A 65nm/0.448 mW EEG processor with parallel architecture SVM and lifting wavelet transform for high-performance and low-power epilepsy detection
In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lif...
Saved in:
| Published in | Computers in biology and medicine Vol. 144; p. 105366 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.05.2022
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2022.105366 |
Cover
| Abstract | In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices.
•This study implements a low-power feature extraction circuit based on the CSD coding technique and Db4 LWT algorithm.•The parallel architecture of the classification unit is carried out using the serial-to-parallel conversion principle.•Under the TSMC 65nm process, a 0.448mW low-power EEG epilepsy detection processor is implemented. |
|---|---|
| AbstractList | In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices. In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices. •This study implements a low-power feature extraction circuit based on the CSD coding technique and Db4 LWT algorithm.•The parallel architecture of the classification unit is carried out using the serial-to-parallel conversion principle.•Under the TSMC 65nm process, a 0.448mW low-power EEG epilepsy detection processor is implemented. In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices. AbstractIn recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices. In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices.In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices. |
| ArticleNumber | 105366 |
| Author | Gu, Minghong Wang, Pengjun Cao, Haojie Chen, Huiling Wen, Liang Ai, Guangpeng Wen, Yongzhong Zhang, Yuejun |
| Author_xml | – sequence: 1 givenname: Yongzhong surname: Wen fullname: Wen, Yongzhong email: wyz2011082029@163.com organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China – sequence: 2 givenname: Yuejun surname: Zhang fullname: Zhang, Yuejun email: zhangyuejun@nbu.edu.cn organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China – sequence: 3 givenname: Liang surname: Wen fullname: Wen, Liang email: lwen13@fudan.edu.cn organization: Department of Electronic Technology, China Coast Guard Academy, Ningbo, Zhejiang, 315801, China – sequence: 4 givenname: Haojie surname: Cao fullname: Cao, Haojie email: 1005401368@qq.com organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China – sequence: 5 givenname: Guangpeng surname: Ai fullname: Ai, Guangpeng email: 494337617@qq.com organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China – sequence: 6 givenname: Minghong surname: Gu fullname: Gu, Minghong email: 1309173893@qq.com organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China – sequence: 7 givenname: Pengjun surname: Wang fullname: Wang, Pengjun email: wangpengjun@wzu.edu.cn organization: Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China – sequence: 8 givenname: Huiling surname: Chen fullname: Chen, Huiling email: chenhuiling.jlu@gmail.com organization: Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35305503$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstuEzEUtVARTQO_gCyxYTOp7Rk7mU1FqUJBKmJRHkvLY99pHDz2YE8a5TP4A76FL8OjtCBFQsrCr6tzj-89556hEx88IIQpmVFCxfl6pkPXNzZ0YGaMMJbDvBTiCZrQxbwu8qM6QRNCKCmqBeOn6CylNSGkIiV5hk5LXhLOSTlBPy-x4L47J7OqWvz-1X3Dy-U17mPQkFKIeGuHFe5VVM6BwyrqlR1AD5sI-PbrR6y8wc62g_V3eKvuwcGAh6h8akPscN7wyt6tih7iGFBewz4lbIs-bCFi6K2DPu2wgZHXBv8cPW2VS_Di4ZyiL--Wn6_eFzefrj9cXd4UmtNqKFrFm5bQSjRGmVYzA5qXMNesbaiqiYaqZVAawQSnZVWzuWJambqGJkNaU5ZT9HrPm5v9sYE0yM4mDc4pD2GTJBMVqWshslZT9OoAug6b6HN1I0rMKckro14-oDZN9kX20XYq7uSj2BlwsQfoGFKK0EptBzX2nCWzTlIiR3flWv5zV47uyr27mWBxQPD4xxGpb_epkCW9txBl0hayH8bGrLs0wR5DcnFAop31Viv3HXaQ_opCZWKSyNtx_sbxYyzf-GIU8s3_CY6r4Q8xVPIR |
| CitedBy_id | crossref_primary_10_1109_JSEN_2024_3381789 crossref_primary_10_1016_j_compbiomed_2024_109225 crossref_primary_10_1016_j_compbiomed_2024_108993 crossref_primary_10_3390_s24217080 crossref_primary_10_1016_j_bspc_2022_104055 crossref_primary_10_3390_s25010033 crossref_primary_10_1515_bmt_2022_0395 crossref_primary_10_1016_j_compbiomed_2023_106623 crossref_primary_10_1016_j_compbiomed_2022_106420 crossref_primary_10_3389_fnins_2024_1524513 crossref_primary_10_1016_j_compbiomed_2022_106196 crossref_primary_10_1109_TBCAS_2024_3450896 crossref_primary_10_1109_JIOT_2024_3395496 crossref_primary_10_1109_TCSI_2023_3313133 |
| Cites_doi | 10.1103/PhysRevE.67.021912 10.1109/TNSRE.2019.2947426 10.1016/j.cmpb.2016.09.008 10.1049/ip-smt:19982328 10.1161/01.CIR.101.23.e215 10.1109/TNSRE.2020.2966290 10.1016/j.compbiomed.2020.104033 10.1109/TITB.2009.2017939 10.1142/S0219519417400127 10.1016/j.compbiomed.2021.104684 10.1007/s10916-017-0800-x 10.1016/j.eswa.2007.02.009 10.1016/j.cmpb.2016.08.013 10.1016/j.bspc.2018.04.007 10.1016/j.compbiomed.2021.104299 10.1007/s11265-019-01456-7 10.1109/JBHI.2016.2553368 10.1109/JSSC.2013.2253226 10.1016/j.compbiomed.2019.02.005 10.1049/iet-spr.2018.5258 10.1109/TC.2021.3049543 10.1016/j.compbiomed.2017.01.011 10.1016/j.jneumeth.2012.07.003 10.1051/matecconf/201821003016 10.1007/BF01140588 10.1049/iet-smt.2017.0117 10.1016/j.compbiomed.2017.09.017 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. 2022. Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. – notice: 2022. Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2022.105366 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Proquest Nursing & Allied Health Source Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Research Library Prep MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 105366 |
| ExternalDocumentID | 35305503 10_1016_j_compbiomed_2022_105366 S0010482522001585 1_s2_0_S0010482522001585 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c514t-fa5bf0146bdadfc2dec53e7c2fb1a90ce4f2e3d6265134927a2cad99ebc2ffd33 |
| IEDL.DBID | BENPR |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sun Sep 28 10:09:19 EDT 2025 Tue Oct 07 06:51:43 EDT 2025 Wed Feb 19 02:27:03 EST 2025 Thu Apr 24 22:54:01 EDT 2025 Wed Oct 01 05:19:44 EDT 2025 Fri Feb 23 02:39:35 EST 2024 Tue Feb 25 20:03:25 EST 2025 Tue Oct 14 19:33:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lifting wavelet transform Support vector machine EEG epilepsy Detection CSD code |
| Language | English |
| License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-fa5bf0146bdadfc2dec53e7c2fb1a90ce4f2e3d6265134927a2cad99ebc2ffd33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 35305503 |
| PQID | 2646710671 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2640996635 proquest_journals_2646710671 pubmed_primary_35305503 crossref_citationtrail_10_1016_j_compbiomed_2022_105366 crossref_primary_10_1016_j_compbiomed_2022_105366 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105366 elsevier_clinicalkeyesjournals_1_s2_0_S0010482522001585 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105366 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Bedeeuzzaman, Farooq, Khan (bib4) 2011 Khan, Khan, Kumar (bib28) 2021; 136 Tarassenko, Khan, Holt (bib2) 1998; 145 Huang, Han, Li (bib7) 2016 Chatterjee, Pratiher, Bose (bib14) 2017; 11 Zhang, Qu (bib17) 2020; 67 Daoud, Abdelhameed, Bayoumi (bib36) 2018 Hussein, Wang, Ward (bib23) 2016 Zhang, Altaf, Yoo (bib30) 2016; 20 Song, Crowcroft, Zhang (bib11) 2012; 210 Meddah, Zairi, Bessekri (bib38) 2020 Schiecke, Wacker, Piper, Benninger (bib15) 2014; 61 Wang, Li, Feng (bib21) 2017 Huang, Chang, Liou (bib32) 2018 Xu, Zheng, Zhang (bib39) 2019; 27 Gajendra, Keiichi (bib8) 2018; 44 Agarwal, Wang, Srinivasan (bib29) 2018; 210 Tsou, Liao, Lee (bib37) 2019 Marni, Hosseini, Hopp (bib31) 2018 Tzallas, Tsipouras, Fotiadis (bib5) 2009; 13 Lee, Verma (bib35) 2013; 48 Hagiwara, Sudarshan, Leong, Vijayananthan (bib9) 2017; 17 Hassan, Siuly, Zhang (bib25) 2016; 137 Goldberger, Amaral, Glass (bib34) 2000; 101 Sriraam, Raghu (bib19) 2017; 41 Polat, Guenes (bib3) 2008; 34 Mormann, Andrzejak, Kreuz (bib16) 2003; 67 Zhang, Shen, Su (bib18) 2022; 71 Juarez-Guerra, Alarcon-Aquino, Gomez-Gil (bib27) 2020; 92 Bose, Pratiher, Chatterjee (bib13) 2019; 13 Fan, Gaspard, Legros (bib42) 2019; 107 Geng, Zhou, Liu (bib6) 2020; 28 Birjandtalab, Pouyan, Cogan (bib41) 2017; 82 Rai, Bajaj, Kumar (bib22) 2015 (bib1) 2010 Ta, Li (bib20) 2018; 8 Acharya, Oh, Hagiwara (bib26) 2018; 100 Lasemidis, Sackellares, Zaveri (bib12) 1990; 2 Rout, Sahani, Dash (bib10) 2021; 132 Hassan, Subasi (bib24) 2016; 136 Yuan, Xu, Zou (bib33) 2014 Liu, Lin, Jia (bib40) 2020; 126 Huang (10.1016/j.compbiomed.2022.105366_bib32) 2018 Hassan (10.1016/j.compbiomed.2022.105366_bib24) 2016; 136 Song (10.1016/j.compbiomed.2022.105366_bib11) 2012; 210 Wang (10.1016/j.compbiomed.2022.105366_bib21) 2017 Goldberger (10.1016/j.compbiomed.2022.105366_bib34) 2000; 101 Liu (10.1016/j.compbiomed.2022.105366_bib40) 2020; 126 Rai (10.1016/j.compbiomed.2022.105366_bib22) 2015 Fan (10.1016/j.compbiomed.2022.105366_bib42) 2019; 107 Bedeeuzzaman (10.1016/j.compbiomed.2022.105366_bib4) 2011 Marni (10.1016/j.compbiomed.2022.105366_bib31) 2018 Tzallas (10.1016/j.compbiomed.2022.105366_bib5) 2009; 13 Khan (10.1016/j.compbiomed.2022.105366_bib28) 2021; 136 Yuan (10.1016/j.compbiomed.2022.105366_bib33) 2014 Tarassenko (10.1016/j.compbiomed.2022.105366_bib2) 1998; 145 Agarwal (10.1016/j.compbiomed.2022.105366_bib29) 2018; 210 Xu (10.1016/j.compbiomed.2022.105366_bib39) 2019; 27 Tsou (10.1016/j.compbiomed.2022.105366_bib37) 2019 Chatterjee (10.1016/j.compbiomed.2022.105366_bib14) 2017; 11 Gajendra (10.1016/j.compbiomed.2022.105366_bib8) 2018; 44 Mormann (10.1016/j.compbiomed.2022.105366_bib16) 2003; 67 Juarez-Guerra (10.1016/j.compbiomed.2022.105366_bib27) 2020; 92 Sriraam (10.1016/j.compbiomed.2022.105366_bib19) 2017; 41 Huang (10.1016/j.compbiomed.2022.105366_bib7) 2016 Hagiwara (10.1016/j.compbiomed.2022.105366_bib9) 2017; 17 Ta (10.1016/j.compbiomed.2022.105366_bib20) 2018; 8 Rout (10.1016/j.compbiomed.2022.105366_bib10) 2021; 132 Zhang (10.1016/j.compbiomed.2022.105366_bib18) 2022; 71 Lee (10.1016/j.compbiomed.2022.105366_bib35) 2013; 48 Polat (10.1016/j.compbiomed.2022.105366_bib3) 2008; 34 Zhang (10.1016/j.compbiomed.2022.105366_bib30) 2016; 20 Zhang (10.1016/j.compbiomed.2022.105366_bib17) 2020; 67 Hassan (10.1016/j.compbiomed.2022.105366_bib25) 2016; 137 Lasemidis (10.1016/j.compbiomed.2022.105366_bib12) 1990; 2 Acharya (10.1016/j.compbiomed.2022.105366_bib26) 2018; 100 Schiecke (10.1016/j.compbiomed.2022.105366_bib15) 2014; 61 Meddah (10.1016/j.compbiomed.2022.105366_bib38) 2020 Hussein (10.1016/j.compbiomed.2022.105366_bib23) 2016 Daoud (10.1016/j.compbiomed.2022.105366_bib36) 2018 Birjandtalab (10.1016/j.compbiomed.2022.105366_bib41) 2017; 82 Bose (10.1016/j.compbiomed.2022.105366_bib13) 2019; 13 Geng (10.1016/j.compbiomed.2022.105366_bib6) 2020; 28 |
| References_xml | – volume: 17 year: 2017 ident: bib9 article-title: Application of entropies for automated diagnosis of abnormalities in ultrasound images: a review publication-title: J. Mech. Med. Biol. – volume: 13 start-page: 703 year: 2009 end-page: 710 ident: bib5 article-title: Epileptic seizure detection in EEGs using time-frequency analysis publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 67 year: 2003 ident: bib16 article-title: Automated detection of a preseizure state based on a decrease in synchronization in intracranial electroencephalogram recordings from epilepsy patients publication-title: Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. – volume: 82 start-page: 49 year: 2017 end-page: 58 ident: bib41 article-title: Automated seizure detection using limited-channel EEG and non-linear dimension reduction publication-title: Comput. Biol. Med. – start-page: 1 year: 2014 end-page: 3 ident: bib33 article-title: A Configurable SVM Hardware Accelerator for Embedded Systems – volume: 210 year: 2018 ident: bib29 article-title: Epileptic seizure prediction over EEG data using hybrid CNN-SVM model with edge computing services publication-title: MATEC Web Conf. – start-page: 1 year: 2018 end-page: 4 ident: bib31 article-title: A real-time wearable FPGA-based seizure detection processor using MCMC publication-title: IEEE Int. Symp. Circ. Syst. – volume: 8 start-page: 33 year: 2018 end-page: 37 ident: bib20 article-title: Classification of epileptic electroencephalograms signal based on improved extreme learning machine publication-title: J. Med. Imaging Health Inf. – volume: 100 start-page: 270 year: 2018 end-page: 278 ident: bib26 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput. Biol. Med. – volume: 136 start-page: 65 year: 2016 end-page: 77 ident: bib24 article-title: Automatic identification of epileptic seizures from EEG signals using linear programming boosting publication-title: Comput. Methods Progr. Biomed. – volume: 67 start-page: 7025 year: 2020 end-page: 7033 ident: bib17 article-title: Physical unclonable function-based key sharing via machine learning for IoT security publication-title: IEEE Trans. Ind. Electron. – volume: 27 start-page: 2274 year: 2019 end-page: 2283 ident: bib39 article-title: An energy efficient adaboost cascade method for long-term seizure detection in portable neurostimulators publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 412 year: 2015 end-page: 416 ident: bib22 article-title: Novel feature for identification of focal EEG signals with k-Means and fuzzy c-means algorithms publication-title: IEEE Int. Conf. Digit. Signal Process. – volume: 34 start-page: 2039 year: 2008 end-page: 2048 ident: bib3 article-title: Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals publication-title: Expert Syst. Appl. – volume: 71 start-page: 323 year: 2022 end-page: 336 ident: bib18 article-title: Voltage over-scaling-based lightweight authentication for IoT security publication-title: IEEE Trans. Comput. – volume: 41 start-page: 160 year: 2017 ident: bib19 article-title: Classification of focal and non focal epileptic seizures using multi-features and SVM classifier publication-title: J. Med. Syst. – volume: 11 start-page: 1014 year: 2017 end-page: 1021 ident: bib14 article-title: Multifractal detrended fluctuation analysis based novel feature extraction technique for automated detection of focal and non-focal electroencephalogram signals publication-title: IET Sci. Meas. Technol. – volume: 137 start-page: 247 year: 2016 end-page: 259 ident: bib25 article-title: Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating publication-title: Comput. Methods Progr. Biomed. – volume: 126 year: 2020 ident: bib40 article-title: Representation based on ordinal patterns for seizure detection in EEG signals publication-title: Comput. Biol. Med. – volume: 107 start-page: 30 year: 2019 end-page: 38 ident: bib42 article-title: Automated epileptic seizure detection based on break of excitation/inhibition balance publication-title: Comput. Biol. Med. – start-page: 1 year: 2017 end-page: 10 ident: bib21 article-title: Automatic detection of epilepsy and seizure using multiclass sparse extreme learning machine classification publication-title: Comput. Math. Methods Med. – volume: 20 start-page: 996 year: 2016 end-page: 1007 ident: bib30 article-title: Design and implementation of an on-chip patient-specific closed-loop seizure onset and termination detection system publication-title: IEEE J. Biomed. Health Inf. – start-page: 1171 year: 2016 end-page: 1175 ident: bib23 article-title: Ll-regularization Based EEG Feature Learning for Detecting Epileptic Seizure – volume: 92 start-page: 187 year: 2020 end-page: 211 ident: bib27 article-title: A new wavelet-based neural network for classification of epileptic-related states using EEG publication-title: J. Signal Process. Syst. – start-page: 163 year: 2019 end-page: 166 ident: bib37 article-title: Epilepsy identification system with neural network hardware implementation publication-title: IEEE Int. Conf. Artif. Intell. Circuits Syst. – volume: 28 start-page: 573 year: 2020 end-page: 580 ident: bib6 article-title: Epileptic seizure detection based on stockwell transform and bidirectional long short-term memory publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 101 start-page: 215 year: 2000 end-page: 220 ident: bib34 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signal publication-title: Circulation – volume: 2 start-page: 187 year: 1990 end-page: 201 ident: bib12 article-title: Phase space topography and the lyapunov exponent of electrocorticograms in partial seizures publication-title: Brain Topogr. – start-page: 316 year: 2011 end-page: 319 ident: bib4 article-title: A DCT Based Approach to Epileptic Seizure Detection – start-page: 141 year: 2020 end-page: 146 ident: bib38 article-title: FPGA Implementation of Epileptic Seizure Detection Based on DWT, PCA and Support Vector Machine – start-page: 344 year: 2016 end-page: 347 ident: bib7 article-title: A low-cost and energy-efficient EEG processor for continuous seizure detection using wavelet transform and adaboost publication-title: IEEE Biomed. Circ. Syst. Conf. – volume: 136 year: 2021 ident: bib28 article-title: HVD-LSTM based recognition of epileptic seizures and normal human activity publication-title: Comput. Biol. Med. – start-page: 407 year: 2018 end-page: 410 ident: bib36 article-title: FPGA implementation of high accuracy automatic epileptic seizure detection system publication-title: IEEE 61st Int. Midwest Symp. Circuits Syst. – volume: 13 start-page: 157 year: 2019 end-page: 164 ident: bib13 article-title: Detection of epileptic seizure employing a novel set of features extracted from multifractal spectrum of electroencephalogram signals publication-title: IET Signal Process. – volume: 145 start-page: 270 year: 1998 end-page: 278 ident: bib2 article-title: Identification of inter-ictal spikes in the EEG using neural network analysis publication-title: IEEE Proc. Sci. Meas. Technol. – volume: 44 start-page: 168 year: 2018 end-page: 180 ident: bib8 article-title: Classification of ictal and interictal EEG using RMS frequency, dominant frequency, root mean instantaneous frequency square and their parameters ratio publication-title: Biomed. Signal Process Control – volume: 48 start-page: 1625 year: 2013 end-page: 1637 ident: bib35 article-title: A low-power processor with configurable embedded machine-learning accelerators for high-order and adaptive analysis of medical-sensor signals publication-title: IEEE J. Solid State Circ. – volume: 210 start-page: 132 year: 2012 end-page: 146 ident: bib11 article-title: Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine publication-title: J. Neurosci. Methods – year: 2010 ident: bib1 article-title: Key facts – start-page: 259 year: 2018 end-page: 260 ident: bib32 article-title: A 1.9mW SVM Processor with On-Chip Active Learning for Epileptic Seizure Control – volume: 132 year: 2021 ident: bib10 article-title: Multifuse multilayer multikernel RVFLN+ of process modes decomposition and approximate entropy data from iEEG/sEEG signals for epileptic seizure recognition publication-title: Comput. Biol. Med. – volume: 61 start-page: 1798 year: 2014 end-page: 1808 ident: bib15 article-title: Time-variant, frequency-selective, linear and nonlinear analysis of heart rate variability in children with temporal lobe epilepsy publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2022.105366_bib21 article-title: Automatic detection of epilepsy and seizure using multiclass sparse extreme learning machine classification publication-title: Comput. Math. Methods Med. – volume: 67 issue: 2 year: 2003 ident: 10.1016/j.compbiomed.2022.105366_bib16 article-title: Automated detection of a preseizure state based on a decrease in synchronization in intracranial electroencephalogram recordings from epilepsy patients publication-title: Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.67.021912 – volume: 27 start-page: 2274 issue: 11 year: 2019 ident: 10.1016/j.compbiomed.2022.105366_bib39 article-title: An energy efficient adaboost cascade method for long-term seizure detection in portable neurostimulators publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2947426 – start-page: 407 year: 2018 ident: 10.1016/j.compbiomed.2022.105366_bib36 article-title: FPGA implementation of high accuracy automatic epileptic seizure detection system publication-title: IEEE 61st Int. Midwest Symp. Circuits Syst. – start-page: 412 year: 2015 ident: 10.1016/j.compbiomed.2022.105366_bib22 article-title: Novel feature for identification of focal EEG signals with k-Means and fuzzy c-means algorithms publication-title: IEEE Int. Conf. Digit. Signal Process. – volume: 137 start-page: 247 year: 2016 ident: 10.1016/j.compbiomed.2022.105366_bib25 article-title: Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2016.09.008 – start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2022.105366_bib31 article-title: A real-time wearable FPGA-based seizure detection processor using MCMC publication-title: IEEE Int. Symp. Circ. Syst. – volume: 145 start-page: 270 issue: 6 year: 1998 ident: 10.1016/j.compbiomed.2022.105366_bib2 article-title: Identification of inter-ictal spikes in the EEG using neural network analysis publication-title: IEEE Proc. Sci. Meas. Technol. doi: 10.1049/ip-smt:19982328 – volume: 101 start-page: 215 issue: 23 year: 2000 ident: 10.1016/j.compbiomed.2022.105366_bib34 article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signal publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 8 start-page: 33 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2022.105366_bib20 article-title: Classification of epileptic electroencephalograms signal based on improved extreme learning machine publication-title: J. Med. Imaging Health Inf. – volume: 28 start-page: 573 issue: 3 year: 2020 ident: 10.1016/j.compbiomed.2022.105366_bib6 article-title: Epileptic seizure detection based on stockwell transform and bidirectional long short-term memory publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2966290 – start-page: 141 year: 2020 ident: 10.1016/j.compbiomed.2022.105366_bib38 – volume: 126 year: 2020 ident: 10.1016/j.compbiomed.2022.105366_bib40 article-title: Representation based on ordinal patterns for seizure detection in EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.104033 – volume: 13 start-page: 703 issue: 5 year: 2009 ident: 10.1016/j.compbiomed.2022.105366_bib5 article-title: Epileptic seizure detection in EEGs using time-frequency analysis publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2017939 – volume: 17 issue: 7 year: 2017 ident: 10.1016/j.compbiomed.2022.105366_bib9 article-title: Application of entropies for automated diagnosis of abnormalities in ultrasound images: a review publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519417400127 – volume: 136 year: 2021 ident: 10.1016/j.compbiomed.2022.105366_bib28 article-title: HVD-LSTM based recognition of epileptic seizures and normal human activity publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104684 – volume: 61 start-page: 1798 issue: 6 year: 2014 ident: 10.1016/j.compbiomed.2022.105366_bib15 article-title: Time-variant, frequency-selective, linear and nonlinear analysis of heart rate variability in children with temporal lobe epilepsy publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 41 start-page: 160 issue: 10 year: 2017 ident: 10.1016/j.compbiomed.2022.105366_bib19 article-title: Classification of focal and non focal epileptic seizures using multi-features and SVM classifier publication-title: J. Med. Syst. doi: 10.1007/s10916-017-0800-x – volume: 34 start-page: 2039 issue: 3 year: 2008 ident: 10.1016/j.compbiomed.2022.105366_bib3 article-title: Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.02.009 – volume: 136 start-page: 65 year: 2016 ident: 10.1016/j.compbiomed.2022.105366_bib24 article-title: Automatic identification of epileptic seizures from EEG signals using linear programming boosting publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2016.08.013 – volume: 44 start-page: 168 year: 2018 ident: 10.1016/j.compbiomed.2022.105366_bib8 article-title: Classification of ictal and interictal EEG using RMS frequency, dominant frequency, root mean instantaneous frequency square and their parameters ratio publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2018.04.007 – volume: 132 year: 2021 ident: 10.1016/j.compbiomed.2022.105366_bib10 article-title: Multifuse multilayer multikernel RVFLN+ of process modes decomposition and approximate entropy data from iEEG/sEEG signals for epileptic seizure recognition publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104299 – start-page: 344 year: 2016 ident: 10.1016/j.compbiomed.2022.105366_bib7 article-title: A low-cost and energy-efficient EEG processor for continuous seizure detection using wavelet transform and adaboost publication-title: IEEE Biomed. Circ. Syst. Conf. – start-page: 316 year: 2011 ident: 10.1016/j.compbiomed.2022.105366_bib4 – volume: 92 start-page: 187 issue: 2 year: 2020 ident: 10.1016/j.compbiomed.2022.105366_bib27 article-title: A new wavelet-based neural network for classification of epileptic-related states using EEG publication-title: J. Signal Process. Syst. doi: 10.1007/s11265-019-01456-7 – volume: 20 start-page: 996 issue: 4 year: 2016 ident: 10.1016/j.compbiomed.2022.105366_bib30 article-title: Design and implementation of an on-chip patient-specific closed-loop seizure onset and termination detection system publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2016.2553368 – volume: 48 start-page: 1625 issue: 7 year: 2013 ident: 10.1016/j.compbiomed.2022.105366_bib35 article-title: A low-power processor with configurable embedded machine-learning accelerators for high-order and adaptive analysis of medical-sensor signals publication-title: IEEE J. Solid State Circ. doi: 10.1109/JSSC.2013.2253226 – volume: 107 start-page: 30 year: 2019 ident: 10.1016/j.compbiomed.2022.105366_bib42 article-title: Automated epileptic seizure detection based on break of excitation/inhibition balance publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.02.005 – volume: 13 start-page: 157 issue: 2 year: 2019 ident: 10.1016/j.compbiomed.2022.105366_bib13 article-title: Detection of epileptic seizure employing a novel set of features extracted from multifractal spectrum of electroencephalogram signals publication-title: IET Signal Process. doi: 10.1049/iet-spr.2018.5258 – volume: 71 start-page: 323 issue: 2 year: 2022 ident: 10.1016/j.compbiomed.2022.105366_bib18 article-title: Voltage over-scaling-based lightweight authentication for IoT security publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2021.3049543 – start-page: 1 year: 2014 ident: 10.1016/j.compbiomed.2022.105366_bib33 – start-page: 1171 year: 2016 ident: 10.1016/j.compbiomed.2022.105366_bib23 – volume: 82 start-page: 49 year: 2017 ident: 10.1016/j.compbiomed.2022.105366_bib41 article-title: Automated seizure detection using limited-channel EEG and non-linear dimension reduction publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.01.011 – volume: 210 start-page: 132 issue: 2 year: 2012 ident: 10.1016/j.compbiomed.2022.105366_bib11 article-title: Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2012.07.003 – volume: 210 year: 2018 ident: 10.1016/j.compbiomed.2022.105366_bib29 article-title: Epileptic seizure prediction over EEG data using hybrid CNN-SVM model with edge computing services publication-title: MATEC Web Conf. doi: 10.1051/matecconf/201821003016 – volume: 2 start-page: 187 issue: 3 year: 1990 ident: 10.1016/j.compbiomed.2022.105366_bib12 article-title: Phase space topography and the lyapunov exponent of electrocorticograms in partial seizures publication-title: Brain Topogr. doi: 10.1007/BF01140588 – volume: 67 start-page: 7025 issue: 6 year: 2020 ident: 10.1016/j.compbiomed.2022.105366_bib17 article-title: Physical unclonable function-based key sharing via machine learning for IoT security publication-title: IEEE Trans. Ind. Electron. – start-page: 163 year: 2019 ident: 10.1016/j.compbiomed.2022.105366_bib37 article-title: Epilepsy identification system with neural network hardware implementation publication-title: IEEE Int. Conf. Artif. Intell. Circuits Syst. – start-page: 259 year: 2018 ident: 10.1016/j.compbiomed.2022.105366_bib32 – volume: 11 start-page: 1014 issue: 8 year: 2017 ident: 10.1016/j.compbiomed.2022.105366_bib14 article-title: Multifractal detrended fluctuation analysis based novel feature extraction technique for automated detection of focal and non-focal electroencephalogram signals publication-title: IET Sci. Meas. Technol. doi: 10.1049/iet-smt.2017.0117 – volume: 100 start-page: 270 year: 2018 ident: 10.1016/j.compbiomed.2022.105366_bib26 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.017 |
| SSID | ssj0004030 |
| Score | 2.3945003 |
| Snippet | In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are... AbstractIn recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders,... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 105366 |
| SubjectTerms | Accuracy Algorithms Circuits Classification Convulsions & seizures CSD code EEG EEG epilepsy Detection Electroencephalography Electroencephalography - methods Epilepsy Epilepsy - diagnosis Feature extraction Field programmable gate arrays Fourier transforms Hoisting Humans Internal Medicine Latency Lifting Lifting wavelet transform Machine learning Microprocessors Neural networks Other Portable equipment Power consumption Power management Regularization methods Signal processing Signal Processing, Computer-Assisted Support Vector Machine Support vector machines Wavelet Analysis Wavelet transforms Wearable technology |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYhh5JLaZv-bJoGFXp11pas1ZqeQtgkBDaXJG1uwvqDLY7XZB1CL32HvkGfpU_WGUv2tjSFhV4MtjWWkOTRjPTNN4R8KLSwWmQuYazwSe6lT3RH-mmsBv_ZysLifsf8YnJ2nZ_fiJstctzHwiCsMur-oNM7bR2fjGNvjpvFAmN8wZUAB4chLAisXoxgzyVmMTj8toZ55CkPYSigb7B0RPMEjBfCtkOYO3iKjGHSW97xJT66RP3LBO2WopNn5Gm0IelRaOZzsuXqF-TJPJ6S75LvR3Qi6ttxeghe0c8ft5_pbHZKmxASsLyjuPdKkfO7qlxFfz9KoJef5rSsLa0WHvHQ9KHExBQtbXv7lsKFIsdx0qxDDoLI8iFpMOcadQ2ommb1lVrXdkiv-iW5PpldHZ8lMfVCYsCCahNfCu2RV0bb0nrDrDOCO2mY11lZpMblnjluwRsSHb-hLJkpbVE4DUW85fwV2a6XtXtDaB447TJj4cvCimkhUy3tFDxL4fzUjIjse1uZyEuO6TEq1QPQvqj1OCkcJxXGaUSyQbIJ3BwbyBT9gKo-9hS0pYIFZANZ-ZisW8XffqUytWIqVX9NzRH5OEj-Mbs3rHe_n3lqqAoM2YlE_r9sRN4Pr0E34IFPWbvlfVcmRX-WQwNehxk7dBQXyPWW8r3_atpbsoN3AQG6T7bbu3v3Dqy0Vh90v-EvkSo8_w priority: 102 providerName: Elsevier |
| Title | A 65nm/0.448 mW EEG processor with parallel architecture SVM and lifting wavelet transform for high-performance and low-power epilepsy detection |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522001585 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522001585 https://dx.doi.org/10.1016/j.compbiomed.2022.105366 https://www.ncbi.nlm.nih.gov/pubmed/35305503 https://www.proquest.com/docview/2646710671 https://www.proquest.com/docview/2640996635 |
| Volume | 144 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2VkK8IL5XGJWReM2WOHHdaEKooHYF1AoxBn2z4i8J1CXZmmnihb-BP5m7OEl5GKgvfknOtvxxvrN_9ztCXqWKG8UjGzCWuiBxwgWqJv3URoH_bERq8L5jsRzNz5MPK77aI8s2FgZhla1OrBW1KTTekR_DwT0SyHcWvSkvA8waha-rbQqNrEmtYF7XFGP7pM-QGatH-m-ny0-ft5GSYeyDUkD7JOAcNdgej_hCELcPege_kTFMgRvX7Im3Hlj_Mkjrg2l2n9xrLEo68UvgAdmz-UNyZ9G8mT8ivyd0xPOL4_AIfCR68Y1Op6e09PEBxRXFi1iKBODrtV3Tv98V6NnXBc1yQ9ffHYKj6U2GWSoqWrXGLoWCIuFxUG7jD7xIcROUmICN2hL0Trn5SY2tathX_picz6Zf3s2DJg9DoMGcqgKXceWQZEaZzDjNjNU8tkIzp6IsDbVNHLOxAdeI12SHImM6M2lqFfziTBw_Ib28yO0BoYknuIu0gZq54eNUhEqYMbiZ3LqxHhDRDrbUDUk55spYyxaN9kNup0niNEk_TQMSdZKlJ-rYQSZt51O2gaigOiWcJjvIittk7abRARsZyQ2ToTyrKZBgrTGEr4F3NiAnnWRj5njzZcd2D9uFJ7umtptjQF52n0FR4OtPltviuv4nROc2hg489Qu2G6iYI_FbGD_7f-XPyV3sicd7HpJedXVtX4BNVqkh2T_6FUEpVgLK8ex0SPqT9x_ny2GzBf8Ag_07fA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqVgIuiH8WChgJjqGJE282QhUqsGVLuytEW-jNxH8SKE1CN9Wqb8ET8WzMxE6WQ0F76SWXZJLIY8_MZ898Q8iLTHIteWQCxjIbJDa1gWxJP5WWgJ91mmnc75jOhpPj5OMJP1kjv7taGEyr7Gxia6h1pXCPfAsc9zBFvrPoTf0zwK5ReLratdDIfWsFvd1SjPnCjn1zsQAIN9_eew_6fsnY7vjo3STwXQYCBcFCE9icS4sUKlLn2iqmjeKxSRWzMsqzUJnEMhNrCPx5S-WX5kzlOsuMhEesxg1RcAEbCdwD8Lfxdjz79HlZmRnGrggGrF0CYMznErkMM0wad0X2gFMZw5a7ccvWeKmD_FcA3DrC3Vvkpo9g6Y6bcrfJminvkGtTf0Z_l_zaoUNenm6FrwCT0dOvdDz-QGtXj1CdUdz4pUg4XhSmoH-fY9DDL1Oal5oW3y0mY9NFjl0xGtp0wTWFC0WC5aBe1js4kWoR1NjwjZoa7Fw9v6DaNG2aWXmPHF-JRu6T9bIqzUNCE0eoFykNb-aaj7I0lKkeAazlxo7UgKTdYAvlSdGxN0chuuy3H2KpJoFqEk5NAxL1krUjBllBJuv0KbrCVzDVArzXCrLpZbJm7m3OXERizkQoDlvKJZhrDNPlAA0OyOte0odVLlxa8bub3cQT_aeWi3FAnve3wTDhaVNemuq8fSZEMB3DDzxwE7YfqJgj0VwYP_r_y5-R65Oj6YE42JvtPyY38K9crukmWW_Ozs0TiAcb-dQvOkq-XfU6_wMf-Hcf |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIlVcEP8sLWAkOIZNnHi9EUKooru0lK2QSmFvbvwngdIkbVKt-hY8D0_HTJzscihoL73kkkwSecbjGfubbwh5lSpuFI9swFjqgsQJF6iW9FMbBfmzEanB_Y7Z0Wj_JPk05_MN8ruvhUFYZe8TW0dtSo175ENYuEcC-c6ioetgEV_2pu-r8wA7SOFJa99Ow5vIob1aQPpWvzvYA12_Zmw6-fphP-g6DAQaAoUmcBlXDulTlMmM08xYzWMrNHMqytJQ28QxGxsI-nlL4ycypjOTplbBI87gZii4_1sijlOEE4q5WNVkhrEvfwE_l0Aa1qGIPLYM4eK-vB4yVMaw2W7c8jReuzT-K_Rtl8DpXXKni13prje2e2TDFvfJ1qw7nX9Afu3SES_OhuEbyMbo2Xc6mXykla9EKC8obvlSpBrPc5vTv08w6PG3Gc0KQ_MfDmHYdJFhP4yGNn1YTeFCkVo5qFaVDl6kXAQVtnqjtgIPV9VX1NimBZgVD8nJjejjEdksysI-ITTxVHqRNvBmbvg4FaESZgwJLbdurAdE9IMtdUeHjl05ctnj3n7KlZokqkl6NQ1ItJSsPCXIGjJpr0_Zl7yCk5awbq0hK66TtXXnbWoZyZrJUB63ZEtgawyBcpAHDsjbpWQXUPlAac3v7vSGJ5efWk3DAXm5vA0uCc-ZssKWl-0zIabRMfzAY2-wy4GKOVLMhfHT_7_8BdmC2S0_HxwdbpPb-FMeZLpDNpuLS_sMAsFGPW9nHCWnNz3F_wDsDHS5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+65nm%2F0.448+mW+EEG+processor+with+parallel+architecture+SVM+and+lifting+wavelet+transform+for+high-performance+and+low-power+epilepsy+detection&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Wen%2C+Yongzhong&rft.au=Zhang%2C+Yuejun&rft.au=Liang%2C+Wen&rft.au=Cao%2C+Haojie&rft.date=2022-05-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=144&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105366&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |