Assessment of the accuracy of a Bayesian estimation algorithm for perfusion CT by using a digital phantom

Introduction A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated...

Full description

Saved in:
Bibliographic Details
Published inNeuroradiology Vol. 55; no. 10; pp. 1197 - 1203
Main Authors Sasaki, Makoto, Kudo, Kohsuke, Boutelier, Timothé, Pautot, Fabrice, Christensen, Soren, Uwano, Ikuko, Goodwin, Jonathan, Higuchi, Satomi, Ito, Kenji, Yamashita, Fumio
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2013
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0028-3940
1432-1920
1432-1920
DOI10.1007/s00234-013-1237-7

Cover

Abstract Introduction A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom. Methods The digital phantom data, in which concentration–time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined. Results CBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values ( r  = 0.91–0.92, 0.97–0.99, and 0.91–0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC) = 0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC = 0.81–0.82). Conclusions Quantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms.
AbstractList A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom.INTRODUCTIONA new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom.The digital phantom data, in which concentration-time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined.METHODSThe digital phantom data, in which concentration-time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined.CBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values (r = 0.91-0.92, 0.97-0.99, and 0.91-0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC) = 0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC = 0.81-0.82).RESULTSCBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values (r = 0.91-0.92, 0.97-0.99, and 0.91-0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC) = 0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC = 0.81-0.82).Quantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms.CONCLUSIONSQuantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms.
A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom. The digital phantom data, in which concentration-time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined. CBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values (r = 0.91-0.92, 0.97-0.99, and 0.91-0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC) = 0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC = 0.81-0.82). Quantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms.
A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom. The digital phantom data, in which concentration-time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined. CBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values (r=0.91-0.92, 0.97-0.99, and 0.91-0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC)=0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC=0.81-0.82). Quantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms.[PUBLICATION ABSTRACT]
Introduction A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom. Methods The digital phantom data, in which concentration–time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined. Results CBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values ( r  = 0.91–0.92, 0.97–0.99, and 0.91–0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC) = 0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC = 0.81–0.82). Conclusions Quantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms.
Introduction: A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom. Methods: The digital phantom data, in which concentration-time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined. Results: CBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values (r=0.91-0.92, 0.97-0.99, and 0.91-0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC)=0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC=0.81-0.82). Conclusions: Quantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms.
Author Sasaki, Makoto
Kudo, Kohsuke
Christensen, Soren
Boutelier, Timothé
Higuchi, Satomi
Ito, Kenji
Goodwin, Jonathan
Pautot, Fabrice
Uwano, Ikuko
Yamashita, Fumio
Author_xml – sequence: 1
  givenname: Makoto
  surname: Sasaki
  fullname: Sasaki, Makoto
  email: masasaki@iwate-med.ac.jp
  organization: Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University
– sequence: 2
  givenname: Kohsuke
  surname: Kudo
  fullname: Kudo, Kohsuke
  organization: Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University
– sequence: 3
  givenname: Timothé
  surname: Boutelier
  fullname: Boutelier, Timothé
  organization: Department of Research & Innovation, Olea Medical
– sequence: 4
  givenname: Fabrice
  surname: Pautot
  fullname: Pautot, Fabrice
  organization: Department of Research & Innovation, Olea Medical
– sequence: 5
  givenname: Soren
  surname: Christensen
  fullname: Christensen, Soren
  organization: Department of Neurology and Radiology, Royal Melbourne Hospital, University of Melbourne
– sequence: 6
  givenname: Ikuko
  surname: Uwano
  fullname: Uwano, Ikuko
  organization: Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University
– sequence: 7
  givenname: Jonathan
  surname: Goodwin
  fullname: Goodwin, Jonathan
  organization: Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University
– sequence: 8
  givenname: Satomi
  surname: Higuchi
  fullname: Higuchi, Satomi
  organization: Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University
– sequence: 9
  givenname: Kenji
  surname: Ito
  fullname: Ito, Kenji
  organization: Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University
– sequence: 10
  givenname: Fumio
  surname: Yamashita
  fullname: Yamashita, Fumio
  organization: Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23852431$$D View this record in MEDLINE/PubMed
BookMark eNqNkUuLFDEUhYOMOD2jP8CNBNy4Kc2rOunl2PiCATfjOqSSm-4MVUmZVCH17ydFtyIDymzy_M7l3HOv0EVMERB6Tcl7Soj8UAhhXDSE8oYyLhv5DG2o4KyhO0Yu0KZ-q4bvBLlEV6XcE0K45PIFumRctUxwukHhphQoZYA44eTxdARsrJ2zsct6N_ijWaAEEzGUKQxmCili0x9SDtNxwD5lPEL2c1nf93e4W3A9x0NVunAIk-nxeDRxSsNL9NybvsCr836Nfnz-dLf_2tx-__Jtf3Pb2JaKqXGEV2utt9R1gnXCOwbGtcZZaYlTrJVbQqDj1qktBdk54OBb5eviYas4v0bsVHeOo1l-mb7XY67O86Ip0Wtu-pSbrrnpNTctq-jdSTTm9HOureohFAt9byKkuWgqBOeqCsgTUC6kYESxir59hN6nOcfa_UrxndpJuRp-c6bmbgD3x-3vIVVAngCbUykZvLY12HUSUzah_29b9JHyKVGc8yuVjQfIf5n-p-gB80PEbw
CitedBy_id crossref_primary_10_1007_s00330_015_4135_z
crossref_primary_10_6009_jjrt_2023_1301
crossref_primary_10_1007_s00062_022_01140_7
crossref_primary_10_3390_jcm9061800
crossref_primary_10_1016_j_cmpb_2017_09_016
crossref_primary_10_1007_s00234_022_03013_9
crossref_primary_10_6009_jjrt_2024_1503
crossref_primary_10_3174_ajnr_A5454
crossref_primary_10_3174_ajnr_A6248
crossref_primary_10_1007_s00234_013_1310_2
crossref_primary_10_2463_mrms_2013_0085
crossref_primary_10_1007_s00234_015_1500_1
crossref_primary_10_3174_ajnr_A4184
crossref_primary_10_1097_RCT_0000000000001342
crossref_primary_10_1097_RLI_0000000000000477
crossref_primary_10_5797_jnet_oa_2022_0026
crossref_primary_10_1007_s11547_020_01316_6
crossref_primary_10_2463_mrms_mp_2015_0167
crossref_primary_10_6009_jjrt_2017_JSRT_73_11_1156
crossref_primary_10_1007_s11060_015_1755_8
crossref_primary_10_1259_bjr_20190543
crossref_primary_10_1007_s10072_023_06627_w
crossref_primary_10_1007_s00256_020_03526_5
crossref_primary_10_3174_ajnr_A6170
crossref_primary_10_1111_jon_13090
crossref_primary_10_1161_STROKEAHA_118_021952
crossref_primary_10_1016_j_cdtm_2017_02_002
Cites_doi 10.1016/S1474-4422(08)70044-9
10.1016/j.neuroimage.2006.06.015
10.1148/radiol.2511080983
10.1002/1522-2594(200103)45:3<477::AID-MRM1063>3.0.CO;2-4
10.1002/mrm.20873
10.1111/j.1747-4949.2011.00730.x
10.1148/radiol.12112618
10.1002/ana.20976
10.1109/TMI.2012.2189890
10.1002/mrm.10522
10.1148/radiol.254082000
10.1016/S1474-4422(08)70267-9
10.1161/hs0901.095680
10.1161/STROKEAHA.108.546069
10.3174/ajnr.A3110
10.1161/STROKEAHA.110.580670
10.1002/jmri.20460
10.3174/ajnr.A1274
10.1097/RCT.0b013e31828004bb
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2013
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2O
M7P
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
DOI 10.1007/s00234-013-1237-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
Toxicology Abstracts
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Research Library Prep

Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1920
EndPage 1203
ExternalDocumentID oai:jupiter.its.unimelb.edu.au:11343/219452
3076736801
23852431
10_1007_s00234_013_1237_7
Genre Comparative Study
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.55
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3O-
3V.
4.4
406
408
409
40D
40E
53G
5QI
5RE
5VS
67Z
6NX
6PF
78A
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHVE
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J5H
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M2O
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
X7M
YLTOR
Z45
Z7U
Z7X
Z82
Z87
Z8O
Z8V
Z91
ZGI
ZMTXR
ZOVNA
ZXP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
7U7
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c514t-d035245fc1db42b4fd2ead5adc7c0d8257600eb3cd861e7bde3ef58fef5fe6833
IEDL.DBID BENPR
ISSN 0028-3940
1432-1920
IngestDate Sun Oct 26 04:15:28 EDT 2025
Wed Oct 01 14:31:35 EDT 2025
Thu Oct 02 11:48:54 EDT 2025
Tue Oct 07 06:20:34 EDT 2025
Wed Feb 19 01:52:04 EST 2025
Thu Apr 24 23:13:29 EDT 2025
Wed Oct 01 03:10:04 EDT 2025
Fri Feb 21 02:33:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Mean transit time
Perfusion computed tomography
Cerebral blood flow
Bayesian estimation algorithm
Digital phantom
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-d035245fc1db42b4fd2ead5adc7c0d8257600eb3cd861e7bde3ef58fef5fe6833
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11343/219452
PMID 23852431
PQID 1433989773
PQPubID 49036
PageCount 7
ParticipantIDs unpaywall_primary_10_1007_s00234_013_1237_7
proquest_miscellaneous_1443380130
proquest_miscellaneous_1434742082
proquest_journals_1433989773
pubmed_primary_23852431
crossref_citationtrail_10_1007_s00234_013_1237_7
crossref_primary_10_1007_s00234_013_1237_7
springer_journals_10_1007_s00234_013_1237_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle A Journal Devoted to Neuroimaging and Interventional Neuroradiology
PublicationTitle Neuroradiology
PublicationTitleAbbrev Neuroradiology
PublicationTitleAlternate Neuroradiology
PublicationYear 2013
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Lev, Segal, Farkas, Hossain, Putman, Hunter, Budzik, Harris, Buonanno, Ezzeddine, Chang, Koroshetz, Gonzalez, Schwamm (CR1) 2001; 32
Sasaki, Kudo, Ogasawara, Fujiwara (CR4) 2009; 30
Christensen, Mouridsen, Wu, Hjort, Karstoft, Thomalla, Rother, Fiehler, Kucinski, Ostergaard (CR15) 2009; 40
Wu, Ostergaard, Weisskoff, Benner, Rosen, Sorensen (CR9) 2003; 50
Ma, Parsons, Christensen, Campbell, Churilov, Connelly, Yan, Bladin, Phan, Barber, Read, Hankey, Markus, Wijeratne, Grimley, Mahant, Kleinig, Sturm, Lee, Blacker, Gerraty, Krause, Desmond, McBride, Carey, Howells, Hsu, Davis, Donnan (CR18) 2012; 7
Albers, Thijs, Wechsler, Kemp, Schlaug, Skalabrin, Bammer, Kakuda, Lansberg, Shuaib, Coplin, Hamilton, Moseley, Marks (CR16) 2006; 60
van Osch, Vonken, Bakker, Viergever (CR13) 2001; 45
Boutelier, Kudo, Pautot, Sasaki (CR8) 2012; 31
Hanson, Roach, Day, Peters, Bradley, Ghosh, Patton, McMurray, Orrison (CR11) 2013; 37
Davis, Donnan, Parsons, Levi, Butcher, Peeters, Barber, Bladin, De Silva, Byrnes, Chalk, Fink, Kimber, Schultz, Hand, Frayne, Hankey, Muir, Gerraty, Tress, Desmond (CR17) 2008; 7
Calamante, Christensen, Desmond, Ostergaard, Davis, Connelly (CR19) 2010; 41
Calamante, Willats, Gadian, Connelly (CR14) 2006; 55
Kudo, Sasaki, Yamada, Momoshima, Utsunomiya, Shirato, Ogasawara (CR3) 2010; 254
Ostergaard (CR10) 2005; 22
Hacke, Furlan, Al-Rawi, Davalos, Fiebach, Gruber, Kaste, Lipka, Pedraza, Ringleb, Rowley, Schneider, Schwamm, Leal, Sohngen, Teal, Wilhelm-Ogunbiyi, Wintermark, Warach (CR12) 2009; 8
Fahmi, Marquering, Streekstra, Beenen, Velthuis, Vanbavel, Majoie (CR5) 2012; 33
Mouridsen, Friston, Hjort, Gyldensted, Ostergaard, Kiebel (CR7) 2006; 33
Kudo, Christensen, Sasaki, Ostergaard, Shirato, Ogasawara, Wintermark, Warach, Warach (CR6) 2013; 267
Kudo, Sasaki, Ogasawara, Terae, Ehara, Shirato (CR2) 2009; 251
W Hacke (1237_CR12) 2009; 8
T Boutelier (1237_CR8) 2012; 31
MJ Osch van (1237_CR13) 2001; 45
GW Albers (1237_CR16) 2006; 60
F Calamante (1237_CR19) 2010; 41
F Calamante (1237_CR14) 2006; 55
S Christensen (1237_CR15) 2009; 40
K Kudo (1237_CR2) 2009; 251
K Kudo (1237_CR3) 2010; 254
K Kudo (1237_CR6) 2013; 267
K Mouridsen (1237_CR7) 2006; 33
H Ma (1237_CR18) 2012; 7
F Fahmi (1237_CR5) 2012; 33
O Wu (1237_CR9) 2003; 50
M Sasaki (1237_CR4) 2009; 30
SM Davis (1237_CR17) 2008; 7
EH Hanson (1237_CR11) 2013; 37
MH Lev (1237_CR1) 2001; 32
L Ostergaard (1237_CR10) 2005; 22
19097942 - Lancet Neurol. 2009 Feb;8(2):141-50
22410325 - IEEE Trans Med Imaging. 2012 Jul;31(7):1381-95
22188854 - Int J Stroke. 2012 Jan;7(1):74-80
17066483 - Ann Neurol. 2006 Nov;60(5):508-17
19190251 - Radiology. 2009 Apr;251(1):241-9
16971140 - Neuroimage. 2006 Nov 1;33(2):570-9
16261573 - J Magn Reson Imaging. 2005 Dec;22(6):710-7
20032153 - Radiology. 2010 Jan;254(1):200-9
16598717 - Magn Reson Med. 2006 May;55(5):1180-5
22555577 - AJNR Am J Neuroradiol. 2012 Dec;33(11):2074-80
23220899 - Radiology. 2013 Apr;267(1):201-11
11241707 - Magn Reson Med. 2001 Mar;45(3):477-85
18768719 - AJNR Am J Neuroradiol. 2009 Jan;30(1):188-93
11546891 - Stroke. 2001 Sep;32(9):2021-8
20413735 - Stroke. 2010 Jun;41(6):1169-74
12815691 - Magn Reson Med. 2003 Jul;50(1):164-74
23493210 - J Comput Assist Tomogr. 2013 Mar-Apr;37(2):212-21
18296121 - Lancet Neurol. 2008 Apr;7(4):299-309
19359626 - Stroke. 2009 Jun;40(6):2055-61
References_xml – volume: 7
  start-page: 299
  year: 2008
  end-page: 309
  ident: CR17
  article-title: Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(08)70044-9
– volume: 33
  start-page: 570
  year: 2006
  end-page: 579
  ident: CR7
  article-title: Bayesian estimation of cerebral perfusion using a physiological model of microvasculature
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.06.015
– volume: 251
  start-page: 241
  year: 2009
  end-page: 249
  ident: CR2
  article-title: Difference in tracer delay-induced effect among deconvolution algorithms in CT perfusion analysis: quantitative evaluation with digital phantoms
  publication-title: Radiology
  doi: 10.1148/radiol.2511080983
– volume: 45
  start-page: 477
  year: 2001
  end-page: 485
  ident: CR13
  article-title: Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI
  publication-title: Magn Reson Med
  doi: 10.1002/1522-2594(200103)45:3<477::AID-MRM1063>3.0.CO;2-4
– volume: 55
  start-page: 1180
  year: 2006
  end-page: 1185
  ident: CR14
  article-title: Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20873
– volume: 7
  start-page: 74
  year: 2012
  end-page: 80
  ident: CR18
  article-title: A multicentre, randomized, double-blinded, placebo-controlled Phase III study to investigate EXtending the time for Thrombolysis in Emergency Neurological Deficits (EXTEND)
  publication-title: Int J Stroke
  doi: 10.1111/j.1747-4949.2011.00730.x
– volume: 267
  start-page: 201
  year: 2013
  end-page: 211
  ident: CR6
  article-title: Accuracy and reliability assessment of CT and MR perfusion analysis software using a digital phantom
  publication-title: Radiology
  doi: 10.1148/radiol.12112618
– volume: 60
  start-page: 508
  year: 2006
  end-page: 517
  ident: CR16
  article-title: Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study
  publication-title: Ann Neurol
  doi: 10.1002/ana.20976
– volume: 31
  start-page: 1381
  year: 2012
  end-page: 1395
  ident: CR8
  article-title: Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2012.2189890
– volume: 50
  start-page: 164
  year: 2003
  end-page: 174
  ident: CR9
  article-title: Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10522
– volume: 254
  start-page: 200
  year: 2010
  end-page: 209
  ident: CR3
  article-title: Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients
  publication-title: Radiology
  doi: 10.1148/radiol.254082000
– volume: 8
  start-page: 141
  year: 2009
  end-page: 150
  ident: CR12
  article-title: Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(08)70267-9
– volume: 32
  start-page: 2021
  year: 2001
  end-page: 2028
  ident: CR1
  article-title: Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome
  publication-title: Stroke
  doi: 10.1161/hs0901.095680
– volume: 40
  start-page: 2055
  year: 2009
  end-page: 2061
  ident: CR15
  article-title: Comparison of 10 perfusion MRI parameters in 97 sub-6-hour stroke patients using voxel-based receiver operating characteristics analysis
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.546069
– volume: 33
  start-page: 2074
  year: 2012
  end-page: 2080
  ident: CR5
  article-title: Differences in CT perfusion summary maps for patients with acute ischemic stroke generated by 2 software packages
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A3110
– volume: 41
  start-page: 1169
  year: 2010
  end-page: 1174
  ident: CR19
  article-title: The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.580670
– volume: 22
  start-page: 710
  year: 2005
  end-page: 717
  ident: CR10
  article-title: Principles of cerebral perfusion imaging by bolus tracking
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20460
– volume: 30
  start-page: 188
  year: 2009
  end-page: 193
  ident: CR4
  article-title: Tracer delay-insensitive algorithm can improve reliability of CT perfusion imaging for cerebrovascular steno-occlusive disease: comparison with quantitative single-photon emission CT
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A1274
– volume: 37
  start-page: 212
  year: 2013
  end-page: 221
  ident: CR11
  article-title: Assessment of the tracer delay effect in whole-brain computed tomography perfusion: results in patients without known neuroanatomic abnormalities
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0b013e31828004bb
– volume: 32
  start-page: 2021
  year: 2001
  ident: 1237_CR1
  publication-title: Stroke
  doi: 10.1161/hs0901.095680
– volume: 22
  start-page: 710
  year: 2005
  ident: 1237_CR10
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20460
– volume: 40
  start-page: 2055
  year: 2009
  ident: 1237_CR15
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.546069
– volume: 41
  start-page: 1169
  year: 2010
  ident: 1237_CR19
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.580670
– volume: 60
  start-page: 508
  year: 2006
  ident: 1237_CR16
  publication-title: Ann Neurol
  doi: 10.1002/ana.20976
– volume: 37
  start-page: 212
  year: 2013
  ident: 1237_CR11
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0b013e31828004bb
– volume: 31
  start-page: 1381
  year: 2012
  ident: 1237_CR8
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2012.2189890
– volume: 267
  start-page: 201
  year: 2013
  ident: 1237_CR6
  publication-title: Radiology
  doi: 10.1148/radiol.12112618
– volume: 33
  start-page: 570
  year: 2006
  ident: 1237_CR7
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.06.015
– volume: 50
  start-page: 164
  year: 2003
  ident: 1237_CR9
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10522
– volume: 251
  start-page: 241
  year: 2009
  ident: 1237_CR2
  publication-title: Radiology
  doi: 10.1148/radiol.2511080983
– volume: 30
  start-page: 188
  year: 2009
  ident: 1237_CR4
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A1274
– volume: 8
  start-page: 141
  year: 2009
  ident: 1237_CR12
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(08)70267-9
– volume: 254
  start-page: 200
  year: 2010
  ident: 1237_CR3
  publication-title: Radiology
  doi: 10.1148/radiol.254082000
– volume: 7
  start-page: 299
  year: 2008
  ident: 1237_CR17
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(08)70044-9
– volume: 33
  start-page: 2074
  year: 2012
  ident: 1237_CR5
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A3110
– volume: 45
  start-page: 477
  year: 2001
  ident: 1237_CR13
  publication-title: Magn Reson Med
  doi: 10.1002/1522-2594(200103)45:3<477::AID-MRM1063>3.0.CO;2-4
– volume: 55
  start-page: 1180
  year: 2006
  ident: 1237_CR14
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20873
– volume: 7
  start-page: 74
  year: 2012
  ident: 1237_CR18
  publication-title: Int J Stroke
  doi: 10.1111/j.1747-4949.2011.00730.x
– reference: 18296121 - Lancet Neurol. 2008 Apr;7(4):299-309
– reference: 19097942 - Lancet Neurol. 2009 Feb;8(2):141-50
– reference: 23493210 - J Comput Assist Tomogr. 2013 Mar-Apr;37(2):212-21
– reference: 19190251 - Radiology. 2009 Apr;251(1):241-9
– reference: 22410325 - IEEE Trans Med Imaging. 2012 Jul;31(7):1381-95
– reference: 20413735 - Stroke. 2010 Jun;41(6):1169-74
– reference: 22555577 - AJNR Am J Neuroradiol. 2012 Dec;33(11):2074-80
– reference: 18768719 - AJNR Am J Neuroradiol. 2009 Jan;30(1):188-93
– reference: 20032153 - Radiology. 2010 Jan;254(1):200-9
– reference: 19359626 - Stroke. 2009 Jun;40(6):2055-61
– reference: 22188854 - Int J Stroke. 2012 Jan;7(1):74-80
– reference: 16261573 - J Magn Reson Imaging. 2005 Dec;22(6):710-7
– reference: 12815691 - Magn Reson Med. 2003 Jul;50(1):164-74
– reference: 11546891 - Stroke. 2001 Sep;32(9):2021-8
– reference: 17066483 - Ann Neurol. 2006 Nov;60(5):508-17
– reference: 16598717 - Magn Reson Med. 2006 May;55(5):1180-5
– reference: 11241707 - Magn Reson Med. 2001 Mar;45(3):477-85
– reference: 16971140 - Neuroimage. 2006 Nov 1;33(2):570-9
– reference: 23220899 - Radiology. 2013 Apr;267(1):201-11
SSID ssj0003737
Score 2.16455
Snippet Introduction A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion...
A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed...
Introduction: A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using...
SourceID unpaywall
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1197
SubjectTerms Algorithms
Artificial Intelligence
Bayes Theorem
Blood Flow Velocity - physiology
Blood Volume - physiology
Brain
Cerebral Angiography - methods
Cerebral Arteries - diagnostic imaging
Cerebral Arteries - physiology
Cerebrovascular Circulation - physiology
Computer Simulation
Diagnostic Neuroradiology
Humans
Imaging
Medicine
Medicine & Public Health
Models, Cardiovascular
Models, Neurological
Neurology
Neuroradiology
Neurosciences
Neurosurgery
Pattern Recognition, Automated - methods
Phantoms, Imaging
Radiographic Image Enhancement - methods
Radiographic Image Interpretation, Computer-Assisted - methods
Radiology
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Tomography
Tomography, X-Ray Computed - methods
Veins & arteries
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WDNr1oaxfq9cPVNhTi8C25Mh-zMpCKXRPDfTNyPpIA6kT0piR_353jm0yurXsxWAsCVl3kn7S3f0O4Fvk-qlSWvHQa8GllYpnOhJcuzjTxrrQ1gx89z_7tyN595g8NnHcL623e2uSrFfqLtiNthfymBAcV1vF1RZ8TIjNC5V4FA-65VeohigzTjml_W5NmX9r4s_N6BXC3LCO7sJOVc716peeTjc2oOFn2GuQIxusRb0PH1x5ANv3jW38ECaDjmSTzTxDYMe0MdVCmxW9a_ZdrxyFTDIi1lhHLDI9Hc8Wk-XTM0PwyuZu4Su6PmM3D6xYMXKKH2NNOxlTbhE2f6KUw89HMBr-eLi55U0iBW4QDy25JdJTmXgT2ULGhfQ2RgVKtDXKhDalM0cY4qna2LQfOVVYJ5xPUo8Pj7IU4hh65ax0J8CEi21BIEwVgqjYskxK4TLrfWK8FD6AsB3R3DQs45TsYpp3_Mi1EHIUQk5CyFUAV12V-Zpi463CZ62Y8ma2veDxRYgsRSQrArjsPuM8IeOHLt2sqstIRb4E8VtlsKGUbLkBfFmrQNcjhDY4hiIK4LrViY0O_Lu7153avP9zX_-r7VP4FNeqTJ6FZ9BbLip3jghpWVzUM-I39r4FIA
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED9KCvt42PdWb93QYE8ram1LjuzHLKyUQcseGuiejKyPNCxNQmozsr9-d_4iW1nGXgzGJyP57qSffKffAXyI3DBVSiseei24tFLxTEeCaxdn2lgX2pqB7_xieDaRX66Sqz3oqq79QS8QRUKKE3QqmeA0uz9MEG8PYH9y8XX0raNXptLe9REiEXOEK33oMqyZQmNBSRaC4wStuPp98bmDKLeioQ_hfrVY6c0PPZ9vLTinj2HcHdtp8ky-H1dlcWx-3mVx3DGWJ_CoxZts1BjIU9hzi2dw77yNqD-H2ain5mRLzxAOMm1MtdZmQ_eafdIbRwctGdFxNOccmZ5Pl-tZeX3DEPKylVv7in66sfElKzaMUumn2NLOplSRhK2uqVDxzQuYnH6-HJ_xtvwCN4iiSm6JKlUm3kS2kHEhvY3R7BJtjTKhTWmnEoa4Fzc2HUZOFdYJ55PU48WjBQjxEgaL5cIdABMutgVBN1UIInDLMimFy6z3ifFS-ADCTi-5abnJqUTGPO9ZlWtV5qjKnFSZqwA-9k1WDTHHLuHDTtl566O3uOkRIksR_4oA3veP0bsoZKIXblnVMlJRBkK8SwZflFIEOIBXjSH1PUJAhN9QRAEcdZa11YG_d_eoN75_D-71f0m_gQdx7RCUj3gIg3JdubeIq8riXetYvwCUIRfz
  priority: 102
  providerName: Unpaywall
Title Assessment of the accuracy of a Bayesian estimation algorithm for perfusion CT by using a digital phantom
URI https://link.springer.com/article/10.1007/s00234-013-1237-7
https://www.ncbi.nlm.nih.gov/pubmed/23852431
https://www.proquest.com/docview/1433989773
https://www.proquest.com/docview/1434742082
https://www.proquest.com/docview/1443380130
http://hdl.handle.net/11343/219452
UnpaywallVersion submittedVersion
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1920
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003737
  issn: 0028-3940
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1432-1920
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0003737
  issn: 0028-3940
  databaseCode: 7X7
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-1920
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0003737
  issn: 0028-3940
  databaseCode: BENPR
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-1920
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0003737
  issn: 0028-3940
  databaseCode: 8FG
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1920
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003737
  issn: 0028-3940
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1920
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003737
  issn: 0028-3940
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED_aBPbxMPY9b13QYE8rYrZlR_bDGG5JWjYaymggfTKyJaWF1PGymJH_fneO7WWMZS8G2ZKRdCfpJ93pdwDvPTOMpFSSu1YJHuhA8lh5givjxyrXxtU1A9_FZHg-Db7MwtkBTNq7MORW2c6J9UStlzmdkX_EdV3EEaIV8bn8zilqFFlX2xAaqgmtoD_VFGOH0PeJGasH_ZPR5PJbNzcL2bBo-hGnmOCtndOtaUV9QR4ZguNsLrn8c6X6C37umE4fwv2qKNXmp1osdlan8WN41MBKlmz14AkcmOIp3LtoDOfP4DbpGDjZ0jJEfQwbU61UvqG0YidqY-g-JSPWje11RqYWc-yB9c0dQ2TLSrOyFZ2tsdMrlm0YeczPsaS-nVPgEVbeUDziu-cwHY-uTs95E2WB5wiW1lwTI2oQ2tzTWeBngdU-aleodC5zV0e0IXFd3HLnOhp6RmbaCGPDyOLDoqCFeAG9YlmYV8CE8XVGCE1mgnja4jgIhIm1tWFuA2EdcNseTfOGgpwiYSzSjjy5FkKKQkhJCKl04ENXpNzyb-zLfNSKKW2G4o_0t-I48K77jIOILCOqMMuqzhNIcjTw9-XBH0Vk6HXg5VYFuhoh7sE-FJ4Dx61O7FTg39U97tTm_417vb9xb-CBX-su-RkeQW-9qsxbxEvrbACHcibxGY3PBtBPzq6_jgbNwMC3Uz_B1HRymVz_AoGYFUg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamTWLwMPGbjAFGghcmi8R26uRhQtvY1LG1QqiT9hac2O4mdWnoGk355_jbuEuTUIQoT3uJFMWJ7Ltz7rPv_B0h7wLbi5TSivlOCyaNVCzWgWDa8lhnxvqmZuAbDHv9c_nlIrxYIz_bszCYVtn-E-sftZlmuEf-Efy6iCNAK-JT8YNh1SiMrrYlNHRTWsHs1RRjzcGOU1vdwhLuZu_kM-j7PefHR6PDPmuqDLAMwMKcGWQElaHLApNKnkpnOEg31CZTmW8iBOS-D0vOzES9wKrUWGFdGDm4OBgoboiCC9iQQsaw-Ns4OBp-_db5AqEa1k4eMaxB3sZV_ZrGlAvMABEMvIdi6k_P-BfcXQrVPiCbZV7o6lZPJkve8Pgh2WpgLN1f2N0jsmbzx-TeoAnUPyFX-x3jJ506CiiTgvDKmc4qvNf0QFcWz29SZPlYHJ-kejIGic8vrykgaVrYmStxL48ejmhaUczQH8Ob5mqMhU5ocYn1j6-fkvM7kfczsp5Pc_uCUGG5SRERqlQgL1wcSylsbJwLMyeF84jfSjTJGspzrLwxSTqy5loJCSghQSUkyiMfuleKBd_HqsY7rZqSZurfJL8N1SNvu8cwaTESo3M7Les2UmFiA1_VBj4UYWDZI88XJtD1CHAWyFAEHtltbWKpA__u7m5nNv8f3Pbqwb0hm_3R4Cw5OxmeviT3eW3HmOO4Q9bns9K-Aqw2T183E4KS73c9B38BtflOpg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhU4VLxJKWAkuFBZTWxnnRwQKi2rltKKQyvtLTh-bCtts8t2oyp_jV_HTF4sQiynXlaK1onsedifPeNvCHkbuUGilFYs9FowaaViqY4E046n2lgX2pqB7-R0cHguv4zi0Rr52d2FwbTKbk6sJ2o7NXhGvgvrukgTQCti17dpEd8Ohh9nPxhWkMJIa1dOozGRY1fdwPbt-sPRAej6HefDz2f7h6ytMMAMAIUFs8gGKmNvIptLnktvOUg21tYoE9oEwXgYwnbT2GQQOZVbJ5yPEw8_HgaJh6Ew_d9R0DVMJ1SjfrMXCtXydfKEYfXxLqIa1gSmXGDuh2Cwbiim_lwT_wK6S0Ha--RuWcx0daMnk6V1cPiAbLYAlu41FveQrLniEdk4aUP0j8nlXs_1SaeeAr6k2phyrk2Fz5p-0pXDm5sU-T2ai5NUT8Yg38XFFQUMTWdu7ks8xaP7ZzSvKObmj-FNeznGEid0doGVj6-ekPNbkfZTsl5MC_ecUOG4zRELqlwgI1yaSilcar2PjZfCByTsJJqZluwca25Msp6muVZCBkrIUAmZCsj7_pVZw_SxqvF2p6asdfrr7LeJBuRN_ze4K8ZgdOGmZd1GKkxp4KvawIcSDCkH5FljAn2PAGGBDEUUkJ3OJpY68O_u7vRm8__Bba0e3GuyAZ6XfT06PX5B7vHajDG5cZusL-alewkgbZG_qr2Bku-37X6_AIGWTEA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED9KCvt42PdWb93QYE8ram1LjuzHLKyUQcseGuiejKyPNCxNQmozsr9-d_4iW1nGXgzGJyP57qSffKffAXyI3DBVSiseei24tFLxTEeCaxdn2lgX2pqB7_xieDaRX66Sqz3oqq79QS8QRUKKE3QqmeA0uz9MEG8PYH9y8XX0raNXptLe9REiEXOEK33oMqyZQmNBSRaC4wStuPp98bmDKLeioQ_hfrVY6c0PPZ9vLTinj2HcHdtp8ky-H1dlcWx-3mVx3DGWJ_CoxZts1BjIU9hzi2dw77yNqD-H2ain5mRLzxAOMm1MtdZmQ_eafdIbRwctGdFxNOccmZ5Pl-tZeX3DEPKylVv7in66sfElKzaMUumn2NLOplSRhK2uqVDxzQuYnH6-HJ_xtvwCN4iiSm6JKlUm3kS2kHEhvY3R7BJtjTKhTWmnEoa4Fzc2HUZOFdYJ55PU48WjBQjxEgaL5cIdABMutgVBN1UIInDLMimFy6z3ifFS-ADCTi-5abnJqUTGPO9ZlWtV5qjKnFSZqwA-9k1WDTHHLuHDTtl566O3uOkRIksR_4oA3veP0bsoZKIXblnVMlJRBkK8SwZflFIEOIBXjSH1PUJAhN9QRAEcdZa11YG_d_eoN75_D-71f0m_gQdx7RCUj3gIg3JdubeIq8riXetYvwCUIRfz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+accuracy+of+a+Bayesian+estimation+algorithm+for+perfusion+CT+by+using+a+digital+phantom&rft.jtitle=Neuroradiology&rft.au=Sasaki%2C+Makoto&rft.au=Kudo%2C+Kohsuke&rft.au=Boutelier%2C+Timoth%C3%A9&rft.au=Pautot%2C+Fabrice&rft.date=2013-10-01&rft.issn=0028-3940&rft.eissn=1432-1920&rft.volume=55&rft.issue=10&rft.spage=1197&rft.epage=1203&rft_id=info:doi/10.1007%2Fs00234-013-1237-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00234_013_1237_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3940&client=summon