3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular/stroke risk stratification using carotid ultrasound-based delineated plaque: Atheromatic™ 2.0

Atherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and mortality. Manual ultrasound plaque classification and characterization methods are time-consuming and can be imprecise due to significant varia...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 125; p. 103958
Main Authors Skandha, Sanagala S., Gupta, Suneet K., Saba, Luca, Koppula, Vijaya K., Johri, Amer M., Khanna, Narendra N., Mavrogeni, Sophie, Laird, John R., Pareek, Gyan, Miner, Martin, Sfikakis, Petros P., Protogerou, Athanasios, Misra, Durga P., Agarwal, Vikas, Sharma, Aditya M., Viswanathan, Vijay, Rathore, Vijay S., Turk, Monika, Kolluri, Raghu, Viskovic, Klaudija, Cuadrado-Godia, Elisa, Kitas, George D., Nicolaides, Andrew, Suri, Jasjit S.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2020
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2020.103958

Cover

Abstract Atherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and mortality. Manual ultrasound plaque classification and characterization methods are time-consuming and can be imprecise due to significant variations in tissue characteristics. We report a novel artificial intelligence (AI)-based plaque tissue classification and characterization system. We hypothesize that symptomatic plaque is hypoechoic due to its large lipid core and minimal collagen, as well as its heterogeneous makeup. Meanwhile, asymptomatic plaque is hyperechoic due to its small lipid core, abundant collagen, and the fact that it is often calcified. We designed a computer-aided diagnosis (CADx) system consisting of three kinds of deep learning (DL) classification paradigms: Deep Convolutional Neural Network (DCNN), Visual Geometric Group-16 (VGG16), and transfer learning, (tCNN). DCNN was 3-D optimized by varying the number of CNN layers and data augmentation frameworks. The DL systems were benchmarked against four types of machine learning (ML) classification systems, and the CADx system was characterized using two novel strategies consisting of DL mean feature strength (MFS) and a bispectrum model using higher-order spectra. After balancing symptomatic and asymptomatic plaque classes, a five-fold augmentation process was applied, yielding 1000 carotid scans in each class. Then, using a K10 protocol (trained to test the ratio of 90%–10%), tCNN and DCNN yielded accuracy (area under the curve (AUC)) pairs of 83.33%, 0.833 (p < 0.0001) and 95.66%, 0.956 (p < 0.0001), respectively. DCNN was superior to ML by 7.01%. As part of the characterization process, the MFS of the symptomatic plaque was found to be higher compared to the asymptomatic plaque by 17.5% (p < 0.0001). A similar pattern was seen in the bispectrum, which was higher for symptomatic plaque by 5.4% (p < 0.0001). It took <2 s to perform the online CADx process on a supercomputer. The performance order of the three AI systems was DCNN > tCNN > ML. Bispectrum-based on higher-order spectra proved a powerful paradigm for plaque tissue characterization. Overall, the AI-based systems offer a powerful solution for plaque tissue classification and characterization. •First-time classification and characterization of ultrasound-based carotid plaques using 3-D optimization of deep convolution neural networks with varying augmentation and layers of the deep CNN: Atheromatic™ 2.0 (AtheroPoint™, Roseville, CA, USA).•Comparison of seven Artificial Intelligence (AI) models, its generalization and benchmarking against Atheromatic™ 1.0 (AtheroPoint™, Roseville, CA, USA).•Performance evaluation using statistical techniques namely DOR, power analysis, Atheromatic™ SI, and Kappa analysis.•Comparison between local computer vs. supercomputer frameworks.
AbstractList AbstractBackground and PurposeAtherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and mortality. Manual ultrasound plaque classification and characterization methods are time-consuming and can be imprecise due to significant variations in tissue characteristics. We report a novel artificial intelligence (AI)-based plaque tissue classification and characterization system. MethodsWe hypothesize that symptomatic plaque is hypoechoic due to its large lipid core and minimal collagen, as well as its heterogeneous makeup. Meanwhile, asymptomatic plaque is hyperechoic due to its small lipid core, abundant collagen, and the fact that it is often calcified. We designed a computer-aided diagnosis (CADx) system consisting of three kinds of deep learning (DL) classification paradigms: Deep Convolutional Neural Network (DCNN), Visual Geometric Group-16 (VGG16), and transfer learning, (tCNN). DCNN was 3-D optimized by varying the number of CNN layers and data augmentation frameworks. The DL systems were benchmarked against four types of machine learning (ML) classification systems, and the CADx system was characterized using two novel strategies consisting of DL mean feature strength (MFS) and a bispectrum model using higher-order spectra. ResultsAfter balancing symptomatic and asymptomatic plaque classes, a five-fold augmentation process was applied, yielding 1000 carotid scans in each class. Then, using a K10 protocol (trained to test the ratio of 90%–10%), tCNN and DCNN yielded accuracy (area under the curve (AUC)) pairs of 83.33%, 0.833 ( p < 0.0001) and 95.66%, 0.956 ( p < 0.0001), respectively. DCNN was superior to ML by 7.01%. As part of the characterization process, the MFS of the symptomatic plaque was found to be higher compared to the asymptomatic plaque by 17.5% ( p < 0.0001). A similar pattern was seen in the bispectrum, which was higher for symptomatic plaque by 5.4% ( p < 0.0001). It took <2 s to perform the online CADx process on a supercomputer. ConclusionsThe performance order of the three AI systems was DCNN > tCNN > ML. Bispectrum-based on higher-order spectra proved a powerful paradigm for plaque tissue characterization. Overall, the AI-based systems offer a powerful solution for plaque tissue classification and characterization.
Atherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and mortality. Manual ultrasound plaque classification and characterization methods are time-consuming and can be imprecise due to significant variations in tissue characteristics. We report a novel artificial intelligence (AI)-based plaque tissue classification and characterization system. We hypothesize that symptomatic plaque is hypoechoic due to its large lipid core and minimal collagen, as well as its heterogeneous makeup. Meanwhile, asymptomatic plaque is hyperechoic due to its small lipid core, abundant collagen, and the fact that it is often calcified. We designed a computer-aided diagnosis (CADx) system consisting of three kinds of deep learning (DL) classification paradigms: Deep Convolutional Neural Network (DCNN), Visual Geometric Group-16 (VGG16), and transfer learning, (tCNN). DCNN was 3-D optimized by varying the number of CNN layers and data augmentation frameworks. The DL systems were benchmarked against four types of machine learning (ML) classification systems, and the CADx system was characterized using two novel strategies consisting of DL mean feature strength (MFS) and a bispectrum model using higher-order spectra. After balancing symptomatic and asymptomatic plaque classes, a five-fold augmentation process was applied, yielding 1000 carotid scans in each class. Then, using a K10 protocol (trained to test the ratio of 90%–10%), tCNN and DCNN yielded accuracy (area under the curve (AUC)) pairs of 83.33%, 0.833 (p < 0.0001) and 95.66%, 0.956 (p < 0.0001), respectively. DCNN was superior to ML by 7.01%. As part of the characterization process, the MFS of the symptomatic plaque was found to be higher compared to the asymptomatic plaque by 17.5% (p < 0.0001). A similar pattern was seen in the bispectrum, which was higher for symptomatic plaque by 5.4% (p < 0.0001). It took <2 s to perform the online CADx process on a supercomputer. The performance order of the three AI systems was DCNN > tCNN > ML. Bispectrum-based on higher-order spectra proved a powerful paradigm for plaque tissue characterization. Overall, the AI-based systems offer a powerful solution for plaque tissue classification and characterization. •First-time classification and characterization of ultrasound-based carotid plaques using 3-D optimization of deep convolution neural networks with varying augmentation and layers of the deep CNN: Atheromatic™ 2.0 (AtheroPoint™, Roseville, CA, USA).•Comparison of seven Artificial Intelligence (AI) models, its generalization and benchmarking against Atheromatic™ 1.0 (AtheroPoint™, Roseville, CA, USA).•Performance evaluation using statistical techniques namely DOR, power analysis, Atheromatic™ SI, and Kappa analysis.•Comparison between local computer vs. supercomputer frameworks.
Background and PurposeAtherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and mortality. Manual ultrasound plaque classification and characterization methods are time-consuming and can be imprecise due to significant variations in tissue characteristics. We report a novel artificial intelligence (AI)-based plaque tissue classification and characterization system.MethodsWe hypothesize that symptomatic plaque is hypoechoic due to its large lipid core and minimal collagen, as well as its heterogeneous makeup. Meanwhile, asymptomatic plaque is hyperechoic due to its small lipid core, abundant collagen, and the fact that it is often calcified. We designed a computer-aided diagnosis (CADx) system consisting of three kinds of deep learning (DL) classification paradigms: Deep Convolutional Neural Network (DCNN), Visual Geometric Group-16 (VGG16), and transfer learning, (tCNN). DCNN was 3-D optimized by varying the number of CNN layers and data augmentation frameworks. The DL systems were benchmarked against four types of machine learning (ML) classification systems, and the CADx system was characterized using two novel strategies consisting of DL mean feature strength (MFS) and a bispectrum model using higher-order spectra.ResultsAfter balancing symptomatic and asymptomatic plaque classes, a five-fold augmentation process was applied, yielding 1000 carotid scans in each class. Then, using a K10 protocol (trained to test the ratio of 90%–10%), tCNN and DCNN yielded accuracy (area under the curve (AUC)) pairs of 83.33%, 0.833 (p < 0.0001) and 95.66%, 0.956 (p < 0.0001), respectively. DCNN was superior to ML by 7.01%. As part of the characterization process, the MFS of the symptomatic plaque was found to be higher compared to the asymptomatic plaque by 17.5% (p < 0.0001). A similar pattern was seen in the bispectrum, which was higher for symptomatic plaque by 5.4% (p < 0.0001). It took <2 s to perform the online CADx process on a supercomputer.ConclusionsThe performance order of the three AI systems was DCNN > tCNN > ML. Bispectrum-based on higher-order spectra proved a powerful paradigm for plaque tissue characterization. Overall, the AI-based systems offer a powerful solution for plaque tissue classification and characterization.
Atherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and mortality. Manual ultrasound plaque classification and characterization methods are time-consuming and can be imprecise due to significant variations in tissue characteristics. We report a novel artificial intelligence (AI)-based plaque tissue classification and characterization system. We hypothesize that symptomatic plaque is hypoechoic due to its large lipid core and minimal collagen, as well as its heterogeneous makeup. Meanwhile, asymptomatic plaque is hyperechoic due to its small lipid core, abundant collagen, and the fact that it is often calcified. We designed a computer-aided diagnosis (CADx) system consisting of three kinds of deep learning (DL) classification paradigms: Deep Convolutional Neural Network (DCNN), Visual Geometric Group-16 (VGG16), and transfer learning, (tCNN). DCNN was 3-D optimized by varying the number of CNN layers and data augmentation frameworks. The DL systems were benchmarked against four types of machine learning (ML) classification systems, and the CADx system was characterized using two novel strategies consisting of DL mean feature strength (MFS) and a bispectrum model using higher-order spectra. After balancing symptomatic and asymptomatic plaque classes, a five-fold augmentation process was applied, yielding 1000 carotid scans in each class. Then, using a K10 protocol (trained to test the ratio of 90%-10%), tCNN and DCNN yielded accuracy (area under the curve (AUC)) pairs of 83.33%, 0.833 (p < 0.0001) and 95.66%, 0.956 (p < 0.0001), respectively. DCNN was superior to ML by 7.01%. As part of the characterization process, the MFS of the symptomatic plaque was found to be higher compared to the asymptomatic plaque by 17.5% (p < 0.0001). A similar pattern was seen in the bispectrum, which was higher for symptomatic plaque by 5.4% (p < 0.0001). It took <2 s to perform the online CADx process on a supercomputer. The performance order of the three AI systems was DCNN > tCNN > ML. Bispectrum-based on higher-order spectra proved a powerful paradigm for plaque tissue characterization. Overall, the AI-based systems offer a powerful solution for plaque tissue classification and characterization.
Atherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and mortality. Manual ultrasound plaque classification and characterization methods are time-consuming and can be imprecise due to significant variations in tissue characteristics. We report a novel artificial intelligence (AI)-based plaque tissue classification and characterization system.BACKGROUND AND PURPOSEAtherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and mortality. Manual ultrasound plaque classification and characterization methods are time-consuming and can be imprecise due to significant variations in tissue characteristics. We report a novel artificial intelligence (AI)-based plaque tissue classification and characterization system.We hypothesize that symptomatic plaque is hypoechoic due to its large lipid core and minimal collagen, as well as its heterogeneous makeup. Meanwhile, asymptomatic plaque is hyperechoic due to its small lipid core, abundant collagen, and the fact that it is often calcified. We designed a computer-aided diagnosis (CADx) system consisting of three kinds of deep learning (DL) classification paradigms: Deep Convolutional Neural Network (DCNN), Visual Geometric Group-16 (VGG16), and transfer learning, (tCNN). DCNN was 3-D optimized by varying the number of CNN layers and data augmentation frameworks. The DL systems were benchmarked against four types of machine learning (ML) classification systems, and the CADx system was characterized using two novel strategies consisting of DL mean feature strength (MFS) and a bispectrum model using higher-order spectra.METHODSWe hypothesize that symptomatic plaque is hypoechoic due to its large lipid core and minimal collagen, as well as its heterogeneous makeup. Meanwhile, asymptomatic plaque is hyperechoic due to its small lipid core, abundant collagen, and the fact that it is often calcified. We designed a computer-aided diagnosis (CADx) system consisting of three kinds of deep learning (DL) classification paradigms: Deep Convolutional Neural Network (DCNN), Visual Geometric Group-16 (VGG16), and transfer learning, (tCNN). DCNN was 3-D optimized by varying the number of CNN layers and data augmentation frameworks. The DL systems were benchmarked against four types of machine learning (ML) classification systems, and the CADx system was characterized using two novel strategies consisting of DL mean feature strength (MFS) and a bispectrum model using higher-order spectra.After balancing symptomatic and asymptomatic plaque classes, a five-fold augmentation process was applied, yielding 1000 carotid scans in each class. Then, using a K10 protocol (trained to test the ratio of 90%-10%), tCNN and DCNN yielded accuracy (area under the curve (AUC)) pairs of 83.33%, 0.833 (p < 0.0001) and 95.66%, 0.956 (p < 0.0001), respectively. DCNN was superior to ML by 7.01%. As part of the characterization process, the MFS of the symptomatic plaque was found to be higher compared to the asymptomatic plaque by 17.5% (p < 0.0001). A similar pattern was seen in the bispectrum, which was higher for symptomatic plaque by 5.4% (p < 0.0001). It took <2 s to perform the online CADx process on a supercomputer.RESULTSAfter balancing symptomatic and asymptomatic plaque classes, a five-fold augmentation process was applied, yielding 1000 carotid scans in each class. Then, using a K10 protocol (trained to test the ratio of 90%-10%), tCNN and DCNN yielded accuracy (area under the curve (AUC)) pairs of 83.33%, 0.833 (p < 0.0001) and 95.66%, 0.956 (p < 0.0001), respectively. DCNN was superior to ML by 7.01%. As part of the characterization process, the MFS of the symptomatic plaque was found to be higher compared to the asymptomatic plaque by 17.5% (p < 0.0001). A similar pattern was seen in the bispectrum, which was higher for symptomatic plaque by 5.4% (p < 0.0001). It took <2 s to perform the online CADx process on a supercomputer.The performance order of the three AI systems was DCNN > tCNN > ML. Bispectrum-based on higher-order spectra proved a powerful paradigm for plaque tissue characterization. Overall, the AI-based systems offer a powerful solution for plaque tissue classification and characterization.CONCLUSIONSThe performance order of the three AI systems was DCNN > tCNN > ML. Bispectrum-based on higher-order spectra proved a powerful paradigm for plaque tissue characterization. Overall, the AI-based systems offer a powerful solution for plaque tissue classification and characterization.
ArticleNumber 103958
Author Saba, Luca
Viskovic, Klaudija
Sharma, Aditya M.
Miner, Martin
Viswanathan, Vijay
Nicolaides, Andrew
Mavrogeni, Sophie
Gupta, Suneet K.
Cuadrado-Godia, Elisa
Suri, Jasjit S.
Sfikakis, Petros P.
Turk, Monika
Skandha, Sanagala S.
Protogerou, Athanasios
Misra, Durga P.
Agarwal, Vikas
Kolluri, Raghu
Rathore, Vijay S.
Johri, Amer M.
Pareek, Gyan
Koppula, Vijaya K.
Laird, John R.
Kitas, George D.
Khanna, Narendra N.
Author_xml – sequence: 1
  givenname: Sanagala S.
  surname: Skandha
  fullname: Skandha, Sanagala S.
  organization: CSE Department, CMR College of Engineering & Technology, Hyderabad, India
– sequence: 2
  givenname: Suneet K.
  surname: Gupta
  fullname: Gupta, Suneet K.
  organization: CSE Department, Bennett University, Greater Noida, UP, India
– sequence: 3
  givenname: Luca
  surname: Saba
  fullname: Saba, Luca
  organization: Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
– sequence: 4
  givenname: Vijaya K.
  surname: Koppula
  fullname: Koppula, Vijaya K.
  organization: CSE Department, CMR College of Engineering & Technology, Hyderabad, India
– sequence: 5
  givenname: Amer M.
  surname: Johri
  fullname: Johri, Amer M.
  organization: Department of Medicine, Division of Cardiology, Queen's University, Kingston, Ontario, Canada
– sequence: 6
  givenname: Narendra N.
  surname: Khanna
  fullname: Khanna, Narendra N.
  organization: Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
– sequence: 7
  givenname: Sophie
  surname: Mavrogeni
  fullname: Mavrogeni, Sophie
  organization: Cardiology Clinic, Onassis Cardiac Surgery Center, Athens, Greece
– sequence: 8
  givenname: John R.
  surname: Laird
  fullname: Laird, John R.
  organization: Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, USA
– sequence: 9
  givenname: Gyan
  surname: Pareek
  fullname: Pareek, Gyan
  organization: Minimally Invasive Urology Institute, Brown University, Providence, RI, USA
– sequence: 10
  givenname: Martin
  surname: Miner
  fullname: Miner, Martin
  organization: Men's Health Center, Miriam Hospital Providence, RI, USA
– sequence: 11
  givenname: Petros P.
  surname: Sfikakis
  fullname: Sfikakis, Petros P.
  organization: Rheumatology Unit, National Kapodistrian University of Athens, Greece
– sequence: 12
  givenname: Athanasios
  surname: Protogerou
  fullname: Protogerou, Athanasios
  organization: Department of Cardiovascular Prevention, National and Kapodistrian Univ. of Athens, Greece
– sequence: 13
  givenname: Durga P.
  surname: Misra
  fullname: Misra, Durga P.
  organization: Dept. of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
– sequence: 14
  givenname: Vikas
  surname: Agarwal
  fullname: Agarwal, Vikas
  organization: Dept. of Clinical Immunology and Rheumatology, SGPGIMS, Lucknow, India
– sequence: 15
  givenname: Aditya M.
  surname: Sharma
  fullname: Sharma, Aditya M.
  organization: Division of Cardiovascular Medicine, University of Virginia, VA, USA
– sequence: 16
  givenname: Vijay
  surname: Viswanathan
  fullname: Viswanathan, Vijay
  organization: MV Hospital for Diabetes & Professor M Viswanathan Diabetes Research Centre, Chennai, India
– sequence: 17
  givenname: Vijay S.
  surname: Rathore
  fullname: Rathore, Vijay S.
  organization: Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
– sequence: 18
  givenname: Monika
  surname: Turk
  fullname: Turk, Monika
  organization: The Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
– sequence: 19
  givenname: Raghu
  surname: Kolluri
  fullname: Kolluri, Raghu
  organization: OhioHealth Heart and Vascular, Ohio, USA
– sequence: 20
  givenname: Klaudija
  surname: Viskovic
  fullname: Viskovic, Klaudija
  organization: University Hospital for Infectious Diseases, Zagreb, Croatia
– sequence: 21
  givenname: Elisa
  surname: Cuadrado-Godia
  fullname: Cuadrado-Godia, Elisa
  organization: IMIM - Hospital Del Mar, Passeig Marítim, Barcelona, Spain
– sequence: 22
  givenname: George D.
  surname: Kitas
  fullname: Kitas, George D.
  organization: R & D Academic Affairs, Dudley Group NHS Foundation Trust, Dudley, UK
– sequence: 23
  givenname: Andrew
  surname: Nicolaides
  fullname: Nicolaides, Andrew
  organization: Vascular Screening and Diagnostic Centre, University of Nicosia, Nicosia, Cyprus
– sequence: 24
  givenname: Jasjit S.
  surname: Suri
  fullname: Suri, Jasjit S.
  email: jasjit.suri@atheropoint.com
  organization: Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32927257$$D View this record in MEDLINE/PubMed
BookMark eNqVks1u1DAUhSNURH_gFZAlNmwytZ1_FohSfqVKLIC15XGup3cmiYPtVGrXPAnvwovwJNwww1SqhFRWsezvnlydc46Tg8ENkCRM8IXgojxdL4zrxyW6HtqF5HK-zpqifpAcibpqUl5k-UFyxLngaV7L4jA5DmHNOc95xh8lh5lsZCWL6ij5maVvmBsj9ngDLTOdDgEtGh3RDUwPdHWpvTYRPN7sLn2cCdQdwyFC1-EKBgNsJK7FVc-s88xo36K70sFMnfanIXq3AeYxbBiddbz9xxRwWM28i9iyqaPX4KahTZc60EYtdDiAjnQcO_1tghfsLF6Cdz2Nm1_ffzC54I-Th1Z3AZ7svifJ13dvv5x_SC8-vf94fnaRmkLkMYVGNLaqTKGt1lAvs6q0ADyrs9LyvKlLnlngZVYL2zRaVtYu89aCKIHeKltnJ8nzre7oHa0SouoxGLJAD-CmoGSeyzovRMUJfXYHXbvJD7QdUUWZNZICI-rpjpqWlKUaPfbaX6u_ARFQbwHjXQge7B4RXM1dUGt12wU1d0Ftu0CjL--MGox_PCeLsbuPwOutAJClVwheBYNz1C16MFG1Dv9ji72IoUAp_G4D1xD2pggVpOLq89zZubKSmkom5CTw6t8C99vhNx6TB4E
CitedBy_id crossref_primary_10_3390_biomimetics9080465
crossref_primary_10_14366_usg_24172
crossref_primary_10_1007_s00521_022_07567_w
crossref_primary_10_1097_RTI_0000000000000584
crossref_primary_10_3390_diagnostics11122367
crossref_primary_10_1109_TIM_2021_3052577
crossref_primary_10_3390_biomedicines11041138
crossref_primary_10_1016_j_compbiomed_2021_104210
crossref_primary_10_1016_j_compbiomed_2021_105102
crossref_primary_10_1109_JBHI_2021_3103839
crossref_primary_10_1007_s00330_022_09024_7
crossref_primary_10_31083_j_fbl2902082
crossref_primary_10_3390_diagnostics12051249
crossref_primary_10_3390_metabo12040312
crossref_primary_10_1080_10255842_2025_2475479
crossref_primary_10_31083_j_rcm2505184
crossref_primary_10_1016_j_compmedimag_2024_102437
crossref_primary_10_1007_s11517_021_02322_0
crossref_primary_10_3390_diagnostics11081405
crossref_primary_10_3390_diagnostics12061482
crossref_primary_10_3390_healthcare10122493
crossref_primary_10_3390_jcdd10120485
crossref_primary_10_1007_s10916_021_01707_w
crossref_primary_10_1016_j_wneu_2024_01_059
crossref_primary_10_3390_biomedicines10112796
crossref_primary_10_22463_17948231_3237
crossref_primary_10_3390_e24081119
crossref_primary_10_1109_ACCESS_2024_3404023
crossref_primary_10_1016_j_ultrasmedbio_2024_12_010
crossref_primary_10_3389_fcvm_2024_1355843
crossref_primary_10_1007_s10462_021_10116_x
crossref_primary_10_3390_app13074321
crossref_primary_10_31083_j_rcm2512454
crossref_primary_10_1038_s41598_024_56786_9
crossref_primary_10_3934_mbe_2022229
crossref_primary_10_31083_j_rcm_2020_04_236
crossref_primary_10_1007_s10554_020_02124_9
crossref_primary_10_1161_CIRCRESAHA_121_318224
crossref_primary_10_3390_electronics11111800
crossref_primary_10_3390_diagnostics13152614
crossref_primary_10_37015_AUDT_2023_230020
crossref_primary_10_31083_j_rcm2512463
crossref_primary_10_3390_cancers14164052
crossref_primary_10_3390_diagnostics12092132
crossref_primary_10_1007_s10462_024_10873_5
crossref_primary_10_1080_10543406_2024_2429524
crossref_primary_10_1016_j_imed_2023_05_003
crossref_primary_10_3390_diagnostics11112025
crossref_primary_10_1007_s00296_021_05062_4
crossref_primary_10_1155_2022_2014349
crossref_primary_10_3390_diagnostics11112109
crossref_primary_10_1053_j_semvascsurg_2023_07_001
crossref_primary_10_1016_j_compbiomed_2022_105639
crossref_primary_10_3390_app14125051
crossref_primary_10_1016_j_compbiomed_2021_104721
crossref_primary_10_3390_jcdd9080268
crossref_primary_10_1016_j_compbiomed_2021_105131
crossref_primary_10_3390_diagnostics12030652
crossref_primary_10_3390_diagnostics13111954
crossref_primary_10_1007_s00521_023_08405_3
crossref_primary_10_1007_s00296_020_04691_5
crossref_primary_10_1016_j_jvs_2022_03_895
Cites_doi 10.1186/s12968-019-0548-1
10.1109/TIM.2011.2174897
10.1109/JBHI.2016.2631401
10.1109/TMI.2003.815066
10.1016/j.compbiomed.2016.11.011
10.1007/s11517-012-1019-0
10.1109/58.476550
10.2741/4850
10.1016/j.cmpb.2015.11.013
10.3390/electronics8030292
10.1016/j.cmpb.2016.03.016
10.1161/JAHA.118.009745
10.1016/j.diabres.2013.03.032
10.1007/s10916-010-9645-2
10.1016/j.neurad.2012.05.008
10.1007/s11517-018-1897-x
10.1161/CIRCRESAHA.114.302721
10.1016/j.echo.2019.01.001
10.1016/j.diabres.2018.07.028
10.5853/jos.2017.02922
10.21037/cdt.2019.09.01
10.3174/ajnr.A5461
10.1159/000073603
10.7785/tcrtexpress.2013.600273
10.1016/j.compbiomed.2020.103804
10.7785/tcrt.2012.500346
10.1007/s11883-019-0766-x
10.1155/2014/468176
10.1016/0002-9343(48)90086-2
10.21037/atm.2020.02.156
10.1007/s10916-016-0635-x
10.1016/j.cmpb.2016.02.004
10.1177/0954411913480622
10.1016/j.compbiomed.2018.08.017
10.3390/cancers11010111
10.1007/s10489-007-0072-0
10.1016/j.ultrasmedbio.2014.04.015
10.1258/rsmvasc.13.4.211
10.2741/4725
10.1016/j.jvs.2010.07.021
10.1109/79.221324
10.11613/BM.2012.031
10.1016/j.compbiomed.2018.05.014
10.1177/1533034614547445
10.1097/RTI.0000000000000077
10.1161/STROKEAHA.114.006091
10.1016/j.cmpb.2019.01.011
10.1016/j.ultrasmedbio.2006.07.032
10.1016/j.cmpb.2017.12.016
10.23736/S0392-9590.20.04338-2
10.1016/j.ultrasmedbio.2012.01.015
10.1016/j.jvs.2012.09.045
10.1109/TITB.2012.2192446
10.1161/CIR.0000000000000757
10.1161/CIR.0000000000000659
10.1007/s11883-015-0529-2
10.1016/j.cmpb.2012.09.008
10.1016/j.compbiomed.2017.10.019
10.1109/TIM.2012.2217651
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
2020. Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
– notice: 2020. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2020.103958
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials - QC
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological science database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Research Library Prep
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 103958
ExternalDocumentID 32927257
10_1016_j_compbiomed_2020_103958
S0010482520302924
1_s2_0_S0010482520302924
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
AGCQF
AGRNS
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-e919f77c5afaae8b376fee03836f0498603fe06381f99a27ffb4dfe16e9867f83
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sun Sep 28 02:40:17 EDT 2025
Tue Oct 07 06:32:34 EDT 2025
Mon Jul 21 05:28:12 EDT 2025
Thu Apr 24 23:06:19 EDT 2025
Wed Oct 01 05:22:36 EDT 2025
Fri Feb 23 02:48:04 EST 2024
Tue Feb 25 20:08:37 EST 2025
Tue Oct 14 19:33:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Supercomputer
deep learning
Carotid plaque
symptomatic
Accuracy
Atherosclerosis
Machine learning
Asymptomatic
And speed
Performance
Artificial intelligence
ultrasound
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-e919f77c5afaae8b376fee03836f0498603fe06381f99a27ffb4dfe16e9867f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 32927257
PQID 2456392395
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2442845170
proquest_journals_2456392395
pubmed_primary_32927257
crossref_primary_10_1016_j_compbiomed_2020_103958
crossref_citationtrail_10_1016_j_compbiomed_2020_103958
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2020_103958
elsevier_clinicalkeyesjournals_1_s2_0_S0010482520302924
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2020_103958
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Ruiz-Ares, Fuentes, Martínez-Sánchez, Díez-Tejedor (bib46) 2014; 40
Li, Yuan (bib65) 2017
Biswas, Kuppili, Saba, Edla, Suri, Sharma, Cuadrado-Godia, Laird, Nicolaides, Suri (bib58) 2019; 57
Saba, Dey, Ashour, Samanta, Nath, Chakraborty, Sanches, Kumar, Marinho, Suri (bib69) 2016; 130
Saba, Sanches, Pedro, Suri (bib3) 2014
Acharya, Faust, Sree, Alvin, Krishnamurthi, Sanches, Suri (bib26) 2011
Ikeda, Saba, Molinari, Piga, Meiburger, Sugi, Porcu, Bocchiddi, Acharya, Nakamura (bib14) 2013; 32
Nicolaides, Kakkos, Griffin, Sabetai, Dhanjil, Thomas, Geroulakos, Georgiou, Francis, Ioannidou (bib29) 2005; 13
Suri, Kathuria, Molinari (bib4) 2010
Molinari, Liboni, Pavanelli, Giustetto, Badalamenti, Suri (bib45) 2007
Nicolaides, Kakkos, Griffin, Geroulakos, Bashardi (bib28) 2002; 32
Simonyan, Zisserman (bib67) 2014
Acharya, Mookiah, Sree, Afonso, Sanches, Shafique, Nicolaides, Pedro, e Fernandes, Suri (bib56) 2013; 51
El-Baz, Suri (bib81) 2019
Acharya, Sree, Krishnan, Molinari, Saba, Ho, Ahuja, Ho, Nicolaides, Suri (bib53) 2012; 38
Abeyratne, Petropulu, Reid (bib75) 1995; 42
Tandel, Biswas, Kakde, Tiwari, Suri, Turk, Laird, Asare, Ankrah, Khanna (bib40) 2019; 11
Chien, Furtado, Cheng, Lam, Schaeffer, Chun, Wintermark (bib18) 2013; 40
Nikias, Mendel (bib76) 1993; 10
Banchhor, Londhe, Araki, Saba, Radeva, Khanna, Suri (bib44) 2018; 101
le Roux, Hartvig, Haase, Nordsborg, Olsen, Satylganova (bib13) 2020
Biswas, Kuppili, Araki, Edla, Godia, Saba, Suri, Omerzu, Laird, Khanna (bib57) 2018; 98
Hussain, Saposnik, Raju, Salata, Mamdani, Tu, Bhatt, Verma, Al‐Omran (bib21) 2018; 7
Pareek, Acharya, Sree, Swapna, Yantri, Martis, Saba, Krishnamurthi, Mallarini, El-Baz (bib70) 2013; 12
Acharya, Sree, Kulshreshtha, Molinari, Koh, Saba, Suri (bib37) 2014; 13
Acharya, Faust, Alvin, Krishnamurthi, Seabra, Sanches, Suri (bib52) 2013; 110
Nicolaides, Kakkos, Kyriacou, Griffin, Sabetai, Thomas, Tegos, Geroulakos, Labropoulos, Doré (bib23) 2010; 52
Saba, Ikeda, Deidda, Araki, Molinari, Meiburger, Acharya, Nagashima, Mercuro, Nakano (bib10) 2013; 100
Christodoulou, Pattichis, Pantziaris, Nicolaides (bib48) 2003; 22
Gastounioti, Makrodimitris, Golemati, Kadoglou, Liapis, Nikita (bib51) 2014; 19
Sharma, Gupta, Kumar, Rajan, Saba, Nobutaka, Laird, Nicolades, Suri (bib30) 2015; 17
Acharya, Sree, Mookiah, Saba, Gao, Mallarini, Suri (bib33) 2013; 227
Londhe, Suri (bib20) 2016; 40
Kats, Vered, Zlotogorski-Hurvitz, Harpaz (bib61) 2018
Biswas, Kuppili, Saba, Edla, Suri, Cuadrado-Godia, Laird, Marinhoe, Sanches, Nicolaides (bib39) 2019; 24
Acharya, Faust, Sree, Molinari, Saba, Nicolaides, Suri (bib64) 2011; 61
Biswas, Kuppili, Edla, Suri, Saba, Marinhoe, Sanches, Suri (bib38) 2018; 155
Alom, Taha, Yakopcic, Westberg, Sidike, Nasrin, Hasan, Van Essen, Awwal, Asari (bib66) 2019; 8
Khanna, Jamthikar, Gupta, Piga, Saba, Carcassi, Giannopoulos, Nicolaides, Laird, Suri (bib12) 2019; 21
Acharya, Molinari, Sree, Swapna, Saba, Guerriero, Suri (bib71) 2015; 14
Acharya, Saba, Molinari, Shafique, Nicolaides, Suri (bib55) 2012
Kotsis, Jamthikar, Araki, Gupta, Laird, Giannopoulos, Saba, Suri, Mavrogeni, Kitas (bib31) 2018; 143
Cuadrado-Godia, Dwivedi, Sharma, Santiago, Gonzalez, Balcells, Laird, Turk, Suri, Nicolaides (bib6) 2018; 20
Acharya, Krishnan, Sree, Sanches, Shafique, Nicolaides, Pedro, Suri (bib27) 2012; 62
Saba, Biswas, Suri, Viskovic, Laird, Cuadrado-Godia, Nicolaides, Khanna, Viswanathan, Suri (bib59) 2019; 9
Rujirakul, So-In, Arnonkijpanich (bib62) 2014; 2014
Acharya, Molinari, Saba, Nicolaides, Shafique, Suri (bib34) 2012
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib68) 2016
Gupta, Kesavabhotla, Baradaran, Kamel, Pandya, Giambrone, Wright, Pain, Mtui, Suri (bib22) 2015; 46
Tandel, Balestrieri, Jujaray, Khanna, Saba, Suri (bib32) 2020
Bentzon, Otsuka, Virmani, Falk (bib5) 2014; 114
McHugh (bib77) 2012; 22
Lekadir, Galimzianova, Betriu, del Mar Vila, Igual, Rubin, Fernández, Radeva, Napel (bib60) 2016; 21
Araki, Ikeda, Shukla, Jain, Londhe, Shrivastava, Banchhor, Saba, Nicolaides, Shafique (bib74) 2016; 128
Araki, Jain, Suri, Londhe, Ikeda, El-Baz, Shrivastava, Saba, Nicolaides, Shafique (bib35) 2017; 80
Hyman (bib79) 1948; 5
Benjamin, Muntner, Bittencourt (bib1) 2019; 139
Herr, Hétu, Li, Ewart, Johri (bib47) 2019; 32
Viswanathan, Jamthikar, Gupta, Puvvula, Khanna, Saba, Viskovic, Mavrogeni, Turk, Laird (bib11) 2020
Seabra, Sanches (bib19) 2012
Mougiakakou, Golemati, Gousias, Nicolaides, Nikita (bib78) 2007; 33
Suri (bib80) 2011
Kakkos, Griffin, Nicolaides, Kyriacou, Sabetai, Tegos, Makris, Thomas, Geroulakos, Group (bib24) 2013; 57
Banchhor, Londhe, Araki, Saba, Radeva, Laird, Suri (bib36) 2017; 91
Shrivastava, Londhe, Sonawane, Suri (bib73) 2016; 126
Suri, Laxminarayan (bib8) 2003
Paraskevas, Nicolaides, Kakkos (bib25) 2020
Saba, Lanzino, Lucatelli, Lavra, Sanfilippo, Montisci, Suri, Yuan (bib41) 2019; 40
Acharya, Faust, Alvin, Sree, Molinari, Saba, Nicolaides, Suri (bib54) 2012; 36
Ferreira, Piechnik, Robson, Neubauer, Karamitsos (bib43) 2014; 29
Virani, Alonso, Benjamin, Bittencourt, Callaway, Carson, Chamberlain, Chang, Cheng, Delling (bib2) 2020; 141
Liu, Wang, Zhang, Wang, Xu, Han, Yuan, Zhao (bib17) 2019; 21
Trivedi, Saba, Suri (bib7) 2015
Golle (bib63) 2008
Seven (bib9) 2015; 62
Viswanathan, Jamthikar, Gupta, Shanu, Puvvula, Khanna, Saba, Omerzum, Viskovic, Mavrogeni (bib15) 2020; 25
Saba, Francone, Bassareo, Lai, Sanfilippo, Montisci, Suri, De Cecco, Faa (bib42) 2018; 39
Kyriacou, Petroudi, Pattichis, Pattichis, Griffin, Kakkos, Nicolaides (bib50) 2012; 16
Liu, Suri (bib16) 2005
Kyriacou, Pattichis, Pattichis, Mavrommatis, Christodoulou, Kakkos, Nicolaides (bib49) 2009; 30
Srivastava, Singh, Suri (bib72) 2019; 172
Acharya (10.1016/j.compbiomed.2020.103958_bib34) 2012
Acharya (10.1016/j.compbiomed.2020.103958_bib64) 2011; 61
Viswanathan (10.1016/j.compbiomed.2020.103958_bib15) 2020; 25
Paraskevas (10.1016/j.compbiomed.2020.103958_bib25) 2020
Acharya (10.1016/j.compbiomed.2020.103958_bib52) 2013; 110
Nikias (10.1016/j.compbiomed.2020.103958_bib76) 1993; 10
Szegedy (10.1016/j.compbiomed.2020.103958_bib68) 2016
McHugh (10.1016/j.compbiomed.2020.103958_bib77) 2012; 22
Saba (10.1016/j.compbiomed.2020.103958_bib41) 2019; 40
Shrivastava (10.1016/j.compbiomed.2020.103958_bib73) 2016; 126
Hyman (10.1016/j.compbiomed.2020.103958_bib79) 1948; 5
El-Baz (10.1016/j.compbiomed.2020.103958_bib81) 2019
Cuadrado-Godia (10.1016/j.compbiomed.2020.103958_bib6) 2018; 20
Tandel (10.1016/j.compbiomed.2020.103958_bib32) 2020
Chien (10.1016/j.compbiomed.2020.103958_bib18) 2013; 40
Suri (10.1016/j.compbiomed.2020.103958_bib8) 2003
Suri (10.1016/j.compbiomed.2020.103958_bib80) 2011
Seabra (10.1016/j.compbiomed.2020.103958_bib19) 2012
Alom (10.1016/j.compbiomed.2020.103958_bib66) 2019; 8
Banchhor (10.1016/j.compbiomed.2020.103958_bib36) 2017; 91
Herr (10.1016/j.compbiomed.2020.103958_bib47) 2019; 32
Rujirakul (10.1016/j.compbiomed.2020.103958_bib62) 2014; 2014
Viswanathan (10.1016/j.compbiomed.2020.103958_bib11) 2020
Li (10.1016/j.compbiomed.2020.103958_bib65) 2017
Nicolaides (10.1016/j.compbiomed.2020.103958_bib23) 2010; 52
Benjamin (10.1016/j.compbiomed.2020.103958_bib1) 2019; 139
Srivastava (10.1016/j.compbiomed.2020.103958_bib72) 2019; 172
Seven (10.1016/j.compbiomed.2020.103958_bib9) 2015; 62
Liu (10.1016/j.compbiomed.2020.103958_bib17) 2019; 21
Acharya (10.1016/j.compbiomed.2020.103958_bib37) 2014; 13
Molinari (10.1016/j.compbiomed.2020.103958_bib45) 2007
Lekadir (10.1016/j.compbiomed.2020.103958_bib60) 2016; 21
Golle (10.1016/j.compbiomed.2020.103958_bib63) 2008
Christodoulou (10.1016/j.compbiomed.2020.103958_bib48) 2003; 22
Biswas (10.1016/j.compbiomed.2020.103958_bib58) 2019; 57
Nicolaides (10.1016/j.compbiomed.2020.103958_bib29) 2005; 13
Liu (10.1016/j.compbiomed.2020.103958_bib16) 2005
Acharya (10.1016/j.compbiomed.2020.103958_bib26) 2011
le Roux (10.1016/j.compbiomed.2020.103958_bib13) 2020
Abeyratne (10.1016/j.compbiomed.2020.103958_bib75) 1995; 42
Londhe (10.1016/j.compbiomed.2020.103958_bib20) 2016; 40
Saba (10.1016/j.compbiomed.2020.103958_bib42) 2018; 39
Kats (10.1016/j.compbiomed.2020.103958_bib61) 2018
Mougiakakou (10.1016/j.compbiomed.2020.103958_bib78) 2007; 33
Saba (10.1016/j.compbiomed.2020.103958_bib10) 2013; 100
Nicolaides (10.1016/j.compbiomed.2020.103958_bib28) 2002; 32
Acharya (10.1016/j.compbiomed.2020.103958_bib71) 2015; 14
Acharya (10.1016/j.compbiomed.2020.103958_bib56) 2013; 51
Trivedi (10.1016/j.compbiomed.2020.103958_bib7) 2015
Hussain (10.1016/j.compbiomed.2020.103958_bib21) 2018; 7
Biswas (10.1016/j.compbiomed.2020.103958_bib38) 2018; 155
Acharya (10.1016/j.compbiomed.2020.103958_bib27) 2012; 62
Biswas (10.1016/j.compbiomed.2020.103958_bib39) 2019; 24
Suri (10.1016/j.compbiomed.2020.103958_bib4) 2010
Khanna (10.1016/j.compbiomed.2020.103958_bib12) 2019; 21
Kotsis (10.1016/j.compbiomed.2020.103958_bib31) 2018; 143
Acharya (10.1016/j.compbiomed.2020.103958_bib55) 2012
Virani (10.1016/j.compbiomed.2020.103958_bib2) 2020; 141
Gastounioti (10.1016/j.compbiomed.2020.103958_bib51) 2014; 19
Ikeda (10.1016/j.compbiomed.2020.103958_bib14) 2013; 32
Araki (10.1016/j.compbiomed.2020.103958_bib35) 2017; 80
Pareek (10.1016/j.compbiomed.2020.103958_bib70) 2013; 12
Kyriacou (10.1016/j.compbiomed.2020.103958_bib49) 2009; 30
Acharya (10.1016/j.compbiomed.2020.103958_bib33) 2013; 227
Saba (10.1016/j.compbiomed.2020.103958_bib3) 2014
Gupta (10.1016/j.compbiomed.2020.103958_bib22) 2015; 46
Saba (10.1016/j.compbiomed.2020.103958_bib69) 2016; 130
Kakkos (10.1016/j.compbiomed.2020.103958_bib24) 2013; 57
Acharya (10.1016/j.compbiomed.2020.103958_bib53) 2012; 38
Banchhor (10.1016/j.compbiomed.2020.103958_bib44) 2018; 101
Ruiz-Ares (10.1016/j.compbiomed.2020.103958_bib46) 2014; 40
Acharya (10.1016/j.compbiomed.2020.103958_bib54) 2012; 36
Tandel (10.1016/j.compbiomed.2020.103958_bib40) 2019; 11
Simonyan (10.1016/j.compbiomed.2020.103958_bib67) 2014
Bentzon (10.1016/j.compbiomed.2020.103958_bib5) 2014; 114
Saba (10.1016/j.compbiomed.2020.103958_bib59) 2019; 9
Kyriacou (10.1016/j.compbiomed.2020.103958_bib50) 2012; 16
Sharma (10.1016/j.compbiomed.2020.103958_bib30) 2015; 17
Biswas (10.1016/j.compbiomed.2020.103958_bib57) 2018; 98
Ferreira (10.1016/j.compbiomed.2020.103958_bib43) 2014; 29
Araki (10.1016/j.compbiomed.2020.103958_bib74) 2016; 128
References_xml – volume: 52
  start-page: 1486
  year: 2010
  end-page: 1496
  ident: bib23
  article-title: Asymptomatic internal carotid artery stenosis and cerebrovascular risk stratification
  publication-title: J. Vasc. Surg.
– volume: 11
  start-page: 111
  year: 2019
  ident: bib40
  article-title: A review on a deep learning perspective in brain cancer classification
  publication-title: Cancers
– volume: 21
  start-page: 7
  year: 2019
  ident: bib12
  article-title: Rheumatoid arthritis: atherosclerosis imaging and cardiovascular risk assessment using machine and deep learning–based tissue characterization
  publication-title: Curr. Atherosclerosis Rep.
– year: 2020
  ident: bib32
  article-title: Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm
  publication-title: Comput. Biol. Med.
– volume: 227
  start-page: 643
  year: 2013
  end-page: 654
  ident: bib33
  article-title: Computed tomography carotid wall plaque characterization using a combination of discrete wavelet transform and texture features: a pilot study
  publication-title: Proc. IME H J. Eng. Med.
– volume: 91
  start-page: 198
  year: 2017
  end-page: 212
  ident: bib36
  article-title: Wall-based measurement features provides an improved IVUS coronary artery risk assessment when fused with plaque texture-based features during machine learning paradigm
  publication-title: Comput. Biol. Med.
– volume: 33
  start-page: 26
  year: 2007
  end-page: 36
  ident: bib78
  article-title: Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, laws' texture and neural networks
  publication-title: Ultrasound Med. Biol.
– start-page: 535
  year: 2008
  end-page: 542
  ident: bib63
  article-title: Machine Learning Attacks against the Asirra CAPTCHA, Proceedings of the 15th ACM Conference on Computer and Communications Security
– year: 2015
  ident: bib7
  article-title: 3D Imaging Technologies in Atherosclerosis
– volume: 22
  start-page: 902
  year: 2003
  end-page: 912
  ident: bib48
  article-title: Texture-based classification of atherosclerotic carotid plaques
  publication-title: IEEE Trans. Med. Imag.
– year: 2014
  ident: bib67
  article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition
– volume: 7
  year: 2018
  ident: bib21
  article-title: Association between statin use and cardiovascular events after carotid artery revascularization
  publication-title: J. Am. Heart Assoc.
– volume: 57
  start-page: 543
  year: 2019
  end-page: 564
  ident: bib58
  article-title: Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: a tool for stroke risk
  publication-title: Med. Biol. Eng. Comput.
– volume: 141
  start-page: e139
  year: 2020
  end-page: e596
  ident: bib2
  article-title: Heart disease and stroke statistics-2020 update: a report from the American Heart Association
  publication-title: Circulation
– volume: 13
  start-page: 529
  year: 2014
  end-page: 539
  ident: bib37
  article-title: GyneScan: an improved online paradigm for screening of ovarian cancer via tissue characterization
  publication-title: Technol. Canc. Res. Treat.
– volume: 39
  start-page: 131
  year: 2018
  end-page: 137
  ident: bib42
  article-title: CT attenuation analysis of carotid intraplaque hemorrhage
  publication-title: Am. J. Neuroradiol.
– volume: 57
  start-page: 609
  year: 2013
  end-page: 618
  ident: bib24
  article-title: The size of juxtaluminal hypoechoic area in ultrasound images of asymptomatic carotid plaques predicts the occurrence of stroke
  publication-title: J. Vasc. Surg.
– year: 2019
  ident: bib81
  article-title: Big Data in Multimodal Medical Imaging
– volume: 139
  start-page: e56
  year: 2019
  end-page: e528
  ident: bib1
  article-title: Heart disease and stroke statistics-2019 update: a report from the American Heart Association
  publication-title: Circulation
– volume: 80
  start-page: 77
  year: 2017
  end-page: 96
  ident: bib35
  article-title: Stroke risk stratification and its validation using ultrasonic echolucent carotid wall plaque morphology: a machine learning paradigm
  publication-title: Comput. Biol. Med.
– volume: 155
  start-page: 165
  year: 2018
  end-page: 177
  ident: bib38
  article-title: Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm
  publication-title: Comput. Methods Progr. Biomed.
– volume: 20
  start-page: 302
  year: 2018
  ident: bib6
  article-title: Cerebral small vessel disease: a review focusing on pathophysiology, biomarkers, and machine learning strategies
  publication-title: J. Stroke
– volume: 5
  start-page: 351
  year: 1948
  end-page: 364
  ident: bib79
  article-title: Asymptomatic heart disease: observations made during the early recruiting period for Navy and Marine enlistments
  publication-title: Am. J. Med.
– volume: 98
  start-page: 100
  year: 2018
  end-page: 117
  ident: bib57
  article-title: Deep learning strategy for accurate carotid intima-media thickness measurement: an ultrasound study on Japanese diabetic cohort
  publication-title: Comput. Biol. Med.
– volume: 51
  start-page: 513
  year: 2013
  end-page: 523
  ident: bib56
  article-title: Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated classification: a paradigm for stroke risk assessment
  publication-title: Med. Biol. Eng. Comput.
– volume: 114
  start-page: 1852
  year: 2014
  end-page: 1866
  ident: bib5
  article-title: Mechanisms of plaque formation and rupture
  publication-title: Circ. Res.
– year: 2003
  ident: bib8
  article-title: Angiography and Plaque Imaging: Advanced Segmentation Techniques
– volume: 128
  start-page: 137
  year: 2016
  end-page: 158
  ident: bib74
  article-title: PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: a link between carotid and coronary grayscale plaque morphology
  publication-title: Comput. Methods Progr. Biomed.
– volume: 22
  start-page: 276
  year: 2012
  end-page: 282
  ident: bib77
  article-title: Interrater reliability: the kappa statistic
  publication-title: Biochem. Med.: Biochem. Med.
– volume: 40
  start-page: 1
  year: 2013
  end-page: 10
  ident: bib18
  article-title: Demographics of carotid atherosclerotic plaque features imaged by computed tomography
  publication-title: J. Neuroradiol.
– volume: 62
  start-page: B5163
  year: 2015
  ident: bib9
  article-title: Overweight, hypertension and cardiovascular disease: focus on adipocytokines, insulin, weight changes and natriuretic peptides
  publication-title: Dan. Med. J.
– volume: 12
  start-page: 545
  year: 2013
  end-page: 557
  ident: bib70
  article-title: Prostate tissue characterization/classification in 144 patient population using wavelet and higher order spectra features from transrectal ultrasound images
  publication-title: Technol. Canc. Res. Treat.
– volume: 101
  start-page: 184
  year: 2018
  end-page: 198
  ident: bib44
  article-title: Calcium detection, its quantification, and grayscale morphology-based risk stratification using machine learning in multimodality big data coronary and carotid scans: a review
  publication-title: Comput. Biol. Med.
– start-page: 335
  year: 2007
  end-page: 338
  ident: bib45
  article-title: Accurate and automatic carotid plaque characterization in contrast enhanced 2-D ultrasound images
  publication-title: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 100
  start-page: 348
  year: 2013
  end-page: 353
  ident: bib10
  article-title: Association of automated carotid IMT measurement and HbA1c in Japanese patients with coronary artery disease
  publication-title: Diabetes Res. Clin. Pract.
– volume: 40
  start-page: 1538
  year: 2019
  end-page: 1545
  ident: bib41
  article-title: Carotid plaque CTA analysis in symptomatic subjects with bilateral intraplaque hemorrhage: a preliminary analysis
  publication-title: Am. J. Neuroradiol.
– volume: 46
  start-page: 91
  year: 2015
  end-page: 97
  ident: bib22
  article-title: Plaque echolucency and stroke risk in asymptomatic carotid stenosis: a systematic review and meta-analysis
  publication-title: Stroke
– volume: 62
  start-page: 392
  year: 2012
  end-page: 400
  ident: bib27
  article-title: Plaque tissue characterization and classification in ultrasound carotid scans: a paradigm for vascular feature amalgamation
  publication-title: IEEE Trans. Instrum. Measurement
– year: 2018
  ident: bib61
  article-title: Atherosclerotic Carotid Plaques on Panoramic Imaging: an Automatic Detection Using Deep Learning with Small Dataset
– year: 2014
  ident: bib3
  article-title: Multi-modality Atherosclerosis Imaging and Diagnosis
– volume: 110
  start-page: 66
  year: 2013
  end-page: 75
  ident: bib52
  article-title: Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization
  publication-title: Comput. Methods Progr. Biomed.
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bib68
  article-title: Rethinking the Inception Architecture for Computer Vision, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: bib13
  article-title: Obesity, cardiovascular risk and healthcare resource utilization in the UK
  publication-title: Eur. J. Prevent. Cardiol.
– volume: 13
  start-page: 211
  year: 2005
  end-page: 221
  ident: bib29
  article-title: Effect of image normalization on carotid plaque classification and the risk of ipsilateral hemispheric ischemic events: results from the asymptomatic carotid stenosis and risk of stroke study
  publication-title: Vascular
– start-page: 3199
  year: 2012
  end-page: 3202
  ident: bib34
  article-title: Carotid Ultrasound Symptomatology Using Atherosclerotic Plaque Characterization: a Class of Atheromatic systems, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 29
  start-page: 147
  year: 2014
  ident: bib43
  article-title: Myocardial tissue characterization by magnetic resonance imaging: novel applications of T1 and T2 mapping
  publication-title: J. Thorac. Imag.
– start-page: 597
  year: 2017
  end-page: 607
  ident: bib65
  article-title: Convergence analysis of two-layer neural networks with relu activation
  publication-title: Advances in Neural Information Processing Systems
– year: 2012
  ident: bib19
  article-title: Ultrasound Imaging: Advances and Applications
– start-page: 4489
  year: 2011
  end-page: 4492
  ident: bib26
  article-title: Atheromatic™: Symptomatic vs. Asymptomatic Classification of Carotid Ultrasound Plaque Using a Combination of HOS, DWT & Texture
  publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 16
  start-page: 966
  year: 2012
  end-page: 973
  ident: bib50
  article-title: Prediction of high-risk asymptomatic carotid plaques based on ultrasonic image features
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– year: 2011
  ident: bib80
  article-title: Imaging Based Symptomatic Classification and Cardiovascular Stroke Risk Score Estimation
– year: 2020
  ident: bib11
  article-title: Integration of eGFR biomarker in image-based CV/Stroke risk calculator: a south Asian-Indian diabetes cohort with moderate chronic kidney disease
  publication-title: Int. Angiol.: J. Int. Union Angiol.
– year: 2010
  ident: bib4
  article-title: Atherosclerosis Disease Management
– volume: 172
  start-page: 35
  year: 2019
  end-page: 51
  ident: bib72
  article-title: Effect of incremental feature enrichment on healthcare text classification system: a machine learning paradigm
  publication-title: Comput. Methods Progr. Biomed.
– start-page: 448
  year: 2012
  end-page: 451
  ident: bib55
  article-title: Carotid Far Wall Characterization Using LBP, Laws' Texture Energy and Wall Variability: A Novel Class of Atheromatic systems, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– year: 2020
  ident: bib25
  article-title: Asymptomatic carotid stenosis and risk of stroke (ACSRS) study: what have we learned from it?
  publication-title: Ann. Transl. Med.
– volume: 24
  start-page: 392
  year: 2019
  end-page: 426
  ident: bib39
  article-title: State-of-the-art review on deep learning in medical imaging
  publication-title: Front. Biosci. (Landmark Ed.)
– volume: 9
  start-page: 439
  year: 2019
  ident: bib59
  article-title: Ultrasound-based carotid stenosis measurement and risk stratification in diabetic cohort: a deep learning paradigm
  publication-title: Cardiovasc. Diagn. Ther.
– volume: 21
  start-page: 48
  year: 2016
  end-page: 55
  ident: bib60
  article-title: A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound
  publication-title: IEEE J. Biomed. Health Informat
– volume: 38
  start-page: 899
  year: 2012
  end-page: 915
  ident: bib53
  article-title: Atherosclerotic risk stratification strategy for carotid arteries using texture-based features
  publication-title: Ultrasound Med. Biol.
– volume: 8
  start-page: 292
  year: 2019
  ident: bib66
  article-title: A state-of-the-art survey on deep learning theory and architectures
  publication-title: Electronics
– volume: 19
  start-page: 1137
  year: 2014
  end-page: 1145
  ident: bib51
  article-title: A novel computerized tool to stratify risk in carotid atherosclerosis using kinematic features of the arterial wall
  publication-title: IEEE J. Biomed. Health Informat
– volume: 40
  start-page: 1958
  year: 2014
  end-page: 1965
  ident: bib46
  article-title: A prediction model for unstable carotid atheromatous plaque in acute ischemic stroke patients: proposal and internal validation
  publication-title: Ultrasound Med. Biol.
– volume: 126
  start-page: 98
  year: 2016
  end-page: 109
  ident: bib73
  article-title: Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind
  publication-title: Comput. Methods Progr. Biomed.
– volume: 130
  start-page: 118
  year: 2016
  end-page: 134
  ident: bib69
  article-title: Automated stratification of liver disease in ultrasound: an online accurate feature classification paradigm
  publication-title: Comput. Methods Progr. Biomed.
– volume: 36
  start-page: 1861
  year: 2012
  end-page: 1871
  ident: bib54
  article-title: Symptomatic vs. asymptomatic plaque classification in carotid ultrasound
  publication-title: J. Med. Syst.
– volume: 42
  start-page: 1064
  year: 1995
  end-page: 1075
  ident: bib75
  article-title: Higher order spectra based deconvolution of ultrasound images
  publication-title: IEEE Trans. Ultrason. Ferroelectrics Freq. Contr.
– year: 2005
  ident: bib16
  article-title: Automatic Vessel Indentification for Angiographic Screening
– volume: 2014
  year: 2014
  ident: bib62
  article-title: PEM-PCA: a parallel expectation-maximization PCA face recognition architecture
  publication-title: Sci. World J.
– volume: 32
  start-page: 633
  year: 2019
  end-page: 642
  ident: bib47
  article-title: Presence of calcium-like tissue composition in carotid plaque is indicative of significant coronary artery disease in high-risk patients
  publication-title: J. Am. Soc. Echocardiogr.
– volume: 10
  start-page: 10
  year: 1993
  end-page: 37
  ident: bib76
  article-title: Signal processing with higher-order spectra
  publication-title: IEEE Signal Process. Mag.
– volume: 143
  start-page: 322
  year: 2018
  end-page: 331
  ident: bib31
  article-title: Echolucency-based phenotype in carotid atherosclerosis disease for risk stratification of diabetes patients
  publication-title: Diabetes Res. Clin. Pract.
– volume: 30
  start-page: 3
  year: 2009
  end-page: 23
  ident: bib49
  article-title: Classification of atherosclerotic carotid plaques using morphological analysis on ultrasound images
  publication-title: Appl. Intell.
– volume: 61
  start-page: 1045
  year: 2011
  end-page: 1053
  ident: bib64
  article-title: An accurate and generalized approach to plaque characterization in 346 carotid ultrasound scans
  publication-title: IEEE Trans. Instrum. Measurement
– volume: 17
  start-page: 55
  year: 2015
  ident: bib30
  article-title: A review on carotid ultrasound atherosclerotic tissue characterization and stroke risk stratification in machine learning framework
  publication-title: Curr. Atherosclerosis Rep.
– volume: 32
  start-page: 371
  year: 2002
  ident: bib28
  article-title: Ultrasound plaque characterisation, genetic markers and risks
  publication-title: Pathophysiol. Haemostasis Thrombosis
– volume: 25
  start-page: 1132
  year: 2020
  end-page: 1171
  ident: bib15
  article-title: Low-cost preventive screening using carotid ultrasound in patients with diabetes
  publication-title: Front. Biosci. (Landmark Ed.)
– volume: 14
  start-page: 251
  year: 2015
  end-page: 261
  ident: bib71
  article-title: Ovarian tissue characterization in ultrasound: a review
  publication-title: Technol. Canc. Res. Treat.
– volume: 21
  start-page: 36
  year: 2019
  ident: bib17
  article-title: Size of carotid artery intraplaque hemorrhage and acute ischemic stroke: a cardiovascular magnetic resonance Chinese atherosclerosis risk evaluation study
  publication-title: J. Cardiovasc. Magn. Reson.
– volume: 32
  start-page: 339
  year: 2013
  ident: bib14
  article-title: Automated carotid intima-media thickness and its link for prediction of SYNTAX score in Japanese coronary artery disease patients
  publication-title: Int. Angiol.: J. Int. Union Angiol.
– volume: 40
  start-page: 279
  year: 2016
  ident: bib20
  article-title: Superharmonic imaging for medical ultrasound: a review
  publication-title: J. Med. Syst.
– volume: 21
  start-page: 36
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103958_bib17
  article-title: Size of carotid artery intraplaque hemorrhage and acute ischemic stroke: a cardiovascular magnetic resonance Chinese atherosclerosis risk evaluation study
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/s12968-019-0548-1
– volume: 61
  start-page: 1045
  issue: 4
  year: 2011
  ident: 10.1016/j.compbiomed.2020.103958_bib64
  article-title: An accurate and generalized approach to plaque characterization in 346 carotid ultrasound scans
  publication-title: IEEE Trans. Instrum. Measurement
  doi: 10.1109/TIM.2011.2174897
– volume: 32
  start-page: 339
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiomed.2020.103958_bib14
  article-title: Automated carotid intima-media thickness and its link for prediction of SYNTAX score in Japanese coronary artery disease patients
  publication-title: Int. Angiol.: J. Int. Union Angiol.
– year: 2014
  ident: 10.1016/j.compbiomed.2020.103958_bib3
– volume: 21
  start-page: 48
  issue: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103958_bib60
  article-title: A convolutional neural network for automatic characterization of plaque composition in carotid ultrasound
  publication-title: IEEE J. Biomed. Health Informat
  doi: 10.1109/JBHI.2016.2631401
– volume: 22
  start-page: 902
  issue: 7
  year: 2003
  ident: 10.1016/j.compbiomed.2020.103958_bib48
  article-title: Texture-based classification of atherosclerotic carotid plaques
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2003.815066
– volume: 80
  start-page: 77
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103958_bib35
  article-title: Stroke risk stratification and its validation using ultrasonic echolucent carotid wall plaque morphology: a machine learning paradigm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.11.011
– volume: 51
  start-page: 513
  issue: 5
  year: 2013
  ident: 10.1016/j.compbiomed.2020.103958_bib56
  article-title: Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated classification: a paradigm for stroke risk assessment
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-012-1019-0
– volume: 42
  start-page: 1064
  issue: 6
  year: 1995
  ident: 10.1016/j.compbiomed.2020.103958_bib75
  article-title: Higher order spectra based deconvolution of ultrasound images
  publication-title: IEEE Trans. Ultrason. Ferroelectrics Freq. Contr.
  doi: 10.1109/58.476550
– volume: 25
  start-page: 1132
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103958_bib15
  article-title: Low-cost preventive screening using carotid ultrasound in patients with diabetes
  publication-title: Front. Biosci. (Landmark Ed.)
  doi: 10.2741/4850
– volume: 126
  start-page: 98
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103958_bib73
  article-title: Computer-aided diagnosis of psoriasis skin images with HOS, texture and color features: a first comparative study of its kind
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2015.11.013
– start-page: 448
  year: 2012
  ident: 10.1016/j.compbiomed.2020.103958_bib55
– volume: 8
  start-page: 292
  issue: 3
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103958_bib66
  article-title: A state-of-the-art survey on deep learning theory and architectures
  publication-title: Electronics
  doi: 10.3390/electronics8030292
– year: 2003
  ident: 10.1016/j.compbiomed.2020.103958_bib8
– volume: 130
  start-page: 118
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103958_bib69
  article-title: Automated stratification of liver disease in ultrasound: an online accurate feature classification paradigm
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2016.03.016
– volume: 7
  issue: 16
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103958_bib21
  article-title: Association between statin use and cardiovascular events after carotid artery revascularization
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.118.009745
– start-page: 3199
  year: 2012
  ident: 10.1016/j.compbiomed.2020.103958_bib34
– volume: 100
  start-page: 348
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiomed.2020.103958_bib10
  article-title: Association of automated carotid IMT measurement and HbA1c in Japanese patients with coronary artery disease
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2013.03.032
– volume: 36
  start-page: 1861
  issue: 3
  year: 2012
  ident: 10.1016/j.compbiomed.2020.103958_bib54
  article-title: Symptomatic vs. asymptomatic plaque classification in carotid ultrasound
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-010-9645-2
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103958_bib81
– volume: 40
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2020.103958_bib18
  article-title: Demographics of carotid atherosclerotic plaque features imaged by computed tomography
  publication-title: J. Neuroradiol.
  doi: 10.1016/j.neurad.2012.05.008
– volume: 57
  start-page: 543
  issue: 2
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103958_bib58
  article-title: Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: a tool for stroke risk
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-018-1897-x
– volume: 114
  start-page: 1852
  issue: 12
  year: 2014
  ident: 10.1016/j.compbiomed.2020.103958_bib5
  article-title: Mechanisms of plaque formation and rupture
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.114.302721
– volume: 40
  start-page: 1538
  issue: 9
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103958_bib41
  article-title: Carotid plaque CTA analysis in symptomatic subjects with bilateral intraplaque hemorrhage: a preliminary analysis
  publication-title: Am. J. Neuroradiol.
– year: 2018
  ident: 10.1016/j.compbiomed.2020.103958_bib61
– volume: 32
  start-page: 633
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103958_bib47
  article-title: Presence of calcium-like tissue composition in carotid plaque is indicative of significant coronary artery disease in high-risk patients
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/j.echo.2019.01.001
– volume: 143
  start-page: 322
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103958_bib31
  article-title: Echolucency-based phenotype in carotid atherosclerosis disease for risk stratification of diabetes patients
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2018.07.028
– volume: 20
  start-page: 302
  issue: 3
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103958_bib6
  article-title: Cerebral small vessel disease: a review focusing on pathophysiology, biomarkers, and machine learning strategies
  publication-title: J. Stroke
  doi: 10.5853/jos.2017.02922
– volume: 9
  start-page: 439
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103958_bib59
  article-title: Ultrasound-based carotid stenosis measurement and risk stratification in diabetic cohort: a deep learning paradigm
  publication-title: Cardiovasc. Diagn. Ther.
  doi: 10.21037/cdt.2019.09.01
– volume: 39
  start-page: 131
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103958_bib42
  article-title: CT attenuation analysis of carotid intraplaque hemorrhage
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A5461
– volume: 32
  start-page: 371
  issue: 5–6
  year: 2002
  ident: 10.1016/j.compbiomed.2020.103958_bib28
  article-title: Ultrasound plaque characterisation, genetic markers and risks
  publication-title: Pathophysiol. Haemostasis Thrombosis
  doi: 10.1159/000073603
– volume: 13
  start-page: 529
  issue: 6
  year: 2014
  ident: 10.1016/j.compbiomed.2020.103958_bib37
  article-title: GyneScan: an improved online paradigm for screening of ovarian cancer via tissue characterization
  publication-title: Technol. Canc. Res. Treat.
  doi: 10.7785/tcrtexpress.2013.600273
– year: 2012
  ident: 10.1016/j.compbiomed.2020.103958_bib19
– year: 2020
  ident: 10.1016/j.compbiomed.2020.103958_bib32
  article-title: Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103804
– volume: 12
  start-page: 545
  issue: 6
  year: 2013
  ident: 10.1016/j.compbiomed.2020.103958_bib70
  article-title: Prostate tissue characterization/classification in 144 patient population using wavelet and higher order spectra features from transrectal ultrasound images
  publication-title: Technol. Canc. Res. Treat.
  doi: 10.7785/tcrt.2012.500346
– volume: 21
  start-page: 7
  issue: 2
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103958_bib12
  article-title: Rheumatoid arthritis: atherosclerosis imaging and cardiovascular risk assessment using machine and deep learning–based tissue characterization
  publication-title: Curr. Atherosclerosis Rep.
  doi: 10.1007/s11883-019-0766-x
– volume: 2014
  year: 2014
  ident: 10.1016/j.compbiomed.2020.103958_bib62
  article-title: PEM-PCA: a parallel expectation-maximization PCA face recognition architecture
  publication-title: Sci. World J.
  doi: 10.1155/2014/468176
– volume: 5
  start-page: 351
  issue: 3
  year: 1948
  ident: 10.1016/j.compbiomed.2020.103958_bib79
  article-title: Asymptomatic heart disease: observations made during the early recruiting period for Navy and Marine enlistments
  publication-title: Am. J. Med.
  doi: 10.1016/0002-9343(48)90086-2
– year: 2020
  ident: 10.1016/j.compbiomed.2020.103958_bib25
  article-title: Asymptomatic carotid stenosis and risk of stroke (ACSRS) study: what have we learned from it?
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2020.02.156
– volume: 40
  start-page: 279
  issue: 12
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103958_bib20
  article-title: Superharmonic imaging for medical ultrasound: a review
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-016-0635-x
– volume: 128
  start-page: 137
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103958_bib74
  article-title: PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: a link between carotid and coronary grayscale plaque morphology
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2016.02.004
– volume: 227
  start-page: 643
  issue: 6
  year: 2013
  ident: 10.1016/j.compbiomed.2020.103958_bib33
  article-title: Computed tomography carotid wall plaque characterization using a combination of discrete wavelet transform and texture features: a pilot study
  publication-title: Proc. IME H J. Eng. Med.
  doi: 10.1177/0954411913480622
– volume: 101
  start-page: 184
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103958_bib44
  article-title: Calcium detection, its quantification, and grayscale morphology-based risk stratification using machine learning in multimodality big data coronary and carotid scans: a review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.08.017
– volume: 11
  start-page: 111
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103958_bib40
  article-title: A review on a deep learning perspective in brain cancer classification
  publication-title: Cancers
  doi: 10.3390/cancers11010111
– start-page: 597
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103958_bib65
  article-title: Convergence analysis of two-layer neural networks with relu activation
– volume: 30
  start-page: 3
  issue: 1
  year: 2009
  ident: 10.1016/j.compbiomed.2020.103958_bib49
  article-title: Classification of atherosclerotic carotid plaques using morphological analysis on ultrasound images
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-007-0072-0
– volume: 40
  start-page: 1958
  issue: 9
  year: 2014
  ident: 10.1016/j.compbiomed.2020.103958_bib46
  article-title: A prediction model for unstable carotid atheromatous plaque in acute ischemic stroke patients: proposal and internal validation
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2014.04.015
– volume: 13
  start-page: 211
  issue: 4
  year: 2005
  ident: 10.1016/j.compbiomed.2020.103958_bib29
  article-title: Effect of image normalization on carotid plaque classification and the risk of ipsilateral hemispheric ischemic events: results from the asymptomatic carotid stenosis and risk of stroke study
  publication-title: Vascular
  doi: 10.1258/rsmvasc.13.4.211
– volume: 24
  start-page: 392
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103958_bib39
  article-title: State-of-the-art review on deep learning in medical imaging
  publication-title: Front. Biosci. (Landmark Ed.)
  doi: 10.2741/4725
– volume: 52
  start-page: 1486
  issue: 6
  year: 2010
  ident: 10.1016/j.compbiomed.2020.103958_bib23
  article-title: Asymptomatic internal carotid artery stenosis and cerebrovascular risk stratification
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2010.07.021
– volume: 19
  start-page: 1137
  issue: 3
  year: 2014
  ident: 10.1016/j.compbiomed.2020.103958_bib51
  article-title: A novel computerized tool to stratify risk in carotid atherosclerosis using kinematic features of the arterial wall
  publication-title: IEEE J. Biomed. Health Informat
– volume: 10
  start-page: 10
  issue: 3
  year: 1993
  ident: 10.1016/j.compbiomed.2020.103958_bib76
  article-title: Signal processing with higher-order spectra
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.221324
– volume: 22
  start-page: 276
  issue: 3
  year: 2012
  ident: 10.1016/j.compbiomed.2020.103958_bib77
  article-title: Interrater reliability: the kappa statistic
  publication-title: Biochem. Med.: Biochem. Med.
  doi: 10.11613/BM.2012.031
– volume: 98
  start-page: 100
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103958_bib57
  article-title: Deep learning strategy for accurate carotid intima-media thickness measurement: an ultrasound study on Japanese diabetic cohort
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.05.014
– volume: 14
  start-page: 251
  issue: 3
  year: 2015
  ident: 10.1016/j.compbiomed.2020.103958_bib71
  article-title: Ovarian tissue characterization in ultrasound: a review
  publication-title: Technol. Canc. Res. Treat.
  doi: 10.1177/1533034614547445
– year: 2010
  ident: 10.1016/j.compbiomed.2020.103958_bib4
– volume: 29
  start-page: 147
  issue: 3
  year: 2014
  ident: 10.1016/j.compbiomed.2020.103958_bib43
  article-title: Myocardial tissue characterization by magnetic resonance imaging: novel applications of T1 and T2 mapping
  publication-title: J. Thorac. Imag.
  doi: 10.1097/RTI.0000000000000077
– volume: 46
  start-page: 91
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2020.103958_bib22
  article-title: Plaque echolucency and stroke risk in asymptomatic carotid stenosis: a systematic review and meta-analysis
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.114.006091
– volume: 62
  start-page: B5163
  issue: 11
  year: 2015
  ident: 10.1016/j.compbiomed.2020.103958_bib9
  article-title: Overweight, hypertension and cardiovascular disease: focus on adipocytokines, insulin, weight changes and natriuretic peptides
  publication-title: Dan. Med. J.
– year: 2005
  ident: 10.1016/j.compbiomed.2020.103958_bib16
– start-page: 335
  year: 2007
  ident: 10.1016/j.compbiomed.2020.103958_bib45
  article-title: Accurate and automatic carotid plaque characterization in contrast enhanced 2-D ultrasound images
– volume: 172
  start-page: 35
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103958_bib72
  article-title: Effect of incremental feature enrichment on healthcare text classification system: a machine learning paradigm
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2019.01.011
– year: 2020
  ident: 10.1016/j.compbiomed.2020.103958_bib13
  article-title: Obesity, cardiovascular risk and healthcare resource utilization in the UK
  publication-title: Eur. J. Prevent. Cardiol.
– volume: 33
  start-page: 26
  issue: 1
  year: 2007
  ident: 10.1016/j.compbiomed.2020.103958_bib78
  article-title: Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, laws' texture and neural networks
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2006.07.032
– volume: 155
  start-page: 165
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103958_bib38
  article-title: Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2017.12.016
– start-page: 535
  year: 2008
  ident: 10.1016/j.compbiomed.2020.103958_bib63
– year: 2020
  ident: 10.1016/j.compbiomed.2020.103958_bib11
  article-title: Integration of eGFR biomarker in image-based CV/Stroke risk calculator: a south Asian-Indian diabetes cohort with moderate chronic kidney disease
  publication-title: Int. Angiol.: J. Int. Union Angiol.
  doi: 10.23736/S0392-9590.20.04338-2
– volume: 38
  start-page: 899
  issue: 6
  year: 2012
  ident: 10.1016/j.compbiomed.2020.103958_bib53
  article-title: Atherosclerotic risk stratification strategy for carotid arteries using texture-based features
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2012.01.015
– volume: 57
  start-page: 609
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiomed.2020.103958_bib24
  article-title: The size of juxtaluminal hypoechoic area in ultrasound images of asymptomatic carotid plaques predicts the occurrence of stroke
  publication-title: J. Vasc. Surg.
  doi: 10.1016/j.jvs.2012.09.045
– volume: 16
  start-page: 966
  issue: 5
  year: 2012
  ident: 10.1016/j.compbiomed.2020.103958_bib50
  article-title: Prediction of high-risk asymptomatic carotid plaques based on ultrasonic image features
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2012.2192446
– start-page: 2818
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103958_bib68
– volume: 141
  start-page: e139
  issue: 9
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103958_bib2
  article-title: Heart disease and stroke statistics-2020 update: a report from the American Heart Association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000757
– year: 2015
  ident: 10.1016/j.compbiomed.2020.103958_bib7
– year: 2014
  ident: 10.1016/j.compbiomed.2020.103958_bib67
– volume: 139
  start-page: e56
  issue: 10
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103958_bib1
  article-title: Heart disease and stroke statistics-2019 update: a report from the American Heart Association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000659
– volume: 17
  start-page: 55
  issue: 9
  year: 2015
  ident: 10.1016/j.compbiomed.2020.103958_bib30
  article-title: A review on carotid ultrasound atherosclerotic tissue characterization and stroke risk stratification in machine learning framework
  publication-title: Curr. Atherosclerosis Rep.
  doi: 10.1007/s11883-015-0529-2
– volume: 110
  start-page: 66
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2020.103958_bib52
  article-title: Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2012.09.008
– year: 2011
  ident: 10.1016/j.compbiomed.2020.103958_bib80
– volume: 91
  start-page: 198
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103958_bib36
  article-title: Wall-based measurement features provides an improved IVUS coronary artery risk assessment when fused with plaque texture-based features during machine learning paradigm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.10.019
– start-page: 4489
  year: 2011
  ident: 10.1016/j.compbiomed.2020.103958_bib26
  article-title: Atheromatic™: Symptomatic vs. Asymptomatic Classification of Carotid Ultrasound Plaque Using a Combination of HOS, DWT & Texture
– volume: 62
  start-page: 392
  issue: 2
  year: 2012
  ident: 10.1016/j.compbiomed.2020.103958_bib27
  article-title: Plaque tissue characterization and classification in ultrasound carotid scans: a paradigm for vascular feature amalgamation
  publication-title: IEEE Trans. Instrum. Measurement
  doi: 10.1109/TIM.2012.2217651
SSID ssj0004030
Score 2.5331874
Snippet Atherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and...
AbstractBackground and PurposeAtherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce...
Background and PurposeAtherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103958
SubjectTerms Accuracy
And speed
Arteriosclerosis
Artificial intelligence
Artificial neural networks
Asymptomatic
Atherosclerosis
Automation
CAD
Cardiovascular disease
Cardiovascular diseases
Carotid plaque
Classification
Classification systems
Collagen
Computer aided design
Coronary vessels
Data augmentation
Deep learning
Internal Medicine
Learning algorithms
Lipids
Machine learning
Magnetic resonance imaging
Medical imaging
Morbidity
Mortality
Neural networks
Other
Statistical methods
Supercomputer
Support vector machines
symptomatic
Transfer learning
Ultrasonic imaging
Ultrasound
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEB6VVEJcEP81lGqRuJraXv_EIIQKbVUhNUJApd5W6_2pAqkd4uTSM0_Cu_AiPAkz3rUDUkG5WV6v1_GMZ77JfjMD8LyMcp2gbEOpUwxQYmvDamwlhiqax2miVNqlR59O8pOz9P15dr4Fkz4XhmiVvU3sDLVuFP1Hvk8bdOjLeZm9mX8LqWsU7a72LTSkb62gX3clxm7AdkKVsUaw_fZo8uHjOlMy4i4pBa1PisGR5_Y4xheRuF3SO8aNSZePXlIr-Osd1r8AaeeYju_AbY8o2YFTgbuwZep7cPPU75nfh588PGQNWobL6ZXRTBFcJn5QJxImazw1FG2-8icXHYMIVZNN_yjZyahOuJ5eXDJEukz9xWTdb5eL5qthRFVnrhbvsAZx6y_o-gZfHVvNcLSlbk4huVDNNKXEo0vAw_lM4o99yQ4IljZdNdlf33-w5EX0AM6Ojz6_Owl984ZQIQZbhqaMS1sUKpNWSjOu0JBZYyIMiHOLUck4j7g1hJdiW5YyKaytUm1NnBscK-yYP4RR3dRmB5iuuEJokdpxLFO07KVUlcxUxg2X2nIeQNFLSChf2ZwabMxET2H7ItayFSRb4WQbQDzMnLvqHhvMKXslEH32KtpbgS5og7nFdXNN6w1HK2LRJiISn7q6SaigCSpsgjFyAK-GmR4bOcyz4bq7vbaKYan1FxXAs2EYrQttGcnaNCu6BsPTNIuLKIBHTsuHF8XxuQq0-I__f_MncIuexBEgd2G0XKzMUwRyy2rPf52_AXwrTjA
  priority: 102
  providerName: ProQuest
Title 3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular/stroke risk stratification using carotid ultrasound-based delineated plaque: Atheromatic™ 2.0
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482520302924
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482520302924
https://dx.doi.org/10.1016/j.compbiomed.2020.103958
https://www.ncbi.nlm.nih.gov/pubmed/32927257
https://www.proquest.com/docview/2456392395
https://www.proquest.com/docview/2442845170
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqIiEuiH9CS2UkrukmcRIn5bSULguoK4SotDfL8U8V2Car3eylB048Ce_Ci_AkzCROSkWRVuKSRP6Rnczk84z8zZiQl3mQ6ghk60sdg4MSWusXmZXgqmgWxpFScRsefTpLp2fx-3ky3yHHfSwM0iod9neY3qK1Kxm5rzlaliXG-IIrAQ5OBHoagRuBEewxx1MMDr9d0TzigHVhKIA32NqxeTqOF9K2uzB38BSjNgI9x8Pfb16i_mWCtkvR5B6562xIOu6meZ_smOoBuX3qdskfkp_Mf0NrwIKL8tJoqtBARkZQKwQqKyga0jRfusJVyxkCZaTlH0k6KWYG1-X5BQXblqpr3NXRulnVXw1Fcjrtsu8OYyCb_hzb102p6WYBtWs8v8nHRVNTjUHwsAjA43Ih4WWP6BgN0brNH_vr-w8aHQaPyNnk5PPx1HfHNfgKrK7GN3mYW85VIq2UJisAuqwxAbjAqQU_JEsDZg1aSKHNcxlxa4tYWxOmBuq4zdhjslvVlXlKqC6YAmMitlkoY8DyXKpCJiphhkltGfMI7yUklMtljkdqLERPWvsirmQrULaik61HwqHnssvnsUWfvFcC0cerAsIKWHS26Mtv6mvWDirWIhTrSATiL3X2yKuh57U_Ystx93ttFcNQuMkN9jDUe-TFUA14gptEsjL1BtuAQxonIQ888qTT8uFDMZgXB4x_9l9T2yN3ui055ATtk91mtTHPwbJrioP214Urn3O4ZpO3B-TW-N2H6Qzur09mHz_9BvbXV7g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVgIuiH8CBRYJjqa2d_0HqlChrVLaRAhaqbften-qQBqHOBGiZ56EB-mtL8KTMGOvHZAKyqW3yOv1OpnZmW-y38wQ8jzzYx2CbD2pOQQogbVenloJoYpmAQ-V4lV6dK8fdw_4-8PocImcNbkwSKtsbGJlqHWh8D_yNTygA1_OsujN-KuHXaPwdLVpoSFdawW9XpUYc4kdu-b7NwjhyvWdTZD3izDc3tp_1_VclwFPAViYeiYLMpskKpJWSpPmsOOsMT5EbrEF-JzGPrMGHXtgs0yGibU519YEsYGxxKYMnnuFrHDGMwj-Vt5u9T98nGdm-qxOggFrxyEYc1yimmGGpPE6yR7i1LDKf8-w9fzFDvJfALhyhNs3yQ2HYOlGrXK3yJIZ3SZXe-6M_g45Z94mLcASnQxOjaYK4TnykSoVoHIEl9oi0afu4qRiLMFWoIM_SoRSrEuuB8cnFJA1VX8xZ9fK6aT4YihS42ld-7ddA7n8x3h_AaKisyGMltg9ykOXranGFHxwQfBxPJTwZV_RDYTBRVW99tePnzR86d8lB5cixntkeVSMzANCdc4UQBlu00By8CSZVLmMVMQMk9oy1iFJIyGhXCV1bOgxFA1l7rOYy1agbEUt2w4J2pnjuprIAnOyRglEky0L9l2Ay1tgbnLRXFM6Q1WKQJSh8MWnqk4TKGgIChtCTN4hr9uZDovVGGvBdVcbbRXtUvMd3CHP2mGwZnhEJUemmOE9EA7zKEj8Drlfa3n7QzF4rwQ8zMP_P_wpudbd7-2JvZ3-7iNyHd-qJl-ukuXpZGYeA4ic5k_cTqXk6LKNw28v_ou4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VIlVcEP8YCiwSHE1sr521QQhVhKiltEKCSrkt6_2pAqkdYkeInnkSHoM7L8KTMOO1HZAKyqW3yOu1N5nZmW-y38wQ8igLhjoC2fpSxxCghNb6eWolhCqahXGkVNykRx8cDneP4teTZLJBfnS5MEir7GxiY6h1qfA_8gEe0IEvZ1kysC0t4u1o_GL-2ccOUnjS2rXTcCqyb75-gfCter43Alk_jqLxq_cvd_22w4CvACjUvsnCzHKuEmmlNGkOu80aE0DUNrQAndNhwKxBpx7aLJMRtzaPtTXh0MAYtymD514gFzmDZcFe4hO-yskMmEt_ATsXQxjWsogctwzp4i69HiLUqMl8z7Dp_Nmu8V_Qt3GB4yvkcotd6Y5TtqtkwxTXyNZBezp_nfxk_oiWYINOpqdGU4XAHJlIjfCpLOBSXx76tL24aLhKsAno9I_ioBQrkuvp8QkFTE3VX5zZQVUvyk-GIimeuqq__TuQxX-M95f1VNPlDEYr7Bvlo7PWVGPyPTgf-DifSfiyT-kOAuCyqVv769t3Gj0JbpCjcxHiTbJZlIW5TajOmQIQE9s0lDH4kEyqXCYqYYZJbRnzCO8kJFRbQx1becxER5b7KFayFShb4WTrkbCfOXd1RNaYk3VKILo8WbDsApzdGnP5WXNN1ZqoSoSiikQg3jUVmkBBI1DYCKJxjzzrZ7YozKGrNd-73Wmr6F-12rseedgPgx3DwylZmHKJ90AgHCchDzxyy2l5_0MxWBcH33Ln_w9_QLbAJIg3e4f7d8klXJRjXW6TzXqxNPcAPdb5_WabUvLhvO3Cb3kKiVI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3-D+optimized+classification+and+characterization+artificial+intelligence+paradigm+for+cardiovascular%2Fstroke+risk+stratification+using+carotid+ultrasound-based+delineated+plaque%3A+Atheromatic%E2%84%A2+2.0&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Skandha%2C+Sanagala+S&rft.au=Gupta%2C+Suneet+K&rft.au=Saba%2C+Luca&rft.au=Koppula%2C+Vijaya+K&rft.date=2020-10-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=125&rft.spage=103958&rft_id=info:doi/10.1016%2Fj.compbiomed.2020.103958&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif