A deep learning based model using RNN-LSTM for the Detection of Schizophrenia from EEG data
Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting t...
Saved in:
| Published in | Computers in biology and medicine Vol. 151; no. Pt A; p. 106225 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.12.2022
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2022.106225 |
Cover
| Abstract | Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting the significant features and make classifications, the authors proposed a deep learning based model using RNN-LSTM to analyze the EEG signal data to diagnose schizophrenia. The proposed model used three dense layers on top of a 100 dimensional LSTM. EEG signal data of 45 schizophrenic patients and 39 healthy subjects were used in the study. Dimensionality reduction algorithm was used to obtain an optimal feature set and the classifier was run with both sets of data. An accuracy of 98% and 93.67% were obtained with the complete feature set and the reduced feature set respectively. The robustness of the model was evaluated using model performance measure and combined performance measure. Outcomes were compared with the outcome obtained with traditional machine learning classifiers such as Random Forest, SVM, FURIA, and AdaBoost, and the proposed model was found to perform better with the complete dataset. When compared with the result of the researchers who worked with the same set of data using either CNN or RNN, the proposed model's accuracy was either better or comparable to theirs. |
|---|---|
| AbstractList | Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting the significant features and make classifications, the authors proposed a deep learning based model using RNN-LSTM to analyze the EEG signal data to diagnose schizophrenia. The proposed model used three dense layers on top of a 100 dimensional LSTM. EEG signal data of 45 schizophrenic patients and 39 healthy subjects were used in the study. Dimensionality reduction algorithm was used to obtain an optimal feature set and the classifier was run with both sets of data. An accuracy of 98% and 93.67% were obtained with the complete feature set and the reduced feature set respectively. The robustness of the model was evaluated using model performance measure and combined performance measure. Outcomes were compared with the outcome obtained with traditional machine learning classifiers such as Random Forest, SVM, FURIA, and AdaBoost, and the proposed model was found to perform better with the complete dataset. When compared with the result of the researchers who worked with the same set of data using either CNN or RNN, the proposed model's accuracy was either better or comparable to theirs. AbstractNormal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting the significant features and make classifications, the authors proposed a deep learning based model using RNN-LSTM to analyze the EEG signal data to diagnose schizophrenia. The proposed model used three dense layers on top of a 100 dimensional LSTM. EEG signal data of 45 schizophrenic patients and 39 healthy subjects were used in the study. Dimensionality reduction algorithm was used to obtain an optimal feature set and the classifier was run with both sets of data. An accuracy of 98% and 93.67% were obtained with the complete feature set and the reduced feature set respectively. The robustness of the model was evaluated using model performance measure and combined performance measure. Outcomes were compared with the outcome obtained with traditional machine learning classifiers such as Random Forest, SVM, FURIA, and AdaBoost, and the proposed model was found to perform better with the complete dataset. When compared with the result of the researchers who worked with the same set of data using either CNN or RNN, the proposed model's accuracy was either better or comparable to theirs. Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting the significant features and make classifications, the authors proposed a deep learning based model using RNN-LSTM to analyze the EEG signal data to diagnose schizophrenia. The proposed model used three dense layers on top of a 100 dimensional LSTM. EEG signal data of 45 schizophrenic patients and 39 healthy subjects were used in the study. Dimensionality reduction algorithm was used to obtain an optimal feature set and the classifier was run with both sets of data. An accuracy of 98% and 93.67% were obtained with the complete feature set and the reduced feature set respectively. The robustness of the model was evaluated using model performance measure and combined performance measure. Outcomes were compared with the outcome obtained with traditional machine learning classifiers such as Random Forest, SVM, FURIA, and AdaBoost, and the proposed model was found to perform better with the complete dataset. When compared with the result of the researchers who worked with the same set of data using either CNN or RNN, the proposed model's accuracy was either better or comparable to theirs.Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting the significant features and make classifications, the authors proposed a deep learning based model using RNN-LSTM to analyze the EEG signal data to diagnose schizophrenia. The proposed model used three dense layers on top of a 100 dimensional LSTM. EEG signal data of 45 schizophrenic patients and 39 healthy subjects were used in the study. Dimensionality reduction algorithm was used to obtain an optimal feature set and the classifier was run with both sets of data. An accuracy of 98% and 93.67% were obtained with the complete feature set and the reduced feature set respectively. The robustness of the model was evaluated using model performance measure and combined performance measure. Outcomes were compared with the outcome obtained with traditional machine learning classifiers such as Random Forest, SVM, FURIA, and AdaBoost, and the proposed model was found to perform better with the complete dataset. When compared with the result of the researchers who worked with the same set of data using either CNN or RNN, the proposed model's accuracy was either better or comparable to theirs. |
| ArticleNumber | 106225 |
| Author | Chakrabarti, Prasun Satvaya, Parthasarathi Supakar, Rinku |
| Author_xml | – sequence: 1 givenname: Rinku surname: Supakar fullname: Supakar, Rinku email: rinku@lincoln.edu.my organization: Lincoln University College, Malaysia – sequence: 2 givenname: Parthasarathi surname: Satvaya fullname: Satvaya, Parthasarathi email: parthasatvaya@gmail.com organization: Jadavpur University, Kolkata, West Bengal, India – sequence: 3 givenname: Prasun surname: Chakrabarti fullname: Chakrabarti, Prasun email: prasun@lincoln.edu.my organization: Provost and Institute Endowed Distinguished Senior Chair Professor, Techno India NJR Institute of Technology, Udaipur, Rajasthan, ThuDau Mot University Vietnam, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36306576$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkkFv1DAQhS1URLeFv4AsceGSZWwncXJBtGVbkJYiseXEwXKcCesliYOdIJVfX0dbFqkSUjmNNPrm6em9OSFHveuREMpgyYDlb3ZL47qhsq7DesmB87jOOc-ekAUrZJlAJtIjsgBgkKQFz47JSQg7AEhBwDNyLHIBeSbzBfl2RmvEgbaofW_777TSAWvauRpbOoV58-X6Ollvbj7Rxnk6bpG-xxHNaF1PXUM3Zmt_u2HrsbeaNt51dLW6orUe9XPytNFtwBf385R8vVzdXHxI1p-vPl6crROTsXRMmkwDl1WlORMNoshAZqALLbSGGstC8DRv0rKqNfIGZVWWICUWHDWXLM2MOCWv97qDdz8nDKPqbDDYtrpHNwXFpQDBclZCRF89QHdu8n10F6mUCSiYKCP18p6aqpiwGrzttL9Vf2KLQLEHjHcheGwOCAM1N6R26m9Dam5I7RuKp28fnBo76jnN0WvbPkbgfC-AMdJfFr0KxmJvsLY-1qJqZ__DxUHEtLa3Rrc_8BbDIRSmAlegNvMnzY_EOUAphIwC7_4t8DgPd8FX2yE |
| CitedBy_id | crossref_primary_10_1007_s11571_023_10011_x crossref_primary_10_3390_biomedinformatics3010014 crossref_primary_10_1007_s10489_024_05669_7 crossref_primary_10_1016_j_hydres_2024_10_001 crossref_primary_10_3389_fnins_2022_1097660 crossref_primary_10_1016_j_neulet_2025_138146 crossref_primary_10_1016_j_saa_2024_124296 crossref_primary_10_1097_YIC_0000000000000490 crossref_primary_10_1177_15500594251328068 crossref_primary_10_1016_j_bspc_2023_105815 crossref_primary_10_3390_app14125048 crossref_primary_10_1016_j_asoc_2024_112631 crossref_primary_10_1002_brx2_29 crossref_primary_10_1007_s11227_024_06627_3 crossref_primary_10_1007_s00521_023_08971_6 crossref_primary_10_1007_s11571_024_10120_1 crossref_primary_10_3389_fnhum_2023_1134599 crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_3389_fnhum_2024_1347082 crossref_primary_10_3390_app13169233 crossref_primary_10_1016_j_bspc_2024_107379 crossref_primary_10_1016_j_schres_2024_07_015 crossref_primary_10_1007_s10489_023_05155_6 crossref_primary_10_1007_s12021_024_09684_4 crossref_primary_10_24906_isc_2023_v37_i5_44895 crossref_primary_10_1007_s10586_024_04511_6 crossref_primary_10_1016_j_aej_2024_06_058 crossref_primary_10_1016_j_compeleceng_2024_110005 crossref_primary_10_1016_j_eswa_2023_122937 crossref_primary_10_1007_s41939_024_00612_2 crossref_primary_10_1049_ell2_13109 crossref_primary_10_1007_s11055_024_01691_x crossref_primary_10_1186_s40779_025_00598_z crossref_primary_10_1007_s10916_024_02048_0 crossref_primary_10_1016_j_energy_2023_129688 crossref_primary_10_17694_bajece_1228396 crossref_primary_10_3390_su16156627 crossref_primary_10_1007_s11831_023_10047_6 crossref_primary_10_1186_s40708_024_00240_z crossref_primary_10_1186_s40708_024_00241_y crossref_primary_10_3390_axioms13050335 crossref_primary_10_1186_s40708_023_00201_y |
| Cites_doi | 10.1038/s41598-018-32290-9 10.18280/ts.360404 10.1109/JBHI.2018.2796588 10.1016/j.eswa.2008.07.037 10.1093/bja/aes312 10.1038/nature09552 10.1109/TBME.2016.2558824 10.1109/ACCESS.2020.3037995 10.1142/S0219519412400192 10.1016/0020-7101(91)90028-D 10.1016/j.nicl.2017.06.014 10.1523/JNEUROSCI.2874-10.2010 10.1016/j.ebiom.2019.08.023 10.21037/atm.2019.12.77 10.1016/j.eswa.2010.07.145 10.1176/appi.ajp.161.3.473 10.1016/j.clinph.2010.10.042 10.1016/j.neuroimage.2011.12.090 10.1186/s12938-018-0464-x 10.1109/JBHI.2019.2941222 10.1007/978-3-319-44778-0_36 10.1016/S0140-6736(15)01121-6 10.1016/j.schres.2016.05.007 10.1016/j.knosys.2020.106591 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. 2022. Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. – notice: 2022. Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2022.106225 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection Proquest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Research Library Prep MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 106225 |
| ExternalDocumentID | 36306576 10_1016_j_compbiomed_2022_106225 S0010482522009337 1_s2_0_S0010482522009337 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c514t-f5a027bba213fee350750a8a3aa0de983246f49bdae2fe7b99077e82ea27145c3 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sat Sep 27 21:30:52 EDT 2025 Tue Oct 07 06:20:34 EDT 2025 Wed Feb 19 02:25:10 EST 2025 Wed Oct 01 05:22:44 EDT 2025 Thu Apr 24 22:52:33 EDT 2025 Fri Feb 23 02:38:26 EST 2024 Tue Feb 25 20:11:33 EST 2025 Tue Oct 14 19:33:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt A |
| Keywords | Deep learning Schizophrenia CNN Electroencephalogram RNN-LSTM |
| Language | English |
| License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-f5a027bba213fee350750a8a3aa0de983246f49bdae2fe7b99077e82ea27145c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 36306576 |
| PQID | 2741308139 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2730316190 proquest_journals_2741308139 pubmed_primary_36306576 crossref_primary_10_1016_j_compbiomed_2022_106225 crossref_citationtrail_10_1016_j_compbiomed_2022_106225 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_106225 elsevier_clinicalkeyesjournals_1_s2_0_S0010482522009337 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_106225 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Chen (bib18) 2016; 2 Doan (bib16) 2017; 15 Boostani, Sadatnejad, Sabeti (bib20) 2009; 36 Thilakvathi (bib21) 2017; 28 Aslan, Akin (bib24) 2020; 37 Chu (bib25) 2017 Puthankattil, Joseph (bib8) 2012; 12 Sundari, Sujatha (bib32) 2021 Zhu (bib11) 2018; 17 Roy, Kiral-Kornek, Harrer (bib26) 2018 Insel (bib1) 2010; 468 Bouallegue (bib28) 2020; 8 Florkowski (bib42) 2008; 29 Gorur (bib40) 2019; 36 Faust (bib38) 2021; 212 Ruffini (bib29) 2016 Brownlee (bib41) Dakka (bib33) 2017 Owen, Sawa, Mortensen (bib43) 2016; 388 Kindler (bib5) 2011; 122 Oh (bib23) 2019; 19 Tasoulis (bib37) 2018 Liu (bib22) 2017 Prasad (bib13) 2014 Phang (bib15) 2020; 24 Brown, Thompson (bib4) 2010; vol. 4 Shim (bib9) 2016; 176 van den Heuvel (bib6) 2010; 30 Anier (bib3) 2012; 109 Sabeti (bib12) 2011; 38 Cannings (bib35) 2020; 13 Santos-Mayo, San-José-Revuelta, Arribas (bib19) 2017; 64 Huang (bib10) 2018; 23 Robinson (bib2) 2004; 161 Agarap (bib39) 2019; arXiv:1803.08375 Fornito (bib7) 2012; 62 Chin (bib17) 2018; 8 Xu (bib27) 2020; 8 Yan (bib31) 2019; 47 Gorbachevskaya (bib34) Yan (bib30) 2017 Krajca (bib14) 1991; 28 Gupta (bib36) Xingjian (bib44) 2015 Dakka (10.1016/j.compbiomed.2022.106225_bib33) 2017 Owen (10.1016/j.compbiomed.2022.106225_bib43) 2016; 388 Sundari (10.1016/j.compbiomed.2022.106225_bib32) 2021 Gorbachevskaya (10.1016/j.compbiomed.2022.106225_bib34) Fornito (10.1016/j.compbiomed.2022.106225_bib7) 2012; 62 Sabeti (10.1016/j.compbiomed.2022.106225_bib12) 2011; 38 Santos-Mayo (10.1016/j.compbiomed.2022.106225_bib19) 2017; 64 Xingjian (10.1016/j.compbiomed.2022.106225_bib44) 2015 Puthankattil (10.1016/j.compbiomed.2022.106225_bib8) 2012; 12 Yan (10.1016/j.compbiomed.2022.106225_bib30) 2017 Cannings (10.1016/j.compbiomed.2022.106225_bib35) 2020; 13 Thilakvathi (10.1016/j.compbiomed.2022.106225_bib21) 2017; 28 van den Heuvel (10.1016/j.compbiomed.2022.106225_bib6) 2010; 30 Ruffini (10.1016/j.compbiomed.2022.106225_bib29) 2016 Robinson (10.1016/j.compbiomed.2022.106225_bib2) 2004; 161 Oh (10.1016/j.compbiomed.2022.106225_bib23) 2019; 19 Agarap (10.1016/j.compbiomed.2022.106225_bib39) 2019; arXiv:1803.08375 Prasad (10.1016/j.compbiomed.2022.106225_bib13) 2014 Aslan (10.1016/j.compbiomed.2022.106225_bib24) 2020; 37 Bouallegue (10.1016/j.compbiomed.2022.106225_bib28) 2020; 8 Florkowski (10.1016/j.compbiomed.2022.106225_bib42) 2008; 29 Gorur (10.1016/j.compbiomed.2022.106225_bib40) 2019; 36 Chin (10.1016/j.compbiomed.2022.106225_bib17) 2018; 8 Boostani (10.1016/j.compbiomed.2022.106225_bib20) 2009; 36 Insel (10.1016/j.compbiomed.2022.106225_bib1) 2010; 468 Chen (10.1016/j.compbiomed.2022.106225_bib18) 2016; 2 Tasoulis (10.1016/j.compbiomed.2022.106225_bib37) 2018 Roy (10.1016/j.compbiomed.2022.106225_bib26) 2018 Xu (10.1016/j.compbiomed.2022.106225_bib27) 2020; 8 Huang (10.1016/j.compbiomed.2022.106225_bib10) 2018; 23 Anier (10.1016/j.compbiomed.2022.106225_bib3) 2012; 109 Yan (10.1016/j.compbiomed.2022.106225_bib31) 2019; 47 Gupta (10.1016/j.compbiomed.2022.106225_bib36) Brownlee (10.1016/j.compbiomed.2022.106225_bib41) Chu (10.1016/j.compbiomed.2022.106225_bib25) 2017 Phang (10.1016/j.compbiomed.2022.106225_bib15) 2020; 24 Liu (10.1016/j.compbiomed.2022.106225_bib22) 2017 Shim (10.1016/j.compbiomed.2022.106225_bib9) 2016; 176 Zhu (10.1016/j.compbiomed.2022.106225_bib11) 2018; 17 Brown (10.1016/j.compbiomed.2022.106225_bib4) 2010; vol. 4 Kindler (10.1016/j.compbiomed.2022.106225_bib5) 2011; 122 Doan (10.1016/j.compbiomed.2022.106225_bib16) 2017; 15 Krajca (10.1016/j.compbiomed.2022.106225_bib14) 1991; 28 Faust (10.1016/j.compbiomed.2022.106225_bib38) 2021; 212 |
| References_xml | – volume: 23 start-page: 342 year: 2018 end-page: 350 ident: bib10 article-title: Identifying resting-state multi-frequency biomarkers via tree-guided group sparse learning for schizophrenia classification publication-title: IEEE J. Biomed. Heal. Informatics – volume: 37 year: 2020 ident: bib24 article-title: Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals publication-title: Trait. Du. Signal – year: 2021 ident: bib32 article-title: Identification of schizophrenia using LSTM recurrent neural network publication-title: 2021 Seventh International Conference on Bio Signals, Images, and Instrumentation – volume: 8 start-page: 1 year: 2020 end-page: 12 ident: bib27 article-title: Using a deep recurrent neural network with EEG signal to detect Parkinson's disease publication-title: Ann. Transl. Med. – volume: 28 start-page: 71 year: 1991 end-page: 89 ident: bib14 article-title: Automatic identification of significant graphoelements in multichannel eeg recordings by adaptive segmentation and fuzzy clustering publication-title: Int. J. Bio Med. Comput. – volume: 12 start-page: 1 year: 2012 end-page: 13 ident: bib8 article-title: Classification of EEG signals in normal and depression conditions by ANN using RWE and signal entropy publication-title: J. Mech. Med. Biol. – volume: 17 start-page: 32 year: 2018 ident: bib11 article-title: Non-negative discriminative brain functional connectivity for identifying schizophrenia on resting-state fMRI publication-title: Biomed. Eng. Online – ident: bib41 – volume: 30 start-page: 15915 year: 2010 end-page: 15926 ident: bib6 article-title: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis publication-title: J. Neurosci. – start-page: 1 year: 2018 end-page: 10 ident: bib26 article-title: ChronoNet: A Deep Recurrent Neural Network for Abnormal EEG Identification – year: 2014 ident: bib13 article-title: Single-trial Eeg Classification Using Logistic Regression Based on Ensemble Synchronization – year: 2017 ident: bib30 article-title: Discriminating schizophrenia from normal controls using resting state functional network connectivity: a deep neural network and layer-wise relevance propagation method publication-title: IEEE 27th International Workshop on Machine Learning for Signal Processing – volume: 122 start-page: 1179 year: 2011 end-page: 1182 ident: bib5 article-title: Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates publication-title: Clin. Neurophysiol. – volume: 388 start-page: 86 year: 2016 end-page: 97 ident: bib43 article-title: Schizophrenia publication-title: Lancet – volume: 468 start-page: 187 year: 2010 end-page: 193 ident: bib1 article-title: Rethinking schizophrenia publication-title: Nature – start-page: 1 year: 2017 end-page: 10 ident: bib22 article-title: A Data Driven Approach for Resting-State EEG Signal Classification of Schizophrenia with Control Participants Using Random Matrix Theory – volume: 212 start-page: 1 year: 2021 end-page: 10 ident: bib38 article-title: Accurate detection of sleep apnea with long short-term memory network based on RR interval signals publication-title: Knowl. Base Syst. – volume: vol. 4 start-page: 181 year: 2010 end-page: 214 ident: bib4 article-title: Functional brain imaging in schizophrenia: selected results and methods publication-title: Behavioral Neurobiology of Schizophrenia and its Treatment. Current Topics in Behavioral Neurosciences – volume: 8 start-page: 635 year: 2018 end-page: 644 ident: bib17 article-title: Recognition of schizophrenia with regularized support vector machine and sequential region of interest selection using structural magnetic resonance imaging publication-title: Sci. Rep. – volume: 36 start-page: 6492 year: 2009 end-page: 6499 ident: bib20 article-title: An efficient classifier to diagnose of schizophrenia based on EEG signals publication-title: Expert Syst. Appl. – volume: 38 start-page: 2063 year: 2011 end-page: 2071 ident: bib12 article-title: A new approach for EEG signal classification of schizophrenic and control participants publication-title: Expert Syst. Appl. – volume: 36 start-page: 319 year: 2019 end-page: 329 ident: bib40 article-title: GKP signal processing using deep CNN and SVM for tongue-machine interface publication-title: Trait. Du. Signal – volume: 28 start-page: 1 year: 2017 end-page: 9 ident: bib21 article-title: EEG signal complexity analysis for schizophrenia during rest and mental activity publication-title: Biomed. Res. – volume: 62 start-page: 2296 year: 2012 end-page: 2314 ident: bib7 article-title: Schizophrenia, neuroimaging and connectomics publication-title: Neuroimage – start-page: 306 year: 2016 end-page: 313 ident: bib29 article-title: EEG-Driven RNN classification for prognosis of neurodegeneration in at-risk patient publication-title: Lecture Notes in Computer Science – volume: 19 start-page: 1 year: 2019 end-page: 13 ident: bib23 article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals publication-title: Appl. Sci. – volume: 47 start-page: 543 year: 2019 end-page: 552 ident: bib31 article-title: Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data publication-title: EBioMedicine – year: 2018 ident: bib37 article-title: Biomedical data ensemble classification using random projections publication-title: 2018 IEEE International Conference on Big Data , Seattle, WA, USA – start-page: 1 year: 2017 end-page: 6 ident: bib33 article-title: Learning Neural Markers of Schizophrenia Disorder Using Recurrent Neural Networks – volume: 15 start-page: 719 year: 2017 end-page: 731 ident: bib16 article-title: Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders publication-title: Neuroimage: Clinical – ident: bib34 – volume: 2 start-page: 1 year: 2016 end-page: 21 ident: bib18 article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults publication-title: Neuropsychiatr Electrophysiol. – volume: 64 start-page: 395 year: 2017 end-page: 407 ident: bib19 article-title: A computer-aided diagnosis system with EEG based on the P3b wave during an auditory odd-ball task in schizophrenia publication-title: IEEE Trans. Biomed. Eng. – start-page: 802 year: 2015 end-page: 810 ident: bib44 article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 8 start-page: 206992 year: 2020 end-page: 207007 ident: bib28 article-title: A dynamic filtering DF-RNN deep-learning-based approach for EEG-based neurological disorders diagnosis publication-title: IEEE Access – volume: 13 start-page: 1 year: 2020 end-page: 15 ident: bib35 article-title: Random projections: data perturbation for classification problems publication-title: Wires Computational Statistics – volume: 29 start-page: 83 year: 2008 end-page: 87 ident: bib42 article-title: Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests publication-title: Clin. Biochem. Rev. – volume: 109 start-page: 928 year: 2012 end-page: 934 ident: bib3 article-title: Relationship between approximate entropy and visual inspection of irregularity in the EEG signal, a comparison with spectral entropy publication-title: Br. J. Anesthesia – start-page: 1 year: 2017 end-page: 7 ident: bib25 article-title: Individual Recognition in Schizophrenia Using Deep Methods with Random Forest and Voting Classifiers: Insights from Resting State EEG Streams – volume: 176 start-page: 314 year: 2016 end-page: 319 ident: bib9 article-title: Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features publication-title: Schizophr. Res. – volume: arXiv:1803.08375 start-page: 1 year: 2019 end-page: 7 ident: bib39 article-title: Deep learning using rectified linear units (ReLU) publication-title: Neural Evol. Comput. – volume: 161 start-page: 473 year: 2004 end-page: 479 ident: bib2 article-title: Symptomatic and functional recovery from a first episode of schizophrenia or schizoaffective disorder publication-title: Am. J. Psychiatr. – volume: 24 start-page: 1333 year: 2020 end-page: 1343 ident: bib15 article-title: Classification of EEG-based brain connectivity networks in schizophrenia using a multi-domain connectome convolutional neural network publication-title: IEEE Journal of Biomedical and Health Informatics – ident: bib36 – volume: 8 start-page: 635 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2022.106225_bib17 article-title: Recognition of schizophrenia with regularized support vector machine and sequential region of interest selection using structural magnetic resonance imaging publication-title: Sci. Rep. doi: 10.1038/s41598-018-32290-9 – volume: 36 start-page: 319 issue: 4 year: 2019 ident: 10.1016/j.compbiomed.2022.106225_bib40 article-title: GKP signal processing using deep CNN and SVM for tongue-machine interface publication-title: Trait. Du. Signal doi: 10.18280/ts.360404 – start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2022.106225_bib26 – volume: 23 start-page: 342 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2022.106225_bib10 article-title: Identifying resting-state multi-frequency biomarkers via tree-guided group sparse learning for schizophrenia classification publication-title: IEEE J. Biomed. Heal. Informatics doi: 10.1109/JBHI.2018.2796588 – volume: 28 start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2022.106225_bib21 article-title: EEG signal complexity analysis for schizophrenia during rest and mental activity publication-title: Biomed. Res. – volume: 36 start-page: 6492 issue: 3 year: 2009 ident: 10.1016/j.compbiomed.2022.106225_bib20 article-title: An efficient classifier to diagnose of schizophrenia based on EEG signals publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.07.037 – volume: 109 start-page: 928 year: 2012 ident: 10.1016/j.compbiomed.2022.106225_bib3 article-title: Relationship between approximate entropy and visual inspection of irregularity in the EEG signal, a comparison with spectral entropy publication-title: Br. J. Anesthesia doi: 10.1093/bja/aes312 – year: 2014 ident: 10.1016/j.compbiomed.2022.106225_bib13 – year: 2021 ident: 10.1016/j.compbiomed.2022.106225_bib32 article-title: Identification of schizophrenia using LSTM recurrent neural network – volume: 468 start-page: 187 year: 2010 ident: 10.1016/j.compbiomed.2022.106225_bib1 article-title: Rethinking schizophrenia publication-title: Nature doi: 10.1038/nature09552 – volume: 64 start-page: 395 issue: 2 year: 2017 ident: 10.1016/j.compbiomed.2022.106225_bib19 article-title: A computer-aided diagnosis system with EEG based on the P3b wave during an auditory odd-ball task in schizophrenia publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2558824 – start-page: 802 year: 2015 ident: 10.1016/j.compbiomed.2022.106225_bib44 article-title: Convolutional LSTM network: a machine learning approach for precipitation nowcasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 2 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.compbiomed.2022.106225_bib18 article-title: Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults publication-title: Neuropsychiatr Electrophysiol. – volume: 8 start-page: 206992 year: 2020 ident: 10.1016/j.compbiomed.2022.106225_bib28 article-title: A dynamic filtering DF-RNN deep-learning-based approach for EEG-based neurological disorders diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3037995 – ident: 10.1016/j.compbiomed.2022.106225_bib41 – start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2022.106225_bib22 – volume: 12 start-page: 1 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2022.106225_bib8 article-title: Classification of EEG signals in normal and depression conditions by ANN using RWE and signal entropy publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519412400192 – volume: 28 start-page: 71 issue: 28 year: 1991 ident: 10.1016/j.compbiomed.2022.106225_bib14 article-title: Automatic identification of significant graphoelements in multichannel eeg recordings by adaptive segmentation and fuzzy clustering publication-title: Int. J. Bio Med. Comput. doi: 10.1016/0020-7101(91)90028-D – volume: 15 start-page: 719 year: 2017 ident: 10.1016/j.compbiomed.2022.106225_bib16 article-title: Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders publication-title: Neuroimage: Clinical doi: 10.1016/j.nicl.2017.06.014 – volume: arXiv:1803.08375 start-page: 1 year: 2019 ident: 10.1016/j.compbiomed.2022.106225_bib39 article-title: Deep learning using rectified linear units (ReLU) publication-title: Neural Evol. Comput. – volume: 30 start-page: 15915 issue: 47 year: 2010 ident: 10.1016/j.compbiomed.2022.106225_bib6 article-title: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2874-10.2010 – volume: 47 start-page: 543 year: 2019 ident: 10.1016/j.compbiomed.2022.106225_bib31 article-title: Discriminating schizophrenia using recurrent neural network applied on time courses of multi-site FMRI data publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.08.023 – ident: 10.1016/j.compbiomed.2022.106225_bib34 – volume: 8 start-page: 1 issue: 14 year: 2020 ident: 10.1016/j.compbiomed.2022.106225_bib27 article-title: Using a deep recurrent neural network with EEG signal to detect Parkinson's disease publication-title: Ann. Transl. Med. doi: 10.21037/atm.2019.12.77 – volume: 38 start-page: 2063 year: 2011 ident: 10.1016/j.compbiomed.2022.106225_bib12 article-title: A new approach for EEG signal classification of schizophrenic and control participants publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.07.145 – volume: 13 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2022.106225_bib35 article-title: Random projections: data perturbation for classification problems publication-title: Wires Computational Statistics – volume: 161 start-page: 473 year: 2004 ident: 10.1016/j.compbiomed.2022.106225_bib2 article-title: Symptomatic and functional recovery from a first episode of schizophrenia or schizoaffective disorder publication-title: Am. J. Psychiatr. doi: 10.1176/appi.ajp.161.3.473 – volume: 19 start-page: 1 issue: 14 year: 2019 ident: 10.1016/j.compbiomed.2022.106225_bib23 article-title: Deep convolutional neural network model for automated diagnosis of schizophrenia using EEG signals publication-title: Appl. Sci. – volume: 122 start-page: 1179 issue: 6 year: 2011 ident: 10.1016/j.compbiomed.2022.106225_bib5 article-title: Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2010.10.042 – volume: 62 start-page: 2296 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2022.106225_bib7 article-title: Schizophrenia, neuroimaging and connectomics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.090 – volume: vol. 4 start-page: 181 year: 2010 ident: 10.1016/j.compbiomed.2022.106225_bib4 article-title: Functional brain imaging in schizophrenia: selected results and methods – volume: 17 start-page: 32 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2022.106225_bib11 article-title: Non-negative discriminative brain functional connectivity for identifying schizophrenia on resting-state fMRI publication-title: Biomed. Eng. Online doi: 10.1186/s12938-018-0464-x – start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2022.106225_bib25 – start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2022.106225_bib33 – volume: 24 start-page: 1333 issue: 5 year: 2020 ident: 10.1016/j.compbiomed.2022.106225_bib15 article-title: Classification of EEG-based brain connectivity networks in schizophrenia using a multi-domain connectome convolutional neural network publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2019.2941222 – start-page: 306 year: 2016 ident: 10.1016/j.compbiomed.2022.106225_bib29 article-title: EEG-Driven RNN classification for prognosis of neurodegeneration in at-risk patient doi: 10.1007/978-3-319-44778-0_36 – volume: 388 start-page: 86 year: 2016 ident: 10.1016/j.compbiomed.2022.106225_bib43 article-title: Schizophrenia publication-title: Lancet doi: 10.1016/S0140-6736(15)01121-6 – volume: 29 start-page: 83 issue: 1 year: 2008 ident: 10.1016/j.compbiomed.2022.106225_bib42 article-title: Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests publication-title: Clin. Biochem. Rev. – volume: 176 start-page: 314 issue: 2–3 year: 2016 ident: 10.1016/j.compbiomed.2022.106225_bib9 article-title: Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features publication-title: Schizophr. Res. doi: 10.1016/j.schres.2016.05.007 – year: 2018 ident: 10.1016/j.compbiomed.2022.106225_bib37 article-title: Biomedical data ensemble classification using random projections – volume: 37 year: 2020 ident: 10.1016/j.compbiomed.2022.106225_bib24 article-title: Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals publication-title: Trait. Du. Signal – year: 2017 ident: 10.1016/j.compbiomed.2022.106225_bib30 article-title: Discriminating schizophrenia from normal controls using resting state functional network connectivity: a deep neural network and layer-wise relevance propagation method – volume: 212 start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2022.106225_bib38 article-title: Accurate detection of sleep apnea with long short-term memory network based on RR interval signals publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2020.106591 – ident: 10.1016/j.compbiomed.2022.106225_bib36 |
| SSID | ssj0004030 |
| Score | 2.5387876 |
| Snippet | Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity... AbstractNormal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 106225 |
| SubjectTerms | Accuracy Algorithms Anomalies Automation Brain Classification Classifiers CNN Datasets Deep Learning Discriminant analysis Disease EEG Electroencephalogram Electroencephalography Electroencephalography - methods Feature extraction Hallucinations Humans Internal Medicine Machine Learning Magnetic resonance imaging Mental disorders Model accuracy Neural networks Other Performance evaluation Psychosis RNN-LSTM Schizophrenia Schizophrenia - diagnosis |
| SummonAdditionalLinks | – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fi9QwEB7OPRBfxN9WT4nga7FN2mSDiJy65yFukds7OPAhpJvkQKS7unv_vzNN2vXhlH1tO02ZzmS-JN_MALyeOkTxU6tzqTwuUHQpch0qlStJ9c4xAIpAycnzRp5eVF8u68sDaIZcGKJVDnNiP1G71ZL2yN9QmRWB8Uvo9-tfOXWNotPVoYWGTa0V3Lu-xNgtOORUGWsChx9mzbezXaZkIWJSCs4-FS6OErcnMr6IxB2T3nHdyDlelpxaaN8csP4FSPvAdHIP7iZEyY6jCdyHA989gNvzdGb-EL4fM-f9mqX-EFeMApdjfQscRrT3K3bWNPnXxfmcIYJliAjZJ7_tKVodWwW2-JuXxygfhc1mnxlxSx_Bxcns_ONpnloq5EtERts81BbXoW1reSmC96ImxGCnVlhbOK_RvSsZKt0663nwqsVYpZSfcm-5Kqt6KR7DpFt1_ikwKRy3hXe1DLpCiN7WQgcpZEsF421dZ6AGvZllqjdObS9-moFY9sPsNG5I4yZqPINylFzHmht7yOjh15ghpxRnQYOBYQ9ZdZOs3yR33pjSbLgpzKKvZoRmw3m_E6QyeDtKJsQSkcie4x4NNmTGoXZ2nsGr8Tb6PB3k2M6vrukZBB4I1XWRwZNoe6Oi0MEQVSr57P8vfw536EsiMecIJtvf1_4Fwqtt-zL5zB-FYCBF priority: 102 providerName: ProQuest |
| Title | A deep learning based model using RNN-LSTM for the Detection of Schizophrenia from EEG data |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522009337 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522009337 https://dx.doi.org/10.1016/j.compbiomed.2022.106225 https://www.ncbi.nlm.nih.gov/pubmed/36306576 https://www.proquest.com/docview/2741308139 https://www.proquest.com/docview/2730316190 |
| Volume | 151 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CCqWX0nfdpEGFXt3Yki1Z5LRNd7N9rCl5wEIPQl5LIaF4l-7m2t_eGVt2WprCQi82fgw2Y83MN_ibGYC3RY0ovrA6lsphgqJTEWufqVhJ6neOAVB4Kk6elXJ6kX2a5_MdOO5rYYhWGXx_59Nbbx3OHAZtHq6urqjGF1MJTHA4b9NyqijPMkVTDN79vKV5ZInoylDQ39Ddgc3TcbyItt2VuWOmyDmelpyGZt8dov4FQdtQNHkEDwOGZKPuNR_DjmuewP1Z-Ev-FL6NWO3cioWJEJeMQlXN2qE3jIjul-y0LOMvZ-czhpiVIQZkH9ymJWU1bOnZ2e9MPEYVKGw8PmHEJn0GF5Px-fE0DkMU4gVioU3sc4uZZ1VZngrvnMgJI9jCCmuT2mk06Ez6TFe1ddw7VWF0UsoV3Fmu0ixfiOew2ywb9xKYFDW3iatz6TUqWle50F4KWVGLeJvnEaheb2YROozToIvvpqeSXZtbjRvSuOk0HkE6SK66LhtbyOj-05i-ihT9nsFQsIWsukvWrYMBr01q1twk5q9FFsHRIPnHOt3yufv9GjLDo6iBkEBkJnQEb4bLaOX068Y2bnlD9yDUQHCukwhedGtvUBSaFOJIJV_916vtwQM66pg6-7C7-XHjXiPe2lQHrUHhVs0VbovJyQHcG338PC1x_35cfj39BWtBKdU |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTQJeJn5uGQOMBI8RiZ3YtdCEBuvoWBuhtZMm8WCcxpmEUFpoJ8Q_x9_GXeKkPAzUl70muSS6nO--i7-7A3jZKxDF96wOpXKYoOhYhLpMVKgk9TvHAChKKk4eZXJwnny8SC824HdbC0O0ytYn1o66mE3pH_lrarMiMH4J_Xb-PaSpUbS72o7QsH60QnFQtxjzhR2n7tdPTOEWBydH-L1fcX7cn7wfhH7KQDhFsLAMy9RiapbnlseidE6kFERtzwpro8JptPhElonOC-t46VSO7lsp1-POchUn6VTgfW_BViISjcnf1rt-9ulsVZkZiaYIBr1dgsmY5xI1DDMijTdF9pinco6HJaeR3dcHyH8B4DoQHt-DbY9g2WFjcvdhw1UP4PbI79E_hM-HrHBuzvw8iktGgbJg9cgdRjT7S3aWZeFwPBkxRMwMESg7csuaElaxWcnGf_MAGdW_sH7_AyMu6yM4vxHlPobNala5XWBSFNxGrkhlqRNMCfJU6FIKmVODepumAahWb2bq-5vTmI1vpiWyfTUrjRvSuGk0HkDcSc6bHh9ryOj205i2hhW9rsFAtIasuk7WLbz7WJjYLLiJzLjunoRmw3n950kF8KaT9AipQT5rPne_tSHTPWq1rgJ40Z1GH0MbR7Zysyu6BoEOpgY6CmCnsb1OUbigEcUquff_mz-HO4PJaGiGJ9npE7hLb9WQgvZhc_njyj1FaLfMn_n1w-DLTS_ZP0uCXa0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVcEG9cCiwSHK3au_ZuVgihiiS0tIkQaaVIHLbreLcSQk5KUiH-Gr-OGa_tcCgol16TjB2N5_GN95sZgNe9ElF8z-pYKocFik5FrH2mYiVp3jkmQOGpOXk0lodn2adpPt2C320vDNEq25hYB-pyPqN35Ps0ZkVg_hJ63ze0iM_94fvFZUwbpOiktV2nEUzk2P36ieXb8t1RH5_1G86Hg9MPh3GzYSCeIVBYxT63WJYVheWp8M6JnBKo7VlhbVI6jdaeSZ_porSOe6cKDN1KuR53lqs0y2cCr3sLbishNNEJ1VStezITEdpfMM5lWIY1LKLALSO6eGivxwqVc_xYclrWfX1q_Bf0rVPg8B7cbbArOwjGdh-2XPUAdkbN6fxD-HrASucWrNlEccEoRZasXrbDiGB_wb6Mx_HJ5HTEECszxJ6s71Y1Gaxic88mfzMAGXW-sMHgIyMW6yM4uxHVPobtal65p8CkKLlNXJlLrzMsBopcaC-FLGg0vc3zCFSrNzNrJpvTgo3vpqWwfTNrjRvSuAkajyDtJBdhuscGMrp9NKbtXsV4azAFbSCrrpN1yyZwLE1qltwkZlLPTUKz4bx-56QieNtJNtgoYJ4N77vX2pDpbrX2qAhedV9jdKEjI1u5-RX9BiEOFgU6ieBJsL1OUejKiF-V3P3_xV_CDjqqOTkaHz-DO_SnAhtoD7ZXP67cc8R0q-JF7TwMzm_aW_8AsVxbRw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+based+model+using+RNN-LSTM+for+the+Detection+of+Schizophrenia+from+EEG+data&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Supakar%2C+Rinku&rft.au=Satvaya%2C+Parthasarathi&rft.au=Chakrabarti%2C+Prasun&rft.date=2022-12-01&rft.issn=0010-4825&rft.spage=106225&rft.epage=106225&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.106225&rft.externalDBID=ECK1-s2.0-S0010482522009337&rft.externalDocID=1_s2_0_S0010482522009337 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |