Effect of Tryptic Digestion on Sensitivity and Specificity in MALDI-TOF-Based Molecular Diagnostics through Machine Learning
The digestion of protein into peptide fragments reduces the size and complexity of protein molecules. Peptide fragments can be analyzed with higher sensitivity (often > 102 fold) and resolution using MALDI-TOF mass spectrometers, leading to improved pattern recognition by common machine learning...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 23; no. 19; p. 8042 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
23.09.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s23198042 |
Cover
| Abstract | The digestion of protein into peptide fragments reduces the size and complexity of protein molecules. Peptide fragments can be analyzed with higher sensitivity (often > 102 fold) and resolution using MALDI-TOF mass spectrometers, leading to improved pattern recognition by common machine learning algorithms. In turn, enhanced sensitivity and specificity for bacterial sorting and/or disease diagnosis may be obtained. To test this hypothesis, four exemplar case studies have been pursued in which samples are sorted into dichotomous groups by machine learning (ML) software based on MALDI-TOF spectra. Samples were analyzed in ‘intact’ mode in which the proteins present in the sample were not digested with protease prior to MALDI-TOF analysis and separately after the standard overnight tryptic digestion of the same samples. For each case, sensitivity (sens), specificity (spc), and the Youdin index (J) were used to assess the ML model performance. The proteolytic digestion of samples prior to MALDI-TOF analysis substantially enhanced the sensitivity and specificity of dichotomous sorting. Two exceptions were when substantial differences in chemical composition between the samples were present and, in such cases, both ‘intact’ and ‘digested’ protocols performed similarly. The results suggest proteolytic digestion prior to analysis can improve sorting in MALDI/ML-based workflows and may enable improved biomarker discovery. However, when samples are easily distinguishable protein digestion is not necessary to obtain useful diagnostic results. |
|---|---|
| AbstractList | The digestion of protein into peptide fragments reduces the size and complexity of protein molecules. Peptide fragments can be analyzed with higher sensitivity (often > 102 fold) and resolution using MALDI-TOF mass spectrometers, leading to improved pattern recognition by common machine learning algorithms. In turn, enhanced sensitivity and specificity for bacterial sorting and/or disease diagnosis may be obtained. To test this hypothesis, four exemplar case studies have been pursued in which samples are sorted into dichotomous groups by machine learning (ML) software based on MALDI-TOF spectra. Samples were analyzed in ‘intact’ mode in which the proteins present in the sample were not digested with protease prior to MALDI-TOF analysis and separately after the standard overnight tryptic digestion of the same samples. For each case, sensitivity (sens), specificity (spc), and the Youdin index (J) were used to assess the ML model performance. The proteolytic digestion of samples prior to MALDI-TOF analysis substantially enhanced the sensitivity and specificity of dichotomous sorting. Two exceptions were when substantial differences in chemical composition between the samples were present and, in such cases, both ‘intact’ and ‘digested’ protocols performed similarly. The results suggest proteolytic digestion prior to analysis can improve sorting in MALDI/ML-based workflows and may enable improved biomarker discovery. However, when samples are easily distinguishable protein digestion is not necessary to obtain useful diagnostic results. The digestion of protein into peptide fragments reduces the size and complexity of protein molecules. Peptide fragments can be analyzed with higher sensitivity (often > 102 fold) and resolution using MALDI-TOF mass spectrometers, leading to improved pattern recognition by common machine learning algorithms. In turn, enhanced sensitivity and specificity for bacterial sorting and/or disease diagnosis may be obtained. To test this hypothesis, four exemplar case studies have been pursued in which samples are sorted into dichotomous groups by machine learning (ML) software based on MALDI-TOF spectra. Samples were analyzed in 'intact' mode in which the proteins present in the sample were not digested with protease prior to MALDI-TOF analysis and separately after the standard overnight tryptic digestion of the same samples. For each case, sensitivity (sens), specificity (spc), and the Youdin index (J) were used to assess the ML model performance. The proteolytic digestion of samples prior to MALDI-TOF analysis substantially enhanced the sensitivity and specificity of dichotomous sorting. Two exceptions were when substantial differences in chemical composition between the samples were present and, in such cases, both 'intact' and 'digested' protocols performed similarly. The results suggest proteolytic digestion prior to analysis can improve sorting in MALDI/ML-based workflows and may enable improved biomarker discovery. However, when samples are easily distinguishable protein digestion is not necessary to obtain useful diagnostic results.The digestion of protein into peptide fragments reduces the size and complexity of protein molecules. Peptide fragments can be analyzed with higher sensitivity (often > 102 fold) and resolution using MALDI-TOF mass spectrometers, leading to improved pattern recognition by common machine learning algorithms. In turn, enhanced sensitivity and specificity for bacterial sorting and/or disease diagnosis may be obtained. To test this hypothesis, four exemplar case studies have been pursued in which samples are sorted into dichotomous groups by machine learning (ML) software based on MALDI-TOF spectra. Samples were analyzed in 'intact' mode in which the proteins present in the sample were not digested with protease prior to MALDI-TOF analysis and separately after the standard overnight tryptic digestion of the same samples. For each case, sensitivity (sens), specificity (spc), and the Youdin index (J) were used to assess the ML model performance. The proteolytic digestion of samples prior to MALDI-TOF analysis substantially enhanced the sensitivity and specificity of dichotomous sorting. Two exceptions were when substantial differences in chemical composition between the samples were present and, in such cases, both 'intact' and 'digested' protocols performed similarly. The results suggest proteolytic digestion prior to analysis can improve sorting in MALDI/ML-based workflows and may enable improved biomarker discovery. However, when samples are easily distinguishable protein digestion is not necessary to obtain useful diagnostic results. The digestion of protein into peptide fragments reduces the size and complexity of protein molecules. Peptide fragments can be analyzed with higher sensitivity (often > 10[sup.2] fold) and resolution using MALDI-TOF mass spectrometers, leading to improved pattern recognition by common machine learning algorithms. In turn, enhanced sensitivity and specificity for bacterial sorting and/or disease diagnosis may be obtained. To test this hypothesis, four exemplar case studies have been pursued in which samples are sorted into dichotomous groups by machine learning (ML) software based on MALDI-TOF spectra. Samples were analyzed in ‘intact’ mode in which the proteins present in the sample were not digested with protease prior to MALDI-TOF analysis and separately after the standard overnight tryptic digestion of the same samples. For each case, sensitivity (sens), specificity (spc), and the Youdin index (J) were used to assess the ML model performance. The proteolytic digestion of samples prior to MALDI-TOF analysis substantially enhanced the sensitivity and specificity of dichotomous sorting. Two exceptions were when substantial differences in chemical composition between the samples were present and, in such cases, both ‘intact’ and ‘digested’ protocols performed similarly. The results suggest proteolytic digestion prior to analysis can improve sorting in MALDI/ML-based workflows and may enable improved biomarker discovery. However, when samples are easily distinguishable protein digestion is not necessary to obtain useful diagnostic results. |
| Audience | Academic |
| Author | Sarkar, Sumon Perdomo, Angela Diab, Hanin Rahman, Md. Kaisar Calle, Alexandra Thompson, Jonathan Squire, Abigail Awosile, Babafela |
| AuthorAffiliation | School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA; sumon.sarkar@ttu.edu (S.S.); absquire@ttu.edu (A.S.); kaisar.rahman@ttu.edu (M.K.R.) |
| AuthorAffiliation_xml | – name: School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA; sumon.sarkar@ttu.edu (S.S.); absquire@ttu.edu (A.S.); kaisar.rahman@ttu.edu (M.K.R.) |
| Author_xml | – sequence: 1 givenname: Sumon orcidid: 0000-0002-9008-1208 surname: Sarkar fullname: Sarkar, Sumon – sequence: 2 givenname: Abigail surname: Squire fullname: Squire, Abigail – sequence: 3 givenname: Hanin surname: Diab fullname: Diab, Hanin – sequence: 4 givenname: Md. Kaisar orcidid: 0000-0001-7761-9846 surname: Rahman fullname: Rahman, Md. Kaisar – sequence: 5 givenname: Angela surname: Perdomo fullname: Perdomo, Angela – sequence: 6 givenname: Babafela orcidid: 0000-0002-4779-6515 surname: Awosile fullname: Awosile, Babafela – sequence: 7 givenname: Alexandra orcidid: 0000-0003-3894-4181 surname: Calle fullname: Calle, Alexandra – sequence: 8 givenname: Jonathan orcidid: 0000-0003-1550-2823 surname: Thompson fullname: Thompson, Jonathan |
| BookMark | eNp9kt9v0zAQxyM0xH7AA_9BJF4AKZvtixPnCXW_oFKrPaw8R45zTl2ldrGToUr88bh0GnSakC3ZPn_vc2ffnSZH1llMkveUnANU5CIwoJUgOXuVnNCc5ZlgjBz9sz9OTkNYEcIAQLxJjqEUUIgSTpJfN1qjGlKn04Xfbgaj0mvTYRiMs2mc92iDGcyDGbaptG16v0FltFG7s7HpfDK7nmaLu9vsUgZs07nrUY299JEiO-siR4V0WHo3dst0LtXSWExnKL01tnubvNayD_jucT1Lvt_eLK6-ZbO7r9OrySxTnOZD1ijRNii4RgBVVbopBNWaaw0t1YrkJeWEaJBA87bKdQOklS0Qxik2TMgCzpLpnts6uao33qyl39ZOmvqPwfmulj5m2mMNpWIVp1wJbHIElLnKK0q0ok3FGxCR9XnPGu1Gbn_Kvn8CUlLvylE_lSOKv-zFm7FZY6vQDl72Bxkc3lizrDv3EFG85FTwSPj4SPDuxxjrUq9NUNj30qIbQ81EWYKoRLEL9uGZdOVGb-PH7lRFQYFA8VfVyfhcY7WLgdUOWk_KknEmKk6i6vwFVRwtro2K3adNtB84fNo7KO9C8Kj_-ysXz7SxneSu42IQ07_g8RtDnubt |
| CitedBy_id | crossref_primary_10_3390_foods14050822 crossref_primary_10_1016_j_microc_2024_112375 |
| Cites_doi | 10.3390/life12071037 10.3390/microorganisms10050918 10.1016/j.ijheh.2019.113441 10.1038/srep25919 10.3389/fmicb.2021.804484 10.1039/C5AY00620A 10.1016/j.talanta.2016.02.026 10.1007/s10096-018-3380-x 10.1021/acsmeasuresciau.2c00019 10.1016/j.jprot.2017.09.007 10.1038/s42256-023-00635-3 10.3389/fmicb.2015.00791 10.3390/ijerph20065123 10.1016/j.mimet.2015.04.016 10.3390/foods10071459 10.1093/jaoac/91.1.164 10.1038/s41598-021-87463-w 10.1039/D2AN00431C 10.3390/toxins2082117 10.1111/mve.12230 10.1111/jam.14738 10.1038/nrc1739 10.1016/j.jprot.2015.02.017 10.1038/s41568-020-00327-9 10.1016/j.talanta.2017.11.063 10.3390/vetsci10020101 10.1007/978-1-59745-281-6_34 10.1016/j.mcp.2020.101533 10.1007/978-1-0716-2395-4_29 10.1038/s41575-020-0343-3 10.14202/vetworld.2022.2623-2657 10.1186/s13071-019-3493-9 10.1007/s00253-017-8324-3 10.1021/jasms.2c00110 10.1016/j.cmi.2020.03.014 10.1038/s41591-019-0583-3 10.1016/j.aquaculture.2018.08.041 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s23198042 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (subscription) ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_37c29515c8eb4e3ea4c4910fc1b95b38 10.3390/s23198042 PMC10575185 A772528950 10_3390_s23198042 |
| GeographicLocations | Massachusetts Taiwan United States--US |
| GeographicLocations_xml | – name: Taiwan – name: Massachusetts – name: United States--US |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 5PM ADRAZ ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c514t-bc8dbe85fe33c99fb681ff5ff3d1fc0471500f3a314d94fb30dad30251eb28a63 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:52:00 EDT 2025 Sun Oct 26 03:51:25 EDT 2025 Tue Sep 30 17:11:42 EDT 2025 Fri Sep 05 12:47:37 EDT 2025 Tue Oct 07 07:16:50 EDT 2025 Mon Oct 20 23:08:06 EDT 2025 Mon Oct 20 17:16:13 EDT 2025 Thu Oct 16 04:41:28 EDT 2025 Thu Apr 24 23:08:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-bc8dbe85fe33c99fb681ff5ff3d1fc0471500f3a314d94fb30dad30251eb28a63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7761-9846 0000-0003-3894-4181 0000-0003-1550-2823 0000-0002-4779-6515 0000-0002-9008-1208 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23198042 |
| PMID | 37836873 |
| PQID | 2876613036 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_37c29515c8eb4e3ea4c4910fc1b95b38 unpaywall_primary_10_3390_s23198042 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10575185 proquest_miscellaneous_2877389862 proquest_journals_2876613036 gale_infotracmisc_A772528950 gale_infotracacademiconefile_A772528950 crossref_primary_10_3390_s23198042 crossref_citationtrail_10_3390_s23198042 |
| PublicationCentury | 2000 |
| PublicationDate | 20230923 |
| PublicationDateYYYYMMDD | 2023-09-23 |
| PublicationDate_xml | – month: 9 year: 2023 text: 20230923 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Josefsen (ref_37) 2015; 114 Liang (ref_29) 2023; 5 Thompson (ref_1) 2022; 15 Lazari (ref_24) 2022; 2511 Torres (ref_19) 2018; 37 Hamidi (ref_13) 2022; 33 ref_14 ref_36 Santos (ref_8) 2017; 101 ref_33 Merefith (ref_35) 1966; 43 ref_32 Kather (ref_28) 2020; 17 ref_31 ref_30 Yolanda (ref_10) 2019; 498 Santos (ref_6) 2015; 127 Pt B ref_39 Kleppe (ref_26) 2021; 21 Courtiol (ref_25) 2019; 25 Santos (ref_15) 2015; 7 Tolosi (ref_38) 2020; 129 Huynh (ref_34) 2009; 519 Weis (ref_23) 2020; 26 Fatou (ref_17) 2016; 6 Kyritsi (ref_11) 2020; 224 Feucherolles (ref_3) 2019; 12 Santos (ref_9) 2018; 170 Jorge (ref_16) 2016; 152 ref_21 ref_43 ref_20 Ludwig (ref_27) 2005; 5 ref_42 ref_41 Diniz (ref_18) 2018; 180 Jechorek (ref_40) 2008; 91 Li (ref_2) 2022; 2 ref_5 Christoforidou (ref_12) 2020; 51 Tran (ref_22) 2021; 11 Raharimalala (ref_7) 2017; 31 Do (ref_4) 2022; 147 |
| References_xml | – ident: ref_30 – ident: ref_31 doi: 10.3390/life12071037 – ident: ref_14 doi: 10.3390/microorganisms10050918 – ident: ref_32 – volume: 224 start-page: 113441 year: 2020 ident: ref_11 article-title: Serotyping and Detection of Pathogenecity Loci of Environmental Isolates of Legionella Pneumophila Using MALDI-TOF MS publication-title: Int. J. Hyg. Environ. Health doi: 10.1016/j.ijheh.2019.113441 – volume: 6 start-page: 25919 year: 2016 ident: ref_17 article-title: In Vivo Real-Time Mass Spectrometry for Guided Surgery Application publication-title: Sci. Rep. doi: 10.1038/srep25919 – ident: ref_21 doi: 10.3389/fmicb.2021.804484 – volume: 7 start-page: 7467 year: 2015 ident: ref_15 article-title: Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry-Based Profiling as a Step Forward in the Characterization of Peritoneal Dialysis Effluent publication-title: Anal. Methods doi: 10.1039/C5AY00620A – volume: 152 start-page: 364 year: 2016 ident: ref_16 article-title: Classifying Patients in Peritoneal Dialysis by Mass Spectrometry-Based Profiling publication-title: Talanta doi: 10.1016/j.talanta.2016.02.026 – volume: 37 start-page: 2331 year: 2018 ident: ref_19 article-title: Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF-MS) Proteomic Profiling of Cerebrospinal Fluid in the Diagnosis of Enteroviral Meningitis: A Proof-of-Principle Study publication-title: Eur. J. Clin. Microbiol. Infect. Dis. doi: 10.1007/s10096-018-3380-x – volume: 2 start-page: 385 year: 2022 ident: ref_2 article-title: MALDI-TOF Mass Spectrometry in Clinical Analysis and Research publication-title: ACS Meas. Sci. Au doi: 10.1021/acsmeasuresciau.2c00019 – volume: 170 start-page: 59 year: 2018 ident: ref_9 article-title: Use of Ribosomal Proteins as Biomarkers for Identification of Flavobacterium Psychrophilum by MALDI-TOF Mass Spectrometry publication-title: J. Proteom. doi: 10.1016/j.jprot.2017.09.007 – volume: 5 start-page: 408 year: 2023 ident: ref_29 article-title: Deep Learning Supported Discovery of Biomarkers for Clinical Prognosis of Liver Cancer publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-023-00635-3 – ident: ref_5 doi: 10.3389/fmicb.2015.00791 – ident: ref_36 doi: 10.3390/ijerph20065123 – volume: 114 start-page: 30 year: 2015 ident: ref_37 article-title: Microbial Food Safety: Potential of DNA Extraction Methods for Use in Diagnostic Metagenomics publication-title: J. Microbiol. Methods. doi: 10.1016/j.mimet.2015.04.016 – ident: ref_42 – ident: ref_39 doi: 10.3390/foods10071459 – volume: 91 start-page: 164 year: 2008 ident: ref_40 article-title: Evaluation of the VIDAS Staph Enterotoxin II (SET 2) Immunoassay Method for the Detection of Staphylococcal Enterotoxins in Selected Foods: Collaborative study publication-title: J. AOAC Int. doi: 10.1093/jaoac/91.1.164 – volume: 11 start-page: 8219 year: 2021 ident: ref_22 article-title: Novel Application of Automated Machine Learning with MALDI-TOF-MS for Rapid High-Throughput Screening of COVID-19: A Proof of Concept publication-title: Sci. Rep. doi: 10.1038/s41598-021-87463-w – volume: 147 start-page: 3131 year: 2022 ident: ref_4 article-title: Use of MALDI-TOF Mass Spectrometry for Virus Identification: A Review publication-title: Analyst doi: 10.1039/D2AN00431C – ident: ref_43 doi: 10.3390/toxins2082117 – volume: 31 start-page: 289 year: 2017 ident: ref_7 article-title: Usefulness and Accuracy of MALDI-TOF Mass Spectrometry as a Supplementary Tool to Identify Mosquito Vector Species and to Invest in Development of International Database publication-title: Med. Vet. Entomol. doi: 10.1111/mve.12230 – volume: 129 start-page: 1523 year: 2020 ident: ref_38 article-title: Rapid Detection and Quantification of Plasmid-mediated Colistin Resistance Genes (Mcr-1 to Mcr-5) by Real-time PCR in Bacterial and Environmental Samples publication-title: J. Appl. Microbiol. doi: 10.1111/jam.14738 – volume: 5 start-page: 845 year: 2005 ident: ref_27 article-title: Biomarkers in Cancer Staging, Prognosis and Treatment Selection publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1739 – volume: 127 Pt B start-page: 321 year: 2015 ident: ref_6 article-title: Use of MALDI-TOF Mass Spectrometry Fingerprinting to Characterize Enterococcus Spp. and Escherichia Coli Isolates publication-title: J. Proteom. doi: 10.1016/j.jprot.2015.02.017 – volume: 21 start-page: 199 year: 2021 ident: ref_26 article-title: Designing Deep Learning Studies in Cancer Diagnostics publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-020-00327-9 – ident: ref_33 – volume: 43 start-page: 169 year: 1966 ident: ref_35 article-title: Determination of Molecular-Weight Distribution in Wheat-Flour Proteins by Extraction and Gel Filtration in a Dissociating Medium publication-title: Cereal Chem. – volume: 180 start-page: 36 year: 2018 ident: ref_18 article-title: Dithiothreitol-Based Protein Equalization Technology to Unravel Biomarkers for Bladder Cancer publication-title: Talanta doi: 10.1016/j.talanta.2017.11.063 – ident: ref_20 doi: 10.3390/vetsci10020101 – volume: 519 start-page: 507 year: 2009 ident: ref_34 article-title: Tryptic digestion of in-gel proteins for mass spectrometry analysis publication-title: Methods Mol Biol. doi: 10.1007/978-1-59745-281-6_34 – volume: 51 start-page: 101533 year: 2020 ident: ref_12 article-title: Identification of Brucella Spp. Isolates and Discrimination from the Vaccine Strain Rev.1 by MALDI-TOF Mass Spectrometry publication-title: Mol. Cell Probes doi: 10.1016/j.mcp.2020.101533 – ident: ref_41 – volume: 2511 start-page: 375 year: 2022 ident: ref_24 article-title: Machine Learning Approaches to Analyze MALDI-TOF Mass Spectrometry Protein Profiles publication-title: Methods Mol. Biol. doi: 10.1007/978-1-0716-2395-4_29 – volume: 17 start-page: 591 year: 2020 ident: ref_28 article-title: Development of AI-Based Pathology Biomarkers in Gastrointestinal and Liver Cancer publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-020-0343-3 – volume: 15 start-page: 2623 year: 2022 ident: ref_1 article-title: Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry in Veterinary Medicine: Recent Advances (2019–Present) publication-title: Vet. World doi: 10.14202/vetworld.2022.2623-2657 – volume: 12 start-page: 245 year: 2019 ident: ref_3 article-title: MALDI-TOF Mass Spectrometry as a Diagnostic Tool in Human and Veterinary Helminthology: A Systematic Review publication-title: Parasites Vectors doi: 10.1186/s13071-019-3493-9 – volume: 101 start-page: 5377 year: 2017 ident: ref_8 article-title: MALDI-TOF Mass Spectrometry for Rapid Differentiation of Tenacibaculum Species Pathogenic for Fish publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-017-8324-3 – volume: 33 start-page: 1530 year: 2022 ident: ref_13 article-title: A Combination of MALDI-TOF MS Proteomics and Species-Unique Biomarkers’ Discovery for Rapid Screening of Brucellosis publication-title: J. Am. Soc. Mass. Spectrom. doi: 10.1021/jasms.2c00110 – volume: 26 start-page: 1310 year: 2020 ident: ref_23 article-title: Machine Learning for Microbial Identification and Antimicrobial Susceptibility Testing on MALDI-TOF Mass Spectra: A Systematic Review publication-title: Clin. Microbiol. Infect. doi: 10.1016/j.cmi.2020.03.014 – volume: 25 start-page: 1519 year: 2019 ident: ref_25 article-title: Deep Learning-Based Classification of Mesothelioma Improves Prediction of Patient Outcome publication-title: Nat. Med. doi: 10.1038/s41591-019-0583-3 – volume: 498 start-page: 322 year: 2019 ident: ref_10 article-title: Proteomic and Molecular Fingerprinting for Identification and Tracking of Fish Pathogenic Streptococcus publication-title: Aquaculture doi: 10.1016/j.aquaculture.2018.08.041 |
| SSID | ssj0023338 |
| Score | 2.4197729 |
| Snippet | The digestion of protein into peptide fragments reduces the size and complexity of protein molecules. Peptide fragments can be analyzed with higher sensitivity... |
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 8042 |
| SubjectTerms | Algorithms Aprotinin biomarker Biomarkers Case studies Data mining Datasets diagnostic Disease Gluten Machine learning MALDI-TOF Mass spectrometry Medical diagnosis molecular diagnostics Peptides Performance evaluation precision medicine Proteases Proteins Salmonella Scientific imaging Solvents |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQXoAHxKcIDGQ-JHiJluTs1HnsgGogCg900t4s27FhUpVOWys0aX_87hw3ajQQL0h9aOtLlNxH7n7t-XeMvbVlCaJwJm9LsAhQipAb1apcgcHkUUEINW0Unn-rj47FlxN5sjPqi3rCenrgXnEHMHEVVgHSKW-FB2-EE5jigittIy3Ebb6FarZgKkEtQOTV8wgBgvqDC6xiGlWIapR9Ikn_zUfxzfbI25vuzFz-NsvlTu6Z3Wf3UtHIp_3FPmC3fPeQ3d2hEnzErnoaYr4KfHF-ic8Bx_v_jlDvHF8_qFG9nxTBTdfyOHee2CPw82nH59OvHz_ni--z_BDTWsvn26m5eJbYi0dszjwN9eHz2IHpeSJn_fmYHc8-LT4c5WmyQu6wQFrn1qnWeiWDB3BNE2ytyhBkCNCWwRWYsCRaDQyUom1EsFC0pgWCIwjElanhCdvrVp1_yjjAhA4pidVGVF5aRFyBficJ-MbJOmPvtxrXLtGO0_SLpUb4QcbRg3Ey9noQPeu5Nv4kdEhmGwSIHjt-gU6jk9PofzlNxt6R0TUFMV6MM2kvAt4S0WHpKWIOiVBUFhnbH0li8Lnx8tZtdAr-C40gtK5jbZCxV8MyHUkNbZ1fbaLMBGtFxJMZUyN3G93ZeKU7_RUJwGk2s8RCK2NvBs_8u8ae_Q-NPWd3Kgwr6pSpYJ_trc83_gWWY2v7MkbeNbB8Mzk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central (subscription) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AAcEE9hWtDykOBi1fZ6nfUBoQQaFUQCglTqzdpnqRQ5aZoIVeLHM-MXtQpIPsTZsWV7Zmfms2e_AXil45inkVGhjblGgBL5UEkrQ8kVBo-Ee5_RQuHpLDs6Tj-diJMdmLVrYaissvWJlaO2S0PvyA8ws8-yyuG-W52H1DWKvq62LTRU01rBvq0oxm7AbkLMWAPYHR_Ovn7rIBhHRFbzC3EE-wcXmN3kMkqTXlSqyPuvu-jrZZM3t-VKXf5Ui8WVmDS5C3eaZJKNau3fgx1X3ofbVygGH8Cvmp6YLT2bry_RPxhWf1NCfTDcvlMBe91BgqnSsqofPbFK4P5Zyaajzx8-hvMvk3CM4c6yadtNF89S1egRyzNrmv2waVWZ6VhD2nr6EI4nh_P3R2HTcSE0mDhtQm2k1U4K7zg3ee51JmPvhffcxt5EGMgEapMrHqc2T73mkVWWE0xBgC5Vxh_BoFyW7jEwzod0SExsN2nihEYk5un9iccfRmQBvGmfeGEaOnLqirEoEJaQcopOOQG86ERXNQfH34TGpLZOgGizqz-W69OimYUFH5oEU0phpNOp406lJsV8yZtY50JzGcBrUnpBkxsvxqhmjQLeEtFkFSPEIgIhqogC2O9J4qQ0_eHWbIrGKVwUf0w4gOfdMB1JhW6lW24rmSHmkIgzA5A9c-vdWX-kPPtREYNTz2a0fhHAy84y__3Envz_GvfgVoIThmpjEr4Pg816655iArbRz5pZ9RsLJjEg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5B9wA8jJ8TGQOZHxK8ZE3iOHWeUAdUA9GBRCuNp8h27FFRpVXXgob447lL3KphICEh9aGNz1bcnn3fl56_A3im45inkVFhGXONBCVyoZKlDCVXGDwS7lxGB4WHJ9nxOH13Kk63TvFTWiVS8Um9SdMprBAjWNRNeDfOuxI9rDsv3ctv_llSnOWIADAI8quwkwlE4x3YGZ987H-uDxX53o2gEEd23z1HOJPTMK0wVKv1X96TL-dJXltVc3XxXU2nW0FocBPU-vab3JOvh6ulPjQ_flN2_J_53YJdj1BZv3Gp23DFVnfgxpZu4V342Wges5ljo8UFbjqGNX9U4WgMX58oK74pS8FUVbK6yD1JVeDnScWG_fev34ajD4PwCGNoyYbrEr04Sp34R9LRzFcQYsM63dMyrwR7dg_GgzejV8ehL-MQGkRjy1AbWWorhbOcmzx3OpOxc8I5XsbORBgdBboIVzxOyzx1mkelKjlxH2T9UmV8DzrVrLL3gXHeoy4xSeikiRUa6Z2jhzIO3xiRBfBi_asWxmucU6mNaYFchxyg2DhAAE82pvNG2ONPRkfkGhsD0uKuL8wWZ4Vf2gXvmQRxqjDS6tRyq1KTIghzJta50FwG8Jwcq6AdA2_GKH_wAadE2ltFHwmOQN4rogAOWpa40k27ee2ahd9pzgtkvFlWA5EAHm-aqSdlz1V2tqpteghMkbwGIFsu3ZpZu6WafKnVxqkQtEBUF8DTjff__Rvb_yerB3A9QbBIeTcJP4DOcrGyDxHcLfUjv35_Ab5PSME priority: 102 providerName: Unpaywall |
| Title | Effect of Tryptic Digestion on Sensitivity and Specificity in MALDI-TOF-Based Molecular Diagnostics through Machine Learning |
| URI | https://www.proquest.com/docview/2876613036 https://www.proquest.com/docview/2877389862 https://pubmed.ncbi.nlm.nih.gov/PMC10575185 https://www.mdpi.com/1424-8220/23/19/8042/pdf?version=1695457433 https://doaj.org/article/37c29515c8eb4e3ea4c4910fc1b95b38 |
| UnpaywallVersion | publishedVersion |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ4LtAfEpMkZlPiR4CTRxnDgPCLWwMhAtE7RSeYpsxx6TqnR0raASfzx3SRot2nhBqqo2vqSN7y53v-T8O4DnOgh41DXKzwOuEaB0na9kLn3JFQaPkDsX00Lh4Sg-nkSfpmK6BZsem_UEXlwL7aif1GQxe_X75_otOvwbQpwI2V9fYI6SSrS-bdjFAJVSB4dh1DxMCDnCsIpUqC2-Bzc4LWKQCW9FpZK8_-ol-mrZ5M1Vca7Wv9RsdikmDW7DrTqZZL1K-3dgyxZ3Yf8SxeA9-FPRE7O5Y-PFGq8PhlXPlFAfDF_fqIC96iDBVJGzsh89sUrg97OCDXuf33_0x18Gfh_DXc6Gm266eJSyRo9Ynlnd7IcNy8pMy2rS1tP7MBkcjd8d-3XHBd9g4rT0tZG5tlI4y7lJU6djGTgnnON54EwXA5lAbXLFgyhPI6d5N1c5J5iCAF2qmD-AnWJe2IfAOE9ol4DYbqLQCo1IzNH9E4cfjIg9eLmZ8czUdOTUFWOWISwhPWWNnjx42oieVxwc1wn1SW2NANFmlxvmi9Os9sKMJybElFIYaXVkuVWRiTBfcibQqdBcevCClJ6RueGfMapeo4CnRDRZWQ-xiECIKroeHLYk0SlNe3hjNtnGpjMEp3Fc5gwePGmGaU8qdCvsfFXKJJhDIs70QLbMrXVm7ZHi7EdJDE49mwUmYB48ayzz3zN28P8_8Aj2QvQrqpsJ-SHsLBcr-xiTs6XuwHYyTfBdDj50YLd_NDr52ilvdHRKp8Rtk9FJ7_tflsc_nQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VcigcEE9hKLC8BBertsfrrA8IpZQqoUk5kEq5md31bqkUOSEPVZH4TfxGZvxIaxW4VfIhzo6t9c7bnv2GsTc6DCEOjPLzEDQmKIHzlcylL0Gh84jAuYQ2Cg-Pk95J_GUsxlvsd7MXhsoqG5tYGup8augd-R5G9klSGtyPs58-dY2ir6tNC41KLI7s-hxTtsWH_gHy920UHX4efer5dVcB32BwsPS1kbm2UjgLYNLU6USGzgnnIA-dCdBYC5wxKAjjPI2dhiBXOVAojkmoVAngfW-wmzGgLUH96YwvEjzAfK9CLwJIg70Fxk6pDOKo5fPK1gBXHcDVosydVTFT63M1mVzyeId32Z06VOXdSrbusS1b3Ge3LwEYPmC_KvBjPnV8NF-j9TG8-mKF3OZ4fKPy-Ko_BVdFzstu94RZgednBR92Bwd9f_T10N9HZ5rzYdOrF-9SVgAShjSvWwnxYVn3aXkNCXv6kJ1cy8o_YtvFtLCPGQfo0CUhYenEkRUa8zxHb2cc_jAi8dj7ZsUzU4OdU8-NSYZJDzEn2zDHY682pLMK4eNvRPvEtg0BgXKXf0znp1mt4xl0TIQBqzDS6tiCVbGJMRpzJtSp0CA99o6YnpHpwMkYVe-AwEciEK6si5mOwARYBB7bbVGiypv2cCM2WW1yFtmFgnjs5WaYrqQyusJOVyVNByNUzGI9Jlvi1nqy9khx9qOEHaeO0ALDO4-93kjmv1fsyf_n-ILt9EbDQTboHx89ZbciVB6qwolgl20v5yv7DEO9pX5e6hdn369bof8AjJ1onQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VInE8IE5hKLBcghcrttd21g8IpYSooU1Bairlzeyud0ulyA45VEXil_HrmPGR1irwVskPcXZsrXdue_YbgDfK93noaelmPleYoHjWlSITruASnUfArY1po_DoMN47Dr9MoskW_G72wlBZZWMTS0OdFZrekXcwso_j0uB2bF0W8a0_-Dj76VIHKfrS2rTTqERk36zPMH1bfBj2kddvg2Dwefxpz607DLgaA4Wlq7TIlBGRNZzrJLEqFr61kbU886320HBHOHsuuR9mSWgV9zKZcQrLMSEVMuZ432twvct5QuWE3cl5sscx96uQjHDQ6ywwjkqEFwYt_1e2CbjsDC4XaN5c5TO5PpPT6QXvN7gLd-qwlfUqObsHWya_D7cvgBk-gF8VEDIrLBvP12iJNKu-XiHnGR5HVCpf9apgMs_Y0cyU9YB0fpqzUe-gP3THXwfuLjrWjI2avr14l7IakPCkWd1WiI3KGlDDanjYk4dwfCUr_wi28yI3j4Fx3qVLfMLVCQMTKcz5LL2psfhDR7ED75sVT3UNfE79N6YpJkDEnHTDHAdebUhnFdrH34h2iW0bAgLoLv8o5idpre8p7-oAg9dIC6NCw40MdYiRmdW-SiLFhQPviOkpmRGcjJb1bgh8JALkSnuY9USYDEeeAzstSlR_3R5uxCatzc8iPVcWB15uhulKKqnLTbEqaboYrWJG64BoiVvrydoj-emPEoKcukNHGOo58Hojmf9esSf_n-MLuIGqnB4MD_efwq0AdYcKcgK-A9vL-co8w6hvqZ6X6sXg-1Xr8x91fmzg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5B9wA8jJ8TGQOZHxK8ZE3iOHWeUAdUA9GBRCuNp8h27FFRpVXXgob447lL3KphICEh9aGNz1bcnn3fl56_A3im45inkVFhGXONBCVyoZKlDCVXGDwS7lxGB4WHJ9nxOH13Kk63TvFTWiVS8Um9SdMprBAjWNRNeDfOuxI9rDsv3ctv_llSnOWIADAI8quwkwlE4x3YGZ987H-uDxX53o2gEEd23z1HOJPTMK0wVKv1X96TL-dJXltVc3XxXU2nW0FocBPU-vab3JOvh6ulPjQ_flN2_J_53YJdj1BZv3Gp23DFVnfgxpZu4V342Wges5ljo8UFbjqGNX9U4WgMX58oK74pS8FUVbK6yD1JVeDnScWG_fev34ajD4PwCGNoyYbrEr04Sp34R9LRzFcQYsM63dMyrwR7dg_GgzejV8ehL-MQGkRjy1AbWWorhbOcmzx3OpOxc8I5XsbORBgdBboIVzxOyzx1mkelKjlxH2T9UmV8DzrVrLL3gXHeoy4xSeikiRUa6Z2jhzIO3xiRBfBi_asWxmucU6mNaYFchxyg2DhAAE82pvNG2ONPRkfkGhsD0uKuL8wWZ4Vf2gXvmQRxqjDS6tRyq1KTIghzJta50FwG8Jwcq6AdA2_GKH_wAadE2ltFHwmOQN4rogAOWpa40k27ee2ahd9pzgtkvFlWA5EAHm-aqSdlz1V2tqpteghMkbwGIFsu3ZpZu6WafKnVxqkQtEBUF8DTjff__Rvb_yerB3A9QbBIeTcJP4DOcrGyDxHcLfUjv35_Ab5PSME |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Tryptic+Digestion+on+Sensitivity+and+Specificity+in+MALDI-TOF-Based+Molecular+Diagnostics+through+Machine+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Sarkar%2C+Sumon&rft.au=Squire%2C+Abigail&rft.au=Diab%2C+Hanin&rft.au=Rahman%2C+Md.+Kaisar&rft.date=2023-09-23&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=19&rft_id=info:doi/10.3390%2Fs23198042&rft_id=info%3Apmid%2F37836873&rft.externalDocID=PMC10575185 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |