Diagnosis of retinal health in digital fundus images using continuous wavelet transform (CWT) and entropies

Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying the...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 84; pp. 89 - 97
Main Authors Koh, Joel E.W., Acharya, U. Rajendra, Hagiwara, Yuki, Raghavendra, U., Tan, Jen Hong, Sree, S. Vinitha, Bhandary, Sulatha V., Rao, A. Krishna, Sivaprasad, Sobha, Chua, Kuang Chua, Laude, Augustinus, Tong, Louis
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.05.2017
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2017.03.008

Cover

Abstract Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals. [Display omitted] •Classification of normal and abnormal (AMD, DR and glaucoma) using fundus images.•Energy and entropy features are extracted from 2D- CWT coefficients.•Implemented ADASYN to synthetically generate images for normal class.•Obtained an accuracy of 92.48%, sensitivity of 89.37% and specificity of 95.58%.
AbstractList Abstract Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals.
Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals.
Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals.Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals.
Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals. [Display omitted] •Classification of normal and abnormal (AMD, DR and glaucoma) using fundus images.•Energy and entropy features are extracted from 2D- CWT coefficients.•Implemented ADASYN to synthetically generate images for normal class.•Obtained an accuracy of 92.48%, sensitivity of 89.37% and specificity of 95.58%.
Author Bhandary, Sulatha V.
Hagiwara, Yuki
Tan, Jen Hong
Chua, Kuang Chua
Laude, Augustinus
Tong, Louis
Raghavendra, U.
Acharya, U. Rajendra
Sree, S. Vinitha
Rao, A. Krishna
Koh, Joel E.W.
Sivaprasad, Sobha
Author_xml – sequence: 1
  givenname: Joel E.W.
  surname: Koh
  fullname: Koh, Joel E.W.
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489 Singapore, Singapore
– sequence: 2
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  email: aru@np.edu.sg
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489 Singapore, Singapore
– sequence: 3
  givenname: Yuki
  surname: Hagiwara
  fullname: Hagiwara, Yuki
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489 Singapore, Singapore
– sequence: 4
  givenname: U.
  surname: Raghavendra
  fullname: Raghavendra, U.
  organization: Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal University, Manipal 576104, India
– sequence: 5
  givenname: Jen Hong
  surname: Tan
  fullname: Tan, Jen Hong
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489 Singapore, Singapore
– sequence: 6
  givenname: S. Vinitha
  surname: Sree
  fullname: Sree, S. Vinitha
  organization: Visiting Scientist, Global Biomedical Technologies, CA, USA
– sequence: 7
  givenname: Sulatha V.
  surname: Bhandary
  fullname: Bhandary, Sulatha V.
  organization: Department of Ophthalmology, Kasturba Medical College, Manipal 576104, India
– sequence: 8
  givenname: A. Krishna
  surname: Rao
  fullname: Rao, A. Krishna
  organization: Department of Ophthalmology, Kasturba Medical College, Manipal 576104, India
– sequence: 9
  givenname: Sobha
  surname: Sivaprasad
  fullname: Sivaprasad, Sobha
  organization: Consultant ophthalmologist, NIHR Moorfields Biomedical Research Centre, London, United Kingdom
– sequence: 10
  givenname: Kuang Chua
  surname: Chua
  fullname: Chua, Kuang Chua
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489 Singapore, Singapore
– sequence: 11
  givenname: Augustinus
  surname: Laude
  fullname: Laude, Augustinus
  organization: National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore 308433, Singapore
– sequence: 12
  givenname: Louis
  surname: Tong
  fullname: Tong, Louis
  organization: Singapore Eye Research Institute, Ocular Surface Research Group, Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28351716$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1rGzEQhkVJaZy0f6EIekkP3o6klVe-hLZOvyDQQ1N6FFpp1pGzlhxpNyX_PnKdEDAUfBIMz7wanpkTchRiQEIog4oBm31YVTauN62Pa3QVB9ZUICoA9YJMmGrmU5CiPiITAAbTWnF5TE5yXgFADQJekWOuhGQNm03IzYU3yxCzzzR2NOHgg-npNZp-uKY-UOeXfiiVbgxuzNSvzRIzHbMPS2pjKPgYS_2vucMeBzokE3IX05qeLf5cvacmOIphSHHjMb8mLzvTZ3zz-J6S31-_XC2-Ty9_fvux-HQ5tZLVw9RYxluJNWMKXaeUE6UCHcwAGiddazrD0bG6xdbITvKZqOedFLzmAhvOnTglZ7vcTYq3I-ZBr3222PcmYBlWM6U4KGiauqDv9tBVHFNRsKXmvGnkTLFCvX2kxrYY15tUPKR7_aSxAOc7wKaYc8JO22Jt8EVQMr7XDPR2b3qln_emt3vTIHTZWwlQewFPfxzQ-nnXikXpnceks_UYLDqf0A7aRX9IyPleiO198Nb0N3iP-VmKzlyD_rW9rO1hsUYAyH8iP_4_4LAZHgC3DOQc
CitedBy_id crossref_primary_10_1016_j_inffus_2019_06_022
crossref_primary_10_1016_j_advengsoft_2022_103283
crossref_primary_10_1016_j_cmpb_2018_07_012
crossref_primary_10_1002_ima_22379
crossref_primary_10_1007_s11042_021_11569_6
crossref_primary_10_1364_BOE_10_000914
crossref_primary_10_1016_j_future_2018_05_001
crossref_primary_10_3390_app11136178
crossref_primary_10_1007_s11042_023_17081_3
crossref_primary_10_1016_j_compbiomed_2020_104056
crossref_primary_10_1016_j_compeleceng_2024_109795
crossref_primary_10_1007_s11042_021_11087_5
crossref_primary_10_3390_app8071198
crossref_primary_10_4018_IJSIR_300370
crossref_primary_10_1007_s11042_020_10430_6
crossref_primary_10_1016_j_imu_2018_03_002
crossref_primary_10_1007_s11042_024_18624_y
crossref_primary_10_1016_j_asoc_2021_107512
crossref_primary_10_1016_j_compmedimag_2019_101657
crossref_primary_10_1109_ACCESS_2024_3477420
crossref_primary_10_3390_sym11060749
crossref_primary_10_1002_ima_22565
crossref_primary_10_1016_j_bspc_2020_102137
crossref_primary_10_1007_s11042_024_19218_4
crossref_primary_10_3390_math12101445
crossref_primary_10_1016_j_measurement_2022_111191
crossref_primary_10_1016_j_compeleceng_2017_11_008
crossref_primary_10_1111_exsy_12947
crossref_primary_10_32604_csse_2022_020504
crossref_primary_10_1007_s10489_017_1048_3
crossref_primary_10_1007_s00138_020_01091_4
crossref_primary_10_1016_j_cmpb_2022_106910
crossref_primary_10_1007_s11042_023_15175_6
crossref_primary_10_1007_s13246_020_00929_5
crossref_primary_10_3390_math10071071
crossref_primary_10_1016_j_jclepro_2018_10_284
crossref_primary_10_1109_JSEN_2023_3344288
crossref_primary_10_1049_iet_ipr_2019_0137
crossref_primary_10_1016_j_measurement_2019_03_005
crossref_primary_10_1007_s10439_022_03058_0
crossref_primary_10_32604_iasc_2023_029037
crossref_primary_10_3390_e21030311
crossref_primary_10_1016_j_bspc_2020_101943
crossref_primary_10_1007_s40998_022_00514_4
crossref_primary_10_1016_j_bbe_2018_06_009
crossref_primary_10_1007_s11517_020_02237_2
crossref_primary_10_1016_j_talanta_2024_127214
crossref_primary_10_1177_03000605241271766
crossref_primary_10_1016_j_heliyon_2024_e27391
crossref_primary_10_1016_j_bbe_2021_05_011
crossref_primary_10_1016_j_compbiomed_2017_11_019
Cites_doi 10.1016/j.eswa.2011.07.013
10.1016/0734-189X(85)90125-2
10.1016/0165-1684(93)90085-O
10.1016/j.compbiomed.2013.10.007
10.1109/RBME.2010.2084567
10.1016/j.compbiomed.2014.07.015
10.1007/978-90-481-9419-3_26
10.1007/s10916-011-9663-8
10.1016/j.media.2009.12.006
10.1136/bjophthalmol-2011-300539
10.1007/s00521-017-2839-5
10.1109/CSCI.2014.34
10.1016/j.knosys.2008.03.031
10.1016/j.compbiomed.2015.05.019
10.1016/j.compbiomed.2016.04.015
10.1016/j.ejor.2010.02.032
10.1016/j.medengphy.2010.02.019
10.1002/j.1538-7305.1948.tb00917.x
10.1243/09544119JEIM486
10.1016/S0734-189X(87)80186-X
10.1016/0020-0255(86)90006-X
10.1007/s10916-008-9154-8
10.1016/j.compbiomed.2016.04.009
10.1007/s11517-014-1180-8
10.1023/A:1010933404324
10.1007/s10916-007-9113-9
10.1016/j.knosys.2011.07.002
10.1364/AO.45.008722
10.1109/NAFIPS.2007.383845
10.1175/2009JTECHA1338.1
10.1167/iovs.10-7075
10.1109/TKDE.2008.239
10.1016/j.compmedimag.2013.09.005
10.1007/s11517-014-1167-5
10.1016/j.knosys.2012.09.008
10.1109/ICIP.2006.313007
10.1016/0165-1684(96)00065-5
10.1016/j.cmpb.2015.10.010
10.1016/j.bspc.2014.09.004
10.1007/s10916-010-9454-7
10.1016/j.knosys.2012.02.010
10.1080/03081079208945039
10.1007/s10916-009-9337-y
10.1016/j.knosys.2015.09.012
10.1016/j.yebeh.2014.10.001
10.1109/IJCNN.2010.5596320
10.1016/j.ins.2007.07.020
10.1109/TITB.2011.2119322
10.1117/12.621707
10.1109/TSMCB.2012.2227469
10.1109/TITB.2011.2176540
10.1016/S1672-6529(11)60020-6
10.1109/ICNN.1995.488968
10.1007/s10916-008-9195-z
10.1016/j.bspc.2013.11.006
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited May 1, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited May 1, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2017.03.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Biological Science Database (Proquest)
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Research Library Prep
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 97
ExternalDocumentID 28351716
10_1016_j_compbiomed_2017_03_008
S0010482517300574
1_s2_0_S0010482517300574
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ARAPS
AXJTR
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEL
SES
SPC
SPCBC
SSH
SSV
SSZ
T5K
UKHRP
WOW
Z5R
~G-
~HD
.55
.GJ
29F
3V.
53G
AACTN
AAQXK
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EMOBN
FEDTE
FGOYB
G-2
HLZ
HMK
HMO
HVGLF
HZ~
M0N
R2-
RIG
SAE
SBC
SEW
SV3
TAE
UAP
WUQ
X7M
XPP
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
AGQPQ
AIGII
APXCP
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-ac12b5e4118edf88d3ac10f06007d5dbafa2ed14beba5f526349f532423e722d3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sun Sep 28 02:24:01 EDT 2025
Tue Oct 07 06:02:32 EDT 2025
Wed Feb 19 02:42:39 EST 2025
Wed Oct 01 05:54:40 EDT 2025
Thu Apr 24 23:00:09 EDT 2025
Fri Feb 23 02:24:55 EST 2024
Tue Feb 25 20:08:41 EST 2025
Tue Oct 14 19:33:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Glaucoma
Diabetic retinopathy
Fundus
Age-related macular degeneration
Continuous wavelet transform
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-ac12b5e4118edf88d3ac10f06007d5dbafa2ed14beba5f526349f532423e722d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28351716
PQID 1892775681
PQPubID 1226355
PageCount 9
ParticipantIDs proquest_miscellaneous_1882080774
proquest_journals_1892775681
pubmed_primary_28351716
crossref_citationtrail_10_1016_j_compbiomed_2017_03_008
crossref_primary_10_1016_j_compbiomed_2017_03_008
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2017_03_008
elsevier_clinicalkeyesjournals_1_s2_0_S0010482517300574
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2017_03_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Hijazi, Coenen, Zheng (bib34) 2012; 29
Maheshwari, Pachori, Acharya (bib53) 2016
Antoine, Carrette, Muenzi, Piette (bib22) 1993; 31
Wong, Acharya, Venkatesh, Chee, Lim, Ng (bib30) 2008; 178
Acharya, Ng, Lim, Noronha, Lim, Nayak, Bhandary (bib58) 2015; 15
Wang, Lu (bib45) 2009; 27
Mookiah, Acharya, Fujita, Koh, Tan, Noronha, Bhandary, Chua, Lim, Laude, Tong (bib38) 2015; 63
Liu, Wang, Chen, Dong, Zhu, Wang (bib68) 2011; 8
Mookiah, Acharya, Martis, Chua, Lim, Ng, Laude (bib42) 2013; 39
Kolar, Jan (bib49) 2008; 17
Mookiah, Acharya, Lim, Petznick, Suri (bib36) 2012; 33
Pizer, Amburn, Austin, Cromarrtie, Geselowitz, Greer, ter Haar Romeny, Zimmerman, Zuiderveld (bib54) 1987; 39
Acharya, Mookiah, Koh, Tan, Noronha, Bhandary, Rao, Hagiwara, Chua, Laude (bib60) 2016; 73
Acharya, Mookiah, Koh, Tan, Bhandary, Rao, Fujita, Hagiwara, Chua, Laude (bib61) 2015; 75
V.K. Reddy, K.K. Siramoju, P. Sircar, Object detection by 2-D continuous wavelet transform, in: Proceedings of the IEEE International Conference on Computational Science and Computational Intelligence, 2014, pp. 162–167.
Mookiah, Acharya, Fujita, Koh, Tan, Chua, Bhandary, Noronha, Laude, Tong (bib37) 2015; 89
Agurto, Barriga, Murray, Nemeth, Crammer, Bauman, Zamora, Pattichis, Soliz (bib9) 2011; 52
M. S. Haleem, L. Han, J. van Hemert, B. Li, Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review Computerized Medical Imaging and Graphics, vol. 37, 2013, pp. 581–596.
Acharya, Sudarshan, Bhat, Adeli, Adeli (bib63) 2014; 41
Reza, Eswaran (bib6) 2011
X. Wanga, B.S. Wong, T.C. Guan, Image enhancement for radiography inspection, in: Proceedings of the International Conference on Experimental Mechanics, 2004, pp. 462–468.
He, Bai, Garcia, Li (bib15) 2008
M.H.A. Hijazi, F. Coenen, Y. Zheng, Retinal image classification using a histogram based approach, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2010, pp. 3501–3507.
.
Kosko (bib7) 1986; 40
Nayak, Acharya, Bhat, Shetty, Min (bib20) 2009; 33
Mookiah, Acharya, Chua, Lim, Ng, Laude (bib41) 2013; 43
Saw (bib55) 2006; 35
Hijazi, Coenen, Zheng (bib33) 2015
Singh, Dutta, ParthaSarathi, Uher, Burget (bib4) 2016; 124
Soares, Leandro, Cesar-Jr, Jelinek, Cree (bib24) 2006
Friedman, O’Colmain, Munoz, Tomany, McCarty, de Jong, Nemesurem, Mitchell, Kempen, Congdon (bib12) 2004; 122
Nayak, Bhat, Acharya, Lim, Kagathi (bib19) 2008; 32
Ganesan, Martis, Acharya, Chua, Lim, Ng, Laude (bib25) 2014; 52
Acharya, Lim, Ng, Chee, Tamura (bib56) 2009
Breiman (bib29) 2001; 45
Mookiah, Acharya, Koh, Chandran, Chua, Tan, Lim, Ng, Noronha, Tong, Laude (bib40) 2014; 53
Faust, Acharya, Ng, Ng, Suri (bib46) 2012; 36
Acharya, Chua, Ng, Yu, Chee (bib59) 2008; 32
Unler, Murat (bib5) 2010; 206
Garcia, Sanchez, Mollineda (bib65) 2012; 25
Xue, Zhang, Browne (bib8) 2013; 43
Noronha, Acharya, Nayak, Kamath, Bhandary (bib27) 2013
Boquete, Miguel-Jiménez, Ortega, Rodríguez-Ascariz, Pérez-Rico, Blanco (bib28) 2012; 39
P. Subirats, J. Dumoulin, V. Legeay, D. Barba, Automation of pavement surface crack detection using the continuous wavelet transform, in: Proceedings of the IEEE International Conference on Image Processing, 2006.
Zheng, Hijazi, Coenen (bib69) 2012; 53
A. Singh, B. Singh, Texture features extraction in mammograms using non-shanon entropies, Machine Learning and Systems Engineering Lecture Notes in Electrical Engineering 68, Springer, 2010, pp. 341–351.
Kennedy, Eberhart (bib16) 1995
Miguel-Jiménez, Boquete, Ortega, Rodríguez-Ascariz, Blanco (bib18) 2010; 32
Shannon (bib10) 1948; 27
Noronha, Acharya, Nayak, Martis, Bhandary (bib26) 2014; 10
A. Khosla, S. Kumar, K.R. Ghosh, A Comparison of Computational Efforts between particle swarm optimization and genetic algorithm for identification of fuzzy models, in: Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS, 2007, pp. 245–250.
Pascolini, Mariotti (bib11) 2012; 96
Bock, Meier, Nyul, Hornegger, Michelson (bib48) 2010; 14
Acharya, Ng, Tan, Sree, Ng (bib57) 2012; 36
Antoine, Murenzi (bib23) 1996; 52
Dua, Acharya, Chowriappa, Sree (bib51) 2012; 16
Chavan, Adgokar (bib52) 2015; 4
Liu, Hu, Yu (bib17) 2008; 21
Mookiah, Acharya, Koh, Chua, Tan, Chandran, Lim, Noronha, Laude, Tong (bib39) 2014; 52
Yager (bib50) 1992; 20
NIH National Eye Institute (NEI)
Abramoff, Garvin, Sonka (bib31) 2010; 3
Acharya, Dua, Du, Sree, Chua (bib62) 2011; 15
He, Garcia (bib14) 2009; 21
Kapur, Sahoo, Wang (bib21) 1985; 29
Lamoke, Shaw, Bahan, Montemari, Facchiano, Renzo, Parisi, Ripandelli, Stripe, Bartoli (bib13) 2014; 5
Gdeisat, Burton, Lalor (bib32) 2007; 45
A. Renyi, On measures of entropy and information, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, University of California Press, 1961, pp. 547–561.
Raghavendra, Rajendra Acharya, Gudigar, Ranjan Shetty, Krishnananda, Pai, Samanth, Nayak (bib64) 2017
Kapur (10.1016/j.compbiomed.2017.03.008_bib21) 1985; 29
10.1016/j.compbiomed.2017.03.008_bib67
10.1016/j.compbiomed.2017.03.008_bib66
He (10.1016/j.compbiomed.2017.03.008_bib15) 2008
Breiman (10.1016/j.compbiomed.2017.03.008_bib29) 2001; 45
10.1016/j.compbiomed.2017.03.008_bib3
Shannon (10.1016/j.compbiomed.2017.03.008_bib10) 1948; 27
Acharya (10.1016/j.compbiomed.2017.03.008_bib61) 2015; 75
10.1016/j.compbiomed.2017.03.008_bib2
10.1016/j.compbiomed.2017.03.008_bib1
Boquete (10.1016/j.compbiomed.2017.03.008_bib28) 2012; 39
Miguel-Jiménez (10.1016/j.compbiomed.2017.03.008_bib18) 2010; 32
Liu (10.1016/j.compbiomed.2017.03.008_bib17) 2008; 21
Kennedy (10.1016/j.compbiomed.2017.03.008_bib16) 1995
Zheng (10.1016/j.compbiomed.2017.03.008_bib69) 2012; 53
Xue (10.1016/j.compbiomed.2017.03.008_bib8) 2013; 43
Acharya (10.1016/j.compbiomed.2017.03.008_bib60) 2016; 73
Saw (10.1016/j.compbiomed.2017.03.008_bib55) 2006; 35
Singh (10.1016/j.compbiomed.2017.03.008_bib4) 2016; 124
Wang (10.1016/j.compbiomed.2017.03.008_bib45) 2009; 27
Reza (10.1016/j.compbiomed.2017.03.008_bib6) 2011
10.1016/j.compbiomed.2017.03.008_bib35
Mookiah (10.1016/j.compbiomed.2017.03.008_bib41) 2013; 43
Dua (10.1016/j.compbiomed.2017.03.008_bib51) 2012; 16
Acharya (10.1016/j.compbiomed.2017.03.008_bib57) 2012; 36
Acharya (10.1016/j.compbiomed.2017.03.008_bib59) 2008; 32
He (10.1016/j.compbiomed.2017.03.008_bib14) 2009; 21
Noronha (10.1016/j.compbiomed.2017.03.008_bib27) 2013
Soares (10.1016/j.compbiomed.2017.03.008_bib24) 2006
Garcia (10.1016/j.compbiomed.2017.03.008_bib65) 2012; 25
Bock (10.1016/j.compbiomed.2017.03.008_bib48) 2010; 14
Mookiah (10.1016/j.compbiomed.2017.03.008_bib36) 2012; 33
Chavan (10.1016/j.compbiomed.2017.03.008_bib52) 2015; 4
Faust (10.1016/j.compbiomed.2017.03.008_bib46) 2012; 36
Mookiah (10.1016/j.compbiomed.2017.03.008_bib40) 2014; 53
Mookiah (10.1016/j.compbiomed.2017.03.008_bib42) 2013; 39
Pascolini (10.1016/j.compbiomed.2017.03.008_bib11) 2012; 96
Yager (10.1016/j.compbiomed.2017.03.008_bib50) 1992; 20
Ganesan (10.1016/j.compbiomed.2017.03.008_bib25) 2014; 52
10.1016/j.compbiomed.2017.03.008_bib47
10.1016/j.compbiomed.2017.03.008_bib44
Mookiah (10.1016/j.compbiomed.2017.03.008_bib37) 2015; 89
Hijazi (10.1016/j.compbiomed.2017.03.008_bib33) 2015
10.1016/j.compbiomed.2017.03.008_bib43
Wong (10.1016/j.compbiomed.2017.03.008_bib30) 2008; 178
Kosko (10.1016/j.compbiomed.2017.03.008_bib7) 1986; 40
Liu (10.1016/j.compbiomed.2017.03.008_bib68) 2011; 8
Antoine (10.1016/j.compbiomed.2017.03.008_bib23) 1996; 52
Acharya (10.1016/j.compbiomed.2017.03.008_bib62) 2011; 15
Raghavendra (10.1016/j.compbiomed.2017.03.008_bib64) 2017
Nayak (10.1016/j.compbiomed.2017.03.008_bib20) 2009; 33
Noronha (10.1016/j.compbiomed.2017.03.008_bib26) 2014; 10
Hijazi (10.1016/j.compbiomed.2017.03.008_bib34) 2012; 29
Unler (10.1016/j.compbiomed.2017.03.008_bib5) 2010; 206
Antoine (10.1016/j.compbiomed.2017.03.008_bib22) 1993; 31
Abramoff (10.1016/j.compbiomed.2017.03.008_bib31) 2010; 3
Gdeisat (10.1016/j.compbiomed.2017.03.008_bib32) 2007; 45
Mookiah (10.1016/j.compbiomed.2017.03.008_bib38) 2015; 63
Acharya (10.1016/j.compbiomed.2017.03.008_bib58) 2015; 15
Nayak (10.1016/j.compbiomed.2017.03.008_bib19) 2008; 32
Acharya (10.1016/j.compbiomed.2017.03.008_bib63) 2014; 41
Agurto (10.1016/j.compbiomed.2017.03.008_bib9) 2011; 52
Maheshwari (10.1016/j.compbiomed.2017.03.008_bib53) 2016
Pizer (10.1016/j.compbiomed.2017.03.008_bib54) 1987; 39
Kolar (10.1016/j.compbiomed.2017.03.008_bib49) 2008; 17
Acharya (10.1016/j.compbiomed.2017.03.008_bib56) 2009
Friedman (10.1016/j.compbiomed.2017.03.008_bib12) 2004; 122
Lamoke (10.1016/j.compbiomed.2017.03.008_bib13) 2014; 5
Mookiah (10.1016/j.compbiomed.2017.03.008_bib39) 2014; 52
References_xml – year: 2016
  ident: bib53
  article-title: Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 39
  start-page: 355
  year: 1987
  end-page: 368
  ident: bib54
  article-title: Adaptive histogram equalization and its variations, Computer Vision
  publication-title: Graph., Image Process.
– volume: 41
  start-page: 257
  year: 2014
  end-page: 263
  ident: bib63
  article-title: Computer-aided diagnosis of alcoholism-related EEG signals
  publication-title: Epilepsy Behav.
– year: 2006
  ident: bib24
  article-title: Retinal Vessel Segmentation Using the 2-D Morlet Wavelet and Supervised Classification
– reference: M.H.A. Hijazi, F. Coenen, Y. Zheng, Retinal image classification using a histogram based approach, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2010, pp. 3501–3507.
– volume: 63
  start-page: 208
  year: 2015
  end-page: 218
  ident: bib38
  article-title: Local configuration pattern features for age-related macular degeneration characterization and classification
  publication-title: Comput. Biol. Med.
– volume: 14
  start-page: 471
  year: 2010
  end-page: 481
  ident: bib48
  article-title: Glaucoma risk index: automated glaucoma detection from color fundus images
  publication-title: Med. Image Anal.
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: bib14
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 32
  start-page: 481
  year: 2008
  end-page: 488
  ident: bib59
  article-title: Application of higher order spectra for the identification of diabetes retinopathy stages
  publication-title: J. Med. Syst.
– volume: 32
  start-page: 617
  year: 2010
  end-page: 622
  ident: bib18
  article-title: Glaucoma detection by wavelet-based analysis of the global flash multifocal electroretinogram
  publication-title: Med. Eng. Phys.
– start-page: 1322
  year: 2008
  end-page: 1328
  ident: bib15
  article-title: ADASYN: adaptive synthetic sampling approach for imbalanced learning
  publication-title: IEEE Int. Jt. Conf. Neural Netw.
– volume: 96
  start-page: 614
  year: 2012
  end-page: 618
  ident: bib11
  article-title: Global estimates of visual impairment: 2010
  publication-title: Br. J. Ophthalmol.
– start-page: 545
  year: 2009
  end-page: 553
  ident: bib56
  article-title: Computer-based detection of diabetes retinopathy stages using digital fundus images
  publication-title: Proc. Inst. Mech. Eng. Part H. J. Eng. Med.
– volume: 15
  start-page: 449
  year: 2011
  end-page: 455
  ident: bib62
  article-title: Automated diagnosis of glaucoma using texture and higher order spectra features
  publication-title: IEEE Trans. Inf. Technol. Biomed.: A Publ. IEEE Eng. Med. Biol. Soc.
– volume: 73
  start-page: 131
  year: 2016
  end-page: 140
  ident: bib60
  article-title: Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features
  publication-title: Comput. Biol. Med.
– volume: 206
  start-page: 528
  year: 2010
  end-page: 539
  ident: bib5
  article-title: A discrete particle swarm optimization method for feature selection in binary classification problems
  publication-title: Eur. J. Oper. Res.
– start-page: 1942
  year: 1995
  end-page: 1945
  ident: bib16
  article-title: Particle swarm optimization
  publication-title: Proc. IEEE Int. Conf. Neural Netw.
– volume: 15
  start-page: 18
  year: 2015
  end-page: 26
  ident: bib58
  article-title: Decision support system for the glaucoma using gabor transformation
  publication-title: Biomed. Signal Process. Control
– reference: 〉.
– volume: 43
  start-page: 2136
  year: 2013
  end-page: 2155
  ident: bib41
  article-title: Computer-aided diagnosis of diabetic retinopathy: a review
  publication-title: Comput. Biol. Med.
– volume: 40
  start-page: 165
  year: 1986
  end-page: 174
  ident: bib7
  article-title: Fuzzy entropy and conditioning
  publication-title: Inf. Sci.
– volume: 39
  start-page: 234
  year: 2012
  end-page: 238
  ident: bib28
  article-title: Multifocal electroretinogram diagnosis of glaucoma applying neural networks and structural pattern analysis
  publication-title: Expert Syst. Appl.
– volume: 33
  start-page: 337
  year: 2009
  end-page: 346
  ident: bib20
  article-title: Automated diagnosis of glaucoma using fundus images
  publication-title: J. Med. Syst.
– volume: 31
  start-page: 241
  year: 1993
  end-page: 272
  ident: bib22
  article-title: Image analysis with two-dimensional continuous wavelet transform
  publication-title: Signal Process.
– volume: 75
  start-page: 54
  year: 2015
  end-page: 62
  ident: bib61
  article-title: Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index
  publication-title: Comput. Biol. Med.
– volume: 53
  start-page: 55
  year: 2014
  end-page: 64
  ident: bib40
  article-title: Automated diagnosis of age-related macular degeneration using greyscale features from digital fundus images
  publication-title: Comput. Biol. Med.
– volume: 4
  start-page: 255
  year: 2015
  end-page: 260
  ident: bib52
  article-title: An overview on particle swarm optimization: basic concepts and modified variants
  publication-title: Int. J. Sci. Res.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib29
  article-title: Random forests
  publication-title: Mach. Learn.
– reference: M. S. Haleem, L. Han, J. van Hemert, B. Li, Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review Computerized Medical Imaging and Graphics, vol. 37, 2013, pp. 581–596.
– volume: 27
  start-page: 623
  year: 1948
  end-page: 656
  ident: bib10
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
– volume: 3
  start-page: 169
  year: 2010
  end-page: 208
  ident: bib31
  article-title: Retinal imaging and image analysis
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 122
  start-page: 564
  year: 2004
  end-page: 572
  ident: bib12
  article-title: Prevalence of age-related macular degeneration in the United States
  publication-title: JAMA Ophthalmol.
– volume: 52
  start-page: 259
  year: 1996
  end-page: 281
  ident: bib23
  article-title: Two-dimensional directional wavelets and the scale-angle representation
  publication-title: Signal Process.
– start-page: 57
  year: 2015
  end-page: 68
  ident: bib33
  article-title: Data mining for AMD screening: a classification based approach
  publication-title: Int. J. Simul. Syst. Sci. Technol.
– reference: A. Singh, B. Singh, Texture features extraction in mammograms using non-shanon entropies, Machine Learning and Systems Engineering Lecture Notes in Electrical Engineering 68, Springer, 2010, pp. 341–351.
– volume: 5
  year: 2014
  ident: bib13
  article-title: Validation of biomarkers of diabetic retinopathy for preventing and predictive medicine in diabetic complications
  publication-title: Proc. EPMW World Congr.
– volume: 89
  start-page: 654
  year: 2015
  end-page: 668
  ident: bib37
  article-title: Automated detection of age-related macular degeneration using empirical mode decomposition
  publication-title: Knowl.-Based Syst.
– volume: 35
  year: 2006
  ident: bib55
  publication-title: Towards 2020 Vision in Singapore
– volume: 32
  start-page: 107
  year: 2008
  end-page: 115
  ident: bib19
  article-title: Automated identification of diabetic retinopathy stages using digital fundus images
  publication-title: J. Med. Syst.
– volume: 36
  start-page: 145
  year: 2012
  end-page: 157
  ident: bib46
  article-title: Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review
  publication-title: J. Med. Syst.
– reference: NIH National Eye Institute (NEI), 〈
– volume: 8
  start-page: 191
  year: 2011
  end-page: 200
  ident: bib68
  article-title: An improved particle swarm optimization for feature selection
  publication-title: J. Bionic Eng.
– volume: 10
  start-page: 174
  year: 2014
  end-page: 183
  ident: bib26
  article-title: Automated classification of glaucoma stages using higher order cumulant features
  publication-title: Biomed. Signal Process. Control
– volume: 20
  start-page: 341
  year: 1992
  end-page: 358
  ident: bib50
  article-title: Entropy measures under similarity relations
  publication-title: Int. J. Gen. Syst.
– volume: 39
  start-page: 9
  year: 2013
  end-page: 22
  ident: bib42
  article-title: Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach
  publication-title: Knowl.-Based Syst.
– reference: P. Subirats, J. Dumoulin, V. Legeay, D. Barba, Automation of pavement surface crack detection using the continuous wavelet transform, in: Proceedings of the IEEE International Conference on Image Processing, 2006.
– reference: X. Wanga, B.S. Wong, T.C. Guan, Image enhancement for radiography inspection, in: Proceedings of the International Conference on Experimental Mechanics, 2004, pp. 462–468.
– volume: 124
  start-page: 108
  year: 2016
  end-page: 120
  ident: bib4
  article-title: Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image
  publication-title: Comput. Methods Prog. Biomed.
– volume: 53
  year: 2012
  ident: bib69
  article-title: Automated “disease/no disease” grading of age-related macular degeneration by an image mining approach
  publication-title: Investig. Ophthalmol. Vis. Sci.
– reference: V.K. Reddy, K.K. Siramoju, P. Sircar, Object detection by 2-D continuous wavelet transform, in: Proceedings of the IEEE International Conference on Computational Science and Computational Intelligence, 2014, pp. 162–167.
– volume: 16
  start-page: 80
  year: 2012
  end-page: 87
  ident: bib51
  article-title: Wavelet based energy features for glaucomatous image classification
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– start-page: 227
  year: 2013
  end-page: 251
  ident: bib27
  article-title: Decision support system for diabetes retinopathy using discrete wavelet transform
  publication-title: Proc. Inst. Mech. Eng. Part H: J. Eng. Med.
– volume: 52
  start-page: 663
  year: 2014
  end-page: 672
  ident: bib25
  article-title: Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images
  publication-title: Med. Biol. Eng. Comput.
– volume: 45
  start-page: 8722
  year: 2007
  end-page: 8732
  ident: bib32
  article-title: Spatial carrier fringe pattern demodulation using a two-dimensional continuous wavelet transform
  publication-title: PubMed Appl. Opt.
– volume: 25
  start-page: 12
  year: 2012
  end-page: 21
  ident: bib65
  article-title: On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
  publication-title: Knowl.-Based Syst. Spec. Issue New Trends Data Min.
– volume: 52
  start-page: 781
  year: 2014
  end-page: 796
  ident: bib39
  article-title: Decision support system for age-related macular degeneration using discrete wavelet transform
  publication-title: Med. Biol. Eng. Comput.
– volume: 17
  start-page: 109
  year: 2008
  end-page: 114
  ident: bib49
  article-title: Detection of glaucomatous eye via color fundus images using fractal dimensions
  publication-title: Radio Eng.
– volume: 36
  start-page: 2011
  year: 2012
  end-page: 2020
  ident: bib57
  article-title: An integrated index for the identification of diabetic retinopathy stages using texture parameters
  publication-title: J. Med. Syst.
– volume: 27
  start-page: 652
  year: 2009
  end-page: 666
  ident: bib45
  article-title: Two-dimensional continuous wavelet analysis and its application to meteorological data
  publication-title: J. Atmos. Ocean. Technol.
– reference: A. Renyi, On measures of entropy and information, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, University of California Press, 1961, pp. 547–561.
– volume: 29
  start-page: 273
  year: 1985
  end-page: 285
  ident: bib21
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Comput. Vis. Graph. Image Process.
– reference: A. Khosla, S. Kumar, K.R. Ghosh, A Comparison of Computational Efforts between particle swarm optimization and genetic algorithm for identification of fuzzy models, in: Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS, 2007, pp. 245–250.
– volume: 33
  start-page: 73
  year: 2012
  end-page: 82
  ident: bib36
  article-title: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features
  publication-title: Knowl.-Based Syst.
– volume: 21
  start-page: 753
  year: 2008
  end-page: 763
  ident: bib17
  article-title: A comparative study on rough set based class imbalance learning
  publication-title: Knowl.-Based Syst.
– volume: 178
  start-page: 106
  year: 2008
  end-page: 121
  ident: bib30
  article-title: Identification of different stages of diabetic retinopathy using retinal optical images
  publication-title: Inf. Sci.
– volume: 29
  start-page: 83
  year: 2012
  end-page: 92
  ident: bib34
  article-title: Data mining techniques for the screening of age-related macular degeneration
  publication-title: Knowl.-Based Syst.
– volume: 43
  start-page: 1656
  year: 2013
  end-page: 1671
  ident: bib8
  article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach
  publication-title: IEEE Trans. Cybern.
– volume: 52
  start-page: 5862
  year: 2011
  end-page: 5871
  ident: bib9
  article-title: Automatic detection of diabetic retinopathy and age-related macular degeneration in digital fundus images
  publication-title: Investig. Ophthalmol. Vis. Sci.
– year: 2011
  ident: bib6
  article-title: A decision support system for automatic screening of non-proliferative diabetic retinopathy
  publication-title: J. Med. Syst.
– year: 2017
  ident: bib64
  article-title: Automated screening of congestive heart failure using variational mode decomposition and texture features extracted from ultrasound images
  publication-title: Neural Comput. Appl.
– volume: 39
  start-page: 234
  year: 2012
  ident: 10.1016/j.compbiomed.2017.03.008_bib28
  article-title: Multifocal electroretinogram diagnosis of glaucoma applying neural networks and structural pattern analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.013
– volume: 29
  start-page: 273
  year: 1985
  ident: 10.1016/j.compbiomed.2017.03.008_bib21
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/0734-189X(85)90125-2
– volume: 31
  start-page: 241
  year: 1993
  ident: 10.1016/j.compbiomed.2017.03.008_bib22
  article-title: Image analysis with two-dimensional continuous wavelet transform
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(93)90085-O
– volume: 43
  start-page: 2136
  year: 2013
  ident: 10.1016/j.compbiomed.2017.03.008_bib41
  article-title: Computer-aided diagnosis of diabetic retinopathy: a review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.10.007
– volume: 3
  start-page: 169
  year: 2010
  ident: 10.1016/j.compbiomed.2017.03.008_bib31
  article-title: Retinal imaging and image analysis
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2010.2084567
– volume: 53
  start-page: 55
  year: 2014
  ident: 10.1016/j.compbiomed.2017.03.008_bib40
  article-title: Automated diagnosis of age-related macular degeneration using greyscale features from digital fundus images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.07.015
– year: 2006
  ident: 10.1016/j.compbiomed.2017.03.008_bib24
– volume: 5
  year: 2014
  ident: 10.1016/j.compbiomed.2017.03.008_bib13
  article-title: Validation of biomarkers of diabetic retinopathy for preventing and predictive medicine in diabetic complications
  publication-title: Proc. EPMW World Congr.
– ident: 10.1016/j.compbiomed.2017.03.008_bib3
  doi: 10.1007/978-90-481-9419-3_26
– volume: 36
  start-page: 2011
  issue: 3
  year: 2012
  ident: 10.1016/j.compbiomed.2017.03.008_bib57
  article-title: An integrated index for the identification of diabetic retinopathy stages using texture parameters
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-011-9663-8
– volume: 14
  start-page: 471
  year: 2010
  ident: 10.1016/j.compbiomed.2017.03.008_bib48
  article-title: Glaucoma risk index: automated glaucoma detection from color fundus images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.12.006
– volume: 96
  start-page: 614
  issue: 5
  year: 2012
  ident: 10.1016/j.compbiomed.2017.03.008_bib11
  article-title: Global estimates of visual impairment: 2010
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2011-300539
– year: 2017
  ident: 10.1016/j.compbiomed.2017.03.008_bib64
  article-title: Automated screening of congestive heart failure using variational mode decomposition and texture features extracted from ultrasound images
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2839-5
– ident: 10.1016/j.compbiomed.2017.03.008_bib66
  doi: 10.1109/CSCI.2014.34
– volume: 21
  start-page: 753
  issue: 8
  year: 2008
  ident: 10.1016/j.compbiomed.2017.03.008_bib17
  article-title: A comparative study on rough set based class imbalance learning
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2008.03.031
– volume: 63
  start-page: 208
  year: 2015
  ident: 10.1016/j.compbiomed.2017.03.008_bib38
  article-title: Local configuration pattern features for age-related macular degeneration characterization and classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.05.019
– volume: 75
  start-page: 54
  year: 2015
  ident: 10.1016/j.compbiomed.2017.03.008_bib61
  article-title: Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.04.015
– volume: 35
  year: 2006
  ident: 10.1016/j.compbiomed.2017.03.008_bib55
– volume: 206
  start-page: 528
  issue: 3
  year: 2010
  ident: 10.1016/j.compbiomed.2017.03.008_bib5
  article-title: A discrete particle swarm optimization method for feature selection in binary classification problems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2010.02.032
– year: 2016
  ident: 10.1016/j.compbiomed.2017.03.008_bib53
  article-title: Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 32
  start-page: 617
  year: 2010
  ident: 10.1016/j.compbiomed.2017.03.008_bib18
  article-title: Glaucoma detection by wavelet-based analysis of the global flash multifocal electroretinogram
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.02.019
– volume: 27
  start-page: 623
  issue: 379–423
  year: 1948
  ident: 10.1016/j.compbiomed.2017.03.008_bib10
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb00917.x
– start-page: 545
  year: 2009
  ident: 10.1016/j.compbiomed.2017.03.008_bib56
  article-title: Computer-based detection of diabetes retinopathy stages using digital fundus images
  publication-title: Proc. Inst. Mech. Eng. Part H. J. Eng. Med.
  doi: 10.1243/09544119JEIM486
– volume: 25
  start-page: 12
  issue: 1
  year: 2012
  ident: 10.1016/j.compbiomed.2017.03.008_bib65
  article-title: On the effectiveness of preprocessing methods when dealing with different levels of class imbalance
  publication-title: Knowl.-Based Syst. Spec. Issue New Trends Data Min.
– volume: 39
  start-page: 355
  issue: 3
  year: 1987
  ident: 10.1016/j.compbiomed.2017.03.008_bib54
  article-title: Adaptive histogram equalization and its variations, Computer Vision
  publication-title: Graph., Image Process.
  doi: 10.1016/S0734-189X(87)80186-X
– start-page: 57
  year: 2015
  ident: 10.1016/j.compbiomed.2017.03.008_bib33
  article-title: Data mining for AMD screening: a classification based approach
  publication-title: Int. J. Simul. Syst. Sci. Technol.
– volume: 40
  start-page: 165
  year: 1986
  ident: 10.1016/j.compbiomed.2017.03.008_bib7
  article-title: Fuzzy entropy and conditioning
  publication-title: Inf. Sci.
  doi: 10.1016/0020-0255(86)90006-X
– volume: 32
  start-page: 481
  issue: 6
  year: 2008
  ident: 10.1016/j.compbiomed.2017.03.008_bib59
  article-title: Application of higher order spectra for the identification of diabetes retinopathy stages
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-008-9154-8
– volume: 73
  start-page: 131
  year: 2016
  ident: 10.1016/j.compbiomed.2017.03.008_bib60
  article-title: Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.04.009
– volume: 52
  start-page: 781
  issue: 9
  year: 2014
  ident: 10.1016/j.compbiomed.2017.03.008_bib39
  article-title: Decision support system for age-related macular degeneration using discrete wavelet transform
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-014-1180-8
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.compbiomed.2017.03.008_bib29
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 32
  start-page: 107
  issue: 2
  year: 2008
  ident: 10.1016/j.compbiomed.2017.03.008_bib19
  article-title: Automated identification of diabetic retinopathy stages using digital fundus images
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-007-9113-9
– volume: 29
  start-page: 83
  year: 2012
  ident: 10.1016/j.compbiomed.2017.03.008_bib34
  article-title: Data mining techniques for the screening of age-related macular degeneration
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.07.002
– start-page: 227
  year: 2013
  ident: 10.1016/j.compbiomed.2017.03.008_bib27
  article-title: Decision support system for diabetes retinopathy using discrete wavelet transform
  publication-title: Proc. Inst. Mech. Eng. Part H: J. Eng. Med.
– volume: 45
  start-page: 8722
  issue: 34
  year: 2007
  ident: 10.1016/j.compbiomed.2017.03.008_bib32
  article-title: Spatial carrier fringe pattern demodulation using a two-dimensional continuous wavelet transform
  publication-title: PubMed Appl. Opt.
  doi: 10.1364/AO.45.008722
– ident: 10.1016/j.compbiomed.2017.03.008_bib1
  doi: 10.1109/NAFIPS.2007.383845
– volume: 4
  start-page: 255
  issue: 5
  year: 2015
  ident: 10.1016/j.compbiomed.2017.03.008_bib52
  article-title: An overview on particle swarm optimization: basic concepts and modified variants
  publication-title: Int. J. Sci. Res.
– volume: 27
  start-page: 652
  year: 2009
  ident: 10.1016/j.compbiomed.2017.03.008_bib45
  article-title: Two-dimensional continuous wavelet analysis and its application to meteorological data
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/2009JTECHA1338.1
– volume: 52
  start-page: 5862
  issue: 8
  year: 2011
  ident: 10.1016/j.compbiomed.2017.03.008_bib9
  article-title: Automatic detection of diabetic retinopathy and age-related macular degeneration in digital fundus images
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.10-7075
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 10.1016/j.compbiomed.2017.03.008_bib14
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– ident: 10.1016/j.compbiomed.2017.03.008_bib43
  doi: 10.1016/j.compmedimag.2013.09.005
– volume: 17
  start-page: 109
  issue: 3
  year: 2008
  ident: 10.1016/j.compbiomed.2017.03.008_bib49
  article-title: Detection of glaucomatous eye via color fundus images using fractal dimensions
  publication-title: Radio Eng.
– volume: 52
  start-page: 663
  issue: 8
  year: 2014
  ident: 10.1016/j.compbiomed.2017.03.008_bib25
  article-title: Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-014-1167-5
– volume: 39
  start-page: 9
  year: 2013
  ident: 10.1016/j.compbiomed.2017.03.008_bib42
  article-title: Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.09.008
– ident: 10.1016/j.compbiomed.2017.03.008_bib47
  doi: 10.1109/ICIP.2006.313007
– volume: 52
  start-page: 259
  year: 1996
  ident: 10.1016/j.compbiomed.2017.03.008_bib23
  article-title: Two-dimensional directional wavelets and the scale-angle representation
  publication-title: Signal Process.
  doi: 10.1016/0165-1684(96)00065-5
– volume: 124
  start-page: 108
  year: 2016
  ident: 10.1016/j.compbiomed.2017.03.008_bib4
  article-title: Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2015.10.010
– volume: 122
  start-page: 564
  issue: 4
  year: 2004
  ident: 10.1016/j.compbiomed.2017.03.008_bib12
  article-title: Prevalence of age-related macular degeneration in the United States
  publication-title: JAMA Ophthalmol.
– start-page: 1322
  year: 2008
  ident: 10.1016/j.compbiomed.2017.03.008_bib15
  article-title: ADASYN: adaptive synthetic sampling approach for imbalanced learning
  publication-title: IEEE Int. Jt. Conf. Neural Netw.
– ident: 10.1016/j.compbiomed.2017.03.008_bib44
– volume: 15
  start-page: 18
  year: 2015
  ident: 10.1016/j.compbiomed.2017.03.008_bib58
  article-title: Decision support system for the glaucoma using gabor transformation
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.09.004
– volume: 36
  start-page: 145
  year: 2012
  ident: 10.1016/j.compbiomed.2017.03.008_bib46
  article-title: Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-010-9454-7
– volume: 33
  start-page: 73
  year: 2012
  ident: 10.1016/j.compbiomed.2017.03.008_bib36
  article-title: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.02.010
– volume: 20
  start-page: 341
  issue: 4
  year: 1992
  ident: 10.1016/j.compbiomed.2017.03.008_bib50
  article-title: Entropy measures under similarity relations
  publication-title: Int. J. Gen. Syst.
  doi: 10.1080/03081079208945039
– year: 2011
  ident: 10.1016/j.compbiomed.2017.03.008_bib6
  article-title: A decision support system for automatic screening of non-proliferative diabetic retinopathy
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-009-9337-y
– volume: 89
  start-page: 654
  year: 2015
  ident: 10.1016/j.compbiomed.2017.03.008_bib37
  article-title: Automated detection of age-related macular degeneration using empirical mode decomposition
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.09.012
– volume: 41
  start-page: 257
  year: 2014
  ident: 10.1016/j.compbiomed.2017.03.008_bib63
  article-title: Computer-aided diagnosis of alcoholism-related EEG signals
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2014.10.001
– volume: 53
  issue: 13
  year: 2012
  ident: 10.1016/j.compbiomed.2017.03.008_bib69
  article-title: Automated “disease/no disease” grading of age-related macular degeneration by an image mining approach
  publication-title: Investig. Ophthalmol. Vis. Sci.
– ident: 10.1016/j.compbiomed.2017.03.008_bib35
  doi: 10.1109/IJCNN.2010.5596320
– ident: 10.1016/j.compbiomed.2017.03.008_bib2
– volume: 178
  start-page: 106
  year: 2008
  ident: 10.1016/j.compbiomed.2017.03.008_bib30
  article-title: Identification of different stages of diabetic retinopathy using retinal optical images
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2007.07.020
– volume: 15
  start-page: 449
  issue: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2017.03.008_bib62
  article-title: Automated diagnosis of glaucoma using texture and higher order spectra features
  publication-title: IEEE Trans. Inf. Technol. Biomed.: A Publ. IEEE Eng. Med. Biol. Soc.
  doi: 10.1109/TITB.2011.2119322
– ident: 10.1016/j.compbiomed.2017.03.008_bib67
  doi: 10.1117/12.621707
– volume: 43
  start-page: 1656
  issue: 6
  year: 2013
  ident: 10.1016/j.compbiomed.2017.03.008_bib8
  article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2227469
– volume: 16
  start-page: 80
  issue: 1
  year: 2012
  ident: 10.1016/j.compbiomed.2017.03.008_bib51
  article-title: Wavelet based energy features for glaucomatous image classification
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2176540
– volume: 8
  start-page: 191
  year: 2011
  ident: 10.1016/j.compbiomed.2017.03.008_bib68
  article-title: An improved particle swarm optimization for feature selection
  publication-title: J. Bionic Eng.
  doi: 10.1016/S1672-6529(11)60020-6
– start-page: 1942
  year: 1995
  ident: 10.1016/j.compbiomed.2017.03.008_bib16
  article-title: Particle swarm optimization
  publication-title: Proc. IEEE Int. Conf. Neural Netw.
  doi: 10.1109/ICNN.1995.488968
– volume: 33
  start-page: 337
  issue: 5
  year: 2009
  ident: 10.1016/j.compbiomed.2017.03.008_bib20
  article-title: Automated diagnosis of glaucoma using fundus images
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-008-9195-z
– volume: 10
  start-page: 174
  year: 2014
  ident: 10.1016/j.compbiomed.2017.03.008_bib26
  article-title: Automated classification of glaucoma stages using higher order cumulant features
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.11.006
SSID ssj0004030
Score 2.4309924
Snippet Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma,...
Abstract Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 89
SubjectTerms Accuracy
Age
Age-related macular degeneration
Alcoholism
Algorithms
Amplitude modulation
Automation
Bleeding
Blindness
Blood vessels
Classification
Computation
Computer applications
Congestive heart failure
Continuous wavelet transform
Data processing
Databases, Factual
Decomposition
Diabetes
Diabetic retinopathy
Diagnosis
Diagnostic Techniques, Ophthalmological
Digital computers
Drug abuse
Electroencephalography
Entropy
Epilepsy
Evaluation
Eye diseases
Frequency dependence
Frequency modulation
Fundus
Fundus Oculi
Genetic transformation
Glaucoma
Glaucoma - diagnostic imaging
Heart
Humans
Identification
Image Interpretation, Computer-Assisted - methods
Inspection
Intelligence
Internal Medicine
International conferences
Learning algorithms
Machine learning
Macular degeneration
Medical diagnosis
Medical imaging
Morphology
Neural networks
Other
Particle swarm optimization
Photography
Probability theory
Quality
Radiography
Retina
Retina - diagnostic imaging
Retinal Diseases - diagnostic imaging
Risk
Technology utilization
Ultrasound
Vision
Visual perception
Warning
Wavelet Analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXKVkJcKr5ZWpCROMAhInacOlGFEJRWFVJXCFrRm-XEdhWgydJkxd_vTGxnLxTt1cnEUWY8nonfvCHkNbeSmaqok1pzm8BKLJKC1VmSOl1owUwpHCaKp4v9k3Px5SK_2CKLWAuDsMroE0dHbboa_5G_Y0XJpUS6rA_LPwl2jcLT1dhCQ4fWCub9SDF2h2xzZMaake1PR4uv39aVkmnmi1LA-whIjgK2xyO-EMTti94R8iUD-eltG9ZtAem4MR3fJzshoqQfvQk8IFu2fUjunoYz80fk12ePpmt62jmKRYt4u69_pE1LTXOJjUMo7HBm1dPmCjxMTxEPf0kRyN60qw7G_2psUTHQIUa69M3hj7O3VLeG4h_ibgk592Nyfnx0dniShBYLSQ2R0pDomvEqtwLSDGtcUZgMRlKXImu9yU2lHajQMFHZSucu5_uZKF0-BmFWcm6yJ2TWdq19RqjLDKullTUvIcV0QtvSpeDWubUOeevnRMbvqOrAP45tMH6rCDT7qdYaUKgBlWYKNDAnbJJceg6ODWTKqCoVa0zBKyrYKDaQlf-StX1Y3r1iqucqVd9HdiMs_h1Z_6WYk4NJMkQwPjLZcN69aFNqPdVk93PyaroMPgAPdnRrwQLgHojjilTiCzz1tjh9KOTTQ0qk5_9_-C65h2_ioZx7ZDZcr-wLCLeG6mVYQzcniius
  priority: 102
  providerName: ProQuest
Title Diagnosis of retinal health in digital fundus images using continuous wavelet transform (CWT) and entropies
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482517300574
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482517300574
https://dx.doi.org/10.1016/j.compbiomed.2017.03.008
https://www.ncbi.nlm.nih.gov/pubmed/28351716
https://www.proquest.com/docview/1892775681
https://www.proquest.com/docview/1882080774
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhbKXsbb7yNYVFfawPXi1ZbmS6VOXNk03GsZoWd6EbEnF-3DC7LC3_e29s-SEsRUCfbGxImGhO53u4t_9jpA3zIrEFLKMSs1sBDtRRjIp0yh2WmqemJw7DBSvJsfjG_5xmk03yLDPhUFYZbD93qZ31jq0HIXVPJpXFeb4QiiBmZcd5bpATlDOBVYxeP9nBfPgcerTUMDeYO-A5vEYL4Rt-zR3BHmJQHd63xF1nwvaHUWjJ-Rx8CHpqZ_mDtmw9S7ZvgpfyffI9zOPn6saOnMU0xSxu894pFVNTXWLpUIonGlm0dDqJ9iUhiIC_pYidL2qFzNo_62xKEVL2963pW-HX6_fUV0biv8Jz-YQZT8lN6Pz6-E4CkUVohJ8ozbSZcKKzHIILKxxUpoUWmIXI0-9yUyhHQjNJLywhc5cxo5Tnrusc7usYMykz8hmPavtC0JdapJSWFGyHIJKx7XNXQyGnFnrkKl-QES_jqoMjONY-OKH6qFl39RKAgoloOJUgQQGJFmOnHvWjTXG5L2oVJ9VCnZQwdGwxljxv7G2CRu6UYlqmIrVP0o3ICfLkX_p7Zrv3e91Sq1eJXMmBBLDDcjh8mfY9fgpR9cWNAD6gOcmY4ETeO51cblQyKCHJEgvHzS1V-QRPnls5z7ZbH8t7Gvwv9rioNtgcBVTAVc5ujggW6eXn8YTuH84n3z-cgf37jVL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwEXxJuFAkYCCQ4RiePUiVCFoA9taXeFYKv2ZpzYrsIjWUhWFX-O38ZM7GQvFO2lV28myXrsecTffEPIc2ZEpPO0CArFTAA7MQ3SqIiD0KpU8Uhn3GKiOJlujY_5h9PkdI386WthEFbZ28TOUOu6wG_kr6M0Y0IgXdbb-c8Au0bh6WrfQkP51gp6u6MY84Udh-b3OaRwzfbBLuj7BWP7e7OdceC7DAQFBAttoIqI5YnhEGkbbdNUxzAS2hCJ23Wic2XhX-iI5yZXiU3YVswzm3RxiBGM6Rjue4VscBiG5G_j_d7046dlZWYYuyIYsHYckjGPJXIIMwSNuyJ7hJgJT7Z6kYO8KADuHOH-TXLDR7D0nVtyt8iaqW6TqxN_Rn-HfNt16L2yobWlWCSJl7t6S1pWVJdn2KiEgkfVi4aWP8CiNRTx92cUgfNltahh_FxhS4yWtn1kTV_unMxeUVVpil-k6znk-HfJ8aVM9j2yXtWVeUCojXVUCCMKlkFKa7kymQ3BjTBjLPLkj4jo51EWnu8c2258lz2w7atcakCiBmQYS9DAiESD5Nxxfqwgk_Wqkn1NK1hhCY5pBVnxL1nTeHPSyEg2TIbyc8emhMXGXZcBwUfkzSDpIyYXCa343M1-Tcnlo4Z9NiLPhp_B5uBBkqoMrAC4BuLGNBT4AvfdWhwmCvn7kILp4f9v_pRcG88mR_LoYHr4iFzHt3Iw0k2y3v5amMcQ6rX5E7-fKPly2Vv4L-TpaUY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8WChgJJDhETeykToQQQl1WLaUVEq3Ym3FiuwqPZCFZVfw1fh0zcZK9ULSXXpNMHp53_M0MwDNuZWTytAgKzW2AmpgGaVSIIHQ61XFksthRonh0vLt_Gr-fJ_MN-DPUwhCscrCJnaE2dUH_yHeiNONSUrusHdfDIj5OZ28WPwOaIEU7rcM4DS8ih_b3OaZvzeuDKfL6Oeezdyd7-0E_YSAoMFBoA11EPE9sjFG2NS5NjcAjoQupabtJTK4dfoGJ4tzmOnEJ3xVx5pIuBrGScyPwvlfgqhQiIzihnMtVTWYofPkL2rkY07AeReSxZQQX9-X1BC6TfZvVi1zjRaFv5wJnN-B6H7uyt17YbsKGrW7B1lG_O38bvk09bq9sWO0YlUfS5b7SkpUVM-UZjShh6EvNsmHlD7RlDSPk_RkjyHxZLWs8fq5pGEbL2iGmZi_2Pp-8ZLoyjP5F1wvM7u_A6aUs9V3YrOrK3gfmhIkKaWXBM0xmXaxt5kJ0INxaRx3yJyCHdVRF3-mcBm58VwOk7atacUARB1QoFHJgAtFIufDdPtagyQZWqaGaFe2vQpe0Bq38F61tekPSqEg1XIXqU9dHicqMu_kCMp7Aq5Gyj5V8DLTmc7cHmVKrR40aNoGn42m0NrSFpCuLEoDXYMSYhpJe4J6XxXGhqHMfNV968P-bP4EtVFz14eD48CFco5fy-NFt2Gx_Le0jjPHa_HGnTAy-XLb2_gULZmbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+retinal+health+in+digital+fundus+images+using+continuous+wavelet+transform+%28CWT%29+and+entropies&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Koh%2C+Joel+E.W.&rft.au=Acharya%2C+U.+Rajendra&rft.au=Hagiwara%2C+Yuki&rft.au=Raghavendra%2C+U.&rft.date=2017-05-01&rft.issn=0010-4825&rft.volume=84&rft.spage=89&rft.epage=97&rft_id=info:doi/10.1016%2Fj.compbiomed.2017.03.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2017_03_008
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif