Diagnosis of cervical precancerous lesions based on multimodal feature changes
To realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this paper proposes a method of cervical precancerous lesion diagnosis based on multimodal feature changes. First, the preacetic acid test and posta...
Saved in:
| Published in | Computers in biology and medicine Vol. 130; p. 104209 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.03.2021
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2021.104209 |
Cover
| Abstract | To realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this paper proposes a method of cervical precancerous lesion diagnosis based on multimodal feature changes. First, the preacetic acid test and postacetic acid test colposcopy images were registered based on cross-correlation and projection transformation, and then the cervical region was extracted by the k-means clustering algorithm. Finally, a deep learning network was used to extract features and classify the preacetic acid test and postacetic acid test cervical images after registration. Finally, the proposed method achieves a classification accuracy of 86.3%, a sensitivity of 84.1%, and a specificity of 89.8% in 60 test cases. Experimental results show that this method can make better use of the multimodal features of colposcopy images and has lower requirements for medical staff in the process of data acquisition. It has certain clinical significance in cervical cancer precancerous lesion screening systems.
•A diagnosis method of cervical precancer based on the preacetic and postacetic acid test cervical images was developed.•A deep learning network was used to extract features and classify the registered cervical images.•The proposed method explored different strategies for classification. |
|---|---|
| AbstractList | To realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this paper proposes a method of cervical precancerous lesion diagnosis based on multimodal feature changes. First, the preacetic acid test and postacetic acid test colposcopy images were registered based on cross-correlation and projection transformation, and then the cervical region was extracted by the k-means clustering algorithm. Finally, a deep learning network was used to extract features and classify the preacetic acid test and postacetic acid test cervical images after registration. Finally, the proposed method achieves a classification accuracy of 86.3%, a sensitivity of 84.1%, and a specificity of 89.8% in 60 test cases. Experimental results show that this method can make better use of the multimodal features of colposcopy images and has lower requirements for medical staff in the process of data acquisition. It has certain clinical significance in cervical cancer precancerous lesion screening systems.
•A diagnosis method of cervical precancer based on the preacetic and postacetic acid test cervical images was developed.•A deep learning network was used to extract features and classify the registered cervical images.•The proposed method explored different strategies for classification. AbstractTo realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this paper proposes a method of cervical precancerous lesion diagnosis based on multimodal feature changes. First, the preacetic acid test and postacetic acid test colposcopy images were registered based on cross-correlation and projection transformation, and then the cervical region was extracted by the k-means clustering algorithm. Finally, a deep learning network was used to extract features and classify the preacetic acid test and postacetic acid test cervical images after registration. Finally, the proposed method achieves a classification accuracy of 86.3%, a sensitivity of 84.1%, and a specificity of 89.8% in 60 test cases. Experimental results show that this method can make better use of the multimodal features of colposcopy images and has lower requirements for medical staff in the process of data acquisition. It has certain clinical significance in cervical cancer precancerous lesion screening systems. To realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this paper proposes a method of cervical precancerous lesion diagnosis based on multimodal feature changes. First, the preacetic acid test and postacetic acid test colposcopy images were registered based on cross-correlation and projection transformation, and then the cervical region was extracted by the k-means clustering algorithm. Finally, a deep learning network was used to extract features and classify the preacetic acid test and postacetic acid test cervical images after registration. Finally, the proposed method achieves a classification accuracy of 86.3%, a sensitivity of 84.1%, and a specificity of 89.8% in 60 test cases. Experimental results show that this method can make better use of the multimodal features of colposcopy images and has lower requirements for medical staff in the process of data acquisition. It has certain clinical significance in cervical cancer precancerous lesion screening systems.To realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this paper proposes a method of cervical precancerous lesion diagnosis based on multimodal feature changes. First, the preacetic acid test and postacetic acid test colposcopy images were registered based on cross-correlation and projection transformation, and then the cervical region was extracted by the k-means clustering algorithm. Finally, a deep learning network was used to extract features and classify the preacetic acid test and postacetic acid test cervical images after registration. Finally, the proposed method achieves a classification accuracy of 86.3%, a sensitivity of 84.1%, and a specificity of 89.8% in 60 test cases. Experimental results show that this method can make better use of the multimodal features of colposcopy images and has lower requirements for medical staff in the process of data acquisition. It has certain clinical significance in cervical cancer precancerous lesion screening systems. To realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this paper proposes a method of cervical precancerous lesion diagnosis based on multimodal feature changes. First, the preacetic acid test and postacetic acid test colposcopy images were registered based on cross-correlation and projection transformation, and then the cervical region was extracted by the k-means clustering algorithm. Finally, a deep learning network was used to extract features and classify the preacetic acid test and postacetic acid test cervical images after registration. Finally, the proposed method achieves a classification accuracy of 86.3%, a sensitivity of 84.1%, and a specificity of 89.8% in 60 test cases. Experimental results show that this method can make better use of the multimodal features of colposcopy images and has lower requirements for medical staff in the process of data acquisition. It has certain clinical significance in cervical cancer precancerous lesion screening systems. |
| ArticleNumber | 104209 |
| Author | Dong, Hua Liang, Tong Peng, Gengyou Li, Ling Liu, Jun |
| Author_xml | – sequence: 1 givenname: Gengyou surname: Peng fullname: Peng, Gengyou organization: College of Information Engineering, Nanchang Hangkong University, Nanchang, China – sequence: 2 givenname: Hua surname: Dong fullname: Dong, Hua organization: College of Information Engineering, Nanchang Hangkong University, Nanchang, China – sequence: 3 givenname: Tong surname: Liang fullname: Liang, Tong organization: College of Information Engineering, Nanchang Hangkong University, Nanchang, China – sequence: 4 givenname: Ling surname: Li fullname: Li, Ling organization: Department of Gynecologic Oncology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China – sequence: 5 givenname: Jun orcidid: 0000-0001-8341-5874 surname: Liu fullname: Liu, Jun email: liujun@nchu.edu.cn organization: College of Information Engineering, Nanchang Hangkong University, Nanchang, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33440316$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v1DAQhi1URLeFv4AsceGSZew43uRSAYUWpAoOwNnyx6R4SezFTir13-NoW5BWQtqTP_TMO6P3nTNyEmJAQiiDNQMm32zXNo474-OIbs2Bs_ItOHRPyIq1m66CphYnZAXAoBItb07JWc5bABBQwzNyWtei3JhckS8fvL4NMftMY08tpjtv9UB3Ca0O5RnnTAfMPoZMjc7oaAx0nIfJj9EVsEc9zQmp_anDLebn5Gmvh4wvHs5z8uPq4_fLT9XN1-vPl-9uKtswMVVWoCyVUvbANbdMA284WmG0kUY4Lp0B5NBvpGOuMRobzoxubWt61ouuq8_J673uLsXfM-ZJjT5bHAYdsIysuNi0UIsaREFfHaDbOKdQpitUB43spFyolw_UbIqpapf8qNO9enSqABd7wKaYc8JeWT_pqRgzJe0HxUAt0ait-heNWqJR-2iKQHsg8NjjiNL3-1Islt55TCpbjyUe50tOk3LRHyNycSBiBx-WtH_hPea_pjCVuQL1bVmeZXc4K3sDNS8Cb_8vcNwMfwBsSdmb |
| CitedBy_id | crossref_primary_10_1016_j_ibmed_2021_100031 crossref_primary_10_1016_j_eswa_2024_123579 crossref_primary_10_3389_fphar_2022_911962 crossref_primary_10_3390_ai5040144 crossref_primary_10_1007_s11042_024_19035_9 crossref_primary_10_1016_j_compbiomed_2024_108589 crossref_primary_10_1080_03772063_2025_2473548 crossref_primary_10_3389_fonc_2022_851367 crossref_primary_10_3390_diagnostics13182884 crossref_primary_10_3389_fnins_2022_884475 crossref_primary_10_3390_bioengineering11050468 crossref_primary_10_3390_diagnostics12112771 crossref_primary_10_1007_s10462_023_10666_2 crossref_primary_10_1007_s11042_022_12670_0 crossref_primary_10_1016_j_imu_2023_101360 crossref_primary_10_1038_s41598_024_51880_4 crossref_primary_10_2174_1573405618666220428104541 crossref_primary_10_1038_s41598_024_84422_z crossref_primary_10_1007_s11517_023_02835_w crossref_primary_10_3390_cimb46120818 crossref_primary_10_1016_j_bbe_2022_02_009 crossref_primary_10_1038_s41598_022_21692_5 crossref_primary_10_1111_exsy_13308 crossref_primary_10_1016_j_bspc_2021_103177 crossref_primary_10_3390_s22155489 crossref_primary_10_1109_ACCESS_2025_3530504 crossref_primary_10_38124_ijisrt_IJISRT24MAY989 crossref_primary_10_32628_CSEIT239018 crossref_primary_10_3389_fonc_2023_1289030 crossref_primary_10_3390_healthcare10020391 crossref_primary_10_3390_diagnostics13050836 crossref_primary_10_1109_OJEMB_2024_3367243 |
| Cites_doi | 10.1002/ijgo.12185 10.1016/j.canep.2017.06.008 10.1038/nrc2462 10.1016/j.eswa.2018.11.008 10.1016/S0140-6736(13)62218-7 10.1007/s13277-015-4663-9 10.1016/j.eururo.2019.09.006 10.1016/j.apme.2016.01.002 10.1016/j.compbiomed.2019.103394 10.3389/fbioe.2020.00343 10.1016/j.compbiomed.2017.04.006 10.1016/j.eswa.2019.112951 10.1016/j.future.2019.09.015 10.1016/S1470-2045(19)30072-5 10.1109/JBHI.2019.2922682 10.1117/1.3079810 10.1016/j.tele.2017.01.007 10.1016/j.patcog.2016.09.027 10.1111/1475-6773.12732 10.1158/1055-9965.EPI-15-0578 10.7717/peerj-cs.154 10.1016/j.compbiomed.2018.03.003 10.1016/j.neucom.2016.09.070 10.1109/TPAMI.2012.277 10.1093/jnci/djy225 10.1002/ijc.30695 10.1109/ACCESS.2018.2839338 10.1016/j.compbiomed.2018.04.009 10.1016/j.compbiomed.2019.04.018 10.1309/K7C9-X5P0-001B-2HK5 10.1016/j.clinthera.2014.11.013 10.1016/j.ypmed.2017.05.021 10.1016/j.future.2018.10.009 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. 2021. Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. – notice: 2021. Elsevier Ltd |
| DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2021.104209 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database (Proquest) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database ProQuest Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Research Library Prep PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 104209 |
| ExternalDocumentID | 33440316 10_1016_j_compbiomed_2021_104209 S0010482521000032 1_s2_0_S0010482521000032 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c514t-c4e6fea66f02a2c1a0252ec4bab6b4d26db0e20f76d1d5bae521ba8c8bf1f4993 |
| IEDL.DBID | BENPR |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Thu Oct 02 10:50:20 EDT 2025 Tue Oct 07 06:34:16 EDT 2025 Thu Apr 03 07:03:55 EDT 2025 Wed Oct 01 05:17:22 EDT 2025 Thu Apr 24 22:55:33 EDT 2025 Fri Feb 23 02:44:50 EST 2024 Tue Feb 25 20:11:33 EST 2025 Tue Oct 14 19:33:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Colposcopy image Cervical screening Automatic diagnosis Acetic acid test Multimodal feature change automatic diagnosis deep learning cervical screening colposcopy image multimodal feature change |
| Language | English |
| License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-c4e6fea66f02a2c1a0252ec4bab6b4d26db0e20f76d1d5bae521ba8c8bf1f4993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8341-5874 |
| PMID | 33440316 |
| PQID | 2490569664 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2478034304 proquest_journals_2490569664 pubmed_primary_33440316 crossref_citationtrail_10_1016_j_compbiomed_2021_104209 crossref_primary_10_1016_j_compbiomed_2021_104209 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_104209 elsevier_clinicalkeyesjournals_1_s2_0_S0010482521000032 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_104209 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Zhu, Albadawy, Saha, Zhang, Harowicz, Mazurowski (bib29) 2019; 109 Pfaendler, Wenzel, Mechanic, Penner (bib6) 2015; 37 Lakshmanaprabu, Mohanty, Shankar, Arunkumar, Ramirez (bib32) 2019; 92 He, Zhang, Ren, Sun (bib39) 2016 Hu, Bell, Antani, Xue, Yu, Horning, Gachuhi, Wilson, Jaiswal, Befano (bib34) 2019; 111 Mezei, Armstrong, Pedersen, Campos, Mitchell, Sekikubo, Byamugisha, Kim, Bryan, Ogilvie (bib16) 2017; 141 Torre, Siegel, Ward, Jemal (bib4) 2016; 25 Ghoneim, Muhammad, Hossain (bib44) 2020; 102 Peng, Yuan, Jiang, Tang, Li (bib5) 2016; 37 Chen, Shen, Zhou, Maquilan, Thomas, Folkert, Albuquerque, Wang (bib26) 2018; 97 Suk, Shen (bib24) 2013; vol. 16 Xu, Zhang, Xin, Kim, Long, Xue, Antani, Huang (bib12) 2017; 63 Thekkek, Richards-Kortum (bib42) 2008; 8 Ketelaars, Bosgraaf, Siebers, Massuger, Van der Linden, Wauters, Rahamat-Langendoen, van den Brule, IntHout, Melchers (bib13) 2017; 101 Holme, Kapambwe, Nessa, Basu, Murillo, Jeronimo (bib17) 2017; 138 Li, Chen, Xue, Tang, Chang, Chu, Ma, Li, Zheng, Qiao (bib36) 2020; 38 Ting, Tan, Sim (bib27) 2019; 120 Brisson, Drolet (bib2) 2019; 20 Simonyan, Zisserman (bib38) 2015 Kessler (bib7) 2017; vol. 33 Mohamad, Saad, Murad, Altraigy (bib18) 2016; 13 Kamoun, de Reyniès, Allory, Sjödahl, Robertson, Seiler, Hoadley, Groeneveld, Al-Ahmadie, Choi (bib31) 2020; 77 Asiedu, Simhal, Chaudhary, Mueller, Lam, Schmitt, Venegas, Sapiro, Ramanujam (bib20) 2018; 66 Huang, Liu, Van Der Maaten, Weinberger (bib40) 2017 Adsul, Manjunath, Srinivas, Arun, Madhivanan (bib19) 2017; 49 Hao, Peng, Wang, Liu, Zheng (bib25) 2019; 113 Jemal, Bray, Center, Ferlay, Ward, Forman (bib3) 2011; 61 Ronco, Dillner, Elfström, Tunesi, Snijders, Arbyn, Kitchener, Segnan, Gilham, Giorgi-Rossi (bib14) 2014; 383 Liu, Du, Lu, Peng, Li, Zhang (bib37) 2019; 9 Li, Venkataraman, Gustafsson, Oyama, Ferris, Lieberman (bib45) 2009; 14 Sun, Zheng, Qian (bib33) 2017; 89 Roth, Lu, Seff, Cherry, Hoffman, Wang, Liu, Turkbey, Summers (bib22) 2014; vol. 65 Fernandes, Chicco, Cardoso, Fernandes (bib46) 2018; 4 Tareef, Song, Cai, Huang, Chang, Wang, Fulham, Feng, Chen (bib15) 2017; 221 Sabik, Tarazi, Hochhalter, Dahman, Bradley (bib8) 2018; 53 Nilashi, Ibrahim, Ahmadi, Shahmoradi (bib28) 2017; 34 Liu, Wu, Peng, Luo (bib41) 2020; 8 Grenko, Abendroth, Frauenhoffer, Ruggiero, Zaino (bib9) 2000; 114 Shin, Orton, Collins, Doran, Leach (bib23) 2012; 35 Fondón, Sarmiento, García, Silvestre, Eloy, Polónia, Aguiar (bib30) 2018; 96 Alyafeai, Ghouti (bib11) 2020; 141 Soerjomataram, Siegel (bib1) 2018; 68 Crothers (bib10) 2018; 126 Cireşan, Giusti, Gambardella, Schmidhuber (bib21) 2013; vol. 16 Yue, Ding, Zhao, Wang, Ma, Zhang, Zhang (bib35) 2019; 24 Fernandes, Cardoso, Fernandes (bib43) 2018; 6 Pfaendler (10.1016/j.compbiomed.2021.104209_bib6) 2015; 37 Soerjomataram (10.1016/j.compbiomed.2021.104209_bib1) 2018; 68 Ronco (10.1016/j.compbiomed.2021.104209_bib14) 2014; 383 Roth (10.1016/j.compbiomed.2021.104209_bib22) 2014; vol. 65 Yue (10.1016/j.compbiomed.2021.104209_bib35) 2019; 24 Kessler (10.1016/j.compbiomed.2021.104209_bib7) 2017; vol. 33 Ketelaars (10.1016/j.compbiomed.2021.104209_bib13) 2017; 101 Tareef (10.1016/j.compbiomed.2021.104209_bib15) 2017; 221 Li (10.1016/j.compbiomed.2021.104209_bib36) 2020; 38 Brisson (10.1016/j.compbiomed.2021.104209_bib2) 2019; 20 Alyafeai (10.1016/j.compbiomed.2021.104209_bib11) 2020; 141 Sabik (10.1016/j.compbiomed.2021.104209_bib8) 2018; 53 Adsul (10.1016/j.compbiomed.2021.104209_bib19) 2017; 49 Lakshmanaprabu (10.1016/j.compbiomed.2021.104209_bib32) 2019; 92 Cireşan (10.1016/j.compbiomed.2021.104209_bib21) 2013; vol. 16 Ting (10.1016/j.compbiomed.2021.104209_bib27) 2019; 120 Liu (10.1016/j.compbiomed.2021.104209_bib37) 2019; 9 Peng (10.1016/j.compbiomed.2021.104209_bib5) 2016; 37 Holme (10.1016/j.compbiomed.2021.104209_bib17) 2017; 138 Xu (10.1016/j.compbiomed.2021.104209_bib12) 2017; 63 He (10.1016/j.compbiomed.2021.104209_bib39) 2016 Jemal (10.1016/j.compbiomed.2021.104209_bib3) 2011; 61 Crothers (10.1016/j.compbiomed.2021.104209_bib10) 2018; 126 Nilashi (10.1016/j.compbiomed.2021.104209_bib28) 2017; 34 Hao (10.1016/j.compbiomed.2021.104209_bib25) 2019; 113 Kamoun (10.1016/j.compbiomed.2021.104209_bib31) 2020; 77 Mezei (10.1016/j.compbiomed.2021.104209_bib16) 2017; 141 Torre (10.1016/j.compbiomed.2021.104209_bib4) 2016; 25 Asiedu (10.1016/j.compbiomed.2021.104209_bib20) 2018; 66 Sun (10.1016/j.compbiomed.2021.104209_bib33) 2017; 89 Simonyan (10.1016/j.compbiomed.2021.104209_bib38) 2015 Thekkek (10.1016/j.compbiomed.2021.104209_bib42) 2008; 8 Ghoneim (10.1016/j.compbiomed.2021.104209_bib44) 2020; 102 Fernandes (10.1016/j.compbiomed.2021.104209_bib46) 2018; 4 Fondón (10.1016/j.compbiomed.2021.104209_bib30) 2018; 96 Mohamad (10.1016/j.compbiomed.2021.104209_bib18) 2016; 13 Grenko (10.1016/j.compbiomed.2021.104209_bib9) 2000; 114 Fernandes (10.1016/j.compbiomed.2021.104209_bib43) 2018; 6 Shin (10.1016/j.compbiomed.2021.104209_bib23) 2012; 35 Suk (10.1016/j.compbiomed.2021.104209_bib24) 2013; vol. 16 Chen (10.1016/j.compbiomed.2021.104209_bib26) 2018; 97 Liu (10.1016/j.compbiomed.2021.104209_bib41) 2020; 8 Li (10.1016/j.compbiomed.2021.104209_bib45) 2009; 14 Hu (10.1016/j.compbiomed.2021.104209_bib34) 2019; 111 Huang (10.1016/j.compbiomed.2021.104209_bib40) 2017 Zhu (10.1016/j.compbiomed.2021.104209_bib29) 2019; 109 |
| References_xml | – volume: vol. 16 start-page: 583 year: 2013 end-page: 590 ident: bib24 article-title: Deep learning-based feature representation for AD/MCI classification publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer – volume: 38 start-page: 489 year: 2020 end-page: 493 ident: bib36 article-title: Computer-aided cervical cancer diagnosis using time-lapsed colposcopic images publication-title: IEEE Trans. Med. Imag. – volume: 101 start-page: 96 year: 2017 end-page: 101 ident: bib13 article-title: High-risk human papillomavirus detection in self-sampling compared to physician-taken smear in a responder population of the Dutch cervical screening: results of the VERA study publication-title: Prev. Med. – volume: 20 start-page: 319 year: 2019 end-page: 321 ident: bib2 article-title: Global elimination of cervical cancer as a public health problem publication-title: Lancet Oncol. – volume: 141 start-page: 437 year: 2017 end-page: 446 ident: bib16 article-title: Cost‐effectiveness of cervical cancer screening methods in low‐and middle‐income countries: a systematic review publication-title: Int. J. Canc. – volume: 126 start-page: 301 year: 2018 end-page: 308 ident: bib10 article-title: Cytologic‐histologic correlation: where are we now, and where are we going? publication-title: Canc. Cytopathol. – start-page: 770 year: 2016 end-page: 778 ident: bib39 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 77 start-page: 420 year: 2020 end-page: 433 ident: bib31 article-title: A consensus molecular classification of muscle-invasive bladder cancer publication-title: Eur. Urol. – volume: 63 start-page: 468 year: 2017 end-page: 475 ident: bib12 article-title: Multi-feature based benchmark for cervical dysplasia classification evaluation publication-title: Pattern Recogn. – volume: 8 start-page: 343 year: 2020 ident: bib41 article-title: Grade prediction of bleeding volume in cesarean section of patients with pernicious placenta previa based on deep learning publication-title: Front. Bioeng. Biotechnol. – volume: 14 year: 2009 ident: bib45 article-title: Using acetowhite opacity index for detecting cervical intraepithelial neoplasia publication-title: J. Biomed. Optic. – volume: 138 start-page: 63 year: 2017 end-page: 68 ident: bib17 article-title: Scaling up proven innovative cervical cancer screening strategies: challenges and opportunities in implementation at the population level in low‐and lower‐middle‐income countries publication-title: Int. J. Gynecol. Obstet. – volume: 4 start-page: e154 year: 2018 ident: bib46 article-title: Supervised deep learning embeddings for the prediction of cervical cancer diagnosis publication-title: PeerJ Comput. Sci. – volume: 96 start-page: 41 year: 2018 end-page: 51 ident: bib30 article-title: Automatic classification of tissue malignancy for breast carcinoma diagnosis publication-title: Comput. Biol. Med. – volume: 92 start-page: 374 year: 2019 end-page: 382 ident: bib32 article-title: Optimal deep learning model for classification of lung cancer on CT images publication-title: Future Generat. Comput. Syst. – volume: 37 start-page: 2779 year: 2016 end-page: 2788 ident: bib5 article-title: LncRNAs: key players and novel insights into cervical cancer publication-title: Tumor Biol. – start-page: 1409 year: 2015 end-page: 1556 ident: bib38 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Computer Vision and Pattern Recognition, CVPR – volume: vol. 16 start-page: 411 year: 2013 end-page: 418 ident: bib21 article-title: Mitosis detection in breast cancer histology images with deep neural networks publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer – volume: 25 start-page: 16 year: 2016 end-page: 27 ident: bib4 article-title: Global cancer incidence and mortality rates and trends—an update publication-title: Canc. Epidemiol. Prevent. Biomark. – volume: 53 start-page: 2870 year: 2018 end-page: 2891 ident: bib8 article-title: Medicaid expansions and cervical cancer screening for low‐income women publication-title: Health Serv. Res. – volume: 13 start-page: 204 year: 2016 end-page: 207 ident: bib18 article-title: Visual inspection after acetic acid (VIA) as an alternative screening tool for cancer cervix publication-title: Apollo Med. – volume: 49 start-page: 161 year: 2017 end-page: 174 ident: bib19 article-title: Implementing community-based cervical cancer screening programs using visual inspection with acetic acid in India: a systematic review publication-title: Canc. Epidemiol. – volume: 61 start-page: 69 year: 2011 end-page: 90 ident: bib3 article-title: Global cancer statistics publication-title: CA A Cancer J. Clin. – volume: 383 start-page: 524 year: 2014 end-page: 532 ident: bib14 article-title: Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials publication-title: Lancet – volume: 221 start-page: 94 year: 2017 end-page: 107 ident: bib15 article-title: Automatic segmentation of overlapping cervical smear cells based on local distinctive features and guided shape deformation publication-title: Neurocomputing – start-page: 4700 year: 2017 end-page: 4708 ident: bib40 article-title: Densely connected convolutional networks publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 37 start-page: 39 year: 2015 end-page: 48 ident: bib6 article-title: Cervical cancer survivorship: long-term quality of life and social support publication-title: Clin. Therapeut. – volume: 114 start-page: 735 year: 2000 end-page: 740 ident: bib9 article-title: Variance in the interpretation of cervical biopsy specimens obtained for atypical squamous cells of undetermined significance publication-title: Am. J. Clin. Pathol. – volume: vol. 65 start-page: 520 year: 2014 end-page: 527 ident: bib22 article-title: A new 2.5 D representation for lymph node detection using random sets of deep convolutional neural network observations publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer – volume: 141 year: 2020 ident: bib11 article-title: A fully-automated deep learning pipeline for cervical cancer classification publication-title: Expert Syst. Appl. – volume: 6 start-page: 33910 year: 2018 end-page: 33927 ident: bib43 article-title: Automated methods for the decision support of cervical cancer screening using digital colposcopies publication-title: IEEE Access – volume: 9 start-page: 1103 year: 2019 end-page: 1111 ident: bib37 article-title: Comparison of classifier configurations for the classification of cervical intraepithelial neoplasia using acetic acid test images publication-title: J. Med. Imag. Health Inform. – volume: 68 start-page: 394 year: 2018 end-page: 424 ident: bib1 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: Ca - Cancer J. Clin. – volume: 109 start-page: 85 year: 2019 end-page: 90 ident: bib29 article-title: Deep learning for identifying radiogenomic associations in breast cancer publication-title: Comput. Biol. Med. – volume: 102 start-page: 643 year: 2020 end-page: 649 ident: bib44 article-title: Cervical cancer classification using convolutional neural networks and extreme learning machines publication-title: Future Generat. Comput. Syst. – volume: 97 start-page: 30 year: 2018 end-page: 36 ident: bib26 article-title: Accurate segmenting of cervical tumors in PET imaging based on similarity between adjacent slices publication-title: Comput. Biol. Med. – volume: vol. 33 start-page: 172 year: 2017 end-page: 183 ident: bib7 article-title: Cervical cancer: prevention and early detection publication-title: Seminars in Oncology Nursing – volume: 24 start-page: 844 year: 2019 end-page: 854 ident: bib35 article-title: Automatic CIN grades prediction of sequential cervigram image using LSTM with multistate CNN features publication-title: IEEE J. Biomed. Health Inform. – volume: 35 start-page: 1930 year: 2012 end-page: 1943 ident: bib23 article-title: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 113 start-page: 103394 year: 2019 ident: bib25 article-title: Evaluation of convolutional neural network for recognizing uterine contractions with electrohysterogram publication-title: Comput. Biol. Med. – volume: 34 start-page: 133 year: 2017 end-page: 144 ident: bib28 article-title: A knowledge-based system for breast cancer classification using fuzzy logic method publication-title: Telematics Inf. – volume: 111 start-page: 923 year: 2019 end-page: 932 ident: bib34 article-title: An observational study of deep learning and automated evaluation of cervical images for cancer screening, JNCI publication-title: J. Natl. Cancer Inst. – volume: 66 start-page: 2306 year: 2018 end-page: 2318 ident: bib20 article-title: Development of algorithms for automated detection of cervical pre-cancers with a low-cost, point-of-care, Pocket Colposcope publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 8 start-page: 725 year: 2008 end-page: 731 ident: bib42 article-title: Optical imaging for cervical cancer detection: solutions for a continuing global problem publication-title: Nat. Rev. Canc. – volume: 120 start-page: 103 year: 2019 end-page: 115 ident: bib27 article-title: Convolutional neural network improvement for breast cancer classification publication-title: Expert Syst. Appl. – volume: 89 start-page: 530 year: 2017 end-page: 539 ident: bib33 article-title: Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis publication-title: Comput. Biol. Med. – volume: 68 start-page: 394 year: 2018 ident: 10.1016/j.compbiomed.2021.104209_bib1 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: Ca - Cancer J. Clin. – volume: 138 start-page: 63 year: 2017 ident: 10.1016/j.compbiomed.2021.104209_bib17 article-title: Scaling up proven innovative cervical cancer screening strategies: challenges and opportunities in implementation at the population level in low‐and lower‐middle‐income countries publication-title: Int. J. Gynecol. Obstet. doi: 10.1002/ijgo.12185 – start-page: 1409 year: 2015 ident: 10.1016/j.compbiomed.2021.104209_bib38 article-title: Very deep convolutional networks for large-scale image recognition – volume: 49 start-page: 161 year: 2017 ident: 10.1016/j.compbiomed.2021.104209_bib19 article-title: Implementing community-based cervical cancer screening programs using visual inspection with acetic acid in India: a systematic review publication-title: Canc. Epidemiol. doi: 10.1016/j.canep.2017.06.008 – volume: 8 start-page: 725 year: 2008 ident: 10.1016/j.compbiomed.2021.104209_bib42 article-title: Optical imaging for cervical cancer detection: solutions for a continuing global problem publication-title: Nat. Rev. Canc. doi: 10.1038/nrc2462 – volume: 120 start-page: 103 year: 2019 ident: 10.1016/j.compbiomed.2021.104209_bib27 article-title: Convolutional neural network improvement for breast cancer classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.11.008 – volume: 383 start-page: 524 year: 2014 ident: 10.1016/j.compbiomed.2021.104209_bib14 article-title: Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials publication-title: Lancet doi: 10.1016/S0140-6736(13)62218-7 – start-page: 4700 year: 2017 ident: 10.1016/j.compbiomed.2021.104209_bib40 article-title: Densely connected convolutional networks – volume: 37 start-page: 2779 year: 2016 ident: 10.1016/j.compbiomed.2021.104209_bib5 article-title: LncRNAs: key players and novel insights into cervical cancer publication-title: Tumor Biol. doi: 10.1007/s13277-015-4663-9 – volume: 77 start-page: 420 year: 2020 ident: 10.1016/j.compbiomed.2021.104209_bib31 article-title: A consensus molecular classification of muscle-invasive bladder cancer publication-title: Eur. Urol. doi: 10.1016/j.eururo.2019.09.006 – volume: 13 start-page: 204 year: 2016 ident: 10.1016/j.compbiomed.2021.104209_bib18 article-title: Visual inspection after acetic acid (VIA) as an alternative screening tool for cancer cervix publication-title: Apollo Med. doi: 10.1016/j.apme.2016.01.002 – volume: 113 start-page: 103394 year: 2019 ident: 10.1016/j.compbiomed.2021.104209_bib25 article-title: Evaluation of convolutional neural network for recognizing uterine contractions with electrohysterogram publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103394 – volume: 8 start-page: 343 year: 2020 ident: 10.1016/j.compbiomed.2021.104209_bib41 article-title: Grade prediction of bleeding volume in cesarean section of patients with pernicious placenta previa based on deep learning publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00343 – volume: 89 start-page: 530 year: 2017 ident: 10.1016/j.compbiomed.2021.104209_bib33 article-title: Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.04.006 – volume: 141 year: 2020 ident: 10.1016/j.compbiomed.2021.104209_bib11 article-title: A fully-automated deep learning pipeline for cervical cancer classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112951 – volume: 102 start-page: 643 year: 2020 ident: 10.1016/j.compbiomed.2021.104209_bib44 article-title: Cervical cancer classification using convolutional neural networks and extreme learning machines publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2019.09.015 – volume: 20 start-page: 319 year: 2019 ident: 10.1016/j.compbiomed.2021.104209_bib2 article-title: Global elimination of cervical cancer as a public health problem publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(19)30072-5 – volume: 126 start-page: 301 year: 2018 ident: 10.1016/j.compbiomed.2021.104209_bib10 article-title: Cytologic‐histologic correlation: where are we now, and where are we going? publication-title: Canc. Cytopathol. – volume: 24 start-page: 844 year: 2019 ident: 10.1016/j.compbiomed.2021.104209_bib35 article-title: Automatic CIN grades prediction of sequential cervigram image using LSTM with multistate CNN features publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2922682 – volume: 14 year: 2009 ident: 10.1016/j.compbiomed.2021.104209_bib45 article-title: Using acetowhite opacity index for detecting cervical intraepithelial neoplasia publication-title: J. Biomed. Optic. doi: 10.1117/1.3079810 – volume: vol. 65 start-page: 520 year: 2014 ident: 10.1016/j.compbiomed.2021.104209_bib22 article-title: A new 2.5 D representation for lymph node detection using random sets of deep convolutional neural network observations – volume: 34 start-page: 133 year: 2017 ident: 10.1016/j.compbiomed.2021.104209_bib28 article-title: A knowledge-based system for breast cancer classification using fuzzy logic method publication-title: Telematics Inf. doi: 10.1016/j.tele.2017.01.007 – volume: 38 start-page: 489 year: 2020 ident: 10.1016/j.compbiomed.2021.104209_bib36 article-title: Computer-aided cervical cancer diagnosis using time-lapsed colposcopic images publication-title: IEEE Trans. Med. Imag. – volume: 63 start-page: 468 year: 2017 ident: 10.1016/j.compbiomed.2021.104209_bib12 article-title: Multi-feature based benchmark for cervical dysplasia classification evaluation publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2016.09.027 – volume: 53 start-page: 2870 year: 2018 ident: 10.1016/j.compbiomed.2021.104209_bib8 article-title: Medicaid expansions and cervical cancer screening for low‐income women publication-title: Health Serv. Res. doi: 10.1111/1475-6773.12732 – volume: 25 start-page: 16 year: 2016 ident: 10.1016/j.compbiomed.2021.104209_bib4 article-title: Global cancer incidence and mortality rates and trends—an update publication-title: Canc. Epidemiol. Prevent. Biomark. doi: 10.1158/1055-9965.EPI-15-0578 – volume: 9 start-page: 1103 year: 2019 ident: 10.1016/j.compbiomed.2021.104209_bib37 article-title: Comparison of classifier configurations for the classification of cervical intraepithelial neoplasia using acetic acid test images publication-title: J. Med. Imag. Health Inform. – start-page: 770 year: 2016 ident: 10.1016/j.compbiomed.2021.104209_bib39 article-title: Deep residual learning for image recognition – volume: 4 start-page: e154 year: 2018 ident: 10.1016/j.compbiomed.2021.104209_bib46 article-title: Supervised deep learning embeddings for the prediction of cervical cancer diagnosis publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.154 – volume: 96 start-page: 41 year: 2018 ident: 10.1016/j.compbiomed.2021.104209_bib30 article-title: Automatic classification of tissue malignancy for breast carcinoma diagnosis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.03.003 – volume: 221 start-page: 94 year: 2017 ident: 10.1016/j.compbiomed.2021.104209_bib15 article-title: Automatic segmentation of overlapping cervical smear cells based on local distinctive features and guided shape deformation publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.070 – volume: 35 start-page: 1930 year: 2012 ident: 10.1016/j.compbiomed.2021.104209_bib23 article-title: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.277 – volume: 111 start-page: 923 year: 2019 ident: 10.1016/j.compbiomed.2021.104209_bib34 article-title: An observational study of deep learning and automated evaluation of cervical images for cancer screening, JNCI publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djy225 – volume: 141 start-page: 437 year: 2017 ident: 10.1016/j.compbiomed.2021.104209_bib16 article-title: Cost‐effectiveness of cervical cancer screening methods in low‐and middle‐income countries: a systematic review publication-title: Int. J. Canc. doi: 10.1002/ijc.30695 – volume: 66 start-page: 2306 year: 2018 ident: 10.1016/j.compbiomed.2021.104209_bib20 article-title: Development of algorithms for automated detection of cervical pre-cancers with a low-cost, point-of-care, Pocket Colposcope publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 6 start-page: 33910 year: 2018 ident: 10.1016/j.compbiomed.2021.104209_bib43 article-title: Automated methods for the decision support of cervical cancer screening using digital colposcopies publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2839338 – volume: 61 start-page: 69 year: 2011 ident: 10.1016/j.compbiomed.2021.104209_bib3 article-title: Global cancer statistics publication-title: CA A Cancer J. Clin. – volume: 97 start-page: 30 year: 2018 ident: 10.1016/j.compbiomed.2021.104209_bib26 article-title: Accurate segmenting of cervical tumors in PET imaging based on similarity between adjacent slices publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.04.009 – volume: 109 start-page: 85 year: 2019 ident: 10.1016/j.compbiomed.2021.104209_bib29 article-title: Deep learning for identifying radiogenomic associations in breast cancer publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.04.018 – volume: vol. 33 start-page: 172 year: 2017 ident: 10.1016/j.compbiomed.2021.104209_bib7 article-title: Cervical cancer: prevention and early detection – volume: 114 start-page: 735 year: 2000 ident: 10.1016/j.compbiomed.2021.104209_bib9 article-title: Variance in the interpretation of cervical biopsy specimens obtained for atypical squamous cells of undetermined significance publication-title: Am. J. Clin. Pathol. doi: 10.1309/K7C9-X5P0-001B-2HK5 – volume: 37 start-page: 39 year: 2015 ident: 10.1016/j.compbiomed.2021.104209_bib6 article-title: Cervical cancer survivorship: long-term quality of life and social support publication-title: Clin. Therapeut. doi: 10.1016/j.clinthera.2014.11.013 – volume: 101 start-page: 96 year: 2017 ident: 10.1016/j.compbiomed.2021.104209_bib13 article-title: High-risk human papillomavirus detection in self-sampling compared to physician-taken smear in a responder population of the Dutch cervical screening: results of the VERA study publication-title: Prev. Med. doi: 10.1016/j.ypmed.2017.05.021 – volume: vol. 16 start-page: 411 year: 2013 ident: 10.1016/j.compbiomed.2021.104209_bib21 article-title: Mitosis detection in breast cancer histology images with deep neural networks – volume: vol. 16 start-page: 583 year: 2013 ident: 10.1016/j.compbiomed.2021.104209_bib24 article-title: Deep learning-based feature representation for AD/MCI classification – volume: 92 start-page: 374 year: 2019 ident: 10.1016/j.compbiomed.2021.104209_bib32 article-title: Optimal deep learning model for classification of lung cancer on CT images publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2018.10.009 |
| SSID | ssj0004030 |
| Score | 2.4250145 |
| Snippet | To realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this... AbstractTo realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images,... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 104209 |
| SubjectTerms | Accuracy Acetic acid test Acids Algorithms Artificial intelligence Automatic diagnosis Biopsy Cervical cancer Cervical screening Cervix Childrens health Classification Cluster analysis Clustering Colposcopy Colposcopy image Cross correlation Data acquisition Deep learning Diagnosis Experiments Feature extraction Image classification Internal Medicine Lesions Machine learning Maternal & child health Medical diagnosis Medical imaging Medical personnel Medical research Medical screening Multimodal feature change Neural networks Other Registration Vagina Vector quantization |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yB_Eivl1fRPBabZNs0uJJ1GUR1pOCt5CkCays3cWuV3-7kybtIioseGw7Q9vJ5MtM8k2C0IUeKF2q0iVGOZowwW2iXKESnQkjCmj0vCFjjh_56Jk9vAxe1tBtWwvjaZUR-wOmN2gd71xFa17NJxNf4wupBCQ4pJmiph6HGRP-FIPLzyXNg6U0lKEA3njpyOYJHC9P2w5l7pApkswveBJPTfx9iPorBG2GouEW2owxJL4Jn7mN1my1g9bHcZV8Fz3eBf7cpMYzh02DBiA_hx_1bfwOyT6eWj9NVmM_ipV4VuGGWfg2K0HQ2Wa3TxyKgus99Dy8f7odJfHchMRA-LNIDLMcJDl3KVHEZAriGmIN00pzzUrCS51akjrBy6wcaGXBhFrlJtcuc5AB0X3Uq2aVPUSYiSKnEPQoyCtYwQClId4ojDBGM22p6SPRmkqauKm4P9tiKlv22KtcGll6I8tg5D7KOs152FhjBZ2ibQ3ZFo4C1ElA_xV0xW-6to59tpaZrIlM5Q-_6qPrTvOba6743pPWbWT3Ksh5IfCETJP10Xn3GDq2X61RlQU_ABmRp5TRFGQOgrt1hqKUgV9n_Ohfn3aMNvxVYNSdoN7i_cOeQoi10GdNH_oCm9slcA priority: 102 providerName: Elsevier |
| Title | Diagnosis of cervical precancerous lesions based on multimodal feature changes |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482521000032 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482521000032 https://dx.doi.org/10.1016/j.compbiomed.2021.104209 https://www.ncbi.nlm.nih.gov/pubmed/33440316 https://www.proquest.com/docview/2490569664 https://www.proquest.com/docview/2478034304 |
| Volume | 130 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250903 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61uxLignh3oayMxDWQ2N44UYVQgS4LqBECKu3N8lMClWRptld-O-M4yV4K2ksumUkiezyPzDczAC_0QmmrrE-M8izhIneJ8qVKdCaMKHHTiw6MeV7lqwv-ab1YH0A11MIEWOWgEztFbRsT_pG_wjABbTU65_zN5ncSpkaF7OowQkP1oxXs667F2CFMaeiMNYHp27Pqy9ddpWTKYlEKah-OwVGP7YmIrwDijkXvGDfSLKQ_aQAq3myw_uWQdoZpeRfu9B4lOY0icA8OXH0fbp33OfMHUL2PaLofLWk8MZ1uQPoNqrqw41cY-pNLF36atSTYNEuamnQ4w1-NRULvut6fJJYItw_hYnn2_d0q6acoJAadoW1iuMuRMs99ShU1mUIvhzrDtdK55pbmVqeOpl7kNrMLrRwadK0KU2ifeYyH2COY1E3tjoBwURYMXSCFUQYvOeps9D5KI4zRXDtmZiCGpZKmbzEeJl1cygFL9lPuFlmGRZZxkWeQjZyb2GZjD55y2A05lJGi4pNoC_bgFTfxurY_wa3MZEtlKr91DYxQUmiXCGF0BicjZ--kROdjz_ceD2Ijx1ftRHsGz8fbeMxD7kbVDuUAaUSRMs5SpHkcxW1cKMY4ynWWP_n_w5_C7fAlEUB3DJPt1bV7hh7VVs_h8OWfDK9iLfBaLD_MYXr68fOqmvcH6C-onyVb |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiHcXChgJjhGJ7c1DqEJAW21pd4WglXozfkpFJVmarRB_rr-t49jJXgraS8_rSVbj8cw3mW88AG_UWCojjUu0dCzhRW4T6SqZqKzQRYWbXnZkzOksnxzzLyfjkzW47HthPK2y94mdozaN9t_I32GagLEawTn_MP-d-KlRvrraj9CQcbSC2e6uGIuNHQf27x9M4drt_R3c77eU7u0efZ4kccpAohEsLBLNbe6szHOXUkl1JhEFUKu5kipX3NDcqNTS1BW5ycxYSYsBT8lSl8plDvMFhs-9BRuc8QqTv41Pu7Ov35admSkLTTDo7TgmY5FLFBhmnjQemuwxT6WZL7dST4y8PkD-CwB3gXDvPtyLCJZ8DCb3ANZs_RBuT2ON_hHMdgJ777QljSO680W4fo6u1VvYeXPRkjPrP9K1xMdQQ5qadLzGX43BhaglX9UgoSW5fQzHN6LPJ7BeN7XdBMKLqmQIuSRmNbziGCMQ7VS60FpxZZkeQdGrSuh4pbmfrHEmeu7aT7FUsvBKFkHJI8gGyXm41mMFmarfDdG3raKjFRh7VpAtrpO1bfQYrchES0UqvncXJqGl0K7wwugI3g-SERQFsLPie7d6sxHDq5ZHaQSvh5_Rrfhakawt2gGuKcqUcZbimqfB3AZFMcbRrrP82f8f_gruTI6mh-Jwf3bwHO76fxXIe1uwvji_sC8QzS3Uy3hkCPy46VN6Ba8nYBw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8WChgJjlET22snQgghllVL6QoJKu3N-CmBSrI0WyH-Gr-OcZxkLwXtped4nGg8nvkm840N8MJMtXHahczqwDIuhc90qHRmCmllhYtedmTMk4U4POUfltPlDvwZemEirXLwiZ2jdo2N_8gPME3AWI3gnB-EnhbxaTZ_s_qZxRukYqV1uE4jmcix__0L07f29dEM1_olpfP3X94dZv0NA5lFoLDOLPcieC1EyKmmttCIAKi33GgjDHdUOJN7mgcpXOGmRnsMdkaXtjShCJgrMJz3GlyXjFWRTiiXctOTmbPU_oJ-jmMa1rOIErcs0sVTez1mqLSIhVYaKZGXh8Z_Qd8uBM5vwc0eu5K3ydhuw46v78DeSV-dvwuLWeLtfWtJE4jtvBCOX6FTjbZ13ly05MzH33MtidHTkaYmHaPxR-NwIOoo1jNIakZu78HplWjzPuzWTe0fAuGyKhmCLY35DK84RgfEOZWV1hpuPLMTkIOqlO0PM493apypgbX2XW2UrKKSVVLyBIpRcpUO9NhCphpWQw0Nq-hiFUadLWTlZbK-7X1FqwrVUpWrz91RSWgptCu5MDqBV6NkD4cSzNnyvfuD2ajxVZtNNIHn42N0KLFKpGuPdoBjZJkzznIc8yCZ26goxjjadSEe_X_yZ7CHe1N9PFocP4Yb8aMSa28fdtfnF_4Jwri1edrtFwJfr3qD_gUVSl22 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+cervical+precancerous+lesions+based+on+multimodal+feature+changes&rft.jtitle=Computers+in+biology+and+medicine&rft.date=2021-03-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=130&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.104209&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |