Multiuser gesture recognition using sEMG signals via canonical correlation analysis and optimal transport
Myoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However, when different users perform the same gesture, the electromyography (EMG) signals can vary greatly. It is essential to design a multiuser myoe...
        Saved in:
      
    
          | Published in | Computers in biology and medicine Vol. 130; p. 104188 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        01.03.2021
     Elsevier Limited  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0010-4825 1879-0534 1879-0534  | 
| DOI | 10.1016/j.compbiomed.2020.104188 | 
Cover
| Abstract | Myoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However, when different users perform the same gesture, the electromyography (EMG) signals can vary greatly. It is essential to design a multiuser myoelectric interface that can be simply used by novel users while maintaining good gesture classification performance. To cope with this problem, canonical correlation analysis (CCA) has been used to extract the inherent user-independent properties of EMG signals generated from the same gestures from multiple users and demonstrated superior performance. In this paper, we move forward to propose a novel framework based on CCA and optimal transport (OT), termed as CCA-OT. By optimal transport, the discrepancies in data distribution between the transformed feature matrix from the training and the testing sets can be further reduced. Experimental results on the defined 13 Chinese sign language gestures performed by 10 intact-limbed subjects demonstrated that the classification rate of our proposed CCA-OT framework is significantly higher than that of the CCA-only framework with an 8.49% promotion, which shows the necessity to reduce the drift in probability distribution functions (PDFs) of the different domains. The CCA-OT framework provides a promising method for the multiuser myoelectric interface which can be easily adapted to new users. This improvement will further facilitate the widespread implementation of myoelectric control systems using pattern recognition techniques.
•We propose a novel framework termed as CCA-OT, to deal with the multiuser gesture recognition problem.•The data distribution divergence can be dramatically reduced between the training users and testing users by our framework.•The classification accuracy can be further improved by CCA-OT compared to CCA only. | 
    
|---|---|
| AbstractList | Myoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However, when different users perform the same gesture, the electromyography (EMG) signals can vary greatly. It is essential to design a multiuser myoelectric interface that can be simply used by novel users while maintaining good gesture classification performance. To cope with this problem, canonical correlation analysis (CCA) has been used to extract the inherent user-independent properties of EMG signals generated from the same gestures from multiple users and demonstrated superior performance. In this paper, we move forward to propose a novel framework based on CCA and optimal transport (OT), termed as CCA-OT. By optimal transport, the discrepancies in data distribution between the transformed feature matrix from the training and the testing sets can be further reduced. Experimental results on the defined 13 Chinese sign language gestures performed by 10 intact-limbed subjects demonstrated that the classification rate of our proposed CCA-OT framework is significantly higher than that of the CCA-only framework with an 8.49% promotion, which shows the necessity to reduce the drift in probability distribution functions (PDFs) of the different domains. The CCA-OT framework provides a promising method for the multiuser myoelectric interface which can be easily adapted to new users. This improvement will further facilitate the widespread implementation of myoelectric control systems using pattern recognition techniques.
•We propose a novel framework termed as CCA-OT, to deal with the multiuser gesture recognition problem.•The data distribution divergence can be dramatically reduced between the training users and testing users by our framework.•The classification accuracy can be further improved by CCA-OT compared to CCA only. Myoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However, when different users perform the same gesture, the electromyography (EMG) signals can vary greatly. It is essential to design a multiuser myoelectric interface that can be simply used by novel users while maintaining good gesture classification performance. To cope with this problem, canonical correlation analysis (CCA) has been used to extract the inherent user-independent properties of EMG signals generated from the same gestures from multiple users and demonstrated superior performance. In this paper, we move forward to propose a novel framework based on CCA and optimal transport (OT), termed as CCA-OT. By optimal transport, the discrepancies in data distribution between the transformed feature matrix from the training and the testing sets can be further reduced. Experimental results on the defined 13 Chinese sign language gestures performed by 10 intact-limbed subjects demonstrated that the classification rate of our proposed CCA-OT framework is significantly higher than that of the CCA-only framework with an 8.49% promotion, which shows the necessity to reduce the drift in probability distribution functions (PDFs) of the different domains. The CCA-OT framework provides a promising method for the multiuser myoelectric interface which can be easily adapted to new users. This improvement will further facilitate the widespread implementation of myoelectric control systems using pattern recognition techniques. Myoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However, when different users perform the same gesture, the electromyography (EMG) signals can vary greatly. It is essential to design a multiuser myoelectric interface that can be simply used by novel users while maintaining good gesture classification performance. To cope with this problem, canonical correlation analysis (CCA) has been used to extract the inherent user-independent properties of EMG signals generated from the same gestures from multiple users and demonstrated superior performance. In this paper, we move forward to propose a novel framework based on CCA and optimal transport (OT), termed as CCA-OT. By optimal transport, the discrepancies in data distribution between the transformed feature matrix from the training and the testing sets can be further reduced. Experimental results on the defined 13 Chinese sign language gestures performed by 10 intact-limbed subjects demonstrated that the classification rate of our proposed CCA-OT framework is significantly higher than that of the CCA-only framework with an 8.49% promotion, which shows the necessity to reduce the drift in probability distribution functions (PDFs) of the different domains. The CCA-OT framework provides a promising method for the multiuser myoelectric interface which can be easily adapted to new users. This improvement will further facilitate the widespread implementation of myoelectric control systems using pattern recognition techniques.Myoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However, when different users perform the same gesture, the electromyography (EMG) signals can vary greatly. It is essential to design a multiuser myoelectric interface that can be simply used by novel users while maintaining good gesture classification performance. To cope with this problem, canonical correlation analysis (CCA) has been used to extract the inherent user-independent properties of EMG signals generated from the same gestures from multiple users and demonstrated superior performance. In this paper, we move forward to propose a novel framework based on CCA and optimal transport (OT), termed as CCA-OT. By optimal transport, the discrepancies in data distribution between the transformed feature matrix from the training and the testing sets can be further reduced. Experimental results on the defined 13 Chinese sign language gestures performed by 10 intact-limbed subjects demonstrated that the classification rate of our proposed CCA-OT framework is significantly higher than that of the CCA-only framework with an 8.49% promotion, which shows the necessity to reduce the drift in probability distribution functions (PDFs) of the different domains. The CCA-OT framework provides a promising method for the multiuser myoelectric interface which can be easily adapted to new users. This improvement will further facilitate the widespread implementation of myoelectric control systems using pattern recognition techniques. AbstractMyoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However, when different users perform the same gesture, the electromyography (EMG) signals can vary greatly. It is essential to design a multiuser myoelectric interface that can be simply used by novel users while maintaining good gesture classification performance. To cope with this problem, canonical correlation analysis (CCA) has been used to extract the inherent user-independent properties of EMG signals generated from the same gestures from multiple users and demonstrated superior performance. In this paper, we move forward to propose a novel framework based on CCA and optimal transport (OT), termed as CCA-OT. By optimal transport, the discrepancies in data distribution between the transformed feature matrix from the training and the testing sets can be further reduced. Experimental results on the defined 13 Chinese sign language gestures performed by 10 intact-limbed subjects demonstrated that the classification rate of our proposed CCA-OT framework is significantly higher than that of the CCA-only framework with an 8.49% promotion, which shows the necessity to reduce the drift in probability distribution functions (PDFs) of the different domains. The CCA-OT framework provides a promising method for the multiuser myoelectric interface which can be easily adapted to new users. This improvement will further facilitate the widespread implementation of myoelectric control systems using pattern recognition techniques.  | 
    
| ArticleNumber | 104188 | 
    
| Author | Wu, Le Xue, Bo Chen, Xun Zhang, Xu Cheng, Juan Wang, Kun Chen, Xiang  | 
    
| Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0002-4951-4710 surname: Xue fullname: Xue, Bo organization: Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China – sequence: 2 givenname: Le orcidid: 0000-0002-8565-9626 surname: Wu fullname: Wu, Le organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China – sequence: 3 givenname: Kun surname: Wang fullname: Wang, Kun organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China – sequence: 4 givenname: Xu orcidid: 0000-0002-1533-4340 surname: Zhang fullname: Zhang, Xu email: xuzhang90@ustc.edu.cn organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China – sequence: 5 givenname: Juan surname: Cheng fullname: Cheng, Juan organization: Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China – sequence: 6 givenname: Xiang surname: Chen fullname: Chen, Xiang organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China – sequence: 7 givenname: Xun surname: Chen fullname: Chen, Xun email: xunchen@ustc.edu.cn organization: Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33421824$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqVkl9rFDEUxYNU7Lb6FSTgiy-zzd_Z5EW0pbZCiw_qc8hk7ixZZydjkinstzezW1coCPUpIfndw73n3DN0MoQBEMKULCmh9cVm6cJ2bHzYQrtkhM3Pgir1Ai2oWumKSC5O0IIQSiqhmDxFZyltCCGCcPIKnXIuGFVMLJC_n_rspwQRryHlKQKO4MJ68NmHAU_JD2ucru9vcPLrwfYJP3iLnS0NeWd77EKM0Ns9bMv_LvlULi0OY_bbAuRohzSGmF-jl12phzeP5zn68fn6-9Vtdff15svVp7vKSSpyBUpCZ3nXcta4pnNcKF0zVTewaohqKLVcg-oEt1rUuuUgtNYNlbJTFGrW8XP0_qA7xvBrKjOZrU8O-t4OEKZkmFjVUmpJSUHfPUE3YYrzlIXSRNZa1axQbx-pqSl-mzGWweLO_DGxAOoAuBhSitAdEUrMnJfZmL95mTkvc8irlH54Uup83rtZfPP9cwQuDwJQLH3wEE1yHgYHrS85ZtMG_x9dHEVc7_f5_oQdpKMp1CRmiPk279W8Vqxsk6RaF4GP_xZ4Xg-_AWkY46g | 
    
| CitedBy_id | crossref_primary_10_1177_00202940221105092 crossref_primary_10_1016_j_bspc_2024_106078 crossref_primary_10_3389_fnbot_2022_997134 crossref_primary_10_1016_j_patcog_2022_108795 crossref_primary_10_1088_1741_2552_ad184f crossref_primary_10_1109_LRA_2023_3317680 crossref_primary_10_1016_j_bspc_2021_103321 crossref_primary_10_1109_TCDS_2023_3316701 crossref_primary_10_1088_1741_2552_ad1786 crossref_primary_10_1016_j_compbiomed_2023_107327 crossref_primary_10_3389_fbioe_2024_1329209 crossref_primary_10_3389_fnins_2022_847180 crossref_primary_10_1109_JBHI_2023_3234989 crossref_primary_10_1109_JSEN_2024_3475818 crossref_primary_10_1016_j_compbiomed_2024_108051 crossref_primary_10_1109_JSEN_2023_3305619 crossref_primary_10_3389_fnins_2023_1174760 crossref_primary_10_3389_fbioe_2021_771255 crossref_primary_10_1109_JBHI_2022_3159792 crossref_primary_10_1109_TNSRE_2023_3347540 crossref_primary_10_3390_s23198343 crossref_primary_10_1017_S026357472200159X crossref_primary_10_1016_j_compbiomed_2022_105978 crossref_primary_10_1109_TBME_2024_3479232 crossref_primary_10_1109_TMRB_2024_3504737 crossref_primary_10_1109_TNSRE_2023_3237181 crossref_primary_10_1109_TNSRE_2022_3173946 crossref_primary_10_3390_s24185949 crossref_primary_10_1109_TNSRE_2021_3086401 crossref_primary_10_1088_1741_2552_acb7a0 crossref_primary_10_1002_lary_30589 crossref_primary_10_1109_ACCESS_2022_3225761 crossref_primary_10_1109_TBME_2023_3239687 crossref_primary_10_3389_fnins_2021_657958  | 
    
| Cites_doi | 10.1016/j.compbiomed.2016.05.014 10.3390/s141018370 10.1016/j.compbiomed.2018.08.020 10.1016/j.neunet.2014.03.010 10.1109/TNSRE.2014.2304470 10.3390/s150100394 10.1109/JSEN.2015.2506982 10.1109/TSMCA.2011.2116000 10.1109/MSP.2016.2521870 10.1109/MSP.2010.936725 10.1109/TNN.2010.2091281 10.1109/TBME.2006.889192 10.1186/1743-0003-9-74 10.1109/TNSRE.2011.2108667 10.1016/j.bspc.2012.08.005 10.1109/TPAMI.2017.2704624 10.1016/j.bspc.2007.07.009 10.1109/TSP.2019.2910475 10.1109/JSTSP.2008.2008265 10.1016/j.compbiomed.2009.02.001 10.1016/j.compbiomed.2019.103372 10.1007/s10958-006-0049-2 10.1109/TRO.2012.2226386  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Ltd Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. 2021. Elsevier Ltd  | 
    
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. – notice: 2021. Elsevier Ltd  | 
    
| DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8  | 
    
| DOI | 10.1016/j.compbiomed.2020.104188 | 
    
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic Research Library Prep  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1879-0534 | 
    
| EndPage | 104188 | 
    
| ExternalDocumentID | 33421824 10_1016_j_compbiomed_2020_104188 S0010482520305199 1_s2_0_S0010482520305199  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8  | 
    
| ID | FETCH-LOGICAL-c514t-e85efa3fd32bcbfc34896286be7b08b11a39e8f43a9469d3e4999b155f81e62f3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0010-4825 1879-0534  | 
    
| IngestDate | Sun Sep 28 08:18:34 EDT 2025 Tue Oct 07 06:25:19 EDT 2025 Thu Apr 03 07:03:55 EDT 2025 Thu Apr 24 23:11:32 EDT 2025 Wed Oct 01 05:17:22 EDT 2025 Fri Feb 23 02:44:50 EST 2024 Tue Feb 25 20:08:38 EST 2025 Tue Oct 14 19:33:03 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Surface electromyogram Domain adaptation Optimal transport Canonical correlation analysis Gesture recognition  | 
    
| Language | English | 
    
| License | Copyright © 2021 Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c514t-e85efa3fd32bcbfc34896286be7b08b11a39e8f43a9469d3e4999b155f81e62f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-4951-4710 0000-0002-1533-4340 0000-0002-8565-9626  | 
    
| PMID | 33421824 | 
    
| PQID | 2490569862 | 
    
| PQPubID | 1226355 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | proquest_miscellaneous_2476559510 proquest_journals_2490569862 pubmed_primary_33421824 crossref_primary_10_1016_j_compbiomed_2020_104188 crossref_citationtrail_10_1016_j_compbiomed_2020_104188 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2020_104188 elsevier_clinicalkeyesjournals_1_s2_0_S0010482520305199 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2020_104188  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-03-01 | 
    
| PublicationDateYYYYMMDD | 2021-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Oxford  | 
    
| PublicationTitle | Computers in biology and medicine | 
    
| PublicationTitleAlternate | Comput Biol Med | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier Ltd Elsevier Limited  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited  | 
    
| References | Li, Xu, Xu, Dai, Van Gool (bib34) 2017; 40 Wu, Zhang, Chen, Chen (bib36) 2019 Berger, d'Avella (bib5) 2017 Kalani, Moghimi, Akbarzadeh (bib3) 2016; 75 Courty, Flamary, Tuia, Rakotomamonjy (bib30) 2017; 39 Andrew, Arora, Bilmes, Livescu (bib16) 2013 Chanel, Rebetez, Bétrancourt, Pun (bib38) 2011; 41 David, Lu, Luu, Pál (bib23) 2010 Sun, Ji, Ye (bib28) 2008 Ning, Dias, Li, Jie, Li, Zhang (bib8) 2019; 112 Khushaba (bib10) 2014; 22 Chen, Liu, Chiang, Wang, McKeown, Ward (bib21) 2015; 16 Cipriani, Antfolk, Controzzi, Lundborg, Rosén, Carrozza, Sebelius (bib4) 2011; 19 Chen, Wang (bib7) 2013; 8 Geng, Zhou, Li (bib39) 2012; 9 Tommasi, Orabona, Castellini, Caputo (bib42) 2012; 29 Pan, Tsang, Kwok, Yang (bib29) 2010; 22 Cheng, Wei, Li, Liu, Liu, Chen (bib22) 2018; 103 Khezri, Jahed (bib2) 2009; 39 Xiong, Zhao, Han, Liu, Ding (bib9) 2015 Chen, Wang, Giannakis (bib17) 2019; 67 Hargrove, Englehart, Hudgins (bib41) 2007; 54 Cuturi (bib33) 2013 Hotelling (bib26) 1992 Mansour, Mohri, Rostamizadeh (bib25) 2009 Chen, Wang, McKeown (bib14) 2016; 33 Akaho (bib15) 2006 Santambrogio (bib31) 2015; 55 Chen, Liu, Peng, Ward (bib20) 2014; 14 Sun, Ji, Ye (bib27) 2010; 33 Matsubara, Morimoto (bib12) 2013; 60 Kim, Cho, Lee, Lee (bib37) 2015; 15 Correa, Adali, Li, Calhoun (bib19) 2010; 27 Kantorovich (bib32) 2006; 133 Oskoei, Hu (bib1) 2007; 2 Saponas, Tan, Morris, Balakrishnan (bib6) 2008 Germain, Habrard, Laviolette, Morvant (bib24) 2013 Maaten, Hinton (bib35) 2008; 9 Khushaba, Takruri, Miro, Kodagoda (bib40) 2014; 55 Correa, Li, Adali, Calhoun (bib13) 2008; 2 Orabona, Castellini, Caputo, Fiorilla, Sandini (bib11) 2009 Hassan, Boudaoud, Terrien, Karlsson, Marque (bib18) 2011; 58 Courty (10.1016/j.compbiomed.2020.104188_bib30) 2017; 39 Kim (10.1016/j.compbiomed.2020.104188_bib37) 2015; 15 Tommasi (10.1016/j.compbiomed.2020.104188_bib42) 2012; 29 Geng (10.1016/j.compbiomed.2020.104188_bib39) 2012; 9 Li (10.1016/j.compbiomed.2020.104188_bib34) 2017; 40 Khushaba (10.1016/j.compbiomed.2020.104188_bib40) 2014; 55 Berger (10.1016/j.compbiomed.2020.104188_bib5) 2017 Chen (10.1016/j.compbiomed.2020.104188_bib7) 2013; 8 Cheng (10.1016/j.compbiomed.2020.104188_bib22) 2018; 103 Maaten (10.1016/j.compbiomed.2020.104188_bib35) 2008; 9 Chen (10.1016/j.compbiomed.2020.104188_bib17) 2019; 67 Chen (10.1016/j.compbiomed.2020.104188_bib14) 2016; 33 Kalani (10.1016/j.compbiomed.2020.104188_bib3) 2016; 75 Ning (10.1016/j.compbiomed.2020.104188_bib8) 2019; 112 Cipriani (10.1016/j.compbiomed.2020.104188_bib4) 2011; 19 Akaho (10.1016/j.compbiomed.2020.104188_bib15) 2006 Correa (10.1016/j.compbiomed.2020.104188_bib13) 2008; 2 Hargrove (10.1016/j.compbiomed.2020.104188_bib41) 2007; 54 Correa (10.1016/j.compbiomed.2020.104188_bib19) 2010; 27 Hassan (10.1016/j.compbiomed.2020.104188_bib18) 2011; 58 Germain (10.1016/j.compbiomed.2020.104188_bib24) 2013 Hotelling (10.1016/j.compbiomed.2020.104188_bib26) 1992 Pan (10.1016/j.compbiomed.2020.104188_bib29) 2010; 22 Chen (10.1016/j.compbiomed.2020.104188_bib21) 2015; 16 Santambrogio (10.1016/j.compbiomed.2020.104188_bib31) 2015; 55 Mansour (10.1016/j.compbiomed.2020.104188_bib25) 2009 Cuturi (10.1016/j.compbiomed.2020.104188_bib33) 2013 Chen (10.1016/j.compbiomed.2020.104188_bib20) 2014; 14 Wu (10.1016/j.compbiomed.2020.104188_bib36) 2019 Sun (10.1016/j.compbiomed.2020.104188_bib28) 2008 Kantorovich (10.1016/j.compbiomed.2020.104188_bib32) 2006; 133 Andrew (10.1016/j.compbiomed.2020.104188_bib16) 2013 David (10.1016/j.compbiomed.2020.104188_bib23) 2010 Matsubara (10.1016/j.compbiomed.2020.104188_bib12) 2013; 60 Khezri (10.1016/j.compbiomed.2020.104188_bib2) 2009; 39 Chanel (10.1016/j.compbiomed.2020.104188_bib38) 2011; 41 Khushaba (10.1016/j.compbiomed.2020.104188_bib10) 2014; 22 Orabona (10.1016/j.compbiomed.2020.104188_bib11) 2009 Oskoei (10.1016/j.compbiomed.2020.104188_bib1) 2007; 2 Saponas (10.1016/j.compbiomed.2020.104188_bib6) 2008 Xiong (10.1016/j.compbiomed.2020.104188_bib9) 2015 Sun (10.1016/j.compbiomed.2020.104188_bib27) 2010; 33  | 
    
| References_xml | – start-page: 162 year: 1992 end-page: 190 ident: bib26 article-title: Relations between two sets of variates publication-title: Breakthroughs in Statistics – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: bib35 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – volume: 16 start-page: 1986 year: 2015 end-page: 1997 ident: bib21 article-title: Removing muscle artifacts from eeg data: multichannel or single-channel techniques? publication-title: IEEE Sensor. J. – volume: 54 start-page: 847 year: 2007 end-page: 853 ident: bib41 article-title: A comparison of surface and intramuscular myoelectric signal classification publication-title: IEEE Trans. Biomed. Eng. – volume: 40 start-page: 1114 year: 2017 end-page: 1127 ident: bib34 article-title: Domain generalization and adaptation using low rank exemplar svms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 112 year: 2019 ident: bib8 article-title: Improve computational efficiency and estimation accuracy of multi-channel surface emg decomposition via dimensionality reduction publication-title: Comput. Biol. Med. – volume: 58 start-page: 2441 year: 2011 end-page: 2447 ident: bib18 article-title: Combination of canonical correlation analysis and empirical mode decomposition applied to denoising the labor electrohysterogram publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 55 start-page: 94 year: 2015 ident: bib31 article-title: Optimal transport for applied mathematicians publication-title: Birkäuser – start-page: 4185 year: 2015 end-page: 4190 ident: bib9 article-title: An user-independent gesture recognition method based on semg decomposition publication-title: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – volume: 22 start-page: 745 year: 2014 end-page: 755 ident: bib10 article-title: Correlation analysis of electromyogram signals for multiuser myoelectric interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – start-page: 738 year: 2013 end-page: 746 ident: bib24 article-title: A pac-bayesian approach for domain adaptation with specialization to linear classifiers publication-title: International Conference on Machine Learning – volume: 39 start-page: 433 year: 2009 end-page: 442 ident: bib2 article-title: An exploratory study to design a novel hand movement identification system publication-title: Comput. Biol. Med. – volume: 60 start-page: 2205 year: 2013 end-page: 2213 ident: bib12 article-title: Bilinear modeling of emg signals to extract user-independent features for multiuser myoelectric interface publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 14 start-page: 18370 year: 2014 end-page: 18389 ident: bib20 article-title: A preliminary study of muscular artifact cancellation in single-channel eeg publication-title: Sensors – volume: 67 start-page: 2826 year: 2019 end-page: 2838 ident: bib17 article-title: Graph multiview canonical correlation analysis publication-title: IEEE Trans. Signal Process. – start-page: 1247 year: 2013 end-page: 1255 ident: bib16 article-title: Deep canonical correlation analysis publication-title: International Conference on Machine Learning – volume: 15 start-page: 394 year: 2015 end-page: 407 ident: bib37 article-title: A real-time pinch-to-zoom motion detection by means of a surface emg-based human-computer interface publication-title: Sensors – volume: 103 start-page: 44 year: 2018 end-page: 54 ident: bib22 article-title: Position-independent gesture recognition using semg signals via canonical correlation analysis publication-title: Comput. Biol. Med. – volume: 22 start-page: 199 year: 2010 end-page: 210 ident: bib29 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Network. – volume: 19 start-page: 260 year: 2011 end-page: 270 ident: bib4 article-title: Online myoelectric control of a dexterous hand prosthesis by transradial amputees publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 55 start-page: 42 year: 2014 end-page: 58 ident: bib40 article-title: Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features publication-title: Neural Network. – volume: 33 start-page: 194 year: 2010 end-page: 200 ident: bib27 article-title: Canonical correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 8 start-page: 184 year: 2013 end-page: 192 ident: bib7 article-title: Pattern recognition of number gestures based on a wireless surface emg system publication-title: Biomed. Signal Process Contr. – volume: 33 start-page: 86 year: 2016 end-page: 107 ident: bib14 article-title: Joint blind source separation for neurophysiological data analysis: multiset and multimodal methods publication-title: IEEE Signal Process. Mag. – volume: 75 start-page: 243 year: 2016 end-page: 256 ident: bib3 article-title: Towards an semg-based tele-operated robot for masticatory rehabilitation publication-title: Comput. Biol. Med. – start-page: 1024 year: 2008 end-page: 1031 ident: bib28 article-title: A least squares formulation for canonical correlation analysis publication-title: Proceedings of the 25th International Conference on Machine Learning – volume: 2 start-page: 998 year: 2008 end-page: 1007 ident: bib13 article-title: Canonical correlation analysis for feature-based fusion of biomedical imaging modalities and its application to detection of associative networks in schizophrenia publication-title: IEEE J. Selected Topics Signal Process. – volume: 41 start-page: 1052 year: 2011 end-page: 1063 ident: bib38 article-title: Emotion assessment from physiological signals for adaptation of game difficulty publication-title: IEEE Trans. Syst. Man Cybern. Syst. Hum. – start-page: 129 year: 2010 end-page: 136 ident: bib23 article-title: Impossibility theorems for domain adaptation publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics – start-page: 515 year: 2008 end-page: 524 ident: bib6 article-title: Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces publication-title: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems – year: 2006 ident: bib15 article-title: A Kernel Method for Canonical Correlation Analysis – volume: 2 start-page: 275 year: 2007 end-page: 294 ident: bib1 article-title: Myoelectric control systems―a survey publication-title: Biomed. Signal Process Contr. – volume: 27 start-page: 39 year: 2010 end-page: 50 ident: bib19 article-title: Canonical correlation analysis for data fusion and group inferences publication-title: IEEE Signal Process. Mag. – volume: 133 start-page: 1381 year: 2006 end-page: 1382 ident: bib32 article-title: On the translocation of masses publication-title: J. Math. Sci. – start-page: 2292 year: 2013 end-page: 2300 ident: bib33 article-title: Sinkhorn distances: lightspeed computation of optimal transport publication-title: Advances in Neural Information Processing Systems – start-page: 965 year: 2017 end-page: 969 ident: bib5 article-title: Towards a myoelectrically controlled virtual reality interface for synergy-based stroke rehabilitation publication-title: Converging Clinical and Engineering Research on Neurorehabilitation II – start-page: 2897 year: 2009 end-page: 2903 ident: bib11 article-title: Model adaptation with least-squares svm for adaptive hand prosthetics publication-title: 2009 IEEE International Conference on Robotics and Automation – volume: 39 start-page: 1853 year: 2017 end-page: 1865 ident: bib30 article-title: Optimal transport for domain adaptation. pattern analysis and machine intelligence publication-title: IEEE Trans. – volume: 9 start-page: 74 year: 2012 ident: bib39 article-title: Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees publication-title: J. NeuroEng. Rehabil. – start-page: 2641 year: 2019 end-page: 2644 ident: bib36 article-title: Visualized evidences for detecting novelty in myoelectric pattern recognition using 3d convolutional neural networks publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 29 start-page: 207 year: 2012 end-page: 219 ident: bib42 article-title: Improving control of dexterous hand prostheses using adaptive learning publication-title: IEEE Trans. Robot. – start-page: 3430 year: 2009 ident: bib25 article-title: Domain Adaptation: Learning Bounds and Algorithms – volume: 75 start-page: 243 year: 2016 ident: 10.1016/j.compbiomed.2020.104188_bib3 article-title: Towards an semg-based tele-operated robot for masticatory rehabilitation publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.05.014 – volume: 14 start-page: 18370 issue: 10 year: 2014 ident: 10.1016/j.compbiomed.2020.104188_bib20 article-title: A preliminary study of muscular artifact cancellation in single-channel eeg publication-title: Sensors doi: 10.3390/s141018370 – volume: 103 start-page: 44 year: 2018 ident: 10.1016/j.compbiomed.2020.104188_bib22 article-title: Position-independent gesture recognition using semg signals via canonical correlation analysis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.08.020 – volume: 55 start-page: 42 year: 2014 ident: 10.1016/j.compbiomed.2020.104188_bib40 article-title: Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features publication-title: Neural Network. doi: 10.1016/j.neunet.2014.03.010 – volume: 22 start-page: 745 issue: 4 year: 2014 ident: 10.1016/j.compbiomed.2020.104188_bib10 article-title: Correlation analysis of electromyogram signals for multiuser myoelectric interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2304470 – volume: 58 start-page: 2441 issue: 9 year: 2011 ident: 10.1016/j.compbiomed.2020.104188_bib18 article-title: Combination of canonical correlation analysis and empirical mode decomposition applied to denoising the labor electrohysterogram publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 39 start-page: 1853 issue: 9 year: 2017 ident: 10.1016/j.compbiomed.2020.104188_bib30 article-title: Optimal transport for domain adaptation. pattern analysis and machine intelligence publication-title: IEEE Trans. – volume: 15 start-page: 394 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2020.104188_bib37 article-title: A real-time pinch-to-zoom motion detection by means of a surface emg-based human-computer interface publication-title: Sensors doi: 10.3390/s150100394 – volume: 16 start-page: 1986 issue: 7 year: 2015 ident: 10.1016/j.compbiomed.2020.104188_bib21 article-title: Removing muscle artifacts from eeg data: multichannel or single-channel techniques? publication-title: IEEE Sensor. J. doi: 10.1109/JSEN.2015.2506982 – year: 2006 ident: 10.1016/j.compbiomed.2020.104188_bib15 – volume: 41 start-page: 1052 issue: 6 year: 2011 ident: 10.1016/j.compbiomed.2020.104188_bib38 article-title: Emotion assessment from physiological signals for adaptation of game difficulty publication-title: IEEE Trans. Syst. Man Cybern. Syst. Hum. doi: 10.1109/TSMCA.2011.2116000 – volume: 33 start-page: 86 issue: 3 year: 2016 ident: 10.1016/j.compbiomed.2020.104188_bib14 article-title: Joint blind source separation for neurophysiological data analysis: multiset and multimodal methods publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2016.2521870 – volume: 27 start-page: 39 issue: 4 year: 2010 ident: 10.1016/j.compbiomed.2020.104188_bib19 article-title: Canonical correlation analysis for data fusion and group inferences publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.936725 – start-page: 162 year: 1992 ident: 10.1016/j.compbiomed.2020.104188_bib26 article-title: Relations between two sets of variates – volume: 22 start-page: 199 issue: 2 year: 2010 ident: 10.1016/j.compbiomed.2020.104188_bib29 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Network. doi: 10.1109/TNN.2010.2091281 – volume: 54 start-page: 847 issue: 5 year: 2007 ident: 10.1016/j.compbiomed.2020.104188_bib41 article-title: A comparison of surface and intramuscular myoelectric signal classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.889192 – start-page: 515 year: 2008 ident: 10.1016/j.compbiomed.2020.104188_bib6 article-title: Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces – start-page: 2897 year: 2009 ident: 10.1016/j.compbiomed.2020.104188_bib11 article-title: Model adaptation with least-squares svm for adaptive hand prosthetics – start-page: 738 year: 2013 ident: 10.1016/j.compbiomed.2020.104188_bib24 article-title: A pac-bayesian approach for domain adaptation with specialization to linear classifiers – start-page: 4185 year: 2015 ident: 10.1016/j.compbiomed.2020.104188_bib9 article-title: An user-independent gesture recognition method based on semg decomposition – start-page: 965 year: 2017 ident: 10.1016/j.compbiomed.2020.104188_bib5 article-title: Towards a myoelectrically controlled virtual reality interface for synergy-based stroke rehabilitation – volume: 60 start-page: 2205 issue: 8 year: 2013 ident: 10.1016/j.compbiomed.2020.104188_bib12 article-title: Bilinear modeling of emg signals to extract user-independent features for multiuser myoelectric interface publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 9 start-page: 74 issue: 1 year: 2012 ident: 10.1016/j.compbiomed.2020.104188_bib39 article-title: Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees publication-title: J. NeuroEng. Rehabil. doi: 10.1186/1743-0003-9-74 – volume: 19 start-page: 260 issue: 3 year: 2011 ident: 10.1016/j.compbiomed.2020.104188_bib4 article-title: Online myoelectric control of a dexterous hand prosthesis by transradial amputees publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2011.2108667 – volume: 8 start-page: 184 issue: 2 year: 2013 ident: 10.1016/j.compbiomed.2020.104188_bib7 article-title: Pattern recognition of number gestures based on a wireless surface emg system publication-title: Biomed. Signal Process Contr. doi: 10.1016/j.bspc.2012.08.005 – volume: 40 start-page: 1114 issue: 5 year: 2017 ident: 10.1016/j.compbiomed.2020.104188_bib34 article-title: Domain generalization and adaptation using low rank exemplar svms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2704624 – start-page: 2641 year: 2019 ident: 10.1016/j.compbiomed.2020.104188_bib36 article-title: Visualized evidences for detecting novelty in myoelectric pattern recognition using 3d convolutional neural networks – start-page: 129 year: 2010 ident: 10.1016/j.compbiomed.2020.104188_bib23 article-title: Impossibility theorems for domain adaptation – volume: 55 start-page: 94 issue: 58–63 year: 2015 ident: 10.1016/j.compbiomed.2020.104188_bib31 article-title: Optimal transport for applied mathematicians publication-title: Birkäuser – volume: 2 start-page: 275 issue: 4 year: 2007 ident: 10.1016/j.compbiomed.2020.104188_bib1 article-title: Myoelectric control systems―a survey publication-title: Biomed. Signal Process Contr. doi: 10.1016/j.bspc.2007.07.009 – volume: 67 start-page: 2826 issue: 11 year: 2019 ident: 10.1016/j.compbiomed.2020.104188_bib17 article-title: Graph multiview canonical correlation analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2019.2910475 – volume: 2 start-page: 998 issue: 6 year: 2008 ident: 10.1016/j.compbiomed.2020.104188_bib13 article-title: Canonical correlation analysis for feature-based fusion of biomedical imaging modalities and its application to detection of associative networks in schizophrenia publication-title: IEEE J. Selected Topics Signal Process. doi: 10.1109/JSTSP.2008.2008265 – start-page: 1247 year: 2013 ident: 10.1016/j.compbiomed.2020.104188_bib16 article-title: Deep canonical correlation analysis – start-page: 2292 year: 2013 ident: 10.1016/j.compbiomed.2020.104188_bib33 article-title: Sinkhorn distances: lightspeed computation of optimal transport – volume: 9 start-page: 2579 issue: Nov year: 2008 ident: 10.1016/j.compbiomed.2020.104188_bib35 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – volume: 39 start-page: 433 issue: 5 year: 2009 ident: 10.1016/j.compbiomed.2020.104188_bib2 article-title: An exploratory study to design a novel hand movement identification system publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2009.02.001 – volume: 112 year: 2019 ident: 10.1016/j.compbiomed.2020.104188_bib8 article-title: Improve computational efficiency and estimation accuracy of multi-channel surface emg decomposition via dimensionality reduction publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103372 – volume: 33 start-page: 194 issue: 1 year: 2010 ident: 10.1016/j.compbiomed.2020.104188_bib27 article-title: Canonical correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 3430 year: 2009 ident: 10.1016/j.compbiomed.2020.104188_bib25 – start-page: 1024 year: 2008 ident: 10.1016/j.compbiomed.2020.104188_bib28 article-title: A least squares formulation for canonical correlation analysis – volume: 133 start-page: 1381 issue: 4 year: 2006 ident: 10.1016/j.compbiomed.2020.104188_bib32 article-title: On the translocation of masses publication-title: J. Math. Sci. doi: 10.1007/s10958-006-0049-2 – volume: 29 start-page: 207 issue: 1 year: 2012 ident: 10.1016/j.compbiomed.2020.104188_bib42 article-title: Improving control of dexterous hand prostheses using adaptive learning publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2012.2226386  | 
    
| SSID | ssj0004030 | 
    
| Score | 2.4687018 | 
    
| Snippet | Myoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However,... AbstractMyoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction....  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 104188 | 
    
| SubjectTerms | Canonical correlation analysis Classification Control systems Correlation analysis Distribution functions Domain adaptation Electromyography Gesture recognition Human-computer interface Interfaces Internal Medicine Myoelectric control Myoelectricity Optimal transport Other Pattern recognition Probability Probability distribution Probability distribution functions Prostheses Rehabilitation Signal processing Surface electromyogram  | 
    
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_DB_FF_LZ-EcHX6tqkbYJPMtQhzCcF30LapjLRbdjOR_9275K0Q1QY-Da23BKul8td8_vdEXKWCCETkxVhkuoi5BCwhrrkSRjLSMoSjgRji1WP7tPhI797Sp56ZNByYRBW6X2_8-nWW_tvLrw2L2bjMXJ8IZWABCdGm4V_RgY7z7CLwfnnAubB-8zRUMDf4GiP5nEYL4RtO5o7ZIqxvfCMbA-WX4-ov0JQexTdbJB1H0PSK7fMTdIzky2yOvK35NtkbFm1-PqB4u3R_N3QDic0nVCEuj_T-np0SxG9AfZHP8aago6nliRJC-zY4TByVPuiJfChpFPwL28woGkrou-Qx5vrh8Ew9C0VwgIioyY0IjGVZlXJ4rzIq4JxIZGcmpss74s8ijSTRlScaQl5c8kMJkQ5xByViEwaV2yXrMBizD5okWXGpGVUVHHOtUiERPms7KeyYpBkBSRrtagKX28c2168qhZY9qIW-leof-X0H5Cok5y5mhtLyMj2QamWUwpeUMHBsIRs9pusqf12rlWk6lj11Q-TC8hlJ_nNapec96i1KNVNBekwxKQSEs2AnHY_w57Hixw9MdM5jslSyATBnQZkz1lipyjGOBbl5wf_WtohWYsRvGPBdkdkpXmfm2OIvpr8xG6vL7mbLf8 priority: 102 providerName: Elsevier  | 
    
| Title | Multiuser gesture recognition using sEMG signals via canonical correlation analysis and optimal transport | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482520305199 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482520305199 https://dx.doi.org/10.1016/j.compbiomed.2020.104188 https://www.ncbi.nlm.nih.gov/pubmed/33421824 https://www.proquest.com/docview/2490569862 https://www.proquest.com/docview/2476559510  | 
    
| Volume | 130 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250903 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_uWhBfxG-jZ1nB12iT3SS7yCGntFeVFlEP-rZsko3ccTbntfXx_nZnNrvpyyl9CYVmmjCdzEfmN78BeJ1JqTJbVHGWmyoWmLDGphZZnKpEqRpDgnVk1fNFPjsTn5fZ8gAWYRaGYJXBJzpHXbcVvSN_i2UCxmqFCfj7q98xbY2i7mpYoWH8aoX62FGMHcIwJWasAQw_TBZfv-0mJce8G0pB7yOwOPLYng7xRSDubugd68bUtT8Tt5Hl1oD1r4TUBabpfbjnM0p20pnAAziwq4dwZ-575o_g3M3Y0ssIRr2k7bVlPWqoXTECvv9k68n8lBGWA62R_Tk3DDXeupFJVtH-jg4xx4ynMMEPNWvR2_zCEzaBH_0xnE0nPz7OYr9gIa4wT9rEVma2MbypeVpWZVNxIRWNqpa2KMeyTBLDlZWN4EZhFV1zS-VRiRpuZGLztOFPYIA3Y5-hFnlhbV4nVZOWwshMKpIv6nGuGo4lVwRF0KKuPPs4LcG41AFmdqF3-tekf93pP4Kkl7zqGDj2kFHhj9JhwhR9osYwsYdscZusXfuHe60TvU71WH933EZoRCk5TTTtCN71kj5_6fKSPa97FCxK95faWX0Er_qv0QNQW8esbLulc4oc60J0rhE87SyxVxTngij6xfP___gLuJsSVsdh645gsLne2peYbG3KERy-uUnwWCwLPMrp6QiGJ5--zBYj_2z9Be_NLdA | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiDeBAkaCY8TGdh4WqhCPLVvaXSFopd6MEzuoCDal2QXx5_htzDhO9lLQXnqLlEwcjcfzyHwzA_A0LQqVuryK08xUsUSHNTZWpjFXiVIWTYLzzaqns2xyJN8fp8cb8KevhSFYZa8TvaK2TUX_yJ9jmIC2WqED_vL0R0xToyi72o_QMGG0gt3xLcZCYce--_0LQ7h2Z-8t7vczznfHh28mcZgyEFfoLCxiV6SuNqK2gpdVWVdCForqNUuXl6OiTBIjlCtqKYzCUNIKRzFCicvUReIyXgt87yXYkkIqDP62Xo9nHz6uKjNHoiuCQW0nMRgLWKIOYUag8a7IHuNU7tOtiZ8Ac66B_JcD7A3h7nW4FjxY9qoTuRuw4eY34fI05OhvwYmv6aWfH4xyV8szxwaUUjNnBLT_wtrx9B0j7AhKP_t5YhjucONLNFlF80I6hB4zoWUKXljWoHb7jg8s-n7st-HoQlh9BzbxY9w95KLInctsUtW8lKZIC0X0uR1lqhYY4kWQ91zUVeh2TkM3vuke1vZVr_ivif-6438EyUB52nX8WING9Rul-4pW1MEazdIatPl5tK4NyqTViW65HulPvpcSChEnJY1HKYIXA2Xwlzo_aM11t3uJ0sNSq1MWwZPhNmocSiOZuWuW9EyeYRyKyjyCu50kDowSQtJIAHn__y9_DFcmh9MDfbA3238AVznhhDyubxs2F2dL9xAdvUX5KJwmBp8v-gD_BU-FZtc | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qheJLqd-xVVfQx9DLbpLNIiJie7bWK4IW7m3dJBtpaS-1uVP81_zrnNnN5l6q3EvfDpJJjtn5zPxmBuBlVhQqs7KKs9xUcYoBa2zqNIu5SpSq0SVYN6x6cpwfnKQfp9l0Df6EXhiCVQab6Ax13Vb0jXwX0wT01QoD8N2mh0V83hu_vfwR0wYpqrSGdRpeRI7s71-YvnVvDvfwrF9xPt7_-v4g7jcMxBUGCvPYFpltjGhqwcuqbCqRFop6NUsry1FRJokRyhZNKozCNLIWlvKDEl1wUyQ2543A596C21IIRXBCOZXLnsyR8O0vaOdSTMN6FJHHlhFc3LfXY4bKXaE1cbtfrnWN_wp9nQscb8FmH7uyd17Y7sKand2DjUlfnb8Pp66blz57MKpaLa4sG_BJ7YwRxP476_YnHxihRlDu2c9Tw_BsW9ecySraFOKxecz0w1LwR81atGsXeMM8TGJ_ACc3wuiHsI5_xj5GLgppbV4nVcPL1BRZoYhe1qNcNQKTuwhk4KKu-jnntG7jXAdA25le8l8T_7XnfwTJQHnpZ32sQKPCQenQy4rWV6NDWoFWXkdru96MdDrRHdcj_cVNUUIh4mSeUYkieD1Q9pGSj4BWfO9OkCg9vGqpXxG8GC6jraECkpnZdkH3yBwzUDTjETzykjgwSoiUlgGkT_7_8OewgWqrPx0eH23DHU4AIQfo24H1-dXCPsUIb14-c6rE4NtN6-5fhKpkcQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiuser+gesture+recognition+using+sEMG+signals+via+canonical+correlation+analysis+and+optimal+transport&rft.jtitle=Computers+in+biology+and+medicine&rft.date=2021-03-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=130&rft_id=info:doi/10.1016%2Fj.compbiomed.2020.104188&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482520X0014X%2Fcov150h.gif |