Diagnosis of cervical precancerous lesions based on multimodal feature changes

To realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this paper proposes a method of cervical precancerous lesion diagnosis based on multimodal feature changes. First, the preacetic acid test and posta...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 130; p. 104209
Main Authors Peng, Gengyou, Dong, Hua, Liang, Tong, Li, Ling, Liu, Jun
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2021
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2021.104209

Cover

Abstract To realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this paper proposes a method of cervical precancerous lesion diagnosis based on multimodal feature changes. First, the preacetic acid test and postacetic acid test colposcopy images were registered based on cross-correlation and projection transformation, and then the cervical region was extracted by the k-means clustering algorithm. Finally, a deep learning network was used to extract features and classify the preacetic acid test and postacetic acid test cervical images after registration. Finally, the proposed method achieves a classification accuracy of 86.3%, a sensitivity of 84.1%, and a specificity of 89.8% in 60 test cases. Experimental results show that this method can make better use of the multimodal features of colposcopy images and has lower requirements for medical staff in the process of data acquisition. It has certain clinical significance in cervical cancer precancerous lesion screening systems. •A diagnosis method of cervical precancer based on the preacetic and postacetic acid test cervical images was developed.•A deep learning network was used to extract features and classify the registered cervical images.•The proposed method explored different strategies for classification.
AbstractList To realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this paper proposes a method of cervical precancerous lesion diagnosis based on multimodal feature changes. First, the preacetic acid test and postacetic acid test colposcopy images were registered based on cross-correlation and projection transformation, and then the cervical region was extracted by the k-means clustering algorithm. Finally, a deep learning network was used to extract features and classify the preacetic acid test and postacetic acid test cervical images after registration. Finally, the proposed method achieves a classification accuracy of 86.3%, a sensitivity of 84.1%, and a specificity of 89.8% in 60 test cases. Experimental results show that this method can make better use of the multimodal features of colposcopy images and has lower requirements for medical staff in the process of data acquisition. It has certain clinical significance in cervical cancer precancerous lesion screening systems. •A diagnosis method of cervical precancer based on the preacetic and postacetic acid test cervical images was developed.•A deep learning network was used to extract features and classify the registered cervical images.•The proposed method explored different strategies for classification.
AbstractTo realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this paper proposes a method of cervical precancerous lesion diagnosis based on multimodal feature changes. First, the preacetic acid test and postacetic acid test colposcopy images were registered based on cross-correlation and projection transformation, and then the cervical region was extracted by the k-means clustering algorithm. Finally, a deep learning network was used to extract features and classify the preacetic acid test and postacetic acid test cervical images after registration. Finally, the proposed method achieves a classification accuracy of 86.3%, a sensitivity of 84.1%, and a specificity of 89.8% in 60 test cases. Experimental results show that this method can make better use of the multimodal features of colposcopy images and has lower requirements for medical staff in the process of data acquisition. It has certain clinical significance in cervical cancer precancerous lesion screening systems.
To realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this paper proposes a method of cervical precancerous lesion diagnosis based on multimodal feature changes. First, the preacetic acid test and postacetic acid test colposcopy images were registered based on cross-correlation and projection transformation, and then the cervical region was extracted by the k-means clustering algorithm. Finally, a deep learning network was used to extract features and classify the preacetic acid test and postacetic acid test cervical images after registration. Finally, the proposed method achieves a classification accuracy of 86.3%, a sensitivity of 84.1%, and a specificity of 89.8% in 60 test cases. Experimental results show that this method can make better use of the multimodal features of colposcopy images and has lower requirements for medical staff in the process of data acquisition. It has certain clinical significance in cervical cancer precancerous lesion screening systems.To realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this paper proposes a method of cervical precancerous lesion diagnosis based on multimodal feature changes. First, the preacetic acid test and postacetic acid test colposcopy images were registered based on cross-correlation and projection transformation, and then the cervical region was extracted by the k-means clustering algorithm. Finally, a deep learning network was used to extract features and classify the preacetic acid test and postacetic acid test cervical images after registration. Finally, the proposed method achieves a classification accuracy of 86.3%, a sensitivity of 84.1%, and a specificity of 89.8% in 60 test cases. Experimental results show that this method can make better use of the multimodal features of colposcopy images and has lower requirements for medical staff in the process of data acquisition. It has certain clinical significance in cervical cancer precancerous lesion screening systems.
To realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this paper proposes a method of cervical precancerous lesion diagnosis based on multimodal feature changes. First, the preacetic acid test and postacetic acid test colposcopy images were registered based on cross-correlation and projection transformation, and then the cervical region was extracted by the k-means clustering algorithm. Finally, a deep learning network was used to extract features and classify the preacetic acid test and postacetic acid test cervical images after registration. Finally, the proposed method achieves a classification accuracy of 86.3%, a sensitivity of 84.1%, and a specificity of 89.8% in 60 test cases. Experimental results show that this method can make better use of the multimodal features of colposcopy images and has lower requirements for medical staff in the process of data acquisition. It has certain clinical significance in cervical cancer precancerous lesion screening systems.
ArticleNumber 104209
Author Dong, Hua
Liang, Tong
Peng, Gengyou
Li, Ling
Liu, Jun
Author_xml – sequence: 1
  givenname: Gengyou
  surname: Peng
  fullname: Peng, Gengyou
  organization: College of Information Engineering, Nanchang Hangkong University, Nanchang, China
– sequence: 2
  givenname: Hua
  surname: Dong
  fullname: Dong, Hua
  organization: College of Information Engineering, Nanchang Hangkong University, Nanchang, China
– sequence: 3
  givenname: Tong
  surname: Liang
  fullname: Liang, Tong
  organization: College of Information Engineering, Nanchang Hangkong University, Nanchang, China
– sequence: 4
  givenname: Ling
  surname: Li
  fullname: Li, Ling
  organization: Department of Gynecologic Oncology, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
– sequence: 5
  givenname: Jun
  orcidid: 0000-0001-8341-5874
  surname: Liu
  fullname: Liu, Jun
  email: liujun@nchu.edu.cn
  organization: College of Information Engineering, Nanchang Hangkong University, Nanchang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33440316$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFv4AsceGSZew43uRSAYUWpAoOwNnyx6R4SezFTir13-NoW5BWQtqTP_TMO6P3nTNyEmJAQiiDNQMm32zXNo474-OIbs2Bs_ItOHRPyIq1m66CphYnZAXAoBItb07JWc5bABBQwzNyWtei3JhckS8fvL4NMftMY08tpjtv9UB3Ca0O5RnnTAfMPoZMjc7oaAx0nIfJj9EVsEc9zQmp_anDLebn5Gmvh4wvHs5z8uPq4_fLT9XN1-vPl-9uKtswMVVWoCyVUvbANbdMA284WmG0kUY4Lp0B5NBvpGOuMRobzoxubWt61ouuq8_J673uLsXfM-ZJjT5bHAYdsIysuNi0UIsaREFfHaDbOKdQpitUB43spFyolw_UbIqpapf8qNO9enSqABd7wKaYc8JeWT_pqRgzJe0HxUAt0ait-heNWqJR-2iKQHsg8NjjiNL3-1Islt55TCpbjyUe50tOk3LRHyNycSBiBx-WtH_hPea_pjCVuQL1bVmeZXc4K3sDNS8Cb_8vcNwMfwBsSdmb
CitedBy_id crossref_primary_10_1016_j_ibmed_2021_100031
crossref_primary_10_1016_j_eswa_2024_123579
crossref_primary_10_3389_fphar_2022_911962
crossref_primary_10_3390_ai5040144
crossref_primary_10_1007_s11042_024_19035_9
crossref_primary_10_1016_j_compbiomed_2024_108589
crossref_primary_10_1080_03772063_2025_2473548
crossref_primary_10_3389_fonc_2022_851367
crossref_primary_10_3390_diagnostics13182884
crossref_primary_10_3389_fnins_2022_884475
crossref_primary_10_3390_bioengineering11050468
crossref_primary_10_3390_diagnostics12112771
crossref_primary_10_1007_s10462_023_10666_2
crossref_primary_10_1007_s11042_022_12670_0
crossref_primary_10_1016_j_imu_2023_101360
crossref_primary_10_1038_s41598_024_51880_4
crossref_primary_10_2174_1573405618666220428104541
crossref_primary_10_1038_s41598_024_84422_z
crossref_primary_10_1007_s11517_023_02835_w
crossref_primary_10_3390_cimb46120818
crossref_primary_10_1016_j_bbe_2022_02_009
crossref_primary_10_1038_s41598_022_21692_5
crossref_primary_10_1111_exsy_13308
crossref_primary_10_1016_j_bspc_2021_103177
crossref_primary_10_3390_s22155489
crossref_primary_10_1109_ACCESS_2025_3530504
crossref_primary_10_38124_ijisrt_IJISRT24MAY989
crossref_primary_10_32628_CSEIT239018
crossref_primary_10_3389_fonc_2023_1289030
crossref_primary_10_3390_healthcare10020391
crossref_primary_10_3390_diagnostics13050836
crossref_primary_10_1109_OJEMB_2024_3367243
Cites_doi 10.1002/ijgo.12185
10.1016/j.canep.2017.06.008
10.1038/nrc2462
10.1016/j.eswa.2018.11.008
10.1016/S0140-6736(13)62218-7
10.1007/s13277-015-4663-9
10.1016/j.eururo.2019.09.006
10.1016/j.apme.2016.01.002
10.1016/j.compbiomed.2019.103394
10.3389/fbioe.2020.00343
10.1016/j.compbiomed.2017.04.006
10.1016/j.eswa.2019.112951
10.1016/j.future.2019.09.015
10.1016/S1470-2045(19)30072-5
10.1109/JBHI.2019.2922682
10.1117/1.3079810
10.1016/j.tele.2017.01.007
10.1016/j.patcog.2016.09.027
10.1111/1475-6773.12732
10.1158/1055-9965.EPI-15-0578
10.7717/peerj-cs.154
10.1016/j.compbiomed.2018.03.003
10.1016/j.neucom.2016.09.070
10.1109/TPAMI.2012.277
10.1093/jnci/djy225
10.1002/ijc.30695
10.1109/ACCESS.2018.2839338
10.1016/j.compbiomed.2018.04.009
10.1016/j.compbiomed.2019.04.018
10.1309/K7C9-X5P0-001B-2HK5
10.1016/j.clinthera.2014.11.013
10.1016/j.ypmed.2017.05.021
10.1016/j.future.2018.10.009
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
2021. Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
– notice: 2021. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2021.104209
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database (Proquest)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Research Library Prep
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 104209
ExternalDocumentID 33440316
10_1016_j_compbiomed_2021_104209
S0010482521000032
1_s2_0_S0010482521000032
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-c4e6fea66f02a2c1a0252ec4bab6b4d26db0e20f76d1d5bae521ba8c8bf1f4993
IEDL.DBID BENPR
ISSN 0010-4825
1879-0534
IngestDate Thu Oct 02 10:50:20 EDT 2025
Tue Oct 07 06:34:16 EDT 2025
Thu Apr 03 07:03:55 EDT 2025
Wed Oct 01 05:17:22 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Fri Feb 23 02:44:50 EST 2024
Tue Feb 25 20:11:33 EST 2025
Tue Oct 14 19:33:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Colposcopy image
Cervical screening
Automatic diagnosis
Acetic acid test
Multimodal feature change
automatic diagnosis
deep learning
cervical screening
colposcopy image
multimodal feature change
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-c4e6fea66f02a2c1a0252ec4bab6b4d26db0e20f76d1d5bae521ba8c8bf1f4993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8341-5874
PMID 33440316
PQID 2490569664
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2478034304
proquest_journals_2490569664
pubmed_primary_33440316
crossref_citationtrail_10_1016_j_compbiomed_2021_104209
crossref_primary_10_1016_j_compbiomed_2021_104209
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_104209
elsevier_clinicalkeyesjournals_1_s2_0_S0010482521000032
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_104209
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Zhu, Albadawy, Saha, Zhang, Harowicz, Mazurowski (bib29) 2019; 109
Pfaendler, Wenzel, Mechanic, Penner (bib6) 2015; 37
Lakshmanaprabu, Mohanty, Shankar, Arunkumar, Ramirez (bib32) 2019; 92
He, Zhang, Ren, Sun (bib39) 2016
Hu, Bell, Antani, Xue, Yu, Horning, Gachuhi, Wilson, Jaiswal, Befano (bib34) 2019; 111
Mezei, Armstrong, Pedersen, Campos, Mitchell, Sekikubo, Byamugisha, Kim, Bryan, Ogilvie (bib16) 2017; 141
Torre, Siegel, Ward, Jemal (bib4) 2016; 25
Ghoneim, Muhammad, Hossain (bib44) 2020; 102
Peng, Yuan, Jiang, Tang, Li (bib5) 2016; 37
Chen, Shen, Zhou, Maquilan, Thomas, Folkert, Albuquerque, Wang (bib26) 2018; 97
Suk, Shen (bib24) 2013; vol. 16
Xu, Zhang, Xin, Kim, Long, Xue, Antani, Huang (bib12) 2017; 63
Thekkek, Richards-Kortum (bib42) 2008; 8
Ketelaars, Bosgraaf, Siebers, Massuger, Van der Linden, Wauters, Rahamat-Langendoen, van den Brule, IntHout, Melchers (bib13) 2017; 101
Holme, Kapambwe, Nessa, Basu, Murillo, Jeronimo (bib17) 2017; 138
Li, Chen, Xue, Tang, Chang, Chu, Ma, Li, Zheng, Qiao (bib36) 2020; 38
Ting, Tan, Sim (bib27) 2019; 120
Brisson, Drolet (bib2) 2019; 20
Simonyan, Zisserman (bib38) 2015
Kessler (bib7) 2017; vol. 33
Mohamad, Saad, Murad, Altraigy (bib18) 2016; 13
Kamoun, de Reyniès, Allory, Sjödahl, Robertson, Seiler, Hoadley, Groeneveld, Al-Ahmadie, Choi (bib31) 2020; 77
Asiedu, Simhal, Chaudhary, Mueller, Lam, Schmitt, Venegas, Sapiro, Ramanujam (bib20) 2018; 66
Huang, Liu, Van Der Maaten, Weinberger (bib40) 2017
Adsul, Manjunath, Srinivas, Arun, Madhivanan (bib19) 2017; 49
Hao, Peng, Wang, Liu, Zheng (bib25) 2019; 113
Jemal, Bray, Center, Ferlay, Ward, Forman (bib3) 2011; 61
Ronco, Dillner, Elfström, Tunesi, Snijders, Arbyn, Kitchener, Segnan, Gilham, Giorgi-Rossi (bib14) 2014; 383
Liu, Du, Lu, Peng, Li, Zhang (bib37) 2019; 9
Li, Venkataraman, Gustafsson, Oyama, Ferris, Lieberman (bib45) 2009; 14
Sun, Zheng, Qian (bib33) 2017; 89
Roth, Lu, Seff, Cherry, Hoffman, Wang, Liu, Turkbey, Summers (bib22) 2014; vol. 65
Fernandes, Chicco, Cardoso, Fernandes (bib46) 2018; 4
Tareef, Song, Cai, Huang, Chang, Wang, Fulham, Feng, Chen (bib15) 2017; 221
Sabik, Tarazi, Hochhalter, Dahman, Bradley (bib8) 2018; 53
Nilashi, Ibrahim, Ahmadi, Shahmoradi (bib28) 2017; 34
Liu, Wu, Peng, Luo (bib41) 2020; 8
Grenko, Abendroth, Frauenhoffer, Ruggiero, Zaino (bib9) 2000; 114
Shin, Orton, Collins, Doran, Leach (bib23) 2012; 35
Fondón, Sarmiento, García, Silvestre, Eloy, Polónia, Aguiar (bib30) 2018; 96
Alyafeai, Ghouti (bib11) 2020; 141
Soerjomataram, Siegel (bib1) 2018; 68
Crothers (bib10) 2018; 126
Cireşan, Giusti, Gambardella, Schmidhuber (bib21) 2013; vol. 16
Yue, Ding, Zhao, Wang, Ma, Zhang, Zhang (bib35) 2019; 24
Fernandes, Cardoso, Fernandes (bib43) 2018; 6
Pfaendler (10.1016/j.compbiomed.2021.104209_bib6) 2015; 37
Soerjomataram (10.1016/j.compbiomed.2021.104209_bib1) 2018; 68
Ronco (10.1016/j.compbiomed.2021.104209_bib14) 2014; 383
Roth (10.1016/j.compbiomed.2021.104209_bib22) 2014; vol. 65
Yue (10.1016/j.compbiomed.2021.104209_bib35) 2019; 24
Kessler (10.1016/j.compbiomed.2021.104209_bib7) 2017; vol. 33
Ketelaars (10.1016/j.compbiomed.2021.104209_bib13) 2017; 101
Tareef (10.1016/j.compbiomed.2021.104209_bib15) 2017; 221
Li (10.1016/j.compbiomed.2021.104209_bib36) 2020; 38
Brisson (10.1016/j.compbiomed.2021.104209_bib2) 2019; 20
Alyafeai (10.1016/j.compbiomed.2021.104209_bib11) 2020; 141
Sabik (10.1016/j.compbiomed.2021.104209_bib8) 2018; 53
Adsul (10.1016/j.compbiomed.2021.104209_bib19) 2017; 49
Lakshmanaprabu (10.1016/j.compbiomed.2021.104209_bib32) 2019; 92
Cireşan (10.1016/j.compbiomed.2021.104209_bib21) 2013; vol. 16
Ting (10.1016/j.compbiomed.2021.104209_bib27) 2019; 120
Liu (10.1016/j.compbiomed.2021.104209_bib37) 2019; 9
Peng (10.1016/j.compbiomed.2021.104209_bib5) 2016; 37
Holme (10.1016/j.compbiomed.2021.104209_bib17) 2017; 138
Xu (10.1016/j.compbiomed.2021.104209_bib12) 2017; 63
He (10.1016/j.compbiomed.2021.104209_bib39) 2016
Jemal (10.1016/j.compbiomed.2021.104209_bib3) 2011; 61
Crothers (10.1016/j.compbiomed.2021.104209_bib10) 2018; 126
Nilashi (10.1016/j.compbiomed.2021.104209_bib28) 2017; 34
Hao (10.1016/j.compbiomed.2021.104209_bib25) 2019; 113
Kamoun (10.1016/j.compbiomed.2021.104209_bib31) 2020; 77
Mezei (10.1016/j.compbiomed.2021.104209_bib16) 2017; 141
Torre (10.1016/j.compbiomed.2021.104209_bib4) 2016; 25
Asiedu (10.1016/j.compbiomed.2021.104209_bib20) 2018; 66
Sun (10.1016/j.compbiomed.2021.104209_bib33) 2017; 89
Simonyan (10.1016/j.compbiomed.2021.104209_bib38) 2015
Thekkek (10.1016/j.compbiomed.2021.104209_bib42) 2008; 8
Ghoneim (10.1016/j.compbiomed.2021.104209_bib44) 2020; 102
Fernandes (10.1016/j.compbiomed.2021.104209_bib46) 2018; 4
Fondón (10.1016/j.compbiomed.2021.104209_bib30) 2018; 96
Mohamad (10.1016/j.compbiomed.2021.104209_bib18) 2016; 13
Grenko (10.1016/j.compbiomed.2021.104209_bib9) 2000; 114
Fernandes (10.1016/j.compbiomed.2021.104209_bib43) 2018; 6
Shin (10.1016/j.compbiomed.2021.104209_bib23) 2012; 35
Suk (10.1016/j.compbiomed.2021.104209_bib24) 2013; vol. 16
Chen (10.1016/j.compbiomed.2021.104209_bib26) 2018; 97
Liu (10.1016/j.compbiomed.2021.104209_bib41) 2020; 8
Li (10.1016/j.compbiomed.2021.104209_bib45) 2009; 14
Hu (10.1016/j.compbiomed.2021.104209_bib34) 2019; 111
Huang (10.1016/j.compbiomed.2021.104209_bib40) 2017
Zhu (10.1016/j.compbiomed.2021.104209_bib29) 2019; 109
References_xml – volume: vol. 16
  start-page: 583
  year: 2013
  end-page: 590
  ident: bib24
  article-title: Deep learning-based feature representation for AD/MCI classification
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer
– volume: 38
  start-page: 489
  year: 2020
  end-page: 493
  ident: bib36
  article-title: Computer-aided cervical cancer diagnosis using time-lapsed colposcopic images
  publication-title: IEEE Trans. Med. Imag.
– volume: 101
  start-page: 96
  year: 2017
  end-page: 101
  ident: bib13
  article-title: High-risk human papillomavirus detection in self-sampling compared to physician-taken smear in a responder population of the Dutch cervical screening: results of the VERA study
  publication-title: Prev. Med.
– volume: 20
  start-page: 319
  year: 2019
  end-page: 321
  ident: bib2
  article-title: Global elimination of cervical cancer as a public health problem
  publication-title: Lancet Oncol.
– volume: 141
  start-page: 437
  year: 2017
  end-page: 446
  ident: bib16
  article-title: Cost‐effectiveness of cervical cancer screening methods in low‐and middle‐income countries: a systematic review
  publication-title: Int. J. Canc.
– volume: 126
  start-page: 301
  year: 2018
  end-page: 308
  ident: bib10
  article-title: Cytologic‐histologic correlation: where are we now, and where are we going?
  publication-title: Canc. Cytopathol.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib39
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 77
  start-page: 420
  year: 2020
  end-page: 433
  ident: bib31
  article-title: A consensus molecular classification of muscle-invasive bladder cancer
  publication-title: Eur. Urol.
– volume: 63
  start-page: 468
  year: 2017
  end-page: 475
  ident: bib12
  article-title: Multi-feature based benchmark for cervical dysplasia classification evaluation
  publication-title: Pattern Recogn.
– volume: 8
  start-page: 343
  year: 2020
  ident: bib41
  article-title: Grade prediction of bleeding volume in cesarean section of patients with pernicious placenta previa based on deep learning
  publication-title: Front. Bioeng. Biotechnol.
– volume: 14
  year: 2009
  ident: bib45
  article-title: Using acetowhite opacity index for detecting cervical intraepithelial neoplasia
  publication-title: J. Biomed. Optic.
– volume: 138
  start-page: 63
  year: 2017
  end-page: 68
  ident: bib17
  article-title: Scaling up proven innovative cervical cancer screening strategies: challenges and opportunities in implementation at the population level in low‐and lower‐middle‐income countries
  publication-title: Int. J. Gynecol. Obstet.
– volume: 4
  start-page: e154
  year: 2018
  ident: bib46
  article-title: Supervised deep learning embeddings for the prediction of cervical cancer diagnosis
  publication-title: PeerJ Comput. Sci.
– volume: 96
  start-page: 41
  year: 2018
  end-page: 51
  ident: bib30
  article-title: Automatic classification of tissue malignancy for breast carcinoma diagnosis
  publication-title: Comput. Biol. Med.
– volume: 92
  start-page: 374
  year: 2019
  end-page: 382
  ident: bib32
  article-title: Optimal deep learning model for classification of lung cancer on CT images
  publication-title: Future Generat. Comput. Syst.
– volume: 37
  start-page: 2779
  year: 2016
  end-page: 2788
  ident: bib5
  article-title: LncRNAs: key players and novel insights into cervical cancer
  publication-title: Tumor Biol.
– start-page: 1409
  year: 2015
  end-page: 1556
  ident: bib38
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Computer Vision and Pattern Recognition, CVPR
– volume: vol. 16
  start-page: 411
  year: 2013
  end-page: 418
  ident: bib21
  article-title: Mitosis detection in breast cancer histology images with deep neural networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer
– volume: 25
  start-page: 16
  year: 2016
  end-page: 27
  ident: bib4
  article-title: Global cancer incidence and mortality rates and trends—an update
  publication-title: Canc. Epidemiol. Prevent. Biomark.
– volume: 53
  start-page: 2870
  year: 2018
  end-page: 2891
  ident: bib8
  article-title: Medicaid expansions and cervical cancer screening for low‐income women
  publication-title: Health Serv. Res.
– volume: 13
  start-page: 204
  year: 2016
  end-page: 207
  ident: bib18
  article-title: Visual inspection after acetic acid (VIA) as an alternative screening tool for cancer cervix
  publication-title: Apollo Med.
– volume: 49
  start-page: 161
  year: 2017
  end-page: 174
  ident: bib19
  article-title: Implementing community-based cervical cancer screening programs using visual inspection with acetic acid in India: a systematic review
  publication-title: Canc. Epidemiol.
– volume: 61
  start-page: 69
  year: 2011
  end-page: 90
  ident: bib3
  article-title: Global cancer statistics
  publication-title: CA A Cancer J. Clin.
– volume: 383
  start-page: 524
  year: 2014
  end-page: 532
  ident: bib14
  article-title: Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials
  publication-title: Lancet
– volume: 221
  start-page: 94
  year: 2017
  end-page: 107
  ident: bib15
  article-title: Automatic segmentation of overlapping cervical smear cells based on local distinctive features and guided shape deformation
  publication-title: Neurocomputing
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib40
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 37
  start-page: 39
  year: 2015
  end-page: 48
  ident: bib6
  article-title: Cervical cancer survivorship: long-term quality of life and social support
  publication-title: Clin. Therapeut.
– volume: 114
  start-page: 735
  year: 2000
  end-page: 740
  ident: bib9
  article-title: Variance in the interpretation of cervical biopsy specimens obtained for atypical squamous cells of undetermined significance
  publication-title: Am. J. Clin. Pathol.
– volume: vol. 65
  start-page: 520
  year: 2014
  end-page: 527
  ident: bib22
  article-title: A new 2.5 D representation for lymph node detection using random sets of deep convolutional neural network observations
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer
– volume: 141
  year: 2020
  ident: bib11
  article-title: A fully-automated deep learning pipeline for cervical cancer classification
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 33910
  year: 2018
  end-page: 33927
  ident: bib43
  article-title: Automated methods for the decision support of cervical cancer screening using digital colposcopies
  publication-title: IEEE Access
– volume: 9
  start-page: 1103
  year: 2019
  end-page: 1111
  ident: bib37
  article-title: Comparison of classifier configurations for the classification of cervical intraepithelial neoplasia using acetic acid test images
  publication-title: J. Med. Imag. Health Inform.
– volume: 68
  start-page: 394
  year: 2018
  end-page: 424
  ident: bib1
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: Ca - Cancer J. Clin.
– volume: 109
  start-page: 85
  year: 2019
  end-page: 90
  ident: bib29
  article-title: Deep learning for identifying radiogenomic associations in breast cancer
  publication-title: Comput. Biol. Med.
– volume: 102
  start-page: 643
  year: 2020
  end-page: 649
  ident: bib44
  article-title: Cervical cancer classification using convolutional neural networks and extreme learning machines
  publication-title: Future Generat. Comput. Syst.
– volume: 97
  start-page: 30
  year: 2018
  end-page: 36
  ident: bib26
  article-title: Accurate segmenting of cervical tumors in PET imaging based on similarity between adjacent slices
  publication-title: Comput. Biol. Med.
– volume: vol. 33
  start-page: 172
  year: 2017
  end-page: 183
  ident: bib7
  article-title: Cervical cancer: prevention and early detection
  publication-title: Seminars in Oncology Nursing
– volume: 24
  start-page: 844
  year: 2019
  end-page: 854
  ident: bib35
  article-title: Automatic CIN grades prediction of sequential cervigram image using LSTM with multistate CNN features
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 35
  start-page: 1930
  year: 2012
  end-page: 1943
  ident: bib23
  article-title: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 113
  start-page: 103394
  year: 2019
  ident: bib25
  article-title: Evaluation of convolutional neural network for recognizing uterine contractions with electrohysterogram
  publication-title: Comput. Biol. Med.
– volume: 34
  start-page: 133
  year: 2017
  end-page: 144
  ident: bib28
  article-title: A knowledge-based system for breast cancer classification using fuzzy logic method
  publication-title: Telematics Inf.
– volume: 111
  start-page: 923
  year: 2019
  end-page: 932
  ident: bib34
  article-title: An observational study of deep learning and automated evaluation of cervical images for cancer screening, JNCI
  publication-title: J. Natl. Cancer Inst.
– volume: 66
  start-page: 2306
  year: 2018
  end-page: 2318
  ident: bib20
  article-title: Development of algorithms for automated detection of cervical pre-cancers with a low-cost, point-of-care, Pocket Colposcope
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 8
  start-page: 725
  year: 2008
  end-page: 731
  ident: bib42
  article-title: Optical imaging for cervical cancer detection: solutions for a continuing global problem
  publication-title: Nat. Rev. Canc.
– volume: 120
  start-page: 103
  year: 2019
  end-page: 115
  ident: bib27
  article-title: Convolutional neural network improvement for breast cancer classification
  publication-title: Expert Syst. Appl.
– volume: 89
  start-page: 530
  year: 2017
  end-page: 539
  ident: bib33
  article-title: Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis
  publication-title: Comput. Biol. Med.
– volume: 68
  start-page: 394
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104209_bib1
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: Ca - Cancer J. Clin.
– volume: 138
  start-page: 63
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104209_bib17
  article-title: Scaling up proven innovative cervical cancer screening strategies: challenges and opportunities in implementation at the population level in low‐and lower‐middle‐income countries
  publication-title: Int. J. Gynecol. Obstet.
  doi: 10.1002/ijgo.12185
– start-page: 1409
  year: 2015
  ident: 10.1016/j.compbiomed.2021.104209_bib38
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 49
  start-page: 161
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104209_bib19
  article-title: Implementing community-based cervical cancer screening programs using visual inspection with acetic acid in India: a systematic review
  publication-title: Canc. Epidemiol.
  doi: 10.1016/j.canep.2017.06.008
– volume: 8
  start-page: 725
  year: 2008
  ident: 10.1016/j.compbiomed.2021.104209_bib42
  article-title: Optical imaging for cervical cancer detection: solutions for a continuing global problem
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc2462
– volume: 120
  start-page: 103
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104209_bib27
  article-title: Convolutional neural network improvement for breast cancer classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.11.008
– volume: 383
  start-page: 524
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104209_bib14
  article-title: Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)62218-7
– start-page: 4700
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104209_bib40
  article-title: Densely connected convolutional networks
– volume: 37
  start-page: 2779
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104209_bib5
  article-title: LncRNAs: key players and novel insights into cervical cancer
  publication-title: Tumor Biol.
  doi: 10.1007/s13277-015-4663-9
– volume: 77
  start-page: 420
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104209_bib31
  article-title: A consensus molecular classification of muscle-invasive bladder cancer
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2019.09.006
– volume: 13
  start-page: 204
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104209_bib18
  article-title: Visual inspection after acetic acid (VIA) as an alternative screening tool for cancer cervix
  publication-title: Apollo Med.
  doi: 10.1016/j.apme.2016.01.002
– volume: 113
  start-page: 103394
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104209_bib25
  article-title: Evaluation of convolutional neural network for recognizing uterine contractions with electrohysterogram
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103394
– volume: 8
  start-page: 343
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104209_bib41
  article-title: Grade prediction of bleeding volume in cesarean section of patients with pernicious placenta previa based on deep learning
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00343
– volume: 89
  start-page: 530
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104209_bib33
  article-title: Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.04.006
– volume: 141
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104209_bib11
  article-title: A fully-automated deep learning pipeline for cervical cancer classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112951
– volume: 102
  start-page: 643
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104209_bib44
  article-title: Cervical cancer classification using convolutional neural networks and extreme learning machines
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2019.09.015
– volume: 20
  start-page: 319
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104209_bib2
  article-title: Global elimination of cervical cancer as a public health problem
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(19)30072-5
– volume: 126
  start-page: 301
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104209_bib10
  article-title: Cytologic‐histologic correlation: where are we now, and where are we going?
  publication-title: Canc. Cytopathol.
– volume: 24
  start-page: 844
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104209_bib35
  article-title: Automatic CIN grades prediction of sequential cervigram image using LSTM with multistate CNN features
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2922682
– volume: 14
  year: 2009
  ident: 10.1016/j.compbiomed.2021.104209_bib45
  article-title: Using acetowhite opacity index for detecting cervical intraepithelial neoplasia
  publication-title: J. Biomed. Optic.
  doi: 10.1117/1.3079810
– volume: vol. 65
  start-page: 520
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104209_bib22
  article-title: A new 2.5 D representation for lymph node detection using random sets of deep convolutional neural network observations
– volume: 34
  start-page: 133
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104209_bib28
  article-title: A knowledge-based system for breast cancer classification using fuzzy logic method
  publication-title: Telematics Inf.
  doi: 10.1016/j.tele.2017.01.007
– volume: 38
  start-page: 489
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104209_bib36
  article-title: Computer-aided cervical cancer diagnosis using time-lapsed colposcopic images
  publication-title: IEEE Trans. Med. Imag.
– volume: 63
  start-page: 468
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104209_bib12
  article-title: Multi-feature based benchmark for cervical dysplasia classification evaluation
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2016.09.027
– volume: 53
  start-page: 2870
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104209_bib8
  article-title: Medicaid expansions and cervical cancer screening for low‐income women
  publication-title: Health Serv. Res.
  doi: 10.1111/1475-6773.12732
– volume: 25
  start-page: 16
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104209_bib4
  article-title: Global cancer incidence and mortality rates and trends—an update
  publication-title: Canc. Epidemiol. Prevent. Biomark.
  doi: 10.1158/1055-9965.EPI-15-0578
– volume: 9
  start-page: 1103
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104209_bib37
  article-title: Comparison of classifier configurations for the classification of cervical intraepithelial neoplasia using acetic acid test images
  publication-title: J. Med. Imag. Health Inform.
– start-page: 770
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104209_bib39
  article-title: Deep residual learning for image recognition
– volume: 4
  start-page: e154
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104209_bib46
  article-title: Supervised deep learning embeddings for the prediction of cervical cancer diagnosis
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.154
– volume: 96
  start-page: 41
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104209_bib30
  article-title: Automatic classification of tissue malignancy for breast carcinoma diagnosis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.03.003
– volume: 221
  start-page: 94
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104209_bib15
  article-title: Automatic segmentation of overlapping cervical smear cells based on local distinctive features and guided shape deformation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.070
– volume: 35
  start-page: 1930
  year: 2012
  ident: 10.1016/j.compbiomed.2021.104209_bib23
  article-title: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.277
– volume: 111
  start-page: 923
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104209_bib34
  article-title: An observational study of deep learning and automated evaluation of cervical images for cancer screening, JNCI
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djy225
– volume: 141
  start-page: 437
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104209_bib16
  article-title: Cost‐effectiveness of cervical cancer screening methods in low‐and middle‐income countries: a systematic review
  publication-title: Int. J. Canc.
  doi: 10.1002/ijc.30695
– volume: 66
  start-page: 2306
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104209_bib20
  article-title: Development of algorithms for automated detection of cervical pre-cancers with a low-cost, point-of-care, Pocket Colposcope
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 6
  start-page: 33910
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104209_bib43
  article-title: Automated methods for the decision support of cervical cancer screening using digital colposcopies
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2839338
– volume: 61
  start-page: 69
  year: 2011
  ident: 10.1016/j.compbiomed.2021.104209_bib3
  article-title: Global cancer statistics
  publication-title: CA A Cancer J. Clin.
– volume: 97
  start-page: 30
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104209_bib26
  article-title: Accurate segmenting of cervical tumors in PET imaging based on similarity between adjacent slices
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.04.009
– volume: 109
  start-page: 85
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104209_bib29
  article-title: Deep learning for identifying radiogenomic associations in breast cancer
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.04.018
– volume: vol. 33
  start-page: 172
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104209_bib7
  article-title: Cervical cancer: prevention and early detection
– volume: 114
  start-page: 735
  year: 2000
  ident: 10.1016/j.compbiomed.2021.104209_bib9
  article-title: Variance in the interpretation of cervical biopsy specimens obtained for atypical squamous cells of undetermined significance
  publication-title: Am. J. Clin. Pathol.
  doi: 10.1309/K7C9-X5P0-001B-2HK5
– volume: 37
  start-page: 39
  year: 2015
  ident: 10.1016/j.compbiomed.2021.104209_bib6
  article-title: Cervical cancer survivorship: long-term quality of life and social support
  publication-title: Clin. Therapeut.
  doi: 10.1016/j.clinthera.2014.11.013
– volume: 101
  start-page: 96
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104209_bib13
  article-title: High-risk human papillomavirus detection in self-sampling compared to physician-taken smear in a responder population of the Dutch cervical screening: results of the VERA study
  publication-title: Prev. Med.
  doi: 10.1016/j.ypmed.2017.05.021
– volume: vol. 16
  start-page: 411
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104209_bib21
  article-title: Mitosis detection in breast cancer histology images with deep neural networks
– volume: vol. 16
  start-page: 583
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104209_bib24
  article-title: Deep learning-based feature representation for AD/MCI classification
– volume: 92
  start-page: 374
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104209_bib32
  article-title: Optimal deep learning model for classification of lung cancer on CT images
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2018.10.009
SSID ssj0004030
Score 2.4250145
Snippet To realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images, this...
AbstractTo realize the automatic diagnosis of cervical intraepithelial neoplasia (CIN) cases by preacetic acid test and postacetic acid test colposcopy images,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104209
SubjectTerms Accuracy
Acetic acid test
Acids
Algorithms
Artificial intelligence
Automatic diagnosis
Biopsy
Cervical cancer
Cervical screening
Cervix
Childrens health
Classification
Cluster analysis
Clustering
Colposcopy
Colposcopy image
Cross correlation
Data acquisition
Deep learning
Diagnosis
Experiments
Feature extraction
Image classification
Internal Medicine
Lesions
Machine learning
Maternal & child health
Medical diagnosis
Medical imaging
Medical personnel
Medical research
Medical screening
Multimodal feature change
Neural networks
Other
Registration
Vagina
Vector quantization
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yB_Eivl1fRPBabZNs0uJJ1GUR1pOCt5CkCays3cWuV3-7kybtIioseGw7Q9vJ5MtM8k2C0IUeKF2q0iVGOZowwW2iXKESnQkjCmj0vCFjjh_56Jk9vAxe1tBtWwvjaZUR-wOmN2gd71xFa17NJxNf4wupBCQ4pJmiph6HGRP-FIPLzyXNg6U0lKEA3njpyOYJHC9P2w5l7pApkswveBJPTfx9iPorBG2GouEW2owxJL4Jn7mN1my1g9bHcZV8Fz3eBf7cpMYzh02DBiA_hx_1bfwOyT6eWj9NVmM_ipV4VuGGWfg2K0HQ2Wa3TxyKgus99Dy8f7odJfHchMRA-LNIDLMcJDl3KVHEZAriGmIN00pzzUrCS51akjrBy6wcaGXBhFrlJtcuc5AB0X3Uq2aVPUSYiSKnEPQoyCtYwQClId4ojDBGM22p6SPRmkqauKm4P9tiKlv22KtcGll6I8tg5D7KOs152FhjBZ2ibQ3ZFo4C1ElA_xV0xW-6to59tpaZrIlM5Q-_6qPrTvOba6743pPWbWT3Ksh5IfCETJP10Xn3GDq2X61RlQU_ABmRp5TRFGQOgrt1hqKUgV9n_Ohfn3aMNvxVYNSdoN7i_cOeQoi10GdNH_oCm9slcA
  priority: 102
  providerName: Elsevier
Title Diagnosis of cervical precancerous lesions based on multimodal feature changes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482521000032
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482521000032
https://dx.doi.org/10.1016/j.compbiomed.2021.104209
https://www.ncbi.nlm.nih.gov/pubmed/33440316
https://www.proquest.com/docview/2490569664
https://www.proquest.com/docview/2478034304
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250903
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61uxLignh3oayMxDWQ2N44UYVQgS4LqBECKu3N8lMClWRptld-O-M4yV4K2ksumUkiezyPzDczAC_0QmmrrE-M8izhIneJ8qVKdCaMKHHTiw6MeV7lqwv-ab1YH0A11MIEWOWgEztFbRsT_pG_wjABbTU65_zN5ncSpkaF7OowQkP1oxXs667F2CFMaeiMNYHp27Pqy9ddpWTKYlEKah-OwVGP7YmIrwDijkXvGDfSLKQ_aQAq3myw_uWQdoZpeRfu9B4lOY0icA8OXH0fbp33OfMHUL2PaLofLWk8MZ1uQPoNqrqw41cY-pNLF36atSTYNEuamnQ4w1-NRULvut6fJJYItw_hYnn2_d0q6acoJAadoW1iuMuRMs99ShU1mUIvhzrDtdK55pbmVqeOpl7kNrMLrRwadK0KU2ifeYyH2COY1E3tjoBwURYMXSCFUQYvOeps9D5KI4zRXDtmZiCGpZKmbzEeJl1cygFL9lPuFlmGRZZxkWeQjZyb2GZjD55y2A05lJGi4pNoC_bgFTfxurY_wa3MZEtlKr91DYxQUmiXCGF0BicjZ--kROdjz_ceD2Ijx1ftRHsGz8fbeMxD7kbVDuUAaUSRMs5SpHkcxW1cKMY4ynWWP_n_w5_C7fAlEUB3DJPt1bV7hh7VVs_h8OWfDK9iLfBaLD_MYXr68fOqmvcH6C-onyVb
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgIuiHcXChgJjhGJ7c1DqEJAW21pd4WglXozfkpFJVmarRB_rr-t49jJXgraS8_rSVbj8cw3mW88AG_UWCojjUu0dCzhRW4T6SqZqKzQRYWbXnZkzOksnxzzLyfjkzW47HthPK2y94mdozaN9t_I32GagLEawTn_MP-d-KlRvrraj9CQcbSC2e6uGIuNHQf27x9M4drt_R3c77eU7u0efZ4kccpAohEsLBLNbe6szHOXUkl1JhEFUKu5kipX3NDcqNTS1BW5ycxYSYsBT8lSl8plDvMFhs-9BRuc8QqTv41Pu7Ov35admSkLTTDo7TgmY5FLFBhmnjQemuwxT6WZL7dST4y8PkD-CwB3gXDvPtyLCJZ8DCb3ANZs_RBuT2ON_hHMdgJ777QljSO680W4fo6u1VvYeXPRkjPrP9K1xMdQQ5qadLzGX43BhaglX9UgoSW5fQzHN6LPJ7BeN7XdBMKLqmQIuSRmNbziGCMQ7VS60FpxZZkeQdGrSuh4pbmfrHEmeu7aT7FUsvBKFkHJI8gGyXm41mMFmarfDdG3raKjFRh7VpAtrpO1bfQYrchES0UqvncXJqGl0K7wwugI3g-SERQFsLPie7d6sxHDq5ZHaQSvh5_Rrfhakawt2gGuKcqUcZbimqfB3AZFMcbRrrP82f8f_gruTI6mh-Jwf3bwHO76fxXIe1uwvji_sC8QzS3Uy3hkCPy46VN6Ba8nYBw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8WChgJjlET22snQgghllVL6QoJKu3N-CmBSrI0WyH-Gr-OcZxkLwXtped4nGg8nvkm840N8MJMtXHahczqwDIuhc90qHRmCmllhYtedmTMk4U4POUfltPlDvwZemEirXLwiZ2jdo2N_8gPME3AWI3gnB-EnhbxaTZ_s_qZxRukYqV1uE4jmcix__0L07f29dEM1_olpfP3X94dZv0NA5lFoLDOLPcieC1EyKmmttCIAKi33GgjDHdUOJN7mgcpXOGmRnsMdkaXtjShCJgrMJz3GlyXjFWRTiiXctOTmbPU_oJ-jmMa1rOIErcs0sVTez1mqLSIhVYaKZGXh8Z_Qd8uBM5vwc0eu5K3ydhuw46v78DeSV-dvwuLWeLtfWtJE4jtvBCOX6FTjbZ13ly05MzH33MtidHTkaYmHaPxR-NwIOoo1jNIakZu78HplWjzPuzWTe0fAuGyKhmCLY35DK84RgfEOZWV1hpuPLMTkIOqlO0PM493apypgbX2XW2UrKKSVVLyBIpRcpUO9NhCphpWQw0Nq-hiFUadLWTlZbK-7X1FqwrVUpWrz91RSWgptCu5MDqBV6NkD4cSzNnyvfuD2ajxVZtNNIHn42N0KLFKpGuPdoBjZJkzznIc8yCZ26goxjjadSEe_X_yZ7CHe1N9PFocP4Yb8aMSa28fdtfnF_4Jwri1edrtFwJfr3qD_gUVSl22
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+cervical+precancerous+lesions+based+on+multimodal+feature+changes&rft.jtitle=Computers+in+biology+and+medicine&rft.date=2021-03-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=130&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.104209&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon