Simulated annealing aided genetic algorithm for gene selection from microarray data
In recent times, microarray gene expression datasets have gained significant popularity due to their usefulness to identify different types of cancer directly through bio-markers. These datasets possess a high gene-to-sample ratio and high dimensionality, with only a few genes functioning as bio-mar...
Saved in:
| Published in | Computers in biology and medicine Vol. 158; p. 106854 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.05.2023
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2023.106854 |
Cover
| Abstract | In recent times, microarray gene expression datasets have gained significant popularity due to their usefulness to identify different types of cancer directly through bio-markers. These datasets possess a high gene-to-sample ratio and high dimensionality, with only a few genes functioning as bio-markers. Consequently, a significant amount of data is redundant, and it is essential to filter out important genes carefully. In this paper, we propose the Simulated Annealing aided Genetic Algorithm (SAGA), a meta-heuristic approach to identify informative genes from high-dimensional datasets. SAGA utilizes a two-way mutation-based Simulated Annealing (SA) as well as Genetic Algorithm (GA) to ensure a good trade-off between exploitation and exploration of the search space, respectively. The naive version of GA often gets stuck in a local optimum and depends on the initial population, leading to premature convergence. To address this, we have blended a clustering-based population generation with SA to distribute the initial population of GA over the entire feature space. To further enhance the performance, we reduce the initial search space by a score-based filter approach called the Mutually Informed Correlation Coefficient (MICC). The proposed method is evaluated on 6 microarray and 6 omics datasets. Comparison of SAGA with contemporary algorithms has shown that SAGA performs much better than its peers. Our code is available at https://github.com/shyammarjit/SAGA.
•Application of Simulated Annealing aided Genetic Algorithm to solve the FS problem.•Introduced a new multi-objective fitness function to evaluate a feature subset.•Proposal of a new acceptance probability function in SA and enhancements in GA.•Use of initial feature dropping using MICC for microarray and omics datasets.•Clustering-based population initialization to avoid premature convergence of SAGA. |
|---|---|
| AbstractList | In recent times, microarray gene expression datasets have gained significant popularity due to their usefulness to identify different types of cancer directly through bio-markers. These datasets possess a high gene-to-sample ratio and high dimensionality, with only a few genes functioning as bio-markers. Consequently, a significant amount of data is redundant, and it is essential to filter out important genes carefully. In this paper, we propose the Simulated Annealing aided Genetic Algorithm (SAGA), a meta-heuristic approach to identify informative genes from high-dimensional datasets. SAGA utilizes a two-way mutation-based Simulated Annealing (SA) as well as Genetic Algorithm (GA) to ensure a good trade-off between exploitation and exploration of the search space, respectively. The naive version of GA often gets stuck in a local optimum and depends on the initial population, leading to premature convergence. To address this, we have blended a clustering-based population generation with SA to distribute the initial population of GA over the entire feature space. To further enhance the performance, we reduce the initial search space by a score-based filter approach called the Mutually Informed Correlation Coefficient (MICC). The proposed method is evaluated on 6 microarray and 6 omics datasets. Comparison of SAGA with contemporary algorithms has shown that SAGA performs much better than its peers. Our code is available at https://github.com/shyammarjit/SAGA.In recent times, microarray gene expression datasets have gained significant popularity due to their usefulness to identify different types of cancer directly through bio-markers. These datasets possess a high gene-to-sample ratio and high dimensionality, with only a few genes functioning as bio-markers. Consequently, a significant amount of data is redundant, and it is essential to filter out important genes carefully. In this paper, we propose the Simulated Annealing aided Genetic Algorithm (SAGA), a meta-heuristic approach to identify informative genes from high-dimensional datasets. SAGA utilizes a two-way mutation-based Simulated Annealing (SA) as well as Genetic Algorithm (GA) to ensure a good trade-off between exploitation and exploration of the search space, respectively. The naive version of GA often gets stuck in a local optimum and depends on the initial population, leading to premature convergence. To address this, we have blended a clustering-based population generation with SA to distribute the initial population of GA over the entire feature space. To further enhance the performance, we reduce the initial search space by a score-based filter approach called the Mutually Informed Correlation Coefficient (MICC). The proposed method is evaluated on 6 microarray and 6 omics datasets. Comparison of SAGA with contemporary algorithms has shown that SAGA performs much better than its peers. Our code is available at https://github.com/shyammarjit/SAGA. AbstractIn recent times, microarray gene expression datasets have gained significant popularity due to their usefulness to identify different types of cancer directly through bio-markers. These datasets possess a high gene-to-sample ratio and high dimensionality, with only a few genes functioning as bio-markers. Consequently, a significant amount of data is redundant, and it is essential to filter out important genes carefully. In this paper, we propose the Simulated Annealing aided Genetic Algorithm (SAGA), a meta-heuristic approach to identify informative genes from high-dimensional datasets. SAGA utilizes a two-way mutation-based Simulated Annealing (SA) as well as Genetic Algorithm (GA) to ensure a good trade-off between exploitation and exploration of the search space, respectively. The naive version of GA often gets stuck in a local optimum and depends on the initial population, leading to premature convergence. To address this, we have blended a clustering-based population generation with SA to distribute the initial population of GA over the entire feature space. To further enhance the performance, we reduce the initial search space by a score-based filter approach called the Mutually Informed Correlation Coefficient (MICC). The proposed method is evaluated on 6 microarray and 6 omics datasets. Comparison of SAGA with contemporary algorithms has shown that SAGA performs much better than its peers. Our code is available at https://github.com/shyammarjit/SAGA. In recent times, microarray gene expression datasets have gained significant popularity due to their usefulness to identify different types of cancer directly through bio-markers. These datasets possess a high gene-to-sample ratio and high dimensionality, with only a few genes functioning as bio-markers. Consequently, a significant amount of data is redundant, and it is essential to filter out important genes carefully. In this paper, we propose the Simulated Annealing aided Genetic Algorithm (SAGA), a meta-heuristic approach to identify informative genes from high-dimensional datasets. SAGA utilizes a two-way mutation-based Simulated Annealing (SA) as well as Genetic Algorithm (GA) to ensure a good trade-off between exploitation and exploration of the search space, respectively. The naive version of GA often gets stuck in a local optimum and depends on the initial population, leading to premature convergence. To address this, we have blended a clustering-based population generation with SA to distribute the initial population of GA over the entire feature space. To further enhance the performance, we reduce the initial search space by a score-based filter approach called the Mutually Informed Correlation Coefficient (MICC). The proposed method is evaluated on 6 microarray and 6 omics datasets. Comparison of SAGA with contemporary algorithms has shown that SAGA performs much better than its peers. Our code is available at https://github.com/shyammarjit/SAGA. •Application of Simulated Annealing aided Genetic Algorithm to solve the FS problem.•Introduced a new multi-objective fitness function to evaluate a feature subset.•Proposal of a new acceptance probability function in SA and enhancements in GA.•Use of initial feature dropping using MICC for microarray and omics datasets.•Clustering-based population initialization to avoid premature convergence of SAGA. In recent times, microarray gene expression datasets have gained significant popularity due to their usefulness to identify different types of cancer directly through bio-markers. These datasets possess a high gene-to-sample ratio and high dimensionality, with only a few genes functioning as bio-markers. Consequently, a significant amount of data is redundant, and it is essential to filter out important genes carefully. In this paper, we propose the Simulated Annealing aided Genetic Algorithm (SAGA), a meta-heuristic approach to identify informative genes from high-dimensional datasets. SAGA utilizes a two-way mutation-based Simulated Annealing (SA) as well as Genetic Algorithm (GA) to ensure a good trade-off between exploitation and exploration of the search space, respectively. The naive version of GA often gets stuck in a local optimum and depends on the initial population, leading to premature convergence. To address this, we have blended a clustering-based population generation with SA to distribute the initial population of GA over the entire feature space. To further enhance the performance, we reduce the initial search space by a score-based filter approach called the Mutually Informed Correlation Coefficient (MICC). The proposed method is evaluated on 6 microarray and 6 omics datasets. Comparison of SAGA with contemporary algorithms has shown that SAGA performs much better than its peers. Our code is available at https://github.com/shyammarjit/SAGA. |
| ArticleNumber | 106854 |
| Author | Bhattacharyya, Trinav Chatterjee, Bitanu Sarkar, Ram Marjit, Shyam |
| Author_xml | – sequence: 1 givenname: Shyam orcidid: 0000-0002-7385-4432 surname: Marjit fullname: Marjit, Shyam email: shyam.marjit@iiitg.ac.in organization: Department of Computer Science and Engineering, Indian Institute of Information Technology Guwahati, Guwahati, 781015, Assam, India – sequence: 2 givenname: Trinav orcidid: 0000-0002-6273-9076 surname: Bhattacharyya fullname: Bhattacharyya, Trinav email: trinav0711@gmail.com organization: Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India – sequence: 3 givenname: Bitanu orcidid: 0000-0003-3169-3156 surname: Chatterjee fullname: Chatterjee, Bitanu email: bitanu.ch@gmail.com organization: Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India – sequence: 4 givenname: Ram orcidid: 0000-0001-8813-4086 surname: Sarkar fullname: Sarkar, Ram email: raamsarkar@gmail.com organization: Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032, West Bengal, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37023541$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk2LFDEQhoOsuLOrf0EavHjpsfLRnfRl0V38ggUPo-dQk6THjN3JmPQI8-9NO7sKA8KcQsJbT6ret67IRYjBEVJRWFKg7Zvt0sRxt_ZxdHbJgPHy3KpGPCELqmRXQ8PFBVkAUKiFYs0lucp5CwACODwjl1yWmkbQBVmt_LgfcHK2whAcDj5sKvS23DcuuMmbCodNTH76PlZ9TH9eq-wGZyYfQ9WnOFajNyliSnioLE74nDztccjuxcN5Tb59eP_17lN9_-Xj57t397VpqJjqXnCmqJDAlURJ0UjZNxLRsm7dNNiCQaFU69aSNWiNNbzpOe15j2UsayS_Jq-P3F2KP_cuT3r02bhhwODiPmsmOyVpC1QU6asT6TbuUyjdaaaAdm0rW15ULx9U-3VxVu-SHzEd9KNdRXBzFJR5c06u18ZPOBsxJfSDpqDnfPRW_8tHz_noYz4FoE4Aj3-cUXp7LHXF0l_eJZ2Nd8E461MJQ9voz4HcnEBMSdwbHH64g8t_TaE6Mw16NW_QvECMA3DaQQG8_T_gvB5-AyWd2n8 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_126404 crossref_primary_10_3389_fpls_2024_1440234 crossref_primary_10_1007_s10528_024_10987_z crossref_primary_10_1007_s10878_024_01233_8 crossref_primary_10_1007_s10115_024_02225_0 crossref_primary_10_1109_TCBB_2024_3480150 crossref_primary_10_1016_j_compbiomed_2024_108236 crossref_primary_10_1016_j_envres_2024_118199 crossref_primary_10_1016_j_asoc_2025_112872 crossref_primary_10_1007_s10044_024_01355_z crossref_primary_10_32604_cmc_2024_047989 crossref_primary_10_1007_s42979_024_03333_y crossref_primary_10_1016_j_eij_2023_100416 crossref_primary_10_1061_JCEMD4_COENG_15129 crossref_primary_10_1155_2023_3489461 crossref_primary_10_1080_0952813X_2023_2301367 crossref_primary_10_1016_j_asoc_2024_111602 crossref_primary_10_1016_j_compbiomed_2024_109071 |
| Cites_doi | 10.1016/j.advengsoft.2016.01.008 10.1109/TEVC.2020.2968743 10.1016/j.advengsoft.2015.01.010 10.1016/j.jprot.2020.104023 10.1016/j.compbiomed.2022.105349 10.1016/S0020-0190(01)00286-1 10.1007/BF01096763 10.1016/j.schres.2014.10.055 10.1016/j.eswa.2009.01.075 10.1109/TNB.2015.2425471 10.1371/journal.pone.0200003 10.1007/s10489-017-0903-6 10.1038/s41598-019-54987-1 10.1126/science.220.4598.671 10.1016/j.bspc.2020.101903 10.1093/nar/30.1.207 10.1038/ncomms13419 10.1016/j.neucom.2017.04.053 10.1016/j.asoc.2020.106341 10.1016/j.knosys.2015.07.006 10.1007/s00521-013-1367-1 10.1504/IJAPR.2015.068929 10.1109/TCYB.2015.2404806 10.1016/j.ins.2009.03.004 10.1016/j.eswa.2017.08.026 10.1109/ACCESS.2020.3031718 10.1016/j.artmed.2004.01.007 10.1016/j.patcog.2007.02.007 10.1186/s13073-016-0293-0 10.1016/j.eswa.2019.112898 10.1016/j.knosys.2015.12.022 10.1007/s00500-018-3282-y 10.1038/nm.3807 10.1093/nar/gky1106 10.1080/00031305.1992.10475879 10.1093/bib/bbz049 10.1186/s40854-021-00243-3 10.1109/TPAMI.2005.159 10.1016/j.advengsoft.2017.07.002 10.1038/s41596-021-00636-9 10.1007/s10898-013-0134-2 10.1177/003754970107600201 10.1504/IJDMB.2015.072092 10.1109/MCI.2006.329691 10.1007/s00521-019-04405-4 10.1016/j.eswa.2022.116834 10.1016/j.eswa.2022.117949 10.1007/BF00175355 10.1109/ACCESS.2021.3100638 10.1109/ACCESS.2021.3069001 10.1038/srep10312 10.1007/s11517-022-02555-7 10.1038/s41592-018-0019-x 10.2528/PIER07082403 10.1109/ACCESS.2019.2897325 10.1016/j.chom.2017.11.004 10.1016/0305-0548(86)90048-1 10.1016/j.eswa.2019.113103 10.1007/s10898-007-9149-x 10.1186/1471-2105-7-3 10.1093/bib/bbac455 10.1109/ACCESS.2022.3222489 10.3389/fbioe.2020.00496 10.1097/MD.0000000000003973 10.1016/j.knosys.2016.07.026 10.2478/v10117-011-0021-1 10.1093/bib/bby127 10.1109/ACCESS.2020.3007291 10.1109/4235.585893 10.1109/MCSE.2007.55 10.1016/j.asoc.2022.109464 10.1016/S0305-0548(97)00031-2 10.1016/j.neucom.2015.06.083 10.1016/j.knosys.2021.107283 10.1186/1471-2105-15-8 10.30699/ijp.2017.27990 10.1093/bib/bbac040 10.1016/j.eswa.2021.114778 10.1155/2021/1004767 10.1007/s00500-021-06229-8 10.1023/A:1012487302797 10.1016/j.asoc.2018.02.051 10.1016/0167-8655(94)90127-9 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. 2023. Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. – notice: 2023. Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2023.106854 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) ProQuest Nursing and Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 106854 |
| ExternalDocumentID | 37023541 10_1016_j_compbiomed_2023_106854 S0010482523003190 1_s2_0_S0010482523003190 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c514t-f43281470387a71ac77f57aad29b55a60ca4886eb725adcdc35f31f3fa010dc73 |
| IEDL.DBID | BENPR |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Thu Oct 02 09:37:27 EDT 2025 Tue Oct 07 06:56:46 EDT 2025 Wed Feb 19 02:24:35 EST 2025 Thu Apr 24 23:02:27 EDT 2025 Wed Oct 01 05:21:38 EDT 2025 Fri Feb 23 02:35:55 EST 2024 Tue Feb 25 20:03:37 EST 2025 Tue Oct 14 19:33:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Microarray dataset Feature selection Optimization algorithm Gene expression Genetic algorithm Simulated annealing |
| Language | English |
| License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-f43281470387a71ac77f57aad29b55a60ca4886eb725adcdc35f31f3fa010dc73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6273-9076 0000-0003-3169-3156 0000-0001-8813-4086 0000-0002-7385-4432 |
| PMID | 37023541 |
| PQID | 2801966763 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2798716014 proquest_journals_2801966763 pubmed_primary_37023541 crossref_citationtrail_10_1016_j_compbiomed_2023_106854 crossref_primary_10_1016_j_compbiomed_2023_106854 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_106854 elsevier_clinicalkeyesjournals_1_s2_0_S0010482523003190 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_106854 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Hagenauer, Schulmann, Li, Vawter, Walsh, Thompson, Turner, Bunney, Myers, Barchas (b113) 2018; 13 Tongchim, Chongstitvatana (b96) 2002; 82 Wang, Duan, Zhang (b97) 2009; 5 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b42) 2017; 114 Kashan (b49) 2009 Mafarja, Mirjalili (b53) 2017; 260 Kampa, Mehta, Chou, Chaovalitwongse, Grabowski (b28) 2014; 59 Wolpert, Macready (b115) 1997; 1 Kira, Rendell (b4) 1992 Mirjalili (b12) 2015; 83 Nag, Pal (b18) 2016; 46 Guha, Ghosh, Bhowmik, Sarkar (b27) 2020 Gunduz (b72) 2021; 7 Emary, Zawbaa, Hassanien (b9) 2016; 172 Tang, Fu, Wang, Li, Li, Yang, Cui, Hong, Li, Chen, Xue, Zhu (b86) 2019; 21 Li, Zhou, Zhang, Yin, Qiu, Gao, Zhu (b80) 2022; 23 Maldonado, López (b16) 2018; 67 Aziz (b64) 2022; 60 Mirjalili (b11) 2015; 89 Karaboga, Basturk (b41) 2007; 39 Bermingham, Pong-Wong, Spiliopoulou, Hayward, Rudan, Campbell, Wright, Wilson, Agakov, Navarro (b29) 2015; 5 Rtayli, Enneya (b73) 2020; 55 Kennedy, Eberhart (b35) 1995; 4 Ahmed, Sheikh, Mirjalili, Sarkar (b103) 2022; 200 Ala, Chen (b87) 2019; 32 Ghosh, Begum, Sardar, Adhikary, Ghosh, Kumar, Sarkar (b101) 2021; 169 (b2) 2006 Guha, Ghosh, Chakrabarti, Sarkar, Mirjalili (b94) 2020; 93 Aha, Bankert (b19) 1995 Mafarja, Mirjalili (b23) 2019; 23 Hunter (b100) 2007; 9 Yang, Deb (b62) 2013; 24 Naik, Satapathy (b50) 2021; 25 Yahya, Ulm, Ludwig, Hapflemeir (b78) 2011; 6 Atashpaz-Gargari, Lucas (b51) 2007 Talbi, Jourdan, Garcia-Nieto, Alba (b60) 2008 Yang, Li, Wang, Xie, Feng, Liu, Zhu (b84) 2022; 23 Altman, Krzywinski (b91) 2018; 15 Hussain, Neggaz, Zhu, Houssein (b57) 2021; 176 Faris, Heidari, Al-Zoubi, Mafarja, Aljarah, Eshtay, Mirjalili (b1) 2020; 140 Guyon, Weston, Barnhill, Vapnik (b21) 2002; 46 Zarshenas, Suzuki (b14) 2016; 110 Mohamed, Zainudin, Othman (b61) 2017; 90 Bhattacharyya, Chatterjee, Singh, Yoon, Geem, Sarkar (b65) 2020; 8 Lu, Yang, Wu, Gao, Xu, Zhang, Yao, Du, Li, Wu (b71) 2016; 95 Hauke, Kossowski (b90) 2011; 30 Ahmed, Ghosh, Mirjalili, Sarkar (b102) 2021; 228 Khushaba, Al-Ani, Al-Jumaily (b39) 2008 Kononenko (b3) 1994 Rodrigues, Pereira, Almeida, Papa, Souza, Ramos, Yang (b104) 2013 Mottawea, Chiang, Mühlbauer, Starr, Butcher, Abujamel, Deeke, Brandel, Zhou, Shokralla (b111) 2016; 7 Al-Tashi, Abdulkadir, Rais, Mirjalili, Alhussian (b24) 2020; 8 Guo, Kouvonen, Koh, Gillet, Wolski, Röst, Rosenberger, Collins, Blum, Gillessen (b109) 2015; 21 Perez-Riverol, Csordas, Bai, Bernal-Llinares, Hewapathirana, Kundu, Inuganti, Griss, Mayer, Eisenacher (b107) 2019; 47 Díaz-Uriarte, Alvarez de Andrés (b22) 2006; 7 Koza (b40) 1994; 4 Attari, Ahmadi, Ala, Moghadamnia (b88) 2022; 147 Guha, Ghosh, Ghosh, Cuevas, Perez-Cisneros, Sarkar (b46) 2022; 10 Abd Elaziz, Ewees, Oliva, Duan, Xiong (b55) 2017 Ram, Najafi, Shakeri (b76) 2017; 12 Mirjalili, Lewis (b37) 2016; 95 Mafarja, Eleyan, Jaber, Hammouri, Mirjalili (b98) 2017 Gunavathi, Premalatha (b67) 2015; 13 Van Rossum, Drake (b99) 2011 Kirkpatrick, Gelatt, Vecchi (b25) 1983; 220 Mousavirad, Ebrahimpour-Komleh (b48) 2017; 47 Dorigo, Birattari, Stutzle (b36) 2006; 1 Pramanik, Sarkar, Sarkar (b105) 2022; 128 Kundu, Chattopadhyay, Cuevas, Sarkar (b63) 2022; 144 Yildirim, Kaya, Kiliç (b30) 2021; 9 Glover (b32) 1986; 13 Neggaz, Ewees, Abd Elaziz, Mafarja (b56) 2020; 145 Feo, Resende (b33) 1995; 6 Richhariya, Tanveer, Rashid, Initiative (b70) 2020; 59 Peng, Long, Ding (b5) 2005; 27 Van Laarhoven, Aarts (b92) 1987 Sacco, Oliveira (b45) 2005 Grassl, Kulak, Pichler, Geyer, Jung, Schubert, Sinitcyn, Cox, Mann (b112) 2016; 8 Yang, Li, Tang, Cui, Wang, Li, Hu, Chen, Xue, Lou, Qiu, Zhu (b82) 2019; 21 Nafis, Awang (b74) 2021; 9 Zhu, Ong, Dash (b58) 2007; 40 Hafez, Hassanien, Zawbaa, Emary (b52) 2015 Leardi (b7) 1996 Rezaei, Bozorg-Haddad, Chu (b38) 2018 Ala, Simic, Pamucar, Tirkolaee (b89) 2022; 207 Goldberg (b26) 2013 Kursa (b77) 2014; 15 Mirjalili (b10) 2016; 96 Edgar, Domrachev, Lash (b108) 2002; 30 Formato (b47) 2007; 77 Senan, Al-Adhaileh, Alsaade, Aldhyani, Alqarni, Alsharif, Uddin, Alahmadi, Jadhav, Alzahrani (b69) 2021; 2021 Arora, Singh, Sharma, Sharma, Anand (b54) 2019; 7 Geem, Kim, Loganathan (b44) 2001; 76 Pudil, Novovičová, Kittler (b20) 1994; 15 Fu, Zhang, Wang, Zhang, Liu, Tang, Yang, Sun, Qiu, Ma (b81) 2022; 17 Schroeder, Birchenough, Ståhlman, Arike, Johansson, Hansson, Bäckhed (b110) 2018; 23 Kennedy, Eberhart (b8) 1997; 5 Mandal, Mondal, Mukhopadhyay (b59) 2015; 14 Pirgazi, Alimoradi, Esmaeili Abharian, Olyaee (b68) 2019; 9 Mahdi, Medjahed, Ouali (b93) 2017; 21 Song, Zhang, Guo, Sun, Wang (b17) 2020; 24 Yang, Li, Chen, Tang, Li, Li, Zhang, Shi, Zhang, Mou, Xue, Zhu (b85) 2021; 232 Rashedi, Nezamabadi-Pour, Saryazdi (b43) 2009; 179 Altman (b95) 1992; 46 Inza, Larranaga, Blanco, Cerrolaza (b13) 2004; 31 De Baumont, Maschietto, Lima, Carraro, Olivieri, Fiorini, Barreta, Palha, Belmonte-de Abreu, Moreira Filho (b114) 2015; 161 Fan, Poh, Zhou (b79) 2009; 36 Singh, Sarkar, Nasipuri (b106) 2015; 2 Mladenović, Hansen (b34) 1997; 24 Chen, Meng, Su (b75) 2020; 8 Cateni, Colla, Vannucci (b15) 2014 Jović, Brkić, Bogunović (b31) 2015 He, Cai, Niyogi (b6) 2005 (b83) 2022; 148 Pyingkodi, Thangarajan (b66) 2018; 19 Pyingkodi (10.1016/j.compbiomed.2023.106854_b66) 2018; 19 Edgar (10.1016/j.compbiomed.2023.106854_b108) 2002; 30 Yang (10.1016/j.compbiomed.2023.106854_b62) 2013; 24 Altman (10.1016/j.compbiomed.2023.106854_b95) 1992; 46 Mafarja (10.1016/j.compbiomed.2023.106854_b23) 2019; 23 Hafez (10.1016/j.compbiomed.2023.106854_b52) 2015 Yang (10.1016/j.compbiomed.2023.106854_b82) 2019; 21 Bhattacharyya (10.1016/j.compbiomed.2023.106854_b65) 2020; 8 Mafarja (10.1016/j.compbiomed.2023.106854_b53) 2017; 260 Mafarja (10.1016/j.compbiomed.2023.106854_b98) 2017 Senan (10.1016/j.compbiomed.2023.106854_b69) 2021; 2021 Fu (10.1016/j.compbiomed.2023.106854_b81) 2022; 17 Mahdi (10.1016/j.compbiomed.2023.106854_b93) 2017; 21 Tang (10.1016/j.compbiomed.2023.106854_b86) 2019; 21 Aziz (10.1016/j.compbiomed.2023.106854_b64) 2022; 60 Hunter (10.1016/j.compbiomed.2023.106854_b100) 2007; 9 (10.1016/j.compbiomed.2023.106854_b83) 2022; 148 Mottawea (10.1016/j.compbiomed.2023.106854_b111) 2016; 7 Yahya (10.1016/j.compbiomed.2023.106854_b78) 2011; 6 Leardi (10.1016/j.compbiomed.2023.106854_b7) 1996 Pudil (10.1016/j.compbiomed.2023.106854_b20) 1994; 15 Kononenko (10.1016/j.compbiomed.2023.106854_b3) 1994 Glover (10.1016/j.compbiomed.2023.106854_b32) 1986; 13 Kundu (10.1016/j.compbiomed.2023.106854_b63) 2022; 144 Tongchim (10.1016/j.compbiomed.2023.106854_b96) 2002; 82 Mohamed (10.1016/j.compbiomed.2023.106854_b61) 2017; 90 Chen (10.1016/j.compbiomed.2023.106854_b75) 2020; 8 Rodrigues (10.1016/j.compbiomed.2023.106854_b104) 2013 Pirgazi (10.1016/j.compbiomed.2023.106854_b68) 2019; 9 Rtayli (10.1016/j.compbiomed.2023.106854_b73) 2020; 55 Geem (10.1016/j.compbiomed.2023.106854_b44) 2001; 76 Mirjalili (10.1016/j.compbiomed.2023.106854_b42) 2017; 114 He (10.1016/j.compbiomed.2023.106854_b6) 2005 Cateni (10.1016/j.compbiomed.2023.106854_b15) 2014 Khushaba (10.1016/j.compbiomed.2023.106854_b39) 2008 Attari (10.1016/j.compbiomed.2023.106854_b88) 2022; 147 Ram (10.1016/j.compbiomed.2023.106854_b76) 2017; 12 Karaboga (10.1016/j.compbiomed.2023.106854_b41) 2007; 39 Peng (10.1016/j.compbiomed.2023.106854_b5) 2005; 27 Lu (10.1016/j.compbiomed.2023.106854_b71) 2016; 95 Kashan (10.1016/j.compbiomed.2023.106854_b49) 2009 Hussain (10.1016/j.compbiomed.2023.106854_b57) 2021; 176 Maldonado (10.1016/j.compbiomed.2023.106854_b16) 2018; 67 Richhariya (10.1016/j.compbiomed.2023.106854_b70) 2020; 59 De Baumont (10.1016/j.compbiomed.2023.106854_b114) 2015; 161 Goldberg (10.1016/j.compbiomed.2023.106854_b26) 2013 Altman (10.1016/j.compbiomed.2023.106854_b91) 2018; 15 Neggaz (10.1016/j.compbiomed.2023.106854_b56) 2020; 145 Ahmed (10.1016/j.compbiomed.2023.106854_b103) 2022; 200 Ala (10.1016/j.compbiomed.2023.106854_b89) 2022; 207 Yildirim (10.1016/j.compbiomed.2023.106854_b30) 2021; 9 Wolpert (10.1016/j.compbiomed.2023.106854_b115) 1997; 1 Nafis (10.1016/j.compbiomed.2023.106854_b74) 2021; 9 Li (10.1016/j.compbiomed.2023.106854_b80) 2022; 23 Kennedy (10.1016/j.compbiomed.2023.106854_b35) 1995; 4 Atashpaz-Gargari (10.1016/j.compbiomed.2023.106854_b51) 2007 Grassl (10.1016/j.compbiomed.2023.106854_b112) 2016; 8 Schroeder (10.1016/j.compbiomed.2023.106854_b110) 2018; 23 (10.1016/j.compbiomed.2023.106854_b2) 2006 Formato (10.1016/j.compbiomed.2023.106854_b47) 2007; 77 Perez-Riverol (10.1016/j.compbiomed.2023.106854_b107) 2019; 47 Aha (10.1016/j.compbiomed.2023.106854_b19) 1995 Pramanik (10.1016/j.compbiomed.2023.106854_b105) 2022; 128 Kira (10.1016/j.compbiomed.2023.106854_b4) 1992 Guha (10.1016/j.compbiomed.2023.106854_b27) 2020 Yang (10.1016/j.compbiomed.2023.106854_b85) 2021; 232 Fan (10.1016/j.compbiomed.2023.106854_b79) 2009; 36 Rezaei (10.1016/j.compbiomed.2023.106854_b38) 2018 Koza (10.1016/j.compbiomed.2023.106854_b40) 1994; 4 Faris (10.1016/j.compbiomed.2023.106854_b1) 2020; 140 Yang (10.1016/j.compbiomed.2023.106854_b84) 2022; 23 Hauke (10.1016/j.compbiomed.2023.106854_b90) 2011; 30 Mousavirad (10.1016/j.compbiomed.2023.106854_b48) 2017; 47 Gunduz (10.1016/j.compbiomed.2023.106854_b72) 2021; 7 Naik (10.1016/j.compbiomed.2023.106854_b50) 2021; 25 Mirjalili (10.1016/j.compbiomed.2023.106854_b12) 2015; 83 Mandal (10.1016/j.compbiomed.2023.106854_b59) 2015; 14 Wang (10.1016/j.compbiomed.2023.106854_b97) 2009; 5 Mirjalili (10.1016/j.compbiomed.2023.106854_b37) 2016; 95 Kennedy (10.1016/j.compbiomed.2023.106854_b8) 1997; 5 Rashedi (10.1016/j.compbiomed.2023.106854_b43) 2009; 179 Singh (10.1016/j.compbiomed.2023.106854_b106) 2015; 2 Ahmed (10.1016/j.compbiomed.2023.106854_b102) 2021; 228 Zarshenas (10.1016/j.compbiomed.2023.106854_b14) 2016; 110 Kirkpatrick (10.1016/j.compbiomed.2023.106854_b25) 1983; 220 Kursa (10.1016/j.compbiomed.2023.106854_b77) 2014; 15 Al-Tashi (10.1016/j.compbiomed.2023.106854_b24) 2020; 8 Jović (10.1016/j.compbiomed.2023.106854_b31) 2015 Guha (10.1016/j.compbiomed.2023.106854_b94) 2020; 93 Díaz-Uriarte (10.1016/j.compbiomed.2023.106854_b22) 2006; 7 Arora (10.1016/j.compbiomed.2023.106854_b54) 2019; 7 Abd Elaziz (10.1016/j.compbiomed.2023.106854_b55) 2017 Mirjalili (10.1016/j.compbiomed.2023.106854_b10) 2016; 96 Kampa (10.1016/j.compbiomed.2023.106854_b28) 2014; 59 Gunavathi (10.1016/j.compbiomed.2023.106854_b67) 2015; 13 Emary (10.1016/j.compbiomed.2023.106854_b9) 2016; 172 Inza (10.1016/j.compbiomed.2023.106854_b13) 2004; 31 Song (10.1016/j.compbiomed.2023.106854_b17) 2020; 24 Van Rossum (10.1016/j.compbiomed.2023.106854_b99) 2011 Ghosh (10.1016/j.compbiomed.2023.106854_b101) 2021; 169 Ala (10.1016/j.compbiomed.2023.106854_b87) 2019; 32 Zhu (10.1016/j.compbiomed.2023.106854_b58) 2007; 40 Guha (10.1016/j.compbiomed.2023.106854_b46) 2022; 10 Mladenović (10.1016/j.compbiomed.2023.106854_b34) 1997; 24 Dorigo (10.1016/j.compbiomed.2023.106854_b36) 2006; 1 Van Laarhoven (10.1016/j.compbiomed.2023.106854_b92) 1987 Guo (10.1016/j.compbiomed.2023.106854_b109) 2015; 21 Talbi (10.1016/j.compbiomed.2023.106854_b60) 2008 Sacco (10.1016/j.compbiomed.2023.106854_b45) 2005 Bermingham (10.1016/j.compbiomed.2023.106854_b29) 2015; 5 Feo (10.1016/j.compbiomed.2023.106854_b33) 1995; 6 Guyon (10.1016/j.compbiomed.2023.106854_b21) 2002; 46 Nag (10.1016/j.compbiomed.2023.106854_b18) 2016; 46 Hagenauer (10.1016/j.compbiomed.2023.106854_b113) 2018; 13 Mirjalili (10.1016/j.compbiomed.2023.106854_b11) 2015; 89 |
| References_xml | – volume: 24 start-page: 169 year: 2013 end-page: 174 ident: b62 article-title: Cuckoo search: recent advances and applications publication-title: Neural Comput. Appl. – volume: 95 year: 2016 ident: b71 article-title: Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images publication-title: Medicine – year: 2011 ident: b99 article-title: The Python Language Reference Manual – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b115 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b41 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim. – volume: 21 start-page: 1058 year: 2019 end-page: 1068 ident: b82 article-title: Consistent gene signature of schizophrenia identified by a novel feature selection strategy from comprehensive sets of transcriptomic data publication-title: Brief. Bioinform. – start-page: 273 year: 2015 end-page: 277 ident: b52 article-title: Hybrid monkey algorithm with Krill Herd algorithm optimization for feature selection publication-title: 2015 11th International Computer Engineering Conference – volume: 6 start-page: 19 year: 2011 end-page: 47 ident: b78 article-title: K-SS: A sequential feature selection and prediction method in microarray study publication-title: Int. J. Artif. Intell. – volume: 9 start-page: 52177 year: 2021 end-page: 52192 ident: b74 article-title: An enhanced hybrid feature selection technique using term frequency-inverse document frequency and support vector machine-recursive feature elimination for sentiment classification publication-title: IEEE Access – start-page: 45 year: 2008 end-page: 52 ident: b60 article-title: Comparison of population based metaheuristics for feature selection: Application to microarray data classification publication-title: 2008 IEEE/ACS International Conference on Computer Systems and Applications – volume: 207 year: 2022 ident: b89 article-title: Appointment scheduling problem under fairness policy in healthcare services: Fuzzy ant lion optimizer publication-title: Expert Syst. Appl. – volume: 76 start-page: 60 year: 2001 end-page: 68 ident: b44 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simulation – start-page: 4661 year: 2007 end-page: 4667 ident: b51 article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition publication-title: 2007 IEEE Congress on Evolutionary Computation – volume: 145 year: 2020 ident: b56 article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection publication-title: Expert Syst. Appl. – volume: 14 start-page: 591 year: 2015 end-page: 597 ident: b59 article-title: A PSO-based approach for pathway marker identification from gene expression data publication-title: IEEE Trans. NanoBiosci. – volume: 169 year: 2021 ident: b101 article-title: Theoretical and empirical analysis of filter ranking methods: Experimental study on benchmark DNA microarray data publication-title: Expert Syst. Appl. – volume: 232 year: 2021 ident: b85 article-title: MMEASE: Online meta-analysis of metabolomic data by enhanced metabolite annotation, marker selection and enrichment analysis publication-title: J. Proteomics – volume: 228 year: 2021 ident: b102 article-title: AIEOU: Automata-based improved equilibrium optimizer with U-shaped transfer function for feature selection publication-title: Knowl.-Based Syst. – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b11 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. – volume: 260 start-page: 302 year: 2017 end-page: 312 ident: b53 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing – start-page: 465 year: 2013 end-page: 468 ident: b104 article-title: BCS: A binary cuckoo search algorithm for feature selection publication-title: 2013 IEEE International Symposium on Circuits and Systems – year: 2017 ident: b98 article-title: Binary dragonfly algorithm for feature selection publication-title: 2017 International Conference on New Trends in Computing Sciences – volume: 30 start-page: 87 year: 2011 end-page: 93 ident: b90 article-title: Comparison of values of pearson’s and spearman’s correlation coefficients on the same sets of data publication-title: Quaest. Geograph. – volume: 15 start-page: 1119 year: 1994 end-page: 1125 ident: b20 article-title: Floating search methods in feature selection publication-title: Pattern Recognit. Lett. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b42 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – volume: 110 start-page: 191 year: 2016 end-page: 201 ident: b14 article-title: Binary coordinate ascent: An efficient optimization technique for feature subset selection for machine learning publication-title: Knowl.-Based Syst. – volume: 47 start-page: 850 year: 2017 end-page: 887 ident: b48 article-title: Human mental search: a new population-based metaheuristic optimization algorithm publication-title: Appl. Intell. – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b43 article-title: GSA: a gravitational search algorithm publication-title: Inform. Sci. – volume: 19 start-page: 561 year: 2018 ident: b66 article-title: Informative gene selection for cancer classification with microarray data using a metaheuristic framework publication-title: Asian Pacif. J. Cancer Prevent: APJCP – volume: 23 year: 2022 ident: b84 article-title: LargeMetabo: an out-of-the-box tool for processing and analyzing large-scale metabolomic data publication-title: Brief. Bioinform. – volume: 5 start-page: 1 year: 2015 end-page: 12 ident: b29 article-title: Application of high-dimensional feature selection: evaluation for genomic prediction in man publication-title: Sci. Rep. – volume: 60 start-page: 1627 year: 2022 end-page: 1646 ident: b64 article-title: Nature-inspired metaheuristics model for gene selection and classification of biomedical microarray data publication-title: Med. Biol. Eng. Comput. – volume: 172 start-page: 371 year: 2016 end-page: 381 ident: b9 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing – volume: 47 start-page: D442 year: 2019 end-page: D450 ident: b107 article-title: The PRIDE database and related tools and resources in 2019: improving support for quantification data publication-title: Nucleic Acids Res. – volume: 7 start-page: 1 year: 2006 end-page: 13 ident: b22 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinformatics – start-page: 507 year: 2005 end-page: 514 ident: b6 article-title: Laplacian score for feature selection publication-title: Proceedings of the 18th International Conference on Neural Information Processing Systems – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: b21 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – volume: 25 start-page: 12915 year: 2021 end-page: 12976 ident: b50 article-title: Past present future: a new human-based algorithm for stochastic optimization publication-title: Soft Comput. – start-page: 1 year: 2008 end-page: 4 ident: b39 article-title: Differential evolution based feature subset selection publication-title: 2008 19th International Conference on Pattern Recognition – volume: 140 year: 2020 ident: b1 article-title: Time-varying hierarchical chains of salps with random weight networks for feature selection publication-title: Expert Syst. Appl. – start-page: 1200 year: 2015 end-page: 1205 ident: b31 article-title: A review of feature selection methods with applications publication-title: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b10 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – volume: 82 start-page: 47 year: 2002 end-page: 54 ident: b96 article-title: Parallel genetic algorithm with parameter adaptation publication-title: Inform. Process. Lett. – volume: 23 start-page: 27 year: 2018 end-page: 40.e7 ident: b110 article-title: Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration publication-title: Cell Host Microbe – volume: 21 start-page: 493 year: 2017 end-page: 501 ident: b93 article-title: Performance analysis of simulated annealing cooling schedules in the context of dense image matching publication-title: Comput. Sist – volume: 8 start-page: 496 year: 2020 ident: b75 article-title: WERFE: A gene selection algorithm based on recursive feature elimination and ensemble strategy publication-title: Front. Bioeng. Biotechnol. – volume: 8 start-page: 1 year: 2016 end-page: 13 ident: b112 article-title: Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome publication-title: Genome Med. – volume: 8 start-page: 125076 year: 2020 end-page: 125096 ident: b24 article-title: Approaches to multi-objective feature selection: A systematic literature review publication-title: IEEE Access – volume: 200 year: 2022 ident: b103 article-title: Binary simulated normal distribution optimizer for feature selection: Theory and application in COVID-19 datasets publication-title: Expert Syst. Appl. – start-page: 1 year: 1995 end-page: 7 ident: b19 article-title: A comparative evaluation of sequential feature selection algorithms publication-title: Pre-Proceedings of the Fifth International Workshop on Artificial Intelligence and Statistics – volume: 1 start-page: 28 year: 2006 end-page: 39 ident: b36 article-title: Ant colony optimization publication-title: IEEE Computational Intelligence Magazine – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: b100 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng – volume: 15 start-page: 399 year: 2018 end-page: 400 ident: b91 article-title: The curse(s) of dimensionality publication-title: Nature Methods – volume: 12 start-page: 339 year: 2017 ident: b76 article-title: Classification and biomarker genes selection for cancer gene expression data using random forest publication-title: Iranian J. Pathol. – volume: 128 year: 2022 ident: b105 article-title: An adaptive and altruistic PSO-based deep feature selection method for pneumonia detection from chest X-rays publication-title: Appl. Soft Comput. – volume: 6 start-page: 109 year: 1995 end-page: 133 ident: b33 article-title: Greedy randomized adaptive search procedures publication-title: J. Global Optim. – volume: 17 start-page: 129 year: 2022 end-page: 151 ident: b81 article-title: Optimization of metabolomic data processing using NOREVA publication-title: Nat. Protoc. – volume: 9 start-page: 1 year: 2019 end-page: 15 ident: b68 article-title: An efficient hybrid filter-wrapper metaheuristic-based gene selection method for high dimensional datasets publication-title: Sci. Rep. – volume: 55 year: 2020 ident: b73 article-title: Enhanced credit card fraud detection based on SVM-recursive feature elimination and hyper-parameters optimization publication-title: J. Inform. Secur. Appl. – year: 2013 ident: b26 article-title: Genetic Algorithms – volume: 67 start-page: 94 year: 2018 end-page: 105 ident: b16 article-title: Dealing with high-dimensional class-imbalanced datasets: Embedded feature selection for SVM classification publication-title: Appl. Soft Comput. – start-page: 39 year: 2014 end-page: 44 ident: b15 article-title: A hybrid feature selection method for classification purposes publication-title: 2014 European Modelling Symposium – volume: 40 start-page: 3236 year: 2007 end-page: 3248 ident: b58 article-title: Markov blanket-embedded genetic algorithm for gene selection publication-title: Pattern Recognit. – volume: 10 start-page: 132193 year: 2022 end-page: 132211 ident: b46 article-title: Groundwater flow algorithm: A novel hydro-geology based optimization algorithm publication-title: IEEE Access – volume: 77 start-page: 425 year: 2007 end-page: 491 ident: b47 article-title: Central force optimization: a new metaheuristic with applications in applied electromagnetics publication-title: Prog. Electromagn. Res. – volume: 31 start-page: 91 year: 2004 end-page: 103 ident: b13 article-title: Filter versus wrapper gene selection approaches in DNA microarray domains publication-title: Artif. Intell. Med. – start-page: 171 year: 1994 end-page: 182 ident: b3 article-title: Estimating attributes: Analysis and extensions of RELIEF publication-title: Machine Learning: ECML-94 – volume: 4 start-page: 87 year: 1994 end-page: 112 ident: b40 article-title: Genetic programming as a means for programming computers by natural selection publication-title: Stat. Comput. – volume: 15 start-page: 1 year: 2014 end-page: 8 ident: b77 article-title: Robustness of random forest-based gene selection methods publication-title: BMC Bioinformatics – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: b5 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b37 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 2021 year: 2021 ident: b69 article-title: Diagnosis of chronic kidney disease using effective classification algorithms and recursive feature elimination techniques publication-title: J. Healthcare Eng. – volume: 144 year: 2022 ident: b63 article-title: AltWOA: Altruistic whale optimization algorithm for feature selection on microarray datasets publication-title: Comput. Biol. Med. – volume: 93 year: 2020 ident: b94 article-title: Introducing clustering based population in binary gravitational search algorithm for feature selection publication-title: Appl. Soft Comput. – volume: 23 start-page: 6249 year: 2019 end-page: 6265 ident: b23 article-title: Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection publication-title: Soft Comput. – volume: 36 start-page: 9919 year: 2009 end-page: 9923 ident: b79 article-title: A sequential feature extraction approach for naïve bayes classification of microarray data publication-title: Expert Syst. Appl. – volume: 2 start-page: 1 year: 2015 end-page: 23 ident: b106 article-title: Statistical validation of multiple classifiers over multiple datasets in the field of pattern recognition publication-title: Int. J. Appl. Pattern Recognit. – volume: 46 start-page: 175 year: 1992 end-page: 185 ident: b95 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Amer. Statist. – start-page: 81 year: 2018 end-page: 91 ident: b38 article-title: Grey wolf optimization (GWO) algorithm publication-title: Advanced Optimization By Nature-Inspired Algorithms – volume: 147 year: 2022 ident: b88 article-title: RSDM-AHSnet: Designing a robust stochastic dynamic model to allocating health service network under disturbance situations with limited capacity using algorithms NSGA-II and PSO publication-title: Comput. Biol. Med. – volume: 7 start-page: 13419 year: 2016 ident: b111 article-title: Altered intestinal microbiota–host mitochondria crosstalk in new onset Crohn’s disease publication-title: Nature Commun. – volume: 5 start-page: 4104 year: 1997 end-page: 4108 ident: b8 article-title: A discrete binary version of the particle swarm algorithm publication-title: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation – volume: 59 year: 2020 ident: b70 article-title: Diagnosis of Alzheimer’s disease using universum support vector machine-based recursive feature elimination (USVM-RFE) publication-title: Biomed. Signal Process. Control – volume: 13 start-page: 248 year: 2015 end-page: 265 ident: b67 article-title: Cuckoo search optimisation for feature selection in cancer classification: a new approach publication-title: Int. J. Data Mining Bioinf. – volume: 9 start-page: 109889 year: 2021 end-page: 109902 ident: b30 article-title: A channel selection method for emotion recognition from EEG based on swarm-intelligence algorithms publication-title: IEEE Access – volume: 30 start-page: 207 year: 2002 end-page: 210 ident: b108 article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository publication-title: Nucleic Acids Res. – start-page: 54 year: 2020 end-page: 58 ident: b27 article-title: Mutually informed correlation coefficient (MICC)-a new filter based feature selection method publication-title: 2020 IEEE Calcutta Conference – volume: 4 start-page: 1942 year: 1995 end-page: 1948 ident: b35 article-title: Particle swarm optimization publication-title: Proceedings of ICNN’95-International Conference on Neural Networks – start-page: 7 year: 1987 end-page: 15 ident: b92 article-title: Simulated annealing publication-title: Simulated Annealing: Theory and Applications – volume: 46 start-page: 499 year: 2016 end-page: 510 ident: b18 article-title: A multiobjective genetic programming-based ensemble for simultaneous feature selection and classification publication-title: IEEE Trans. Cybern. – volume: 176 year: 2021 ident: b57 article-title: An efficient hybrid sine-cosine harris hawks optimization for low and high-dimensional feature selection publication-title: Expert Syst. Appl. – volume: 5 start-page: 374 year: 2009 end-page: 378 ident: b97 article-title: An improved greedy genetic algorithm for solving travelling salesman problem publication-title: 2009 Fifth International Conference on Natural Computation – volume: 7 start-page: 28 year: 2021 ident: b72 article-title: An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination publication-title: Financial Innovation – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: b25 article-title: Optimization by simulated annealing publication-title: Science – volume: 59 start-page: 439 year: 2014 end-page: 457 ident: b28 article-title: Sparse optimization in feature selection: application in neuroimaging publication-title: J. Global Optim. – year: 2005 ident: b45 article-title: A new stochastic optimization algorithm based on a particle collision metaheuristic publication-title: Proceedings of 6th WCSMO – volume: 24 start-page: 1097 year: 1997 end-page: 1100 ident: b34 article-title: Variable neighborhood search publication-title: Comput. Oper. Res. – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: b12 article-title: The ant lion optimizer publication-title: Adv. Eng. Softw. – volume: 7 start-page: 26343 year: 2019 end-page: 26361 ident: b54 article-title: A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection publication-title: IEEE Access – volume: 24 start-page: 882 year: 2020 end-page: 895 ident: b17 article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data publication-title: IEEE Trans. Evol. Comput. – volume: 21 start-page: 621 year: 2019 end-page: 636 ident: b86 article-title: ANPELA: analysis and performance assessment of the label-free quantification workflow for metaproteomic studies publication-title: Brief. Bioinform. – volume: 148 year: 2022 ident: b83 article-title: A novel multi-class classification model for schizophrenia, bipolar disorder and healthy controls using comprehensive transcriptomic data publication-title: Comput. Biol. Med. – volume: 161 start-page: 215 year: 2015 end-page: 221 ident: b114 article-title: Innate immune response is differentially dysregulated between bipolar disease and schizophrenia publication-title: Schizophrenia Res. – start-page: 145 year: 2017 end-page: 155 ident: b55 article-title: A hybrid method of sine cosine algorithm and differential evolution for feature selection publication-title: Neural Information Processing – volume: 21 start-page: 407 year: 2015 end-page: 413 ident: b109 article-title: Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps publication-title: Nature Med. – volume: 13 year: 2018 ident: b113 article-title: Inference of cell type content from human brain transcriptomic datasets illuminates the effects of age, manner of death, dissection, and psychiatric diagnosis publication-title: PLoS One – volume: 13 start-page: 533 year: 1986 end-page: 549 ident: b32 article-title: Future paths for integer programming and links to artificial intelligence publication-title: Comput. Oper. Res. – start-page: 43 year: 2009 end-page: 48 ident: b49 article-title: League championship algorithm: a new algorithm for numerical function optimization publication-title: 2009 International Conference of Soft Computing and Pattern Recognition – start-page: 67 year: 1996 end-page: 86 ident: b7 article-title: Genetic algorithms in feature selection publication-title: Genetic Algorithms in Molecular Modeling – volume: 8 start-page: 195929 year: 2020 end-page: 195945 ident: b65 article-title: Mayfly in harmony: A new hybrid meta-heuristic feature selection algorithm publication-title: IEEE Access – volume: 90 start-page: 224 year: 2017 end-page: 231 ident: b61 article-title: Metaheuristic approach for an enhanced mRMR filter method for classification using drug response microarray data publication-title: Expert Syst. Appl. – start-page: 249 year: 1992 end-page: 256 ident: b4 article-title: A practical approach to feature selection publication-title: Machine Learning Proceedings 1992 – volume: 23 year: 2022 ident: b80 article-title: POSREG: proteomic signature discovered by simultaneously optimizing its reproducibility and generalizability publication-title: Brief. Bioinform. – volume: 32 start-page: 8993 year: 2019 end-page: 9008 ident: b87 article-title: Alternative mathematical formulation and hybrid meta-heuristics for patient scheduling problem in health care clinics publication-title: Neural Comput. Appl. – year: 2006 ident: b2 article-title: Feature Extraction: Foundations and Applications – year: 2017 ident: 10.1016/j.compbiomed.2023.106854_b98 article-title: Binary dragonfly algorithm for feature selection – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.compbiomed.2023.106854_b37 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 4 start-page: 1942 year: 1995 ident: 10.1016/j.compbiomed.2023.106854_b35 article-title: Particle swarm optimization – volume: 24 start-page: 882 issue: 5 year: 2020 ident: 10.1016/j.compbiomed.2023.106854_b17 article-title: Variable-size cooperative coevolutionary particle swarm optimization for feature selection on high-dimensional data publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2020.2968743 – volume: 83 start-page: 80 year: 2015 ident: 10.1016/j.compbiomed.2023.106854_b12 article-title: The ant lion optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.01.010 – volume: 232 year: 2021 ident: 10.1016/j.compbiomed.2023.106854_b85 article-title: MMEASE: Online meta-analysis of metabolomic data by enhanced metabolite annotation, marker selection and enrichment analysis publication-title: J. Proteomics doi: 10.1016/j.jprot.2020.104023 – start-page: 1200 year: 2015 ident: 10.1016/j.compbiomed.2023.106854_b31 article-title: A review of feature selection methods with applications – volume: 144 year: 2022 ident: 10.1016/j.compbiomed.2023.106854_b63 article-title: AltWOA: Altruistic whale optimization algorithm for feature selection on microarray datasets publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105349 – volume: 82 start-page: 47 issue: 1 year: 2002 ident: 10.1016/j.compbiomed.2023.106854_b96 article-title: Parallel genetic algorithm with parameter adaptation publication-title: Inform. Process. Lett. doi: 10.1016/S0020-0190(01)00286-1 – volume: 6 start-page: 109 issue: 2 year: 1995 ident: 10.1016/j.compbiomed.2023.106854_b33 article-title: Greedy randomized adaptive search procedures publication-title: J. Global Optim. doi: 10.1007/BF01096763 – volume: 161 start-page: 215 issue: 2–3 year: 2015 ident: 10.1016/j.compbiomed.2023.106854_b114 article-title: Innate immune response is differentially dysregulated between bipolar disease and schizophrenia publication-title: Schizophrenia Res. doi: 10.1016/j.schres.2014.10.055 – year: 2013 ident: 10.1016/j.compbiomed.2023.106854_b26 – volume: 36 start-page: 9919 issue: 6 year: 2009 ident: 10.1016/j.compbiomed.2023.106854_b79 article-title: A sequential feature extraction approach for naïve bayes classification of microarray data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.01.075 – volume: 169 year: 2021 ident: 10.1016/j.compbiomed.2023.106854_b101 article-title: Theoretical and empirical analysis of filter ranking methods: Experimental study on benchmark DNA microarray data publication-title: Expert Syst. Appl. – volume: 14 start-page: 591 issue: 6 year: 2015 ident: 10.1016/j.compbiomed.2023.106854_b59 article-title: A PSO-based approach for pathway marker identification from gene expression data publication-title: IEEE Trans. NanoBiosci. doi: 10.1109/TNB.2015.2425471 – volume: 13 issue: 7 year: 2018 ident: 10.1016/j.compbiomed.2023.106854_b113 article-title: Inference of cell type content from human brain transcriptomic datasets illuminates the effects of age, manner of death, dissection, and psychiatric diagnosis publication-title: PLoS One doi: 10.1371/journal.pone.0200003 – volume: 47 start-page: 850 issue: 3 year: 2017 ident: 10.1016/j.compbiomed.2023.106854_b48 article-title: Human mental search: a new population-based metaheuristic optimization algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-017-0903-6 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2023.106854_b68 article-title: An efficient hybrid filter-wrapper metaheuristic-based gene selection method for high dimensional datasets publication-title: Sci. Rep. doi: 10.1038/s41598-019-54987-1 – start-page: 1 year: 1995 ident: 10.1016/j.compbiomed.2023.106854_b19 article-title: A comparative evaluation of sequential feature selection algorithms – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10.1016/j.compbiomed.2023.106854_b25 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 59 year: 2020 ident: 10.1016/j.compbiomed.2023.106854_b70 article-title: Diagnosis of Alzheimer’s disease using universum support vector machine-based recursive feature elimination (USVM-RFE) publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.101903 – volume: 30 start-page: 207 issue: 1 year: 2002 ident: 10.1016/j.compbiomed.2023.106854_b108 article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.1.207 – volume: 7 start-page: 13419 issue: 1 year: 2016 ident: 10.1016/j.compbiomed.2023.106854_b111 article-title: Altered intestinal microbiota–host mitochondria crosstalk in new onset Crohn’s disease publication-title: Nature Commun. doi: 10.1038/ncomms13419 – volume: 260 start-page: 302 year: 2017 ident: 10.1016/j.compbiomed.2023.106854_b53 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – volume: 93 issn: 1568-4946 year: 2020 ident: 10.1016/j.compbiomed.2023.106854_b94 article-title: Introducing clustering based population in binary gravitational search algorithm for feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106341 – volume: 55 year: 2020 ident: 10.1016/j.compbiomed.2023.106854_b73 article-title: Enhanced credit card fraud detection based on SVM-recursive feature elimination and hyper-parameters optimization publication-title: J. Inform. Secur. Appl. – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.compbiomed.2023.106854_b11 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – start-page: 7 year: 1987 ident: 10.1016/j.compbiomed.2023.106854_b92 article-title: Simulated annealing – volume: 24 start-page: 169 issue: 1 year: 2013 ident: 10.1016/j.compbiomed.2023.106854_b62 article-title: Cuckoo search: recent advances and applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1367-1 – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2023.106854_b106 article-title: Statistical validation of multiple classifiers over multiple datasets in the field of pattern recognition publication-title: Int. J. Appl. Pattern Recognit. doi: 10.1504/IJAPR.2015.068929 – volume: 46 start-page: 499 issue: 2 year: 2016 ident: 10.1016/j.compbiomed.2023.106854_b18 article-title: A multiobjective genetic programming-based ensemble for simultaneous feature selection and classification publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2404806 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.compbiomed.2023.106854_b43 article-title: GSA: a gravitational search algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2009.03.004 – volume: 90 start-page: 224 year: 2017 ident: 10.1016/j.compbiomed.2023.106854_b61 article-title: Metaheuristic approach for an enhanced mRMR filter method for classification using drug response microarray data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.08.026 – volume: 8 start-page: 195929 year: 2020 ident: 10.1016/j.compbiomed.2023.106854_b65 article-title: Mayfly in harmony: A new hybrid meta-heuristic feature selection algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031718 – volume: 31 start-page: 91 issue: 2 year: 2004 ident: 10.1016/j.compbiomed.2023.106854_b13 article-title: Filter versus wrapper gene selection approaches in DNA microarray domains publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2004.01.007 – volume: 40 start-page: 3236 issue: 11 year: 2007 ident: 10.1016/j.compbiomed.2023.106854_b58 article-title: Markov blanket-embedded genetic algorithm for gene selection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.02.007 – volume: 8 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.compbiomed.2023.106854_b112 article-title: Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome publication-title: Genome Med. doi: 10.1186/s13073-016-0293-0 – volume: 140 year: 2020 ident: 10.1016/j.compbiomed.2023.106854_b1 article-title: Time-varying hierarchical chains of salps with random weight networks for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112898 – start-page: 67 year: 1996 ident: 10.1016/j.compbiomed.2023.106854_b7 article-title: Genetic algorithms in feature selection – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.compbiomed.2023.106854_b10 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 23 start-page: 6249 issue: 15 year: 2019 ident: 10.1016/j.compbiomed.2023.106854_b23 article-title: Hybrid binary ant lion optimizer with rough set and approximate entropy reducts for feature selection publication-title: Soft Comput. doi: 10.1007/s00500-018-3282-y – volume: 19 start-page: 561 issue: 2 year: 2018 ident: 10.1016/j.compbiomed.2023.106854_b66 article-title: Informative gene selection for cancer classification with microarray data using a metaheuristic framework publication-title: Asian Pacif. J. Cancer Prevent: APJCP – volume: 21 start-page: 407 issue: 4 year: 2015 ident: 10.1016/j.compbiomed.2023.106854_b109 article-title: Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps publication-title: Nature Med. doi: 10.1038/nm.3807 – start-page: 45 year: 2008 ident: 10.1016/j.compbiomed.2023.106854_b60 article-title: Comparison of population based metaheuristics for feature selection: Application to microarray data classification – year: 2011 ident: 10.1016/j.compbiomed.2023.106854_b99 – volume: 5 start-page: 374 year: 2009 ident: 10.1016/j.compbiomed.2023.106854_b97 article-title: An improved greedy genetic algorithm for solving travelling salesman problem – start-page: 273 year: 2015 ident: 10.1016/j.compbiomed.2023.106854_b52 article-title: Hybrid monkey algorithm with Krill Herd algorithm optimization for feature selection – volume: 47 start-page: D442 issue: D1 year: 2019 ident: 10.1016/j.compbiomed.2023.106854_b107 article-title: The PRIDE database and related tools and resources in 2019: improving support for quantification data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1106 – start-page: 39 year: 2014 ident: 10.1016/j.compbiomed.2023.106854_b15 article-title: A hybrid feature selection method for classification purposes – volume: 46 start-page: 175 issue: 3 year: 1992 ident: 10.1016/j.compbiomed.2023.106854_b95 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Amer. Statist. doi: 10.1080/00031305.1992.10475879 – volume: 21 start-page: 1058 issue: 3 year: 2019 ident: 10.1016/j.compbiomed.2023.106854_b82 article-title: Consistent gene signature of schizophrenia identified by a novel feature selection strategy from comprehensive sets of transcriptomic data publication-title: Brief. Bioinform. doi: 10.1093/bib/bbz049 – volume: 148 issn: 0010-4825 year: 2022 ident: 10.1016/j.compbiomed.2023.106854_b83 article-title: A novel multi-class classification model for schizophrenia, bipolar disorder and healthy controls using comprehensive transcriptomic data publication-title: Comput. Biol. Med. – volume: 7 start-page: 28 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.106854_b72 article-title: An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination publication-title: Financial Innovation doi: 10.1186/s40854-021-00243-3 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 10.1016/j.compbiomed.2023.106854_b5 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.compbiomed.2023.106854_b42 article-title: Salp swarm algorithm: A bio-inspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.07.002 – volume: 147 year: 2022 ident: 10.1016/j.compbiomed.2023.106854_b88 article-title: RSDM-AHSnet: Designing a robust stochastic dynamic model to allocating health service network under disturbance situations with limited capacity using algorithms NSGA-II and PSO publication-title: Comput. Biol. Med. – volume: 17 start-page: 129 issue: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.106854_b81 article-title: Optimization of metabolomic data processing using NOREVA publication-title: Nat. Protoc. doi: 10.1038/s41596-021-00636-9 – volume: 59 start-page: 439 issue: 2 year: 2014 ident: 10.1016/j.compbiomed.2023.106854_b28 article-title: Sparse optimization in feature selection: application in neuroimaging publication-title: J. Global Optim. doi: 10.1007/s10898-013-0134-2 – start-page: 1 year: 2008 ident: 10.1016/j.compbiomed.2023.106854_b39 article-title: Differential evolution based feature subset selection – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 10.1016/j.compbiomed.2023.106854_b44 article-title: A new heuristic optimization algorithm: harmony search publication-title: Simulation doi: 10.1177/003754970107600201 – start-page: 81 year: 2018 ident: 10.1016/j.compbiomed.2023.106854_b38 article-title: Grey wolf optimization (GWO) algorithm – volume: 13 start-page: 248 issue: 3 year: 2015 ident: 10.1016/j.compbiomed.2023.106854_b67 article-title: Cuckoo search optimisation for feature selection in cancer classification: a new approach publication-title: Int. J. Data Mining Bioinf. doi: 10.1504/IJDMB.2015.072092 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 10.1016/j.compbiomed.2023.106854_b36 article-title: Ant colony optimization publication-title: IEEE Computational Intelligence Magazine doi: 10.1109/MCI.2006.329691 – year: 2005 ident: 10.1016/j.compbiomed.2023.106854_b45 article-title: A new stochastic optimization algorithm based on a particle collision metaheuristic publication-title: Proceedings of 6th WCSMO – volume: 32 start-page: 8993 issue: 13 year: 2019 ident: 10.1016/j.compbiomed.2023.106854_b87 article-title: Alternative mathematical formulation and hybrid meta-heuristics for patient scheduling problem in health care clinics publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04405-4 – start-page: 249 year: 1992 ident: 10.1016/j.compbiomed.2023.106854_b4 article-title: A practical approach to feature selection – volume: 200 year: 2022 ident: 10.1016/j.compbiomed.2023.106854_b103 article-title: Binary simulated normal distribution optimizer for feature selection: Theory and application in COVID-19 datasets publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116834 – volume: 5 start-page: 4104 year: 1997 ident: 10.1016/j.compbiomed.2023.106854_b8 article-title: A discrete binary version of the particle swarm algorithm – volume: 207 year: 2022 ident: 10.1016/j.compbiomed.2023.106854_b89 article-title: Appointment scheduling problem under fairness policy in healthcare services: Fuzzy ant lion optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117949 – volume: 4 start-page: 87 issue: 2 year: 1994 ident: 10.1016/j.compbiomed.2023.106854_b40 article-title: Genetic programming as a means for programming computers by natural selection publication-title: Stat. Comput. doi: 10.1007/BF00175355 – volume: 9 start-page: 109889 year: 2021 ident: 10.1016/j.compbiomed.2023.106854_b30 article-title: A channel selection method for emotion recognition from EEG based on swarm-intelligence algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3100638 – volume: 9 start-page: 52177 year: 2021 ident: 10.1016/j.compbiomed.2023.106854_b74 article-title: An enhanced hybrid feature selection technique using term frequency-inverse document frequency and support vector machine-recursive feature elimination for sentiment classification publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3069001 – volume: 5 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2023.106854_b29 article-title: Application of high-dimensional feature selection: evaluation for genomic prediction in man publication-title: Sci. Rep. doi: 10.1038/srep10312 – volume: 60 start-page: 1627 issue: 6 year: 2022 ident: 10.1016/j.compbiomed.2023.106854_b64 article-title: Nature-inspired metaheuristics model for gene selection and classification of biomedical microarray data publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-022-02555-7 – volume: 15 start-page: 399 issue: 6 year: 2018 ident: 10.1016/j.compbiomed.2023.106854_b91 article-title: The curse(s) of dimensionality publication-title: Nature Methods doi: 10.1038/s41592-018-0019-x – volume: 77 start-page: 425 issue: 1 year: 2007 ident: 10.1016/j.compbiomed.2023.106854_b47 article-title: Central force optimization: a new metaheuristic with applications in applied electromagnetics publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER07082403 – start-page: 4661 year: 2007 ident: 10.1016/j.compbiomed.2023.106854_b51 article-title: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition – volume: 7 start-page: 26343 year: 2019 ident: 10.1016/j.compbiomed.2023.106854_b54 article-title: A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2897325 – volume: 23 start-page: 27 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2023.106854_b110 article-title: Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.11.004 – volume: 13 start-page: 533 issue: 5 year: 1986 ident: 10.1016/j.compbiomed.2023.106854_b32 article-title: Future paths for integer programming and links to artificial intelligence publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(86)90048-1 – volume: 145 year: 2020 ident: 10.1016/j.compbiomed.2023.106854_b56 article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.113103 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 10.1016/j.compbiomed.2023.106854_b41 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim. doi: 10.1007/s10898-007-9149-x – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.compbiomed.2023.106854_b22 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-3 – volume: 23 issue: 6 year: 2022 ident: 10.1016/j.compbiomed.2023.106854_b84 article-title: LargeMetabo: an out-of-the-box tool for processing and analyzing large-scale metabolomic data publication-title: Brief. Bioinform. doi: 10.1093/bib/bbac455 – volume: 10 start-page: 132193 year: 2022 ident: 10.1016/j.compbiomed.2023.106854_b46 article-title: Groundwater flow algorithm: A novel hydro-geology based optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3222489 – volume: 8 start-page: 496 year: 2020 ident: 10.1016/j.compbiomed.2023.106854_b75 article-title: WERFE: A gene selection algorithm based on recursive feature elimination and ensemble strategy publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00496 – volume: 95 issue: 30 year: 2016 ident: 10.1016/j.compbiomed.2023.106854_b71 article-title: Discriminative analysis of schizophrenia using support vector machine and recursive feature elimination on structural MRI images publication-title: Medicine doi: 10.1097/MD.0000000000003973 – volume: 110 start-page: 191 year: 2016 ident: 10.1016/j.compbiomed.2023.106854_b14 article-title: Binary coordinate ascent: An efficient optimization technique for feature subset selection for machine learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.07.026 – volume: 30 start-page: 87 issue: 2 year: 2011 ident: 10.1016/j.compbiomed.2023.106854_b90 article-title: Comparison of values of pearson’s and spearman’s correlation coefficients on the same sets of data publication-title: Quaest. Geograph. doi: 10.2478/v10117-011-0021-1 – start-page: 507 year: 2005 ident: 10.1016/j.compbiomed.2023.106854_b6 article-title: Laplacian score for feature selection – volume: 21 start-page: 493 issue: 3 year: 2017 ident: 10.1016/j.compbiomed.2023.106854_b93 article-title: Performance analysis of simulated annealing cooling schedules in the context of dense image matching publication-title: Comput. Sist – volume: 21 start-page: 621 year: 2019 ident: 10.1016/j.compbiomed.2023.106854_b86 article-title: ANPELA: analysis and performance assessment of the label-free quantification workflow for metaproteomic studies publication-title: Brief. Bioinform. doi: 10.1093/bib/bby127 – volume: 8 start-page: 125076 year: 2020 ident: 10.1016/j.compbiomed.2023.106854_b24 article-title: Approaches to multi-objective feature selection: A systematic literature review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3007291 – start-page: 145 year: 2017 ident: 10.1016/j.compbiomed.2023.106854_b55 article-title: A hybrid method of sine cosine algorithm and differential evolution for feature selection – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.compbiomed.2023.106854_b115 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 9 start-page: 90 issue: 3 year: 2007 ident: 10.1016/j.compbiomed.2023.106854_b100 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng doi: 10.1109/MCSE.2007.55 – volume: 128 year: 2022 ident: 10.1016/j.compbiomed.2023.106854_b105 article-title: An adaptive and altruistic PSO-based deep feature selection method for pneumonia detection from chest X-rays publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109464 – volume: 24 start-page: 1097 issue: 11 year: 1997 ident: 10.1016/j.compbiomed.2023.106854_b34 article-title: Variable neighborhood search publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(97)00031-2 – volume: 172 start-page: 371 year: 2016 ident: 10.1016/j.compbiomed.2023.106854_b9 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 228 year: 2021 ident: 10.1016/j.compbiomed.2023.106854_b102 article-title: AIEOU: Automata-based improved equilibrium optimizer with U-shaped transfer function for feature selection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107283 – year: 2006 ident: 10.1016/j.compbiomed.2023.106854_b2 – start-page: 54 year: 2020 ident: 10.1016/j.compbiomed.2023.106854_b27 article-title: Mutually informed correlation coefficient (MICC)-a new filter based feature selection method – volume: 15 start-page: 1 year: 2014 ident: 10.1016/j.compbiomed.2023.106854_b77 article-title: Robustness of random forest-based gene selection methods publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-8 – volume: 12 start-page: 339 issue: 4 year: 2017 ident: 10.1016/j.compbiomed.2023.106854_b76 article-title: Classification and biomarker genes selection for cancer gene expression data using random forest publication-title: Iranian J. Pathol. doi: 10.30699/ijp.2017.27990 – volume: 23 issue: 2 year: 2022 ident: 10.1016/j.compbiomed.2023.106854_b80 article-title: POSREG: proteomic signature discovered by simultaneously optimizing its reproducibility and generalizability publication-title: Brief. Bioinform. doi: 10.1093/bib/bbac040 – volume: 176 year: 2021 ident: 10.1016/j.compbiomed.2023.106854_b57 article-title: An efficient hybrid sine-cosine harris hawks optimization for low and high-dimensional feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114778 – volume: 6 start-page: 19 issue: S11 year: 2011 ident: 10.1016/j.compbiomed.2023.106854_b78 article-title: K-SS: A sequential feature selection and prediction method in microarray study publication-title: Int. J. Artif. Intell. – start-page: 171 year: 1994 ident: 10.1016/j.compbiomed.2023.106854_b3 article-title: Estimating attributes: Analysis and extensions of RELIEF – start-page: 43 year: 2009 ident: 10.1016/j.compbiomed.2023.106854_b49 article-title: League championship algorithm: a new algorithm for numerical function optimization – volume: 2021 year: 2021 ident: 10.1016/j.compbiomed.2023.106854_b69 article-title: Diagnosis of chronic kidney disease using effective classification algorithms and recursive feature elimination techniques publication-title: J. Healthcare Eng. doi: 10.1155/2021/1004767 – volume: 25 start-page: 12915 issue: 20 year: 2021 ident: 10.1016/j.compbiomed.2023.106854_b50 article-title: Past present future: a new human-based algorithm for stochastic optimization publication-title: Soft Comput. doi: 10.1007/s00500-021-06229-8 – start-page: 465 year: 2013 ident: 10.1016/j.compbiomed.2023.106854_b104 article-title: BCS: A binary cuckoo search algorithm for feature selection – volume: 46 start-page: 389 year: 2002 ident: 10.1016/j.compbiomed.2023.106854_b21 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 67 start-page: 94 year: 2018 ident: 10.1016/j.compbiomed.2023.106854_b16 article-title: Dealing with high-dimensional class-imbalanced datasets: Embedded feature selection for SVM classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.02.051 – volume: 15 start-page: 1119 issue: 11 year: 1994 ident: 10.1016/j.compbiomed.2023.106854_b20 article-title: Floating search methods in feature selection publication-title: Pattern Recognit. Lett. doi: 10.1016/0167-8655(94)90127-9 |
| SSID | ssj0004030 |
| Score | 2.4473944 |
| Snippet | In recent times, microarray gene expression datasets have gained significant popularity due to their usefulness to identify different types of cancer directly... AbstractIn recent times, microarray gene expression datasets have gained significant popularity due to their usefulness to identify different types of cancer... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 106854 |
| SubjectTerms | Algorithms Biomarkers Cluster Analysis Clustering Correlation coefficients Datasets DNA microarrays Feature selection Gene expression Genes Genetic algorithm Genetic algorithms Heuristic methods Humans Internal Medicine Microarray dataset Neoplasms - genetics Oligonucleotide Array Sequence Analysis - methods Optimization algorithm Other Simulated annealing Simulation |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iQbyIb6urRPDaNW3SpsWTLMoirBcV9haybaIr7oN9HLz4251p0oqosOBlYdMMLZPJ5Bsy3wwhFxYwQVKyMoQJLBQ8jsJswFnI4EdnWWqkRe5w7z7tPom7ftJfI52aC4Npld73O59eeWs_cum1eTkdDpHjC6EEBDgAopGKg3G7EBK7GLQ_vtI8BOOOhgL-Bmf7bB6X44Vp247m3sY24jCcZon464j6C4JWR9HtNtnyGJJeu8_cIWtmvEs2ev6WfI88PAxH2JXLlFSDG9XIOKdYCrKkYC7IWqT67XkyGy5eRhRAazVK51VHHFgmipQTOsJMPT2b6XeKWaT75On25rHTDX3zhLAADLQILeg9i4TE62ktI11IaROpdRnngyTRKcNy5rAWAxknuizKgieWR5ZbDZoqC8kPyPp4MjZHoC_DcyYsiy2EsCY2AGmKXGoexcwAQjEBkbW-VOEri2ODizdVp5C9qi9NK9S0cpoOSNRITl11jRVk8npJVM0eBX-n4AhYQVb-JmvmfuPOVaTmsWLqh3EF5KqR_GafK763VduOal4VZ1ibKAUHH5Dz5jHsbryy0WMzWcIcmWNEC3FsQA6dzTWK4hJrFYno-F-fdkI28Z_L4WyR9cVsaU4BZy0GZ9VG-gTS0CUo priority: 102 providerName: Elsevier |
| Title | Simulated annealing aided genetic algorithm for gene selection from microarray data |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523003190 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523003190 https://dx.doi.org/10.1016/j.compbiomed.2023.106854 https://www.ncbi.nlm.nih.gov/pubmed/37023541 https://www.proquest.com/docview/2801966763 https://www.proquest.com/docview/2798716014 |
| Volume | 158 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5trYR4QeN32KiMxGuGYydxIoTQmFYKaBWiTOqb5cb2AK3taLsHXvjbuUuc9GVDffFDmmvS8_n8XX3fHcBrj5ggs9zGeAOPUymSuJhJHnMcTFHkTnniDp-P89FF-nmaTfdg3HJhKK2y9Ym1o7bLiv4jfyMKquSS43J4f_07pq5RdLrattAwobWCfVeXGNuHvqDKWD3ofzgbf_22ZUpy2ZBS0PukGByF3J4m44uSuBvS-zE1FcfLeZGld21YdwHSemMaHsCDgCjZSWMCD2HPLR7BvfNwZv4YJpOfc-rR5Swz6FQN8c8ZFYa0DI2HOIzMXF3iT938mDOEsPVVtq774-CkMSKgsDnl7ZnVyvxhlFP6BC6GZ99PR3FopRBXiIg2scdZKJJU0WG1UYmplPKZMsaKcpZlJudU3BxnZqZEZmxlK5l5mXjpDWrKVko-hd5iuXDPUV9Oljz1XHgMaJ1wCHCqUhmZCO4Qr7gIVKsvXYU649Tu4kq3CWW_9FbTmjStG01HkHSS102tjR1kynZKdMslRe-ncUPYQVbdJuvWYRmvdaLXQnM9qasYoblgvEasLx7B204yIJUGgez43KPWdnT3qK19R_Cq-xjXOh3gmIVb3uA9qqT4FqPaCJ41NtcpSiqqXJQmL_7_5Ydwn96kSdk8gt5mdeNeIqzazAawf_w3wVFNFY7F8OMA-iefvozGg7CK_gHE4yT5 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VVgIuiG9CCxgJjgHHTuJEVVUVaLWl3RViW6k31xs7tKi7WzZbof45fhsziZO9ULSXXnJIMok1GY_fxPNmAN6ViAkSy22IN_AwliIKs5HkIceDybLUqZK4w_1B2juOv54kJyvwp-XCUFpl6xNrR22nBf0j_ygyquSS4nTYvvwVUtco2l1tW2gY31rBbtUlxjyx48Bd_8YQrtra_4Lf-70Qe7tHn3uh7zIQFggW5mGJA8yiWNE-rlGRKZQqE2WMFfkoSUzKqe43DnqkRGJsYQuZlDIqZWkwlLGFkvjcO7AWyzjH4G_t0-7g2_cFM5PLhgSD3i7GYMznEjUZZpQ03pDsP1ATczydZkl80wJ5EwCuF8K9h_DAI1i205jcI1hxk8dwt-_36J_AcHg-pp5gzjKDTtwQ351RIUrL0FiJM8nMxQ9U7fxszBAy12dZVffjQSNhRHhhY8oTNLOZuWaUw_oUjm9Fqc9gdTKduBeoLydzHpdclBhAO-EQUBW5MjIS3CE-cgGoVl-68HXNqb3GhW4T2H7qhaY1aVo3mg4g6iQvm9oeS8jk7SfRLXcVva3GBWgJWfUvWVd5t1HpSFdCcz2sqyahuWB8SCwzHsBmJ-mRUYN4lnzvRms7unvVYj4F8La7jL6FNozMxE2v8B6VUzyNUXQAzxub6xQlFVVKiqOX_3_4G7jXO-of6sP9wcE63KdRNemiG7A6n125Vwjp5qPXft4wOL3tqfoXn-hdog |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIlVcqvIdWsBIcAx17CROVCGEKKuW0gppqbQ3441toOruls1WVf8av46ZOMleKNpLLzkkmcSajMdv4jczAK89YoLMchvjDTxOpUjiYix5zPFgiiJ3ylPu8PFJfnCafh5lozX40-XCEK2y84mNo7aziv6R74qCKrnkOB12fUuL-Lo_eH_xO6YOUrTT2rXTCCZy5K6vMHyr3x3u47d-I8Tg07ePB3HbYSCuECgsYo-DK5JU0R6uUYmplPKZMsaKcpxlJudU8xsHPFYiM7aylcy8TLz0BsMYWymJz70Dd5WUJdEJ1UgtczK5DOkv6OdSDMNaFlHglhFdPKTXv6X25Xg6L7L0pqXxJujbLIGDLdhssSv7EIztPqy56QPYOG535x_CcPhrQt3AnGUG3behTHdGJSgtQzOlbElmzn-gIhc_JwzBcnOW1U0nHjQPRqkubEIMQTOfm2tG7NVHcHorKn0M69PZ1D1FfTlZ8tRz4TF0dsIhlKpKZWQiuENk5CJQnb501VY0p8Ya57qjrp3ppaY1aVoHTUeQ9JIXoarHCjJl90l0l7WKflbj0rOCrPqXrKtbh1HrRNdCcz1s6iWhuWBkSPllPIK9XrLFRAHrrPjenc52dP-q5UyK4FV_Gb0KbRWZqZtd4j2qpEga4-cIngSb6xUlFdVISpNn_3_4S9jACaq_HJ4cbcM9GlTgie7A-mJ-6Z4jlluMXzSThsH3256lfwEKvFs8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulated+annealing+aided+genetic+algorithm+for+gene+selection+from+microarray+data&rft.jtitle=Computers+in+biology+and+medicine&rft.date=2023-05-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=158&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.106854&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |