Accurate detection of autism using Douglas-Peucker algorithm, sparse coding based feature mapping and convolutional neural network techniques with EEG signals

Autism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals are widely used to record the electrical activities of the brain. Manual screening is prone to human errors, tedious, and time-consuming. Hence...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 143; p. 105311
Main Authors Ari, Berna, Sobahi, Nebras, Alçin, Ömer F., Sengur, Abdulkadir, Acharya, U.Rajendra
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.04.2022
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2022.105311

Cover

Abstract Autism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals are widely used to record the electrical activities of the brain. Manual screening is prone to human errors, tedious, and time-consuming. Hence, a novel automated method involving the Douglas-Peucker (DP) algorithm, sparse coding-based feature mapping approach, and deep convolutional neural networks (CNNs) is employed to detect ASD using EEG recordings. Initially, the DP algorithm is used for each channel to reduce the number of samples without degradation of the EEG signal. Then, the EEG rhythms are extracted by using the wavelet transform. The EEG rhythms are coded by using the sparse representation. The matching pursuit algorithm is used for sparse coding of the EEG rhythms. The sparse coded rhythms are segmented into 8 bits length and then converted to decimal numbers. An image is formed by concatenating the histograms of the decimated rhythm signals. Extreme learning machines (ELM)-based autoencoders (AE) are employed at a data augmentation step. After data augmentation, the ASD and healthy EEG signals are classified using pre-trained deep CNN models. Our proposed method yielded an accuracy of 98.88%, the sensitivity of 100% and specificity of 96.4%, and the F1-score of 99.19% in the detection of ASD automatically. Our developed model is ready to be tested with more EEG signals before its clinical application. •Automated detection of autism spectrum disorder using EEG signals.•Douglas-Peucker algorithm is used to reduce the number of EEG samples.•Sparse coding is used for EEG rhythm-based image construction and an ELM-AE-based image data augmentation is employed.•Pre-trained deep CNN models are used for classification.•Proposed method yielded an accuracy of 98.88%, a sensitivity of 100%, and a specificity of 96.4%.
AbstractList Autism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals are widely used to record the electrical activities of the brain. Manual screening is prone to human errors, tedious, and time-consuming. Hence, a novel automated method involving the Douglas-Peucker (DP) algorithm, sparse coding-based feature mapping approach, and deep convolutional neural networks (CNNs) is employed to detect ASD using EEG recordings. Initially, the DP algorithm is used for each channel to reduce the number of samples without degradation of the EEG signal. Then, the EEG rhythms are extracted by using the wavelet transform. The EEG rhythms are coded by using the sparse representation. The matching pursuit algorithm is used for sparse coding of the EEG rhythms. The sparse coded rhythms are segmented into 8 bits length and then converted to decimal numbers. An image is formed by concatenating the histograms of the decimated rhythm signals. Extreme learning machines (ELM)-based autoencoders (AE) are employed at a data augmentation step. After data augmentation, the ASD and healthy EEG signals are classified using pre-trained deep CNN models. Our proposed method yielded an accuracy of 98.88%, the sensitivity of 100% and specificity of 96.4%, and the F1-score of 99.19% in the detection of ASD automatically. Our developed model is ready to be tested with more EEG signals before its clinical application.Autism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals are widely used to record the electrical activities of the brain. Manual screening is prone to human errors, tedious, and time-consuming. Hence, a novel automated method involving the Douglas-Peucker (DP) algorithm, sparse coding-based feature mapping approach, and deep convolutional neural networks (CNNs) is employed to detect ASD using EEG recordings. Initially, the DP algorithm is used for each channel to reduce the number of samples without degradation of the EEG signal. Then, the EEG rhythms are extracted by using the wavelet transform. The EEG rhythms are coded by using the sparse representation. The matching pursuit algorithm is used for sparse coding of the EEG rhythms. The sparse coded rhythms are segmented into 8 bits length and then converted to decimal numbers. An image is formed by concatenating the histograms of the decimated rhythm signals. Extreme learning machines (ELM)-based autoencoders (AE) are employed at a data augmentation step. After data augmentation, the ASD and healthy EEG signals are classified using pre-trained deep CNN models. Our proposed method yielded an accuracy of 98.88%, the sensitivity of 100% and specificity of 96.4%, and the F1-score of 99.19% in the detection of ASD automatically. Our developed model is ready to be tested with more EEG signals before its clinical application.
Autism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals are widely used to record the electrical activities of the brain. Manual screening is prone to human errors, tedious, and time-consuming. Hence, a novel automated method involving the Douglas-Peucker (DP) algorithm, sparse coding-based feature mapping approach, and deep convolutional neural networks (CNNs) is employed to detect ASD using EEG recordings. Initially, the DP algorithm is used for each channel to reduce the number of samples without degradation of the EEG signal. Then, the EEG rhythms are extracted by using the wavelet transform. The EEG rhythms are coded by using the sparse representation. The matching pursuit algorithm is used for sparse coding of the EEG rhythms. The sparse coded rhythms are segmented into 8 bits length and then converted to decimal numbers. An image is formed by concatenating the histograms of the decimated rhythm signals. Extreme learning machines (ELM)-based autoencoders (AE) are employed at a data augmentation step. After data augmentation, the ASD and healthy EEG signals are classified using pre-trained deep CNN models. Our proposed method yielded an accuracy of 98.88%, the sensitivity of 100% and specificity of 96.4%, and the F1-score of 99.19% in the detection of ASD automatically. Our developed model is ready to be tested with more EEG signals before its clinical application.
Autism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals are widely used to record the electrical activities of the brain. Manual screening is prone to human errors, tedious, and time-consuming. Hence, a novel automated method involving the Douglas-Peucker (DP) algorithm, sparse coding-based feature mapping approach, and deep convolutional neural networks (CNNs) is employed to detect ASD using EEG recordings. Initially, the DP algorithm is used for each channel to reduce the number of samples without degradation of the EEG signal. Then, the EEG rhythms are extracted by using the wavelet transform. The EEG rhythms are coded by using the sparse representation. The matching pursuit algorithm is used for sparse coding of the EEG rhythms. The sparse coded rhythms are segmented into 8 bits length and then converted to decimal numbers. An image is formed by concatenating the histograms of the decimated rhythm signals. Extreme learning machines (ELM)-based autoencoders (AE) are employed at a data augmentation step. After data augmentation, the ASD and healthy EEG signals are classified using pre-trained deep CNN models. Our proposed method yielded an accuracy of 98.88%, the sensitivity of 100% and specificity of 96.4%, and the F1-score of 99.19% in the detection of ASD automatically. Our developed model is ready to be tested with more EEG signals before its clinical application. •Automated detection of autism spectrum disorder using EEG signals.•Douglas-Peucker algorithm is used to reduce the number of EEG samples.•Sparse coding is used for EEG rhythm-based image construction and an ELM-AE-based image data augmentation is employed.•Pre-trained deep CNN models are used for classification.•Proposed method yielded an accuracy of 98.88%, a sensitivity of 100%, and a specificity of 96.4%.
AbstractAutism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals are widely used to record the electrical activities of the brain. Manual screening is prone to human errors, tedious, and time-consuming. Hence, a novel automated method involving the Douglas-Peucker (DP) algorithm, sparse coding-based feature mapping approach, and deep convolutional neural networks (CNNs) is employed to detect ASD using EEG recordings. Initially, the DP algorithm is used for each channel to reduce the number of samples without degradation of the EEG signal. Then, the EEG rhythms are extracted by using the wavelet transform. The EEG rhythms are coded by using the sparse representation. The matching pursuit algorithm is used for sparse coding of the EEG rhythms. The sparse coded rhythms are segmented into 8 bits length and then converted to decimal numbers. An image is formed by concatenating the histograms of the decimated rhythm signals. Extreme learning machines (ELM)-based autoencoders (AE) are employed at a data augmentation step. After data augmentation, the ASD and healthy EEG signals are classified using pre-trained deep CNN models. Our proposed method yielded an accuracy of 98.88%, the sensitivity of 100% and specificity of 96.4%, and the F1-score of 99.19% in the detection of ASD automatically. Our developed model is ready to be tested with more EEG signals before its clinical application.
ArticleNumber 105311
Author Acharya, U.Rajendra
Sobahi, Nebras
Alçin, Ömer F.
Sengur, Abdulkadir
Ari, Berna
Author_xml – sequence: 1
  givenname: Berna
  orcidid: 0000-0003-1000-2619
  surname: Ari
  fullname: Ari, Berna
  organization: Firat University, Technology Faculty, Electrical and Electronics Engineering Department, Elazig, Turkey
– sequence: 2
  givenname: Nebras
  orcidid: 0000-0001-5788-5629
  surname: Sobahi
  fullname: Sobahi, Nebras
  email: nsobahi@kau.edu.sa
  organization: King Abdulaziz University, Department of Electrical and Computer Engineering, Jeddah, Saudi Arabia
– sequence: 3
  givenname: Ömer F.
  orcidid: 0000-0002-2917-3736
  surname: Alçin
  fullname: Alçin, Ömer F.
  organization: Malatya Turgut Ozal University, Faculty of Engineering and Natural Sciences, Department of Electrical and Electronics Engineering, Malatya, Turkey
– sequence: 4
  givenname: Abdulkadir
  orcidid: 0000-0003-1614-2639
  surname: Sengur
  fullname: Sengur, Abdulkadir
  organization: Firat University, Technology Faculty, Electrical and Electronics Engineering Department, Elazig, Turkey
– sequence: 5
  givenname: U.Rajendra
  surname: Acharya
  fullname: Acharya, U.Rajendra
  organization: Ngee Ann Polytechnic, Department of Electronics and Computer Engineering, 599489, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35158117$$D View this record in MEDLINE/PubMed
BookMark eNqNkt9qFDEUxoNU7Lb6ChLwxgtnTTJ_duamWOu2CgUF9Tpkk5NtdmeSaZJp6cv4rE3YVmFB2Js5k_DLdw7fd07QkXUWEMKUzCmhzcfNXLphXBk3gJozwli6rktKX6AZbRddkQ7VEZoRQklRtaw-RichbAghFSnJK3Rc1rRuKV3M0J9zKScvImAFEWQ0zmKnsZiiCQOegrFr_MVN616E4gdMcgsei37tvIk3wwccRuEDYOlUBlcigMIaRJw84EGMY74VViXA3rl-yvKixxZSy1zivfNbnPreWHM7QcD3SRYvl1c4mHUiw2v0UqcCb57qKfp9ufx18bW4_n717eL8upA1rWKhgElSaaYbDY3sNG1VWYpq0ZYrpTXtiGyrthWqqcuuq6XqalE1q051dKGF0l15it7vdEfv8iCRDyZI6HthwU2Bs4Z1pF6kT0Lf7aEbN_k8bKLKumo72rBEvX2iplUKiY_eDMI_8GfnE3C2A6R3IXjQXJooskHRC9NzSniOmm_4v6h5jprvok4C7Z7Ac48Dnn7ePYVk6Z0Bz4M0YCUo49MOcOXMISJneyKyN9ZI0W_hAcJfUygPjBP-My9j3kXG8l-ZLfr0f4HDZngERnr3Kw
CitedBy_id crossref_primary_10_1016_j_knosys_2023_110858
crossref_primary_10_1016_j_rasd_2023_102258
crossref_primary_10_1109_ACCESS_2024_3520861
crossref_primary_10_1016_j_bspc_2024_106151
crossref_primary_10_1109_TNSRE_2024_3417210
crossref_primary_10_1007_s12652_023_04641_6
crossref_primary_10_1109_ACCESS_2024_3396869
crossref_primary_10_1186_s13677_023_00558_9
crossref_primary_10_1016_j_cnsns_2025_108752
crossref_primary_10_1016_j_compbiomed_2023_107801
crossref_primary_10_3233_THC_240550
crossref_primary_10_1109_TTS_2023_3239526
crossref_primary_10_1016_j_inffus_2023_101898
crossref_primary_10_1007_s10803_024_06290_w
crossref_primary_10_1016_j_compbiomed_2024_108075
crossref_primary_10_1016_j_bspc_2023_105074
crossref_primary_10_1109_TITS_2023_3247993
crossref_primary_10_1016_j_cosrev_2025_100730
crossref_primary_10_1038_s41598_023_49048_7
crossref_primary_10_1111_exsy_13569
crossref_primary_10_1155_2022_1503757
crossref_primary_10_51359_1679_1827_2024_263456
crossref_primary_10_1016_j_bspc_2023_105018
crossref_primary_10_1088_2057_1976_ad31fb
crossref_primary_10_1016_j_pnpbp_2022_110705
crossref_primary_10_1038_s41598_024_77549_6
crossref_primary_10_1109_TCDS_2024_3386364
Cites_doi 10.1155/2019/5173589
10.1109/MSP.2007.4286571
10.1002/aur.239
10.1109/ACCESS.2015.2430359
10.1186/s12864-019-6413-7
10.1049/el.2020.2646
10.1016/j.measurement.2014.04.012
10.1007/s11633-019-1197-4
10.1109/ACCESS.2019.2947111
10.1016/j.bbe.2017.08.006
10.3390/ijerph17030971
10.1097/WNP.0b013e3181f40dc8
10.1016/j.bbe.2020.01.008
10.1515/revneuro-2014-0056
10.1049/iet-smt.2018.5358
10.1016/j.compbiomed.2021.104548
10.1515/revneuro-2014-0036
10.1016/j.cmpb.2017.02.002
10.1155/2017/9816591
10.1016/j.jocn.2018.06.049
10.1186/1741-7015-9-18
10.1109/TIT.2006.871582
10.3138/FM57-6770-U75U-7727
10.1109/TBME.2007.891945
10.3389/fnins.2019.01120
10.1016/j.compbiomed.2021.104949
10.1186/1866-1955-6-12
10.1371/journal.pone.0253094
10.1016/j.bbr.2019.01.018
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
2022. Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: 2022. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOI 10.1016/j.compbiomed.2022.105311
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database (Proquest)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Research Library Prep


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 105311
ExternalDocumentID 35158117
10_1016_j_compbiomed_2022_105311
S0010482522001032
1_s2_0_S0010482522001032
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c514t-de2c04f2f6fe6c9f18d33a4783bdff190c8488ad653995cd95a46b9d917fadf93
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Wed Oct 01 14:45:02 EDT 2025
Tue Oct 07 06:07:15 EDT 2025
Thu Apr 03 07:08:35 EDT 2025
Wed Oct 01 05:19:32 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Fri Feb 23 02:41:43 EST 2024
Tue Feb 25 20:12:01 EST 2025
Tue Oct 14 19:33:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Douglas-Peucker algorithm
EEG signals
Autism spectrum disorder
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-de2c04f2f6fe6c9f18d33a4783bdff190c8488ad653995cd95a46b9d917fadf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1614-2639
0000-0003-1000-2619
0000-0001-5788-5629
0000-0002-2917-3736
PMID 35158117
PQID 2635489162
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2629057290
proquest_journals_2635489162
pubmed_primary_35158117
crossref_citationtrail_10_1016_j_compbiomed_2022_105311
crossref_primary_10_1016_j_compbiomed_2022_105311
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105311
elsevier_clinicalkeyesjournals_1_s2_0_S0010482522001032
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105311
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Subudhi, Mohanty, Sahoo, Mohanty, Mohanty (bib43) 2020
Grossi, Olivieri, Buscema (bib15) 2017; 142
Peya, Akhand, Srabonee, Siddique (bib21) 2020
Vicnesh, Wei, Oh, Arunkumar, Abdulhay, Ciaccio, Acharya (bib4) 2020; 17
Siuly, Alcin, Bajaj, Sengur, Zhang (bib9) 2018; 13
Hadoush, Alafeef, Abdulhay (bib41) 2019; 362
Altan, Kutlu (bib34) 2018; 3
Chicco, Jurman (bib38) 2020; 21
Bhat, Acharya, Adeli, Bairy, Adeli (bib5) 2014; 25
Liu, Li, Yang, Wu, Liu, Liu (bib25) 2019; 7
Zhang, Xu, Yang, Li, Zhang (bib27) 2015; 3
Eldridge, Lane, Belkin, Dennis (bib14) 2014; 6
Yin, Cao, Siuly, Wang (bib11) 2019; 16
Xu, Geng, He, Li, Yu (bib22) 2019; 13
Baraniuk (bib29) 2007; 24
WHO. Autism spectrum disorders, Available from
Alhaddad, Kamel, Malibary (bib30) 2012; 4
Tawhid, Siuly, Wang, Whittaker, Wang, Zhang (bib20) 2021; 16
Tawhid, Siuly, Wang (bib31) 2020; 56
Sinha, Munot, Sreemathy (bib10) 2019
Ibrahim, Djemal, Alsuwailem (bib39) 2018; 38
Elsabbagh, Divan, Koh, Kim, Kauchali, Marcín (bib1) 2012; 5
Zarei, He, Siuly, Huang, Zhang (bib24) 2019; 2019
Ghosh-Dastidar, Adeli, Dadmehr (bib26) 2007; 54
Alcin, Sengur, Ghofrani, Ince (bib33) 2014; 55
Baygin, Dogan, Tuncer, Barua, Faust, Arunkumar, Acharya (bib3) 2021; 134
Bhat, Acharya, Adeli, Bairy, Adeli (bib7) 2014; 25
Khodatars, Shoeibi, Sadeghi, Ghaasemi, Jafari, Moridian, Berk (bib8) 2021; 139
Kang, Zhou, Han, Li (bib40) 2018; 56
.
Ahmadlou, Adeli, Adeli (bib18) 2010; 27
Pham, Vicnesh, Wei, Oh, Arunkumar, Abdulhay (bib42) 2020; 17
Oh, Jahmunah, Arunkumar, Abdulhay, Gururajan, Adib, Acharya (bib6) 2021
Bosl, Tierney, Tager-Flusberg, Nelson (bib13) 2011; 9
Djemal, AlSharabi, Ibrahim, Alsuwailem (bib19) 2017; 2017
Simonyan, Zisserman (bib36) 2014; 1556
He, Zhang, Ren, Sun (bib37) 2016
Abdolzadegan, Moattar, Ghoshuni (bib17) 2020; 40
Donoho (bib28) 2006; 52
Huang, Zhu, Siew (bib32) 2004; vols. 25–29
Sheikhani, Behnam, Mohammadi, Noroozian, Golabi (bib12) 2008; vol. 1
Haputhanthri, Brihadiswaran, Gunathilaka, Meedeniya, Jayawardena, Jayarathna (bib16) 2019; vol. 2019
Douglas, Peucker (bib23) 1973; 10
Krizhevsky, Sutskever, Hinton (bib35) 2012; 25
Bhat (10.1016/j.compbiomed.2022.105311_bib7) 2014; 25
Zarei (10.1016/j.compbiomed.2022.105311_bib24) 2019; 2019
Khodatars (10.1016/j.compbiomed.2022.105311_bib8) 2021; 139
Altan (10.1016/j.compbiomed.2022.105311_bib34) 2018; 3
Yin (10.1016/j.compbiomed.2022.105311_bib11) 2019; 16
10.1016/j.compbiomed.2022.105311_bib2
Peya (10.1016/j.compbiomed.2022.105311_bib21) 2020
Tawhid (10.1016/j.compbiomed.2022.105311_bib20) 2021; 16
Ahmadlou (10.1016/j.compbiomed.2022.105311_bib18) 2010; 27
Donoho (10.1016/j.compbiomed.2022.105311_bib28) 2006; 52
Bosl (10.1016/j.compbiomed.2022.105311_bib13) 2011; 9
Pham (10.1016/j.compbiomed.2022.105311_bib42) 2020; 17
Sheikhani (10.1016/j.compbiomed.2022.105311_bib12) 2008; vol. 1
Douglas (10.1016/j.compbiomed.2022.105311_bib23) 1973; 10
Liu (10.1016/j.compbiomed.2022.105311_bib25) 2019; 7
Djemal (10.1016/j.compbiomed.2022.105311_bib19) 2017; 2017
Abdolzadegan (10.1016/j.compbiomed.2022.105311_bib17) 2020; 40
Baraniuk (10.1016/j.compbiomed.2022.105311_bib29) 2007; 24
Chicco (10.1016/j.compbiomed.2022.105311_bib38) 2020; 21
Eldridge (10.1016/j.compbiomed.2022.105311_bib14) 2014; 6
Subudhi (10.1016/j.compbiomed.2022.105311_bib43) 2020
Krizhevsky (10.1016/j.compbiomed.2022.105311_bib35) 2012; 25
Alcin (10.1016/j.compbiomed.2022.105311_bib33) 2014; 55
Hadoush (10.1016/j.compbiomed.2022.105311_bib41) 2019; 362
Huang (10.1016/j.compbiomed.2022.105311_bib32) 2004; vols. 25–29
Elsabbagh (10.1016/j.compbiomed.2022.105311_bib1) 2012; 5
Siuly (10.1016/j.compbiomed.2022.105311_bib9) 2018; 13
Haputhanthri (10.1016/j.compbiomed.2022.105311_bib16) 2019; vol. 2019
Xu (10.1016/j.compbiomed.2022.105311_bib22) 2019; 13
Alhaddad (10.1016/j.compbiomed.2022.105311_bib30) 2012; 4
Tawhid (10.1016/j.compbiomed.2022.105311_bib31) 2020; 56
Vicnesh (10.1016/j.compbiomed.2022.105311_bib4) 2020; 17
Sinha (10.1016/j.compbiomed.2022.105311_bib10) 2019
Kang (10.1016/j.compbiomed.2022.105311_bib40) 2018; 56
Baygin (10.1016/j.compbiomed.2022.105311_bib3) 2021; 134
Oh (10.1016/j.compbiomed.2022.105311_bib6) 2021
Ghosh-Dastidar (10.1016/j.compbiomed.2022.105311_bib26) 2007; 54
Zhang (10.1016/j.compbiomed.2022.105311_bib27) 2015; 3
Simonyan (10.1016/j.compbiomed.2022.105311_bib36) 2014; 1556
He (10.1016/j.compbiomed.2022.105311_bib37) 2016
Grossi (10.1016/j.compbiomed.2022.105311_bib15) 2017; 142
Bhat (10.1016/j.compbiomed.2022.105311_bib5) 2014; 25
Ibrahim (10.1016/j.compbiomed.2022.105311_bib39) 2018; 38
References_xml – volume: vol. 2019
  start-page: 123
  year: 2019
  end-page: 128
  ident: bib16
  article-title: An EEG based channel optimized classification approach for autism spectrum disorder
  publication-title: Moratuwa Engineering Research Conference (MERCon)
– volume: 3
  start-page: 141
  year: 2018
  end-page: 151
  ident: bib34
  article-title: Hessenberg Elm autoencoder kernel for deep learning
  publication-title: J. Eng. Technol. Appl. Sci.
– volume: 27
  start-page: 328
  year: 2010
  end-page: 333
  ident: bib18
  article-title: Fractality and a wavelet-chaos-neural network methodology for EEGbased diagnosis of autistic spectrum disorder
  publication-title: J. Clin. Neurophysiol.
– volume: 25
  start-page: 851
  year: 2014
  end-page: 861
  ident: bib5
  article-title: Automated diagnosis of autism: in search of a mathematical marker
  publication-title: Rev. Neurosci.
– start-page: 1
  year: 2020
  end-page: 9
  ident: bib43
  article-title: Automated delimitation and classification of autistic disorder using EEG signal
  publication-title: IETE J. Res.
– volume: 38
  start-page: 16
  year: 2018
  end-page: 26
  ident: bib39
  article-title: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis
  publication-title: Biocybern. Biomed. Eng.
– volume: 134
  start-page: 104548
  year: 2021
  ident: bib3
  article-title: Automated ASD detection using hybrid deep lightweight features extracted from EEG signals
  publication-title: Comput. Biol. Med.
– volume: 142
  start-page: 73
  year: 2017
  end-page: 79
  ident: bib15
  article-title: Diagnosis of autism through EEG processed by advanced computational algorithms: a pilot study
  publication-title: Comput. Methods Progr. Biomed.
– volume: 24
  start-page: 118
  year: 2007
  end-page: 121
  ident: bib29
  article-title: Compressive sensing [lecture notes]
  publication-title: IEEE Signal Process. Mag.
– volume: 2019
  year: 2019
  ident: bib24
  article-title: Exploring Douglas-Peucker algorithm in the detection of epileptic seizure from multicategory EEG signals
  publication-title: BioMed Res. Int.
– volume: 4
  start-page: 45
  year: 2012
  end-page: 54
  ident: bib30
  article-title: Diagnosis autism by Fisher linear discriminant analysis FLDA via EEG
  publication-title: Int. J. Bio-Sci. Bio-Technol.
– volume: 5
  start-page: 160
  year: 2012
  end-page: 179
  ident: bib1
  article-title: Global prevalence of autism and other pervasive developmental disorders
  publication-title: Autism Res.
– volume: 55
  start-page: 126
  year: 2014
  end-page: 132
  ident: bib33
  article-title: GA-SELM: greedy algorithms for sparse extreme learning machine
  publication-title: Measurement
– volume: 17
  start-page: 971
  year: 2020
  ident: bib42
  article-title: Autism spectrum disorder diagnostic system using HOS bispectrum with EEG signals
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 139
  start-page: 104949
  year: 2021
  ident: bib8
  article-title: Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review
  publication-title: Comput. Biol. Med.
– start-page: 1
  year: 2019
  end-page: 9
  ident: bib10
  article-title: An efficient approach for detection of autism spectrum disorder using electroencephalography signal
  publication-title: IETE J. Res.
– volume: 6
  start-page: 12
  year: 2014
  ident: bib14
  article-title: Robust features for the automatic identification of autism spectrum disorder in children
  publication-title: J. Neurodev. Disord.
– volume: 40
  start-page: 482
  year: 2020
  end-page: 493
  ident: bib17
  article-title: A robust method for early diagnosis of autism spectrum disorder from EEG signals based on feature selection and DBSCAN method
  publication-title: Biocybern. Biomed. Eng.
– volume: 25
  year: 2012
  ident: bib35
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 18
  year: 2011
  ident: bib13
  article-title: EEG complexity as a biomarker for autism spectrum disorder risk
  publication-title: BMC Med.
– volume: 10
  start-page: 112
  year: 1973
  end-page: 122
  ident: bib23
  article-title: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature
  publication-title: Cartographica: the international journal for geographic information and geovisualization
– volume: 16
  year: 2021
  ident: bib20
  article-title: A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG
  publication-title: PLoS One
– volume: 362
  start-page: 240
  year: 2019
  end-page: 248
  ident: bib41
  article-title: Automated identification for autism severity level: EEG analysis using empirical mode decomposition and second order difference plot
  publication-title: Behav. Brain Res.
– volume: 1556
  year: 2014
  ident: bib36
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Comp. Res. Repos. (CoRR)
– volume: vols. 25–29
  start-page: 985
  year: 2004
  end-page: 990
  ident: bib32
  article-title: Extreme learning machine: a new learning scheme of feedforward neural networks
  publication-title: IEEE International Joint Conference on Neural Networks, Budapest
– volume: 56
  start-page: 1372
  year: 2020
  end-page: 1375
  ident: bib31
  article-title: Diagnosis of autism spectrum disorder from EEG using a time–frequency spectrogram image-based approach
  publication-title: Electron. Lett.
– reference: .
– volume: 13
  start-page: 1120
  year: 2019
  ident: bib22
  article-title: Prediction in autism by deep learning short-time spontaneous hemodynamic fluctuations
  publication-title: Front. Neurosci.
– volume: 56
  start-page: 101
  year: 2018
  end-page: 107
  ident: bib40
  article-title: EEG-based multi-feature fusion assessment for autism
  publication-title: J. Clin. Neurosci.
– volume: 25
  start-page: 841
  year: 2014
  end-page: 850
  ident: bib7
  article-title: Autism: cause factors, early diagnosis and therapies
  publication-title: Rev. Neurosci.
– volume: vol. 1
  start-page: 207
  year: 2008
  end-page: 212
  ident: bib12
  article-title: Connectivity analysis of quantitative Electroencephalogram background activity in Autism disorders with short time Fourier transform and Coherence values
  publication-title: 2008 Congress on Image and Signal Processing
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib37
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 16
  start-page: 786
  year: 2019
  end-page: 799
  ident: bib11
  article-title: An integrated MCI detection framework based on spectral-temporal analysis
  publication-title: Int. J. Autom. Comput.
– volume: 17
  start-page: 971
  year: 2020
  ident: bib4
  article-title: Autism spectrum disorder diagnostic system using HOS bispectrum with EEG signals
  publication-title: Int. J. Environ. Res. Publ. Health
– reference: WHO. Autism spectrum disorders, Available from:
– volume: 13
  start-page: 35
  year: 2018
  end-page: 41
  ident: bib9
  article-title: Exploring Hermite transformation in brain signal analysis for the detection of epileptic seizure
  publication-title: IET Sci. Meas. Technol.
– volume: 54
  start-page: 1545
  year: 2007
  end-page: 1551
  ident: bib26
  article-title: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 1278
  year: 2020
  end-page: 1281
  ident: bib21
  article-title: June). EEG based autism detection using CNN through correlation based transformation of channels' data
  publication-title: 2020 IEEE Region 10 Symposium (TENSYMP)
– volume: 21
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib38
  article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genom.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib19
  article-title: EEG-based computer aided diagnosis of autism spectrum disorder using wavelet, entropy, and ANN
  publication-title: BioMed Res. Int.
– volume: 3
  start-page: 490
  year: 2015
  end-page: 530
  ident: bib27
  article-title: A survey of sparse representation: algorithms and applications
  publication-title: IEEE access
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: bib28
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theor.
– start-page: 1
  year: 2021
  end-page: 15
  ident: bib6
  article-title: A novel automated autism spectrum disorder detection system
  publication-title: Complex. Intell. Syst.
– volume: 7
  start-page: 150677
  year: 2019
  end-page: 150692
  ident: bib25
  article-title: Adaptive douglas-peucker algorithm with automatic thresholding for AIS-based vessel trajectory compression
  publication-title: IEEE Access
– volume: 25
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105311_bib35
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 2019
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105311_bib24
  article-title: Exploring Douglas-Peucker algorithm in the detection of epileptic seizure from multicategory EEG signals
  publication-title: BioMed Res. Int.
  doi: 10.1155/2019/5173589
– volume: 24
  start-page: 118
  issue: 4
  year: 2007
  ident: 10.1016/j.compbiomed.2022.105311_bib29
  article-title: Compressive sensing [lecture notes]
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2007.4286571
– volume: 5
  start-page: 160
  issue: 3
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105311_bib1
  article-title: Global prevalence of autism and other pervasive developmental disorders
  publication-title: Autism Res.
  doi: 10.1002/aur.239
– volume: 3
  start-page: 490
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105311_bib27
  article-title: A survey of sparse representation: algorithms and applications
  publication-title: IEEE access
  doi: 10.1109/ACCESS.2015.2430359
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105311_bib38
  article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genom.
  doi: 10.1186/s12864-019-6413-7
– start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105311_bib43
  article-title: Automated delimitation and classification of autistic disorder using EEG signal
  publication-title: IETE J. Res.
– volume: 56
  start-page: 1372
  issue: 25
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105311_bib31
  article-title: Diagnosis of autism spectrum disorder from EEG using a time–frequency spectrogram image-based approach
  publication-title: Electron. Lett.
  doi: 10.1049/el.2020.2646
– volume: 1556
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105311_bib36
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Comp. Res. Repos. (CoRR)
– ident: 10.1016/j.compbiomed.2022.105311_bib2
– volume: vol. 2019
  start-page: 123
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105311_bib16
  article-title: An EEG based channel optimized classification approach for autism spectrum disorder
– volume: 3
  start-page: 141
  issue: 2
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105311_bib34
  article-title: Hessenberg Elm autoencoder kernel for deep learning
  publication-title: J. Eng. Technol. Appl. Sci.
– volume: 55
  start-page: 126
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105311_bib33
  article-title: GA-SELM: greedy algorithms for sparse extreme learning machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.04.012
– volume: 16
  start-page: 786
  issue: 6
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105311_bib11
  article-title: An integrated MCI detection framework based on spectral-temporal analysis
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-019-1197-4
– volume: 7
  start-page: 150677
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105311_bib25
  article-title: Adaptive douglas-peucker algorithm with automatic thresholding for AIS-based vessel trajectory compression
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2947111
– volume: 38
  start-page: 16
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105311_bib39
  article-title: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2017.08.006
– volume: 17
  start-page: 971
  issue: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105311_bib4
  article-title: Autism spectrum disorder diagnostic system using HOS bispectrum with EEG signals
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph17030971
– volume: 27
  start-page: 328
  issue: 5
  year: 2010
  ident: 10.1016/j.compbiomed.2022.105311_bib18
  article-title: Fractality and a wavelet-chaos-neural network methodology for EEGbased diagnosis of autistic spectrum disorder
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/WNP.0b013e3181f40dc8
– volume: 40
  start-page: 482
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105311_bib17
  article-title: A robust method for early diagnosis of autism spectrum disorder from EEG signals based on feature selection and DBSCAN method
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.01.008
– volume: 25
  start-page: 841
  issue: 6
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105311_bib7
  article-title: Autism: cause factors, early diagnosis and therapies
  publication-title: Rev. Neurosci.
  doi: 10.1515/revneuro-2014-0056
– volume: 13
  start-page: 35
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105311_bib9
  article-title: Exploring Hermite transformation in brain signal analysis for the detection of epileptic seizure
  publication-title: IET Sci. Meas. Technol.
  doi: 10.1049/iet-smt.2018.5358
– volume: 134
  start-page: 104548
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105311_bib3
  article-title: Automated ASD detection using hybrid deep lightweight features extracted from EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104548
– volume: 25
  start-page: 851
  issue: 6
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105311_bib5
  article-title: Automated diagnosis of autism: in search of a mathematical marker
  publication-title: Rev. Neurosci.
  doi: 10.1515/revneuro-2014-0036
– start-page: 770
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105311_bib37
  article-title: Deep residual learning for image recognition
– volume: 142
  start-page: 73
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105311_bib15
  article-title: Diagnosis of autism through EEG processed by advanced computational algorithms: a pilot study
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2017.02.002
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105311_bib19
  article-title: EEG-based computer aided diagnosis of autism spectrum disorder using wavelet, entropy, and ANN
  publication-title: BioMed Res. Int.
  doi: 10.1155/2017/9816591
– start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105311_bib10
  article-title: An efficient approach for detection of autism spectrum disorder using electroencephalography signal
  publication-title: IETE J. Res.
– volume: 56
  start-page: 101
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105311_bib40
  article-title: EEG-based multi-feature fusion assessment for autism
  publication-title: J. Clin. Neurosci.
  doi: 10.1016/j.jocn.2018.06.049
– volume: 9
  start-page: 18
  issue: 1
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105311_bib13
  article-title: EEG complexity as a biomarker for autism spectrum disorder risk
  publication-title: BMC Med.
  doi: 10.1186/1741-7015-9-18
– start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105311_bib6
  article-title: A novel automated autism spectrum disorder detection system
  publication-title: Complex. Intell. Syst.
– volume: 4
  start-page: 45
  issue: 2
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105311_bib30
  article-title: Diagnosis autism by Fisher linear discriminant analysis FLDA via EEG
  publication-title: Int. J. Bio-Sci. Bio-Technol.
– volume: 17
  start-page: 971
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105311_bib42
  article-title: Autism spectrum disorder diagnostic system using HOS bispectrum with EEG signals
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph17030971
– start-page: 1278
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105311_bib21
  article-title: June). EEG based autism detection using CNN through correlation based transformation of channels' data
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 10.1016/j.compbiomed.2022.105311_bib28
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theor.
  doi: 10.1109/TIT.2006.871582
– volume: vol. 1
  start-page: 207
  year: 2008
  ident: 10.1016/j.compbiomed.2022.105311_bib12
  article-title: Connectivity analysis of quantitative Electroencephalogram background activity in Autism disorders with short time Fourier transform and Coherence values
– volume: 10
  start-page: 112
  issue: 2
  year: 1973
  ident: 10.1016/j.compbiomed.2022.105311_bib23
  article-title: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature
  publication-title: Cartographica: the international journal for geographic information and geovisualization
  doi: 10.3138/FM57-6770-U75U-7727
– volume: 54
  start-page: 1545
  issue: 9
  year: 2007
  ident: 10.1016/j.compbiomed.2022.105311_bib26
  article-title: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.891945
– volume: vols. 25–29
  start-page: 985
  year: 2004
  ident: 10.1016/j.compbiomed.2022.105311_bib32
  article-title: Extreme learning machine: a new learning scheme of feedforward neural networks
– volume: 13
  start-page: 1120
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105311_bib22
  article-title: Prediction in autism by deep learning short-time spontaneous hemodynamic fluctuations
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.01120
– volume: 139
  start-page: 104949
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105311_bib8
  article-title: Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104949
– volume: 6
  start-page: 12
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105311_bib14
  article-title: Robust features for the automatic identification of autism spectrum disorder in children
  publication-title: J. Neurodev. Disord.
  doi: 10.1186/1866-1955-6-12
– volume: 16
  issue: 6
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105311_bib20
  article-title: A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0253094
– volume: 362
  start-page: 240
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105311_bib41
  article-title: Automated identification for autism severity level: EEG analysis using empirical mode decomposition and second order difference plot
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2019.01.018
SSID ssj0004030
Score 2.5108318
Snippet Autism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals...
AbstractAutism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105311
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Autism
Autism spectrum disorder
Children
Classification
Coding
Data augmentation
Datasets
Deep learning
Douglas-Peucker algorithm
EEG
EEG signals
Electroencephalography
Feature selection
Histograms
Human error
Internal Medicine
Machine learning
Magnetic resonance imaging
Mapping
Matched pursuit
Neural coding
Neural networks
Neurological diseases
Other
Rhythm
Signal classification
Support vector machines
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VVEJcEG9cChokjljEa8cPIYQKSqmQGlVApd5W632kQo1Taufv9Lcys147F4pySQ7Jxs7O7My33m--AXhHqNhZ5Ryt7zqPM11P47q0tFUxlEuUyVXiD9pPF_nJefb9YnaxB4uhFoZplUNM9IHarDU_I__AoilZSWBGfL7-E3PXKD5dHVpoqNBawXzyEmP3YF-wMtYE9r_MF2c_tpWS07QvSqHok9HmKHB7esYXk7j7onfaNwrBLXDTJLkrYd0FSH1iOn4EDwOixKPeBR7Dnm2ewP3TcGb-FG6PtN6wIAQa23niVYNrh4o8rl0h896XGGB0fGY9zQLV1ZL-e3e5eo8UcW5ai3rNSQ456RmkeeeDB1wpVndYomoMMn09uDHdDctk-jdPMsdRKbZFfvCL8_k3ZOYI-f4zOD-e__p6EoeuDLEmcNXFxgo9zZxwZORcVy4pTZqqrCjT2jhH-EKXFBTIzKx5O9OmmqksrytD-0KnjKvS5zBp1o19CUiJkeBBZZ2jjVoxy2ryKFVSTi0cxYq6jqAYpl7qIFnOnTOu5MBN-y23RpNsNNkbLYJkHHndy3bsMKYarCuHslQKpJJyyw5ji3-NtW2ICK1MZCvkVP70gkjkeUL4Fhsigo_jyAB6ejCz43UPBzeU46W2SyWCt-PHFDb4LEg1dr3h74iKoDq9RPCid99xolLCuFx_fPD_H38FD_hOehrTIUy6m419TQitq9-EZfcXW_E-Bg
  priority: 102
  providerName: ProQuest
Title Accurate detection of autism using Douglas-Peucker algorithm, sparse coding based feature mapping and convolutional neural network techniques with EEG signals
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522001032
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522001032
https://dx.doi.org/10.1016/j.compbiomed.2022.105311
https://www.ncbi.nlm.nih.gov/pubmed/35158117
https://www.proquest.com/docview/2635489162
https://www.proquest.com/docview/2629057290
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250901
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5CCqWX0nfdpmEKPVaNJa31ICc32HFbYkJpwLdltQ_HJZaCJV_7U_pbM7NaKZQmYMhlhSyttOyMZr7xfjPL2CdExdZIa_H7LpKAq2IYFJnBUEWjL5E6kaFbaD-bJ7ML_n0xWuyxky4XhmiV3va3Nt1Za__LkZ_No-vVinJ8MZTAACeK3GYFZIc5T2kXgy9_bmkefBi3aShob-huz-ZpOV5E227T3DFSjCLa9DYOw_tc1H0Q1Lmi6TP21GNIGLfDfM72TPmCPT7zq-Qv2d-xUlsqAQHaNI5qVUJlQaKO1WsgpvsSPHAOzo0jVoC8WlabVXO5_gxoYza1AVWRWwNycxpwpmmpAdaS6jksQZYaiLDuFRdHQ4Ux3cHRyqGvDVsD_dULk8kpEFcEtf0Vu5hOfp3MAr8PQ6AQTjWBNpEachtZFGuichtmOo4lT7O40NYiolAZmgEULFW5HSmdjyRPilxjJGiltnn8mu2XVWneMkBXiIAgN9ZiaJaOeIE6JDP0oqlF61AUA5Z2Uy-UL1JOe2VciY6N9lvcCk2Q0EQrtAEL-57XbaGOHfrknXRFl4iKplOgN9mhb3pXX1N7G1CLUNSRGIr_9HTAjvue_6j6ju896NRQ9K-iikI8Q6SPD__YX0ZDQas_sjTVlu6JcgTn2AzYm1Z9-4mKEdVSxvG7Bw3tPXtCZy2v6YDtN5ut-YCQrSkO3TeJbbpIsc2mp4fs0fjbj9kcj18n8_OfN-3mR3E
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrQRcEG8MBQYJbljE640fQhUqkJLSJqqglXpb1vsIQo1TakeIP8NP4bcxY6-dC0W59JIc4o1Xnrf3m28Ye4FZsbPKObTvIgmFLgZhkVksVQzGEmUSFTUH7ZNpMj4Rn06HpxvsT9cLQ7DKzic2jtosNL0jf02kKSLDZIa_Pf8R0tQoOl3tRmgoP1rB7DQUY76x48D--oklXLWz_wHl_ZLzvdHx-3HopwyEGpOFOjSW64Fw3OGmE527KDNxrESaxYVxDuOlzlDJcdvE4TrUJh8qkRS5wTrHKeOIjAlDwJaIRY7F39a70fTo86ozcxC3TTDo7QQWYx5L1CLMCDTeNtljnco5jdyNo-iyAHlZAtwEwr1b7KbPYGG3VbnbbMOWd9i1iT-jv8t-72q9JAIKMLZugF4lLBwo1PBqDoSzn4FP28Mj28A6QJ3N8FnX3-avAD3cRWVBLyioAgVZAyhnOuiAuSI2iRmo0gDB5b3Z4G6IlrP5akDt0DPTVkAvmmE0-giEVEFbu8dOrkQ-99lmuSjtQwYYiDEdya1zWBimQ1GgBqsMY3jq0DcVRcDS7tFL7SnSaVLHmeywcN_lSmiShCZboQUs6leetzQha6zJO-nKrg0WHbfEWLbG2vRfa23lPVAlI1lxOZBfGgIm1DzOm5EePGBv-pU-yWqTpzXvu92poexvtTLNgD3vf0Y3RWdPqrSLJV3DcywN8CNgD1r17R9UjDk19Ts_-v-fP2PXx8eTQ3m4Pz14zG7QrloI1TbbrC-W9glmh3Xx1JsgsK9XbfV_AcZtfDo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrVRxQZSnocAgwQ2r8drxQwihiia0lFaVoFJuy3ofQaixS-0I8Wf4Ifw6ZnZt50JRLr0kh3jjlef1jfebGcZeIiq2RlqL9l2mYaLKUVjmBlMVjbFE6lRG7qD95DQ9PE8-zsazDfanr4UhWmXvE52j1rWid-R71DQlyRHM8D3b0SLODqbvLn-ENEGKTlr7cRpeRY7Nr5-YvjVvjw5Q1q84n06-vD8MuwkDoUKg0IbacDVKLLe44VQVNsp1HMsky-NSW4uxUuWo4Lhl6t86VroYyyQtC405jpXaUiMmdP9bWRwXRCfMZtmqJnMU-_IX9HMJpmEdi8hzy4gu7svrMUPlnIbtxlF0XWi8Dvq6EDi9w2532BX2vbLtsA1T3WXbJ93p_D32e1-pJbWeAG1aR_GqoLYgUbebBRDDfg4dYA_PjCN0gLyY45Ntvy1eA_q2q8aAqimcAoVXDShhOuKAhaQ-EnOQlQYiyncGg7uhhpzuy9HZYehJ2wC9YobJ5AMQRwWt7D47vxHpPGCbVV2ZRwwwBCMQKYy1mBJm46RE3ZU5Ru_Molcqy4Bl_aMXqmuOTjM6LkTPgvsuVkITJDThhRawaFh56RuErLGm6KUr-gJYdNkCo9gaa7N_rTVN53saEYmGi5H47FovoeZx7oZ58IC9GVZ28MrDpjXvu9uroRhutTLKgL0YfkYHRadOsjL1kq7hBSYF-BGwh159hwcVI5qmSufH___z52wbbV18Ojo9fsJu0aY8d2qXbbZXS_MUYWFbPnP2B-zrTRv8X28yedQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+detection+of+autism+using+Douglas-Peucker+algorithm%2C+sparse+coding+based+feature+mapping+and+convolutional+neural+network+techniques+with+EEG+signals&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Ari%2C+Berna&rft.au=Sobahi%2C+Nebras&rft.au=Al%C3%A7in%2C+%C3%96mer+F&rft.au=Sengur%2C+Abdulkadir&rft.date=2022-04-01&rft.issn=0010-4825&rft.volume=143&rft.spage=105311&rft.epage=105311&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105311&rft.externalDBID=ECK1-s2.0-S0010482522001032&rft.externalDocID=1_s2_0_S0010482522001032
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif