Assessment of the accuracy of a Bayesian estimation algorithm for perfusion CT by using a digital phantom
Introduction A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated...
Saved in:
| Published in | Neuroradiology Vol. 55; no. 10; pp. 1197 - 1203 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2013
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0028-3940 1432-1920 1432-1920 |
| DOI | 10.1007/s00234-013-1237-7 |
Cover
| Abstract | Introduction
A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom.
Methods
The digital phantom data, in which concentration–time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined.
Results
CBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values (
r
= 0.91–0.92, 0.97–0.99, and 0.91–0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC) = 0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC = 0.81–0.82).
Conclusions
Quantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms. |
|---|---|
| AbstractList | A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom.INTRODUCTIONA new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom.The digital phantom data, in which concentration-time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined.METHODSThe digital phantom data, in which concentration-time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined.CBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values (r = 0.91-0.92, 0.97-0.99, and 0.91-0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC) = 0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC = 0.81-0.82).RESULTSCBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values (r = 0.91-0.92, 0.97-0.99, and 0.91-0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC) = 0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC = 0.81-0.82).Quantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms.CONCLUSIONSQuantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms. A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom. The digital phantom data, in which concentration-time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined. CBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values (r = 0.91-0.92, 0.97-0.99, and 0.91-0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC) = 0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC = 0.81-0.82). Quantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms. A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom. The digital phantom data, in which concentration-time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined. CBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values (r=0.91-0.92, 0.97-0.99, and 0.91-0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC)=0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC=0.81-0.82). Quantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms.[PUBLICATION ABSTRACT] Introduction A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom. Methods The digital phantom data, in which concentration–time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined. Results CBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values ( r = 0.91–0.92, 0.97–0.99, and 0.91–0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC) = 0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC = 0.81–0.82). Conclusions Quantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms. Introduction: A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed tomography. However, it remains unclear whether quantitative values generated by this method are more accurate than those generated using optimized deconvolution algorithms of other software packages. Hence, we compared the accuracy of the Bayesian and deconvolution algorithms by using a digital phantom. Methods: The digital phantom data, in which concentration-time curves reflecting various known values for cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and tracer delays were embedded, were analyzed using the Bayesian estimation algorithm as well as delay-insensitive singular value decomposition (SVD) algorithms of two software packages that were the best benchmarks in a previous cross-validation study. Correlation and agreement of quantitative values of these algorithms with true values were examined. Results: CBF, CBV, and MTT values estimated by all the algorithms showed strong correlations with the true values (r=0.91-0.92, 0.97-0.99, and 0.91-0.96, respectively). In addition, the values generated by the Bayesian estimation algorithm for all of these parameters showed good agreement with the true values [intraclass correlation coefficient (ICC)=0.90, 0.99, and 0.96, respectively], while MTT values from the SVD algorithms were suboptimal (ICC=0.81-0.82). Conclusions: Quantitative analysis using a digital phantom revealed that the Bayesian estimation algorithm yielded CBF, CBV, and MTT maps strongly correlated with the true values and MTT maps with better agreement than those produced by delay-insensitive SVD algorithms. |
| Author | Sasaki, Makoto Kudo, Kohsuke Christensen, Soren Boutelier, Timothé Higuchi, Satomi Ito, Kenji Goodwin, Jonathan Pautot, Fabrice Uwano, Ikuko Yamashita, Fumio |
| Author_xml | – sequence: 1 givenname: Makoto surname: Sasaki fullname: Sasaki, Makoto email: masasaki@iwate-med.ac.jp organization: Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University – sequence: 2 givenname: Kohsuke surname: Kudo fullname: Kudo, Kohsuke organization: Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University – sequence: 3 givenname: Timothé surname: Boutelier fullname: Boutelier, Timothé organization: Department of Research & Innovation, Olea Medical – sequence: 4 givenname: Fabrice surname: Pautot fullname: Pautot, Fabrice organization: Department of Research & Innovation, Olea Medical – sequence: 5 givenname: Soren surname: Christensen fullname: Christensen, Soren organization: Department of Neurology and Radiology, Royal Melbourne Hospital, University of Melbourne – sequence: 6 givenname: Ikuko surname: Uwano fullname: Uwano, Ikuko organization: Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University – sequence: 7 givenname: Jonathan surname: Goodwin fullname: Goodwin, Jonathan organization: Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University – sequence: 8 givenname: Satomi surname: Higuchi fullname: Higuchi, Satomi organization: Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University – sequence: 9 givenname: Kenji surname: Ito fullname: Ito, Kenji organization: Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University – sequence: 10 givenname: Fumio surname: Yamashita fullname: Yamashita, Fumio organization: Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23852431$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUuLFDEUhYOMOD2jP8CNBNy4Kc2rOunl2PiCATfjOqSSm-4MVUmZVCH17ydFtyIDymzy_M7l3HOv0EVMERB6Tcl7Soj8UAhhXDSE8oYyLhv5DG2o4KyhO0Yu0KZ-q4bvBLlEV6XcE0K45PIFumRctUxwukHhphQoZYA44eTxdARsrJ2zsct6N_ijWaAEEzGUKQxmCili0x9SDtNxwD5lPEL2c1nf93e4W3A9x0NVunAIk-nxeDRxSsNL9NybvsCr836Nfnz-dLf_2tx-__Jtf3Pb2JaKqXGEV2utt9R1gnXCOwbGtcZZaYlTrJVbQqDj1qktBdk54OBb5eviYas4v0bsVHeOo1l-mb7XY67O86Ip0Wtu-pSbrrnpNTctq-jdSTTm9HOureohFAt9byKkuWgqBOeqCsgTUC6kYESxir59hN6nOcfa_UrxndpJuRp-c6bmbgD3x-3vIVVAngCbUykZvLY12HUSUzah_29b9JHyKVGc8yuVjQfIf5n-p-gB80PEbw |
| CitedBy_id | crossref_primary_10_1007_s00330_015_4135_z crossref_primary_10_6009_jjrt_2023_1301 crossref_primary_10_1007_s00062_022_01140_7 crossref_primary_10_3390_jcm9061800 crossref_primary_10_1016_j_cmpb_2017_09_016 crossref_primary_10_1007_s00234_022_03013_9 crossref_primary_10_6009_jjrt_2024_1503 crossref_primary_10_3174_ajnr_A5454 crossref_primary_10_3174_ajnr_A6248 crossref_primary_10_1007_s00234_013_1310_2 crossref_primary_10_2463_mrms_2013_0085 crossref_primary_10_1007_s00234_015_1500_1 crossref_primary_10_3174_ajnr_A4184 crossref_primary_10_1097_RCT_0000000000001342 crossref_primary_10_1097_RLI_0000000000000477 crossref_primary_10_5797_jnet_oa_2022_0026 crossref_primary_10_1007_s11547_020_01316_6 crossref_primary_10_2463_mrms_mp_2015_0167 crossref_primary_10_6009_jjrt_2017_JSRT_73_11_1156 crossref_primary_10_1007_s11060_015_1755_8 crossref_primary_10_1259_bjr_20190543 crossref_primary_10_1007_s10072_023_06627_w crossref_primary_10_1007_s00256_020_03526_5 crossref_primary_10_3174_ajnr_A6170 crossref_primary_10_1111_jon_13090 crossref_primary_10_1161_STROKEAHA_118_021952 crossref_primary_10_1016_j_cdtm_2017_02_002 |
| Cites_doi | 10.1016/S1474-4422(08)70044-9 10.1016/j.neuroimage.2006.06.015 10.1148/radiol.2511080983 10.1002/1522-2594(200103)45:3<477::AID-MRM1063>3.0.CO;2-4 10.1002/mrm.20873 10.1111/j.1747-4949.2011.00730.x 10.1148/radiol.12112618 10.1002/ana.20976 10.1109/TMI.2012.2189890 10.1002/mrm.10522 10.1148/radiol.254082000 10.1016/S1474-4422(08)70267-9 10.1161/hs0901.095680 10.1161/STROKEAHA.108.546069 10.3174/ajnr.A3110 10.1161/STROKEAHA.110.580670 10.1002/jmri.20460 10.3174/ajnr.A1274 10.1097/RCT.0b013e31828004bb |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2013 |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2013 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. KB0 LK8 M0S M1P M2O M7P MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 ADTOC UNPAY |
| DOI | 10.1007/s00234-013-1237-7 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic Toxicology Abstracts ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep Neurosciences Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1432-1920 |
| EndPage | 1203 |
| ExternalDocumentID | oai:jupiter.its.unimelb.edu.au:11343/219452 3076736801 23852431 10_1007_s00234_013_1237_7 |
| Genre | Comparative Study Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .55 .86 .GJ .VR 04C 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3O- 3V. 4.4 406 408 409 40D 40E 53G 5QI 5RE 5VS 67Z 6NX 6PF 78A 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHVE ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J5H JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M2O M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW X7M YLTOR Z45 Z7U Z7X Z82 Z87 Z8O Z8V Z91 ZGI ZMTXR ZOVNA ZXP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7QO 7TK 7U7 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c514t-d035245fc1db42b4fd2ead5adc7c0d8257600eb3cd861e7bde3ef58fef5fe6833 |
| IEDL.DBID | BENPR |
| ISSN | 0028-3940 1432-1920 |
| IngestDate | Sun Oct 26 04:15:28 EDT 2025 Wed Oct 01 14:31:35 EDT 2025 Thu Oct 02 11:48:54 EDT 2025 Tue Oct 07 06:20:34 EDT 2025 Wed Feb 19 01:52:04 EST 2025 Thu Apr 24 23:13:29 EDT 2025 Wed Oct 01 03:10:04 EDT 2025 Fri Feb 21 02:33:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Mean transit time Perfusion computed tomography Cerebral blood flow Bayesian estimation algorithm Digital phantom |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-d035245fc1db42b4fd2ead5adc7c0d8257600eb3cd861e7bde3ef58fef5fe6833 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11343/219452 |
| PMID | 23852431 |
| PQID | 1433989773 |
| PQPubID | 49036 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_1007_s00234_013_1237_7 proquest_miscellaneous_1443380130 proquest_miscellaneous_1434742082 proquest_journals_1433989773 pubmed_primary_23852431 crossref_citationtrail_10_1007_s00234_013_1237_7 crossref_primary_10_1007_s00234_013_1237_7 springer_journals_10_1007_s00234_013_1237_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-10-01 |
| PublicationDateYYYYMMDD | 2013-10-01 |
| PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationSubtitle | A Journal Devoted to Neuroimaging and Interventional Neuroradiology |
| PublicationTitle | Neuroradiology |
| PublicationTitleAbbrev | Neuroradiology |
| PublicationTitleAlternate | Neuroradiology |
| PublicationYear | 2013 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Lev, Segal, Farkas, Hossain, Putman, Hunter, Budzik, Harris, Buonanno, Ezzeddine, Chang, Koroshetz, Gonzalez, Schwamm (CR1) 2001; 32 Sasaki, Kudo, Ogasawara, Fujiwara (CR4) 2009; 30 Christensen, Mouridsen, Wu, Hjort, Karstoft, Thomalla, Rother, Fiehler, Kucinski, Ostergaard (CR15) 2009; 40 Wu, Ostergaard, Weisskoff, Benner, Rosen, Sorensen (CR9) 2003; 50 Ma, Parsons, Christensen, Campbell, Churilov, Connelly, Yan, Bladin, Phan, Barber, Read, Hankey, Markus, Wijeratne, Grimley, Mahant, Kleinig, Sturm, Lee, Blacker, Gerraty, Krause, Desmond, McBride, Carey, Howells, Hsu, Davis, Donnan (CR18) 2012; 7 Albers, Thijs, Wechsler, Kemp, Schlaug, Skalabrin, Bammer, Kakuda, Lansberg, Shuaib, Coplin, Hamilton, Moseley, Marks (CR16) 2006; 60 van Osch, Vonken, Bakker, Viergever (CR13) 2001; 45 Boutelier, Kudo, Pautot, Sasaki (CR8) 2012; 31 Hanson, Roach, Day, Peters, Bradley, Ghosh, Patton, McMurray, Orrison (CR11) 2013; 37 Davis, Donnan, Parsons, Levi, Butcher, Peeters, Barber, Bladin, De Silva, Byrnes, Chalk, Fink, Kimber, Schultz, Hand, Frayne, Hankey, Muir, Gerraty, Tress, Desmond (CR17) 2008; 7 Calamante, Christensen, Desmond, Ostergaard, Davis, Connelly (CR19) 2010; 41 Calamante, Willats, Gadian, Connelly (CR14) 2006; 55 Kudo, Sasaki, Yamada, Momoshima, Utsunomiya, Shirato, Ogasawara (CR3) 2010; 254 Ostergaard (CR10) 2005; 22 Hacke, Furlan, Al-Rawi, Davalos, Fiebach, Gruber, Kaste, Lipka, Pedraza, Ringleb, Rowley, Schneider, Schwamm, Leal, Sohngen, Teal, Wilhelm-Ogunbiyi, Wintermark, Warach (CR12) 2009; 8 Fahmi, Marquering, Streekstra, Beenen, Velthuis, Vanbavel, Majoie (CR5) 2012; 33 Mouridsen, Friston, Hjort, Gyldensted, Ostergaard, Kiebel (CR7) 2006; 33 Kudo, Christensen, Sasaki, Ostergaard, Shirato, Ogasawara, Wintermark, Warach, Warach (CR6) 2013; 267 Kudo, Sasaki, Ogasawara, Terae, Ehara, Shirato (CR2) 2009; 251 W Hacke (1237_CR12) 2009; 8 T Boutelier (1237_CR8) 2012; 31 MJ Osch van (1237_CR13) 2001; 45 GW Albers (1237_CR16) 2006; 60 F Calamante (1237_CR19) 2010; 41 F Calamante (1237_CR14) 2006; 55 S Christensen (1237_CR15) 2009; 40 K Kudo (1237_CR2) 2009; 251 K Kudo (1237_CR3) 2010; 254 K Kudo (1237_CR6) 2013; 267 K Mouridsen (1237_CR7) 2006; 33 H Ma (1237_CR18) 2012; 7 F Fahmi (1237_CR5) 2012; 33 O Wu (1237_CR9) 2003; 50 M Sasaki (1237_CR4) 2009; 30 SM Davis (1237_CR17) 2008; 7 EH Hanson (1237_CR11) 2013; 37 MH Lev (1237_CR1) 2001; 32 L Ostergaard (1237_CR10) 2005; 22 19097942 - Lancet Neurol. 2009 Feb;8(2):141-50 22410325 - IEEE Trans Med Imaging. 2012 Jul;31(7):1381-95 22188854 - Int J Stroke. 2012 Jan;7(1):74-80 17066483 - Ann Neurol. 2006 Nov;60(5):508-17 19190251 - Radiology. 2009 Apr;251(1):241-9 16971140 - Neuroimage. 2006 Nov 1;33(2):570-9 16261573 - J Magn Reson Imaging. 2005 Dec;22(6):710-7 20032153 - Radiology. 2010 Jan;254(1):200-9 16598717 - Magn Reson Med. 2006 May;55(5):1180-5 22555577 - AJNR Am J Neuroradiol. 2012 Dec;33(11):2074-80 23220899 - Radiology. 2013 Apr;267(1):201-11 11241707 - Magn Reson Med. 2001 Mar;45(3):477-85 18768719 - AJNR Am J Neuroradiol. 2009 Jan;30(1):188-93 11546891 - Stroke. 2001 Sep;32(9):2021-8 20413735 - Stroke. 2010 Jun;41(6):1169-74 12815691 - Magn Reson Med. 2003 Jul;50(1):164-74 23493210 - J Comput Assist Tomogr. 2013 Mar-Apr;37(2):212-21 18296121 - Lancet Neurol. 2008 Apr;7(4):299-309 19359626 - Stroke. 2009 Jun;40(6):2055-61 |
| References_xml | – volume: 7 start-page: 299 year: 2008 end-page: 309 ident: CR17 article-title: Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial publication-title: Lancet Neurol doi: 10.1016/S1474-4422(08)70044-9 – volume: 33 start-page: 570 year: 2006 end-page: 579 ident: CR7 article-title: Bayesian estimation of cerebral perfusion using a physiological model of microvasculature publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.06.015 – volume: 251 start-page: 241 year: 2009 end-page: 249 ident: CR2 article-title: Difference in tracer delay-induced effect among deconvolution algorithms in CT perfusion analysis: quantitative evaluation with digital phantoms publication-title: Radiology doi: 10.1148/radiol.2511080983 – volume: 45 start-page: 477 year: 2001 end-page: 485 ident: CR13 article-title: Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI publication-title: Magn Reson Med doi: 10.1002/1522-2594(200103)45:3<477::AID-MRM1063>3.0.CO;2-4 – volume: 55 start-page: 1180 year: 2006 end-page: 1185 ident: CR14 article-title: Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke publication-title: Magn Reson Med doi: 10.1002/mrm.20873 – volume: 7 start-page: 74 year: 2012 end-page: 80 ident: CR18 article-title: A multicentre, randomized, double-blinded, placebo-controlled Phase III study to investigate EXtending the time for Thrombolysis in Emergency Neurological Deficits (EXTEND) publication-title: Int J Stroke doi: 10.1111/j.1747-4949.2011.00730.x – volume: 267 start-page: 201 year: 2013 end-page: 211 ident: CR6 article-title: Accuracy and reliability assessment of CT and MR perfusion analysis software using a digital phantom publication-title: Radiology doi: 10.1148/radiol.12112618 – volume: 60 start-page: 508 year: 2006 end-page: 517 ident: CR16 article-title: Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study publication-title: Ann Neurol doi: 10.1002/ana.20976 – volume: 31 start-page: 1381 year: 2012 end-page: 1395 ident: CR8 article-title: Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2189890 – volume: 50 start-page: 164 year: 2003 end-page: 174 ident: CR9 article-title: Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix publication-title: Magn Reson Med doi: 10.1002/mrm.10522 – volume: 254 start-page: 200 year: 2010 end-page: 209 ident: CR3 article-title: Differences in CT perfusion maps generated by different commercial software: quantitative analysis by using identical source data of acute stroke patients publication-title: Radiology doi: 10.1148/radiol.254082000 – volume: 8 start-page: 141 year: 2009 end-page: 150 ident: CR12 article-title: Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study publication-title: Lancet Neurol doi: 10.1016/S1474-4422(08)70267-9 – volume: 32 start-page: 2021 year: 2001 end-page: 2028 ident: CR1 article-title: Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome publication-title: Stroke doi: 10.1161/hs0901.095680 – volume: 40 start-page: 2055 year: 2009 end-page: 2061 ident: CR15 article-title: Comparison of 10 perfusion MRI parameters in 97 sub-6-hour stroke patients using voxel-based receiver operating characteristics analysis publication-title: Stroke doi: 10.1161/STROKEAHA.108.546069 – volume: 33 start-page: 2074 year: 2012 end-page: 2080 ident: CR5 article-title: Differences in CT perfusion summary maps for patients with acute ischemic stroke generated by 2 software packages publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A3110 – volume: 41 start-page: 1169 year: 2010 end-page: 1174 ident: CR19 article-title: The physiological significance of the time-to-maximum (Tmax) parameter in perfusion MRI publication-title: Stroke doi: 10.1161/STROKEAHA.110.580670 – volume: 22 start-page: 710 year: 2005 end-page: 717 ident: CR10 article-title: Principles of cerebral perfusion imaging by bolus tracking publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20460 – volume: 30 start-page: 188 year: 2009 end-page: 193 ident: CR4 article-title: Tracer delay-insensitive algorithm can improve reliability of CT perfusion imaging for cerebrovascular steno-occlusive disease: comparison with quantitative single-photon emission CT publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A1274 – volume: 37 start-page: 212 year: 2013 end-page: 221 ident: CR11 article-title: Assessment of the tracer delay effect in whole-brain computed tomography perfusion: results in patients without known neuroanatomic abnormalities publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0b013e31828004bb – volume: 32 start-page: 2021 year: 2001 ident: 1237_CR1 publication-title: Stroke doi: 10.1161/hs0901.095680 – volume: 22 start-page: 710 year: 2005 ident: 1237_CR10 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20460 – volume: 40 start-page: 2055 year: 2009 ident: 1237_CR15 publication-title: Stroke doi: 10.1161/STROKEAHA.108.546069 – volume: 41 start-page: 1169 year: 2010 ident: 1237_CR19 publication-title: Stroke doi: 10.1161/STROKEAHA.110.580670 – volume: 60 start-page: 508 year: 2006 ident: 1237_CR16 publication-title: Ann Neurol doi: 10.1002/ana.20976 – volume: 37 start-page: 212 year: 2013 ident: 1237_CR11 publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0b013e31828004bb – volume: 31 start-page: 1381 year: 2012 ident: 1237_CR8 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2189890 – volume: 267 start-page: 201 year: 2013 ident: 1237_CR6 publication-title: Radiology doi: 10.1148/radiol.12112618 – volume: 33 start-page: 570 year: 2006 ident: 1237_CR7 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.06.015 – volume: 50 start-page: 164 year: 2003 ident: 1237_CR9 publication-title: Magn Reson Med doi: 10.1002/mrm.10522 – volume: 251 start-page: 241 year: 2009 ident: 1237_CR2 publication-title: Radiology doi: 10.1148/radiol.2511080983 – volume: 30 start-page: 188 year: 2009 ident: 1237_CR4 publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A1274 – volume: 8 start-page: 141 year: 2009 ident: 1237_CR12 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(08)70267-9 – volume: 254 start-page: 200 year: 2010 ident: 1237_CR3 publication-title: Radiology doi: 10.1148/radiol.254082000 – volume: 7 start-page: 299 year: 2008 ident: 1237_CR17 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(08)70044-9 – volume: 33 start-page: 2074 year: 2012 ident: 1237_CR5 publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A3110 – volume: 45 start-page: 477 year: 2001 ident: 1237_CR13 publication-title: Magn Reson Med doi: 10.1002/1522-2594(200103)45:3<477::AID-MRM1063>3.0.CO;2-4 – volume: 55 start-page: 1180 year: 2006 ident: 1237_CR14 publication-title: Magn Reson Med doi: 10.1002/mrm.20873 – volume: 7 start-page: 74 year: 2012 ident: 1237_CR18 publication-title: Int J Stroke doi: 10.1111/j.1747-4949.2011.00730.x – reference: 18296121 - Lancet Neurol. 2008 Apr;7(4):299-309 – reference: 19097942 - Lancet Neurol. 2009 Feb;8(2):141-50 – reference: 23493210 - J Comput Assist Tomogr. 2013 Mar-Apr;37(2):212-21 – reference: 19190251 - Radiology. 2009 Apr;251(1):241-9 – reference: 22410325 - IEEE Trans Med Imaging. 2012 Jul;31(7):1381-95 – reference: 20413735 - Stroke. 2010 Jun;41(6):1169-74 – reference: 22555577 - AJNR Am J Neuroradiol. 2012 Dec;33(11):2074-80 – reference: 18768719 - AJNR Am J Neuroradiol. 2009 Jan;30(1):188-93 – reference: 20032153 - Radiology. 2010 Jan;254(1):200-9 – reference: 19359626 - Stroke. 2009 Jun;40(6):2055-61 – reference: 22188854 - Int J Stroke. 2012 Jan;7(1):74-80 – reference: 16261573 - J Magn Reson Imaging. 2005 Dec;22(6):710-7 – reference: 12815691 - Magn Reson Med. 2003 Jul;50(1):164-74 – reference: 11546891 - Stroke. 2001 Sep;32(9):2021-8 – reference: 17066483 - Ann Neurol. 2006 Nov;60(5):508-17 – reference: 16598717 - Magn Reson Med. 2006 May;55(5):1180-5 – reference: 11241707 - Magn Reson Med. 2001 Mar;45(3):477-85 – reference: 16971140 - Neuroimage. 2006 Nov 1;33(2):570-9 – reference: 23220899 - Radiology. 2013 Apr;267(1):201-11 |
| SSID | ssj0003737 |
| Score | 2.16455 |
| Snippet | Introduction
A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion... A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using perfusion computed... Introduction: A new deconvolution algorithm, the Bayesian estimation algorithm, was reported to improve the precision of parametric maps created using... |
| SourceID | unpaywall proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1197 |
| SubjectTerms | Algorithms Artificial Intelligence Bayes Theorem Blood Flow Velocity - physiology Blood Volume - physiology Brain Cerebral Angiography - methods Cerebral Arteries - diagnostic imaging Cerebral Arteries - physiology Cerebrovascular Circulation - physiology Computer Simulation Diagnostic Neuroradiology Humans Imaging Medicine Medicine & Public Health Models, Cardiovascular Models, Neurological Neurology Neuroradiology Neurosciences Neurosurgery Pattern Recognition, Automated - methods Phantoms, Imaging Radiographic Image Enhancement - methods Radiographic Image Interpretation, Computer-Assisted - methods Radiology Reproducibility of Results Sensitivity and Specificity Signal Processing, Computer-Assisted Tomography Tomography, X-Ray Computed - methods Veins & arteries |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WDNr1oaxfq9cPVNhTi8C25Mh-zMpCKXRPDfTNyPpIA6kT0piR_353jm0yurXsxWAsCVl3kn7S3f0O4Fvk-qlSWvHQa8GllYpnOhJcuzjTxrrQ1gx89z_7tyN595g8NnHcL623e2uSrFfqLtiNthfymBAcV1vF1RZ8TIjNC5V4FA-65VeohigzTjml_W5NmX9r4s_N6BXC3LCO7sJOVc716peeTjc2oOFn2GuQIxusRb0PH1x5ANv3jW38ECaDjmSTzTxDYMe0MdVCmxW9a_ZdrxyFTDIi1lhHLDI9Hc8Wk-XTM0PwyuZu4Su6PmM3D6xYMXKKH2NNOxlTbhE2f6KUw89HMBr-eLi55U0iBW4QDy25JdJTmXgT2ULGhfQ2RgVKtDXKhDalM0cY4qna2LQfOVVYJ5xPUo8Pj7IU4hh65ax0J8CEi21BIEwVgqjYskxK4TLrfWK8FD6AsB3R3DQs45TsYpp3_Mi1EHIUQk5CyFUAV12V-Zpi463CZ62Y8ma2veDxRYgsRSQrArjsPuM8IeOHLt2sqstIRb4E8VtlsKGUbLkBfFmrQNcjhDY4hiIK4LrViY0O_Lu7153avP9zX_-r7VP4FNeqTJ6FZ9BbLip3jghpWVzUM-I39r4FIA priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED9KCvt42PdWb93QYE8ram1LjuzHLKyUQcseGuiejKyPNCxNQmozsr9-d_4iW1nGXgzGJyP57qSffKffAXyI3DBVSiseei24tFLxTEeCaxdn2lgX2pqB7_xieDaRX66Sqz3oqq79QS8QRUKKE3QqmeA0uz9MEG8PYH9y8XX0raNXptLe9REiEXOEK33oMqyZQmNBSRaC4wStuPp98bmDKLeioQ_hfrVY6c0PPZ9vLTinj2HcHdtp8ky-H1dlcWx-3mVx3DGWJ_CoxZts1BjIU9hzi2dw77yNqD-H2ain5mRLzxAOMm1MtdZmQ_eafdIbRwctGdFxNOccmZ5Pl-tZeX3DEPKylVv7in66sfElKzaMUumn2NLOplSRhK2uqVDxzQuYnH6-HJ_xtvwCN4iiSm6JKlUm3kS2kHEhvY3R7BJtjTKhTWmnEoa4Fzc2HUZOFdYJ55PU48WjBQjxEgaL5cIdABMutgVBN1UIInDLMimFy6z3ifFS-ADCTi-5abnJqUTGPO9ZlWtV5qjKnFSZqwA-9k1WDTHHLuHDTtl566O3uOkRIksR_4oA3veP0bsoZKIXblnVMlJRBkK8SwZflFIEOIBXjSH1PUJAhN9QRAEcdZa11YG_d_eoN75_D-71f0m_gQdx7RCUj3gIg3JdubeIq8riXetYvwCUIRfz priority: 102 providerName: Unpaywall |
| Title | Assessment of the accuracy of a Bayesian estimation algorithm for perfusion CT by using a digital phantom |
| URI | https://link.springer.com/article/10.1007/s00234-013-1237-7 https://www.ncbi.nlm.nih.gov/pubmed/23852431 https://www.proquest.com/docview/1433989773 https://www.proquest.com/docview/1434742082 https://www.proquest.com/docview/1443380130 http://hdl.handle.net/11343/219452 |
| UnpaywallVersion | submittedVersion |
| Volume | 55 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1920 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003737 issn: 0028-3940 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1432-1920 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0003737 issn: 0028-3940 databaseCode: 7X7 dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-1920 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0003737 issn: 0028-3940 databaseCode: BENPR dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-1920 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0003737 issn: 0028-3940 databaseCode: 8FG dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1920 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003737 issn: 0028-3940 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1920 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003737 issn: 0028-3940 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED_aBPbxMPY9b13QYE8rYrZlR_bDGG5JWjYaymggfTKyJaWF1PGymJH_fneO7WWMZS8G2ZKRdCfpJ93pdwDvPTOMpFSSu1YJHuhA8lh5givjxyrXxtU1A9_FZHg-Db7MwtkBTNq7MORW2c6J9UStlzmdkX_EdV3EEaIV8bn8zilqFFlX2xAaqgmtoD_VFGOH0PeJGasH_ZPR5PJbNzcL2bBo-hGnmOCtndOtaUV9QR4ZguNsLrn8c6X6C37umE4fwv2qKNXmp1osdlan8WN41MBKlmz14AkcmOIp3LtoDOfP4DbpGDjZ0jJEfQwbU61UvqG0YidqY-g-JSPWje11RqYWc-yB9c0dQ2TLSrOyFZ2tsdMrlm0YeczPsaS-nVPgEVbeUDziu-cwHY-uTs95E2WB5wiW1lwTI2oQ2tzTWeBngdU-aleodC5zV0e0IXFd3HLnOhp6RmbaCGPDyOLDoqCFeAG9YlmYV8CE8XVGCE1mgnja4jgIhIm1tWFuA2EdcNseTfOGgpwiYSzSjjy5FkKKQkhJCKl04ENXpNzyb-zLfNSKKW2G4o_0t-I48K77jIOILCOqMMuqzhNIcjTw9-XBH0Vk6HXg5VYFuhoh7sE-FJ4Dx61O7FTg39U97tTm_417vb9xb-CBX-su-RkeQW-9qsxbxEvrbACHcibxGY3PBtBPzq6_jgbNwMC3Uz_B1HRymVz_AoGYFUg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamTWLwMPGbjAFGghcmi8R26uRhQtvY1LG1QqiT9hac2O4mdWnoGk355_jbuEuTUIQoT3uJFMWJ7Ltz7rPv_B0h7wLbi5TSivlOCyaNVCzWgWDa8lhnxvqmZuAbDHv9c_nlIrxYIz_bszCYVtn-E-sftZlmuEf-Efy6iCNAK-JT8YNh1SiMrrYlNHRTWsHs1RRjzcGOU1vdwhLuZu_kM-j7PefHR6PDPmuqDLAMwMKcGWQElaHLApNKnkpnOEg31CZTmW8iBOS-D0vOzES9wKrUWGFdGDm4OBgoboiCC9iQQsaw-Ns4OBp-_db5AqEa1k4eMaxB3sZV_ZrGlAvMABEMvIdi6k_P-BfcXQrVPiCbZV7o6lZPJkve8Pgh2WpgLN1f2N0jsmbzx-TeoAnUPyFX-x3jJ506CiiTgvDKmc4qvNf0QFcWz29SZPlYHJ-kejIGic8vrykgaVrYmStxL48ejmhaUczQH8Ob5mqMhU5ocYn1j6-fkvM7kfczsp5Pc_uCUGG5SRERqlQgL1wcSylsbJwLMyeF84jfSjTJGspzrLwxSTqy5loJCSghQSUkyiMfuleKBd_HqsY7rZqSZurfJL8N1SNvu8cwaTESo3M7Les2UmFiA1_VBj4UYWDZI88XJtD1CHAWyFAEHtltbWKpA__u7m5nNv8f3Pbqwb0hm_3R4Cw5OxmeviT3eW3HmOO4Q9bns9K-Aqw2T183E4KS73c9B38BtflOpg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhU4VLxJKWAkuFBZTWxnnRwQKi2rltKKQyvtLTh-bCtts8t2oyp_jV_HTF4sQiynXlaK1onsedifPeNvCHkbuUGilFYs9FowaaViqY4E046n2lgX2pqB7-R0cHguv4zi0Rr52d2FwbTKbk6sJ2o7NXhGvgvrukgTQCti17dpEd8Ohh9nPxhWkMJIa1dOozGRY1fdwPbt-sPRAej6HefDz2f7h6ytMMAMAIUFs8gGKmNvIptLnktvOUg21tYoE9oEwXgYwnbT2GQQOZVbJ5yPEw8_HgaJh6Ew_d9R0DVMJ1SjfrMXCtXydfKEYfXxLqIa1gSmXGDuh2Cwbiim_lwT_wK6S0Ha--RuWcx0daMnk6V1cPiAbLYAlu41FveQrLniEdk4aUP0j8nlXs_1SaeeAr6k2phyrk2Fz5p-0pXDm5sU-T2ai5NUT8Yg38XFFQUMTWdu7ks8xaP7ZzSvKObmj-FNeznGEid0doGVj6-ekPNbkfZTsl5MC_ecUOG4zRELqlwgI1yaSilcar2PjZfCByTsJJqZluwca25Msp6muVZCBkrIUAmZCsj7_pVZw_SxqvF2p6asdfrr7LeJBuRN_ze4K8ZgdOGmZd1GKkxp4KvawIcSDCkH5FljAn2PAGGBDEUUkJ3OJpY68O_u7vRm8__Bba0e3GuyAZ6XfT06PX5B7vHajDG5cZusL-alewkgbZG_qr2Bku-37X6_AIGWTEA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED9KCvt42PdWb93QYE8ram1LjuzHLKyUQcseGuiejKyPNCxNQmozsr9-d_4iW1nGXgzGJyP57qSffKffAXyI3DBVSiseei24tFLxTEeCaxdn2lgX2pqB7_xieDaRX66Sqz3oqq79QS8QRUKKE3QqmeA0uz9MEG8PYH9y8XX0raNXptLe9REiEXOEK33oMqyZQmNBSRaC4wStuPp98bmDKLeioQ_hfrVY6c0PPZ9vLTinj2HcHdtp8ky-H1dlcWx-3mVx3DGWJ_CoxZts1BjIU9hzi2dw77yNqD-H2ain5mRLzxAOMm1MtdZmQ_eafdIbRwctGdFxNOccmZ5Pl-tZeX3DEPKylVv7in66sfElKzaMUumn2NLOplSRhK2uqVDxzQuYnH6-HJ_xtvwCN4iiSm6JKlUm3kS2kHEhvY3R7BJtjTKhTWmnEoa4Fzc2HUZOFdYJ55PU48WjBQjxEgaL5cIdABMutgVBN1UIInDLMimFy6z3ifFS-ADCTi-5abnJqUTGPO9ZlWtV5qjKnFSZqwA-9k1WDTHHLuHDTtl566O3uOkRIksR_4oA3veP0bsoZKIXblnVMlJRBkK8SwZflFIEOIBXjSH1PUJAhN9QRAEcdZa11YG_d_eoN75_D-71f0m_gQdx7RCUj3gIg3JdubeIq8riXetYvwCUIRfz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+the+accuracy+of+a+Bayesian+estimation+algorithm+for+perfusion+CT+by+using+a+digital+phantom&rft.jtitle=Neuroradiology&rft.au=Sasaki%2C+Makoto&rft.au=Kudo%2C+Kohsuke&rft.au=Boutelier%2C+Timoth%C3%A9&rft.au=Pautot%2C+Fabrice&rft.date=2013-10-01&rft.issn=0028-3940&rft.eissn=1432-1920&rft.volume=55&rft.issue=10&rft.spage=1197&rft.epage=1203&rft_id=info:doi/10.1007%2Fs00234-013-1237-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00234_013_1237_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3940&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3940&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3940&client=summon |