Wagner H, Jr, Soin JS, Benjamin JJ, Cooper M, Ball WC, Jr. Measurement of regional lung function in the early detection of chronic obstructive pulmonary disease. Scand J Respir Dis Suppl 1974;85:51. – reference: Sundaram TA, Gee JC. Towards a model of lung biomechanics: pulmonary kinetics via registration of serial lung images. Med Image Anal 2005;9:524-537. – reference: Voorhees A, An J, Berger KI, Goldring RM, Chen Q. Magnetic resonance imaging-based spirometry for regional assessment of pulmonary function. Magn Reson Med 2005;54:1146-1154. – reference: Tokuda J, Schmitt M, Sun Y, Patz S, Mountford CE, Hata N, Wald LL, Hatabu H. Lung motion and volume measurement by dynamic 3D MRI using 128-channel receiver coil. Acad Radiol 2009;16:22-27. – reference: Khare K, Hardy CJ, King KF, Turski PA, Marinelli L. Accelerated MR imaging using compressed sensing with no free parameters. Magn Reson Med 2012;68:1450-1457. – reference: Feng L, Grimm R, Block KT, Chandarana H, Kim S, Xu J, Axel L, Sodickson DK, Otazo R. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 2014;72:707-717. – reference: Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the golden angle ratio for time-resolved MRI. IEEE Trans Med Imaging 2007;26:68-76. – reference: Möller HE, Chen XJ, Saam B, Hagspiel K, Johnson GA, Altes TA, de Lange EE, Kauczor HU. MRI of the lungs using hyperpolarized noble gases. Magn Reson Med 2002;47;1029-1051. – reference: Hollingsworth KG, Higgings DM, McCallum M, Ward L, Coombs A, Straub V. Investigating the quantitative fidelity of prospectively undersampled chemical shift imaging in muscular dystrophy with compressed sensing and parallel imaging reconstruction. Magn Reson Med 2014;72:1610-1619. – reference: Armstrong JD, Gluck EH, Crapo RO, Jones HA, Hughes JMB. Lung tissue volume estimated by simultaneous radiographic and helium dilution methods. Thorax 1982;37:676-679. – reference: Gibson G. Pulmonary hyperinflation a clinical overview. Eur Respir J 1996;9:2640-2649. – reference: Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195. – volume: 46 start-page: 638 year: 2001 end-page: 651 article-title: Advances in sensitivity encoding with arbitrary k‐space trajectories publication-title: Magn Reson Med – volume: 72 start-page: 707 year: 2014 end-page: 717 article-title: Golden‐angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden‐angle radial sampling for fast and flexible dynamic volumetric MRI publication-title: Magn Reson Med – start-page: 4367 year: 2014 – volume: 68 start-page: 1450 year: 2012 end-page: 1457 article-title: Accelerated MR imaging using compressed sensing with no free parameters publication-title: Magn Reson Med – volume: 45 start-page: 24 year: 2001 end-page: 28 article-title: Ultrafast MR grid‐tagging sequence for assesment of local mechanical properties of the lungs publication-title: Magn Reson Med – volume: 72 start-page: 1610 year: 2014 end-page: 1619 article-title: Investigating the quantitative fidelity of prospectively undersampled chemical shift imaging in muscular dystrophy with compressed sensing and parallel imaging reconstruction publication-title: Magn Reson Med – start-page: 3787 year: 2008 – volume: 37 start-page: 676 year: 1982 end-page: 679 article-title: Lung tissue volume estimated by simultaneous radiographic and helium dilution methods publication-title: Thorax – volume: 54 start-page: 1146 year: 2005 end-page: 1154 article-title: Magnetic resonance imaging‐based spirometry for regional assessment of pulmonary function publication-title: Magn Reson Med – volume: 9 start-page: 2640 year: 1996 end-page: 2649 article-title: Pulmonary hyperinflation a clinical overview publication-title: Eur Respir J – volume: 64 start-page: 329 year: 2007 end-page: 334 article-title: Proton magnetic resonance imaging for assessment of lung function and respiratory dynamics publication-title: Eur J Radiol – volume: 51 start-page: 560 year: 2003 end-page: 574 article-title: Nonuniform fast Fourier transforms using min‐max interpolation publication-title: IEEE Trans Signal Process – volume: 57 start-page: 90 year: 2007 end-page: 102 article-title: Augmented generalized SENSE reconstruction to correct for rigid body motion publication-title: Magn Reson Med – volume: 26 start-page: 68 year: 2007 end-page: 76 article-title: An optimal radial profile order based on the golden angle ratio for time‐resolved MRI publication-title: IEEE Trans Med Imaging – volume: 9 start-page: 524 year: 2005 end-page: 537 article-title: Towards a model of lung biomechanics: pulmonary kinetics via registration of serial lung images publication-title: Med Image Anal – volume: 10 start-page: 2427 year: 1997 end-page: 2431 article-title: Measurement of absolute lung volumes by imaging techniques publication-title: Eur Respir J – start-page: 2464 year: 2012 – start-page: 0298 year: 2014 – volume: 58 start-page: 1182 year: 2007 end-page: 1195 article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging publication-title: Magn Reson Med – volume: 39 start-page: 202 year: 2004 end-page: 209 article-title: Evaluation of chest motion and volumetry during the breathing cycle by dynamic MRI in healthy subjects: comparison with pulmonary function tests publication-title: Invest Radiol – volume: 35 start-page: 660 year: 2008 end-page: 663 article-title: Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection datasets publication-title: Med Phys – volume: 47 start-page: 1029 year: 2002 end-page: 1051 article-title: MRI of the lungs using hyperpolarized noble gases publication-title: Magn Reson Med – volume: 69 start-page: 1768 year: 2013 end-page: 1776 article-title: Gadgetron: an open source framework for medical image reconstruction publication-title: Magn Reson Med – volume: 73 start-page: 1490 year: 2015 end-page: 1504 article-title: Incorporating reference in parallel imaging and compressed sensing publication-title: Magn Reson Med – volume: 71 start-page: 990 year: 2014 end-page: 1001 article-title: ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA publication-title: Magn Reson Med – volume: 3 start-page: 193 year: 2008 end-page: 204 article-title: Imaging of pulmonary emphysema: a pictorial review publication-title: Int J Chronic Obstruct Pulmon Dis – volume: 85 start-page: 51 year: 1974 article-title: Measurement of regional lung function in the early detection of chronic obstructive pulmonary disease publication-title: Scand J Respir Dis Suppl – volume: 63 start-page: 1059 year: 2010 end-page: 1069 article-title: Compressed sensing in hyperpolarized He lung MRI publication-title: Magn Reson Med – volume: 16 start-page: 22 year: 2009 end-page: 27 article-title: Lung motion and volume measurement by dynamic 3D MRI using 128‐channel receiver coil publication-title: Acad Radiol – ident: e_1_2_6_19_1 doi: 10.1118/1.2836423 – ident: e_1_2_6_20_1 doi: 10.1002/mrm.24751 – ident: e_1_2_6_13_1 doi: 10.1016/j.acra.2008.07.021 – ident: e_1_2_6_25_1 doi: 10.1002/mrm.1241 – ident: e_1_2_6_9_1 doi: 10.1002/mrm.10173 – ident: e_1_2_6_12_1 doi: 10.1183/09031936.97.10102427 – ident: e_1_2_6_14_1 doi: 10.1002/mrm.22302 – ident: e_1_2_6_11_1 doi: 10.1097/01.rli.0000113795.93565.c3 – ident: e_1_2_6_22_1 – ident: e_1_2_6_21_1 doi: 10.1109/TSP.2002.807005 – ident: e_1_2_6_3_1 doi: 10.1183/09031936.96.09122640 – ident: e_1_2_6_10_1 doi: 10.1016/j.ejrad.2007.08.007 – ident: e_1_2_6_18_1 doi: 10.1002/mrm.21391 – ident: e_1_2_6_5_1 doi: 10.1002/1522-2594(200101)45:1<24::AID-MRM1004>3.0.CO;2-6 – ident: e_1_2_6_29_1 doi: 10.1136/thx.37.9.676 – ident: e_1_2_6_23_1 doi: 10.1002/mrm.21106 – ident: e_1_2_6_30_1 – volume: 85 start-page: 51 year: 1974 ident: e_1_2_6_4_1 article-title: Measurement of regional lung function in the early detection of chronic obstructive pulmonary disease publication-title: Scand J Respir Dis Suppl – ident: e_1_2_6_7_1 doi: 10.1016/j.media.2005.04.002 – ident: e_1_2_6_26_1 doi: 10.1002/mrm.25072 – ident: e_1_2_6_8_1 – ident: e_1_2_6_28_1 doi: 10.1002/mrm.25272 – ident: e_1_2_6_27_1 doi: 10.1002/mrm.24143 – ident: e_1_2_6_24_1 doi: 10.1002/mrm.24389 – ident: e_1_2_6_15_1 – ident: e_1_2_6_17_1 doi: 10.1109/TMI.2006.885337 – ident: e_1_2_6_2_1 doi: 10.2147/COPD.S2639 – ident: e_1_2_6_6_1 doi: 10.1002/mrm.20682 – ident: e_1_2_6_16_1 doi: 10.1002/mrm.24980 |
SSID | ssj0009974 |
Score | 2.2241235 |
Snippet | Purpose
Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation... Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides... Purpose Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2295 |
SubjectTerms | compressed sensing Exhalation - physiology forced expiration Humans Imaging, Three-Dimensional - methods Lung - diagnostic imaging Lung - physiology Magnetic Resonance Imaging - methods pulmonary spirometry Spirometry - methods |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9RADLbKrjheOMoVKCgcQn1JdnJPHguiFKqsUMWW9mmUuUTVbHa1hyj8ejyTQ1ooFbxFGiuaxPb4G9n-DPCaaIxzMgs9FdLEM-O1PU504OlEcaKCQGXC9DsX4_RgEn86SU62IOx6YWzRvuBnfl1N_frsm62tnE_FqKsTGwWGQgphxzUYpiapNIDhZPx577Th2zSHip1-iHEp9BDbxx2dEAlH08XURxPN6UYQGpr_eXEZwvyzUPLmup6XP76XVbUJZm002r_TdAguLYmhKUI599cr7oufv1E8_t-H3oXbLTh195q1e7Cl6m24UbTp9224butFxfI-xMf2VDP0_m5x9NGdaReRpFvh0bF0m9ZHF-GwUNJVFzaXj_p_AJP991_eHXjtAAZPIMyhHi8TdGjJeRyUGQ-ElGVGiNZchUppxGKGiz9F3RIlOVWJiAVVOqGaJ6kWsowewqCe1eoxuDSKiDZNskLqWMuQKgSSoUR4VCaSk9SB3U4jTLTs5GZIRsUaXuWQofKYVZ4DL3vReUPJcZnQG6vWXqJcnJsatixhX8cfWHb49jiPDxOWO7DT6Z217rtkQUYNcEL46cCLfhkdz2RTylrN1lYmJ1GUxfFVMjleESleiR141JhSvyG8upquY9wA3TCyXsAQf2-uoJlYAvDOMhx41dvjVb9i11rq3yVYcVTYhyf_9MKncAthY9oUzO3AYLVYq2cIzVb8eeuLvwDEaDdO priority: 102 providerName: Unpaywall |
Title | Volumetric MRI of the lungs during forced expiration |
URI | https://api.istex.fr/ark:/67375/WNG-7KBV94K5-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25798 https://www.ncbi.nlm.nih.gov/pubmed/26140699 https://www.proquest.com/docview/1788222095 https://www.proquest.com/docview/1789033744 https://www.proquest.com/docview/1790968917 https://pubmed.ncbi.nlm.nih.gov/PMC11964193 https://www.ncbi.nlm.nih.gov/pmc/articles/11964193 |
UnpaywallVersion | submittedVersion |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2594 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB9Ki9ovPuorWkt8IP2S6ybZTTb4qYq1Wu6Qw6sVhCX7otJrrtwDq3-9s5tHOa1F_BbYCWxmZ2Z_m5n5LcALYnGf03kSmYSzyF2vHUli48gyI4mJY5Mr1-_cH2T7I_rhiB2twKu2F6bmh-h-uDnP8PHaOXgpZzsXpKGn09Me2lvhGn3jlPkU7fCCOqooagbmnLo4U9CWVYgkO92bS3vRmlPr-WVA8896yRuL6qz88b0cj5cxrd-U9m7B1_Zz6lqUk95iLnvq529Mj__5vbfhZgNWw93auu7Aiqk24Hq_ScdvwDVfP6pmd4Ee-ijn6P7D_vB9OLEhIstwjKFkFtatkCHCY2V0aM59bh_t4R6M9t5-erMfNRcyRAphD49kydDBtZQ0LnMZK63LnBBrpUmMsYjNHDd_hmtNjJbcMEUVN5ZxK1lmlS7T-7BaTSrzEEKepsS6plmlLbU64QaBZaIRLpVMS5IFsN0ujVANW7m7NGMsap7lRKA-hNdHAM860bOaouMyoZd-fTuJcnriatpyJj4P3on84PVhQQ-YKALYbA1ANO48E3HOHZBCOBrA024YHdFlV8rKTBZepiBpmlN6lUyBR0aOR-QAHtQ21U0Ij7KuCxknwJesrRNwRODLI9W3Y08IHjtWNUTiATzvDPMqVWx7O_u7hOgP-_7h0b-LPoZ1xJJZXUW3Cavz6cI8Qbw2l1veMbdgbTT4uPvlF-trPbo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVlBeOMoVKBAOob5k6yRO4ki8cJUt2-zDqi19QVZ8CdRtttpDFH49Y-eoFkqFeIvkieRjZvzZM_MZ4CUxuM-pLAp0xJLAPq8dCGLCwCRaEB2GOpO23rkYpv0D-ukoOVqB120tTM0P0V24Wctw_toauL2Q3j5nDT2ZnvRQ4XJ2BdZsfM6a5fvROXlUntcczBm1nianLa8Qiba7X5d2ozU7sWcXQc0_MybXF9Vp-eN7OR4vo1q3Le3chC_tgOpslOPeYi568udvXI__O-JbcKPBq_6bWsFuw4quNuBa0UTkN-CqSyGVsztAD52js4z_fjHa9SfGR3Dpj9GbzPy6GtJHhCy18vWZC--jStyFg50P--_6QfMmQyAR-bBAlAnauBKChmUmQqlUmRFijNCR1gbhmaXnT3G5iVaC6URSybRJmBFJaqQq43uwWk0q_QB8FsfE2LpZqQw1KmIasWWkEDGViRIk9WCrXRsuG8Jy-27GmNdUyxHH-eBuPjx43ome1iwdFwm9cgvcSZTTY5vWliX88_AjzwZvD3M6SHjuwWarAbyx6BkPM2axFCJSD551zWiLNsBSVnqycDI5ieOM0stkcjw1Mjwle3C_VqquQ3iatYXI2AG2pG6dgOUCX26pvn11nOChJVZDMO7Bi04zL5uKLadof5fgxahwHw__XfQprPf3iz2-tzscPILrCC3TOqluE1bn04V-jPBtLp44K_0FnSNAJg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVrS8cBQKgQLhEOpLtk7iJI544lpall2hVVv6gGTFl0DdZld7iMKvZ-wc1UKpEG-RPJGc8cz4m3jmM8BzYnCfU1kU6Iglgb1eOxDEhIFJtCA6DHUmbb9zf5DuHdIPx8nxCrxsemEqfoj2h5v1DBevrYNPlNk9Jw09nZ520N5ydgXWaIrZlUVEw3PuqDyvKJgzagNNThtaIRLttq8ubUZrVq9nFyHNPwsmNxblpPjxvRiNlkGt25W6N-BL8z1VMcpJZzEXHfnzN6rH__zgm3C9Rqv-q8q8bsGKLjdhvV-fx2_CVVdAKme3gR65MGf5_v3-cN8fGx-hpT_CWDLzq15IH_Gx1MrXZ-5wHw3iDhx23x282QvqGxkCibiHBaJI0MOVEDQsMhFKpYqMEGOEjrQ2CM4sOX-Ki020EkwnkkqmTcKMSFIjVRFvwWo5LvU98FkcE2O7ZqUy1KiIaUSWkUK8VCRKkNSDnWZpuKzpyu2tGSNeES1HHPXBnT48eNqKTiqOjouEXrj1bSWK6YktassS_nnwnme910c57SU892C7MQBe-_OMhxmzSArxqAdP2mH0RHu8UpR6vHAyOYnjjNLLZHLMGRnmyB7crWyqnRDmsrYNGSfAlqytFbBM4Msj5bevjhE8tLRqCMU9eNYa5mWq2HF29ncJ3h_23cP9fxd9DOuf3nb5x_1B7wFcQ1yZVhV127A6ny70Q8Ruc_HI-egvsWQ-1Q |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9RADLbKrjheOMoVKCgcQn1JdnJPHguiFKqsUMWW9mmUuUTVbHa1hyj8ejyTQ1ooFbxFGiuaxPb4G9n-DPCaaIxzMgs9FdLEM-O1PU504OlEcaKCQGXC9DsX4_RgEn86SU62IOx6YWzRvuBnfl1N_frsm62tnE_FqKsTGwWGQgphxzUYpiapNIDhZPx577Th2zSHip1-iHEp9BDbxx2dEAlH08XURxPN6UYQGpr_eXEZwvyzUPLmup6XP76XVbUJZm002r_TdAguLYmhKUI599cr7oufv1E8_t-H3oXbLTh195q1e7Cl6m24UbTp9224butFxfI-xMf2VDP0_m5x9NGdaReRpFvh0bF0m9ZHF-GwUNJVFzaXj_p_AJP991_eHXjtAAZPIMyhHi8TdGjJeRyUGQ-ElGVGiNZchUppxGKGiz9F3RIlOVWJiAVVOqGaJ6kWsowewqCe1eoxuDSKiDZNskLqWMuQKgSSoUR4VCaSk9SB3U4jTLTs5GZIRsUaXuWQofKYVZ4DL3vReUPJcZnQG6vWXqJcnJsatixhX8cfWHb49jiPDxOWO7DT6Z217rtkQUYNcEL46cCLfhkdz2RTylrN1lYmJ1GUxfFVMjleESleiR141JhSvyG8upquY9wA3TCyXsAQf2-uoJlYAvDOMhx41dvjVb9i11rq3yVYcVTYhyf_9MKncAthY9oUzO3AYLVYq2cIzVb8eeuLvwDEaDdO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volumetric+MRI+of+the+lungs+during+forced+expiration&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Berman%2C+Benjamin+P&rft.au=Pandey%2C+Abhishek&rft.au=Li%2C+Zhitao&rft.au=Jeffries%2C+Lindsie&rft.date=2016-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=75&rft.issue=6&rft.spage=2295&rft_id=info:doi/10.1002%2Fmrm.25798&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4052693361 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |