Multiuser gesture recognition using sEMG signals via canonical correlation analysis and optimal transport

Myoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However, when different users perform the same gesture, the electromyography (EMG) signals can vary greatly. It is essential to design a multiuser myoe...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 130; p. 104188
Main Authors Xue, Bo, Wu, Le, Wang, Kun, Zhang, Xu, Cheng, Juan, Chen, Xiang, Chen, Xun
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2021
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2020.104188

Cover

Abstract Myoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However, when different users perform the same gesture, the electromyography (EMG) signals can vary greatly. It is essential to design a multiuser myoelectric interface that can be simply used by novel users while maintaining good gesture classification performance. To cope with this problem, canonical correlation analysis (CCA) has been used to extract the inherent user-independent properties of EMG signals generated from the same gestures from multiple users and demonstrated superior performance. In this paper, we move forward to propose a novel framework based on CCA and optimal transport (OT), termed as CCA-OT. By optimal transport, the discrepancies in data distribution between the transformed feature matrix from the training and the testing sets can be further reduced. Experimental results on the defined 13 Chinese sign language gestures performed by 10 intact-limbed subjects demonstrated that the classification rate of our proposed CCA-OT framework is significantly higher than that of the CCA-only framework with an 8.49% promotion, which shows the necessity to reduce the drift in probability distribution functions (PDFs) of the different domains. The CCA-OT framework provides a promising method for the multiuser myoelectric interface which can be easily adapted to new users. This improvement will further facilitate the widespread implementation of myoelectric control systems using pattern recognition techniques. •We propose a novel framework termed as CCA-OT, to deal with the multiuser gesture recognition problem.•The data distribution divergence can be dramatically reduced between the training users and testing users by our framework.•The classification accuracy can be further improved by CCA-OT compared to CCA only.
AbstractList Myoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However, when different users perform the same gesture, the electromyography (EMG) signals can vary greatly. It is essential to design a multiuser myoelectric interface that can be simply used by novel users while maintaining good gesture classification performance. To cope with this problem, canonical correlation analysis (CCA) has been used to extract the inherent user-independent properties of EMG signals generated from the same gestures from multiple users and demonstrated superior performance. In this paper, we move forward to propose a novel framework based on CCA and optimal transport (OT), termed as CCA-OT. By optimal transport, the discrepancies in data distribution between the transformed feature matrix from the training and the testing sets can be further reduced. Experimental results on the defined 13 Chinese sign language gestures performed by 10 intact-limbed subjects demonstrated that the classification rate of our proposed CCA-OT framework is significantly higher than that of the CCA-only framework with an 8.49% promotion, which shows the necessity to reduce the drift in probability distribution functions (PDFs) of the different domains. The CCA-OT framework provides a promising method for the multiuser myoelectric interface which can be easily adapted to new users. This improvement will further facilitate the widespread implementation of myoelectric control systems using pattern recognition techniques. •We propose a novel framework termed as CCA-OT, to deal with the multiuser gesture recognition problem.•The data distribution divergence can be dramatically reduced between the training users and testing users by our framework.•The classification accuracy can be further improved by CCA-OT compared to CCA only.
Myoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However, when different users perform the same gesture, the electromyography (EMG) signals can vary greatly. It is essential to design a multiuser myoelectric interface that can be simply used by novel users while maintaining good gesture classification performance. To cope with this problem, canonical correlation analysis (CCA) has been used to extract the inherent user-independent properties of EMG signals generated from the same gestures from multiple users and demonstrated superior performance. In this paper, we move forward to propose a novel framework based on CCA and optimal transport (OT), termed as CCA-OT. By optimal transport, the discrepancies in data distribution between the transformed feature matrix from the training and the testing sets can be further reduced. Experimental results on the defined 13 Chinese sign language gestures performed by 10 intact-limbed subjects demonstrated that the classification rate of our proposed CCA-OT framework is significantly higher than that of the CCA-only framework with an 8.49% promotion, which shows the necessity to reduce the drift in probability distribution functions (PDFs) of the different domains. The CCA-OT framework provides a promising method for the multiuser myoelectric interface which can be easily adapted to new users. This improvement will further facilitate the widespread implementation of myoelectric control systems using pattern recognition techniques.
Myoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However, when different users perform the same gesture, the electromyography (EMG) signals can vary greatly. It is essential to design a multiuser myoelectric interface that can be simply used by novel users while maintaining good gesture classification performance. To cope with this problem, canonical correlation analysis (CCA) has been used to extract the inherent user-independent properties of EMG signals generated from the same gestures from multiple users and demonstrated superior performance. In this paper, we move forward to propose a novel framework based on CCA and optimal transport (OT), termed as CCA-OT. By optimal transport, the discrepancies in data distribution between the transformed feature matrix from the training and the testing sets can be further reduced. Experimental results on the defined 13 Chinese sign language gestures performed by 10 intact-limbed subjects demonstrated that the classification rate of our proposed CCA-OT framework is significantly higher than that of the CCA-only framework with an 8.49% promotion, which shows the necessity to reduce the drift in probability distribution functions (PDFs) of the different domains. The CCA-OT framework provides a promising method for the multiuser myoelectric interface which can be easily adapted to new users. This improvement will further facilitate the widespread implementation of myoelectric control systems using pattern recognition techniques.Myoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However, when different users perform the same gesture, the electromyography (EMG) signals can vary greatly. It is essential to design a multiuser myoelectric interface that can be simply used by novel users while maintaining good gesture classification performance. To cope with this problem, canonical correlation analysis (CCA) has been used to extract the inherent user-independent properties of EMG signals generated from the same gestures from multiple users and demonstrated superior performance. In this paper, we move forward to propose a novel framework based on CCA and optimal transport (OT), termed as CCA-OT. By optimal transport, the discrepancies in data distribution between the transformed feature matrix from the training and the testing sets can be further reduced. Experimental results on the defined 13 Chinese sign language gestures performed by 10 intact-limbed subjects demonstrated that the classification rate of our proposed CCA-OT framework is significantly higher than that of the CCA-only framework with an 8.49% promotion, which shows the necessity to reduce the drift in probability distribution functions (PDFs) of the different domains. The CCA-OT framework provides a promising method for the multiuser myoelectric interface which can be easily adapted to new users. This improvement will further facilitate the widespread implementation of myoelectric control systems using pattern recognition techniques.
AbstractMyoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However, when different users perform the same gesture, the electromyography (EMG) signals can vary greatly. It is essential to design a multiuser myoelectric interface that can be simply used by novel users while maintaining good gesture classification performance. To cope with this problem, canonical correlation analysis (CCA) has been used to extract the inherent user-independent properties of EMG signals generated from the same gestures from multiple users and demonstrated superior performance. In this paper, we move forward to propose a novel framework based on CCA and optimal transport (OT), termed as CCA-OT. By optimal transport, the discrepancies in data distribution between the transformed feature matrix from the training and the testing sets can be further reduced. Experimental results on the defined 13 Chinese sign language gestures performed by 10 intact-limbed subjects demonstrated that the classification rate of our proposed CCA-OT framework is significantly higher than that of the CCA-only framework with an 8.49% promotion, which shows the necessity to reduce the drift in probability distribution functions (PDFs) of the different domains. The CCA-OT framework provides a promising method for the multiuser myoelectric interface which can be easily adapted to new users. This improvement will further facilitate the widespread implementation of myoelectric control systems using pattern recognition techniques.
ArticleNumber 104188
Author Wu, Le
Xue, Bo
Chen, Xun
Zhang, Xu
Cheng, Juan
Wang, Kun
Chen, Xiang
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0002-4951-4710
  surname: Xue
  fullname: Xue, Bo
  organization: Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
– sequence: 2
  givenname: Le
  orcidid: 0000-0002-8565-9626
  surname: Wu
  fullname: Wu, Le
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China
– sequence: 3
  givenname: Kun
  surname: Wang
  fullname: Wang, Kun
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China
– sequence: 4
  givenname: Xu
  orcidid: 0000-0002-1533-4340
  surname: Zhang
  fullname: Zhang, Xu
  email: xuzhang90@ustc.edu.cn
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China
– sequence: 5
  givenname: Juan
  surname: Cheng
  fullname: Cheng, Juan
  organization: Department of Biomedical Engineering, Hefei University of Technology, Hefei, 230009, China
– sequence: 6
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China
– sequence: 7
  givenname: Xun
  surname: Chen
  fullname: Chen, Xun
  email: xunchen@ustc.edu.cn
  organization: Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33421824$$D View this record in MEDLINE/PubMed
BookMark eNqVkl9rFDEUxYNU7Lb6FSTgiy-zzd_Z5EW0pbZCiw_qc8hk7ixZZydjkinstzezW1coCPUpIfndw73n3DN0MoQBEMKULCmh9cVm6cJ2bHzYQrtkhM3Pgir1Ai2oWumKSC5O0IIQSiqhmDxFZyltCCGCcPIKnXIuGFVMLJC_n_rspwQRryHlKQKO4MJ68NmHAU_JD2ucru9vcPLrwfYJP3iLnS0NeWd77EKM0Ns9bMv_LvlULi0OY_bbAuRohzSGmF-jl12phzeP5zn68fn6-9Vtdff15svVp7vKSSpyBUpCZ3nXcta4pnNcKF0zVTewaohqKLVcg-oEt1rUuuUgtNYNlbJTFGrW8XP0_qA7xvBrKjOZrU8O-t4OEKZkmFjVUmpJSUHfPUE3YYrzlIXSRNZa1axQbx-pqSl-mzGWweLO_DGxAOoAuBhSitAdEUrMnJfZmL95mTkvc8irlH54Uup83rtZfPP9cwQuDwJQLH3wEE1yHgYHrS85ZtMG_x9dHEVc7_f5_oQdpKMp1CRmiPk279W8Vqxsk6RaF4GP_xZ4Xg-_AWkY46g
CitedBy_id crossref_primary_10_1177_00202940221105092
crossref_primary_10_1016_j_bspc_2024_106078
crossref_primary_10_3389_fnbot_2022_997134
crossref_primary_10_1016_j_patcog_2022_108795
crossref_primary_10_1088_1741_2552_ad184f
crossref_primary_10_1109_LRA_2023_3317680
crossref_primary_10_1016_j_bspc_2021_103321
crossref_primary_10_1109_TCDS_2023_3316701
crossref_primary_10_1088_1741_2552_ad1786
crossref_primary_10_1016_j_compbiomed_2023_107327
crossref_primary_10_3389_fbioe_2024_1329209
crossref_primary_10_3389_fnins_2022_847180
crossref_primary_10_1109_JBHI_2023_3234989
crossref_primary_10_1109_JSEN_2024_3475818
crossref_primary_10_1016_j_compbiomed_2024_108051
crossref_primary_10_1109_JSEN_2023_3305619
crossref_primary_10_3389_fnins_2023_1174760
crossref_primary_10_3389_fbioe_2021_771255
crossref_primary_10_1109_JBHI_2022_3159792
crossref_primary_10_1109_TNSRE_2023_3347540
crossref_primary_10_3390_s23198343
crossref_primary_10_1017_S026357472200159X
crossref_primary_10_1016_j_compbiomed_2022_105978
crossref_primary_10_1109_TBME_2024_3479232
crossref_primary_10_1109_TMRB_2024_3504737
crossref_primary_10_1109_TNSRE_2023_3237181
crossref_primary_10_1109_TNSRE_2022_3173946
crossref_primary_10_3390_s24185949
crossref_primary_10_1109_TNSRE_2021_3086401
crossref_primary_10_1088_1741_2552_acb7a0
crossref_primary_10_1002_lary_30589
crossref_primary_10_1109_ACCESS_2022_3225761
crossref_primary_10_1109_TBME_2023_3239687
crossref_primary_10_3389_fnins_2021_657958
Cites_doi 10.1016/j.compbiomed.2016.05.014
10.3390/s141018370
10.1016/j.compbiomed.2018.08.020
10.1016/j.neunet.2014.03.010
10.1109/TNSRE.2014.2304470
10.3390/s150100394
10.1109/JSEN.2015.2506982
10.1109/TSMCA.2011.2116000
10.1109/MSP.2016.2521870
10.1109/MSP.2010.936725
10.1109/TNN.2010.2091281
10.1109/TBME.2006.889192
10.1186/1743-0003-9-74
10.1109/TNSRE.2011.2108667
10.1016/j.bspc.2012.08.005
10.1109/TPAMI.2017.2704624
10.1016/j.bspc.2007.07.009
10.1109/TSP.2019.2910475
10.1109/JSTSP.2008.2008265
10.1016/j.compbiomed.2009.02.001
10.1016/j.compbiomed.2019.103372
10.1007/s10958-006-0049-2
10.1109/TRO.2012.2226386
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
2021. Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
– notice: 2021. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2020.104188
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic


Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 104188
ExternalDocumentID 33421824
10_1016_j_compbiomed_2020_104188
S0010482520305199
1_s2_0_S0010482520305199
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-e85efa3fd32bcbfc34896286be7b08b11a39e8f43a9469d3e4999b155f81e62f3
IEDL.DBID BENPR
ISSN 0010-4825
1879-0534
IngestDate Sun Sep 28 08:18:34 EDT 2025
Tue Oct 07 06:25:19 EDT 2025
Thu Apr 03 07:03:55 EDT 2025
Thu Apr 24 23:11:32 EDT 2025
Wed Oct 01 05:17:22 EDT 2025
Fri Feb 23 02:44:50 EST 2024
Tue Feb 25 20:08:38 EST 2025
Tue Oct 14 19:33:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Surface electromyogram
Domain adaptation
Optimal transport
Canonical correlation analysis
Gesture recognition
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-e85efa3fd32bcbfc34896286be7b08b11a39e8f43a9469d3e4999b155f81e62f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4951-4710
0000-0002-1533-4340
0000-0002-8565-9626
PMID 33421824
PQID 2490569862
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2476559510
proquest_journals_2490569862
pubmed_primary_33421824
crossref_primary_10_1016_j_compbiomed_2020_104188
crossref_citationtrail_10_1016_j_compbiomed_2020_104188
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2020_104188
elsevier_clinicalkeyesjournals_1_s2_0_S0010482520305199
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2020_104188
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Li, Xu, Xu, Dai, Van Gool (bib34) 2017; 40
Wu, Zhang, Chen, Chen (bib36) 2019
Berger, d'Avella (bib5) 2017
Kalani, Moghimi, Akbarzadeh (bib3) 2016; 75
Courty, Flamary, Tuia, Rakotomamonjy (bib30) 2017; 39
Andrew, Arora, Bilmes, Livescu (bib16) 2013
Chanel, Rebetez, Bétrancourt, Pun (bib38) 2011; 41
David, Lu, Luu, Pál (bib23) 2010
Sun, Ji, Ye (bib28) 2008
Ning, Dias, Li, Jie, Li, Zhang (bib8) 2019; 112
Khushaba (bib10) 2014; 22
Chen, Liu, Chiang, Wang, McKeown, Ward (bib21) 2015; 16
Cipriani, Antfolk, Controzzi, Lundborg, Rosén, Carrozza, Sebelius (bib4) 2011; 19
Chen, Wang (bib7) 2013; 8
Geng, Zhou, Li (bib39) 2012; 9
Tommasi, Orabona, Castellini, Caputo (bib42) 2012; 29
Pan, Tsang, Kwok, Yang (bib29) 2010; 22
Cheng, Wei, Li, Liu, Liu, Chen (bib22) 2018; 103
Khezri, Jahed (bib2) 2009; 39
Xiong, Zhao, Han, Liu, Ding (bib9) 2015
Chen, Wang, Giannakis (bib17) 2019; 67
Hargrove, Englehart, Hudgins (bib41) 2007; 54
Cuturi (bib33) 2013
Hotelling (bib26) 1992
Mansour, Mohri, Rostamizadeh (bib25) 2009
Chen, Wang, McKeown (bib14) 2016; 33
Akaho (bib15) 2006
Santambrogio (bib31) 2015; 55
Chen, Liu, Peng, Ward (bib20) 2014; 14
Sun, Ji, Ye (bib27) 2010; 33
Matsubara, Morimoto (bib12) 2013; 60
Kim, Cho, Lee, Lee (bib37) 2015; 15
Correa, Adali, Li, Calhoun (bib19) 2010; 27
Kantorovich (bib32) 2006; 133
Oskoei, Hu (bib1) 2007; 2
Saponas, Tan, Morris, Balakrishnan (bib6) 2008
Germain, Habrard, Laviolette, Morvant (bib24) 2013
Maaten, Hinton (bib35) 2008; 9
Khushaba, Takruri, Miro, Kodagoda (bib40) 2014; 55
Correa, Li, Adali, Calhoun (bib13) 2008; 2
Orabona, Castellini, Caputo, Fiorilla, Sandini (bib11) 2009
Hassan, Boudaoud, Terrien, Karlsson, Marque (bib18) 2011; 58
Courty (10.1016/j.compbiomed.2020.104188_bib30) 2017; 39
Kim (10.1016/j.compbiomed.2020.104188_bib37) 2015; 15
Tommasi (10.1016/j.compbiomed.2020.104188_bib42) 2012; 29
Geng (10.1016/j.compbiomed.2020.104188_bib39) 2012; 9
Li (10.1016/j.compbiomed.2020.104188_bib34) 2017; 40
Khushaba (10.1016/j.compbiomed.2020.104188_bib40) 2014; 55
Berger (10.1016/j.compbiomed.2020.104188_bib5) 2017
Chen (10.1016/j.compbiomed.2020.104188_bib7) 2013; 8
Cheng (10.1016/j.compbiomed.2020.104188_bib22) 2018; 103
Maaten (10.1016/j.compbiomed.2020.104188_bib35) 2008; 9
Chen (10.1016/j.compbiomed.2020.104188_bib17) 2019; 67
Chen (10.1016/j.compbiomed.2020.104188_bib14) 2016; 33
Kalani (10.1016/j.compbiomed.2020.104188_bib3) 2016; 75
Ning (10.1016/j.compbiomed.2020.104188_bib8) 2019; 112
Cipriani (10.1016/j.compbiomed.2020.104188_bib4) 2011; 19
Akaho (10.1016/j.compbiomed.2020.104188_bib15) 2006
Correa (10.1016/j.compbiomed.2020.104188_bib13) 2008; 2
Hargrove (10.1016/j.compbiomed.2020.104188_bib41) 2007; 54
Correa (10.1016/j.compbiomed.2020.104188_bib19) 2010; 27
Hassan (10.1016/j.compbiomed.2020.104188_bib18) 2011; 58
Germain (10.1016/j.compbiomed.2020.104188_bib24) 2013
Hotelling (10.1016/j.compbiomed.2020.104188_bib26) 1992
Pan (10.1016/j.compbiomed.2020.104188_bib29) 2010; 22
Chen (10.1016/j.compbiomed.2020.104188_bib21) 2015; 16
Santambrogio (10.1016/j.compbiomed.2020.104188_bib31) 2015; 55
Mansour (10.1016/j.compbiomed.2020.104188_bib25) 2009
Cuturi (10.1016/j.compbiomed.2020.104188_bib33) 2013
Chen (10.1016/j.compbiomed.2020.104188_bib20) 2014; 14
Wu (10.1016/j.compbiomed.2020.104188_bib36) 2019
Sun (10.1016/j.compbiomed.2020.104188_bib28) 2008
Kantorovich (10.1016/j.compbiomed.2020.104188_bib32) 2006; 133
Andrew (10.1016/j.compbiomed.2020.104188_bib16) 2013
David (10.1016/j.compbiomed.2020.104188_bib23) 2010
Matsubara (10.1016/j.compbiomed.2020.104188_bib12) 2013; 60
Khezri (10.1016/j.compbiomed.2020.104188_bib2) 2009; 39
Chanel (10.1016/j.compbiomed.2020.104188_bib38) 2011; 41
Khushaba (10.1016/j.compbiomed.2020.104188_bib10) 2014; 22
Orabona (10.1016/j.compbiomed.2020.104188_bib11) 2009
Oskoei (10.1016/j.compbiomed.2020.104188_bib1) 2007; 2
Saponas (10.1016/j.compbiomed.2020.104188_bib6) 2008
Xiong (10.1016/j.compbiomed.2020.104188_bib9) 2015
Sun (10.1016/j.compbiomed.2020.104188_bib27) 2010; 33
References_xml – start-page: 162
  year: 1992
  end-page: 190
  ident: bib26
  article-title: Relations between two sets of variates
  publication-title: Breakthroughs in Statistics
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib35
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 1986
  year: 2015
  end-page: 1997
  ident: bib21
  article-title: Removing muscle artifacts from eeg data: multichannel or single-channel techniques?
  publication-title: IEEE Sensor. J.
– volume: 54
  start-page: 847
  year: 2007
  end-page: 853
  ident: bib41
  article-title: A comparison of surface and intramuscular myoelectric signal classification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 40
  start-page: 1114
  year: 2017
  end-page: 1127
  ident: bib34
  article-title: Domain generalization and adaptation using low rank exemplar svms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 112
  year: 2019
  ident: bib8
  article-title: Improve computational efficiency and estimation accuracy of multi-channel surface emg decomposition via dimensionality reduction
  publication-title: Comput. Biol. Med.
– volume: 58
  start-page: 2441
  year: 2011
  end-page: 2447
  ident: bib18
  article-title: Combination of canonical correlation analysis and empirical mode decomposition applied to denoising the labor electrohysterogram
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 55
  start-page: 94
  year: 2015
  ident: bib31
  article-title: Optimal transport for applied mathematicians
  publication-title: Birkäuser
– start-page: 4185
  year: 2015
  end-page: 4190
  ident: bib9
  article-title: An user-independent gesture recognition method based on semg decomposition
  publication-title: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– volume: 22
  start-page: 745
  year: 2014
  end-page: 755
  ident: bib10
  article-title: Correlation analysis of electromyogram signals for multiuser myoelectric interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– start-page: 738
  year: 2013
  end-page: 746
  ident: bib24
  article-title: A pac-bayesian approach for domain adaptation with specialization to linear classifiers
  publication-title: International Conference on Machine Learning
– volume: 39
  start-page: 433
  year: 2009
  end-page: 442
  ident: bib2
  article-title: An exploratory study to design a novel hand movement identification system
  publication-title: Comput. Biol. Med.
– volume: 60
  start-page: 2205
  year: 2013
  end-page: 2213
  ident: bib12
  article-title: Bilinear modeling of emg signals to extract user-independent features for multiuser myoelectric interface
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 14
  start-page: 18370
  year: 2014
  end-page: 18389
  ident: bib20
  article-title: A preliminary study of muscular artifact cancellation in single-channel eeg
  publication-title: Sensors
– volume: 67
  start-page: 2826
  year: 2019
  end-page: 2838
  ident: bib17
  article-title: Graph multiview canonical correlation analysis
  publication-title: IEEE Trans. Signal Process.
– start-page: 1247
  year: 2013
  end-page: 1255
  ident: bib16
  article-title: Deep canonical correlation analysis
  publication-title: International Conference on Machine Learning
– volume: 15
  start-page: 394
  year: 2015
  end-page: 407
  ident: bib37
  article-title: A real-time pinch-to-zoom motion detection by means of a surface emg-based human-computer interface
  publication-title: Sensors
– volume: 103
  start-page: 44
  year: 2018
  end-page: 54
  ident: bib22
  article-title: Position-independent gesture recognition using semg signals via canonical correlation analysis
  publication-title: Comput. Biol. Med.
– volume: 22
  start-page: 199
  year: 2010
  end-page: 210
  ident: bib29
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Network.
– volume: 19
  start-page: 260
  year: 2011
  end-page: 270
  ident: bib4
  article-title: Online myoelectric control of a dexterous hand prosthesis by transradial amputees
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 55
  start-page: 42
  year: 2014
  end-page: 58
  ident: bib40
  article-title: Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features
  publication-title: Neural Network.
– volume: 33
  start-page: 194
  year: 2010
  end-page: 200
  ident: bib27
  article-title: Canonical correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 8
  start-page: 184
  year: 2013
  end-page: 192
  ident: bib7
  article-title: Pattern recognition of number gestures based on a wireless surface emg system
  publication-title: Biomed. Signal Process Contr.
– volume: 33
  start-page: 86
  year: 2016
  end-page: 107
  ident: bib14
  article-title: Joint blind source separation for neurophysiological data analysis: multiset and multimodal methods
  publication-title: IEEE Signal Process. Mag.
– volume: 75
  start-page: 243
  year: 2016
  end-page: 256
  ident: bib3
  article-title: Towards an semg-based tele-operated robot for masticatory rehabilitation
  publication-title: Comput. Biol. Med.
– start-page: 1024
  year: 2008
  end-page: 1031
  ident: bib28
  article-title: A least squares formulation for canonical correlation analysis
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– volume: 2
  start-page: 998
  year: 2008
  end-page: 1007
  ident: bib13
  article-title: Canonical correlation analysis for feature-based fusion of biomedical imaging modalities and its application to detection of associative networks in schizophrenia
  publication-title: IEEE J. Selected Topics Signal Process.
– volume: 41
  start-page: 1052
  year: 2011
  end-page: 1063
  ident: bib38
  article-title: Emotion assessment from physiological signals for adaptation of game difficulty
  publication-title: IEEE Trans. Syst. Man Cybern. Syst. Hum.
– start-page: 129
  year: 2010
  end-page: 136
  ident: bib23
  article-title: Impossibility theorems for domain adaptation
  publication-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
– start-page: 515
  year: 2008
  end-page: 524
  ident: bib6
  article-title: Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces
  publication-title: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
– year: 2006
  ident: bib15
  article-title: A Kernel Method for Canonical Correlation Analysis
– volume: 2
  start-page: 275
  year: 2007
  end-page: 294
  ident: bib1
  article-title: Myoelectric control systems―a survey
  publication-title: Biomed. Signal Process Contr.
– volume: 27
  start-page: 39
  year: 2010
  end-page: 50
  ident: bib19
  article-title: Canonical correlation analysis for data fusion and group inferences
  publication-title: IEEE Signal Process. Mag.
– volume: 133
  start-page: 1381
  year: 2006
  end-page: 1382
  ident: bib32
  article-title: On the translocation of masses
  publication-title: J. Math. Sci.
– start-page: 2292
  year: 2013
  end-page: 2300
  ident: bib33
  article-title: Sinkhorn distances: lightspeed computation of optimal transport
  publication-title: Advances in Neural Information Processing Systems
– start-page: 965
  year: 2017
  end-page: 969
  ident: bib5
  article-title: Towards a myoelectrically controlled virtual reality interface for synergy-based stroke rehabilitation
  publication-title: Converging Clinical and Engineering Research on Neurorehabilitation II
– start-page: 2897
  year: 2009
  end-page: 2903
  ident: bib11
  article-title: Model adaptation with least-squares svm for adaptive hand prosthetics
  publication-title: 2009 IEEE International Conference on Robotics and Automation
– volume: 39
  start-page: 1853
  year: 2017
  end-page: 1865
  ident: bib30
  article-title: Optimal transport for domain adaptation. pattern analysis and machine intelligence
  publication-title: IEEE Trans.
– volume: 9
  start-page: 74
  year: 2012
  ident: bib39
  article-title: Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees
  publication-title: J. NeuroEng. Rehabil.
– start-page: 2641
  year: 2019
  end-page: 2644
  ident: bib36
  article-title: Visualized evidences for detecting novelty in myoelectric pattern recognition using 3d convolutional neural networks
  publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 29
  start-page: 207
  year: 2012
  end-page: 219
  ident: bib42
  article-title: Improving control of dexterous hand prostheses using adaptive learning
  publication-title: IEEE Trans. Robot.
– start-page: 3430
  year: 2009
  ident: bib25
  article-title: Domain Adaptation: Learning Bounds and Algorithms
– volume: 75
  start-page: 243
  year: 2016
  ident: 10.1016/j.compbiomed.2020.104188_bib3
  article-title: Towards an semg-based tele-operated robot for masticatory rehabilitation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.05.014
– volume: 14
  start-page: 18370
  issue: 10
  year: 2014
  ident: 10.1016/j.compbiomed.2020.104188_bib20
  article-title: A preliminary study of muscular artifact cancellation in single-channel eeg
  publication-title: Sensors
  doi: 10.3390/s141018370
– volume: 103
  start-page: 44
  year: 2018
  ident: 10.1016/j.compbiomed.2020.104188_bib22
  article-title: Position-independent gesture recognition using semg signals via canonical correlation analysis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.08.020
– volume: 55
  start-page: 42
  year: 2014
  ident: 10.1016/j.compbiomed.2020.104188_bib40
  article-title: Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features
  publication-title: Neural Network.
  doi: 10.1016/j.neunet.2014.03.010
– volume: 22
  start-page: 745
  issue: 4
  year: 2014
  ident: 10.1016/j.compbiomed.2020.104188_bib10
  article-title: Correlation analysis of electromyogram signals for multiuser myoelectric interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2304470
– volume: 58
  start-page: 2441
  issue: 9
  year: 2011
  ident: 10.1016/j.compbiomed.2020.104188_bib18
  article-title: Combination of canonical correlation analysis and empirical mode decomposition applied to denoising the labor electrohysterogram
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 39
  start-page: 1853
  issue: 9
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104188_bib30
  article-title: Optimal transport for domain adaptation. pattern analysis and machine intelligence
  publication-title: IEEE Trans.
– volume: 15
  start-page: 394
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2020.104188_bib37
  article-title: A real-time pinch-to-zoom motion detection by means of a surface emg-based human-computer interface
  publication-title: Sensors
  doi: 10.3390/s150100394
– volume: 16
  start-page: 1986
  issue: 7
  year: 2015
  ident: 10.1016/j.compbiomed.2020.104188_bib21
  article-title: Removing muscle artifacts from eeg data: multichannel or single-channel techniques?
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2015.2506982
– year: 2006
  ident: 10.1016/j.compbiomed.2020.104188_bib15
– volume: 41
  start-page: 1052
  issue: 6
  year: 2011
  ident: 10.1016/j.compbiomed.2020.104188_bib38
  article-title: Emotion assessment from physiological signals for adaptation of game difficulty
  publication-title: IEEE Trans. Syst. Man Cybern. Syst. Hum.
  doi: 10.1109/TSMCA.2011.2116000
– volume: 33
  start-page: 86
  issue: 3
  year: 2016
  ident: 10.1016/j.compbiomed.2020.104188_bib14
  article-title: Joint blind source separation for neurophysiological data analysis: multiset and multimodal methods
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2016.2521870
– volume: 27
  start-page: 39
  issue: 4
  year: 2010
  ident: 10.1016/j.compbiomed.2020.104188_bib19
  article-title: Canonical correlation analysis for data fusion and group inferences
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.936725
– start-page: 162
  year: 1992
  ident: 10.1016/j.compbiomed.2020.104188_bib26
  article-title: Relations between two sets of variates
– volume: 22
  start-page: 199
  issue: 2
  year: 2010
  ident: 10.1016/j.compbiomed.2020.104188_bib29
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/TNN.2010.2091281
– volume: 54
  start-page: 847
  issue: 5
  year: 2007
  ident: 10.1016/j.compbiomed.2020.104188_bib41
  article-title: A comparison of surface and intramuscular myoelectric signal classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.889192
– start-page: 515
  year: 2008
  ident: 10.1016/j.compbiomed.2020.104188_bib6
  article-title: Demonstrating the feasibility of using forearm electromyography for muscle-computer interfaces
– start-page: 2897
  year: 2009
  ident: 10.1016/j.compbiomed.2020.104188_bib11
  article-title: Model adaptation with least-squares svm for adaptive hand prosthetics
– start-page: 738
  year: 2013
  ident: 10.1016/j.compbiomed.2020.104188_bib24
  article-title: A pac-bayesian approach for domain adaptation with specialization to linear classifiers
– start-page: 4185
  year: 2015
  ident: 10.1016/j.compbiomed.2020.104188_bib9
  article-title: An user-independent gesture recognition method based on semg decomposition
– start-page: 965
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104188_bib5
  article-title: Towards a myoelectrically controlled virtual reality interface for synergy-based stroke rehabilitation
– volume: 60
  start-page: 2205
  issue: 8
  year: 2013
  ident: 10.1016/j.compbiomed.2020.104188_bib12
  article-title: Bilinear modeling of emg signals to extract user-independent features for multiuser myoelectric interface
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 9
  start-page: 74
  issue: 1
  year: 2012
  ident: 10.1016/j.compbiomed.2020.104188_bib39
  article-title: Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/1743-0003-9-74
– volume: 19
  start-page: 260
  issue: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2020.104188_bib4
  article-title: Online myoelectric control of a dexterous hand prosthesis by transradial amputees
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2108667
– volume: 8
  start-page: 184
  issue: 2
  year: 2013
  ident: 10.1016/j.compbiomed.2020.104188_bib7
  article-title: Pattern recognition of number gestures based on a wireless surface emg system
  publication-title: Biomed. Signal Process Contr.
  doi: 10.1016/j.bspc.2012.08.005
– volume: 40
  start-page: 1114
  issue: 5
  year: 2017
  ident: 10.1016/j.compbiomed.2020.104188_bib34
  article-title: Domain generalization and adaptation using low rank exemplar svms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2704624
– start-page: 2641
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104188_bib36
  article-title: Visualized evidences for detecting novelty in myoelectric pattern recognition using 3d convolutional neural networks
– start-page: 129
  year: 2010
  ident: 10.1016/j.compbiomed.2020.104188_bib23
  article-title: Impossibility theorems for domain adaptation
– volume: 55
  start-page: 94
  issue: 58–63
  year: 2015
  ident: 10.1016/j.compbiomed.2020.104188_bib31
  article-title: Optimal transport for applied mathematicians
  publication-title: Birkäuser
– volume: 2
  start-page: 275
  issue: 4
  year: 2007
  ident: 10.1016/j.compbiomed.2020.104188_bib1
  article-title: Myoelectric control systems―a survey
  publication-title: Biomed. Signal Process Contr.
  doi: 10.1016/j.bspc.2007.07.009
– volume: 67
  start-page: 2826
  issue: 11
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104188_bib17
  article-title: Graph multiview canonical correlation analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2019.2910475
– volume: 2
  start-page: 998
  issue: 6
  year: 2008
  ident: 10.1016/j.compbiomed.2020.104188_bib13
  article-title: Canonical correlation analysis for feature-based fusion of biomedical imaging modalities and its application to detection of associative networks in schizophrenia
  publication-title: IEEE J. Selected Topics Signal Process.
  doi: 10.1109/JSTSP.2008.2008265
– start-page: 1247
  year: 2013
  ident: 10.1016/j.compbiomed.2020.104188_bib16
  article-title: Deep canonical correlation analysis
– start-page: 2292
  year: 2013
  ident: 10.1016/j.compbiomed.2020.104188_bib33
  article-title: Sinkhorn distances: lightspeed computation of optimal transport
– volume: 9
  start-page: 2579
  issue: Nov
  year: 2008
  ident: 10.1016/j.compbiomed.2020.104188_bib35
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 39
  start-page: 433
  issue: 5
  year: 2009
  ident: 10.1016/j.compbiomed.2020.104188_bib2
  article-title: An exploratory study to design a novel hand movement identification system
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2009.02.001
– volume: 112
  year: 2019
  ident: 10.1016/j.compbiomed.2020.104188_bib8
  article-title: Improve computational efficiency and estimation accuracy of multi-channel surface emg decomposition via dimensionality reduction
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103372
– volume: 33
  start-page: 194
  issue: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2020.104188_bib27
  article-title: Canonical correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 3430
  year: 2009
  ident: 10.1016/j.compbiomed.2020.104188_bib25
– start-page: 1024
  year: 2008
  ident: 10.1016/j.compbiomed.2020.104188_bib28
  article-title: A least squares formulation for canonical correlation analysis
– volume: 133
  start-page: 1381
  issue: 4
  year: 2006
  ident: 10.1016/j.compbiomed.2020.104188_bib32
  article-title: On the translocation of masses
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-006-0049-2
– volume: 29
  start-page: 207
  issue: 1
  year: 2012
  ident: 10.1016/j.compbiomed.2020.104188_bib42
  article-title: Improving control of dexterous hand prostheses using adaptive learning
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2012.2226386
SSID ssj0004030
Score 2.4687018
Snippet Myoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction. However,...
AbstractMyoelectric interfaces have received much attention in the field of prosthesis control, neuro-rehabilitation systems and human-computer interaction....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104188
SubjectTerms Canonical correlation analysis
Classification
Control systems
Correlation analysis
Distribution functions
Domain adaptation
Electromyography
Gesture recognition
Human-computer interface
Interfaces
Internal Medicine
Myoelectric control
Myoelectricity
Optimal transport
Other
Pattern recognition
Probability
Probability distribution
Probability distribution functions
Prostheses
Rehabilitation
Signal processing
Surface electromyogram
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_DB_FF_LZ-EcHX6tqkbYJPMtQhzCcF30LapjLRbdjOR_9275K0Q1QY-Da23BKul8td8_vdEXKWCCETkxVhkuoi5BCwhrrkSRjLSMoSjgRji1WP7tPhI797Sp56ZNByYRBW6X2_8-nWW_tvLrw2L2bjMXJ8IZWABCdGm4V_RgY7z7CLwfnnAubB-8zRUMDf4GiP5nEYL4RtO5o7ZIqxvfCMbA-WX4-ov0JQexTdbJB1H0PSK7fMTdIzky2yOvK35NtkbFm1-PqB4u3R_N3QDic0nVCEuj_T-np0SxG9AfZHP8aago6nliRJC-zY4TByVPuiJfChpFPwL28woGkrou-Qx5vrh8Ew9C0VwgIioyY0IjGVZlXJ4rzIq4JxIZGcmpss74s8ijSTRlScaQl5c8kMJkQ5xByViEwaV2yXrMBizD5okWXGpGVUVHHOtUiERPms7KeyYpBkBSRrtagKX28c2168qhZY9qIW-leof-X0H5Cok5y5mhtLyMj2QamWUwpeUMHBsIRs9pusqf12rlWk6lj11Q-TC8hlJ_nNapec96i1KNVNBekwxKQSEs2AnHY_w57Hixw9MdM5jslSyATBnQZkz1lipyjGOBbl5wf_WtohWYsRvGPBdkdkpXmfm2OIvpr8xG6vL7mbLf8
  priority: 102
  providerName: Elsevier
Title Multiuser gesture recognition using sEMG signals via canonical correlation analysis and optimal transport
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482520305199
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482520305199
https://dx.doi.org/10.1016/j.compbiomed.2020.104188
https://www.ncbi.nlm.nih.gov/pubmed/33421824
https://www.proquest.com/docview/2490569862
https://www.proquest.com/docview/2476559510
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250903
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_uWhBfxG-jZ1nB12iT3SS7yCGntFeVFlEP-rZsko3ccTbntfXx_nZnNrvpyyl9CYVmmjCdzEfmN78BeJ1JqTJbVHGWmyoWmLDGphZZnKpEqRpDgnVk1fNFPjsTn5fZ8gAWYRaGYJXBJzpHXbcVvSN_i2UCxmqFCfj7q98xbY2i7mpYoWH8aoX62FGMHcIwJWasAQw_TBZfv-0mJce8G0pB7yOwOPLYng7xRSDubugd68bUtT8Tt5Hl1oD1r4TUBabpfbjnM0p20pnAAziwq4dwZ-575o_g3M3Y0ssIRr2k7bVlPWqoXTECvv9k68n8lBGWA62R_Tk3DDXeupFJVtH-jg4xx4ynMMEPNWvR2_zCEzaBH_0xnE0nPz7OYr9gIa4wT9rEVma2MbypeVpWZVNxIRWNqpa2KMeyTBLDlZWN4EZhFV1zS-VRiRpuZGLztOFPYIA3Y5-hFnlhbV4nVZOWwshMKpIv6nGuGo4lVwRF0KKuPPs4LcG41AFmdqF3-tekf93pP4Kkl7zqGDj2kFHhj9JhwhR9osYwsYdscZusXfuHe60TvU71WH933EZoRCk5TTTtCN71kj5_6fKSPa97FCxK95faWX0Er_qv0QNQW8esbLulc4oc60J0rhE87SyxVxTngij6xfP___gLuJsSVsdh645gsLne2peYbG3KERy-uUnwWCwLPMrp6QiGJ5--zBYj_2z9Be_NLdA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiDeBAkaCY8TGdh4WqhCPLVvaXSFopd6MEzuoCDal2QXx5_htzDhO9lLQXnqLlEwcjcfzyHwzA_A0LQqVuryK08xUsUSHNTZWpjFXiVIWTYLzzaqns2xyJN8fp8cb8KevhSFYZa8TvaK2TUX_yJ9jmIC2WqED_vL0R0xToyi72o_QMGG0gt3xLcZCYce--_0LQ7h2Z-8t7vczznfHh28mcZgyEFfoLCxiV6SuNqK2gpdVWVdCForqNUuXl6OiTBIjlCtqKYzCUNIKRzFCicvUReIyXgt87yXYkkIqDP62Xo9nHz6uKjNHoiuCQW0nMRgLWKIOYUag8a7IHuNU7tOtiZ8Ac66B_JcD7A3h7nW4FjxY9qoTuRuw4eY34fI05OhvwYmv6aWfH4xyV8szxwaUUjNnBLT_wtrx9B0j7AhKP_t5YhjucONLNFlF80I6hB4zoWUKXljWoHb7jg8s-n7st-HoQlh9BzbxY9w95KLInctsUtW8lKZIC0X0uR1lqhYY4kWQ91zUVeh2TkM3vuke1vZVr_ivif-6438EyUB52nX8WING9Rul-4pW1MEazdIatPl5tK4NyqTViW65HulPvpcSChEnJY1HKYIXA2Xwlzo_aM11t3uJ0sNSq1MWwZPhNmocSiOZuWuW9EyeYRyKyjyCu50kDowSQtJIAHn__y9_DFcmh9MDfbA3238AVznhhDyubxs2F2dL9xAdvUX5KJwmBp8v-gD_BU-FZtc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qheJLqd-xVVfQx9DLbpLNIiJie7bWK4IW7m3dJBtpaS-1uVP81_zrnNnN5l6q3EvfDpJJjtn5zPxmBuBlVhQqs7KKs9xUcYoBa2zqNIu5SpSq0SVYN6x6cpwfnKQfp9l0Df6EXhiCVQab6Ax13Vb0jXwX0wT01QoD8N2mh0V83hu_vfwR0wYpqrSGdRpeRI7s71-YvnVvDvfwrF9xPt7_-v4g7jcMxBUGCvPYFpltjGhqwcuqbCqRFop6NUsry1FRJokRyhZNKozCNLIWlvKDEl1wUyQ2543A596C21IIRXBCOZXLnsyR8O0vaOdSTMN6FJHHlhFc3LfXY4bKXaE1cbtfrnWN_wp9nQscb8FmH7uyd17Y7sKand2DjUlfnb8Pp66blz57MKpaLa4sG_BJ7YwRxP476_YnHxihRlDu2c9Tw_BsW9ecySraFOKxecz0w1LwR81atGsXeMM8TGJ_ACc3wuiHsI5_xj5GLgppbV4nVcPL1BRZoYhe1qNcNQKTuwhk4KKu-jnntG7jXAdA25le8l8T_7XnfwTJQHnpZ32sQKPCQenQy4rWV6NDWoFWXkdru96MdDrRHdcj_cVNUUIh4mSeUYkieD1Q9pGSj4BWfO9OkCg9vGqpXxG8GC6jraECkpnZdkH3yBwzUDTjETzykjgwSoiUlgGkT_7_8OewgWqrPx0eH23DHU4AIQfo24H1-dXCPsUIb14-c6rE4NtN6-5fhKpkcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiuser+gesture+recognition+using+sEMG+signals+via+canonical+correlation+analysis+and+optimal+transport&rft.jtitle=Computers+in+biology+and+medicine&rft.date=2021-03-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=130&rft_id=info:doi/10.1016%2Fj.compbiomed.2020.104188&rft.externalDBID=HAS_PDF_LINK
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482520X0014X%2Fcov150h.gif