A deep learning based model using RNN-LSTM for the Detection of Schizophrenia from EEG data

Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting t...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 151; no. Pt A; p. 106225
Main Authors Supakar, Rinku, Satvaya, Parthasarathi, Chakrabarti, Prasun
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.12.2022
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2022.106225

Cover

Abstract Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting the significant features and make classifications, the authors proposed a deep learning based model using RNN-LSTM to analyze the EEG signal data to diagnose schizophrenia. The proposed model used three dense layers on top of a 100 dimensional LSTM. EEG signal data of 45 schizophrenic patients and 39 healthy subjects were used in the study. Dimensionality reduction algorithm was used to obtain an optimal feature set and the classifier was run with both sets of data. An accuracy of 98% and 93.67% were obtained with the complete feature set and the reduced feature set respectively. The robustness of the model was evaluated using model performance measure and combined performance measure. Outcomes were compared with the outcome obtained with traditional machine learning classifiers such as Random Forest, SVM, FURIA, and AdaBoost, and the proposed model was found to perform better with the complete dataset. When compared with the result of the researchers who worked with the same set of data using either CNN or RNN, the proposed model's accuracy was either better or comparable to theirs.
AbstractList Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting the significant features and make classifications, the authors proposed a deep learning based model using RNN-LSTM to analyze the EEG signal data to diagnose schizophrenia. The proposed model used three dense layers on top of a 100 dimensional LSTM. EEG signal data of 45 schizophrenic patients and 39 healthy subjects were used in the study. Dimensionality reduction algorithm was used to obtain an optimal feature set and the classifier was run with both sets of data. An accuracy of 98% and 93.67% were obtained with the complete feature set and the reduced feature set respectively. The robustness of the model was evaluated using model performance measure and combined performance measure. Outcomes were compared with the outcome obtained with traditional machine learning classifiers such as Random Forest, SVM, FURIA, and AdaBoost, and the proposed model was found to perform better with the complete dataset. When compared with the result of the researchers who worked with the same set of data using either CNN or RNN, the proposed model's accuracy was either better or comparable to theirs.
AbstractNormal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting the significant features and make classifications, the authors proposed a deep learning based model using RNN-LSTM to analyze the EEG signal data to diagnose schizophrenia. The proposed model used three dense layers on top of a 100 dimensional LSTM. EEG signal data of 45 schizophrenic patients and 39 healthy subjects were used in the study. Dimensionality reduction algorithm was used to obtain an optimal feature set and the classifier was run with both sets of data. An accuracy of 98% and 93.67% were obtained with the complete feature set and the reduced feature set respectively. The robustness of the model was evaluated using model performance measure and combined performance measure. Outcomes were compared with the outcome obtained with traditional machine learning classifiers such as Random Forest, SVM, FURIA, and AdaBoost, and the proposed model was found to perform better with the complete dataset. When compared with the result of the researchers who worked with the same set of data using either CNN or RNN, the proposed model's accuracy was either better or comparable to theirs.
Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting the significant features and make classifications, the authors proposed a deep learning based model using RNN-LSTM to analyze the EEG signal data to diagnose schizophrenia. The proposed model used three dense layers on top of a 100 dimensional LSTM. EEG signal data of 45 schizophrenic patients and 39 healthy subjects were used in the study. Dimensionality reduction algorithm was used to obtain an optimal feature set and the classifier was run with both sets of data. An accuracy of 98% and 93.67% were obtained with the complete feature set and the reduced feature set respectively. The robustness of the model was evaluated using model performance measure and combined performance measure. Outcomes were compared with the outcome obtained with traditional machine learning classifiers such as Random Forest, SVM, FURIA, and AdaBoost, and the proposed model was found to perform better with the complete dataset. When compared with the result of the researchers who worked with the same set of data using either CNN or RNN, the proposed model's accuracy was either better or comparable to theirs.Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting the significant features and make classifications, the authors proposed a deep learning based model using RNN-LSTM to analyze the EEG signal data to diagnose schizophrenia. The proposed model used three dense layers on top of a 100 dimensional LSTM. EEG signal data of 45 schizophrenic patients and 39 healthy subjects were used in the study. Dimensionality reduction algorithm was used to obtain an optimal feature set and the classifier was run with both sets of data. An accuracy of 98% and 93.67% were obtained with the complete feature set and the reduced feature set respectively. The robustness of the model was evaluated using model performance measure and combined performance measure. Outcomes were compared with the outcome obtained with traditional machine learning classifiers such as Random Forest, SVM, FURIA, and AdaBoost, and the proposed model was found to perform better with the complete dataset. When compared with the result of the researchers who worked with the same set of data using either CNN or RNN, the proposed model's accuracy was either better or comparable to theirs.
ArticleNumber 106225
Author Chakrabarti, Prasun
Satvaya, Parthasarathi
Supakar, Rinku
Author_xml – sequence: 1
  givenname: Rinku
  surname: Supakar
  fullname: Supakar, Rinku
  email: rinku@lincoln.edu.my
  organization: Lincoln University College, Malaysia
– sequence: 2
  givenname: Parthasarathi
  surname: Satvaya
  fullname: Satvaya, Parthasarathi
  email: parthasatvaya@gmail.com
  organization: Jadavpur University, Kolkata, West Bengal, India
– sequence: 3
  givenname: Prasun
  surname: Chakrabarti
  fullname: Chakrabarti, Prasun
  email: prasun@lincoln.edu.my
  organization: Provost and Institute Endowed Distinguished Senior Chair Professor, Techno India NJR Institute of Technology, Udaipur, Rajasthan, ThuDau Mot University Vietnam, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36306576$$D View this record in MEDLINE/PubMed
BookMark eNqVkkFv1DAQhS1URLeFv4AsceGSZWwncXJBtGVbkJYiseXEwXKcCesliYOdIJVfX0dbFqkSUjmNNPrm6em9OSFHveuREMpgyYDlb3ZL47qhsq7DesmB87jOOc-ekAUrZJlAJtIjsgBgkKQFz47JSQg7AEhBwDNyLHIBeSbzBfl2RmvEgbaofW_777TSAWvauRpbOoV58-X6Ollvbj7Rxnk6bpG-xxHNaF1PXUM3Zmt_u2HrsbeaNt51dLW6orUe9XPytNFtwBf385R8vVzdXHxI1p-vPl6crROTsXRMmkwDl1WlORMNoshAZqALLbSGGstC8DRv0rKqNfIGZVWWICUWHDWXLM2MOCWv97qDdz8nDKPqbDDYtrpHNwXFpQDBclZCRF89QHdu8n10F6mUCSiYKCP18p6aqpiwGrzttL9Vf2KLQLEHjHcheGwOCAM1N6R26m9Dam5I7RuKp28fnBo76jnN0WvbPkbgfC-AMdJfFr0KxmJvsLY-1qJqZ__DxUHEtLa3Rrc_8BbDIRSmAlegNvMnzY_EOUAphIwC7_4t8DgPd8FX2yE
CitedBy_id crossref_primary_10_1007_s11571_023_10011_x
crossref_primary_10_3390_biomedinformatics3010014
crossref_primary_10_1007_s10489_024_05669_7
crossref_primary_10_1016_j_hydres_2024_10_001
crossref_primary_10_3389_fnins_2022_1097660
crossref_primary_10_1016_j_neulet_2025_138146
crossref_primary_10_1016_j_saa_2024_124296
crossref_primary_10_1097_YIC_0000000000000490
crossref_primary_10_1177_15500594251328068
crossref_primary_10_1016_j_bspc_2023_105815
crossref_primary_10_3390_app14125048
crossref_primary_10_1016_j_asoc_2024_112631
crossref_primary_10_1002_brx2_29
crossref_primary_10_1007_s11227_024_06627_3
crossref_primary_10_1007_s00521_023_08971_6
crossref_primary_10_1007_s11571_024_10120_1
crossref_primary_10_3389_fnhum_2023_1134599
crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_3389_fnhum_2024_1347082
crossref_primary_10_3390_app13169233
crossref_primary_10_1016_j_bspc_2024_107379
crossref_primary_10_1016_j_schres_2024_07_015
crossref_primary_10_1007_s10489_023_05155_6
crossref_primary_10_1007_s12021_024_09684_4
crossref_primary_10_24906_isc_2023_v37_i5_44895
crossref_primary_10_1007_s10586_024_04511_6
crossref_primary_10_1016_j_aej_2024_06_058
crossref_primary_10_1016_j_compeleceng_2024_110005
crossref_primary_10_1016_j_eswa_2023_122937
crossref_primary_10_1007_s41939_024_00612_2
crossref_primary_10_1049_ell2_13109
crossref_primary_10_1007_s11055_024_01691_x
crossref_primary_10_1186_s40779_025_00598_z
crossref_primary_10_1007_s10916_024_02048_0
crossref_primary_10_1016_j_energy_2023_129688
crossref_primary_10_17694_bajece_1228396
crossref_primary_10_3390_su16156627
crossref_primary_10_1007_s11831_023_10047_6
crossref_primary_10_1186_s40708_024_00240_z
crossref_primary_10_1186_s40708_024_00241_y
crossref_primary_10_3390_axioms13050335
crossref_primary_10_1186_s40708_023_00201_y
Cites_doi 10.1038/s41598-018-32290-9
10.18280/ts.360404
10.1109/JBHI.2018.2796588
10.1016/j.eswa.2008.07.037
10.1093/bja/aes312
10.1038/nature09552
10.1109/TBME.2016.2558824
10.1109/ACCESS.2020.3037995
10.1142/S0219519412400192
10.1016/0020-7101(91)90028-D
10.1016/j.nicl.2017.06.014
10.1523/JNEUROSCI.2874-10.2010
10.1016/j.ebiom.2019.08.023
10.21037/atm.2019.12.77
10.1016/j.eswa.2010.07.145
10.1176/appi.ajp.161.3.473
10.1016/j.clinph.2010.10.042
10.1016/j.neuroimage.2011.12.090
10.1186/s12938-018-0464-x
10.1109/JBHI.2019.2941222
10.1007/978-3-319-44778-0_36
10.1016/S0140-6736(15)01121-6
10.1016/j.schres.2016.05.007
10.1016/j.knosys.2020.106591
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
2022. Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: 2022. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2022.106225
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
Proquest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Research Library Prep

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 106225
ExternalDocumentID 36306576
10_1016_j_compbiomed_2022_106225
S0010482522009337
1_s2_0_S0010482522009337
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-f5a027bba213fee350750a8a3aa0de983246f49bdae2fe7b99077e82ea27145c3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sat Sep 27 21:30:52 EDT 2025
Tue Oct 07 06:20:34 EDT 2025
Wed Feb 19 02:25:10 EST 2025
Wed Oct 01 05:22:44 EDT 2025
Thu Apr 24 22:52:33 EDT 2025
Fri Feb 23 02:38:26 EST 2024
Tue Feb 25 20:11:33 EST 2025
Tue Oct 14 19:33:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords Deep learning
Schizophrenia
CNN
Electroencephalogram
RNN-LSTM
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-f5a027bba213fee350750a8a3aa0de983246f49bdae2fe7b99077e82ea27145c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 36306576
PQID 2741308139
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2730316190
proquest_journals_2741308139
pubmed_primary_36306576
crossref_primary_10_1016_j_compbiomed_2022_106225
crossref_citationtrail_10_1016_j_compbiomed_2022_106225
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_106225
elsevier_clinicalkeyesjournals_1_s2_0_S0010482522009337
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_106225
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Chen (bib18) 2016; 2
Doan (bib16) 2017; 15
Boostani, Sadatnejad, Sabeti (bib20) 2009; 36
Thilakvathi (bib21) 2017; 28
Aslan, Akin (bib24) 2020; 37
Chu (bib25) 2017
Puthankattil, Joseph (bib8) 2012; 12
Sundari, Sujatha (bib32) 2021
Zhu (bib11) 2018; 17
Roy, Kiral-Kornek, Harrer (bib26) 2018
Insel (bib1) 2010; 468
Bouallegue (bib28) 2020; 8
Florkowski (bib42) 2008; 29
Gorur (bib40) 2019; 36
Faust (bib38) 2021; 212
Ruffini (bib29) 2016
Brownlee (bib41)
Dakka (bib33) 2017
Owen, Sawa, Mortensen (bib43) 2016; 388
Kindler (bib5) 2011; 122
Oh (bib23) 2019; 19
Tasoulis (bib37) 2018
Liu (bib22) 2017
Prasad (bib13) 2014
Phang (bib15) 2020; 24
Brown, Thompson (bib4) 2010; vol. 4
Shim (bib9) 2016; 176
van den Heuvel (bib6) 2010; 30
Anier (bib3) 2012; 109
Sabeti (bib12) 2011; 38
Cannings (bib35) 2020; 13
Santos-Mayo, San-José-Revuelta, Arribas (bib19) 2017; 64
Huang (bib10) 2018; 23
Robinson (bib2) 2004; 161
Agarap (bib39) 2019; arXiv:1803.08375
Fornito (bib7) 2012; 62
Chin (bib17) 2018; 8
Xu (bib27) 2020; 8
Yan (bib31) 2019; 47
Gorbachevskaya (bib34)
Yan (bib30) 2017
Krajca (bib14) 1991; 28
Gupta (bib36)
Xingjian (bib44) 2015
Dakka (10.1016/j.compbiomed.2022.106225_bib33) 2017
Owen (10.1016/j.compbiomed.2022.106225_bib43) 2016; 388
Sundari (10.1016/j.compbiomed.2022.106225_bib32) 2021
Gorbachevskaya (10.1016/j.compbiomed.2022.106225_bib34)
Fornito (10.1016/j.compbiomed.2022.106225_bib7) 2012; 62
Sabeti (10.1016/j.compbiomed.2022.106225_bib12) 2011; 38
Santos-Mayo (10.1016/j.compbiomed.2022.106225_bib19) 2017; 64
Xingjian (10.1016/j.compbiomed.2022.106225_bib44) 2015
Puthankattil (10.1016/j.compbiomed.2022.106225_bib8) 2012; 12
Yan (10.1016/j.compbiomed.2022.106225_bib30) 2017
Cannings (10.1016/j.compbiomed.2022.106225_bib35) 2020; 13
Thilakvathi (10.1016/j.compbiomed.2022.106225_bib21) 2017; 28
van den Heuvel (10.1016/j.compbiomed.2022.106225_bib6) 2010; 30
Ruffini (10.1016/j.compbiomed.2022.106225_bib29) 2016
Robinson (10.1016/j.compbiomed.2022.106225_bib2) 2004; 161
Oh (10.1016/j.compbiomed.2022.106225_bib23) 2019; 19
Agarap (10.1016/j.compbiomed.2022.106225_bib39) 2019; arXiv:1803.08375
Prasad (10.1016/j.compbiomed.2022.106225_bib13) 2014
Aslan (10.1016/j.compbiomed.2022.106225_bib24) 2020; 37
Bouallegue (10.1016/j.compbiomed.2022.106225_bib28) 2020; 8
Florkowski (10.1016/j.compbiomed.2022.106225_bib42) 2008; 29
Gorur (10.1016/j.compbiomed.2022.106225_bib40) 2019; 36
Chin (10.1016/j.compbiomed.2022.106225_bib17) 2018; 8
Boostani (10.1016/j.compbiomed.2022.106225_bib20) 2009; 36
Insel (10.1016/j.compbiomed.2022.106225_bib1) 2010; 468
Chen (10.1016/j.compbiomed.2022.106225_bib18) 2016; 2
Tasoulis (10.1016/j.compbiomed.2022.106225_bib37) 2018
Roy (10.1016/j.compbiomed.2022.106225_bib26) 2018
Xu (10.1016/j.compbiomed.2022.106225_bib27) 2020; 8
Huang (10.1016/j.compbiomed.2022.106225_bib10) 2018; 23
Anier (10.1016/j.compbiomed.2022.106225_bib3) 2012; 109
Yan (10.1016/j.compbiomed.2022.106225_bib31) 2019; 47
Gupta (10.1016/j.compbiomed.2022.106225_bib36)
Brownlee (10.1016/j.compbiomed.2022.106225_bib41)
Chu (10.1016/j.compbiomed.2022.106225_bib25) 2017
Phang (10.1016/j.compbiomed.2022.106225_bib15) 2020; 24
Liu (10.1016/j.compbiomed.2022.106225_bib22) 2017
Shim (10.1016/j.compbiomed.2022.106225_bib9) 2016; 176
Zhu (10.1016/j.compbiomed.2022.106225_bib11) 2018; 17
Brown (10.1016/j.compbiomed.2022.106225_bib4) 2010; vol. 4
Kindler (10.1016/j.compbiomed.2022.106225_bib5) 2011; 122
Doan (10.1016/j.compbiomed.2022.106225_bib16) 2017; 15
Krajca (10.1016/j.compbiomed.2022.106225_bib14) 1991; 28
Faust (10.1016/j.compbiomed.2022.106225_bib38) 2021; 212
References_xml – volume: 23
  start-page: 342
  year: 2018
  end-page: 350
  ident: bib10
  article-title: Identifying resting-state multi-frequency biomarkers via tree-guided group sparse learning for schizophrenia classification
  publication-title: IEEE J. Biomed. Heal. Informatics
– volume: 37
  year: 2020
  ident: bib24
  article-title: Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals
  publication-title: Trait. Du. Signal
– year: 2021
  ident: bib32
  article-title: Identification of schizophrenia using LSTM recurrent neural network
  publication-title: 2021 Seventh International Conference on Bio Signals, Images, and Instrumentation
– volume: 8
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib27
  article-title: Using a deep recurrent neural network with EEG signal to detect Parkinson's disease
  publication-title: Ann. Transl. Med.
– volume: 28
  start-page: 71
  year: 1991
  end-page: 89
  ident: bib14
  article-title: Automatic identification of significant graphoelements in multichannel eeg recordings by adaptive segmentation and fuzzy clustering
  publication-title: Int. J. Bio Med. Comput.
– volume: 12
  start-page: 1
  year: 2012
  end-page: 13
  ident: bib8
  article-title: Classification of EEG signals in normal and depression conditions by ANN using RWE and signal entropy
  publication-title: J. Mech. Med. Biol.
– volume: 17
  start-page: 32
  year: 2018
  ident: bib11
  article-title: Non-negative discriminative brain functional connectivity for identifying schizophrenia on resting-state fMRI
  publication-title: Biomed. Eng. Online
– ident: bib41
– volume: 30
  start-page: 15915
  year: 2010
  end-page: 15926
  ident: bib6
  article-title: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis
  publication-title: J. Neurosci.
– start-page: 1
  year: 2018
  end-page: 10
  ident: bib26
  article-title: ChronoNet: A Deep Recurrent Neural Network for Abnormal EEG Identification
– year: 2014
  ident: bib13
  article-title: Single-trial Eeg Classification Using Logistic Regression Based on Ensemble Synchronization
– year: 2017
  ident: bib30
  article-title: Discriminating schizophrenia from normal controls using resting state functional network connectivity: a deep neural network and layer-wise relevance propagation method
  publication-title: IEEE 27th International Workshop on Machine Learning for Signal Processing
– volume: 122
  start-page: 1179
  year: 2011
  end-page: 1182
  ident: bib5
  article-title: Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates
  publication-title: Clin. Neurophysiol.
– volume: 388
  start-page: 86
  year: 2016
  end-page: 97
  ident: bib43
  article-title: Schizophrenia
  publication-title: Lancet
– volume: 468
  start-page: 187
  year: 2010
  end-page: 193
  ident: bib1
  article-title: Rethinking schizophrenia
  publication-title: Nature
– start-page: 1
  year: 2017
  end-page: 10
  ident: bib22
  article-title: A Data Driven Approach for Resting-State EEG Signal Classification of Schizophrenia with Control Participants Using Random Matrix Theory
– volume: 212
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib38
  article-title: Accurate detection of sleep apnea with long short-term memory network based on RR interval signals
  publication-title: Knowl. Base Syst.
– volume: vol. 4
  start-page: 181
  year: 2010
  end-page: 214
  ident: bib4
  article-title: Functional brain imaging in schizophrenia: selected results and methods
  publication-title: Behavioral Neurobiology of Schizophrenia and its Treatment. Current Topics in Behavioral Neurosciences
– volume: 8
  start-page: 635
  year: 2018
  end-page: 644
  ident: bib17
  article-title: Recognition of schizophrenia with regularized support vector machine and sequential region of interest selection using structural magnetic resonance imaging
  publication-title: Sci. Rep.
– volume: 36
  start-page: 6492
  year: 2009
  end-page: 6499
  ident: bib20
  article-title: An efficient classifier to diagnose of schizophrenia based on EEG signals
  publication-title: Expert Syst. Appl.
– volume: 38
  start-page: 2063
  year: 2011
  end-page: 2071
  ident: bib12
  article-title: A new approach for EEG signal classification of schizophrenic and control participants
  publication-title: Expert Syst. Appl.
– volume: 36
  start-page: 319
  year: 2019
  end-page: 329
  ident: bib40
  article-title: GKP signal processing using deep CNN and SVM for tongue-machine interface
  publication-title: Trait. Du. Signal
– volume: 28
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib21
  article-title: EEG signal complexity analysis for schizophrenia during rest and mental activity
  publication-title: Biomed. Res.
– volume: 62
  start-page: 2296
  year: 2012
  end-page: 2314
  ident: bib7
  article-title: Schizophrenia, neuroimaging and connectomics
  publication-title: Neuroimage
– start-page: 306
  year: 2016
  end-page: 313
  ident: bib29
  article-title: EEG-Driven RNN classification for prognosis of neurodegeneration in at-risk patient
  publication-title: Lecture Notes in Computer Science
– volume: 19
  start-page: 1
  year: 2019
  end-page: 13
  ident: bib23
  article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals
  publication-title: Appl. Sci.
– volume: 47
  start-page: 543
  year: 2019
  end-page: 552
  ident: bib31
  article-title: Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data
  publication-title: EBioMedicine
– year: 2018
  ident: bib37
  article-title: Biomedical data ensemble classification using random projections
  publication-title: 2018 IEEE International Conference on Big Data , Seattle, WA, USA
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib33
  article-title: Learning Neural Markers of Schizophrenia Disorder Using Recurrent Neural Networks
– volume: 15
  start-page: 719
  year: 2017
  end-page: 731
  ident: bib16
  article-title: Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders
  publication-title: Neuroimage: Clinical
– ident: bib34
– volume: 2
  start-page: 1
  year: 2016
  end-page: 21
  ident: bib18
  article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults
  publication-title: Neuropsychiatr Electrophysiol.
– volume: 64
  start-page: 395
  year: 2017
  end-page: 407
  ident: bib19
  article-title: A computer-aided diagnosis system with EEG based on the P3b wave during an auditory odd-ball task in schizophrenia
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 802
  year: 2015
  end-page: 810
  ident: bib44
  article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 8
  start-page: 206992
  year: 2020
  end-page: 207007
  ident: bib28
  article-title: A dynamic filtering DF-RNN deep-learning-based approach for EEG-based neurological disorders diagnosis
  publication-title: IEEE Access
– volume: 13
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib35
  article-title: Random projections: data perturbation for classification problems
  publication-title: Wires Computational Statistics
– volume: 29
  start-page: 83
  year: 2008
  end-page: 87
  ident: bib42
  article-title: Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests
  publication-title: Clin. Biochem. Rev.
– volume: 109
  start-page: 928
  year: 2012
  end-page: 934
  ident: bib3
  article-title: Relationship between approximate entropy and visual inspection of irregularity in the EEG signal, a comparison with spectral entropy
  publication-title: Br. J. Anesthesia
– start-page: 1
  year: 2017
  end-page: 7
  ident: bib25
  article-title: Individual Recognition in Schizophrenia Using Deep Methods with Random Forest and Voting Classifiers: Insights from Resting State EEG Streams
– volume: 176
  start-page: 314
  year: 2016
  end-page: 319
  ident: bib9
  article-title: Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features
  publication-title: Schizophr. Res.
– volume: arXiv:1803.08375
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib39
  article-title: Deep learning using rectified linear units (ReLU)
  publication-title: Neural Evol. Comput.
– volume: 161
  start-page: 473
  year: 2004
  end-page: 479
  ident: bib2
  article-title: Symptomatic and functional recovery from a first episode of schizophrenia or schizoaffective disorder
  publication-title: Am. J. Psychiatr.
– volume: 24
  start-page: 1333
  year: 2020
  end-page: 1343
  ident: bib15
  article-title: Classification of EEG-based brain connectivity networks in schizophrenia using a multi-domain connectome convolutional neural network
  publication-title: IEEE Journal of Biomedical and Health Informatics
– ident: bib36
– volume: 8
  start-page: 635
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106225_bib17
  article-title: Recognition of schizophrenia with regularized support vector machine and sequential region of interest selection using structural magnetic resonance imaging
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32290-9
– volume: 36
  start-page: 319
  issue: 4
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106225_bib40
  article-title: GKP signal processing using deep CNN and SVM for tongue-machine interface
  publication-title: Trait. Du. Signal
  doi: 10.18280/ts.360404
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106225_bib26
– volume: 23
  start-page: 342
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106225_bib10
  article-title: Identifying resting-state multi-frequency biomarkers via tree-guided group sparse learning for schizophrenia classification
  publication-title: IEEE J. Biomed. Heal. Informatics
  doi: 10.1109/JBHI.2018.2796588
– volume: 28
  start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106225_bib21
  article-title: EEG signal complexity analysis for schizophrenia during rest and mental activity
  publication-title: Biomed. Res.
– volume: 36
  start-page: 6492
  issue: 3
  year: 2009
  ident: 10.1016/j.compbiomed.2022.106225_bib20
  article-title: An efficient classifier to diagnose of schizophrenia based on EEG signals
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.07.037
– volume: 109
  start-page: 928
  year: 2012
  ident: 10.1016/j.compbiomed.2022.106225_bib3
  article-title: Relationship between approximate entropy and visual inspection of irregularity in the EEG signal, a comparison with spectral entropy
  publication-title: Br. J. Anesthesia
  doi: 10.1093/bja/aes312
– year: 2014
  ident: 10.1016/j.compbiomed.2022.106225_bib13
– year: 2021
  ident: 10.1016/j.compbiomed.2022.106225_bib32
  article-title: Identification of schizophrenia using LSTM recurrent neural network
– volume: 468
  start-page: 187
  year: 2010
  ident: 10.1016/j.compbiomed.2022.106225_bib1
  article-title: Rethinking schizophrenia
  publication-title: Nature
  doi: 10.1038/nature09552
– volume: 64
  start-page: 395
  issue: 2
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106225_bib19
  article-title: A computer-aided diagnosis system with EEG based on the P3b wave during an auditory odd-ball task in schizophrenia
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2558824
– start-page: 802
  year: 2015
  ident: 10.1016/j.compbiomed.2022.106225_bib44
  article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 2
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106225_bib18
  article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults
  publication-title: Neuropsychiatr Electrophysiol.
– volume: 8
  start-page: 206992
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106225_bib28
  article-title: A dynamic filtering DF-RNN deep-learning-based approach for EEG-based neurological disorders diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3037995
– ident: 10.1016/j.compbiomed.2022.106225_bib41
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106225_bib22
– volume: 12
  start-page: 1
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2022.106225_bib8
  article-title: Classification of EEG signals in normal and depression conditions by ANN using RWE and signal entropy
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519412400192
– volume: 28
  start-page: 71
  issue: 28
  year: 1991
  ident: 10.1016/j.compbiomed.2022.106225_bib14
  article-title: Automatic identification of significant graphoelements in multichannel eeg recordings by adaptive segmentation and fuzzy clustering
  publication-title: Int. J. Bio Med. Comput.
  doi: 10.1016/0020-7101(91)90028-D
– volume: 15
  start-page: 719
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106225_bib16
  article-title: Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders
  publication-title: Neuroimage: Clinical
  doi: 10.1016/j.nicl.2017.06.014
– volume: arXiv:1803.08375
  start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106225_bib39
  article-title: Deep learning using rectified linear units (ReLU)
  publication-title: Neural Evol. Comput.
– volume: 30
  start-page: 15915
  issue: 47
  year: 2010
  ident: 10.1016/j.compbiomed.2022.106225_bib6
  article-title: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2874-10.2010
– volume: 47
  start-page: 543
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106225_bib31
  article-title: Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.08.023
– ident: 10.1016/j.compbiomed.2022.106225_bib34
– volume: 8
  start-page: 1
  issue: 14
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106225_bib27
  article-title: Using a deep recurrent neural network with EEG signal to detect Parkinson's disease
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2019.12.77
– volume: 38
  start-page: 2063
  year: 2011
  ident: 10.1016/j.compbiomed.2022.106225_bib12
  article-title: A new approach for EEG signal classification of schizophrenic and control participants
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.07.145
– volume: 13
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106225_bib35
  article-title: Random projections: data perturbation for classification problems
  publication-title: Wires Computational Statistics
– volume: 161
  start-page: 473
  year: 2004
  ident: 10.1016/j.compbiomed.2022.106225_bib2
  article-title: Symptomatic and functional recovery from a first episode of schizophrenia or schizoaffective disorder
  publication-title: Am. J. Psychiatr.
  doi: 10.1176/appi.ajp.161.3.473
– volume: 19
  start-page: 1
  issue: 14
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106225_bib23
  article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals
  publication-title: Appl. Sci.
– volume: 122
  start-page: 1179
  issue: 6
  year: 2011
  ident: 10.1016/j.compbiomed.2022.106225_bib5
  article-title: Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2010.10.042
– volume: 62
  start-page: 2296
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2022.106225_bib7
  article-title: Schizophrenia, neuroimaging and connectomics
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.090
– volume: vol. 4
  start-page: 181
  year: 2010
  ident: 10.1016/j.compbiomed.2022.106225_bib4
  article-title: Functional brain imaging in schizophrenia: selected results and methods
– volume: 17
  start-page: 32
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106225_bib11
  article-title: Non-negative discriminative brain functional connectivity for identifying schizophrenia on resting-state fMRI
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-018-0464-x
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106225_bib25
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106225_bib33
– volume: 24
  start-page: 1333
  issue: 5
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106225_bib15
  article-title: Classification of EEG-based brain connectivity networks in schizophrenia using a multi-domain connectome convolutional neural network
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2019.2941222
– start-page: 306
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106225_bib29
  article-title: EEG-Driven RNN classification for prognosis of neurodegeneration in at-risk patient
  doi: 10.1007/978-3-319-44778-0_36
– volume: 388
  start-page: 86
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106225_bib43
  article-title: Schizophrenia
  publication-title: Lancet
  doi: 10.1016/S0140-6736(15)01121-6
– volume: 29
  start-page: 83
  issue: 1
  year: 2008
  ident: 10.1016/j.compbiomed.2022.106225_bib42
  article-title: Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests
  publication-title: Clin. Biochem. Rev.
– volume: 176
  start-page: 314
  issue: 2–3
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106225_bib9
  article-title: Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2016.05.007
– year: 2018
  ident: 10.1016/j.compbiomed.2022.106225_bib37
  article-title: Biomedical data ensemble classification using random projections
– volume: 37
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106225_bib24
  article-title: Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals
  publication-title: Trait. Du. Signal
– year: 2017
  ident: 10.1016/j.compbiomed.2022.106225_bib30
  article-title: Discriminating schizophrenia from normal controls using resting state functional network connectivity: a deep neural network and layer-wise relevance propagation method
– volume: 212
  start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106225_bib38
  article-title: Accurate detection of sleep apnea with long short-term memory network based on RR interval signals
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2020.106591
– ident: 10.1016/j.compbiomed.2022.106225_bib36
SSID ssj0004030
Score 2.5387876
Snippet Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity...
AbstractNormal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106225
SubjectTerms Accuracy
Algorithms
Anomalies
Automation
Brain
Classification
Classifiers
CNN
Datasets
Deep Learning
Discriminant analysis
Disease
EEG
Electroencephalogram
Electroencephalography
Electroencephalography - methods
Feature extraction
Hallucinations
Humans
Internal Medicine
Machine Learning
Magnetic resonance imaging
Mental disorders
Model accuracy
Neural networks
Other
Performance evaluation
Psychosis
RNN-LSTM
Schizophrenia
Schizophrenia - diagnosis
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fi9QwEB7OPRBfxN9WT4nga7FN2mSDiJy65yFukds7OPAhpJvkQKS7unv_vzNN2vXhlH1tO02ZzmS-JN_MALyeOkTxU6tzqTwuUHQpch0qlStJ9c4xAIpAycnzRp5eVF8u68sDaIZcGKJVDnNiP1G71ZL2yN9QmRWB8Uvo9-tfOXWNotPVoYWGTa0V3Lu-xNgtOORUGWsChx9mzbezXaZkIWJSCs4-FS6OErcnMr6IxB2T3nHdyDlelpxaaN8csP4FSPvAdHIP7iZEyY6jCdyHA989gNvzdGb-EL4fM-f9mqX-EFeMApdjfQscRrT3K3bWNPnXxfmcIYJliAjZJ7_tKVodWwW2-JuXxygfhc1mnxlxSx_Bxcns_ONpnloq5EtERts81BbXoW1reSmC96ImxGCnVlhbOK_RvSsZKt0663nwqsVYpZSfcm-5Kqt6KR7DpFt1_ikwKRy3hXe1DLpCiN7WQgcpZEsF421dZ6AGvZllqjdObS9-moFY9sPsNG5I4yZqPINylFzHmht7yOjh15ghpxRnQYOBYQ9ZdZOs3yR33pjSbLgpzKKvZoRmw3m_E6QyeDtKJsQSkcie4x4NNmTGoXZ2nsGr8Tb6PB3k2M6vrukZBB4I1XWRwZNoe6Oi0MEQVSr57P8vfw536EsiMecIJtvf1_4Fwqtt-zL5zB-FYCBF
  priority: 102
  providerName: ProQuest
Title A deep learning based model using RNN-LSTM for the Detection of Schizophrenia from EEG data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522009337
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522009337
https://dx.doi.org/10.1016/j.compbiomed.2022.106225
https://www.ncbi.nlm.nih.gov/pubmed/36306576
https://www.proquest.com/docview/2741308139
https://www.proquest.com/docview/2730316190
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CCqWX0nfdpEGFXt3Yki1Z5LRNd7N9rCl5wEIPQl5LIaF4l-7m2t_eGVt2WprCQi82fgw2Y83MN_ibGYC3RY0ovrA6lsphgqJTEWufqVhJ6neOAVB4Kk6elXJ6kX2a5_MdOO5rYYhWGXx_59Nbbx3OHAZtHq6urqjGF1MJTHA4b9NyqijPMkVTDN79vKV5ZInoylDQ39Ddgc3TcbyItt2VuWOmyDmelpyGZt8dov4FQdtQNHkEDwOGZKPuNR_DjmuewP1Z-Ev-FL6NWO3cioWJEJeMQlXN2qE3jIjul-y0LOMvZ-czhpiVIQZkH9ymJWU1bOnZ2e9MPEYVKGw8PmHEJn0GF5Px-fE0DkMU4gVioU3sc4uZZ1VZngrvnMgJI9jCCmuT2mk06Ez6TFe1ddw7VWF0UsoV3Fmu0ixfiOew2ywb9xKYFDW3iatz6TUqWle50F4KWVGLeJvnEaheb2YROozToIvvpqeSXZtbjRvSuOk0HkE6SK66LhtbyOj-05i-ihT9nsFQsIWsukvWrYMBr01q1twk5q9FFsHRIPnHOt3yufv9GjLDo6iBkEBkJnQEb4bLaOX068Y2bnlD9yDUQHCukwhedGtvUBSaFOJIJV_916vtwQM66pg6-7C7-XHjXiPe2lQHrUHhVs0VbovJyQHcG338PC1x_35cfj39BWtBKdU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTQJeJn5uGQOMBI8RiZ3YtdCEBuvoWBuhtZMm8WCcxpmEUFpoJ8Q_x9_GXeKkPAzUl70muSS6nO--i7-7A3jZKxDF96wOpXKYoOhYhLpMVKgk9TvHAChKKk4eZXJwnny8SC824HdbC0O0ytYn1o66mE3pH_lrarMiMH4J_Xb-PaSpUbS72o7QsH60QnFQtxjzhR2n7tdPTOEWBydH-L1fcX7cn7wfhH7KQDhFsLAMy9RiapbnlseidE6kFERtzwpro8JptPhElonOC-t46VSO7lsp1-POchUn6VTgfW_BViISjcnf1rt-9ulsVZkZiaYIBr1dgsmY5xI1DDMijTdF9pinco6HJaeR3dcHyH8B4DoQHt-DbY9g2WFjcvdhw1UP4PbI79E_hM-HrHBuzvw8iktGgbJg9cgdRjT7S3aWZeFwPBkxRMwMESg7csuaElaxWcnGf_MAGdW_sH7_AyMu6yM4vxHlPobNala5XWBSFNxGrkhlqRNMCfJU6FIKmVODepumAahWb2bq-5vTmI1vpiWyfTUrjRvSuGk0HkDcSc6bHh9ryOj205i2hhW9rsFAtIasuk7WLbz7WJjYLLiJzLjunoRmw3n950kF8KaT9AipQT5rPne_tSHTPWq1rgJ40Z1GH0MbR7Zysyu6BoEOpgY6CmCnsb1OUbigEcUquff_mz-HO4PJaGiGJ9npE7hLb9WQgvZhc_njyj1FaLfMn_n1w-DLTS_ZP0uCXa0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVcEG9cCiwSHK3au_ZuVgihiiS0tIkQaaVIHLbreLcSQk5KUiH-Gr-OGa_tcCgol16TjB2N5_GN95sZgNe9ElF8z-pYKocFik5FrH2mYiVp3jkmQOGpOXk0lodn2adpPt2C320vDNEq25hYB-pyPqN35Ps0ZkVg_hJ63ze0iM_94fvFZUwbpOiktV2nEUzk2P36ieXb8t1RH5_1G86Hg9MPh3GzYSCeIVBYxT63WJYVheWp8M6JnBKo7VlhbVI6jdaeSZ_porSOe6cKDN1KuR53lqs0y2cCr3sLbishNNEJ1VStezITEdpfMM5lWIY1LKLALSO6eGivxwqVc_xYclrWfX1q_Bf0rVPg8B7cbbArOwjGdh-2XPUAdkbN6fxD-HrASucWrNlEccEoRZasXrbDiGB_wb6Mx_HJ5HTEECszxJ6s71Y1Gaxic88mfzMAGXW-sMHgIyMW6yM4uxHVPobtal65p8CkKLlNXJlLrzMsBopcaC-FLGg0vc3zCFSrNzNrJpvTgo3vpqWwfTNrjRvSuAkajyDtJBdhuscGMrp9NKbtXsV4azAFbSCrrpN1yyZwLE1qltwkZlLPTUKz4bx-56QieNtJNtgoYJ4N77vX2pDpbrX2qAhedV9jdKEjI1u5-RX9BiEOFgU6ieBJsL1OUejKiF-V3P3_xV_CDjqqOTkaHz-DO_SnAhtoD7ZXP67cc8R0q-JF7TwMzm_aW_8AsVxbRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+based+model+using+RNN-LSTM+for+the+Detection+of+Schizophrenia+from+EEG+data&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Supakar%2C+Rinku&rft.au=Satvaya%2C+Parthasarathi&rft.au=Chakrabarti%2C+Prasun&rft.date=2022-12-01&rft.issn=0010-4825&rft.spage=106225&rft.epage=106225&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.106225&rft.externalDBID=ECK1-s2.0-S0010482522009337&rft.externalDocID=1_s2_0_S0010482522009337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon