Accurate detection of autism using Douglas-Peucker algorithm, sparse coding based feature mapping and convolutional neural network techniques with EEG signals
Autism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals are widely used to record the electrical activities of the brain. Manual screening is prone to human errors, tedious, and time-consuming. Hence...
Saved in:
| Published in | Computers in biology and medicine Vol. 143; p. 105311 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.04.2022
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2022.105311 |
Cover
| Abstract | Autism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals are widely used to record the electrical activities of the brain. Manual screening is prone to human errors, tedious, and time-consuming. Hence, a novel automated method involving the Douglas-Peucker (DP) algorithm, sparse coding-based feature mapping approach, and deep convolutional neural networks (CNNs) is employed to detect ASD using EEG recordings. Initially, the DP algorithm is used for each channel to reduce the number of samples without degradation of the EEG signal. Then, the EEG rhythms are extracted by using the wavelet transform. The EEG rhythms are coded by using the sparse representation. The matching pursuit algorithm is used for sparse coding of the EEG rhythms. The sparse coded rhythms are segmented into 8 bits length and then converted to decimal numbers. An image is formed by concatenating the histograms of the decimated rhythm signals. Extreme learning machines (ELM)-based autoencoders (AE) are employed at a data augmentation step. After data augmentation, the ASD and healthy EEG signals are classified using pre-trained deep CNN models. Our proposed method yielded an accuracy of 98.88%, the sensitivity of 100% and specificity of 96.4%, and the F1-score of 99.19% in the detection of ASD automatically. Our developed model is ready to be tested with more EEG signals before its clinical application.
•Automated detection of autism spectrum disorder using EEG signals.•Douglas-Peucker algorithm is used to reduce the number of EEG samples.•Sparse coding is used for EEG rhythm-based image construction and an ELM-AE-based image data augmentation is employed.•Pre-trained deep CNN models are used for classification.•Proposed method yielded an accuracy of 98.88%, a sensitivity of 100%, and a specificity of 96.4%. |
|---|---|
| AbstractList | Autism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals are widely used to record the electrical activities of the brain. Manual screening is prone to human errors, tedious, and time-consuming. Hence, a novel automated method involving the Douglas-Peucker (DP) algorithm, sparse coding-based feature mapping approach, and deep convolutional neural networks (CNNs) is employed to detect ASD using EEG recordings. Initially, the DP algorithm is used for each channel to reduce the number of samples without degradation of the EEG signal. Then, the EEG rhythms are extracted by using the wavelet transform. The EEG rhythms are coded by using the sparse representation. The matching pursuit algorithm is used for sparse coding of the EEG rhythms. The sparse coded rhythms are segmented into 8 bits length and then converted to decimal numbers. An image is formed by concatenating the histograms of the decimated rhythm signals. Extreme learning machines (ELM)-based autoencoders (AE) are employed at a data augmentation step. After data augmentation, the ASD and healthy EEG signals are classified using pre-trained deep CNN models. Our proposed method yielded an accuracy of 98.88%, the sensitivity of 100% and specificity of 96.4%, and the F1-score of 99.19% in the detection of ASD automatically. Our developed model is ready to be tested with more EEG signals before its clinical application.Autism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals are widely used to record the electrical activities of the brain. Manual screening is prone to human errors, tedious, and time-consuming. Hence, a novel automated method involving the Douglas-Peucker (DP) algorithm, sparse coding-based feature mapping approach, and deep convolutional neural networks (CNNs) is employed to detect ASD using EEG recordings. Initially, the DP algorithm is used for each channel to reduce the number of samples without degradation of the EEG signal. Then, the EEG rhythms are extracted by using the wavelet transform. The EEG rhythms are coded by using the sparse representation. The matching pursuit algorithm is used for sparse coding of the EEG rhythms. The sparse coded rhythms are segmented into 8 bits length and then converted to decimal numbers. An image is formed by concatenating the histograms of the decimated rhythm signals. Extreme learning machines (ELM)-based autoencoders (AE) are employed at a data augmentation step. After data augmentation, the ASD and healthy EEG signals are classified using pre-trained deep CNN models. Our proposed method yielded an accuracy of 98.88%, the sensitivity of 100% and specificity of 96.4%, and the F1-score of 99.19% in the detection of ASD automatically. Our developed model is ready to be tested with more EEG signals before its clinical application. Autism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals are widely used to record the electrical activities of the brain. Manual screening is prone to human errors, tedious, and time-consuming. Hence, a novel automated method involving the Douglas-Peucker (DP) algorithm, sparse coding-based feature mapping approach, and deep convolutional neural networks (CNNs) is employed to detect ASD using EEG recordings. Initially, the DP algorithm is used for each channel to reduce the number of samples without degradation of the EEG signal. Then, the EEG rhythms are extracted by using the wavelet transform. The EEG rhythms are coded by using the sparse representation. The matching pursuit algorithm is used for sparse coding of the EEG rhythms. The sparse coded rhythms are segmented into 8 bits length and then converted to decimal numbers. An image is formed by concatenating the histograms of the decimated rhythm signals. Extreme learning machines (ELM)-based autoencoders (AE) are employed at a data augmentation step. After data augmentation, the ASD and healthy EEG signals are classified using pre-trained deep CNN models. Our proposed method yielded an accuracy of 98.88%, the sensitivity of 100% and specificity of 96.4%, and the F1-score of 99.19% in the detection of ASD automatically. Our developed model is ready to be tested with more EEG signals before its clinical application. Autism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals are widely used to record the electrical activities of the brain. Manual screening is prone to human errors, tedious, and time-consuming. Hence, a novel automated method involving the Douglas-Peucker (DP) algorithm, sparse coding-based feature mapping approach, and deep convolutional neural networks (CNNs) is employed to detect ASD using EEG recordings. Initially, the DP algorithm is used for each channel to reduce the number of samples without degradation of the EEG signal. Then, the EEG rhythms are extracted by using the wavelet transform. The EEG rhythms are coded by using the sparse representation. The matching pursuit algorithm is used for sparse coding of the EEG rhythms. The sparse coded rhythms are segmented into 8 bits length and then converted to decimal numbers. An image is formed by concatenating the histograms of the decimated rhythm signals. Extreme learning machines (ELM)-based autoencoders (AE) are employed at a data augmentation step. After data augmentation, the ASD and healthy EEG signals are classified using pre-trained deep CNN models. Our proposed method yielded an accuracy of 98.88%, the sensitivity of 100% and specificity of 96.4%, and the F1-score of 99.19% in the detection of ASD automatically. Our developed model is ready to be tested with more EEG signals before its clinical application. •Automated detection of autism spectrum disorder using EEG signals.•Douglas-Peucker algorithm is used to reduce the number of EEG samples.•Sparse coding is used for EEG rhythm-based image construction and an ELM-AE-based image data augmentation is employed.•Pre-trained deep CNN models are used for classification.•Proposed method yielded an accuracy of 98.88%, a sensitivity of 100%, and a specificity of 96.4%. AbstractAutism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals are widely used to record the electrical activities of the brain. Manual screening is prone to human errors, tedious, and time-consuming. Hence, a novel automated method involving the Douglas-Peucker (DP) algorithm, sparse coding-based feature mapping approach, and deep convolutional neural networks (CNNs) is employed to detect ASD using EEG recordings. Initially, the DP algorithm is used for each channel to reduce the number of samples without degradation of the EEG signal. Then, the EEG rhythms are extracted by using the wavelet transform. The EEG rhythms are coded by using the sparse representation. The matching pursuit algorithm is used for sparse coding of the EEG rhythms. The sparse coded rhythms are segmented into 8 bits length and then converted to decimal numbers. An image is formed by concatenating the histograms of the decimated rhythm signals. Extreme learning machines (ELM)-based autoencoders (AE) are employed at a data augmentation step. After data augmentation, the ASD and healthy EEG signals are classified using pre-trained deep CNN models. Our proposed method yielded an accuracy of 98.88%, the sensitivity of 100% and specificity of 96.4%, and the F1-score of 99.19% in the detection of ASD automatically. Our developed model is ready to be tested with more EEG signals before its clinical application. |
| ArticleNumber | 105311 |
| Author | Acharya, U.Rajendra Sobahi, Nebras Alçin, Ömer F. Sengur, Abdulkadir Ari, Berna |
| Author_xml | – sequence: 1 givenname: Berna orcidid: 0000-0003-1000-2619 surname: Ari fullname: Ari, Berna organization: Firat University, Technology Faculty, Electrical and Electronics Engineering Department, Elazig, Turkey – sequence: 2 givenname: Nebras orcidid: 0000-0001-5788-5629 surname: Sobahi fullname: Sobahi, Nebras email: nsobahi@kau.edu.sa organization: King Abdulaziz University, Department of Electrical and Computer Engineering, Jeddah, Saudi Arabia – sequence: 3 givenname: Ömer F. orcidid: 0000-0002-2917-3736 surname: Alçin fullname: Alçin, Ömer F. organization: Malatya Turgut Ozal University, Faculty of Engineering and Natural Sciences, Department of Electrical and Electronics Engineering, Malatya, Turkey – sequence: 4 givenname: Abdulkadir orcidid: 0000-0003-1614-2639 surname: Sengur fullname: Sengur, Abdulkadir organization: Firat University, Technology Faculty, Electrical and Electronics Engineering Department, Elazig, Turkey – sequence: 5 givenname: U.Rajendra surname: Acharya fullname: Acharya, U.Rajendra organization: Ngee Ann Polytechnic, Department of Electronics and Computer Engineering, 599489, Singapore |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35158117$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkt9qFDEUxoNU7Lb6ChLwxgtnTTJ_duamWOu2CgUF9Tpkk5NtdmeSaZJp6cv4rE3YVmFB2Js5k_DLdw7fd07QkXUWEMKUzCmhzcfNXLphXBk3gJozwli6rktKX6AZbRddkQ7VEZoRQklRtaw-RichbAghFSnJK3Rc1rRuKV3M0J9zKScvImAFEWQ0zmKnsZiiCQOegrFr_MVN616E4gdMcgsei37tvIk3wwccRuEDYOlUBlcigMIaRJw84EGMY74VViXA3rl-yvKixxZSy1zivfNbnPreWHM7QcD3SRYvl1c4mHUiw2v0UqcCb57qKfp9ufx18bW4_n717eL8upA1rWKhgElSaaYbDY3sNG1VWYpq0ZYrpTXtiGyrthWqqcuuq6XqalE1q051dKGF0l15it7vdEfv8iCRDyZI6HthwU2Bs4Z1pF6kT0Lf7aEbN_k8bKLKumo72rBEvX2iplUKiY_eDMI_8GfnE3C2A6R3IXjQXJooskHRC9NzSniOmm_4v6h5jprvok4C7Z7Ac48Dnn7ePYVk6Z0Bz4M0YCUo49MOcOXMISJneyKyN9ZI0W_hAcJfUygPjBP-My9j3kXG8l-ZLfr0f4HDZngERnr3Kw |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2023_110858 crossref_primary_10_1016_j_rasd_2023_102258 crossref_primary_10_1109_ACCESS_2024_3520861 crossref_primary_10_1016_j_bspc_2024_106151 crossref_primary_10_1109_TNSRE_2024_3417210 crossref_primary_10_1007_s12652_023_04641_6 crossref_primary_10_1109_ACCESS_2024_3396869 crossref_primary_10_1186_s13677_023_00558_9 crossref_primary_10_1016_j_cnsns_2025_108752 crossref_primary_10_1016_j_compbiomed_2023_107801 crossref_primary_10_3233_THC_240550 crossref_primary_10_1109_TTS_2023_3239526 crossref_primary_10_1016_j_inffus_2023_101898 crossref_primary_10_1007_s10803_024_06290_w crossref_primary_10_1016_j_compbiomed_2024_108075 crossref_primary_10_1016_j_bspc_2023_105074 crossref_primary_10_1109_TITS_2023_3247993 crossref_primary_10_1016_j_cosrev_2025_100730 crossref_primary_10_1038_s41598_023_49048_7 crossref_primary_10_1111_exsy_13569 crossref_primary_10_1155_2022_1503757 crossref_primary_10_51359_1679_1827_2024_263456 crossref_primary_10_1016_j_bspc_2023_105018 crossref_primary_10_1088_2057_1976_ad31fb crossref_primary_10_1016_j_pnpbp_2022_110705 crossref_primary_10_1038_s41598_024_77549_6 crossref_primary_10_1109_TCDS_2024_3386364 |
| Cites_doi | 10.1155/2019/5173589 10.1109/MSP.2007.4286571 10.1002/aur.239 10.1109/ACCESS.2015.2430359 10.1186/s12864-019-6413-7 10.1049/el.2020.2646 10.1016/j.measurement.2014.04.012 10.1007/s11633-019-1197-4 10.1109/ACCESS.2019.2947111 10.1016/j.bbe.2017.08.006 10.3390/ijerph17030971 10.1097/WNP.0b013e3181f40dc8 10.1016/j.bbe.2020.01.008 10.1515/revneuro-2014-0056 10.1049/iet-smt.2018.5358 10.1016/j.compbiomed.2021.104548 10.1515/revneuro-2014-0036 10.1016/j.cmpb.2017.02.002 10.1155/2017/9816591 10.1016/j.jocn.2018.06.049 10.1186/1741-7015-9-18 10.1109/TIT.2006.871582 10.3138/FM57-6770-U75U-7727 10.1109/TBME.2007.891945 10.3389/fnins.2019.01120 10.1016/j.compbiomed.2021.104949 10.1186/1866-1955-6-12 10.1371/journal.pone.0253094 10.1016/j.bbr.2019.01.018 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. 2022. Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. – notice: 2022. Elsevier Ltd |
| DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2022.105311 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database (Proquest) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 105311 |
| ExternalDocumentID | 35158117 10_1016_j_compbiomed_2022_105311 S0010482522001032 1_s2_0_S0010482522001032 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI Q9U 7X8 |
| ID | FETCH-LOGICAL-c514t-de2c04f2f6fe6c9f18d33a4783bdff190c8488ad653995cd95a46b9d917fadf93 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Wed Oct 01 14:45:02 EDT 2025 Tue Oct 07 06:07:15 EDT 2025 Thu Apr 03 07:08:35 EDT 2025 Wed Oct 01 05:19:32 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 Fri Feb 23 02:41:43 EST 2024 Tue Feb 25 20:12:01 EST 2025 Tue Oct 14 19:33:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Douglas-Peucker algorithm EEG signals Autism spectrum disorder |
| Language | English |
| License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-de2c04f2f6fe6c9f18d33a4783bdff190c8488ad653995cd95a46b9d917fadf93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1614-2639 0000-0003-1000-2619 0000-0001-5788-5629 0000-0002-2917-3736 |
| PMID | 35158117 |
| PQID | 2635489162 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2629057290 proquest_journals_2635489162 pubmed_primary_35158117 crossref_citationtrail_10_1016_j_compbiomed_2022_105311 crossref_primary_10_1016_j_compbiomed_2022_105311 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105311 elsevier_clinicalkeyesjournals_1_s2_0_S0010482522001032 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105311 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Subudhi, Mohanty, Sahoo, Mohanty, Mohanty (bib43) 2020 Grossi, Olivieri, Buscema (bib15) 2017; 142 Peya, Akhand, Srabonee, Siddique (bib21) 2020 Vicnesh, Wei, Oh, Arunkumar, Abdulhay, Ciaccio, Acharya (bib4) 2020; 17 Siuly, Alcin, Bajaj, Sengur, Zhang (bib9) 2018; 13 Hadoush, Alafeef, Abdulhay (bib41) 2019; 362 Altan, Kutlu (bib34) 2018; 3 Chicco, Jurman (bib38) 2020; 21 Bhat, Acharya, Adeli, Bairy, Adeli (bib5) 2014; 25 Liu, Li, Yang, Wu, Liu, Liu (bib25) 2019; 7 Zhang, Xu, Yang, Li, Zhang (bib27) 2015; 3 Eldridge, Lane, Belkin, Dennis (bib14) 2014; 6 Yin, Cao, Siuly, Wang (bib11) 2019; 16 Xu, Geng, He, Li, Yu (bib22) 2019; 13 Baraniuk (bib29) 2007; 24 WHO. Autism spectrum disorders, Available from Alhaddad, Kamel, Malibary (bib30) 2012; 4 Tawhid, Siuly, Wang, Whittaker, Wang, Zhang (bib20) 2021; 16 Tawhid, Siuly, Wang (bib31) 2020; 56 Sinha, Munot, Sreemathy (bib10) 2019 Ibrahim, Djemal, Alsuwailem (bib39) 2018; 38 Elsabbagh, Divan, Koh, Kim, Kauchali, Marcín (bib1) 2012; 5 Zarei, He, Siuly, Huang, Zhang (bib24) 2019; 2019 Ghosh-Dastidar, Adeli, Dadmehr (bib26) 2007; 54 Alcin, Sengur, Ghofrani, Ince (bib33) 2014; 55 Baygin, Dogan, Tuncer, Barua, Faust, Arunkumar, Acharya (bib3) 2021; 134 Bhat, Acharya, Adeli, Bairy, Adeli (bib7) 2014; 25 Khodatars, Shoeibi, Sadeghi, Ghaasemi, Jafari, Moridian, Berk (bib8) 2021; 139 Kang, Zhou, Han, Li (bib40) 2018; 56 . Ahmadlou, Adeli, Adeli (bib18) 2010; 27 Pham, Vicnesh, Wei, Oh, Arunkumar, Abdulhay (bib42) 2020; 17 Oh, Jahmunah, Arunkumar, Abdulhay, Gururajan, Adib, Acharya (bib6) 2021 Bosl, Tierney, Tager-Flusberg, Nelson (bib13) 2011; 9 Djemal, AlSharabi, Ibrahim, Alsuwailem (bib19) 2017; 2017 Simonyan, Zisserman (bib36) 2014; 1556 He, Zhang, Ren, Sun (bib37) 2016 Abdolzadegan, Moattar, Ghoshuni (bib17) 2020; 40 Donoho (bib28) 2006; 52 Huang, Zhu, Siew (bib32) 2004; vols. 25–29 Sheikhani, Behnam, Mohammadi, Noroozian, Golabi (bib12) 2008; vol. 1 Haputhanthri, Brihadiswaran, Gunathilaka, Meedeniya, Jayawardena, Jayarathna (bib16) 2019; vol. 2019 Douglas, Peucker (bib23) 1973; 10 Krizhevsky, Sutskever, Hinton (bib35) 2012; 25 Bhat (10.1016/j.compbiomed.2022.105311_bib7) 2014; 25 Zarei (10.1016/j.compbiomed.2022.105311_bib24) 2019; 2019 Khodatars (10.1016/j.compbiomed.2022.105311_bib8) 2021; 139 Altan (10.1016/j.compbiomed.2022.105311_bib34) 2018; 3 Yin (10.1016/j.compbiomed.2022.105311_bib11) 2019; 16 10.1016/j.compbiomed.2022.105311_bib2 Peya (10.1016/j.compbiomed.2022.105311_bib21) 2020 Tawhid (10.1016/j.compbiomed.2022.105311_bib20) 2021; 16 Ahmadlou (10.1016/j.compbiomed.2022.105311_bib18) 2010; 27 Donoho (10.1016/j.compbiomed.2022.105311_bib28) 2006; 52 Bosl (10.1016/j.compbiomed.2022.105311_bib13) 2011; 9 Pham (10.1016/j.compbiomed.2022.105311_bib42) 2020; 17 Sheikhani (10.1016/j.compbiomed.2022.105311_bib12) 2008; vol. 1 Douglas (10.1016/j.compbiomed.2022.105311_bib23) 1973; 10 Liu (10.1016/j.compbiomed.2022.105311_bib25) 2019; 7 Djemal (10.1016/j.compbiomed.2022.105311_bib19) 2017; 2017 Abdolzadegan (10.1016/j.compbiomed.2022.105311_bib17) 2020; 40 Baraniuk (10.1016/j.compbiomed.2022.105311_bib29) 2007; 24 Chicco (10.1016/j.compbiomed.2022.105311_bib38) 2020; 21 Eldridge (10.1016/j.compbiomed.2022.105311_bib14) 2014; 6 Subudhi (10.1016/j.compbiomed.2022.105311_bib43) 2020 Krizhevsky (10.1016/j.compbiomed.2022.105311_bib35) 2012; 25 Alcin (10.1016/j.compbiomed.2022.105311_bib33) 2014; 55 Hadoush (10.1016/j.compbiomed.2022.105311_bib41) 2019; 362 Huang (10.1016/j.compbiomed.2022.105311_bib32) 2004; vols. 25–29 Elsabbagh (10.1016/j.compbiomed.2022.105311_bib1) 2012; 5 Siuly (10.1016/j.compbiomed.2022.105311_bib9) 2018; 13 Haputhanthri (10.1016/j.compbiomed.2022.105311_bib16) 2019; vol. 2019 Xu (10.1016/j.compbiomed.2022.105311_bib22) 2019; 13 Alhaddad (10.1016/j.compbiomed.2022.105311_bib30) 2012; 4 Tawhid (10.1016/j.compbiomed.2022.105311_bib31) 2020; 56 Vicnesh (10.1016/j.compbiomed.2022.105311_bib4) 2020; 17 Sinha (10.1016/j.compbiomed.2022.105311_bib10) 2019 Kang (10.1016/j.compbiomed.2022.105311_bib40) 2018; 56 Baygin (10.1016/j.compbiomed.2022.105311_bib3) 2021; 134 Oh (10.1016/j.compbiomed.2022.105311_bib6) 2021 Ghosh-Dastidar (10.1016/j.compbiomed.2022.105311_bib26) 2007; 54 Zhang (10.1016/j.compbiomed.2022.105311_bib27) 2015; 3 Simonyan (10.1016/j.compbiomed.2022.105311_bib36) 2014; 1556 He (10.1016/j.compbiomed.2022.105311_bib37) 2016 Grossi (10.1016/j.compbiomed.2022.105311_bib15) 2017; 142 Bhat (10.1016/j.compbiomed.2022.105311_bib5) 2014; 25 Ibrahim (10.1016/j.compbiomed.2022.105311_bib39) 2018; 38 |
| References_xml | – volume: vol. 2019 start-page: 123 year: 2019 end-page: 128 ident: bib16 article-title: An EEG based channel optimized classification approach for autism spectrum disorder publication-title: Moratuwa Engineering Research Conference (MERCon) – volume: 3 start-page: 141 year: 2018 end-page: 151 ident: bib34 article-title: Hessenberg Elm autoencoder kernel for deep learning publication-title: J. Eng. Technol. Appl. Sci. – volume: 27 start-page: 328 year: 2010 end-page: 333 ident: bib18 article-title: Fractality and a wavelet-chaos-neural network methodology for EEGbased diagnosis of autistic spectrum disorder publication-title: J. Clin. Neurophysiol. – volume: 25 start-page: 851 year: 2014 end-page: 861 ident: bib5 article-title: Automated diagnosis of autism: in search of a mathematical marker publication-title: Rev. Neurosci. – start-page: 1 year: 2020 end-page: 9 ident: bib43 article-title: Automated delimitation and classification of autistic disorder using EEG signal publication-title: IETE J. Res. – volume: 38 start-page: 16 year: 2018 end-page: 26 ident: bib39 article-title: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis publication-title: Biocybern. Biomed. Eng. – volume: 134 start-page: 104548 year: 2021 ident: bib3 article-title: Automated ASD detection using hybrid deep lightweight features extracted from EEG signals publication-title: Comput. Biol. Med. – volume: 142 start-page: 73 year: 2017 end-page: 79 ident: bib15 article-title: Diagnosis of autism through EEG processed by advanced computational algorithms: a pilot study publication-title: Comput. Methods Progr. Biomed. – volume: 24 start-page: 118 year: 2007 end-page: 121 ident: bib29 article-title: Compressive sensing [lecture notes] publication-title: IEEE Signal Process. Mag. – volume: 2019 year: 2019 ident: bib24 article-title: Exploring Douglas-Peucker algorithm in the detection of epileptic seizure from multicategory EEG signals publication-title: BioMed Res. Int. – volume: 4 start-page: 45 year: 2012 end-page: 54 ident: bib30 article-title: Diagnosis autism by Fisher linear discriminant analysis FLDA via EEG publication-title: Int. J. Bio-Sci. Bio-Technol. – volume: 5 start-page: 160 year: 2012 end-page: 179 ident: bib1 article-title: Global prevalence of autism and other pervasive developmental disorders publication-title: Autism Res. – volume: 55 start-page: 126 year: 2014 end-page: 132 ident: bib33 article-title: GA-SELM: greedy algorithms for sparse extreme learning machine publication-title: Measurement – volume: 17 start-page: 971 year: 2020 ident: bib42 article-title: Autism spectrum disorder diagnostic system using HOS bispectrum with EEG signals publication-title: Int. J. Environ. Res. Publ. Health – volume: 139 start-page: 104949 year: 2021 ident: bib8 article-title: Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review publication-title: Comput. Biol. Med. – start-page: 1 year: 2019 end-page: 9 ident: bib10 article-title: An efficient approach for detection of autism spectrum disorder using electroencephalography signal publication-title: IETE J. Res. – volume: 6 start-page: 12 year: 2014 ident: bib14 article-title: Robust features for the automatic identification of autism spectrum disorder in children publication-title: J. Neurodev. Disord. – volume: 40 start-page: 482 year: 2020 end-page: 493 ident: bib17 article-title: A robust method for early diagnosis of autism spectrum disorder from EEG signals based on feature selection and DBSCAN method publication-title: Biocybern. Biomed. Eng. – volume: 25 year: 2012 ident: bib35 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 18 year: 2011 ident: bib13 article-title: EEG complexity as a biomarker for autism spectrum disorder risk publication-title: BMC Med. – volume: 10 start-page: 112 year: 1973 end-page: 122 ident: bib23 article-title: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature publication-title: Cartographica: the international journal for geographic information and geovisualization – volume: 16 year: 2021 ident: bib20 article-title: A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG publication-title: PLoS One – volume: 362 start-page: 240 year: 2019 end-page: 248 ident: bib41 article-title: Automated identification for autism severity level: EEG analysis using empirical mode decomposition and second order difference plot publication-title: Behav. Brain Res. – volume: 1556 year: 2014 ident: bib36 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Comp. Res. Repos. (CoRR) – volume: vols. 25–29 start-page: 985 year: 2004 end-page: 990 ident: bib32 article-title: Extreme learning machine: a new learning scheme of feedforward neural networks publication-title: IEEE International Joint Conference on Neural Networks, Budapest – volume: 56 start-page: 1372 year: 2020 end-page: 1375 ident: bib31 article-title: Diagnosis of autism spectrum disorder from EEG using a time–frequency spectrogram image-based approach publication-title: Electron. Lett. – reference: . – volume: 13 start-page: 1120 year: 2019 ident: bib22 article-title: Prediction in autism by deep learning short-time spontaneous hemodynamic fluctuations publication-title: Front. Neurosci. – volume: 56 start-page: 101 year: 2018 end-page: 107 ident: bib40 article-title: EEG-based multi-feature fusion assessment for autism publication-title: J. Clin. Neurosci. – volume: 25 start-page: 841 year: 2014 end-page: 850 ident: bib7 article-title: Autism: cause factors, early diagnosis and therapies publication-title: Rev. Neurosci. – volume: vol. 1 start-page: 207 year: 2008 end-page: 212 ident: bib12 article-title: Connectivity analysis of quantitative Electroencephalogram background activity in Autism disorders with short time Fourier transform and Coherence values publication-title: 2008 Congress on Image and Signal Processing – start-page: 770 year: 2016 end-page: 778 ident: bib37 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 16 start-page: 786 year: 2019 end-page: 799 ident: bib11 article-title: An integrated MCI detection framework based on spectral-temporal analysis publication-title: Int. J. Autom. Comput. – volume: 17 start-page: 971 year: 2020 ident: bib4 article-title: Autism spectrum disorder diagnostic system using HOS bispectrum with EEG signals publication-title: Int. J. Environ. Res. Publ. Health – reference: WHO. Autism spectrum disorders, Available from: – volume: 13 start-page: 35 year: 2018 end-page: 41 ident: bib9 article-title: Exploring Hermite transformation in brain signal analysis for the detection of epileptic seizure publication-title: IET Sci. Meas. Technol. – volume: 54 start-page: 1545 year: 2007 end-page: 1551 ident: bib26 article-title: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection publication-title: IEEE Trans. Biomed. Eng. – start-page: 1278 year: 2020 end-page: 1281 ident: bib21 article-title: June). EEG based autism detection using CNN through correlation based transformation of channels' data publication-title: 2020 IEEE Region 10 Symposium (TENSYMP) – volume: 21 start-page: 1 year: 2020 end-page: 13 ident: bib38 article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation publication-title: BMC Genom. – volume: 2017 start-page: 1 year: 2017 end-page: 9 ident: bib19 article-title: EEG-based computer aided diagnosis of autism spectrum disorder using wavelet, entropy, and ANN publication-title: BioMed Res. Int. – volume: 3 start-page: 490 year: 2015 end-page: 530 ident: bib27 article-title: A survey of sparse representation: algorithms and applications publication-title: IEEE access – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: bib28 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theor. – start-page: 1 year: 2021 end-page: 15 ident: bib6 article-title: A novel automated autism spectrum disorder detection system publication-title: Complex. Intell. Syst. – volume: 7 start-page: 150677 year: 2019 end-page: 150692 ident: bib25 article-title: Adaptive douglas-peucker algorithm with automatic thresholding for AIS-based vessel trajectory compression publication-title: IEEE Access – volume: 25 year: 2012 ident: 10.1016/j.compbiomed.2022.105311_bib35 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 2019 year: 2019 ident: 10.1016/j.compbiomed.2022.105311_bib24 article-title: Exploring Douglas-Peucker algorithm in the detection of epileptic seizure from multicategory EEG signals publication-title: BioMed Res. Int. doi: 10.1155/2019/5173589 – volume: 24 start-page: 118 issue: 4 year: 2007 ident: 10.1016/j.compbiomed.2022.105311_bib29 article-title: Compressive sensing [lecture notes] publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2007.4286571 – volume: 5 start-page: 160 issue: 3 year: 2012 ident: 10.1016/j.compbiomed.2022.105311_bib1 article-title: Global prevalence of autism and other pervasive developmental disorders publication-title: Autism Res. doi: 10.1002/aur.239 – volume: 3 start-page: 490 year: 2015 ident: 10.1016/j.compbiomed.2022.105311_bib27 article-title: A survey of sparse representation: algorithms and applications publication-title: IEEE access doi: 10.1109/ACCESS.2015.2430359 – volume: 21 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2022.105311_bib38 article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation publication-title: BMC Genom. doi: 10.1186/s12864-019-6413-7 – start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2022.105311_bib43 article-title: Automated delimitation and classification of autistic disorder using EEG signal publication-title: IETE J. Res. – volume: 56 start-page: 1372 issue: 25 year: 2020 ident: 10.1016/j.compbiomed.2022.105311_bib31 article-title: Diagnosis of autism spectrum disorder from EEG using a time–frequency spectrogram image-based approach publication-title: Electron. Lett. doi: 10.1049/el.2020.2646 – volume: 1556 year: 2014 ident: 10.1016/j.compbiomed.2022.105311_bib36 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Comp. Res. Repos. (CoRR) – ident: 10.1016/j.compbiomed.2022.105311_bib2 – volume: vol. 2019 start-page: 123 year: 2019 ident: 10.1016/j.compbiomed.2022.105311_bib16 article-title: An EEG based channel optimized classification approach for autism spectrum disorder – volume: 3 start-page: 141 issue: 2 year: 2018 ident: 10.1016/j.compbiomed.2022.105311_bib34 article-title: Hessenberg Elm autoencoder kernel for deep learning publication-title: J. Eng. Technol. Appl. Sci. – volume: 55 start-page: 126 year: 2014 ident: 10.1016/j.compbiomed.2022.105311_bib33 article-title: GA-SELM: greedy algorithms for sparse extreme learning machine publication-title: Measurement doi: 10.1016/j.measurement.2014.04.012 – volume: 16 start-page: 786 issue: 6 year: 2019 ident: 10.1016/j.compbiomed.2022.105311_bib11 article-title: An integrated MCI detection framework based on spectral-temporal analysis publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-019-1197-4 – volume: 7 start-page: 150677 year: 2019 ident: 10.1016/j.compbiomed.2022.105311_bib25 article-title: Adaptive douglas-peucker algorithm with automatic thresholding for AIS-based vessel trajectory compression publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2947111 – volume: 38 start-page: 16 year: 2018 ident: 10.1016/j.compbiomed.2022.105311_bib39 article-title: Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2017.08.006 – volume: 17 start-page: 971 issue: 3 year: 2020 ident: 10.1016/j.compbiomed.2022.105311_bib4 article-title: Autism spectrum disorder diagnostic system using HOS bispectrum with EEG signals publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph17030971 – volume: 27 start-page: 328 issue: 5 year: 2010 ident: 10.1016/j.compbiomed.2022.105311_bib18 article-title: Fractality and a wavelet-chaos-neural network methodology for EEGbased diagnosis of autistic spectrum disorder publication-title: J. Clin. Neurophysiol. doi: 10.1097/WNP.0b013e3181f40dc8 – volume: 40 start-page: 482 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2022.105311_bib17 article-title: A robust method for early diagnosis of autism spectrum disorder from EEG signals based on feature selection and DBSCAN method publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.01.008 – volume: 25 start-page: 841 issue: 6 year: 2014 ident: 10.1016/j.compbiomed.2022.105311_bib7 article-title: Autism: cause factors, early diagnosis and therapies publication-title: Rev. Neurosci. doi: 10.1515/revneuro-2014-0056 – volume: 13 start-page: 35 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2022.105311_bib9 article-title: Exploring Hermite transformation in brain signal analysis for the detection of epileptic seizure publication-title: IET Sci. Meas. Technol. doi: 10.1049/iet-smt.2018.5358 – volume: 134 start-page: 104548 year: 2021 ident: 10.1016/j.compbiomed.2022.105311_bib3 article-title: Automated ASD detection using hybrid deep lightweight features extracted from EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104548 – volume: 25 start-page: 851 issue: 6 year: 2014 ident: 10.1016/j.compbiomed.2022.105311_bib5 article-title: Automated diagnosis of autism: in search of a mathematical marker publication-title: Rev. Neurosci. doi: 10.1515/revneuro-2014-0036 – start-page: 770 year: 2016 ident: 10.1016/j.compbiomed.2022.105311_bib37 article-title: Deep residual learning for image recognition – volume: 142 start-page: 73 year: 2017 ident: 10.1016/j.compbiomed.2022.105311_bib15 article-title: Diagnosis of autism through EEG processed by advanced computational algorithms: a pilot study publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2017.02.002 – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.compbiomed.2022.105311_bib19 article-title: EEG-based computer aided diagnosis of autism spectrum disorder using wavelet, entropy, and ANN publication-title: BioMed Res. Int. doi: 10.1155/2017/9816591 – start-page: 1 year: 2019 ident: 10.1016/j.compbiomed.2022.105311_bib10 article-title: An efficient approach for detection of autism spectrum disorder using electroencephalography signal publication-title: IETE J. Res. – volume: 56 start-page: 101 year: 2018 ident: 10.1016/j.compbiomed.2022.105311_bib40 article-title: EEG-based multi-feature fusion assessment for autism publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2018.06.049 – volume: 9 start-page: 18 issue: 1 year: 2011 ident: 10.1016/j.compbiomed.2022.105311_bib13 article-title: EEG complexity as a biomarker for autism spectrum disorder risk publication-title: BMC Med. doi: 10.1186/1741-7015-9-18 – start-page: 1 year: 2021 ident: 10.1016/j.compbiomed.2022.105311_bib6 article-title: A novel automated autism spectrum disorder detection system publication-title: Complex. Intell. Syst. – volume: 4 start-page: 45 issue: 2 year: 2012 ident: 10.1016/j.compbiomed.2022.105311_bib30 article-title: Diagnosis autism by Fisher linear discriminant analysis FLDA via EEG publication-title: Int. J. Bio-Sci. Bio-Technol. – volume: 17 start-page: 971 year: 2020 ident: 10.1016/j.compbiomed.2022.105311_bib42 article-title: Autism spectrum disorder diagnostic system using HOS bispectrum with EEG signals publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph17030971 – start-page: 1278 year: 2020 ident: 10.1016/j.compbiomed.2022.105311_bib21 article-title: June). EEG based autism detection using CNN through correlation based transformation of channels' data – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 10.1016/j.compbiomed.2022.105311_bib28 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theor. doi: 10.1109/TIT.2006.871582 – volume: vol. 1 start-page: 207 year: 2008 ident: 10.1016/j.compbiomed.2022.105311_bib12 article-title: Connectivity analysis of quantitative Electroencephalogram background activity in Autism disorders with short time Fourier transform and Coherence values – volume: 10 start-page: 112 issue: 2 year: 1973 ident: 10.1016/j.compbiomed.2022.105311_bib23 article-title: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature publication-title: Cartographica: the international journal for geographic information and geovisualization doi: 10.3138/FM57-6770-U75U-7727 – volume: 54 start-page: 1545 issue: 9 year: 2007 ident: 10.1016/j.compbiomed.2022.105311_bib26 article-title: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.891945 – volume: vols. 25–29 start-page: 985 year: 2004 ident: 10.1016/j.compbiomed.2022.105311_bib32 article-title: Extreme learning machine: a new learning scheme of feedforward neural networks – volume: 13 start-page: 1120 year: 2019 ident: 10.1016/j.compbiomed.2022.105311_bib22 article-title: Prediction in autism by deep learning short-time spontaneous hemodynamic fluctuations publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.01120 – volume: 139 start-page: 104949 year: 2021 ident: 10.1016/j.compbiomed.2022.105311_bib8 article-title: Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104949 – volume: 6 start-page: 12 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2022.105311_bib14 article-title: Robust features for the automatic identification of autism spectrum disorder in children publication-title: J. Neurodev. Disord. doi: 10.1186/1866-1955-6-12 – volume: 16 issue: 6 year: 2021 ident: 10.1016/j.compbiomed.2022.105311_bib20 article-title: A spectrogram image based intelligent technique for automatic detection of autism spectrum disorder from EEG publication-title: PLoS One doi: 10.1371/journal.pone.0253094 – volume: 362 start-page: 240 year: 2019 ident: 10.1016/j.compbiomed.2022.105311_bib41 article-title: Automated identification for autism severity level: EEG analysis using empirical mode decomposition and second order difference plot publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2019.01.018 |
| SSID | ssj0004030 |
| Score | 2.5108318 |
| Snippet | Autism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG) signals... AbstractAutism Spectrum Disorders (ASD) is a collection of complicated neurological disorders that first show in early childhood. Electroencephalogram (EEG)... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 105311 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Autism Autism spectrum disorder Children Classification Coding Data augmentation Datasets Deep learning Douglas-Peucker algorithm EEG EEG signals Electroencephalography Feature selection Histograms Human error Internal Medicine Machine learning Magnetic resonance imaging Mapping Matched pursuit Neural coding Neural networks Neurological diseases Other Rhythm Signal classification Support vector machines Wavelet transforms |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VVEJcEG9cChokjljEa8cPIYQKSqmQGlVApd5W632kQo1Taufv9Lcys147F4pySQ7Jxs7O7My33m--AXhHqNhZ5Ryt7zqPM11P47q0tFUxlEuUyVXiD9pPF_nJefb9YnaxB4uhFoZplUNM9IHarDU_I__AoilZSWBGfL7-E3PXKD5dHVpoqNBawXzyEmP3YF-wMtYE9r_MF2c_tpWS07QvSqHok9HmKHB7esYXk7j7onfaNwrBLXDTJLkrYd0FSH1iOn4EDwOixKPeBR7Dnm2ewP3TcGb-FG6PtN6wIAQa23niVYNrh4o8rl0h896XGGB0fGY9zQLV1ZL-e3e5eo8UcW5ai3rNSQ456RmkeeeDB1wpVndYomoMMn09uDHdDctk-jdPMsdRKbZFfvCL8_k3ZOYI-f4zOD-e__p6EoeuDLEmcNXFxgo9zZxwZORcVy4pTZqqrCjT2jhH-EKXFBTIzKx5O9OmmqksrytD-0KnjKvS5zBp1o19CUiJkeBBZZ2jjVoxy2ryKFVSTi0cxYq6jqAYpl7qIFnOnTOu5MBN-y23RpNsNNkbLYJkHHndy3bsMKYarCuHslQKpJJyyw5ji3-NtW2ICK1MZCvkVP70gkjkeUL4Fhsigo_jyAB6ejCz43UPBzeU46W2SyWCt-PHFDb4LEg1dr3h74iKoDq9RPCid99xolLCuFx_fPD_H38FD_hOehrTIUy6m419TQitq9-EZfcXW_E-Bg priority: 102 providerName: ProQuest |
| Title | Accurate detection of autism using Douglas-Peucker algorithm, sparse coding based feature mapping and convolutional neural network techniques with EEG signals |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522001032 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522001032 https://dx.doi.org/10.1016/j.compbiomed.2022.105311 https://www.ncbi.nlm.nih.gov/pubmed/35158117 https://www.proquest.com/docview/2635489162 https://www.proquest.com/docview/2629057290 |
| Volume | 143 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250901 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5CCqWX0nfdpmEKPVaNJa31ICc32HFbYkJpwLdltQ_HJZaCJV_7U_pbM7NaKZQmYMhlhSyttOyMZr7xfjPL2CdExdZIa_H7LpKAq2IYFJnBUEWjL5E6kaFbaD-bJ7ML_n0xWuyxky4XhmiV3va3Nt1Za__LkZ_No-vVinJ8MZTAACeK3GYFZIc5T2kXgy9_bmkefBi3aShob-huz-ZpOV5E227T3DFSjCLa9DYOw_tc1H0Q1Lmi6TP21GNIGLfDfM72TPmCPT7zq-Qv2d-xUlsqAQHaNI5qVUJlQaKO1WsgpvsSPHAOzo0jVoC8WlabVXO5_gxoYza1AVWRWwNycxpwpmmpAdaS6jksQZYaiLDuFRdHQ4Ux3cHRyqGvDVsD_dULk8kpEFcEtf0Vu5hOfp3MAr8PQ6AQTjWBNpEachtZFGuichtmOo4lT7O40NYiolAZmgEULFW5HSmdjyRPilxjJGiltnn8mu2XVWneMkBXiIAgN9ZiaJaOeIE6JDP0oqlF61AUA5Z2Uy-UL1JOe2VciY6N9lvcCk2Q0EQrtAEL-57XbaGOHfrknXRFl4iKplOgN9mhb3pXX1N7G1CLUNSRGIr_9HTAjvue_6j6ju896NRQ9K-iikI8Q6SPD__YX0ZDQas_sjTVlu6JcgTn2AzYm1Z9-4mKEdVSxvG7Bw3tPXtCZy2v6YDtN5ut-YCQrSkO3TeJbbpIsc2mp4fs0fjbj9kcj18n8_OfN-3mR3E |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrQRcEG8MBQYJbljE640fQhUqkJLSJqqglXpb1vsIQo1TakeIP8NP4bcxY6-dC0W59JIc4o1Xnrf3m28Ye4FZsbPKObTvIgmFLgZhkVksVQzGEmUSFTUH7ZNpMj4Rn06HpxvsT9cLQ7DKzic2jtosNL0jf02kKSLDZIa_Pf8R0tQoOl3tRmgoP1rB7DQUY76x48D--oklXLWz_wHl_ZLzvdHx-3HopwyEGpOFOjSW64Fw3OGmE527KDNxrESaxYVxDuOlzlDJcdvE4TrUJh8qkRS5wTrHKeOIjAlDwJaIRY7F39a70fTo86ozcxC3TTDo7QQWYx5L1CLMCDTeNtljnco5jdyNo-iyAHlZAtwEwr1b7KbPYGG3VbnbbMOWd9i1iT-jv8t-72q9JAIKMLZugF4lLBwo1PBqDoSzn4FP28Mj28A6QJ3N8FnX3-avAD3cRWVBLyioAgVZAyhnOuiAuSI2iRmo0gDB5b3Z4G6IlrP5akDt0DPTVkAvmmE0-giEVEFbu8dOrkQ-99lmuSjtQwYYiDEdya1zWBimQ1GgBqsMY3jq0DcVRcDS7tFL7SnSaVLHmeywcN_lSmiShCZboQUs6leetzQha6zJO-nKrg0WHbfEWLbG2vRfa23lPVAlI1lxOZBfGgIm1DzOm5EePGBv-pU-yWqTpzXvu92poexvtTLNgD3vf0Y3RWdPqrSLJV3DcywN8CNgD1r17R9UjDk19Ts_-v-fP2PXx8eTQ3m4Pz14zG7QrloI1TbbrC-W9glmh3Xx1JsgsK9XbfV_AcZtfDo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrVRxQZSnocAgwQ2r8drxQwihiia0lFaVoFJuy3ofQaixS-0I8Wf4Ifw6ZnZt50JRLr0kh3jjlef1jfebGcZeIiq2RlqL9l2mYaLKUVjmBlMVjbFE6lRG7qD95DQ9PE8-zsazDfanr4UhWmXvE52j1rWid-R71DQlyRHM8D3b0SLODqbvLn-ENEGKTlr7cRpeRY7Nr5-YvjVvjw5Q1q84n06-vD8MuwkDoUKg0IbacDVKLLe44VQVNsp1HMsky-NSW4uxUuWo4Lhl6t86VroYyyQtC405jpXaUiMmdP9bWRwXRCfMZtmqJnMU-_IX9HMJpmEdi8hzy4gu7svrMUPlnIbtxlF0XWi8Dvq6EDi9w2532BX2vbLtsA1T3WXbJ93p_D32e1-pJbWeAG1aR_GqoLYgUbebBRDDfg4dYA_PjCN0gLyY45Ntvy1eA_q2q8aAqimcAoVXDShhOuKAhaQ-EnOQlQYiyncGg7uhhpzuy9HZYehJ2wC9YobJ5AMQRwWt7D47vxHpPGCbVV2ZRwwwBCMQKYy1mBJm46RE3ZU5Ru_Molcqy4Bl_aMXqmuOTjM6LkTPgvsuVkITJDThhRawaFh56RuErLGm6KUr-gJYdNkCo9gaa7N_rTVN53saEYmGi5H47FovoeZx7oZ58IC9GVZ28MrDpjXvu9uroRhutTLKgL0YfkYHRadOsjL1kq7hBSYF-BGwh159hwcVI5qmSufH___z52wbbV18Ojo9fsJu0aY8d2qXbbZXS_MUYWFbPnP2B-zrTRv8X28yedQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+detection+of+autism+using+Douglas-Peucker+algorithm%2C+sparse+coding+based+feature+mapping+and+convolutional+neural+network+techniques+with+EEG+signals&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Ari%2C+Berna&rft.au=Sobahi%2C+Nebras&rft.au=Al%C3%A7in%2C+%C3%96mer+F&rft.au=Sengur%2C+Abdulkadir&rft.date=2022-04-01&rft.issn=0010-4825&rft.volume=143&rft.spage=105311&rft.epage=105311&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105311&rft.externalDBID=ECK1-s2.0-S0010482522001032&rft.externalDocID=1_s2_0_S0010482522001032 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif |