DUHI: Dynamically updated hash index clustering method for DNA storage
The exponential growth of global data leads to the problem of insufficient data storage capacity. DNA storage can be an ideal storage method due to its high storage density and long storage time. However, the DNA storage process is subject to unavoidable errors that can lead to increased cluster red...
Saved in:
| Published in | Computers in biology and medicine Vol. 164; p. 107244 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.09.2023
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2023.107244 |
Cover
| Abstract | The exponential growth of global data leads to the problem of insufficient data storage capacity. DNA storage can be an ideal storage method due to its high storage density and long storage time. However, the DNA storage process is subject to unavoidable errors that can lead to increased cluster redundancy during data reading, which in turn affects the accuracy of the data reads. This paper proposes a dynamically updated hash index (DUHI) clustering method for DNA storage, which clusters sequences by constructing a dynamic core index set and using hash lookup. The proposed clustering method is analyzed in terms of overall reliability evaluation and visualization evaluation. The results show that the DUHI clustering method can reduce the redundancy of more than 10% of the sequences within the cluster and increase the reconstruction rate of the sequences to more than 99%. Therefore, our method solves the high redundancy problem after DNA sequence clustering, improves the accuracy of data reading, and promotes the development of DNA storage.
•During clustering of DNA stores, errors in bases may occur, resulting in incorrect index construction for clustering.•Benefit from using the DUHI clustering method to continuously update the index for effective clustering of DNA sequences.•The reliability measures, Jaccard-Purity coefficient, reconstruction rate etc. indicate reduced redundancy within clusters.•Implement the DUHI clustering method to ensure accuracy of DNA storage during data reading. |
|---|---|
| AbstractList | The exponential growth of global data leads to the problem of insufficient data storage capacity. DNA storage can be an ideal storage method due to its high storage density and long storage time. However, the DNA storage process is subject to unavoidable errors that can lead to increased cluster redundancy during data reading, which in turn affects the accuracy of the data reads. This paper proposes a dynamically updated hash index (DUHI) clustering method for DNA storage, which clusters sequences by constructing a dynamic core index set and using hash lookup. The proposed clustering method is analyzed in terms of overall reliability evaluation and visualization evaluation. The results show that the DUHI clustering method can reduce the redundancy of more than 10% of the sequences within the cluster and increase the reconstruction rate of the sequences to more than 99%. Therefore, our method solves the high redundancy problem after DNA sequence clustering, improves the accuracy of data reading, and promotes the development of DNA storage.The exponential growth of global data leads to the problem of insufficient data storage capacity. DNA storage can be an ideal storage method due to its high storage density and long storage time. However, the DNA storage process is subject to unavoidable errors that can lead to increased cluster redundancy during data reading, which in turn affects the accuracy of the data reads. This paper proposes a dynamically updated hash index (DUHI) clustering method for DNA storage, which clusters sequences by constructing a dynamic core index set and using hash lookup. The proposed clustering method is analyzed in terms of overall reliability evaluation and visualization evaluation. The results show that the DUHI clustering method can reduce the redundancy of more than 10% of the sequences within the cluster and increase the reconstruction rate of the sequences to more than 99%. Therefore, our method solves the high redundancy problem after DNA sequence clustering, improves the accuracy of data reading, and promotes the development of DNA storage. AbstractThe exponential growth of global data leads to the problem of insufficient data storage capacity. DNA storage can be an ideal storage method due to its high storage density and long storage time. However, the DNA storage process is subject to unavoidable errors that can lead to increased cluster redundancy during data reading, which in turn affects the accuracy of the data reads. This paper proposes a dynamically updated hash index (DUHI) clustering method for DNA storage, which clusters sequences by constructing a dynamic core index set and using hash lookup. The proposed clustering method is analyzed in terms of overall reliability evaluation and visualization evaluation. The results show that the DUHI clustering method can reduce the redundancy of more than 10% of the sequences within the cluster and increase the reconstruction rate of the sequences to more than 99%. Therefore, our method solves the high redundancy problem after DNA sequence clustering, improves the accuracy of data reading, and promotes the development of DNA storage. The exponential growth of global data leads to the problem of insufficient data storage capacity. DNA storage can be an ideal storage method due to its high storage density and long storage time. However, the DNA storage process is subject to unavoidable errors that can lead to increased cluster redundancy during data reading, which in turn affects the accuracy of the data reads. This paper proposes a dynamically updated hash index (DUHI) clustering method for DNA storage, which clusters sequences by constructing a dynamic core index set and using hash lookup. The proposed clustering method is analyzed in terms of overall reliability evaluation and visualization evaluation. The results show that the DUHI clustering method can reduce the redundancy of more than 10% of the sequences within the cluster and increase the reconstruction rate of the sequences to more than 99%. Therefore, our method solves the high redundancy problem after DNA sequence clustering, improves the accuracy of data reading, and promotes the development of DNA storage. •During clustering of DNA stores, errors in bases may occur, resulting in incorrect index construction for clustering.•Benefit from using the DUHI clustering method to continuously update the index for effective clustering of DNA sequences.•The reliability measures, Jaccard-Purity coefficient, reconstruction rate etc. indicate reduced redundancy within clusters.•Implement the DUHI clustering method to ensure accuracy of DNA storage during data reading. The exponential growth of global data leads to the problem of insufficient data storage capacity. DNA storage can be an ideal storage method due to its high storage density and long storage time. However, the DNA storage process is subject to unavoidable errors that can lead to increased cluster redundancy during data reading, which in turn affects the accuracy of the data reads. This paper proposes a dynamically updated hash index (DUHI) clustering method for DNA storage, which clusters sequences by constructing a dynamic core index set and using hash lookup. The proposed clustering method is analyzed in terms of overall reliability evaluation and visualization evaluation. The results show that the DUHI clustering method can reduce the redundancy of more than 10% of the sequences within the cluster and increase the reconstruction rate of the sequences to more than 99%. Therefore, our method solves the high redundancy problem after DNA sequence clustering, improves the accuracy of data reading, and promotes the development of DNA storage. |
| ArticleNumber | 107244 |
| Author | Zheng, Pan Wang, Penghao Ma, Tao Cao, Ben Zhang, Qiang Wang, Bin |
| Author_xml | – sequence: 1 givenname: Penghao surname: Wang fullname: Wang, Penghao organization: Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, 116622, Dalian, China – sequence: 2 givenname: Ben orcidid: 0000-0003-1503-6009 surname: Cao fullname: Cao, Ben organization: School of Computer Science and Technology, Dalian University of Technology, 116024, Dalian, China – sequence: 3 givenname: Tao orcidid: 0000-0003-0509-4870 surname: Ma fullname: Ma, Tao organization: Brain Function Research Section, The First Hospital of China Medical University, 110001, Shenyang, China – sequence: 4 givenname: Bin orcidid: 0000-0002-8800-000X surname: Wang fullname: Wang, Bin email: wangbin@dlu.edu.cn organization: Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, 116622, Dalian, China – sequence: 5 givenname: Qiang surname: Zhang fullname: Zhang, Qiang organization: Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, 116622, Dalian, China – sequence: 6 givenname: Pan orcidid: 0000-0002-6067-626X surname: Zheng fullname: Zheng, Pan organization: Department of Accounting and Information Systems, University of Canterbury, 8140, Christchurch, New Zealand |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37453377$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkkFv1DAQhS1URLeFv4AsceGSxY7tOOFQUbqUVqrgAD1bjj3peknsxU4Q--9xtC1IKyHtyZL9zfPMe3OGTnzwgBCmZEkJrd5tliYM29aFAeyyJCXL17Lk_Bla0Fo2BRGMn6AFIZQUvC7FKTpLaUMI4YSRF-iUSS4Yk3KBrlf3N7fv8Wrn9eCM7vsdnrZWj2DxWqc1dt7Cb2z6KY0QnX_AA4zrYHEXIl59ucRpDFE_wEv0vNN9gleP5zm6v_70_eqmuPv6-fbq8q4wgvKx6EBY27Kq7YQRdSdkI62UtBaiprYRPL8YS7pOCDCilG1XWtF2VFe0IQxoxc7R273uNoafE6RRDS4Z6HvtIUxJlTXL43Jey4y-OUA3YYo-d5epilRcNqLO1OtHamqzmWob3aDjTj05lIGLPWBiSClCp4wb9eiCH6N2vaJEzZGojfoXiZojUftIskB9IPD0xxGlH_elkC395SCqZBx4A9ZFMKOywR0jcnEgYnrn56x_wA7SX1OoSqUi6tu8NPPOlIwQSZrZ8w__Fziuhz9VOtS2 |
| CitedBy_id | crossref_primary_10_3390_e26090778 crossref_primary_10_1016_j_celrep_2024_113699 crossref_primary_10_1016_j_csbj_2023_11_035 |
| Cites_doi | 10.1038/s41576-019-0125-3 10.1093/bioinformatics/btab246 10.1038/s43588-022-00231-2 10.1093/nsr/nwab028 10.1038/nature11875 10.1016/0377-0427(87)90125-7 10.1093/nar/gky315 10.1038/nbt.4079 10.1038/s41540-022-00233-w 10.1016/0022-2836(75)90213-2 10.1038/s41596-019-0244-5 10.1093/nar/gkab1209 10.1093/bioinformatics/bts565 10.1109/TCBB.2019.2940177 10.1038/s41598-019-43105-w 10.1016/j.compbiomed.2022.106269 10.1093/nsr/nwaa007 10.1038/s41467-019-09517-y 10.1021/acs.jpcb.2c05611 10.1002/smtd.202001094 10.1038/s41587-019-0240-x 10.1002/smtd.202101335 10.1038/s41467-022-30140-x 10.3390/math10050845 10.1093/bib/bbac336 10.1038/s41467-019-10978-4 10.1109/TCBB.2021.3127271 10.1126/sciadv.abk0100 10.2196/jmir.7087 10.1016/j.nantod.2020.100871 10.1126/science.aaj2038 10.1186/s12859-022-04637-7 10.1126/science.1226355 10.1002/anie.201411378 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd Elsevier Ltd Copyright © 2023. Published by Elsevier Ltd. 2023. Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2023. Published by Elsevier Ltd. – notice: 2023. Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2023.107244 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database (Proquest) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep (ProQuest) SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) Medical Database Research Library (Proquest) Biological Science Database (Proquest) Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Research Library Prep PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 107244 |
| ExternalDocumentID | 37453377 10_1016_j_compbiomed_2023_107244 S0010482523007096 1_s2_0_S0010482523007096 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD AFCTW AGCQF AGRNS ALIPV RIG 3V. AACTN AFKWA AJOXV AMFUW M0N AAYXX CITATION PUEGO NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c514t-fe5ddb36bf5c58f5797d77185581d95436bcd0ff55ec527bf2d5bf1a61903e163 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Thu Oct 02 05:34:40 EDT 2025 Tue Oct 07 06:30:33 EDT 2025 Wed Feb 19 02:22:30 EST 2025 Wed Oct 01 04:07:58 EDT 2025 Thu Apr 24 22:52:38 EDT 2025 Sat Jan 18 16:09:15 EST 2025 Wed Jun 18 06:48:28 EDT 2025 Tue Oct 14 19:33:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | DNA storage DNA sequence clustering Dynamically updated hash index Hash conflict detection |
| Language | English |
| License | Copyright © 2023. Published by Elsevier Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-fe5ddb36bf5c58f5797d77185581d95436bcd0ff55ec527bf2d5bf1a61903e163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1503-6009 0000-0002-6067-626X 0000-0003-0509-4870 0000-0002-8800-000X |
| PMID | 37453377 |
| PQID | 2860647958 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2838254487 proquest_journals_2860647958 pubmed_primary_37453377 crossref_citationtrail_10_1016_j_compbiomed_2023_107244 crossref_primary_10_1016_j_compbiomed_2023_107244 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107244 elsevier_clinicalkeyesjournals_1_s2_0_S0010482523007096 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107244 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Meiser, Antkowiak, Koch, Chen, Kohll, Stark, Heckel, Grass (bib15) 2020; 15 Lu, Wu, Liu, Li, Zhang (bib36) 2017; 19 Ulrike von (bib40) 2010 Cao, Shi, Zheng, Zhang (bib8) 2022; 151 Zheng, Cao, Wu, Wang, Zhang (bib1) 2023 Yin, Zheng, Wang, Zhang (bib14) 2022; 19 Mu, Cao, Wang, Wang, Zhang (bib44) 2023 Logan, Fleischmann, Annis, Wehe, Tilly, Woods, Khrapko (bib41) 2022; 23 Romano, Vinh, Bailey, Verspoor (bib35) 2016; 17 Wang, Noor-A-Rahim, Zhang, Gunawan, Guan, Poh (bib37) 2020; 17 Rasool, Qu, Wang, Jiang (bib20) 2022; 10 Liu, Li, Xiong, Gao, Wu (bib28) 2010 Fu, Niu, Zhu, Wu, Li (bib29) 2012; 28 Sun, Cao, Liu, Shi, Zheng, Wang, Zhang (bib4) 2022; 126 Goldman, Bertone, Chen, Dessimoz, LeProust, Sipos, Birney (bib25) 2013; 494 Bornholt, Lopez, Carmean, Ceze, Seelig, Strauss (bib2) 2016 Ping, Chen, Zhou, Huang, Zhu, Zhang, Lee, Lan, Cui, Chen, Zhang, Yang, Xu, Church, Shen (bib24) 2022; 2 Lopez, Chen, Dumas Ang, Yekhanin, Makarychev, Racz, Seelig, Strauss, Ceze (bib42) 2019; 10 El-Shaikh, Welzel, Heider, Seeger (bib38) 2022; 4 Grass, Heckel, Puddu, Paunescu, Stark (bib6) 2015; 54 Zhang, Kong, Wang, Li, Ma, Chen, Liu, Fan, Zhang (bib17) 2020; 33 Rousseeuw, Silhouettes (bib39) 1987; 20 Newman, Stephenson, Willsey, Nguyen, Takahashi, Strauss, Ceze (bib3) 2019; 10 Organick, Nguyen, McAmis, Chen, Kohll, Ang, Grass, Ceze, Strauss (bib10) 2021; 5 Jeong, Park, Kim, No, Jeon, Lee, No, Kim, Park (bib31) 2021; 37 Anavy, Vaknin, Atar, Amit, Yakhini (bib7) 2019; 37 Cao, Zhang, Cui, Zhang (bib9) 2022; 8 Organick, Ang, Chen, Lopez, Yekhanin, Makarychev, Racz, Kamath, Gopalan, Nguyen, Takahashi, Newman, Parker, Rashtchian, Stewart, Gupta, Carlson, Mulligan, Carmean, Seelig, Ceze, Strauss (bib33) 2018; 36 Zhu, Huang, Liao, Zhou, Yan, Chen (bib5) 2022 Ren, Zhang, Liu, Wu, Su, Wang, Chen, Fan, Liu, Zhang (bib23) 2022; 6 Guo, Liang, Hou (bib21) 2022 Ceze, Nivala, Strauss (bib13) 2019; 20 Chen, Han, Zhou, Ge, Wang, Zhang, Zhu, Song, Yuan (bib19) 2021; 8 Lochel, Welzel, Hattab, Hauschild, Heider (bib45) 2022; 50 Church, Gao, Kosuri (bib16) 2012; 337 Xu, Ma, Gao, Dong, Zhao, Liu (bib12) 2021; 7 Sanger, Coulson (bib27) 1975; 94 James, Luczak, Girgis (bib30) 2018; 46 Manning (bib34) 2008 Pan, Tabatabaei, Tabatabaei Yazdi, Hernandez, Schroeder, Milenkovic (bib43) 2022; 13 Dong, Sun, Ping, Ouyang, Qian (bib11) 2020; 7 Erlich, Zielinski (bib26) 2017; 355 Choi, Ryu, Lee, Choi, Lee, Park, Song, Kim, Kim, Park, Kwon (bib18) 2019; 9 Zhang, Lan, Zhang, Xu, Ping, Zhang, Shen (bib22) 2022 Qu, Yan, Wu (bib32) 2022; 23 Logan (10.1016/j.compbiomed.2023.107244_bib41) 2022; 23 Anavy (10.1016/j.compbiomed.2023.107244_bib7) 2019; 37 James (10.1016/j.compbiomed.2023.107244_bib30) 2018; 46 Pan (10.1016/j.compbiomed.2023.107244_bib43) 2022; 13 Lochel (10.1016/j.compbiomed.2023.107244_bib45) 2022; 50 Zheng (10.1016/j.compbiomed.2023.107244_bib1) 2023 Mu (10.1016/j.compbiomed.2023.107244_bib44) 2023 Ceze (10.1016/j.compbiomed.2023.107244_bib13) 2019; 20 Romano (10.1016/j.compbiomed.2023.107244_bib35) 2016; 17 Sun (10.1016/j.compbiomed.2023.107244_bib4) 2022; 126 Church (10.1016/j.compbiomed.2023.107244_bib16) 2012; 337 Qu (10.1016/j.compbiomed.2023.107244_bib32) 2022; 23 Lu (10.1016/j.compbiomed.2023.107244_bib36) 2017; 19 Choi (10.1016/j.compbiomed.2023.107244_bib18) 2019; 9 Ulrike von (10.1016/j.compbiomed.2023.107244_bib40) 2010 Chen (10.1016/j.compbiomed.2023.107244_bib19) 2021; 8 Liu (10.1016/j.compbiomed.2023.107244_bib28) 2010 Zhu (10.1016/j.compbiomed.2023.107244_bib5) 2022 Cao (10.1016/j.compbiomed.2023.107244_bib8) 2022; 151 Xu (10.1016/j.compbiomed.2023.107244_bib12) 2021; 7 Lopez (10.1016/j.compbiomed.2023.107244_bib42) 2019; 10 Dong (10.1016/j.compbiomed.2023.107244_bib11) 2020; 7 Yin (10.1016/j.compbiomed.2023.107244_bib14) 2022; 19 Meiser (10.1016/j.compbiomed.2023.107244_bib15) 2020; 15 Rasool (10.1016/j.compbiomed.2023.107244_bib20) 2022; 10 Jeong (10.1016/j.compbiomed.2023.107244_bib31) 2021; 37 Newman (10.1016/j.compbiomed.2023.107244_bib3) 2019; 10 Fu (10.1016/j.compbiomed.2023.107244_bib29) 2012; 28 Organick (10.1016/j.compbiomed.2023.107244_bib10) 2021; 5 Zhang (10.1016/j.compbiomed.2023.107244_bib22) 2022 Manning (10.1016/j.compbiomed.2023.107244_bib34) 2008 Grass (10.1016/j.compbiomed.2023.107244_bib6) 2015; 54 Cao (10.1016/j.compbiomed.2023.107244_bib9) 2022; 8 Zhang (10.1016/j.compbiomed.2023.107244_bib17) 2020; 33 Wang (10.1016/j.compbiomed.2023.107244_bib37) 2020; 17 Organick (10.1016/j.compbiomed.2023.107244_bib33) 2018; 36 Sanger (10.1016/j.compbiomed.2023.107244_bib27) 1975; 94 Rousseeuw (10.1016/j.compbiomed.2023.107244_bib39) 1987; 20 Bornholt (10.1016/j.compbiomed.2023.107244_bib2) 2016 El-Shaikh (10.1016/j.compbiomed.2023.107244_bib38) 2022; 4 Goldman (10.1016/j.compbiomed.2023.107244_bib25) 2013; 494 Ren (10.1016/j.compbiomed.2023.107244_bib23) 2022; 6 Erlich (10.1016/j.compbiomed.2023.107244_bib26) 2017; 355 Ping (10.1016/j.compbiomed.2023.107244_bib24) 2022; 2 Guo (10.1016/j.compbiomed.2023.107244_bib21) 2022 |
| References_xml | – start-page: 1 year: 2023 end-page: 10 ident: bib1 article-title: High net information density DNA data storage by the MOPE encoding algorithm publication-title: IEEE ACM Trans. Comput. Biol. Bioinf – year: 2022 ident: bib21 article-title: Deep Squared Euclidean Approximation to the Levenshtein Distance for DNA Storage – start-page: 911 year: 2010 end-page: 916 ident: bib28 article-title: Understanding of internal clustering validation measures publication-title: 2010 IEEE International Conference on Data Mining – volume: 7 start-page: 1092 year: 2020 end-page: 1107 ident: bib11 article-title: DNA storage: research landscape and future prospects publication-title: Natl. Sci. Rev. – start-page: 1 year: 2023 ident: bib44 article-title: RBS: a rotational coding based on blocking strategy for DNA storage publication-title: IEEE Trans. Nanobiosci. – volume: 19 start-page: e109 year: 2017 ident: bib36 article-title: Understanding health care social media use from different stakeholder perspectives: a content analysis of an online health community publication-title: J. Med. Internet Res. – volume: 19 start-page: 3384 year: 2022 end-page: 3394 ident: bib14 article-title: Design of constraint coding sets for archive DNA storage publication-title: IEEE ACM Trans. Comput. Biol. Bioinf – volume: 2 start-page: 234 year: 2022 end-page: 242 ident: bib24 article-title: Towards practical and robust DNA-based data archiving using the yin–yang codec system publication-title: Nat. Comput. Sci. – volume: 355 start-page: 950 year: 2017 end-page: 954 ident: bib26 article-title: DNA Fountain enables a robust and efficient storage architecture publication-title: Science – volume: 20 start-page: 456 year: 2019 end-page: 466 ident: bib13 article-title: Molecular digital data storage using DNA publication-title: Nat. Rev. Genet. – volume: 37 start-page: 3136 year: 2021 end-page: 3143 ident: bib31 article-title: Cooperative sequence clustering and decoding for DNA storage system with fountain codes publication-title: Bioinformatics – volume: 126 start-page: 8708 year: 2022 end-page: 8719 ident: bib4 article-title: TripDesign: a DNA triplex design approach based on interaction forces publication-title: J. Phys. Chem. B – volume: 37 start-page: 1229 year: 2019 end-page: 1236 ident: bib7 article-title: Data storage in DNA with fewer synthesis cycles using composite DNA letters publication-title: Nat. Biotechnol. – volume: 9 start-page: 6582 year: 2019 ident: bib18 article-title: High information capacity DNA-based data storage with augmented encoding characters using degenerate bases publication-title: Sci. Rep. – volume: 7 year: 2021 ident: bib12 article-title: Electrochemical DNA synthesis and sequencing on a single electrode with scalability for integrated data storage publication-title: Sci. Adv. – volume: 28 start-page: 3150 year: 2012 end-page: 3152 ident: bib29 article-title: CD-HIT: Accelerated for clustering the next-generation sequencing data publication-title: Bioinformatics – volume: 10 start-page: 845 year: 2022 ident: bib20 article-title: Bio-Constrained codes with neural network for density-based DNA data storage publication-title: Mathematics – volume: 151 year: 2022 ident: bib8 article-title: FMG: An observable DNA storage coding method based on frequency matrix game graphs publication-title: Comput. Biol. Med. – year: 2022 ident: bib22 article-title: SPIDER-WEB Enables Stable, Repairable, and Encryptible Algorithms under Arbitrary Local Biochemical Constraints in DNA-Based Storage – year: 2022 ident: bib5 article-title: Improved Bare Bones Particle Swarm Optimization for DNA Sequence Design – volume: 15 start-page: 86 year: 2020 end-page: 101 ident: bib15 article-title: Reading and writing digital data in DNA publication-title: Nat. Protoc. – volume: 5 year: 2021 ident: bib10 article-title: An empirical comparison of preservation methods for synthetic DNA data storage publication-title: Small Methods – volume: 17 start-page: 4635 year: 2016 end-page: 4666 ident: bib35 article-title: Adjusting for chance clustering comparison measures publication-title: J. Mach. Learn. Res. – volume: 337 start-page: 1628 year: 2012 ident: bib16 article-title: Next-generation digital information storage in DNA publication-title: Science – volume: 50 start-page: e30 year: 2022 ident: bib45 article-title: Fractal construction of constrained code words for DNA storage systems publication-title: Nucleic Acids Res. – volume: 17 start-page: 2176 year: 2020 end-page: 2182 ident: bib37 article-title: Oligo design with single primer binding site for high capacity DNA-based data storage publication-title: IEEE ACM Trans. Comput. Biol. Bioinf – volume: 8 start-page: 23 year: 2022 ident: bib9 article-title: Adaptive coding for DNA storage with high storage density and low coverage publication-title: npj Syst. Biol. Appl. – volume: 10 start-page: 2933 year: 2019 ident: bib42 article-title: DNA assembly for nanopore data storage readout publication-title: Nat. Commun. – volume: 36 start-page: 242 year: 2018 ident: bib33 article-title: Random access in large-scale DNA data storage publication-title: Nat. Biotechnol. – start-page: 637 year: 2016 end-page: 649 ident: bib2 article-title: A DNA-based archival storage system publication-title: Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems – volume: 8 start-page: 1 year: 2021 ident: bib19 article-title: An artificial chromosome for data storage publication-title: Natl. Sci. Rev. – volume: 494 start-page: 77 year: 2013 end-page: 80 ident: bib25 article-title: Towards practical, high-capacity, low-maintenance information storage in synthesized DNA publication-title: Nature – volume: 23 start-page: 95 year: 2022 ident: bib41 article-title: 3GOLD: optimized Levenshtein distance for clustering third-generation sequencing data publication-title: BMC Bioinf. – volume: 94 start-page: 441 year: 1975 end-page: 448 ident: bib27 article-title: A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase publication-title: J. Mol. Biol. – volume: 23 start-page: 1 year: 2022 ident: bib32 article-title: Clover: tree structure-based efficient DNA clustering for DNA-based data storage publication-title: Briefings Bioinf. – year: 2010 ident: bib40 article-title: Clustering Stability: an Overview – start-page: 346 year: 2008 end-page: 367 ident: bib34 publication-title: Introduction to Information Retrieval – volume: 33 year: 2020 ident: bib17 article-title: Information stored in nanoscale: encoding data in a single DNA strand with Base64 publication-title: Nano Today – volume: 6 year: 2022 ident: bib23 article-title: DNA-based concatenated encoding system for high-reliability and high-density data storage publication-title: Small Methods – volume: 13 start-page: 2984 year: 2022 ident: bib43 article-title: Rewritable two-dimensional DNA-based data storage with machine learning reconstruction publication-title: Nat. Commun. – volume: 54 start-page: 2552 year: 2015 end-page: 2555 ident: bib6 article-title: Robust chemical preservation of digital information on DNA in silica with error-correcting codes publication-title: Angew. Chem. Int. Ed. – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: bib39 article-title: A graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. – volume: 46 start-page: e83 year: 2018 ident: bib30 article-title: MeShClust: an intelligent tool for clustering DNA sequences publication-title: Nucleic Acids Res. – volume: 10 year: 2019 ident: bib3 article-title: High density DNA data storage library via dehydration with digital microfluidic retrieval publication-title: Nat. Commun. – volume: 4 start-page: 1 year: 2022 ident: bib38 article-title: High-scale random access on DNA storage systems publication-title: NAR Genom. Bioinf. – volume: 20 start-page: 456 year: 2019 ident: 10.1016/j.compbiomed.2023.107244_bib13 article-title: Molecular digital data storage using DNA publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-019-0125-3 – volume: 37 start-page: 3136 year: 2021 ident: 10.1016/j.compbiomed.2023.107244_bib31 article-title: Cooperative sequence clustering and decoding for DNA storage system with fountain codes publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab246 – start-page: 637 year: 2016 ident: 10.1016/j.compbiomed.2023.107244_bib2 article-title: A DNA-based archival storage system – volume: 2 start-page: 234 year: 2022 ident: 10.1016/j.compbiomed.2023.107244_bib24 article-title: Towards practical and robust DNA-based data archiving using the yin–yang codec system publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-022-00231-2 – volume: 8 start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.107244_bib19 article-title: An artificial chromosome for data storage publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwab028 – volume: 494 start-page: 77 year: 2013 ident: 10.1016/j.compbiomed.2023.107244_bib25 article-title: Towards practical, high-capacity, low-maintenance information storage in synthesized DNA publication-title: Nature doi: 10.1038/nature11875 – volume: 20 start-page: 53 year: 1987 ident: 10.1016/j.compbiomed.2023.107244_bib39 article-title: A graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – start-page: 346 year: 2008 ident: 10.1016/j.compbiomed.2023.107244_bib34 – volume: 17 start-page: 4635 year: 2016 ident: 10.1016/j.compbiomed.2023.107244_bib35 article-title: Adjusting for chance clustering comparison measures publication-title: J. Mach. Learn. Res. – volume: 46 start-page: e83 year: 2018 ident: 10.1016/j.compbiomed.2023.107244_bib30 article-title: MeShClust: an intelligent tool for clustering DNA sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky315 – volume: 36 start-page: 242 year: 2018 ident: 10.1016/j.compbiomed.2023.107244_bib33 article-title: Random access in large-scale DNA data storage publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4079 – volume: 8 start-page: 23 year: 2022 ident: 10.1016/j.compbiomed.2023.107244_bib9 article-title: Adaptive coding for DNA storage with high storage density and low coverage publication-title: npj Syst. Biol. Appl. doi: 10.1038/s41540-022-00233-w – volume: 94 start-page: 441 year: 1975 ident: 10.1016/j.compbiomed.2023.107244_bib27 article-title: A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(75)90213-2 – volume: 15 start-page: 86 year: 2020 ident: 10.1016/j.compbiomed.2023.107244_bib15 article-title: Reading and writing digital data in DNA publication-title: Nat. Protoc. doi: 10.1038/s41596-019-0244-5 – volume: 50 start-page: e30 year: 2022 ident: 10.1016/j.compbiomed.2023.107244_bib45 article-title: Fractal construction of constrained code words for DNA storage systems publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1209 – volume: 28 start-page: 3150 year: 2012 ident: 10.1016/j.compbiomed.2023.107244_bib29 article-title: CD-HIT: Accelerated for clustering the next-generation sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts565 – volume: 17 start-page: 2176 year: 2020 ident: 10.1016/j.compbiomed.2023.107244_bib37 article-title: Oligo design with single primer binding site for high capacity DNA-based data storage publication-title: IEEE ACM Trans. Comput. Biol. Bioinf doi: 10.1109/TCBB.2019.2940177 – volume: 9 start-page: 6582 year: 2019 ident: 10.1016/j.compbiomed.2023.107244_bib18 article-title: High information capacity DNA-based data storage with augmented encoding characters using degenerate bases publication-title: Sci. Rep. doi: 10.1038/s41598-019-43105-w – volume: 151 year: 2022 ident: 10.1016/j.compbiomed.2023.107244_bib8 article-title: FMG: An observable DNA storage coding method based on frequency matrix game graphs publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106269 – volume: 7 start-page: 1092 year: 2020 ident: 10.1016/j.compbiomed.2023.107244_bib11 article-title: DNA storage: research landscape and future prospects publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwaa007 – volume: 10 year: 2019 ident: 10.1016/j.compbiomed.2023.107244_bib3 article-title: High density DNA data storage library via dehydration with digital microfluidic retrieval publication-title: Nat. Commun. doi: 10.1038/s41467-019-09517-y – volume: 126 start-page: 8708 year: 2022 ident: 10.1016/j.compbiomed.2023.107244_bib4 article-title: TripDesign: a DNA triplex design approach based on interaction forces publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.2c05611 – volume: 5 year: 2021 ident: 10.1016/j.compbiomed.2023.107244_bib10 article-title: An empirical comparison of preservation methods for synthetic DNA data storage publication-title: Small Methods doi: 10.1002/smtd.202001094 – volume: 37 start-page: 1229 year: 2019 ident: 10.1016/j.compbiomed.2023.107244_bib7 article-title: Data storage in DNA with fewer synthesis cycles using composite DNA letters publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0240-x – volume: 6 year: 2022 ident: 10.1016/j.compbiomed.2023.107244_bib23 article-title: DNA-based concatenated encoding system for high-reliability and high-density data storage publication-title: Small Methods doi: 10.1002/smtd.202101335 – volume: 13 start-page: 2984 year: 2022 ident: 10.1016/j.compbiomed.2023.107244_bib43 article-title: Rewritable two-dimensional DNA-based data storage with machine learning reconstruction publication-title: Nat. Commun. doi: 10.1038/s41467-022-30140-x – volume: 10 start-page: 845 year: 2022 ident: 10.1016/j.compbiomed.2023.107244_bib20 article-title: Bio-Constrained codes with neural network for density-based DNA data storage publication-title: Mathematics doi: 10.3390/math10050845 – volume: 23 start-page: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107244_bib32 article-title: Clover: tree structure-based efficient DNA clustering for DNA-based data storage publication-title: Briefings Bioinf. doi: 10.1093/bib/bbac336 – start-page: 1 year: 2023 ident: 10.1016/j.compbiomed.2023.107244_bib44 article-title: RBS: a rotational coding based on blocking strategy for DNA storage publication-title: IEEE Trans. Nanobiosci. – start-page: 911 year: 2010 ident: 10.1016/j.compbiomed.2023.107244_bib28 article-title: Understanding of internal clustering validation measures – volume: 10 start-page: 2933 year: 2019 ident: 10.1016/j.compbiomed.2023.107244_bib42 article-title: DNA assembly for nanopore data storage readout publication-title: Nat. Commun. doi: 10.1038/s41467-019-10978-4 – volume: 19 start-page: 3384 year: 2022 ident: 10.1016/j.compbiomed.2023.107244_bib14 article-title: Design of constraint coding sets for archive DNA storage publication-title: IEEE ACM Trans. Comput. Biol. Bioinf doi: 10.1109/TCBB.2021.3127271 – volume: 7 year: 2021 ident: 10.1016/j.compbiomed.2023.107244_bib12 article-title: Electrochemical DNA synthesis and sequencing on a single electrode with scalability for integrated data storage publication-title: Sci. Adv. doi: 10.1126/sciadv.abk0100 – volume: 19 start-page: e109 year: 2017 ident: 10.1016/j.compbiomed.2023.107244_bib36 article-title: Understanding health care social media use from different stakeholder perspectives: a content analysis of an online health community publication-title: J. Med. Internet Res. doi: 10.2196/jmir.7087 – volume: 33 year: 2020 ident: 10.1016/j.compbiomed.2023.107244_bib17 article-title: Information stored in nanoscale: encoding data in a single DNA strand with Base64 publication-title: Nano Today doi: 10.1016/j.nantod.2020.100871 – volume: 355 start-page: 950 year: 2017 ident: 10.1016/j.compbiomed.2023.107244_bib26 article-title: DNA Fountain enables a robust and efficient storage architecture publication-title: Science doi: 10.1126/science.aaj2038 – volume: 23 start-page: 95 year: 2022 ident: 10.1016/j.compbiomed.2023.107244_bib41 article-title: 3GOLD: optimized Levenshtein distance for clustering third-generation sequencing data publication-title: BMC Bioinf. doi: 10.1186/s12859-022-04637-7 – year: 2022 ident: 10.1016/j.compbiomed.2023.107244_bib5 – start-page: 1 year: 2023 ident: 10.1016/j.compbiomed.2023.107244_bib1 article-title: High net information density DNA data storage by the MOPE encoding algorithm publication-title: IEEE ACM Trans. Comput. Biol. Bioinf – year: 2022 ident: 10.1016/j.compbiomed.2023.107244_bib21 – volume: 337 start-page: 1628 year: 2012 ident: 10.1016/j.compbiomed.2023.107244_bib16 article-title: Next-generation digital information storage in DNA publication-title: Science doi: 10.1126/science.1226355 – volume: 4 start-page: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107244_bib38 article-title: High-scale random access on DNA storage systems publication-title: NAR Genom. Bioinf. – volume: 54 start-page: 2552 year: 2015 ident: 10.1016/j.compbiomed.2023.107244_bib6 article-title: Robust chemical preservation of digital information on DNA in silica with error-correcting codes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411378 – year: 2022 ident: 10.1016/j.compbiomed.2023.107244_bib22 – year: 2010 ident: 10.1016/j.compbiomed.2023.107244_bib40 |
| SSID | ssj0004030 |
| Score | 2.383431 |
| Snippet | The exponential growth of global data leads to the problem of insufficient data storage capacity. DNA storage can be an ideal storage method due to its high... AbstractThe exponential growth of global data leads to the problem of insufficient data storage capacity. DNA storage can be an ideal storage method due to its... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 107244 |
| SubjectTerms | Algorithms Clustering Data storage DNA sequence clustering DNA storage Dynamically updated hash index Energy consumption Euclidean space Gene sequencing Hash conflict detection Internal Medicine Methods Neural networks Nucleotide sequence Other Reading Redundancy Reliability analysis Storage capacity |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5BkSZepm0M6AaTkXgN5Icd15smxFaqgkSFGJV4s5LYFpqqttD2Yf_97mInfRlTX-Nc017Pd9_Fd_cBnMauV-SGVxHH6OITFAT1PFIyJUpIJ2zdJHY7yodjfvMoHrdg1PTCUFll4xNrR21mFb0jP097OfVFKtG7mD9HxBpFp6sNhUYRqBXM93rE2DbspDQZqwM7P65Gd_frTsk4800p6H04JkehtsdXfFERt296PyNScbwsMfi9FrBeA6R1YBq8g7cBUbJLbwLvYctOP8Cb23BmvgeD_nh4_ZX1PfV8MZn8Yas55fmGPRWLJ1bPS2TVZEUjEzCQMU8qzRDNsv7oklH5JDqdjzAeXD38HEaBPSGqEAQtI2eFMWWWl05UApUulTQSI5EQCFGV4LhSmdg5IWwlUlm61IjSJQVmVHFmEabtQ2c6m9pDYCoznOqrEbsYjnixUFliXFnmZZLkyuVdkI2KdBVGixPDxUQ3NWS_9Vq5mpSrvXK7kLSScz9eYwMZ1fwLumkfRYenMQZsICv_JWsXYecudKIXqY71r3pwEVoIpmjoFRX-xm-tZAAnHnRs-Nyjxlx0-6i1SXfhpF3G7U1nNsXUzlZ0T0Y5PKaVXTjwZtYqKpMcwbqUn_7_4Z9hl76JL4w7gs7yZWWPEUktyy9he_wFT0YaOg priority: 102 providerName: ProQuest |
| Title | DUHI: Dynamically updated hash index clustering method for DNA storage |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523007096 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523007096 https://dx.doi.org/10.1016/j.compbiomed.2023.107244 https://www.ncbi.nlm.nih.gov/pubmed/37453377 https://www.proquest.com/docview/2860647958 https://www.proquest.com/docview/2838254487 |
| Volume | 164 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5CCqGX0iZ9qE3DBnJVoseu1tue3DiOkxJTSg2-LZJ2lyQYx9T2IZf89s5oVwolDRh6kdBjkBjNznyDvpkBOEpcrywMr2OO0cUnKAjqeaxkRiMhnbBNkdjVuBhN-OVUTLfgtK2FIVpl8P3epzfeOpw5Cdo8WdzcUI0vphKY4CCIRrtV1Habc0lTDI4fHmkePMl9GQr6G7o7sHk8x4to277M_ZjGiONpieHuuRD1HARtQtHwNbwKGJL1_Wu-gS0734Wdq_CXfA-Gg8no4gsb-GHz5Wx2z9YLyuwNuy6X16zpkMjq2ZqaJGDoYn6MNEP8ygbjPiPCJLqZtzAZnv06HcVhXkJcI-xZxc4KY6q8qJyoBapZKmkkxh4hEJQqwfFKbRLnhLC1yGTlMiMql5aYQyW5RWD2Drbnd3P7AZjKDSdGNaIVwxEhlipPjauqokrTQrkiAtmqSNehmTjNtJjpljV2qx-Vq0m52is3grSTXPiGGhvIqPYr6LZgFF2cRq-_gaz8l6xdhrW61KleZjrRT-wpgq-d5F8mueFz91tz0d2jsl5Bxb1K9CI47C7jgqa_NOXc3q3pnpyydkwkI3jvzaxTVC45wnMpP_7Xq32Cl3TkmXL7sL36vbafEVqtqoNm7eBWTiVue8PzA3jRv_g-GuP-29n4x88_GEAjrA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTQJeEN8UBhgJHgP5sOMaNKFBV7VsrRCs0t68JLY1oaottBXaP8ffxl3spC8M9WWvSS4fF_vud_bd_QBex65b5IZXEUfv4gMUBPU8UjIlSkgnbF0kNhrngwn_cibOduBPUwtDaZWNTawNtZlXtEb-Lu3mVBepRPfj4mdErFG0u9pQaBSBWsEc1C3GQmHHsb38jSHc8mDYw__9Jk37R6efB1FgGYgqBAuryFlhTJnlpROVwJeTShqJFlsIhHJKcDxTmdg5IWwlUlm61IjSJQVGHnFmEc7gfW_AHs-4wuBv79PR-Ou3TWVmnPkiGLR2HIOxkEvkM8woadwX2b8lEnM8LNHZXuUgrwLAtSPs34U7AcGyQz_k7sGOnd2Hm6OwR_8A-r3JYPie9TzVfTGdXrL1gtYVDLsolhes7s_IqumaWjSg42SexJohema98SGjdE00cg9hci16fAS7s_nMPgGmMsMpnxuxkuGITwuVJcaVZV4mSa5c3gHZqEhXoZU5MWpMdZOz9kNvlKtJudortwNJK7nw7Ty2kFHNX9BNuSoaWI0-ZwtZ-S9ZuwyWYqkTvUx1rL_XjZJwhGBIiFZY4Td-aCUDGPIgZ8vn7jfDRbeP2kyhDrxqT6M5oT2iYmbna7omozUDDGM78NgPs1ZRmeQYHEj59P83fwm3BqejE30yHB8_g9v0Vj4pbx92V7_W9jmiuFX5IkwVBufXPTv_AqOlV4o |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIU28IL5XtoGR4DEsieO4HprQRKhaxiokqNQ3k8S2JlS1ZWmF9q_tr-MuTtIXhvqy1ySXj8v57nf273wAb0PXz1OTlEGC0cUnKAjqk0DJmFpCOmHrIrGLcTqcJF-mYroDN20tDNEqW59YO2qzKGmO_Djup1QXqUT_2DW0iG_Z4OPyd0AdpGiltW2n4U3k3F7_wfStOh1l-K_fxfHg849Pw6DpMBCUCBRWgbPCmIKnhROlwBeTShqJ3loIhHFKJHimNKFzQthSxLJwsRGFi3LMOkJuEcrgfe_Bfcm5IjqhnMpNTWbIffkL-rkE07CGReS5ZUQX9-X176l9OR6WGGZvC423Qd86BA4ewcMGu7Izb2yPYcfOn8DeRbM6_xQG2WQ4OmGZb3Kfz2bXbL2kGQXDLvPqktU7M7JytqbNGTBkMt--miFuZtn4jBFRE93bM5jciRafw-58Mbf7wBQ3CTG5ESWZBJFprnhkXFGkRRSlyqU9kK2KdNlsYk69NGa6Zav90hvlalKu9srtQdRJLv1GHlvIqPYv6LZQFV2rxmizhaz8l6ytGh9R6UhXsQ7193qLJLQQTAbR_yr8xg-dZAODPLzZ8rmHrbno7lGbwdODN91pdCS0OpTP7WJN13CaLcAEtgcvvJl1iuIywbRAypf_v_lr2MMxqb-OxucH8IBeyrPxDmF3dbW2RwjfVsWrepww-HnXA_MvOJ9VJA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DUHI%3A+Dynamically+updated+hash+index+clustering+method+for+DNA+storage&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Wang%2C+Penghao&rft.au=Cao%2C+Ben&rft.au=Ma%2C+Tao&rft.au=Wang%2C+Bin&rft.date=2023-09-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=164&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107244&rft.externalDocID=S0010482523007096 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482523X00110%2Fcov150h.gif |