Demographic processes shaping genetic variation of the solitarious phase of the desert locust
Between plagues, the solitarious desert locust (Schistocerca gregaria) is generally thought to exist as small populations, which are particularly prone to extinction events in arid regions of Africa and Asia. Given the high genetic structuring observed in one geographical area (the Eritrean coast) b...
Saved in:
Published in | Molecular ecology Vol. 23; no. 7; pp. 1749 - 1763 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.04.2014
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0962-1083 1365-294X 1365-294X |
DOI | 10.1111/mec.12687 |
Cover
Abstract | Between plagues, the solitarious desert locust (Schistocerca gregaria) is generally thought to exist as small populations, which are particularly prone to extinction events in arid regions of Africa and Asia. Given the high genetic structuring observed in one geographical area (the Eritrean coast) by former authors, a metapopulation dynamics model involving repeated extinction and colonization events was favoured. In this study, we assessed the validity of a demographic scenario involving temporary populations of the solitarious phase of the desert locust by analysing large‐scale population genetic data. We scored 24 microsatellites in 23 solitarious population samples collected over most of the species range during remission. We found very little genetic structuring and little evidence of declining genetic diversity. A Bayesian clustering method distinguished four genetically differentiated units. Three groups were largely consistent with three population samples which had undergone recent bottleneck events. Nevertheless, the last genetically homogeneous unit included all individuals from the remaining 18 population samples and did not show evidence of demographic disequilibrium. An approximate Bayesian computation treatment indicated a large population size for this main genetic group, moderately reduced between plague and remission but still containing tens of thousands of individuals. Our results diverge from the hypothesis of a classical metapopulation dynamics model. They instead support the scenario in which large populations persist in the solitarious phase of the desert locust. |
---|---|
AbstractList | Between plagues, the solitarious desert locust (Schistocerca gregaria) is generally thought to exist as small populations, which are particularly prone to extinction events in arid regions of Africa and Asia. Given the high genetic structuring observed in one geographical area (the Eritrean coast) by former authors, a metapopulation dynamics model involving repeated extinction and colonization events was favoured. In this study, we assessed the validity of a demographic scenario involving temporary populations of the solitarious phase of the desert locust by analysing large-scale population genetic data. We scored 24 microsatellites in 23 solitarious population samples collected over most of the species range during remission. We found very little genetic structuring and little evidence of declining genetic diversity. A Bayesian clustering method distinguished four genetically differentiated units. Three groups were largely consistent with three population samples which had undergone recent bottleneck events. Nevertheless, the last genetically homogeneous unit included all individuals from the remaining 18 population samples and did not show evidence of demographic disequilibrium. An approximate Bayesian computation treatment indicated a large population size for this main genetic group, moderately reduced between plague and remission but still containing tens of thousands of individuals. Our results diverge from the hypothesis of a classical metapopulation dynamics model. They instead support the scenario in which large populations persist in the solitarious phase of the desert locust. [PUBLICATION ABSTRACT] Between plagues, the solitarious desert locust ( Schistocerca gregaria ) is generally thought to exist as small populations, which are particularly prone to extinction events in arid regions of Africa and Asia. Given the high genetic structuring observed in one geographical area (the Eritrean coast) by former authors, a metapopulation dynamics model involving repeated extinction and colonization events was favoured. In this study, we assessed the validity of a demographic scenario involving temporary populations of the solitarious phase of the desert locust by analysing large‐scale population genetic data. We scored 24 microsatellites in 23 solitarious population samples collected over most of the species range during remission. We found very little genetic structuring and little evidence of declining genetic diversity. A Bayesian clustering method distinguished four genetically differentiated units. Three groups were largely consistent with three population samples which had undergone recent bottleneck events. Nevertheless, the last genetically homogeneous unit included all individuals from the remaining 18 population samples and did not show evidence of demographic disequilibrium. An approximate Bayesian computation treatment indicated a large population size for this main genetic group, moderately reduced between plague and remission but still containing tens of thousands of individuals. Our results diverge from the hypothesis of a classical metapopulation dynamics model. They instead support the scenario in which large populations persist in the solitarious phase of the desert locust. Between plagues, the solitarious desert locust (Schistocerca gregaria) is generally thought to exist as small populations, which are particularly prone to extinction events in arid regions of Africa and Asia. Given the high genetic structuring observed in one geographical area (the Eritrean coast) by former authors, a metapopulation dynamics model involving repeated extinction and colonization events was favoured. In this study, we assessed the validity of a demographic scenario involving temporary populations of the solitarious phase of the desert locust by analysing large-scale population genetic data. We scored 24 microsatellites in 23 solitarious population samples collected over most of the species range during remission. We found very little genetic structuring and little evidence of declining genetic diversity. A Bayesian clustering method distinguished four genetically differentiated units. Three groups were largely consistent with three population samples which had undergone recent bottleneck events. Nevertheless, the last genetically homogeneous unit included all individuals from the remaining 18 population samples and did not show evidence of demographic disequilibrium. An approximate Bayesian computation treatment indicated a large population size for this main genetic group, moderately reduced between plague and remission but still containing tens of thousands of individuals. Our results diverge from the hypothesis of a classical metapopulation dynamics model. They instead support the scenario in which large populations persist in the solitarious phase of the desert locust.Between plagues, the solitarious desert locust (Schistocerca gregaria) is generally thought to exist as small populations, which are particularly prone to extinction events in arid regions of Africa and Asia. Given the high genetic structuring observed in one geographical area (the Eritrean coast) by former authors, a metapopulation dynamics model involving repeated extinction and colonization events was favoured. In this study, we assessed the validity of a demographic scenario involving temporary populations of the solitarious phase of the desert locust by analysing large-scale population genetic data. We scored 24 microsatellites in 23 solitarious population samples collected over most of the species range during remission. We found very little genetic structuring and little evidence of declining genetic diversity. A Bayesian clustering method distinguished four genetically differentiated units. Three groups were largely consistent with three population samples which had undergone recent bottleneck events. Nevertheless, the last genetically homogeneous unit included all individuals from the remaining 18 population samples and did not show evidence of demographic disequilibrium. An approximate Bayesian computation treatment indicated a large population size for this main genetic group, moderately reduced between plague and remission but still containing tens of thousands of individuals. Our results diverge from the hypothesis of a classical metapopulation dynamics model. They instead support the scenario in which large populations persist in the solitarious phase of the desert locust. Between plagues, the solitarious desert locust (Schistocerca gregaria) is generally thought to exist as small populations, which are particularly prone to extinction events in arid regions of Africa and Asia. Given the high genetic structuring observed in one geographical area (the Eritrean coast) by former authors, a metapopulation dynamics model involving repeated extinction and colonization events was favoured. In this study, we assessed the validity of a demographic scenario involving temporary populations of the solitarious phase of the desert locust by analysing large-scale population genetic data. We scored 24 microsatellites in 23 solitarious population samples collected over most of the species range during remission. We found very little genetic structuring and little evidence of declining genetic diversity. A Bayesian clustering method distinguished four genetically differentiated units. Three groups were largely consistent with three population samples which had undergone recent bottleneck events. Nevertheless, the last genetically homogeneous unit included all individuals from the remaining 18 population samples and did not show evidence of demographic disequilibrium. An approximate Bayesian computation treatment indicated a large population size for this main genetic group, moderately reduced between plague and remission but still containing tens of thousands of individuals. Our results diverge from the hypothesis of a classical metapopulation dynamics model. They instead support the scenario in which large populations persist in the solitarious phase of the desert locust. |
Author | Pagès, Christine Lecoq, Michel Plantamp, Christophe Vassal, Jean‐Michel Blondin, Laurence Chapuis, Marie‐Pierre |
Author_xml | – sequence: 1 fullname: Chapuis, Marie‐Pierre – sequence: 2 fullname: Plantamp, Christophe – sequence: 3 fullname: Blondin, Laurence – sequence: 4 fullname: Pagès, Christine – sequence: 5 fullname: Vassal, Jean‐Michel – sequence: 6 fullname: Lecoq, Michel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24502250$$D View this record in MEDLINE/PubMed https://hal.science/hal-02072967$$DView record in HAL |
BookMark | eNqNkk1vEzEQhleoiKaFA38AVuoFDtuOv3ePVfoRpASEoKIXZDneSeKyuw72ptB_j0M-kBAI5mJp5nlHfmfmKDvofIdZ9pzAKUlx1qI9JVSW6lE2IEyKglb89iAbQCVpQaBkh9lRjHcAhFEhnmSHlAugVMAg-3yBrZ8Hs1w4my-DtxgjxjwuzNJ183yOHfapcm-CM73zXe5neb_APPrG9SnpVzFfLkzEXaHGiKHPG29XsX-aPZ6ZJuKz7Xuc3VxdfhyOivG76zfD83FhBRGqsMoqJm0pBOHUEDRTEAZmHAwqVSOvGbdAiRXSSKa44lKomlqsp8RYaS07zl5v-i5Mo5fBtSY8aG-cHp2P9ToHFBStpLoniX21YZPbryuMvW5dtNg0psPkRpMqhSCqrP6NCiIVFxzY_6CgoKrI-gMnv6F3fhW6NJ9EJQR4xWiiXmyp1bTFeu9qt7oEnG0AG3yMAWfapo2sd9QH4xpNQK-PQ6fj0D-P49eU9opd0z-x2-7fXIMPfwf15HK4UxQbhYs9ft8rTPiipWJK6E9vr_Xoakgn7y9u9STxLzf8zHht5sFFffOBAuEAUJZMSfYDmUbefQ |
CitedBy_id | crossref_primary_10_1111_mec_14800 crossref_primary_10_1007_s10905_018_9703_z crossref_primary_10_1080_23299460_2017_1415586 crossref_primary_10_1111_mec_13465 crossref_primary_10_1002_ece3_6165 crossref_primary_10_1002_ece3_8099 crossref_primary_10_4001_003_025_0013 crossref_primary_10_1016_j_baae_2017_10_002 crossref_primary_10_1111_mec_15663 crossref_primary_10_1002_ece3_3103 crossref_primary_10_1146_annurev_ento_011118_112500 crossref_primary_10_3897_jor_33_112803 crossref_primary_10_1111_syen_12171 crossref_primary_10_1111_eea_12505 crossref_primary_10_1111_mec_16770 crossref_primary_10_1016_j_jinsphys_2020_104020 crossref_primary_10_1007_s12041_015_0597_7 crossref_primary_10_1111_1365_2664_13323 crossref_primary_10_1038_srep08045 |
Cites_doi | 10.1093/genetics/146.1.427 10.2307/2256957 10.1007/s12686-011-9548-7 10.1111/j.1365-294X.2008.04072.x 10.1111/j.1471-8286.2007.01931.x 10.1046/j.1365-294x.2001.01190.x 10.1111/j.1365-2583.2011.01124.x 10.1111/j.1755-0998.2010.02847.x 10.1038/sj.hdy.6800065 10.2307/1390807 10.1111/j.1558-5646.1989.tb04226.x 10.1046/j.0173-9565.2003.00795.x 10.1665/1082-6467(2001)010[0277:RPIDAM]2.0.CO;2 10.1093/bioinformatics/btt763 10.1073/pnas.0409253102 10.1534/genetics.110.121764 10.1016/0040-5809(77)90045-4 10.1017/S0007485300026572 10.1093/oxfordjournals.molbev.a025835 10.1093/bioinformatics/btm233 10.1111/j.1365-294X.2005.02553.x 10.1111/jen.12052 10.1016/j.jinsphys.2010.05.005 10.1093/genetics/162.4.2025 10.1111/j.1469-1809.1949.tb02451.x 10.1093/genetics/159.4.1671 10.1111/j.1471-8286.2006.01343.x 10.1046/j.1365-294x.2001.01212.x 10.1098/rspb.2010.2605 10.1098/rspb.1996.0237 10.1093/molbev/msl191 10.1111/j.0014-3820.2004.tb00487.x 10.1665/1082-6467(2005)14[179:DLMFET]2.0.CO;2 10.1665/034.020.0202 10.1023/A:1007529617032 10.1111/j.1558-5646.1982.tb05474.x 10.1046/j.0962-1083.2001.01459.x 10.1111/eea.12121 10.1093/genetics/144.4.2001 10.1046/j.1365-294X.2000.01110.x 10.1038/hdy.2009.74 10.1111/j.1365-294X.2004.02396.x 10.1111/j.1365-294X.2012.05754.x 10.1046/j.1365-294x.2000.00932.x 10.1046/j.1471-8286.2003.00566.x 10.1111/j.1755-0998.2009.02591.x 10.1111/j.1365-294X.2006.02908.x 10.1016/j.cropro.2008.08.006 10.1017/S0016672300012994 10.1111/j.1365-294X.2008.03705.x 10.1086/303083 10.1111/j.2517-6161.1995.tb02031.x 10.1007/BF00221895 10.1126/science.149.3683.546 10.1073/pnas.1530509100 10.1214/aos/1032298287 10.1086/303355 10.1242/dev.120.6.1561 10.1093/jhered/90.4.502 10.1093/genetics/142.1.295 |
ContentType | Journal Article |
Copyright | 2014 John Wiley & Sons Ltd 2014 John Wiley & Sons Ltd. Copyright © 2014 John Wiley & Sons Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2014 John Wiley & Sons Ltd – notice: 2014 John Wiley & Sons Ltd. – notice: Copyright © 2014 John Wiley & Sons Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 1XC |
DOI | 10.1111/mec.12687 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts CrossRef MEDLINE - Academic MEDLINE AGRICOLA Entomology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1365-294X |
EndPage | 1763 |
ExternalDocumentID | oai_HAL_hal_02072967v1 3255746251 24502250 10_1111_mec_12687 MEC12687 ark_67375_WNG_HFC2MQDX_M US201400088376 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Asia Africa |
GeographicLocations_xml | – name: Africa – name: Asia |
GrantInformation_xml | – fundername: CIRAD |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG ALVPJ BSCLL HGLYW OIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c5157-c7c736c855142a1eab05a0f40ae77de4d34c021c56a637474657d2cedb1ac6cc3 |
IEDL.DBID | DR2 |
ISSN | 0962-1083 1365-294X |
IngestDate | Fri Sep 12 12:48:27 EDT 2025 Fri Sep 05 17:15:01 EDT 2025 Fri Sep 05 04:02:02 EDT 2025 Fri Sep 05 13:24:41 EDT 2025 Wed Aug 13 03:29:26 EDT 2025 Mon Jul 21 06:03:32 EDT 2025 Thu Apr 24 22:55:08 EDT 2025 Tue Jul 01 01:22:02 EDT 2025 Wed Jan 22 16:25:52 EST 2025 Sun Sep 21 06:19:40 EDT 2025 Wed Dec 27 19:13:40 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | microsatellite pest Bayesian inference Orthoptera population dynamics bottleneck |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 John Wiley & Sons Ltd. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5157-c7c736c855142a1eab05a0f40ae77de4d34c021c56a637474657d2cedb1ac6cc3 |
Notes | http://dx.doi.org/10.1111/mec.12687 istex:FEF5E1956F0D422BECE7931E7F9D049644520563 ArticleID:MEC12687 CIRAD ark:/67375/WNG-HFC2MQDX-M Fig. S1 Posterior probability densities for the mutation-scaled effective population sizes during plague (A, B) and remission (C, D) periods, when considering log-uniform distributions of the effective population size priors. Fig. S2 Allele frequency distributions for the 24 microsatellites. Fig. S3 Inbreeding coefficient distributions. Fig. S4 Hierarchical Structure clustering analyses based on the Coulon et al.'s () approach.Table S1 Prior distributions for diyabc demographic and mutational parameters. Table S2 Bias and precision of effective population size estimation using diyabc. Table S3 Mean, median and 2.5 and 97.5% quantile estimates from diyabc posterior distribution samples of demographic parameters, when considering log-uniform distributions of the effective population size priors. Table S4 Genetic diversity for 23 S. gregaria population samples at all 24 microsatellite markers. Table S5 Pairwise FST values (Weir ) for 23 S. gregaria population samples (above the diagonal) and confidence intervals based on 2000 bootstrap samples (below diagonal) for all 24 microsatellite markers. Table S6 Pairwise FST values (Weir ) 23 S. gregaria population samples for the 21 microsatellite markers at selective neutrality (above the diagonal) and confidence intervals based on 2000 bootstrap samples (below diagonal). Table S7 Robustness of diyabc inferences on the intensity of the population size decline associated with the end of plagues (α) to rejection and estimation procedures. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2554-359X |
PMID | 24502250 |
PQID | 1509904932 |
PQPubID | 31465 |
PageCount | 15 |
ParticipantIDs | hal_primary_oai_HAL_hal_02072967v1 proquest_miscellaneous_1999951789 proquest_miscellaneous_1516745403 proquest_miscellaneous_1510709911 proquest_journals_1509904932 pubmed_primary_24502250 crossref_citationtrail_10_1111_mec_12687 crossref_primary_10_1111_mec_12687 wiley_primary_10_1111_mec_12687_MEC12687 istex_primary_ark_67375_WNG_HFC2MQDX_M fao_agris_US201400088376 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2014 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: April 2014 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Molecular ecology |
PublicationTitleAlternate | Mol Ecol |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
References | Chapuis M-P, Streiff R, Sword GA (2012) Long microsatellites and unusually high levels of genetic diversity in the Orthoptera. Insect Molecular Biology, 21, 181-186. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among population of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco]. Theoretical and Applied Genetics, 92, 832-839. Estoup A, Wilson IJ, Sullivan C et al. (2001) Inferring population history from microsatellite and enzyme data in serially introduced cane toads, Bufo marinus. Genetics, 159, 1671-1687. Lecoq M (2001) Recent progress in Desert and Migratory Locust management in Africa. Are preventive actions possible? Journal of Orthoptera Research, 10, 277-291. Valsecchi E, Hale P, Corkeron P et al. (2002) Social structure in migrating humpback whales (Megaptera novaeangliae). Molecular Ecology, 11, 507-518. Wilson JF, Goldstein DB (2000) Consistent long-range linkage disequilibrium generated by admixture in a Bantu-Semitic hybrid population. American Journal of Human Genetics, 67, 926-935. Lecoq M (2003) Desert locust threat to agricultural development and food security and FAO/international role in its control. Arab Journal of Plant Protection, 21, 188-193. Ibrahim KM, Sourrouille P, Hewitt GM (2000) Are recession populations of the desert locust (Schistocerca gregaria) remnants of past swarms? Molecular Ecology, 9, 783-791. Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theoretical Population Biology, 12, 253-262. Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Molecular and Biological Evolution, 24, 621-631. Dawes R, Dawson I, Falciani F et al. (1994) Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development, 120, 1561-1572. Chapuis M-P, Loiseau A, Michalakis Y et al. (2009) Outbreaks, gene flow and effective population size in the migratory locust, Locusta migratoria: a regional scale comparative survey. Molecular Ecology, 18, 792-800. Norris MS (1957) Factors affecting the rate of sexual maturation of the Desert Locust (Schistocerca gregaria Forsk.) in the laboratory. Anti-Locust Bulletin, 28, 25 p. Rousset F (2008) GenePop'007: a complete re-implementation of the GenePop software for Windows and Linux. Molecular Ecology Resources, 8, 103-106. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137-138. Waloff Z (1963) Field studies on solitary and transiens desert locusts in the Red Sea area. Anti-Locust Bulletin, 40, 93 p. Waloff Z (1966) The upsurges and recessions of the desert locust plague: an historical survey. Anti-Locust Memoir, 8, 111 p. Wright S (1951) The genetical structure of populations. Annuals of Eugenics, 15, 323-354. Zhivotovsky LA, Feldman MW, Grishechkin SA (1997) Biased mutations and microsatellite variation. Molecular Biology and Evolution, 14, 926-933. Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York. Rainey RC (1963) Meteorology and the migration of Desert Locusts. Applications of synoptic meteorology in locust control. Anti-Locust Memoirs, 7, 125 p. Estoup A, Beaumont M, Sennedot F et al. (2004) Genetic analysis of complex demographic scenarios: spatially expanding populations of the cane toad. Bufo marinus. Evolution, 58, 2021-2036. Magor JL, Lecoq M, Hunter DM (2008) Preventive control and desert locust plagues. Crop Protection, 27, 1527-1533. Rosenberg J, Burt PJA (1999) Windborne displacements of Desert Locusts from Africa to the Caribbean and South America. Aerobiologia, 15, 161-175. Blondin L, Badisco L, Pagès C et al. (2013) Characterization and comparison of microsatellite markers derived from genomic and expressed libraries for the desert locust. Journal of Applied Entomology, 137, 673-683. Hamilton G, Stoneking M, Excoffier L (2005) Molecular analysis reveals tighter social regulation of immigration in patrilocal populations than in matrilocal populations. Proceedings of the National Academy of Sciences USA, 102, 7476-7480. Sword GA, Lecoq M, Simpson SJ (2010) Phase polyphenism and preventative locust management. Journal of Insect Physiology, 56, 949-957. Farrow RA (1975) The African Migratory Locust in its main outbreak area of the middle Niger: quantitative studies of solitary populations in relation to environmental factors. Locusta, 11, 1-198. Lecoq M, Andriamaroahina TRZ, Solofonaina H et al. (2011) Ecology and population dynamics of solitary Red locusts in Southern Madagascar. Journal of Orthoptera Research, 20, 141-158. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution, 43, 258-275. Yassin YA, Heist EJ, Ibrahim KM (2006) PCR primers for polymorphic microsatellite loci in the Desert locust, Schistocerca gregaria (Orthoptera: Acrididae). Molecular Ecology Notes, 6, 784-786. Pope LC, Estoup A, Moritz C (2000) Phylogeography and population structure of an ecotonal marsupial, Bettongia tropica, determined using mtDNA and microsatellites. Molecular Ecology, 9, 2041-2053. Garza JC, Williamson E (2001) Detection of reduction in population size using data from microsatellite DNA. Molecular Ecology, 10, 305-318. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity, 90, 502-503. Loader CR (1996) Local likelihood density estimation. Annals of Statistics, 24, 1602-1618. Weir BS (1996) Genetic Data Analysis II. Sinauer Associates, Sunderland, Massachusetts. Latchininsky AV, Launois-Luong MH (1997) Le Criquet pèlerin (Schistocerca gregaria Forskål, 1775) dans la partie nord orientale de son aire d'invasion. Les Acridiens, vol. 29. CIRAD, Montpellier/VIZR Saint Petersbourg, 192 p. Motro U, Thomson G (1982) On heterozygosity and the effective size of populations subject to size changes. Evolution, 36, 1059-1066. Zhang J, Nei M (1996) Evolution of antennapedia-class homeobox genes. Genetics, 142, 295-303. R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Cissé S, Ghaout S, Mazih A et al. (2013) Effect of vegetation on density thresholds of adult desert locust gregarization from survey data in Mauritania. Entomologia Experimentalis et Applicata, 149, 159-165. Girod C, Vitalis R, Leblois R et al. (2011) Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the MSVAR method. Genetics, 188, 165-179. Whitlock MC, Barton NH (1997) The effective size of a subdivided population. Genetics, 146, 427-441. Ellis PE, Carlisle DB, Osborne DJ (1965) Desert locusts: sexual maturation delayed by feeding on senescent vegetation. Science, 149, 546-547. Menu F, Roebuck JP, Viala M (2000) Bet-hedging diapauses strategies in stochastic environments. American Naturalist, 155, 724-734. Storey JD, Tibshirani R (2003) Statistical significance for genome-wide studies. Proceedings of the National Academy of Sciences, USA, 100, 9440-9445. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5, 299-314. Chapuis M-P, Popple J-A, Berthier K et al. (2011) Challenges to assessing connectivity between massive populations of the Australian Plague locust. Proceedings of the Royal Society of London, Series B, 278, 3152-3160. Cornuet J-M, Pudlo P, Veyssier J et al. (2014) DIYABC v2.0: a software to make Approximate Bayesian Computation inferences about population history using Single Nucleotide Polymorphism, DNA sequence and microsatellite data. Bioinformatics, doi: 10.1093/bioinformatics/btt763. Duranton JF, Lecoq M (1990) Le criquet pèlerin au sahel, Collection Acridologie Opérationnelle, no. 6. CILSS/DFPV, Niamey, Niger. Lecoq M (2005) Desert locust management: from ecology to anthropology. Journal of Orthoptera Research, 14, 179-186. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9, 1322-1332. Coulon A, Fitzpatrick JW, Bowman R et al. (2008) Congruent population structure inferred from dispersal behaviour and intensive genetic surveys of the threatened Florida scrub-jay (Aphelocoma coerulescens). Molecular Ecology, 17, 1685-1701. Rao YR (1942) Some results of the studies on the desert locust (Schistocerca gregaria Forsk.) in India. Bulletin of Entomological Research, 33, 241-265. Ohta T, Kimura M (1973) A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genetical Research, 22, 201-204. Popov GB (1997) Atlas of Desert Locust Breeding Habitats. Food and Agriculture Organization, Rome. Beaumont MA, Zhang WY, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics, 162, 2025-2035. Uvarov BP (1966) Grasshoppers and Locusts, vol. 1. Cambridge University Press, Cambridge, UK. Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity, 103, 285-298. Earl DA, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359-361. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-2620. Vesey-Fitzgerald DF (1957) The vegetation of central and eastern Arabia. Journal of Ecology, 45, 779-798. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program with label switching and multimodality in analysis of population structure. Bioinformatics, 3, 1801-1806. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Ge 2010; 56 2010; 10 2011; 278 1965; 149 1989; 43 1964; 49 1963; 40 2000; 9 2002; 11 1976 2004; 4 1975 2008; 8 1996; 144 1996; 263 1975; 11 1996; 142 1937 1959; 7 1955; 3 1977 1997; 146 1990 2005; 102 1997; 14 2008; 27 1999; 15 2002; 88 2011; 20 1987 2007; 3 1996; 5 1996; 24 1999; 90 2007; 24 2012; 21 2009; 18 2001; 10 1957; 45 1982; 36 2012 2000; 67 1995; 57 2013; 149 1966; 8 2008; 17 1997 1996 2006; 6 1996; 92 2000; 155 2011; 4 2003; 30 1973; 22 2002; 162 1963; 7 2004; 58 2013; 137 1994; 120 2009; 9 2014 1951; 15 1977; 12 1957; 28 2001; 159 2009; 103 2003; 100 2011; 188 2003; 21 2005; 14 1942; 33 1966 e_1_2_6_51_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 Duranton JF (e_1_2_6_18_1) 1990 Benjamin Y (e_1_2_6_4_1) 1995; 57 e_1_2_6_19_1 Waloff Z (e_1_2_6_72_1) 1963; 40 Davey JT (e_1_2_6_15_1) 1955; 3 R Development Core Team (e_1_2_6_56_1) 2012 e_1_2_6_13_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 Norris MS (e_1_2_6_49_1) 1957; 28 Popov GB (e_1_2_6_53_1) 1997 e_1_2_6_62_1 Waloff Z (e_1_2_6_73_1) 1966; 8 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_60_1 Chapman RF (e_1_2_6_6_1) 1976 Weir BS (e_1_2_6_74_1) 1996 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 Davey JT (e_1_2_6_16_1) 1959; 7 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 Uvarov BP (e_1_2_6_68_1) 1966 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 Farrow RA (e_1_2_6_27_1) 1975; 11 Uvarov BP (e_1_2_6_69_1) 1977 e_1_2_6_8_1 Rainey RC (e_1_2_6_57_1) 1963; 7 Lecoq M (e_1_2_6_41_1) 2003; 21 Jakobsson M (e_1_2_6_36_1) 2007; 3 Latchininsky AV (e_1_2_6_38_1) 1997 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_46_1 |
References_xml | – reference: Storey JD, Tibshirani R (2003) Statistical significance for genome-wide studies. Proceedings of the National Academy of Sciences, USA, 100, 9440-9445. – reference: Weir BS (1996) Genetic Data Analysis II. Sinauer Associates, Sunderland, Massachusetts. – reference: Chapuis M-P, Loiseau A, Michalakis Y et al. (2009) Outbreaks, gene flow and effective population size in the migratory locust, Locusta migratoria: a regional scale comparative survey. Molecular Ecology, 18, 792-800. – reference: Lecoq M (2003) Desert locust threat to agricultural development and food security and FAO/international role in its control. Arab Journal of Plant Protection, 21, 188-193. – reference: Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144, 2001-2014. – reference: Girod C, Vitalis R, Leblois R et al. (2011) Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the MSVAR method. Genetics, 188, 165-179. – reference: Magor JL, Lecoq M, Hunter DM (2008) Preventive control and desert locust plagues. Crop Protection, 27, 1527-1533. – reference: Farrow RA (1975) The African Migratory Locust in its main outbreak area of the middle Niger: quantitative studies of solitary populations in relation to environmental factors. Locusta, 11, 1-198. – reference: Earl DA, vonHoldt BM (2011) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4, 359-361. – reference: Waloff Z (1963) Field studies on solitary and transiens desert locusts in the Red Sea area. Anti-Locust Bulletin, 40, 93 p. – reference: Zhang J, Nei M (1996) Evolution of antennapedia-class homeobox genes. Genetics, 142, 295-303. – reference: Vesey-Fitzgerald DF (1957) The vegetation of central and eastern Arabia. Journal of Ecology, 45, 779-798. – reference: El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among population of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco]. Theoretical and Applied Genetics, 92, 832-839. – reference: Estoup A, Beaumont M, Sennedot F et al. (2004) Genetic analysis of complex demographic scenarios: spatially expanding populations of the cane toad. Bufo marinus. Evolution, 58, 2021-2036. – reference: Estoup A, Wilson IJ, Sullivan C et al. (2001) Inferring population history from microsatellite and enzyme data in serially introduced cane toads, Bufo marinus. Genetics, 159, 1671-1687. – reference: Gilbert KJ, Andrew RL, Bock DG et al. (2012) Recommendations for utilizing and reporting population genetic analyses: the reproducibility of genetic clustering using the program structure. Molecular Ecology, 21, 4925-4930. – reference: Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program with label switching and multimodality in analysis of population structure. Bioinformatics, 3, 1801-1806. – reference: Lecoq M (2005) Desert locust management: from ecology to anthropology. Journal of Orthoptera Research, 14, 179-186. – reference: Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155, 945-959. – reference: Whitlock MC, Barton NH (1997) The effective size of a subdivided population. Genetics, 146, 427-441. – reference: R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. – reference: Uvarov BP (1966) Grasshoppers and Locusts, vol. 1. Cambridge University Press, Cambridge, UK. – reference: Garza JC, Williamson E (2001) Detection of reduction in population size using data from microsatellite DNA. Molecular Ecology, 10, 305-318. – reference: Beaumont MA, Zhang WY, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics, 162, 2025-2035. – reference: Popov GB (1997) Atlas of Desert Locust Breeding Habitats. Food and Agriculture Organization, Rome. – reference: Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theoretical Population Biology, 12, 253-262. – reference: Benjamin Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57, 289-300. – reference: Coulon A, Fitzpatrick JW, Bowman R et al. (2008) Congruent population structure inferred from dispersal behaviour and intensive genetic surveys of the threatened Florida scrub-jay (Aphelocoma coerulescens). Molecular Ecology, 17, 1685-1701. – reference: Rainey RC (1963) Meteorology and the migration of Desert Locusts. Applications of synoptic meteorology in locust control. Anti-Locust Memoirs, 7, 125 p. – reference: Latchininsky AV, Launois-Luong MH (1997) Le Criquet pèlerin (Schistocerca gregaria Forskål, 1775) dans la partie nord orientale de son aire d'invasion. Les Acridiens, vol. 29. CIRAD, Montpellier/VIZR Saint Petersbourg, 192 p. – reference: Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity, 90, 502-503. – reference: Wright S (1951) The genetical structure of populations. Annuals of Eugenics, 15, 323-354. – reference: Davey JT (1955) A preliminary note on seasonal movements of the African Migratory Locust in the solitary phase. Locusta, 3, 1-14. – reference: Chapuis M-P, Popple J-A, Berthier K et al. (2011) Challenges to assessing connectivity between massive populations of the Australian Plague locust. Proceedings of the Royal Society of London, Series B, 278, 3152-3160. – reference: Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561-576. – reference: Lecoq M, Andriamaroahina TRZ, Solofonaina H et al. (2011) Ecology and population dynamics of solitary Red locusts in Southern Madagascar. Journal of Orthoptera Research, 20, 141-158. – reference: Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York. – reference: Blondin L, Badisco L, Pagès C et al. (2013) Characterization and comparison of microsatellite markers derived from genomic and expressed libraries for the desert locust. Journal of Applied Entomology, 137, 673-683. – reference: Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity, 103, 285-298. – reference: Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5, 299-314. – reference: Uvarov BP (1977) Grasshoppers and Locusts, vol. 2. Centre for Overseas Pest Research, London, UK. – reference: Rosenberg J, Burt PJA (1999) Windborne displacements of Desert Locusts from Africa to the Caribbean and South America. Aerobiologia, 15, 161-175. – reference: Davey JT (1959) The African Migratory Locust (Locusta migratoria migratorioides Rch. & Frm., Orth.) in the Central Niger Delta. Part two. The ecology of Locusta in the semi-arid lands and seasonal movements of populations. Locusta, 7, 1-180. – reference: Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567. – reference: Hamilton G, Stoneking M, Excoffier L (2005) Molecular analysis reveals tighter social regulation of immigration in patrilocal populations than in matrilocal populations. Proceedings of the National Academy of Sciences USA, 102, 7476-7480. – reference: Sword GA, Lecoq M, Simpson SJ (2010) Phase polyphenism and preventative locust management. Journal of Insect Physiology, 56, 949-957. – reference: Menu F, Roebuck JP, Viala M (2000) Bet-hedging diapauses strategies in stochastic environments. American Naturalist, 155, 724-734. – reference: Motro U, Thomson G (1982) On heterozygosity and the effective size of populations subject to size changes. Evolution, 36, 1059-1066. – reference: Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137-138. – reference: Duranton JF, Lecoq M (1990) Le criquet pèlerin au sahel, Collection Acridologie Opérationnelle, no. 6. CILSS/DFPV, Niamey, Niger. – reference: Rousset F (2002) Inbreeding and relatedness coefficients: what do they measure? Heredity, 88, 371-380. – reference: Waloff Z (1966) The upsurges and recessions of the desert locust plague: an historical survey. Anti-Locust Memoir, 8, 111 p. – reference: Dawes R, Dawson I, Falciani F et al. (1994) Dax, a locust Hox gene related to fushi-tarazu but showing no pair-rule expression. Development, 120, 1561-1572. – reference: Ibrahim KM (2001) Plague dynamics and population genetics of the desert locust: can turnover during recession maintain population genetic structure? Molecular Ecology, 10, 581-591. – reference: Ibrahim KM, Sourrouille P, Hewitt GM (2000) Are recession populations of the desert locust (Schistocerca gregaria) remnants of past swarms? Molecular Ecology, 9, 783-791. – reference: Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9, 1322-1332. – reference: Norris MS (1957) Factors affecting the rate of sexual maturation of the Desert Locust (Schistocerca gregaria Forsk.) in the laboratory. Anti-Locust Bulletin, 28, 25 p. – reference: Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution, 43, 258-275. – reference: Loader CR (1996) Local likelihood density estimation. Annals of Statistics, 24, 1602-1618. – reference: Cissé S, Ghaout S, Mazih A et al. (2013) Effect of vegetation on density thresholds of adult desert locust gregarization from survey data in Mauritania. Entomologia Experimentalis et Applicata, 149, 159-165. – reference: Cornuet J-M, Pudlo P, Veyssier J et al. (2014) DIYABC v2.0: a software to make Approximate Bayesian Computation inferences about population history using Single Nucleotide Polymorphism, DNA sequence and microsatellite data. Bioinformatics, doi: 10.1093/bioinformatics/btt763. – reference: Rao YR (1942) Some results of the studies on the desert locust (Schistocerca gregaria Forsk.) in India. Bulletin of Entomological Research, 33, 241-265. – reference: Zhivotovsky LA, Feldman MW, Grishechkin SA (1997) Biased mutations and microsatellite variation. Molecular Biology and Evolution, 14, 926-933. – reference: Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-2620. – reference: Ohta T, Kimura M (1973) A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genetical Research, 22, 201-204. – reference: Wilson JF, Goldstein DB (2000) Consistent long-range linkage disequilibrium generated by admixture in a Bantu-Semitic hybrid population. American Journal of Human Genetics, 67, 926-935. – reference: Chapuis M-P, Streiff R, Sword GA (2012) Long microsatellites and unusually high levels of genetic diversity in the Orthoptera. Insect Molecular Biology, 21, 181-186. – reference: Pope LC, Estoup A, Moritz C (2000) Phylogeography and population structure of an ecotonal marsupial, Bettongia tropica, determined using mtDNA and microsatellites. Molecular Ecology, 9, 2041-2053. – reference: Chapuis M-P, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Molecular and Biological Evolution, 24, 621-631. – reference: Valsecchi E, Hale P, Corkeron P et al. (2002) Social structure in migrating humpback whales (Megaptera novaeangliae). Molecular Ecology, 11, 507-518. – reference: Yassin YA, Heist EJ, Ibrahim KM (2006) PCR primers for polymorphic microsatellite loci in the Desert locust, Schistocerca gregaria (Orthoptera: Acrididae). Molecular Ecology Notes, 6, 784-786. – reference: Lecoq M (2001) Recent progress in Desert and Migratory Locust management in Africa. Are preventive actions possible? Journal of Orthoptera Research, 10, 277-291. – reference: Rousset F (2008) GenePop'007: a complete re-implementation of the GenePop software for Windows and Linux. Molecular Ecology Resources, 8, 103-106. – reference: Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proceedings of the Royal Society of London, Series B, 263, 1619-1626. – reference: Ellis PE, Carlisle DB, Osborne DJ (1965) Desert locusts: sexual maturation delayed by feeding on senescent vegetation. Science, 149, 546-547. – volume: 20 start-page: 141 year: 2011 end-page: 158 article-title: Ecology and population dynamics of solitary Red locusts in Southern Madagascar publication-title: Journal of Orthoptera Research – volume: 27 start-page: 1527 year: 2008 end-page: 1533 article-title: Preventive control and desert locust plagues publication-title: Crop Protection – volume: 92 start-page: 832 year: 1996 end-page: 839 article-title: High level of genetic differentiation for allelic richness among population of the argan tree [ (L.) Skeels] endemic to Morocco] publication-title: Theoretical and Applied Genetics – volume: 10 start-page: 564 year: 2010 end-page: 567 article-title: Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows publication-title: Molecular Ecology Resources – volume: 9 start-page: 783 year: 2000 end-page: 791 article-title: Are recession populations of the desert locust ( ) remnants of past swarms? publication-title: Molecular Ecology – year: 1937 – volume: 24 start-page: 1602 year: 1996 end-page: 1618 article-title: Local likelihood density estimation publication-title: Annals of Statistics – year: 1966 – volume: 15 start-page: 161 year: 1999 end-page: 175 article-title: Windborne displacements of Desert Locusts from Africa to the Caribbean and South America publication-title: Aerobiologia – volume: 263 start-page: 1619 year: 1996 end-page: 1626 article-title: Evaluating loci for use in the genetic analysis of population structure publication-title: Proceedings of the Royal Society of London, Series B – volume: 22 start-page: 201 year: 1973 end-page: 204 article-title: A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population publication-title: Genetical Research – volume: 17 start-page: 1685 year: 2008 end-page: 1701 article-title: Congruent population structure inferred from dispersal behaviour and intensive genetic surveys of the threatened Florida scrub‐jay ( ) publication-title: Molecular Ecology – volume: 149 start-page: 546 year: 1965 end-page: 547 article-title: Desert locusts: sexual maturation delayed by feeding on senescent vegetation publication-title: Science – year: 1975 – volume: 45 start-page: 779 year: 1957 end-page: 798 article-title: The vegetation of central and eastern Arabia publication-title: Journal of Ecology – year: 2014 article-title: DIYABC v2.0: a software to make Approximate Bayesian Computation inferences about population history using Single Nucleotide Polymorphism, DNA sequence and microsatellite data publication-title: Bioinformatics – volume: 10 start-page: 277 year: 2001 end-page: 291 article-title: Recent progress in Desert and Migratory Locust management in Africa. Are preventive actions possible? publication-title: Journal of Orthoptera Research – volume: 58 start-page: 2021 year: 2004 end-page: 2036 article-title: Genetic analysis of complex demographic scenarios: spatially expanding populations of the cane toad. publication-title: Evolution – volume: 11 start-page: 1 year: 1975 end-page: 198 article-title: The African Migratory Locust in its main outbreak area of the middle Niger: quantitative studies of solitary populations in relation to environmental factors publication-title: Locusta – volume: 3 start-page: 1801 year: 2007 end-page: 1806 article-title: CLUMPP: a cluster matching and permutation program with label switching and multimodality in analysis of population structure publication-title: Bioinformatics – year: 1990 – volume: 6 start-page: 784 year: 2006 end-page: 786 article-title: PCR primers for polymorphic microsatellite loci in the Desert locust, (Orthoptera: Acrididae) publication-title: Molecular Ecology Notes – volume: 103 start-page: 285 year: 2009 end-page: 298 article-title: Detecting loci under selection in a hierarchically structured population publication-title: Heredity – volume: 144 start-page: 2001 year: 1996 end-page: 2014 article-title: Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data publication-title: Genetics – volume: 5 start-page: 299 year: 1996 end-page: 314 article-title: R: a language for data analysis and graphics publication-title: Journal of Computational and Graphical Statistics – volume: 30 start-page: 29 year: 2003 article-title: Desert Locust population parameters – volume: 3 start-page: 1 year: 1955 end-page: 14 article-title: A preliminary note on seasonal movements of the African Migratory Locust in the solitary phase publication-title: Locusta – volume: 10 start-page: 581 year: 2001 end-page: 591 article-title: Plague dynamics and population genetics of the desert locust: can turnover during recession maintain population genetic structure? publication-title: Molecular Ecology – volume: 21 start-page: 181 year: 2012 end-page: 186 article-title: Long microsatellites and unusually high levels of genetic diversity in the Orthoptera publication-title: Insect Molecular Biology – volume: 43 start-page: 258 year: 1989 end-page: 275 article-title: Estimating relatedness using genetic markers publication-title: Evolution – volume: 40 start-page: 93 year: 1963 article-title: Field studies on solitary and desert locusts in the Red Sea area publication-title: Anti‐Locust Bulletin – volume: 4 start-page: 137 year: 2004 end-page: 138 article-title: Distruct: a program for the graphical display of population structure publication-title: Molecular Ecology Notes – year: 1997 – volume: 188 start-page: 165 year: 2011 end-page: 179 article-title: Inferring population decline and expansion from microsatellite data: a simulation‐based evaluation of the MSVAR method publication-title: Genetics – volume: 28 start-page: 25 year: 1957 article-title: Factors affecting the rate of sexual maturation of the Desert Locust ( Forsk.) in the laboratory publication-title: Anti‐Locust Bulletin – volume: 7 start-page: 1 year: 1959 end-page: 180 article-title: The African Migratory Locust ( Rch. & Frm., Orth.) in the Central Niger Delta. Part two. The ecology of in the semi‐arid lands and seasonal movements of populations publication-title: Locusta – volume: 33 start-page: 241 year: 1942 end-page: 265 article-title: Some results of the studies on the desert locust ( Forsk.) in India publication-title: Bulletin of Entomological Research – volume: 120 start-page: 1561 year: 1994 end-page: 1572 article-title: Dax, a locust Hox gene related to fushi‐tarazu but showing no pair‐rule expression publication-title: Development – volume: 100 start-page: 9440 year: 2003 end-page: 9445 article-title: Statistical significance for genome‐wide studies publication-title: Proceedings of the National Academy of Sciences, USA – year: 1976 – volume: 24 start-page: 621 year: 2007 end-page: 631 article-title: Microsatellite null alleles and estimation of population differentiation publication-title: Molecular and Biological Evolution – volume: 18 start-page: 792 year: 2009 end-page: 800 article-title: Outbreaks, gene flow and effective population size in the migratory locust, : a regional scale comparative survey publication-title: Molecular Ecology – volume: 149 start-page: 159 year: 2013 end-page: 165 article-title: Effect of vegetation on density thresholds of adult desert locust gregarization from survey data in Mauritania publication-title: Entomologia Experimentalis et Applicata – volume: 15 start-page: 323 year: 1951 end-page: 354 article-title: The genetical structure of populations publication-title: Annuals of Eugenics – volume: 4 start-page: 359 year: 2011 end-page: 361 article-title: STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method publication-title: Conservation Genetics Resources – volume: 56 start-page: 949 year: 2010 end-page: 957 article-title: Phase polyphenism and preventative locust management publication-title: Journal of Insect Physiology – volume: 88 start-page: 371 year: 2002 end-page: 380 article-title: Inbreeding and relatedness coefficients: what do they measure? publication-title: Heredity – volume: 12 start-page: 253 year: 1977 end-page: 262 article-title: Gene flow and genetic drift in a species subject to frequent local extinctions publication-title: Theoretical Population Biology – year: 1987 – year: 1996 – volume: 36 start-page: 1059 year: 1982 end-page: 1066 article-title: On heterozygosity and the effective size of populations subject to size changes publication-title: Evolution – volume: 57 start-page: 289 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society, Series B – volume: 278 start-page: 3152 year: 2011 end-page: 3160 article-title: Challenges to assessing connectivity between massive populations of the Australian Plague locust publication-title: Proceedings of the Royal Society of London, Series B – volume: 102 start-page: 7476 year: 2005 end-page: 7480 article-title: Molecular analysis reveals tighter social regulation of immigration in patrilocal populations than in matrilocal populations publication-title: Proceedings of the National Academy of Sciences USA – year: 1977 – volume: 21 start-page: 4925 year: 2012 end-page: 4930 article-title: Recommendations for utilizing and reporting population genetic analyses: the reproducibility of genetic clustering using the program structure publication-title: Molecular Ecology – volume: 49 start-page: 561 year: 1964 end-page: 576 article-title: The stepping stone model of population structure and the decrease of genetic correlation with distance publication-title: Genetics – year: 2012 – volume: 142 start-page: 295 year: 1996 end-page: 303 article-title: Evolution of antennapedia‐class homeobox genes publication-title: Genetics – volume: 7 start-page: 125 year: 1963 article-title: Meteorology and the migration of Desert Locusts. Applications of synoptic meteorology in locust control publication-title: Anti‐Locust Memoirs – volume: 162 start-page: 2025 year: 2002 end-page: 2035 article-title: Approximate Bayesian computation in population genetics publication-title: Genetics – volume: 9 start-page: 2041 year: 2000 end-page: 2053 article-title: Phylogeography and population structure of an ecotonal marsupial, , determined using mtDNA and microsatellites publication-title: Molecular Ecology – volume: 90 start-page: 502 year: 1999 end-page: 503 article-title: BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data publication-title: Journal of Heredity – volume: 146 start-page: 427 year: 1997 end-page: 441 article-title: The effective size of a subdivided population publication-title: Genetics – volume: 137 start-page: 673 year: 2013 end-page: 683 article-title: Characterization and comparison of microsatellite markers derived from genomic and expressed libraries for the desert locust publication-title: Journal of Applied Entomology – volume: 8 start-page: 111 year: 1966 article-title: The upsurges and recessions of the desert locust plague: an historical survey publication-title: Anti‐Locust Memoir – volume: 8 start-page: 103 year: 2008 end-page: 106 article-title: GenePop'007: a complete re‐implementation of the GenePop software for Windows and Linux publication-title: Molecular Ecology Resources – volume: 159 start-page: 1671 year: 2001 end-page: 1687 article-title: Inferring population history from microsatellite and enzyme data in serially introduced cane toads, publication-title: Genetics – volume: 14 start-page: 2611 year: 2005 end-page: 2620 article-title: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study publication-title: Molecular Ecology – volume: 155 start-page: 945 year: 2000 end-page: 959 article-title: Inference of population structure using multilocus genotype data publication-title: Genetics – volume: 14 start-page: 926 year: 1997 end-page: 933 article-title: Biased mutations and microsatellite variation publication-title: Molecular Biology and Evolution – volume: 9 start-page: 1322 year: 2009 end-page: 1332 article-title: Inferring weak population structure with the assistance of sample group information publication-title: Molecular Ecology Resources – start-page: 192 year: 1997 – volume: 10 start-page: 305 year: 2001 end-page: 318 article-title: Detection of reduction in population size using data from microsatellite DNA publication-title: Molecular Ecology – volume: 21 start-page: 188 year: 2003 end-page: 193 article-title: Desert locust threat to agricultural development and food security and FAO/international role in its control publication-title: Arab Journal of Plant Protection – volume: 67 start-page: 926 year: 2000 end-page: 935 article-title: Consistent long‐range linkage disequilibrium generated by admixture in a Bantu‐Semitic hybrid population publication-title: American Journal of Human Genetics – volume: 11 start-page: 507 year: 2002 end-page: 518 article-title: Social structure in migrating humpback whales publication-title: Molecular Ecology – volume: 155 start-page: 724 year: 2000 end-page: 734 article-title: Bet‐hedging diapauses strategies in stochastic environments publication-title: American Naturalist – volume: 14 start-page: 179 year: 2005 end-page: 186 article-title: Desert locust management: from ecology to anthropology publication-title: Journal of Orthoptera Research – ident: e_1_2_6_75_1 doi: 10.1093/genetics/146.1.427 – ident: e_1_2_6_71_1 doi: 10.2307/2256957 – volume: 3 start-page: 1 year: 1955 ident: e_1_2_6_15_1 article-title: A preliminary note on seasonal movements of the African Migratory Locust in the solitary phase publication-title: Locusta – ident: e_1_2_6_19_1 doi: 10.1007/s12686-011-9548-7 – ident: e_1_2_6_8_1 doi: 10.1111/j.1365-294X.2008.04072.x – ident: e_1_2_6_64_1 doi: 10.1111/j.1471-8286.2007.01931.x – ident: e_1_2_6_28_1 doi: 10.1046/j.1365-294x.2001.01190.x – ident: e_1_2_6_10_1 doi: 10.1111/j.1365-2583.2011.01124.x – volume-title: Genetic Data Analysis II year: 1996 ident: e_1_2_6_74_1 – ident: e_1_2_6_25_1 doi: 10.1111/j.1755-0998.2010.02847.x – ident: e_1_2_6_63_1 doi: 10.1038/sj.hdy.6800065 – ident: e_1_2_6_35_1 doi: 10.2307/1390807 – volume-title: Le criquet pèlerin au sahel, Collection Acridologie Opérationnelle year: 1990 ident: e_1_2_6_18_1 – ident: e_1_2_6_55_1 doi: 10.1111/j.1558-5646.1989.tb04226.x – ident: e_1_2_6_37_1 doi: 10.1046/j.0173-9565.2003.00795.x – ident: e_1_2_6_40_1 doi: 10.1665/1082-6467(2001)010[0277:RPIDAM]2.0.CO;2 – ident: e_1_2_6_58_1 – volume-title: Atlas of Desert Locust Breeding Habitats year: 1997 ident: e_1_2_6_53_1 – ident: e_1_2_6_13_1 doi: 10.1093/bioinformatics/btt763 – volume: 40 start-page: 93 year: 1963 ident: e_1_2_6_72_1 article-title: Field studies on solitary and transiens desert locusts in the Red Sea area publication-title: Anti‐Locust Bulletin – ident: e_1_2_6_31_1 doi: 10.1073/pnas.0409253102 – volume-title: R: A Language and Environment for Statistical Computing year: 2012 ident: e_1_2_6_56_1 – volume: 7 start-page: 1 year: 1959 ident: e_1_2_6_16_1 article-title: The African Migratory Locust (Locusta migratoria migratorioides Rch. & Frm., Orth.) in the Central Niger Delta. Part two. The ecology of Locusta in the semi‐arid lands and seasonal movements of populations publication-title: Locusta – ident: e_1_2_6_30_1 doi: 10.1534/genetics.110.121764 – ident: e_1_2_6_65_1 doi: 10.1016/0040-5809(77)90045-4 – ident: e_1_2_6_59_1 doi: 10.1017/S0007485300026572 – ident: e_1_2_6_80_1 doi: 10.1093/oxfordjournals.molbev.a025835 – volume: 3 start-page: 1801 year: 2007 ident: e_1_2_6_36_1 article-title: CLUMPP: a cluster matching and permutation program with label switching and multimodality in analysis of population structure publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm233 – ident: e_1_2_6_24_1 doi: 10.1111/j.1365-294X.2005.02553.x – volume: 11 start-page: 1 year: 1975 ident: e_1_2_6_27_1 article-title: The African Migratory Locust in its main outbreak area of the middle Niger: quantitative studies of solitary populations in relation to environmental factors publication-title: Locusta – ident: e_1_2_6_5_1 doi: 10.1111/jen.12052 – start-page: 192 volume-title: Le Criquet pèlerin (Schistocerca gregaria Forskål, 1775) dans la partie nord orientale de son aire d'invasion. Les Acridiens year: 1997 ident: e_1_2_6_38_1 – ident: e_1_2_6_67_1 doi: 10.1016/j.jinsphys.2010.05.005 – ident: e_1_2_6_3_1 doi: 10.1093/genetics/162.4.2025 – ident: e_1_2_6_77_1 doi: 10.1111/j.1469-1809.1949.tb02451.x – ident: e_1_2_6_23_1 doi: 10.1093/genetics/159.4.1671 – ident: e_1_2_6_78_1 doi: 10.1111/j.1471-8286.2006.01343.x – ident: e_1_2_6_33_1 doi: 10.1046/j.1365-294x.2001.01212.x – volume-title: Grasshoppers and Locusts year: 1966 ident: e_1_2_6_68_1 – ident: e_1_2_6_9_1 doi: 10.1098/rspb.2010.2605 – ident: e_1_2_6_2_1 doi: 10.1098/rspb.1996.0237 – ident: e_1_2_6_7_1 doi: 10.1093/molbev/msl191 – ident: e_1_2_6_22_1 doi: 10.1111/j.0014-3820.2004.tb00487.x – ident: e_1_2_6_42_1 doi: 10.1665/1082-6467(2005)14[179:DLMFET]2.0.CO;2 – volume-title: The Institute of Studies in Biology year: 1976 ident: e_1_2_6_6_1 – ident: e_1_2_6_43_1 doi: 10.1665/034.020.0202 – ident: e_1_2_6_62_1 doi: 10.1023/A:1007529617032 – ident: e_1_2_6_60_1 – ident: e_1_2_6_47_1 doi: 10.1111/j.1558-5646.1982.tb05474.x – ident: e_1_2_6_39_1 – ident: e_1_2_6_70_1 doi: 10.1046/j.0962-1083.2001.01459.x – ident: e_1_2_6_11_1 doi: 10.1111/eea.12121 – ident: e_1_2_6_12_1 doi: 10.1093/genetics/144.4.2001 – ident: e_1_2_6_52_1 doi: 10.1046/j.1365-294X.2000.01110.x – volume: 7 start-page: 125 year: 1963 ident: e_1_2_6_57_1 article-title: Meteorology and the migration of Desert Locusts. Applications of synoptic meteorology in locust control publication-title: Anti‐Locust Memoirs – ident: e_1_2_6_26_1 doi: 10.1038/hdy.2009.74 – ident: e_1_2_6_54_1 doi: 10.1111/j.1365-294X.2004.02396.x – ident: e_1_2_6_29_1 doi: 10.1111/j.1365-294X.2012.05754.x – ident: e_1_2_6_34_1 doi: 10.1046/j.1365-294x.2000.00932.x – volume: 21 start-page: 188 year: 2003 ident: e_1_2_6_41_1 article-title: Desert locust threat to agricultural development and food security and FAO/international role in its control publication-title: Arab Journal of Plant Protection – ident: e_1_2_6_61_1 doi: 10.1046/j.1471-8286.2003.00566.x – volume: 8 start-page: 111 year: 1966 ident: e_1_2_6_73_1 article-title: The upsurges and recessions of the desert locust plague: an historical survey publication-title: Anti‐Locust Memoir – ident: e_1_2_6_32_1 doi: 10.1111/j.1755-0998.2009.02591.x – ident: e_1_2_6_48_1 doi: 10.1111/j.1365-294X.2006.02908.x – ident: e_1_2_6_45_1 doi: 10.1016/j.cropro.2008.08.006 – ident: e_1_2_6_50_1 doi: 10.1017/S0016672300012994 – ident: e_1_2_6_14_1 doi: 10.1111/j.1365-294X.2008.03705.x – ident: e_1_2_6_76_1 doi: 10.1086/303083 – volume: 57 start-page: 289 year: 1995 ident: e_1_2_6_4_1 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_6_20_1 doi: 10.1007/BF00221895 – volume: 28 start-page: 25 year: 1957 ident: e_1_2_6_49_1 article-title: Factors affecting the rate of sexual maturation of the Desert Locust (Schistocerca gregaria Forsk.) in the laboratory publication-title: Anti‐Locust Bulletin – ident: e_1_2_6_21_1 doi: 10.1126/science.149.3683.546 – ident: e_1_2_6_66_1 doi: 10.1073/pnas.1530509100 – ident: e_1_2_6_44_1 doi: 10.1214/aos/1032298287 – ident: e_1_2_6_46_1 doi: 10.1086/303355 – ident: e_1_2_6_17_1 doi: 10.1242/dev.120.6.1561 – ident: e_1_2_6_51_1 doi: 10.1093/jhered/90.4.502 – volume-title: Grasshoppers and Locusts year: 1977 ident: e_1_2_6_69_1 – ident: e_1_2_6_79_1 doi: 10.1093/genetics/142.1.295 |
SSID | ssj0013255 |
Score | 2.2255154 |
Snippet | Between plagues, the solitarious desert locust (Schistocerca gregaria) is generally thought to exist as small populations, which are particularly prone to... Between plagues, the solitarious desert locust ( Schistocerca gregaria ) is generally thought to exist as small populations, which are particularly prone to... |
SourceID | hal proquest pubmed crossref wiley istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1749 |
SubjectTerms | Africa Animal behavior Animal populations Animals Arid zones Asia Bayes Theorem Bayesian inference bottleneck Cluster Analysis Evolution extinction Genetic diversity Genetic Variation genetics Genetics, Population Grasshoppers Grasshoppers - genetics Insects Life Sciences Linkage Disequilibrium Mass extinctions Metapopulations microsatellite Microsatellite Repeats Models, Biological Orthoptera pest plague Population Density Population Dynamics Population genetics Population number population size remission Schistocerca gregaria Species extinction |
Title | Demographic processes shaping genetic variation of the solitarious phase of the desert locust |
URI | https://api.istex.fr/ark:/67375/WNG-HFC2MQDX-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.12687 https://www.ncbi.nlm.nih.gov/pubmed/24502250 https://www.proquest.com/docview/1509904932 https://www.proquest.com/docview/1510709911 https://www.proquest.com/docview/1516745403 https://www.proquest.com/docview/1999951789 https://hal.science/hal-02072967 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0962-1083 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-294X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013255 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxNBEF9qRfDFb9vTKquI-HLhbr-DTyVNDGIKfgTzoCy7e3tGapPQS4r1r3d274NWahFfwnE3C5fZmZ3f3M78FqEX1NoCwkSZCmF9yoR3qVEZTYUpC68MRDAT2T4PxXjK3s74bAu9bnthan6I7oNb8Iy4XgcHN7Y65-TH3vVyIlToJM8pj1u0H8i5HYR44ikgdAJLjaINq1Co4ulGXohF10qzhN95qIe8HlT88zLQeRHDxiA0uo2-tK9f154c9TZr23O__mB2_M__dwfdasAp3q-t6S7a8ot76EZ9XOUZXA0jxfXZffT1wB_XXNffHV7VvQa-wtXchPYrDEYZeiPxKSTicebxssSANHEVqu3g5nJT4dUcAmj7oPChKgBDZN1U6wdoOhp-GozT5qCG1AEckqmTTlLhVEBfxOTe2IybrGSZ8VIWnhWUOcASjgsjKOQvTHBZEOcLmxsnnKMP0fZiufC7CJMCFh2meGkUYZYb4zLp-paUBaeW9FWCXrVTpl3DYh4O0_ih22wG9Kaj3hL0vBNd1dQdlwntwrxr8w2WVD39SELCCbAI0nYB48EYuqGBh3u8_06He4CxISkR8jRP0MtoK52YOTkKtXKS68-Hb_R4NCCT9wczPUnQXmtMulkmKg1oHNAAAwydoGfdY3DwsGtjFh5mA2QgQwexPL9SRsjApUivkIFUAOC0VP0E7dTG3L00YRywHM9Au9Ek_64vPRkO4sWjfxd9jG4Gvdb1Tntoe32y8U8Ayq3t0-izvwE5Xj_- |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQwhe-B4LDDAIIV5SJU5ipxIvUz8o0FYCNtGXyXIch6KxtlraifHXc-c00YbGhHipouQsNef7-F18_hngVZRlOaaJwhcis34srPF1GkS-0EVuU40ZTDu2z7EYHMYfJslkA97We2Eqfojmgxt5hovX5OD0QfqCl59Y0wq5SOUmbNP6HLll9zO_sIbgzjxFjM4x2KTRmleI-niaoZey0Wah5_g7pY7IbVLyz6tg52UU69JQ_w4c1S9QdZ8ct1bLrGV-_cHt-L9veBdur_Ep268M6h5s2Nl9uFGdWHmOVz3Hcn3-AI669qSiu_5u2KLabmBLVk417cBiaJe0PZKdYS3uJp_NC4Zgk5XUcIc356uSLaaYQ-sHuaXGAIbJdVUuH8Jhv3fQGfjrsxp8g4hI-kYaGQmTEgDjOrQ6CxIdFHGgrZS5jfMoNggnTCK0iLCEiUUic25snoXaCGOiHdiazWd2FxjPMe7EaVLolMdZorUJpGlnvMiTKOPt1IM39ZwpsyYyp_M0fqi6oEG9Kac3D142oouKveMqoV2ceKW_YVRVh1841ZyIjLByFzgeraEZSlTcg_2honsIs7EuEfIs9OC1M5ZGTJ8eU7ucTNTX8Ts16Hf46FN3okYe7NXWpNaRolQIyBEQxAijPXjRPEYfp4UbPbM4GyiDRTqKheG1MkISnWJ0jQxWA4ioZdr24FFlzc2f5nGCcC4JULvOJv-uLzXqddzF438XfQ43BwejoRq-H398ArdIx1X70x5sLU9X9ikiu2X2zDnwbyNdRBo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aRSBeuMMCAwxCiJdUiePYqXiaeqHAWnGr1geQ5dgORWNttbQT49dz7DTRhsaEeImi5FhKjs_lO8nxZ4DnSZ4bTBNFyHluQ8atDlUWJSFXhbGZwgymPNvniA_G7O0knWzAq3otTMUP0Xxwc57h47Vz8IUpzjj5kdWtmPJMbMI241hdOUT0kZ75heC3PEWITjHWZMmaVsi18TRDzyWjzULN8Th1DZHbTsc_L0Kd50Gsz0L9G_Clfv6q-eSwtVrmLf3rD2rH_3zBm3B9jU7JXmVOt2DDzm7DlWq_ylM863mO69M78LVrjyqy6--aLKrFBrYk5VS59VcErdItjiQnWIn7qSfzgiDUJKVrt8OL81VJFlPMoPUNY11bAMHUuiqXd2Hc733uDML1Tg2hRjwkQi20SLjOHPyiKrYqj1IVFSxSVghjmUmYRjChU654ggUM46kwVFuTx0pzrZN7sDWbz-wOEGow6rAsLVRGWZ4qpSOh2zktTJrktJ0F8LKeMqnXNOZuN40fsi5nUG_S6y2AZ43oouLuuEhoB-ddqm8YU-X4E3UVJ-IirNs5jkdjaIY6Iu7B3r501xBkY1XCxUkcwAtvK42YOj50zXIilQej13LQ79Dhh-5EDgPYrY1JruNEKRGOIxxgCKIDeNrcRg93v23UzOJsoAyW6CgWx5fKcOHIFJNLZLAWQDwtsnYA9ytjbh6ashTBXBqhdr1J_l1fctjr-JMH_y76BK6-7_bl_pvRu4dwzam46n3aha3l8co-Qli3zB979_0NGEVCyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demographic+processes+shaping+genetic+variation+of+the+solitarious+phase+of+the+desert+locust&rft.jtitle=Molecular+ecology&rft.au=Chapuis%2C+Marie%E2%80%90Pierre&rft.au=Plantamp%2C+Christophe&rft.au=Blondin%2C+Laurence&rft.au=Pag%C3%A8s%2C+Christine&rft.date=2014-04-01&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=23&rft.issue=7&rft.spage=1749&rft.epage=1763&rft_id=info:doi/10.1111%2Fmec.12687&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mec_12687 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |