A 65nm/0.448 mW EEG processor with parallel architecture SVM and lifting wavelet transform for high-performance and low-power epilepsy detection

In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lif...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 144; p. 105366
Main Authors Wen, Yongzhong, Zhang, Yuejun, Wen, Liang, Cao, Haojie, Ai, Guangpeng, Gu, Minghong, Wang, Pengjun, Chen, Huiling
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.05.2022
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2022.105366

Cover

Abstract In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices. •This study implements a low-power feature extraction circuit based on the CSD coding technique and Db4 LWT algorithm.•The parallel architecture of the classification unit is carried out using the serial-to-parallel conversion principle.•Under the TSMC 65nm process, a 0.448mW low-power EEG epilepsy detection processor is implemented.
AbstractList In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices.
In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices. •This study implements a low-power feature extraction circuit based on the CSD coding technique and Db4 LWT algorithm.•The parallel architecture of the classification unit is carried out using the serial-to-parallel conversion principle.•Under the TSMC 65nm process, a 0.448mW low-power EEG epilepsy detection processor is implemented.
In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices.
AbstractIn recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices.
In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices.In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices.
ArticleNumber 105366
Author Gu, Minghong
Wang, Pengjun
Cao, Haojie
Chen, Huiling
Wen, Liang
Ai, Guangpeng
Wen, Yongzhong
Zhang, Yuejun
Author_xml – sequence: 1
  givenname: Yongzhong
  surname: Wen
  fullname: Wen, Yongzhong
  email: wyz2011082029@163.com
  organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China
– sequence: 2
  givenname: Yuejun
  surname: Zhang
  fullname: Zhang, Yuejun
  email: zhangyuejun@nbu.edu.cn
  organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China
– sequence: 3
  givenname: Liang
  surname: Wen
  fullname: Wen, Liang
  email: lwen13@fudan.edu.cn
  organization: Department of Electronic Technology, China Coast Guard Academy, Ningbo, Zhejiang, 315801, China
– sequence: 4
  givenname: Haojie
  surname: Cao
  fullname: Cao, Haojie
  email: 1005401368@qq.com
  organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China
– sequence: 5
  givenname: Guangpeng
  surname: Ai
  fullname: Ai, Guangpeng
  email: 494337617@qq.com
  organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China
– sequence: 6
  givenname: Minghong
  surname: Gu
  fullname: Gu, Minghong
  email: 1309173893@qq.com
  organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, China
– sequence: 7
  givenname: Pengjun
  surname: Wang
  fullname: Wang, Pengjun
  email: wangpengjun@wzu.edu.cn
  organization: Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
– sequence: 8
  givenname: Huiling
  surname: Chen
  fullname: Chen, Huiling
  email: chenhuiling.jlu@gmail.com
  organization: Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35305503$$D View this record in MEDLINE/PubMed
BookMark eNqNUstuEzEUtVARTQO_gCyxYTOp7Rk7mU1FqUJBKmJRHkvLY99pHDz2YE8a5TP4A76FL8OjtCBFQsrCr6tzj-89556hEx88IIQpmVFCxfl6pkPXNzZ0YGaMMJbDvBTiCZrQxbwu8qM6QRNCKCmqBeOn6CylNSGkIiV5hk5LXhLOSTlBPy-x4L47J7OqWvz-1X3Dy-U17mPQkFKIeGuHFe5VVM6BwyrqlR1AD5sI-PbrR6y8wc62g_V3eKvuwcGAh6h8akPscN7wyt6tih7iGFBewz4lbIs-bCFi6K2DPu2wgZHXBv8cPW2VS_Di4ZyiL--Wn6_eFzefrj9cXd4UmtNqKFrFm5bQSjRGmVYzA5qXMNesbaiqiYaqZVAawQSnZVWzuWJambqGJkNaU5ZT9HrPm5v9sYE0yM4mDc4pD2GTJBMVqWshslZT9OoAug6b6HN1I0rMKckro14-oDZN9kX20XYq7uSj2BlwsQfoGFKK0EptBzX2nCWzTlIiR3flWv5zV47uyr27mWBxQPD4xxGpb_epkCW9txBl0hayH8bGrLs0wR5DcnFAop31Viv3HXaQ_opCZWKSyNtx_sbxYyzf-GIU8s3_CY6r4Q8xVPIR
CitedBy_id crossref_primary_10_1109_JSEN_2024_3381789
crossref_primary_10_1016_j_compbiomed_2024_109225
crossref_primary_10_1016_j_compbiomed_2024_108993
crossref_primary_10_3390_s24217080
crossref_primary_10_1016_j_bspc_2022_104055
crossref_primary_10_3390_s25010033
crossref_primary_10_1515_bmt_2022_0395
crossref_primary_10_1016_j_compbiomed_2023_106623
crossref_primary_10_1016_j_compbiomed_2022_106420
crossref_primary_10_3389_fnins_2024_1524513
crossref_primary_10_1016_j_compbiomed_2022_106196
crossref_primary_10_1109_TBCAS_2024_3450896
crossref_primary_10_1109_JIOT_2024_3395496
crossref_primary_10_1109_TCSI_2023_3313133
Cites_doi 10.1103/PhysRevE.67.021912
10.1109/TNSRE.2019.2947426
10.1016/j.cmpb.2016.09.008
10.1049/ip-smt:19982328
10.1161/01.CIR.101.23.e215
10.1109/TNSRE.2020.2966290
10.1016/j.compbiomed.2020.104033
10.1109/TITB.2009.2017939
10.1142/S0219519417400127
10.1016/j.compbiomed.2021.104684
10.1007/s10916-017-0800-x
10.1016/j.eswa.2007.02.009
10.1016/j.cmpb.2016.08.013
10.1016/j.bspc.2018.04.007
10.1016/j.compbiomed.2021.104299
10.1007/s11265-019-01456-7
10.1109/JBHI.2016.2553368
10.1109/JSSC.2013.2253226
10.1016/j.compbiomed.2019.02.005
10.1049/iet-spr.2018.5258
10.1109/TC.2021.3049543
10.1016/j.compbiomed.2017.01.011
10.1016/j.jneumeth.2012.07.003
10.1051/matecconf/201821003016
10.1007/BF01140588
10.1049/iet-smt.2017.0117
10.1016/j.compbiomed.2017.09.017
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
2022. Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: 2022. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2022.105366
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Proquest Nursing & Allied Health Source
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep


MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 105366
ExternalDocumentID 35305503
10_1016_j_compbiomed_2022_105366
S0010482522001585
1_s2_0_S0010482522001585
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-fa5bf0146bdadfc2dec53e7c2fb1a90ce4f2e3d6265134927a2cad99ebc2ffd33
IEDL.DBID BENPR
ISSN 0010-4825
1879-0534
IngestDate Sun Sep 28 10:09:19 EDT 2025
Tue Oct 07 06:51:43 EDT 2025
Wed Feb 19 02:27:03 EST 2025
Thu Apr 24 22:54:01 EDT 2025
Wed Oct 01 05:19:44 EDT 2025
Fri Feb 23 02:39:35 EST 2024
Tue Feb 25 20:03:25 EST 2025
Tue Oct 14 19:33:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Lifting wavelet transform
Support vector machine
EEG epilepsy Detection
CSD code
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-fa5bf0146bdadfc2dec53e7c2fb1a90ce4f2e3d6265134927a2cad99ebc2ffd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 35305503
PQID 2646710671
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2640996635
proquest_journals_2646710671
pubmed_primary_35305503
crossref_citationtrail_10_1016_j_compbiomed_2022_105366
crossref_primary_10_1016_j_compbiomed_2022_105366
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105366
elsevier_clinicalkeyesjournals_1_s2_0_S0010482522001585
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105366
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Bedeeuzzaman, Farooq, Khan (bib4) 2011
Khan, Khan, Kumar (bib28) 2021; 136
Tarassenko, Khan, Holt (bib2) 1998; 145
Huang, Han, Li (bib7) 2016
Chatterjee, Pratiher, Bose (bib14) 2017; 11
Zhang, Qu (bib17) 2020; 67
Daoud, Abdelhameed, Bayoumi (bib36) 2018
Hussein, Wang, Ward (bib23) 2016
Zhang, Altaf, Yoo (bib30) 2016; 20
Song, Crowcroft, Zhang (bib11) 2012; 210
Meddah, Zairi, Bessekri (bib38) 2020
Schiecke, Wacker, Piper, Benninger (bib15) 2014; 61
Wang, Li, Feng (bib21) 2017
Huang, Chang, Liou (bib32) 2018
Xu, Zheng, Zhang (bib39) 2019; 27
Gajendra, Keiichi (bib8) 2018; 44
Agarwal, Wang, Srinivasan (bib29) 2018; 210
Tsou, Liao, Lee (bib37) 2019
Marni, Hosseini, Hopp (bib31) 2018
Tzallas, Tsipouras, Fotiadis (bib5) 2009; 13
Lee, Verma (bib35) 2013; 48
Hagiwara, Sudarshan, Leong, Vijayananthan (bib9) 2017; 17
Hassan, Siuly, Zhang (bib25) 2016; 137
Goldberger, Amaral, Glass (bib34) 2000; 101
Sriraam, Raghu (bib19) 2017; 41
Polat, Guenes (bib3) 2008; 34
Mormann, Andrzejak, Kreuz (bib16) 2003; 67
Zhang, Shen, Su (bib18) 2022; 71
Juarez-Guerra, Alarcon-Aquino, Gomez-Gil (bib27) 2020; 92
Bose, Pratiher, Chatterjee (bib13) 2019; 13
Fan, Gaspard, Legros (bib42) 2019; 107
Geng, Zhou, Liu (bib6) 2020; 28
Birjandtalab, Pouyan, Cogan (bib41) 2017; 82
Rai, Bajaj, Kumar (bib22) 2015
(bib1) 2010
Ta, Li (bib20) 2018; 8
Acharya, Oh, Hagiwara (bib26) 2018; 100
Lasemidis, Sackellares, Zaveri (bib12) 1990; 2
Rout, Sahani, Dash (bib10) 2021; 132
Hassan, Subasi (bib24) 2016; 136
Yuan, Xu, Zou (bib33) 2014
Liu, Lin, Jia (bib40) 2020; 126
Huang (10.1016/j.compbiomed.2022.105366_bib32) 2018
Hassan (10.1016/j.compbiomed.2022.105366_bib24) 2016; 136
Song (10.1016/j.compbiomed.2022.105366_bib11) 2012; 210
Wang (10.1016/j.compbiomed.2022.105366_bib21) 2017
Goldberger (10.1016/j.compbiomed.2022.105366_bib34) 2000; 101
Liu (10.1016/j.compbiomed.2022.105366_bib40) 2020; 126
Rai (10.1016/j.compbiomed.2022.105366_bib22) 2015
Fan (10.1016/j.compbiomed.2022.105366_bib42) 2019; 107
Bedeeuzzaman (10.1016/j.compbiomed.2022.105366_bib4) 2011
Marni (10.1016/j.compbiomed.2022.105366_bib31) 2018
Tzallas (10.1016/j.compbiomed.2022.105366_bib5) 2009; 13
Khan (10.1016/j.compbiomed.2022.105366_bib28) 2021; 136
Yuan (10.1016/j.compbiomed.2022.105366_bib33) 2014
Tarassenko (10.1016/j.compbiomed.2022.105366_bib2) 1998; 145
Agarwal (10.1016/j.compbiomed.2022.105366_bib29) 2018; 210
Xu (10.1016/j.compbiomed.2022.105366_bib39) 2019; 27
Tsou (10.1016/j.compbiomed.2022.105366_bib37) 2019
Chatterjee (10.1016/j.compbiomed.2022.105366_bib14) 2017; 11
Gajendra (10.1016/j.compbiomed.2022.105366_bib8) 2018; 44
Mormann (10.1016/j.compbiomed.2022.105366_bib16) 2003; 67
Juarez-Guerra (10.1016/j.compbiomed.2022.105366_bib27) 2020; 92
Sriraam (10.1016/j.compbiomed.2022.105366_bib19) 2017; 41
Huang (10.1016/j.compbiomed.2022.105366_bib7) 2016
Hagiwara (10.1016/j.compbiomed.2022.105366_bib9) 2017; 17
Ta (10.1016/j.compbiomed.2022.105366_bib20) 2018; 8
Rout (10.1016/j.compbiomed.2022.105366_bib10) 2021; 132
Zhang (10.1016/j.compbiomed.2022.105366_bib18) 2022; 71
Lee (10.1016/j.compbiomed.2022.105366_bib35) 2013; 48
Polat (10.1016/j.compbiomed.2022.105366_bib3) 2008; 34
Zhang (10.1016/j.compbiomed.2022.105366_bib30) 2016; 20
Zhang (10.1016/j.compbiomed.2022.105366_bib17) 2020; 67
Hassan (10.1016/j.compbiomed.2022.105366_bib25) 2016; 137
Lasemidis (10.1016/j.compbiomed.2022.105366_bib12) 1990; 2
Acharya (10.1016/j.compbiomed.2022.105366_bib26) 2018; 100
Schiecke (10.1016/j.compbiomed.2022.105366_bib15) 2014; 61
Meddah (10.1016/j.compbiomed.2022.105366_bib38) 2020
Hussein (10.1016/j.compbiomed.2022.105366_bib23) 2016
Daoud (10.1016/j.compbiomed.2022.105366_bib36) 2018
Birjandtalab (10.1016/j.compbiomed.2022.105366_bib41) 2017; 82
Bose (10.1016/j.compbiomed.2022.105366_bib13) 2019; 13
Geng (10.1016/j.compbiomed.2022.105366_bib6) 2020; 28
References_xml – volume: 17
  year: 2017
  ident: bib9
  article-title: Application of entropies for automated diagnosis of abnormalities in ultrasound images: a review
  publication-title: J. Mech. Med. Biol.
– volume: 13
  start-page: 703
  year: 2009
  end-page: 710
  ident: bib5
  article-title: Epileptic seizure detection in EEGs using time-frequency analysis
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 67
  year: 2003
  ident: bib16
  article-title: Automated detection of a preseizure state based on a decrease in synchronization in intracranial electroencephalogram recordings from epilepsy patients
  publication-title: Phys. Rev. E - Stat. Nonlinear Soft Matter Phys.
– volume: 82
  start-page: 49
  year: 2017
  end-page: 58
  ident: bib41
  article-title: Automated seizure detection using limited-channel EEG and non-linear dimension reduction
  publication-title: Comput. Biol. Med.
– start-page: 1
  year: 2014
  end-page: 3
  ident: bib33
  article-title: A Configurable SVM Hardware Accelerator for Embedded Systems
– volume: 210
  year: 2018
  ident: bib29
  article-title: Epileptic seizure prediction over EEG data using hybrid CNN-SVM model with edge computing services
  publication-title: MATEC Web Conf.
– start-page: 1
  year: 2018
  end-page: 4
  ident: bib31
  article-title: A real-time wearable FPGA-based seizure detection processor using MCMC
  publication-title: IEEE Int. Symp. Circ. Syst.
– volume: 8
  start-page: 33
  year: 2018
  end-page: 37
  ident: bib20
  article-title: Classification of epileptic electroencephalograms signal based on improved extreme learning machine
  publication-title: J. Med. Imaging Health Inf.
– volume: 100
  start-page: 270
  year: 2018
  end-page: 278
  ident: bib26
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput. Biol. Med.
– volume: 136
  start-page: 65
  year: 2016
  end-page: 77
  ident: bib24
  article-title: Automatic identification of epileptic seizures from EEG signals using linear programming boosting
  publication-title: Comput. Methods Progr. Biomed.
– volume: 67
  start-page: 7025
  year: 2020
  end-page: 7033
  ident: bib17
  article-title: Physical unclonable function-based key sharing via machine learning for IoT security
  publication-title: IEEE Trans. Ind. Electron.
– volume: 27
  start-page: 2274
  year: 2019
  end-page: 2283
  ident: bib39
  article-title: An energy efficient adaboost cascade method for long-term seizure detection in portable neurostimulators
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 412
  year: 2015
  end-page: 416
  ident: bib22
  article-title: Novel feature for identification of focal EEG signals with k-Means and fuzzy c-means algorithms
  publication-title: IEEE Int. Conf. Digit. Signal Process.
– volume: 34
  start-page: 2039
  year: 2008
  end-page: 2048
  ident: bib3
  article-title: Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals
  publication-title: Expert Syst. Appl.
– volume: 71
  start-page: 323
  year: 2022
  end-page: 336
  ident: bib18
  article-title: Voltage over-scaling-based lightweight authentication for IoT security
  publication-title: IEEE Trans. Comput.
– volume: 41
  start-page: 160
  year: 2017
  ident: bib19
  article-title: Classification of focal and non focal epileptic seizures using multi-features and SVM classifier
  publication-title: J. Med. Syst.
– volume: 11
  start-page: 1014
  year: 2017
  end-page: 1021
  ident: bib14
  article-title: Multifractal detrended fluctuation analysis based novel feature extraction technique for automated detection of focal and non-focal electroencephalogram signals
  publication-title: IET Sci. Meas. Technol.
– volume: 137
  start-page: 247
  year: 2016
  end-page: 259
  ident: bib25
  article-title: Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating
  publication-title: Comput. Methods Progr. Biomed.
– volume: 126
  year: 2020
  ident: bib40
  article-title: Representation based on ordinal patterns for seizure detection in EEG signals
  publication-title: Comput. Biol. Med.
– volume: 107
  start-page: 30
  year: 2019
  end-page: 38
  ident: bib42
  article-title: Automated epileptic seizure detection based on break of excitation/inhibition balance
  publication-title: Comput. Biol. Med.
– start-page: 1
  year: 2017
  end-page: 10
  ident: bib21
  article-title: Automatic detection of epilepsy and seizure using multiclass sparse extreme learning machine classification
  publication-title: Comput. Math. Methods Med.
– volume: 20
  start-page: 996
  year: 2016
  end-page: 1007
  ident: bib30
  article-title: Design and implementation of an on-chip patient-specific closed-loop seizure onset and termination detection system
  publication-title: IEEE J. Biomed. Health Inf.
– start-page: 1171
  year: 2016
  end-page: 1175
  ident: bib23
  article-title: Ll-regularization Based EEG Feature Learning for Detecting Epileptic Seizure
– volume: 92
  start-page: 187
  year: 2020
  end-page: 211
  ident: bib27
  article-title: A new wavelet-based neural network for classification of epileptic-related states using EEG
  publication-title: J. Signal Process. Syst.
– start-page: 163
  year: 2019
  end-page: 166
  ident: bib37
  article-title: Epilepsy identification system with neural network hardware implementation
  publication-title: IEEE Int. Conf. Artif. Intell. Circuits Syst.
– volume: 28
  start-page: 573
  year: 2020
  end-page: 580
  ident: bib6
  article-title: Epileptic seizure detection based on stockwell transform and bidirectional long short-term memory
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 101
  start-page: 215
  year: 2000
  end-page: 220
  ident: bib34
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signal
  publication-title: Circulation
– volume: 2
  start-page: 187
  year: 1990
  end-page: 201
  ident: bib12
  article-title: Phase space topography and the lyapunov exponent of electrocorticograms in partial seizures
  publication-title: Brain Topogr.
– start-page: 316
  year: 2011
  end-page: 319
  ident: bib4
  article-title: A DCT Based Approach to Epileptic Seizure Detection
– start-page: 141
  year: 2020
  end-page: 146
  ident: bib38
  article-title: FPGA Implementation of Epileptic Seizure Detection Based on DWT, PCA and Support Vector Machine
– start-page: 344
  year: 2016
  end-page: 347
  ident: bib7
  article-title: A low-cost and energy-efficient EEG processor for continuous seizure detection using wavelet transform and adaboost
  publication-title: IEEE Biomed. Circ. Syst. Conf.
– volume: 136
  year: 2021
  ident: bib28
  article-title: HVD-LSTM based recognition of epileptic seizures and normal human activity
  publication-title: Comput. Biol. Med.
– start-page: 407
  year: 2018
  end-page: 410
  ident: bib36
  article-title: FPGA implementation of high accuracy automatic epileptic seizure detection system
  publication-title: IEEE 61st Int. Midwest Symp. Circuits Syst.
– volume: 13
  start-page: 157
  year: 2019
  end-page: 164
  ident: bib13
  article-title: Detection of epileptic seizure employing a novel set of features extracted from multifractal spectrum of electroencephalogram signals
  publication-title: IET Signal Process.
– volume: 145
  start-page: 270
  year: 1998
  end-page: 278
  ident: bib2
  article-title: Identification of inter-ictal spikes in the EEG using neural network analysis
  publication-title: IEEE Proc. Sci. Meas. Technol.
– volume: 44
  start-page: 168
  year: 2018
  end-page: 180
  ident: bib8
  article-title: Classification of ictal and interictal EEG using RMS frequency, dominant frequency, root mean instantaneous frequency square and their parameters ratio
  publication-title: Biomed. Signal Process Control
– volume: 48
  start-page: 1625
  year: 2013
  end-page: 1637
  ident: bib35
  article-title: A low-power processor with configurable embedded machine-learning accelerators for high-order and adaptive analysis of medical-sensor signals
  publication-title: IEEE J. Solid State Circ.
– volume: 210
  start-page: 132
  year: 2012
  end-page: 146
  ident: bib11
  article-title: Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine
  publication-title: J. Neurosci. Methods
– year: 2010
  ident: bib1
  article-title: Key facts
– start-page: 259
  year: 2018
  end-page: 260
  ident: bib32
  article-title: A 1.9mW SVM Processor with On-Chip Active Learning for Epileptic Seizure Control
– volume: 132
  year: 2021
  ident: bib10
  article-title: Multifuse multilayer multikernel RVFLN+ of process modes decomposition and approximate entropy data from iEEG/sEEG signals for epileptic seizure recognition
  publication-title: Comput. Biol. Med.
– volume: 61
  start-page: 1798
  year: 2014
  end-page: 1808
  ident: bib15
  article-title: Time-variant, frequency-selective, linear and nonlinear analysis of heart rate variability in children with temporal lobe epilepsy
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105366_bib21
  article-title: Automatic detection of epilepsy and seizure using multiclass sparse extreme learning machine classification
  publication-title: Comput. Math. Methods Med.
– volume: 67
  issue: 2
  year: 2003
  ident: 10.1016/j.compbiomed.2022.105366_bib16
  article-title: Automated detection of a preseizure state based on a decrease in synchronization in intracranial electroencephalogram recordings from epilepsy patients
  publication-title: Phys. Rev. E - Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.67.021912
– volume: 27
  start-page: 2274
  issue: 11
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105366_bib39
  article-title: An energy efficient adaboost cascade method for long-term seizure detection in portable neurostimulators
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2947426
– start-page: 407
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105366_bib36
  article-title: FPGA implementation of high accuracy automatic epileptic seizure detection system
  publication-title: IEEE 61st Int. Midwest Symp. Circuits Syst.
– start-page: 412
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105366_bib22
  article-title: Novel feature for identification of focal EEG signals with k-Means and fuzzy c-means algorithms
  publication-title: IEEE Int. Conf. Digit. Signal Process.
– volume: 137
  start-page: 247
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105366_bib25
  article-title: Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2016.09.008
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105366_bib31
  article-title: A real-time wearable FPGA-based seizure detection processor using MCMC
  publication-title: IEEE Int. Symp. Circ. Syst.
– volume: 145
  start-page: 270
  issue: 6
  year: 1998
  ident: 10.1016/j.compbiomed.2022.105366_bib2
  article-title: Identification of inter-ictal spikes in the EEG using neural network analysis
  publication-title: IEEE Proc. Sci. Meas. Technol.
  doi: 10.1049/ip-smt:19982328
– volume: 101
  start-page: 215
  issue: 23
  year: 2000
  ident: 10.1016/j.compbiomed.2022.105366_bib34
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signal
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 8
  start-page: 33
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105366_bib20
  article-title: Classification of epileptic electroencephalograms signal based on improved extreme learning machine
  publication-title: J. Med. Imaging Health Inf.
– volume: 28
  start-page: 573
  issue: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105366_bib6
  article-title: Epileptic seizure detection based on stockwell transform and bidirectional long short-term memory
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2966290
– start-page: 141
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105366_bib38
– volume: 126
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105366_bib40
  article-title: Representation based on ordinal patterns for seizure detection in EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104033
– volume: 13
  start-page: 703
  issue: 5
  year: 2009
  ident: 10.1016/j.compbiomed.2022.105366_bib5
  article-title: Epileptic seizure detection in EEGs using time-frequency analysis
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2017939
– volume: 17
  issue: 7
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105366_bib9
  article-title: Application of entropies for automated diagnosis of abnormalities in ultrasound images: a review
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519417400127
– volume: 136
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105366_bib28
  article-title: HVD-LSTM based recognition of epileptic seizures and normal human activity
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104684
– volume: 61
  start-page: 1798
  issue: 6
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105366_bib15
  article-title: Time-variant, frequency-selective, linear and nonlinear analysis of heart rate variability in children with temporal lobe epilepsy
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 41
  start-page: 160
  issue: 10
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105366_bib19
  article-title: Classification of focal and non focal epileptic seizures using multi-features and SVM classifier
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-017-0800-x
– volume: 34
  start-page: 2039
  issue: 3
  year: 2008
  ident: 10.1016/j.compbiomed.2022.105366_bib3
  article-title: Artificial immune recognition system with fuzzy resource allocation mechanism classifier, principal component analysis and FFT method based new hybrid automated identification system for classification of EEG signals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.02.009
– volume: 136
  start-page: 65
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105366_bib24
  article-title: Automatic identification of epileptic seizures from EEG signals using linear programming boosting
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2016.08.013
– volume: 44
  start-page: 168
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105366_bib8
  article-title: Classification of ictal and interictal EEG using RMS frequency, dominant frequency, root mean instantaneous frequency square and their parameters ratio
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2018.04.007
– volume: 132
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105366_bib10
  article-title: Multifuse multilayer multikernel RVFLN+ of process modes decomposition and approximate entropy data from iEEG/sEEG signals for epileptic seizure recognition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104299
– start-page: 344
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105366_bib7
  article-title: A low-cost and energy-efficient EEG processor for continuous seizure detection using wavelet transform and adaboost
  publication-title: IEEE Biomed. Circ. Syst. Conf.
– start-page: 316
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105366_bib4
– volume: 92
  start-page: 187
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105366_bib27
  article-title: A new wavelet-based neural network for classification of epileptic-related states using EEG
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-019-01456-7
– volume: 20
  start-page: 996
  issue: 4
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105366_bib30
  article-title: Design and implementation of an on-chip patient-specific closed-loop seizure onset and termination detection system
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2016.2553368
– volume: 48
  start-page: 1625
  issue: 7
  year: 2013
  ident: 10.1016/j.compbiomed.2022.105366_bib35
  article-title: A low-power processor with configurable embedded machine-learning accelerators for high-order and adaptive analysis of medical-sensor signals
  publication-title: IEEE J. Solid State Circ.
  doi: 10.1109/JSSC.2013.2253226
– volume: 107
  start-page: 30
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105366_bib42
  article-title: Automated epileptic seizure detection based on break of excitation/inhibition balance
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.02.005
– volume: 13
  start-page: 157
  issue: 2
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105366_bib13
  article-title: Detection of epileptic seizure employing a novel set of features extracted from multifractal spectrum of electroencephalogram signals
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2018.5258
– volume: 71
  start-page: 323
  issue: 2
  year: 2022
  ident: 10.1016/j.compbiomed.2022.105366_bib18
  article-title: Voltage over-scaling-based lightweight authentication for IoT security
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2021.3049543
– start-page: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105366_bib33
– start-page: 1171
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105366_bib23
– volume: 82
  start-page: 49
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105366_bib41
  article-title: Automated seizure detection using limited-channel EEG and non-linear dimension reduction
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.01.011
– volume: 210
  start-page: 132
  issue: 2
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105366_bib11
  article-title: Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2012.07.003
– volume: 210
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105366_bib29
  article-title: Epileptic seizure prediction over EEG data using hybrid CNN-SVM model with edge computing services
  publication-title: MATEC Web Conf.
  doi: 10.1051/matecconf/201821003016
– volume: 2
  start-page: 187
  issue: 3
  year: 1990
  ident: 10.1016/j.compbiomed.2022.105366_bib12
  article-title: Phase space topography and the lyapunov exponent of electrocorticograms in partial seizures
  publication-title: Brain Topogr.
  doi: 10.1007/BF01140588
– volume: 67
  start-page: 7025
  issue: 6
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105366_bib17
  article-title: Physical unclonable function-based key sharing via machine learning for IoT security
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 163
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105366_bib37
  article-title: Epilepsy identification system with neural network hardware implementation
  publication-title: IEEE Int. Conf. Artif. Intell. Circuits Syst.
– start-page: 259
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105366_bib32
– volume: 11
  start-page: 1014
  issue: 8
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105366_bib14
  article-title: Multifractal detrended fluctuation analysis based novel feature extraction technique for automated detection of focal and non-focal electroencephalogram signals
  publication-title: IET Sci. Meas. Technol.
  doi: 10.1049/iet-smt.2017.0117
– volume: 100
  start-page: 270
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105366_bib26
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.017
SSID ssj0004030
Score 2.3945003
Snippet In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are...
AbstractIn recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105366
SubjectTerms Accuracy
Algorithms
Circuits
Classification
Convulsions & seizures
CSD code
EEG
EEG epilepsy Detection
Electroencephalography
Electroencephalography - methods
Epilepsy
Epilepsy - diagnosis
Feature extraction
Field programmable gate arrays
Fourier transforms
Hoisting
Humans
Internal Medicine
Latency
Lifting
Lifting wavelet transform
Machine learning
Microprocessors
Neural networks
Other
Portable equipment
Power consumption
Power management
Regularization methods
Signal processing
Signal Processing, Computer-Assisted
Support Vector Machine
Support vector machines
Wavelet Analysis
Wavelet transforms
Wearable technology
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBYhh5JLaZv-bJoGFXp11pas1ZqeQtgkBDaXJG1uwvqDLY7XZB1CL32HvkGfpU_WGUv2tjSFhV4MtjWWkOTRjPTNN4R8KLSwWmQuYazwSe6lT3RH-mmsBv_ZysLifsf8YnJ2nZ_fiJstctzHwiCsMur-oNM7bR2fjGNvjpvFAmN8wZUAB4chLAisXoxgzyVmMTj8toZ55CkPYSigb7B0RPMEjBfCtkOYO3iKjGHSW97xJT66RP3LBO2WopNn5Gm0IelRaOZzsuXqF-TJPJ6S75LvR3Qi6ttxeghe0c8ft5_pbHZKmxASsLyjuPdKkfO7qlxFfz9KoJef5rSsLa0WHvHQ9KHExBQtbXv7lsKFIsdx0qxDDoLI8iFpMOcadQ2ommb1lVrXdkiv-iW5PpldHZ8lMfVCYsCCahNfCu2RV0bb0nrDrDOCO2mY11lZpMblnjluwRsSHb-hLJkpbVE4DUW85fwV2a6XtXtDaB447TJj4cvCimkhUy3tFDxL4fzUjIjse1uZyEuO6TEq1QPQvqj1OCkcJxXGaUSyQbIJ3BwbyBT9gKo-9hS0pYIFZANZ-ZisW8XffqUytWIqVX9NzRH5OEj-Mbs3rHe_n3lqqAoM2YlE_r9sRN4Pr0E34IFPWbvlfVcmRX-WQwNehxk7dBQXyPWW8r3_atpbsoN3AQG6T7bbu3v3Dqy0Vh90v-EvkSo8_w
  priority: 102
  providerName: Elsevier
Title A 65nm/0.448 mW EEG processor with parallel architecture SVM and lifting wavelet transform for high-performance and low-power epilepsy detection
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522001585
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522001585
https://dx.doi.org/10.1016/j.compbiomed.2022.105366
https://www.ncbi.nlm.nih.gov/pubmed/35305503
https://www.proquest.com/docview/2646710671
https://www.proquest.com/docview/2640996635
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2VkK8IL5XGJWReM2WOHHdaEKooHYF1AoxBn2z4i8J1CXZmmnihb-BP5m7OEl5GKgvfknOtvxxvrN_9ztCXqWKG8UjGzCWuiBxwgWqJv3URoH_bERq8L5jsRzNz5MPK77aI8s2FgZhla1OrBW1KTTekR_DwT0SyHcWvSkvA8waha-rbQqNrEmtYF7XFGP7pM-QGatH-m-ny0-ft5GSYeyDUkD7JOAcNdgej_hCELcPege_kTFMgRvX7Im3Hlj_Mkjrg2l2n9xrLEo68UvgAdmz-UNyZ9G8mT8ivyd0xPOL4_AIfCR68Y1Op6e09PEBxRXFi1iKBODrtV3Tv98V6NnXBc1yQ9ffHYKj6U2GWSoqWrXGLoWCIuFxUG7jD7xIcROUmICN2hL0Trn5SY2tathX_picz6Zf3s2DJg9DoMGcqgKXceWQZEaZzDjNjNU8tkIzp6IsDbVNHLOxAdeI12SHImM6M2lqFfziTBw_Ib28yO0BoYknuIu0gZq54eNUhEqYMbiZ3LqxHhDRDrbUDUk55spYyxaN9kNup0niNEk_TQMSdZKlJ-rYQSZt51O2gaigOiWcJjvIittk7abRARsZyQ2ToTyrKZBgrTGEr4F3NiAnnWRj5njzZcd2D9uFJ7umtptjQF52n0FR4OtPltviuv4nROc2hg489Qu2G6iYI_FbGD_7f-XPyV3sicd7HpJedXVtX4BNVqkh2T_6FUEpVgLK8ex0SPqT9x_ny2GzBf8Ag_07fA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqVgIuiH8WChgJjqGJE282QhUqsGVLuytEW-jNxH8SKE1CN9Wqb8ET8WzMxE6WQ0F76SWXZJLIY8_MZ898Q8iLTHIteWQCxjIbJDa1gWxJP5WWgJ91mmnc75jOhpPj5OMJP1kjv7taGEyr7Gxia6h1pXCPfAsc9zBFvrPoTf0zwK5ReLratdDIfWsFvd1SjPnCjn1zsQAIN9_eew_6fsnY7vjo3STwXQYCBcFCE9icS4sUKlLn2iqmjeKxSRWzMsqzUJnEMhNrCPx5S-WX5kzlOsuMhEesxg1RcAEbCdwD8Lfxdjz79HlZmRnGrggGrF0CYMznErkMM0wad0X2gFMZw5a7ccvWeKmD_FcA3DrC3Vvkpo9g6Y6bcrfJminvkGtTf0Z_l_zaoUNenm6FrwCT0dOvdDz-QGtXj1CdUdz4pUg4XhSmoH-fY9DDL1Oal5oW3y0mY9NFjl0xGtp0wTWFC0WC5aBe1js4kWoR1NjwjZoa7Fw9v6DaNG2aWXmPHF-JRu6T9bIqzUNCE0eoFykNb-aaj7I0lKkeAazlxo7UgKTdYAvlSdGxN0chuuy3H2KpJoFqEk5NAxL1krUjBllBJuv0KbrCVzDVArzXCrLpZbJm7m3OXERizkQoDlvKJZhrDNPlAA0OyOte0odVLlxa8bub3cQT_aeWi3FAnve3wTDhaVNemuq8fSZEMB3DDzxwE7YfqJgj0VwYP_r_y5-R65Oj6YE42JvtPyY38K9crukmWW_Ozs0TiAcb-dQvOkq-XfU6_wMf-Hcf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqIlVcEP8sLWAkOIZNnHi9EUKooru0lK2QSmFvbvwngdIkbVKt-hY8D0_HTJzscihoL73kkkwSecbjGfubbwh5lSpuFI9swFjqgsQJF6iW9FMbBfmzEanB_Y7Z0Wj_JPk05_MN8ruvhUFYZe8TW0dtSo175ENYuEcC-c6ioetgEV_2pu-r8wA7SOFJa99Ow5vIob1aQPpWvzvYA12_Zmw6-fphP-g6DAQaAoUmcBlXDulTlMmM08xYzWMrNHMqytJQ28QxGxsI-nlL4ycypjOTplbBI87gZii4_1sijlOEE4q5WNVkhrEvfwE_l0Aa1qGIPLYM4eK-vB4yVMaw2W7c8jReuzT-K_Rtl8DpXXKni13prje2e2TDFvfJ1qw7nX9Afu3SES_OhuEbyMbo2Xc6mXykla9EKC8obvlSpBrPc5vTv08w6PG3Gc0KQ_MfDmHYdJFhP4yGNn1YTeFCkVo5qFaVDl6kXAQVtnqjtgIPV9VX1NimBZgVD8nJjejjEdksysI-ITTxVHqRNvBmbvg4FaESZgwJLbdurAdE9IMtdUeHjl05ctnj3n7KlZokqkl6NQ1ItJSsPCXIGjJpr0_Zl7yCk5awbq0hK66TtXXnbWoZyZrJUB63ZEtgawyBcpAHDsjbpWQXUPlAac3v7vSGJ5efWk3DAXm5vA0uCc-ZssKWl-0zIabRMfzAY2-wy4GKOVLMhfHT_7_8BdmC2S0_HxwdbpPb-FMeZLpDNpuLS_sMAsFGPW9nHCWnNz3F_wDsDHS5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+65nm%2F0.448+mW+EEG+processor+with+parallel+architecture+SVM+and+lifting+wavelet+transform+for+high-performance+and+low-power+epilepsy+detection&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Wen%2C+Yongzhong&rft.au=Zhang%2C+Yuejun&rft.au=Liang%2C+Wen&rft.au=Cao%2C+Haojie&rft.date=2022-05-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=144&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105366&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon