Volumetric MRI of the lungs during forced expiration

Purpose Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 75; no. 6; pp. 2295 - 2302
Main Authors Berman, Benjamin P., Pandey, Abhishek, Li, Zhitao, Jeffries, Lindsie, Trouard, Theodore P., Oliva, Isabel, Cortopassi, Felipe, Martin, Diego R., Altbach, Maria I., Bilgin, Ali
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.06.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.25798

Cover

Abstract Purpose Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack‐of‐stars gradient echo acquisition and compressed sensing reconstruction. Methods A technique for dynamic three‐dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data. Results Dynamic three‐dimensional images can be captured at sub‐150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements. Conclusion Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three‐dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295–2302, 2016. © 2015 Wiley Periodicals, Inc.
AbstractList Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction. A technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data. Dynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements. Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016. © 2015 Wiley Periodicals, Inc.
Purpose Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction. Methods A technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data. Results Dynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of [Formulaomitted] mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements. Conclusion Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016.
Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction.PURPOSELung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction.A technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data.METHODSA technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data.Dynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements.RESULTSDynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements.Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016. © 2015 Wiley Periodicals, Inc.CONCLUSIONDynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016. © 2015 Wiley Periodicals, Inc.
Purpose Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction. Methods A technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data. Results Dynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6 ×4.6 ×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements. Conclusion Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016. © 2015 Wiley Periodicals, Inc.
Purpose Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack‐of‐stars gradient echo acquisition and compressed sensing reconstruction. Methods A technique for dynamic three‐dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data. Results Dynamic three‐dimensional images can be captured at sub‐150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements. Conclusion Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three‐dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295–2302, 2016. © 2015 Wiley Periodicals, Inc.
Author Altbach, Maria I.
Li, Zhitao
Jeffries, Lindsie
Cortopassi, Felipe
Pandey, Abhishek
Oliva, Isabel
Martin, Diego R.
Trouard, Theodore P.
Berman, Benjamin P.
Bilgin, Ali
AuthorAffiliation 2 Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
3 Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
1 Program in Applied Mathematics, University of Arizona, Tucson, Arizona, USA
4 Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
AuthorAffiliation_xml – name: 2 Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
– name: 4 Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
– name: 1 Program in Applied Mathematics, University of Arizona, Tucson, Arizona, USA
– name: 3 Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
Author_xml – sequence: 1
  givenname: Benjamin P.
  surname: Berman
  fullname: Berman, Benjamin P.
  organization: Program in Applied Mathematics, University of Arizona, Arizona, Tucson, USA
– sequence: 2
  givenname: Abhishek
  surname: Pandey
  fullname: Pandey, Abhishek
  organization: Department of Electrical and Computer Engineering, University of Arizona, Arizona, Tucson, USA
– sequence: 3
  givenname: Zhitao
  surname: Li
  fullname: Li, Zhitao
  organization: Department of Electrical and Computer Engineering, University of Arizona, Arizona, Tucson, USA
– sequence: 4
  givenname: Lindsie
  surname: Jeffries
  fullname: Jeffries, Lindsie
  organization: Department of Biomedical Engineering, University of Arizona, Arizona, Tucson, USA
– sequence: 5
  givenname: Theodore P.
  surname: Trouard
  fullname: Trouard, Theodore P.
  organization: Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
– sequence: 6
  givenname: Isabel
  surname: Oliva
  fullname: Oliva, Isabel
  organization: Department of Medical Imaging, University of Arizona, Arizona, Tucson, USA
– sequence: 7
  givenname: Felipe
  surname: Cortopassi
  fullname: Cortopassi, Felipe
  organization: Department of Medical Imaging, University of Arizona, Arizona, Tucson, USA
– sequence: 8
  givenname: Diego R.
  surname: Martin
  fullname: Martin, Diego R.
  organization: Department of Medical Imaging, University of Arizona, Arizona, Tucson, USA
– sequence: 9
  givenname: Maria I.
  surname: Altbach
  fullname: Altbach, Maria I.
  organization: Department of Medical Imaging, University of Arizona, Arizona, Tucson, USA
– sequence: 10
  givenname: Ali
  surname: Bilgin
  fullname: Bilgin, Ali
  email: bilgin@email.arizona.edu
  organization: Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26140699$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1URP_AgS-AInEBpLS2Y8f2qYIKStUuSBWUo-U4461LYi92QrvfnrS7LVAB4jSH-b2neW-20UaIARB6SvAuwZju9anfpVwo-QBtEU5pSbliG2gLC4bLiii2ibZzvsAYKyXYI7RJa8JwrdQWYmexG3sYkrfF7PSoiK4YzqHoxjDPRTsmH-aFi8lCW8DVwicz-Bgeo4fOdBmerOcO-vzu7aeD9-XJx8Ojg9cnpeWEy7IxnAvZNg0jRjTEtq0RGDvXAAVwtKKSSVI32GFoGwncMivBcekaXjvbmmoHvVr5jmFhlpem6_Qi-d6kpSZYX0fXU3R9E32C91fwYmx6aC2EIZmfgmi8_n0T_Lmex--aEFUzoqrJ4cXaIcVvI-RB9z5b6DoTII5ZE6GwqqUi4j9QqXBVCcYm9Pk99CKOKUy9XVOSUooVn6hnv15_d_btpyZgbwXYFHNO4LT1w803pjC--2MhL-8p_lXe2v3Sd7D8O6hnp7NbRblS-DzA1Z3CpK-6FpXg-suHQy2O35wpdsy1qn4AaQjRnQ
CODEN MRMEEN
CitedBy_id crossref_primary_10_1088_1361_6560_acc0cd
crossref_primary_10_1002_mp_13987
crossref_primary_10_2214_AJR_17_17802
crossref_primary_10_1002_jmri_25576
crossref_primary_10_2200_S00914ED2V01Y201904SPR017
Cites_doi 10.1118/1.2836423
10.1002/mrm.24751
10.1016/j.acra.2008.07.021
10.1002/mrm.1241
10.1002/mrm.10173
10.1183/09031936.97.10102427
10.1002/mrm.22302
10.1097/01.rli.0000113795.93565.c3
10.1109/TSP.2002.807005
10.1183/09031936.96.09122640
10.1016/j.ejrad.2007.08.007
10.1002/mrm.21391
10.1002/1522-2594(200101)45:1<24::AID-MRM1004>3.0.CO;2-6
10.1136/thx.37.9.676
10.1002/mrm.21106
10.1016/j.media.2005.04.002
10.1002/mrm.25072
10.1002/mrm.25272
10.1002/mrm.24143
10.1002/mrm.24389
10.1109/TMI.2006.885337
10.2147/COPD.S2639
10.1002/mrm.20682
10.1002/mrm.24980
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
– notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
5PM
ADTOC
UNPAY
DOI 10.1002/mrm.25798
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE
Engineering Research Database
MEDLINE - Academic
Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2302
ExternalDocumentID oai:pubmedcentral.nih.gov:11964193
PMC11964193
4052693361
26140699
10_1002_mrm_25798
MRM25798
ark_67375_WNG_7KBV94K5_9
Genre article
Journal Article
GrantInformation_xml – fundername: Phoenix Chapter of the ARCS Foundation (B.P.B.)
– fundername: NHLBI NIH HHS
  grantid: R01 HL085385
– fundername: NCI NIH HHS
  grantid: R33 CA099074
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5158-ba5578dbb41a7b1cdda700ffbe2eef23284816b0f0edb8e5c4c8ef58fb56fcda3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Wed Aug 20 00:12:43 EDT 2025
Thu Aug 21 18:38:27 EDT 2025
Fri Jul 11 12:23:53 EDT 2025
Fri Jul 11 08:59:10 EDT 2025
Fri Jul 25 12:31:56 EDT 2025
Sun Apr 06 01:21:05 EDT 2025
Thu Apr 24 22:55:22 EDT 2025
Wed Oct 01 02:05:15 EDT 2025
Wed Jan 22 16:25:03 EST 2025
Sun Sep 21 06:19:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords pulmonary
compressed sensing
spirometry
forced expiration
Language English
License 2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5158-ba5578dbb41a7b1cdda700ffbe2eef23284816b0f0edb8e5c4c8ef58fb56fcda3
Notes ark:/67375/WNG-7KBV94K5-9
istex:F6550B31F50D9A65E74EAF4798613EF360CD38E4
Phoenix Chapter of the ARCS Foundation (B.P.B.)
ArticleID:MRM25798
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/11964193
PMID 26140699
PQID 1788222095
PQPubID 1016391
PageCount 8
ParticipantIDs unpaywall_primary_10_1002_mrm_25798
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11964193
proquest_miscellaneous_1790968917
proquest_miscellaneous_1789033744
proquest_journals_1788222095
pubmed_primary_26140699
crossref_citationtrail_10_1002_mrm_25798
crossref_primary_10_1002_mrm_25798
wiley_primary_10_1002_mrm_25798_MRM25798
istex_primary_ark_67375_WNG_7KBV94K5_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2016
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: June 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Hansen MS, Sørensen TS. Gadgetron: an open source framework for medical image reconstruction. Magn Reson Med 2013;69:1768-1776.
Chen GH, Tang J, Leng S. Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection datasets. Med Phys 2008;35:660-663.
Peng X, Ying L, Liu Q, Zhu Y, Liu Y, Qu X, Liu X, Zheng H, Liang D. Incorporating reference in parallel imaging and compressed sensing. Magn Reson Med 2015;73:1490-1504.
Voorhees A, An J, Berger KI, Goldring RM, Chen Q. Magnetic resonance imaging-based spirometry for regional assessment of pulmonary function. Magn Reson Med 2005;54:1146-1154.
Möller HE, Chen XJ, Saam B, Hagspiel K, Johnson GA, Altes TA, de Lange EE, Kauczor HU. MRI of the lungs using hyperpolarized noble gases. Magn Reson Med 2002;47;1029-1051.
Plathow C, Ley S, Fink C, Puderbach M, Heilmann M, Zuna I, Kauczor HU. Evaluation of chest motion and volumetry during the breathing cycle by dynamic MRI in healthy subjects: comparison with pulmonary function tests. Invest Radiol 2004;39:202-209.
Gibson G. Pulmonary hyperinflation a clinical overview. Eur Respir J 1996;9:2640-2649.
Khare K, Hardy CJ, King KF, Turski PA, Marinelli L. Accelerated MR imaging using compressed sensing with no free parameters. Magn Reson Med 2012;68:1450-1457.
Takahashi M, Fukuoka J, Nitta N, Takazakura R, Nagatani Y, Murakami Y, Otani H, Murata K. Imaging of pulmonary emphysema: a pictorial review. Int J Chronic Obstruct Pulmon Dis 2008;3:193-204.
Feng L, Grimm R, Block KT, Chandarana H, Kim S, Xu J, Axel L, Sodickson DK, Otazo R. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 2014;72:707-717.
Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M. ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 2014;71:990-1001.
Ajraoui S, Lee KJ, Deppe MH, Parnell SR, Parra-Robles J, Wild JM. Compressed sensing in hyperpolarized 3He lung MRI. Magn Reson Med 2010;63:1059-1069.
Eichinger M, Tetzlaff R, Puderbach M, Woodhouse N, Kauczor HU. Proton magnetic resonance imaging for assessment of lung function and respiratory dynamics. Eur J Radiol 2007;64:329-334.
Clausen J. Measurement of absolute lung volumes by imaging techniques. Eur Respir J 1997;10:2427-2431.
Fessler JA, Sutton BP. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans Signal Process 2003;51:560-574.
Chen Q, Mai VM, Bankier AA, Napadow VJ, Gilbert RJ, Edelman RR. Ultrafast MR grid-tagging sequence for assesment of local mechanical properties of the lungs. Magn Reson Med 2001;45:24-28.
Armstrong JD, Gluck EH, Crapo RO, Jones HA, Hughes JMB. Lung tissue volume estimated by simultaneous radiographic and helium dilution methods. Thorax 1982;37:676-679.
McKusick KA, Wagner H, Jr, Soin JS, Benjamin JJ, Cooper M, Ball WC, Jr. Measurement of regional lung function in the early detection of chronic obstructive pulmonary disease. Scand J Respir Dis Suppl 1974;85:51.
Sundaram TA, Gee JC. Towards a model of lung biomechanics: pulmonary kinetics via registration of serial lung images. Med Image Anal 2005;9:524-537.
Bammer R, Aksoy M, Liu C. Augmented generalized SENSE reconstruction to correct for rigid body motion. Magn Reson Med 2007;57:90-102.
Preussmann KP, Weiger M, Bornert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651.
Hollingsworth KG, Higgings DM, McCallum M, Ward L, Coombs A, Straub V. Investigating the quantitative fidelity of prospectively undersampled chemical shift imaging in muscular dystrophy with compressed sensing and parallel imaging reconstruction. Magn Reson Med 2014;72:1610-1619.
Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195.
Tokuda J, Schmitt M, Sun Y, Patz S, Mountford CE, Hata N, Wald LL, Hatabu H. Lung motion and volume measurement by dynamic 3D MRI using 128-channel receiver coil. Acad Radiol 2009;16:22-27.
Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the golden angle ratio for time-resolved MRI. IEEE Trans Med Imaging 2007;26:68-76.
1982; 37
2013; 69
2012
2015; 73
2008
2008; 35
2008; 3
2001; 45
2003; 51
2001; 46
2010; 63
2007; 57
2007; 58
2002; 47
1974; 85
1997; 10
2004; 39
2005; 9
2005; 54
2014
2007; 64
2012; 68
2014; 72
2014; 71
2009; 16
1996; 9
2007; 26
e_1_2_6_10_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
McKusick KA (e_1_2_6_4_1) 1974; 85
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M. ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 2014;71:990-1001.
– reference: Chen Q, Mai VM, Bankier AA, Napadow VJ, Gilbert RJ, Edelman RR. Ultrafast MR grid-tagging sequence for assesment of local mechanical properties of the lungs. Magn Reson Med 2001;45:24-28.
– reference: Clausen J. Measurement of absolute lung volumes by imaging techniques. Eur Respir J 1997;10:2427-2431.
– reference: Fessler JA, Sutton BP. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans Signal Process 2003;51:560-574.
– reference: Ajraoui S, Lee KJ, Deppe MH, Parnell SR, Parra-Robles J, Wild JM. Compressed sensing in hyperpolarized 3He lung MRI. Magn Reson Med 2010;63:1059-1069.
– reference: Hansen MS, Sørensen TS. Gadgetron: an open source framework for medical image reconstruction. Magn Reson Med 2013;69:1768-1776.
– reference: Plathow C, Ley S, Fink C, Puderbach M, Heilmann M, Zuna I, Kauczor HU. Evaluation of chest motion and volumetry during the breathing cycle by dynamic MRI in healthy subjects: comparison with pulmonary function tests. Invest Radiol 2004;39:202-209.
– reference: Peng X, Ying L, Liu Q, Zhu Y, Liu Y, Qu X, Liu X, Zheng H, Liang D. Incorporating reference in parallel imaging and compressed sensing. Magn Reson Med 2015;73:1490-1504.
– reference: Bammer R, Aksoy M, Liu C. Augmented generalized SENSE reconstruction to correct for rigid body motion. Magn Reson Med 2007;57:90-102.
– reference: Takahashi M, Fukuoka J, Nitta N, Takazakura R, Nagatani Y, Murakami Y, Otani H, Murata K. Imaging of pulmonary emphysema: a pictorial review. Int J Chronic Obstruct Pulmon Dis 2008;3:193-204.
– reference: Chen GH, Tang J, Leng S. Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection datasets. Med Phys 2008;35:660-663.
– reference: Preussmann KP, Weiger M, Bornert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651.
– reference: Eichinger M, Tetzlaff R, Puderbach M, Woodhouse N, Kauczor HU. Proton magnetic resonance imaging for assessment of lung function and respiratory dynamics. Eur J Radiol 2007;64:329-334.
– reference: McKusick KA, Wagner H, Jr, Soin JS, Benjamin JJ, Cooper M, Ball WC, Jr. Measurement of regional lung function in the early detection of chronic obstructive pulmonary disease. Scand J Respir Dis Suppl 1974;85:51.
– reference: Sundaram TA, Gee JC. Towards a model of lung biomechanics: pulmonary kinetics via registration of serial lung images. Med Image Anal 2005;9:524-537.
– reference: Voorhees A, An J, Berger KI, Goldring RM, Chen Q. Magnetic resonance imaging-based spirometry for regional assessment of pulmonary function. Magn Reson Med 2005;54:1146-1154.
– reference: Tokuda J, Schmitt M, Sun Y, Patz S, Mountford CE, Hata N, Wald LL, Hatabu H. Lung motion and volume measurement by dynamic 3D MRI using 128-channel receiver coil. Acad Radiol 2009;16:22-27.
– reference: Khare K, Hardy CJ, King KF, Turski PA, Marinelli L. Accelerated MR imaging using compressed sensing with no free parameters. Magn Reson Med 2012;68:1450-1457.
– reference: Feng L, Grimm R, Block KT, Chandarana H, Kim S, Xu J, Axel L, Sodickson DK, Otazo R. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 2014;72:707-717.
– reference: Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the golden angle ratio for time-resolved MRI. IEEE Trans Med Imaging 2007;26:68-76.
– reference: Möller HE, Chen XJ, Saam B, Hagspiel K, Johnson GA, Altes TA, de Lange EE, Kauczor HU. MRI of the lungs using hyperpolarized noble gases. Magn Reson Med 2002;47;1029-1051.
– reference: Hollingsworth KG, Higgings DM, McCallum M, Ward L, Coombs A, Straub V. Investigating the quantitative fidelity of prospectively undersampled chemical shift imaging in muscular dystrophy with compressed sensing and parallel imaging reconstruction. Magn Reson Med 2014;72:1610-1619.
– reference: Armstrong JD, Gluck EH, Crapo RO, Jones HA, Hughes JMB. Lung tissue volume estimated by simultaneous radiographic and helium dilution methods. Thorax 1982;37:676-679.
– reference: Gibson G. Pulmonary hyperinflation a clinical overview. Eur Respir J 1996;9:2640-2649.
– reference: Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195.
– volume: 46
  start-page: 638
  year: 2001
  end-page: 651
  article-title: Advances in sensitivity encoding with arbitrary k‐space trajectories
  publication-title: Magn Reson Med
– volume: 72
  start-page: 707
  year: 2014
  end-page: 717
  article-title: Golden‐angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden‐angle radial sampling for fast and flexible dynamic volumetric MRI
  publication-title: Magn Reson Med
– start-page: 4367
  year: 2014
– volume: 68
  start-page: 1450
  year: 2012
  end-page: 1457
  article-title: Accelerated MR imaging using compressed sensing with no free parameters
  publication-title: Magn Reson Med
– volume: 45
  start-page: 24
  year: 2001
  end-page: 28
  article-title: Ultrafast MR grid‐tagging sequence for assesment of local mechanical properties of the lungs
  publication-title: Magn Reson Med
– volume: 72
  start-page: 1610
  year: 2014
  end-page: 1619
  article-title: Investigating the quantitative fidelity of prospectively undersampled chemical shift imaging in muscular dystrophy with compressed sensing and parallel imaging reconstruction
  publication-title: Magn Reson Med
– start-page: 3787
  year: 2008
– volume: 37
  start-page: 676
  year: 1982
  end-page: 679
  article-title: Lung tissue volume estimated by simultaneous radiographic and helium dilution methods
  publication-title: Thorax
– volume: 54
  start-page: 1146
  year: 2005
  end-page: 1154
  article-title: Magnetic resonance imaging‐based spirometry for regional assessment of pulmonary function
  publication-title: Magn Reson Med
– volume: 9
  start-page: 2640
  year: 1996
  end-page: 2649
  article-title: Pulmonary hyperinflation a clinical overview
  publication-title: Eur Respir J
– volume: 64
  start-page: 329
  year: 2007
  end-page: 334
  article-title: Proton magnetic resonance imaging for assessment of lung function and respiratory dynamics
  publication-title: Eur J Radiol
– volume: 51
  start-page: 560
  year: 2003
  end-page: 574
  article-title: Nonuniform fast Fourier transforms using min‐max interpolation
  publication-title: IEEE Trans Signal Process
– volume: 57
  start-page: 90
  year: 2007
  end-page: 102
  article-title: Augmented generalized SENSE reconstruction to correct for rigid body motion
  publication-title: Magn Reson Med
– volume: 26
  start-page: 68
  year: 2007
  end-page: 76
  article-title: An optimal radial profile order based on the golden angle ratio for time‐resolved MRI
  publication-title: IEEE Trans Med Imaging
– volume: 9
  start-page: 524
  year: 2005
  end-page: 537
  article-title: Towards a model of lung biomechanics: pulmonary kinetics via registration of serial lung images
  publication-title: Med Image Anal
– volume: 10
  start-page: 2427
  year: 1997
  end-page: 2431
  article-title: Measurement of absolute lung volumes by imaging techniques
  publication-title: Eur Respir J
– start-page: 2464
  year: 2012
– start-page: 0298
  year: 2014
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
– volume: 39
  start-page: 202
  year: 2004
  end-page: 209
  article-title: Evaluation of chest motion and volumetry during the breathing cycle by dynamic MRI in healthy subjects: comparison with pulmonary function tests
  publication-title: Invest Radiol
– volume: 35
  start-page: 660
  year: 2008
  end-page: 663
  article-title: Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection datasets
  publication-title: Med Phys
– volume: 47
  start-page: 1029
  year: 2002
  end-page: 1051
  article-title: MRI of the lungs using hyperpolarized noble gases
  publication-title: Magn Reson Med
– volume: 69
  start-page: 1768
  year: 2013
  end-page: 1776
  article-title: Gadgetron: an open source framework for medical image reconstruction
  publication-title: Magn Reson Med
– volume: 73
  start-page: 1490
  year: 2015
  end-page: 1504
  article-title: Incorporating reference in parallel imaging and compressed sensing
  publication-title: Magn Reson Med
– volume: 71
  start-page: 990
  year: 2014
  end-page: 1001
  article-title: ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA
  publication-title: Magn Reson Med
– volume: 3
  start-page: 193
  year: 2008
  end-page: 204
  article-title: Imaging of pulmonary emphysema: a pictorial review
  publication-title: Int J Chronic Obstruct Pulmon Dis
– volume: 85
  start-page: 51
  year: 1974
  article-title: Measurement of regional lung function in the early detection of chronic obstructive pulmonary disease
  publication-title: Scand J Respir Dis Suppl
– volume: 63
  start-page: 1059
  year: 2010
  end-page: 1069
  article-title: Compressed sensing in hyperpolarized He lung MRI
  publication-title: Magn Reson Med
– volume: 16
  start-page: 22
  year: 2009
  end-page: 27
  article-title: Lung motion and volume measurement by dynamic 3D MRI using 128‐channel receiver coil
  publication-title: Acad Radiol
– ident: e_1_2_6_19_1
  doi: 10.1118/1.2836423
– ident: e_1_2_6_20_1
  doi: 10.1002/mrm.24751
– ident: e_1_2_6_13_1
  doi: 10.1016/j.acra.2008.07.021
– ident: e_1_2_6_25_1
  doi: 10.1002/mrm.1241
– ident: e_1_2_6_9_1
  doi: 10.1002/mrm.10173
– ident: e_1_2_6_12_1
  doi: 10.1183/09031936.97.10102427
– ident: e_1_2_6_14_1
  doi: 10.1002/mrm.22302
– ident: e_1_2_6_11_1
  doi: 10.1097/01.rli.0000113795.93565.c3
– ident: e_1_2_6_22_1
– ident: e_1_2_6_21_1
  doi: 10.1109/TSP.2002.807005
– ident: e_1_2_6_3_1
  doi: 10.1183/09031936.96.09122640
– ident: e_1_2_6_10_1
  doi: 10.1016/j.ejrad.2007.08.007
– ident: e_1_2_6_18_1
  doi: 10.1002/mrm.21391
– ident: e_1_2_6_5_1
  doi: 10.1002/1522-2594(200101)45:1<24::AID-MRM1004>3.0.CO;2-6
– ident: e_1_2_6_29_1
  doi: 10.1136/thx.37.9.676
– ident: e_1_2_6_23_1
  doi: 10.1002/mrm.21106
– ident: e_1_2_6_30_1
– volume: 85
  start-page: 51
  year: 1974
  ident: e_1_2_6_4_1
  article-title: Measurement of regional lung function in the early detection of chronic obstructive pulmonary disease
  publication-title: Scand J Respir Dis Suppl
– ident: e_1_2_6_7_1
  doi: 10.1016/j.media.2005.04.002
– ident: e_1_2_6_26_1
  doi: 10.1002/mrm.25072
– ident: e_1_2_6_8_1
– ident: e_1_2_6_28_1
  doi: 10.1002/mrm.25272
– ident: e_1_2_6_27_1
  doi: 10.1002/mrm.24143
– ident: e_1_2_6_24_1
  doi: 10.1002/mrm.24389
– ident: e_1_2_6_15_1
– ident: e_1_2_6_17_1
  doi: 10.1109/TMI.2006.885337
– ident: e_1_2_6_2_1
  doi: 10.2147/COPD.S2639
– ident: e_1_2_6_6_1
  doi: 10.1002/mrm.20682
– ident: e_1_2_6_16_1
  doi: 10.1002/mrm.24980
SSID ssj0009974
Score 2.2241235
Snippet Purpose Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation...
Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides...
Purpose Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2295
SubjectTerms compressed sensing
Exhalation - physiology
forced expiration
Humans
Imaging, Three-Dimensional - methods
Lung - diagnostic imaging
Lung - physiology
Magnetic Resonance Imaging - methods
pulmonary
spirometry
Spirometry - methods
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9RADLbKrjheOMoVKCgcQn1JdnJPHguiFKqsUMWW9mmUuUTVbHa1hyj8ejyTQ1ooFbxFGiuaxPb4G9n-DPCaaIxzMgs9FdLEM-O1PU504OlEcaKCQGXC9DsX4_RgEn86SU62IOx6YWzRvuBnfl1N_frsm62tnE_FqKsTGwWGQgphxzUYpiapNIDhZPx577Th2zSHip1-iHEp9BDbxx2dEAlH08XURxPN6UYQGpr_eXEZwvyzUPLmup6XP76XVbUJZm002r_TdAguLYmhKUI599cr7oufv1E8_t-H3oXbLTh195q1e7Cl6m24UbTp9224butFxfI-xMf2VDP0_m5x9NGdaReRpFvh0bF0m9ZHF-GwUNJVFzaXj_p_AJP991_eHXjtAAZPIMyhHi8TdGjJeRyUGQ-ElGVGiNZchUppxGKGiz9F3RIlOVWJiAVVOqGaJ6kWsowewqCe1eoxuDSKiDZNskLqWMuQKgSSoUR4VCaSk9SB3U4jTLTs5GZIRsUaXuWQofKYVZ4DL3vReUPJcZnQG6vWXqJcnJsatixhX8cfWHb49jiPDxOWO7DT6Z217rtkQUYNcEL46cCLfhkdz2RTylrN1lYmJ1GUxfFVMjleESleiR141JhSvyG8upquY9wA3TCyXsAQf2-uoJlYAvDOMhx41dvjVb9i11rq3yVYcVTYhyf_9MKncAthY9oUzO3AYLVYq2cIzVb8eeuLvwDEaDdO
  priority: 102
  providerName: Unpaywall
Title Volumetric MRI of the lungs during forced expiration
URI https://api.istex.fr/ark:/67375/WNG-7KBV94K5-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25798
https://www.ncbi.nlm.nih.gov/pubmed/26140699
https://www.proquest.com/docview/1788222095
https://www.proquest.com/docview/1789033744
https://www.proquest.com/docview/1790968917
https://pubmed.ncbi.nlm.nih.gov/PMC11964193
https://www.ncbi.nlm.nih.gov/pmc/articles/11964193
UnpaywallVersion submittedVersion
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB9Ki9ovPuorWkt8IP2S6ybZTTb4qYq1Wu6Qw6sVhCX7otJrrtwDq3-9s5tHOa1F_BbYCWxmZ2Z_m5n5LcALYnGf03kSmYSzyF2vHUli48gyI4mJY5Mr1-_cH2T7I_rhiB2twKu2F6bmh-h-uDnP8PHaOXgpZzsXpKGn09Me2lvhGn3jlPkU7fCCOqooagbmnLo4U9CWVYgkO92bS3vRmlPr-WVA8896yRuL6qz88b0cj5cxrd-U9m7B1_Zz6lqUk95iLnvq529Mj__5vbfhZgNWw93auu7Aiqk24Hq_ScdvwDVfP6pmd4Ee-ijn6P7D_vB9OLEhIstwjKFkFtatkCHCY2V0aM59bh_t4R6M9t5-erMfNRcyRAphD49kydDBtZQ0LnMZK63LnBBrpUmMsYjNHDd_hmtNjJbcMEUVN5ZxK1lmlS7T-7BaTSrzEEKepsS6plmlLbU64QaBZaIRLpVMS5IFsN0ujVANW7m7NGMsap7lRKA-hNdHAM860bOaouMyoZd-fTuJcnriatpyJj4P3on84PVhQQ-YKALYbA1ANO48E3HOHZBCOBrA024YHdFlV8rKTBZepiBpmlN6lUyBR0aOR-QAHtQ21U0Ij7KuCxknwJesrRNwRODLI9W3Y08IHjtWNUTiATzvDPMqVWx7O_u7hOgP-_7h0b-LPoZ1xJJZXUW3Cavz6cI8Qbw2l1veMbdgbTT4uPvlF-trPbo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVlBeOMoVKBAOob5k6yRO4ki8cJUt2-zDqi19QVZ8CdRtttpDFH49Y-eoFkqFeIvkieRjZvzZM_MZ4CUxuM-pLAp0xJLAPq8dCGLCwCRaEB2GOpO23rkYpv0D-ukoOVqB120tTM0P0V24Wctw_toauL2Q3j5nDT2ZnvRQ4XJ2BdZsfM6a5fvROXlUntcczBm1nianLa8Qiba7X5d2ozU7sWcXQc0_MybXF9Vp-eN7OR4vo1q3Le3chC_tgOpslOPeYi568udvXI__O-JbcKPBq_6bWsFuw4quNuBa0UTkN-CqSyGVsztAD52js4z_fjHa9SfGR3Dpj9GbzPy6GtJHhCy18vWZC--jStyFg50P--_6QfMmQyAR-bBAlAnauBKChmUmQqlUmRFijNCR1gbhmaXnT3G5iVaC6URSybRJmBFJaqQq43uwWk0q_QB8FsfE2LpZqQw1KmIasWWkEDGViRIk9WCrXRsuG8Jy-27GmNdUyxHH-eBuPjx43ome1iwdFwm9cgvcSZTTY5vWliX88_AjzwZvD3M6SHjuwWarAbyx6BkPM2axFCJSD551zWiLNsBSVnqycDI5ieOM0stkcjw1Mjwle3C_VqquQ3iatYXI2AG2pG6dgOUCX26pvn11nOChJVZDMO7Bi04zL5uKLadof5fgxahwHw__XfQprPf3iz2-tzscPILrCC3TOqluE1bn04V-jPBtLp44K_0FnSNAJg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVrS8cBQKgQLhEOpLtk7iJI544lpall2hVVv6gGTFl0DdZld7iMKvZ-wc1UKpEG-RPJGc8cz4m3jmM8BzYnCfU1kU6Iglgb1eOxDEhIFJtCA6DHUmbb9zf5DuHdIPx8nxCrxsemEqfoj2h5v1DBevrYNPlNk9Jw09nZ520N5ydgXWaIrZlUVEw3PuqDyvKJgzagNNThtaIRLttq8ubUZrVq9nFyHNPwsmNxblpPjxvRiNlkGt25W6N-BL8z1VMcpJZzEXHfnzN6rH__zgm3C9Rqv-q8q8bsGKLjdhvV-fx2_CVVdAKme3gR65MGf5_v3-cN8fGx-hpT_CWDLzq15IH_Gx1MrXZ-5wHw3iDhx23x282QvqGxkCibiHBaJI0MOVEDQsMhFKpYqMEGOEjrQ2CM4sOX-Ki020EkwnkkqmTcKMSFIjVRFvwWo5LvU98FkcE2O7ZqUy1KiIaUSWkUK8VCRKkNSDnWZpuKzpyu2tGSNeES1HHPXBnT48eNqKTiqOjouEXrj1bSWK6YktassS_nnwnme910c57SU892C7MQBe-_OMhxmzSArxqAdP2mH0RHu8UpR6vHAyOYnjjNLLZHLMGRnmyB7crWyqnRDmsrYNGSfAlqytFbBM4Msj5bevjhE8tLRqCMU9eNYa5mWq2HF29ncJ3h_23cP9fxd9DOuf3nb5x_1B7wFcQ1yZVhV127A6ny70Q8Ruc_HI-egvsWQ-1Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9RADLbKrjheOMoVKCgcQn1JdnJPHguiFKqsUMWW9mmUuUTVbHa1hyj8ejyTQ1ooFbxFGiuaxPb4G9n-DPCaaIxzMgs9FdLEM-O1PU504OlEcaKCQGXC9DsX4_RgEn86SU62IOx6YWzRvuBnfl1N_frsm62tnE_FqKsTGwWGQgphxzUYpiapNIDhZPx577Th2zSHip1-iHEp9BDbxx2dEAlH08XURxPN6UYQGpr_eXEZwvyzUPLmup6XP76XVbUJZm002r_TdAguLYmhKUI599cr7oufv1E8_t-H3oXbLTh195q1e7Cl6m24UbTp9224butFxfI-xMf2VDP0_m5x9NGdaReRpFvh0bF0m9ZHF-GwUNJVFzaXj_p_AJP991_eHXjtAAZPIMyhHi8TdGjJeRyUGQ-ElGVGiNZchUppxGKGiz9F3RIlOVWJiAVVOqGaJ6kWsowewqCe1eoxuDSKiDZNskLqWMuQKgSSoUR4VCaSk9SB3U4jTLTs5GZIRsUaXuWQofKYVZ4DL3vReUPJcZnQG6vWXqJcnJsatixhX8cfWHb49jiPDxOWO7DT6Z217rtkQUYNcEL46cCLfhkdz2RTylrN1lYmJ1GUxfFVMjleESleiR141JhSvyG8upquY9wA3TCyXsAQf2-uoJlYAvDOMhx41dvjVb9i11rq3yVYcVTYhyf_9MKncAthY9oUzO3AYLVYq2cIzVb8eeuLvwDEaDdO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Volumetric+MRI+of+the+lungs+during+forced+expiration&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Berman%2C+Benjamin+P&rft.au=Pandey%2C+Abhishek&rft.au=Li%2C+Zhitao&rft.au=Jeffries%2C+Lindsie&rft.date=2016-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=75&rft.issue=6&rft.spage=2295&rft_id=info:doi/10.1002%2Fmrm.25798&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4052693361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon