Diagnosis of retinal health in digital fundus images using continuous wavelet transform (CWT) and entropies
Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying the...
        Saved in:
      
    
          | Published in | Computers in biology and medicine Vol. 84; pp. 89 - 97 | 
|---|---|
| Main Authors | , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        01.05.2017
     Elsevier Limited  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0010-4825 1879-0534 1879-0534  | 
| DOI | 10.1016/j.compbiomed.2017.03.008 | 
Cover
| Abstract | Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals.
[Display omitted]
•Classification of normal and abnormal (AMD, DR and glaucoma) using fundus images.•Energy and entropy features are extracted from 2D- CWT coefficients.•Implemented ADASYN to synthetically generate images for normal class.•Obtained an accuracy of 92.48%, sensitivity of 89.37% and specificity of 95.58%. | 
    
|---|---|
| AbstractList | Abstract Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals. Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals. Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals.Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals. Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals. [Display omitted] •Classification of normal and abnormal (AMD, DR and glaucoma) using fundus images.•Energy and entropy features are extracted from 2D- CWT coefficients.•Implemented ADASYN to synthetically generate images for normal class.•Obtained an accuracy of 92.48%, sensitivity of 89.37% and specificity of 95.58%.  | 
    
| Author | Bhandary, Sulatha V. Hagiwara, Yuki Tan, Jen Hong Chua, Kuang Chua Laude, Augustinus Tong, Louis Raghavendra, U. Acharya, U. Rajendra Sree, S. Vinitha Rao, A. Krishna Koh, Joel E.W. Sivaprasad, Sobha  | 
    
| Author_xml | – sequence: 1 givenname: Joel E.W. surname: Koh fullname: Koh, Joel E.W. organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489 Singapore, Singapore – sequence: 2 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra email: aru@np.edu.sg organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489 Singapore, Singapore – sequence: 3 givenname: Yuki surname: Hagiwara fullname: Hagiwara, Yuki organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489 Singapore, Singapore – sequence: 4 givenname: U. surname: Raghavendra fullname: Raghavendra, U. organization: Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal University, Manipal 576104, India – sequence: 5 givenname: Jen Hong surname: Tan fullname: Tan, Jen Hong organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489 Singapore, Singapore – sequence: 6 givenname: S. Vinitha surname: Sree fullname: Sree, S. Vinitha organization: Visiting Scientist, Global Biomedical Technologies, CA, USA – sequence: 7 givenname: Sulatha V. surname: Bhandary fullname: Bhandary, Sulatha V. organization: Department of Ophthalmology, Kasturba Medical College, Manipal 576104, India – sequence: 8 givenname: A. Krishna surname: Rao fullname: Rao, A. Krishna organization: Department of Ophthalmology, Kasturba Medical College, Manipal 576104, India – sequence: 9 givenname: Sobha surname: Sivaprasad fullname: Sivaprasad, Sobha organization: Consultant ophthalmologist, NIHR Moorfields Biomedical Research Centre, London, United Kingdom – sequence: 10 givenname: Kuang Chua surname: Chua fullname: Chua, Kuang Chua organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, 599489 Singapore, Singapore – sequence: 11 givenname: Augustinus surname: Laude fullname: Laude, Augustinus organization: National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore 308433, Singapore – sequence: 12 givenname: Louis surname: Tong fullname: Tong, Louis organization: Singapore Eye Research Institute, Ocular Surface Research Group, Singapore, Singapore  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28351716$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkk1rGzEQhkVJaZy0f6EIekkP3o6klVe-hLZOvyDQQ1N6FFpp1pGzlhxpNyX_PnKdEDAUfBIMz7wanpkTchRiQEIog4oBm31YVTauN62Pa3QVB9ZUICoA9YJMmGrmU5CiPiITAAbTWnF5TE5yXgFADQJekWOuhGQNm03IzYU3yxCzzzR2NOHgg-npNZp-uKY-UOeXfiiVbgxuzNSvzRIzHbMPS2pjKPgYS_2vucMeBzokE3IX05qeLf5cvacmOIphSHHjMb8mLzvTZ3zz-J6S31-_XC2-Ty9_fvux-HQ5tZLVw9RYxluJNWMKXaeUE6UCHcwAGiddazrD0bG6xdbITvKZqOedFLzmAhvOnTglZ7vcTYq3I-ZBr3222PcmYBlWM6U4KGiauqDv9tBVHFNRsKXmvGnkTLFCvX2kxrYY15tUPKR7_aSxAOc7wKaYc8JO22Jt8EVQMr7XDPR2b3qln_emt3vTIHTZWwlQewFPfxzQ-nnXikXpnceks_UYLDqf0A7aRX9IyPleiO198Nb0N3iP-VmKzlyD_rW9rO1hsUYAyH8iP_4_4LAZHgC3DOQc | 
    
| CitedBy_id | crossref_primary_10_1016_j_inffus_2019_06_022 crossref_primary_10_1016_j_advengsoft_2022_103283 crossref_primary_10_1016_j_cmpb_2018_07_012 crossref_primary_10_1002_ima_22379 crossref_primary_10_1007_s11042_021_11569_6 crossref_primary_10_1364_BOE_10_000914 crossref_primary_10_1016_j_future_2018_05_001 crossref_primary_10_3390_app11136178 crossref_primary_10_1007_s11042_023_17081_3 crossref_primary_10_1016_j_compbiomed_2020_104056 crossref_primary_10_1016_j_compeleceng_2024_109795 crossref_primary_10_1007_s11042_021_11087_5 crossref_primary_10_3390_app8071198 crossref_primary_10_4018_IJSIR_300370 crossref_primary_10_1007_s11042_020_10430_6 crossref_primary_10_1016_j_imu_2018_03_002 crossref_primary_10_1007_s11042_024_18624_y crossref_primary_10_1016_j_asoc_2021_107512 crossref_primary_10_1016_j_compmedimag_2019_101657 crossref_primary_10_1109_ACCESS_2024_3477420 crossref_primary_10_3390_sym11060749 crossref_primary_10_1002_ima_22565 crossref_primary_10_1016_j_bspc_2020_102137 crossref_primary_10_1007_s11042_024_19218_4 crossref_primary_10_3390_math12101445 crossref_primary_10_1016_j_measurement_2022_111191 crossref_primary_10_1016_j_compeleceng_2017_11_008 crossref_primary_10_1111_exsy_12947 crossref_primary_10_32604_csse_2022_020504 crossref_primary_10_1007_s10489_017_1048_3 crossref_primary_10_1007_s00138_020_01091_4 crossref_primary_10_1016_j_cmpb_2022_106910 crossref_primary_10_1007_s11042_023_15175_6 crossref_primary_10_1007_s13246_020_00929_5 crossref_primary_10_3390_math10071071 crossref_primary_10_1016_j_jclepro_2018_10_284 crossref_primary_10_1109_JSEN_2023_3344288 crossref_primary_10_1049_iet_ipr_2019_0137 crossref_primary_10_1016_j_measurement_2019_03_005 crossref_primary_10_1007_s10439_022_03058_0 crossref_primary_10_32604_iasc_2023_029037 crossref_primary_10_3390_e21030311 crossref_primary_10_1016_j_bspc_2020_101943 crossref_primary_10_1007_s40998_022_00514_4 crossref_primary_10_1016_j_bbe_2018_06_009 crossref_primary_10_1007_s11517_020_02237_2 crossref_primary_10_1016_j_talanta_2024_127214 crossref_primary_10_1177_03000605241271766 crossref_primary_10_1016_j_heliyon_2024_e27391 crossref_primary_10_1016_j_bbe_2021_05_011 crossref_primary_10_1016_j_compbiomed_2017_11_019  | 
    
| Cites_doi | 10.1016/j.eswa.2011.07.013 10.1016/0734-189X(85)90125-2 10.1016/0165-1684(93)90085-O 10.1016/j.compbiomed.2013.10.007 10.1109/RBME.2010.2084567 10.1016/j.compbiomed.2014.07.015 10.1007/978-90-481-9419-3_26 10.1007/s10916-011-9663-8 10.1016/j.media.2009.12.006 10.1136/bjophthalmol-2011-300539 10.1007/s00521-017-2839-5 10.1109/CSCI.2014.34 10.1016/j.knosys.2008.03.031 10.1016/j.compbiomed.2015.05.019 10.1016/j.compbiomed.2016.04.015 10.1016/j.ejor.2010.02.032 10.1016/j.medengphy.2010.02.019 10.1002/j.1538-7305.1948.tb00917.x 10.1243/09544119JEIM486 10.1016/S0734-189X(87)80186-X 10.1016/0020-0255(86)90006-X 10.1007/s10916-008-9154-8 10.1016/j.compbiomed.2016.04.009 10.1007/s11517-014-1180-8 10.1023/A:1010933404324 10.1007/s10916-007-9113-9 10.1016/j.knosys.2011.07.002 10.1364/AO.45.008722 10.1109/NAFIPS.2007.383845 10.1175/2009JTECHA1338.1 10.1167/iovs.10-7075 10.1109/TKDE.2008.239 10.1016/j.compmedimag.2013.09.005 10.1007/s11517-014-1167-5 10.1016/j.knosys.2012.09.008 10.1109/ICIP.2006.313007 10.1016/0165-1684(96)00065-5 10.1016/j.cmpb.2015.10.010 10.1016/j.bspc.2014.09.004 10.1007/s10916-010-9454-7 10.1016/j.knosys.2012.02.010 10.1080/03081079208945039 10.1007/s10916-009-9337-y 10.1016/j.knosys.2015.09.012 10.1016/j.yebeh.2014.10.001 10.1109/IJCNN.2010.5596320 10.1016/j.ins.2007.07.020 10.1109/TITB.2011.2119322 10.1117/12.621707 10.1109/TSMCB.2012.2227469 10.1109/TITB.2011.2176540 10.1016/S1672-6529(11)60020-6 10.1109/ICNN.1995.488968 10.1007/s10916-008-9195-z 10.1016/j.bspc.2013.11.006  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 Elsevier Ltd Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited May 1, 2017  | 
    
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited May 1, 2017  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8  | 
    
| DOI | 10.1016/j.compbiomed.2017.03.008 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database ProQuest Research Library Biological Science Database (Proquest) Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Research Library Prep MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1879-0534 | 
    
| EndPage | 97 | 
    
| ExternalDocumentID | 28351716 10_1016_j_compbiomed_2017_03_008 S0010482517300574 1_s2_0_S0010482517300574  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --K --M --Z -~X .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABMZM ABOCM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ARAPS AXJTR AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HMCUK IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL RPZ RXW SCC SDF SDG SDP SEL SES SPC SPCBC SSH SSV SSZ T5K UKHRP WOW Z5R ~G- ~HD .55 .GJ 29F 3V. 53G AACTN AAQXK ABFNM ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFCTW AFJKZ AFKWA AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EMOBN FEDTE FGOYB G-2 HLZ HMK HMO HVGLF HZ~ M0N R2- RIG SAE SBC SEW SV3 TAE UAP WUQ X7M XPP ZGI AAIAV ABLVK ABYKQ AJBFU LCYCR AAYXX AGQPQ AIGII APXCP CITATION PUEGO CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8  | 
    
| ID | FETCH-LOGICAL-c514t-ac12b5e4118edf88d3ac10f06007d5dbafa2ed14beba5f526349f532423e722d3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0010-4825 1879-0534  | 
    
| IngestDate | Sun Sep 28 02:24:01 EDT 2025 Tue Oct 07 06:02:32 EDT 2025 Wed Feb 19 02:42:39 EST 2025 Wed Oct 01 05:54:40 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Fri Feb 23 02:24:55 EST 2024 Tue Feb 25 20:08:41 EST 2025 Tue Oct 14 19:33:05 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Glaucoma Diabetic retinopathy Fundus Age-related macular degeneration Continuous wavelet transform  | 
    
| Language | English | 
    
| License | Copyright © 2017 Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c514t-ac12b5e4118edf88d3ac10f06007d5dbafa2ed14beba5f526349f532423e722d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PMID | 28351716 | 
    
| PQID | 1892775681 | 
    
| PQPubID | 1226355 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_miscellaneous_1882080774 proquest_journals_1892775681 pubmed_primary_28351716 crossref_citationtrail_10_1016_j_compbiomed_2017_03_008 crossref_primary_10_1016_j_compbiomed_2017_03_008 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2017_03_008 elsevier_clinicalkeyesjournals_1_s2_0_S0010482517300574 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2017_03_008  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-05-01 | 
    
| PublicationDateYYYYMMDD | 2017-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Oxford  | 
    
| PublicationTitle | Computers in biology and medicine | 
    
| PublicationTitleAlternate | Comput Biol Med | 
    
| PublicationYear | 2017 | 
    
| Publisher | Elsevier Ltd Elsevier Limited  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited  | 
    
| References | Hijazi, Coenen, Zheng (bib34) 2012; 29 Maheshwari, Pachori, Acharya (bib53) 2016 Antoine, Carrette, Muenzi, Piette (bib22) 1993; 31 Wong, Acharya, Venkatesh, Chee, Lim, Ng (bib30) 2008; 178 Acharya, Ng, Lim, Noronha, Lim, Nayak, Bhandary (bib58) 2015; 15 Wang, Lu (bib45) 2009; 27 Mookiah, Acharya, Fujita, Koh, Tan, Noronha, Bhandary, Chua, Lim, Laude, Tong (bib38) 2015; 63 Liu, Wang, Chen, Dong, Zhu, Wang (bib68) 2011; 8 Mookiah, Acharya, Martis, Chua, Lim, Ng, Laude (bib42) 2013; 39 Kolar, Jan (bib49) 2008; 17 Mookiah, Acharya, Lim, Petznick, Suri (bib36) 2012; 33 Pizer, Amburn, Austin, Cromarrtie, Geselowitz, Greer, ter Haar Romeny, Zimmerman, Zuiderveld (bib54) 1987; 39 Acharya, Mookiah, Koh, Tan, Noronha, Bhandary, Rao, Hagiwara, Chua, Laude (bib60) 2016; 73 Acharya, Mookiah, Koh, Tan, Bhandary, Rao, Fujita, Hagiwara, Chua, Laude (bib61) 2015; 75 V.K. Reddy, K.K. Siramoju, P. Sircar, Object detection by 2-D continuous wavelet transform, in: Proceedings of the IEEE International Conference on Computational Science and Computational Intelligence, 2014, pp. 162–167. Mookiah, Acharya, Fujita, Koh, Tan, Chua, Bhandary, Noronha, Laude, Tong (bib37) 2015; 89 Agurto, Barriga, Murray, Nemeth, Crammer, Bauman, Zamora, Pattichis, Soliz (bib9) 2011; 52 M. S. Haleem, L. Han, J. van Hemert, B. Li, Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review Computerized Medical Imaging and Graphics, vol. 37, 2013, pp. 581–596. Acharya, Sudarshan, Bhat, Adeli, Adeli (bib63) 2014; 41 Reza, Eswaran (bib6) 2011 X. Wanga, B.S. Wong, T.C. Guan, Image enhancement for radiography inspection, in: Proceedings of the International Conference on Experimental Mechanics, 2004, pp. 462–468. He, Bai, Garcia, Li (bib15) 2008 M.H.A. Hijazi, F. Coenen, Y. Zheng, Retinal image classification using a histogram based approach, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2010, pp. 3501–3507. . Kosko (bib7) 1986; 40 Nayak, Acharya, Bhat, Shetty, Min (bib20) 2009; 33 Mookiah, Acharya, Chua, Lim, Ng, Laude (bib41) 2013; 43 Saw (bib55) 2006; 35 Hijazi, Coenen, Zheng (bib33) 2015 Singh, Dutta, ParthaSarathi, Uher, Burget (bib4) 2016; 124 Soares, Leandro, Cesar-Jr, Jelinek, Cree (bib24) 2006 Friedman, O’Colmain, Munoz, Tomany, McCarty, de Jong, Nemesurem, Mitchell, Kempen, Congdon (bib12) 2004; 122 Nayak, Bhat, Acharya, Lim, Kagathi (bib19) 2008; 32 Ganesan, Martis, Acharya, Chua, Lim, Ng, Laude (bib25) 2014; 52 Acharya, Lim, Ng, Chee, Tamura (bib56) 2009 Breiman (bib29) 2001; 45 Mookiah, Acharya, Koh, Chandran, Chua, Tan, Lim, Ng, Noronha, Tong, Laude (bib40) 2014; 53 Faust, Acharya, Ng, Ng, Suri (bib46) 2012; 36 Acharya, Chua, Ng, Yu, Chee (bib59) 2008; 32 Unler, Murat (bib5) 2010; 206 Garcia, Sanchez, Mollineda (bib65) 2012; 25 Xue, Zhang, Browne (bib8) 2013; 43 Noronha, Acharya, Nayak, Kamath, Bhandary (bib27) 2013 Boquete, Miguel-Jiménez, Ortega, Rodríguez-Ascariz, Pérez-Rico, Blanco (bib28) 2012; 39 P. Subirats, J. Dumoulin, V. Legeay, D. Barba, Automation of pavement surface crack detection using the continuous wavelet transform, in: Proceedings of the IEEE International Conference on Image Processing, 2006. Zheng, Hijazi, Coenen (bib69) 2012; 53 A. Singh, B. Singh, Texture features extraction in mammograms using non-shanon entropies, Machine Learning and Systems Engineering Lecture Notes in Electrical Engineering 68, Springer, 2010, pp. 341–351. Kennedy, Eberhart (bib16) 1995 Miguel-Jiménez, Boquete, Ortega, Rodríguez-Ascariz, Blanco (bib18) 2010; 32 Shannon (bib10) 1948; 27 Noronha, Acharya, Nayak, Martis, Bhandary (bib26) 2014; 10 A. Khosla, S. Kumar, K.R. Ghosh, A Comparison of Computational Efforts between particle swarm optimization and genetic algorithm for identification of fuzzy models, in: Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS, 2007, pp. 245–250. Pascolini, Mariotti (bib11) 2012; 96 Bock, Meier, Nyul, Hornegger, Michelson (bib48) 2010; 14 Acharya, Ng, Tan, Sree, Ng (bib57) 2012; 36 Antoine, Murenzi (bib23) 1996; 52 Dua, Acharya, Chowriappa, Sree (bib51) 2012; 16 Chavan, Adgokar (bib52) 2015; 4 Liu, Hu, Yu (bib17) 2008; 21 Mookiah, Acharya, Koh, Chua, Tan, Chandran, Lim, Noronha, Laude, Tong (bib39) 2014; 52 Yager (bib50) 1992; 20 NIH National Eye Institute (NEI) Abramoff, Garvin, Sonka (bib31) 2010; 3 Acharya, Dua, Du, Sree, Chua (bib62) 2011; 15 He, Garcia (bib14) 2009; 21 Kapur, Sahoo, Wang (bib21) 1985; 29 Lamoke, Shaw, Bahan, Montemari, Facchiano, Renzo, Parisi, Ripandelli, Stripe, Bartoli (bib13) 2014; 5 Gdeisat, Burton, Lalor (bib32) 2007; 45 A. Renyi, On measures of entropy and information, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, University of California Press, 1961, pp. 547–561. Raghavendra, Rajendra Acharya, Gudigar, Ranjan Shetty, Krishnananda, Pai, Samanth, Nayak (bib64) 2017 Kapur (10.1016/j.compbiomed.2017.03.008_bib21) 1985; 29 10.1016/j.compbiomed.2017.03.008_bib67 10.1016/j.compbiomed.2017.03.008_bib66 He (10.1016/j.compbiomed.2017.03.008_bib15) 2008 Breiman (10.1016/j.compbiomed.2017.03.008_bib29) 2001; 45 10.1016/j.compbiomed.2017.03.008_bib3 Shannon (10.1016/j.compbiomed.2017.03.008_bib10) 1948; 27 Acharya (10.1016/j.compbiomed.2017.03.008_bib61) 2015; 75 10.1016/j.compbiomed.2017.03.008_bib2 10.1016/j.compbiomed.2017.03.008_bib1 Boquete (10.1016/j.compbiomed.2017.03.008_bib28) 2012; 39 Miguel-Jiménez (10.1016/j.compbiomed.2017.03.008_bib18) 2010; 32 Liu (10.1016/j.compbiomed.2017.03.008_bib17) 2008; 21 Kennedy (10.1016/j.compbiomed.2017.03.008_bib16) 1995 Zheng (10.1016/j.compbiomed.2017.03.008_bib69) 2012; 53 Xue (10.1016/j.compbiomed.2017.03.008_bib8) 2013; 43 Acharya (10.1016/j.compbiomed.2017.03.008_bib60) 2016; 73 Saw (10.1016/j.compbiomed.2017.03.008_bib55) 2006; 35 Singh (10.1016/j.compbiomed.2017.03.008_bib4) 2016; 124 Wang (10.1016/j.compbiomed.2017.03.008_bib45) 2009; 27 Reza (10.1016/j.compbiomed.2017.03.008_bib6) 2011 10.1016/j.compbiomed.2017.03.008_bib35 Mookiah (10.1016/j.compbiomed.2017.03.008_bib41) 2013; 43 Dua (10.1016/j.compbiomed.2017.03.008_bib51) 2012; 16 Acharya (10.1016/j.compbiomed.2017.03.008_bib57) 2012; 36 Acharya (10.1016/j.compbiomed.2017.03.008_bib59) 2008; 32 He (10.1016/j.compbiomed.2017.03.008_bib14) 2009; 21 Noronha (10.1016/j.compbiomed.2017.03.008_bib27) 2013 Soares (10.1016/j.compbiomed.2017.03.008_bib24) 2006 Garcia (10.1016/j.compbiomed.2017.03.008_bib65) 2012; 25 Bock (10.1016/j.compbiomed.2017.03.008_bib48) 2010; 14 Mookiah (10.1016/j.compbiomed.2017.03.008_bib36) 2012; 33 Chavan (10.1016/j.compbiomed.2017.03.008_bib52) 2015; 4 Faust (10.1016/j.compbiomed.2017.03.008_bib46) 2012; 36 Mookiah (10.1016/j.compbiomed.2017.03.008_bib40) 2014; 53 Mookiah (10.1016/j.compbiomed.2017.03.008_bib42) 2013; 39 Pascolini (10.1016/j.compbiomed.2017.03.008_bib11) 2012; 96 Yager (10.1016/j.compbiomed.2017.03.008_bib50) 1992; 20 Ganesan (10.1016/j.compbiomed.2017.03.008_bib25) 2014; 52 10.1016/j.compbiomed.2017.03.008_bib47 10.1016/j.compbiomed.2017.03.008_bib44 Mookiah (10.1016/j.compbiomed.2017.03.008_bib37) 2015; 89 Hijazi (10.1016/j.compbiomed.2017.03.008_bib33) 2015 10.1016/j.compbiomed.2017.03.008_bib43 Wong (10.1016/j.compbiomed.2017.03.008_bib30) 2008; 178 Kosko (10.1016/j.compbiomed.2017.03.008_bib7) 1986; 40 Liu (10.1016/j.compbiomed.2017.03.008_bib68) 2011; 8 Antoine (10.1016/j.compbiomed.2017.03.008_bib23) 1996; 52 Acharya (10.1016/j.compbiomed.2017.03.008_bib62) 2011; 15 Raghavendra (10.1016/j.compbiomed.2017.03.008_bib64) 2017 Nayak (10.1016/j.compbiomed.2017.03.008_bib20) 2009; 33 Noronha (10.1016/j.compbiomed.2017.03.008_bib26) 2014; 10 Hijazi (10.1016/j.compbiomed.2017.03.008_bib34) 2012; 29 Unler (10.1016/j.compbiomed.2017.03.008_bib5) 2010; 206 Antoine (10.1016/j.compbiomed.2017.03.008_bib22) 1993; 31 Abramoff (10.1016/j.compbiomed.2017.03.008_bib31) 2010; 3 Gdeisat (10.1016/j.compbiomed.2017.03.008_bib32) 2007; 45 Mookiah (10.1016/j.compbiomed.2017.03.008_bib38) 2015; 63 Acharya (10.1016/j.compbiomed.2017.03.008_bib58) 2015; 15 Nayak (10.1016/j.compbiomed.2017.03.008_bib19) 2008; 32 Acharya (10.1016/j.compbiomed.2017.03.008_bib63) 2014; 41 Agurto (10.1016/j.compbiomed.2017.03.008_bib9) 2011; 52 Maheshwari (10.1016/j.compbiomed.2017.03.008_bib53) 2016 Pizer (10.1016/j.compbiomed.2017.03.008_bib54) 1987; 39 Kolar (10.1016/j.compbiomed.2017.03.008_bib49) 2008; 17 Acharya (10.1016/j.compbiomed.2017.03.008_bib56) 2009 Friedman (10.1016/j.compbiomed.2017.03.008_bib12) 2004; 122 Lamoke (10.1016/j.compbiomed.2017.03.008_bib13) 2014; 5 Mookiah (10.1016/j.compbiomed.2017.03.008_bib39) 2014; 52  | 
    
| References_xml | – year: 2016 ident: bib53 article-title: Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images publication-title: IEEE J. Biomed. Health Inform. – volume: 39 start-page: 355 year: 1987 end-page: 368 ident: bib54 article-title: Adaptive histogram equalization and its variations, Computer Vision publication-title: Graph., Image Process. – volume: 41 start-page: 257 year: 2014 end-page: 263 ident: bib63 article-title: Computer-aided diagnosis of alcoholism-related EEG signals publication-title: Epilepsy Behav. – year: 2006 ident: bib24 article-title: Retinal Vessel Segmentation Using the 2-D Morlet Wavelet and Supervised Classification – reference: M.H.A. Hijazi, F. Coenen, Y. Zheng, Retinal image classification using a histogram based approach, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2010, pp. 3501–3507. – volume: 63 start-page: 208 year: 2015 end-page: 218 ident: bib38 article-title: Local configuration pattern features for age-related macular degeneration characterization and classification publication-title: Comput. Biol. Med. – volume: 14 start-page: 471 year: 2010 end-page: 481 ident: bib48 article-title: Glaucoma risk index: automated glaucoma detection from color fundus images publication-title: Med. Image Anal. – volume: 21 start-page: 1263 year: 2009 end-page: 1284 ident: bib14 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 32 start-page: 481 year: 2008 end-page: 488 ident: bib59 article-title: Application of higher order spectra for the identification of diabetes retinopathy stages publication-title: J. Med. Syst. – volume: 32 start-page: 617 year: 2010 end-page: 622 ident: bib18 article-title: Glaucoma detection by wavelet-based analysis of the global flash multifocal electroretinogram publication-title: Med. Eng. Phys. – start-page: 1322 year: 2008 end-page: 1328 ident: bib15 article-title: ADASYN: adaptive synthetic sampling approach for imbalanced learning publication-title: IEEE Int. Jt. Conf. Neural Netw. – volume: 96 start-page: 614 year: 2012 end-page: 618 ident: bib11 article-title: Global estimates of visual impairment: 2010 publication-title: Br. J. Ophthalmol. – start-page: 545 year: 2009 end-page: 553 ident: bib56 article-title: Computer-based detection of diabetes retinopathy stages using digital fundus images publication-title: Proc. Inst. Mech. Eng. Part H. J. Eng. Med. – volume: 15 start-page: 449 year: 2011 end-page: 455 ident: bib62 article-title: Automated diagnosis of glaucoma using texture and higher order spectra features publication-title: IEEE Trans. Inf. Technol. Biomed.: A Publ. IEEE Eng. Med. Biol. Soc. – volume: 73 start-page: 131 year: 2016 end-page: 140 ident: bib60 article-title: Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features publication-title: Comput. Biol. Med. – volume: 206 start-page: 528 year: 2010 end-page: 539 ident: bib5 article-title: A discrete particle swarm optimization method for feature selection in binary classification problems publication-title: Eur. J. Oper. Res. – start-page: 1942 year: 1995 end-page: 1945 ident: bib16 article-title: Particle swarm optimization publication-title: Proc. IEEE Int. Conf. Neural Netw. – volume: 15 start-page: 18 year: 2015 end-page: 26 ident: bib58 article-title: Decision support system for the glaucoma using gabor transformation publication-title: Biomed. Signal Process. Control – reference: 〉. – volume: 43 start-page: 2136 year: 2013 end-page: 2155 ident: bib41 article-title: Computer-aided diagnosis of diabetic retinopathy: a review publication-title: Comput. Biol. Med. – volume: 40 start-page: 165 year: 1986 end-page: 174 ident: bib7 article-title: Fuzzy entropy and conditioning publication-title: Inf. Sci. – volume: 39 start-page: 234 year: 2012 end-page: 238 ident: bib28 article-title: Multifocal electroretinogram diagnosis of glaucoma applying neural networks and structural pattern analysis publication-title: Expert Syst. Appl. – volume: 33 start-page: 337 year: 2009 end-page: 346 ident: bib20 article-title: Automated diagnosis of glaucoma using fundus images publication-title: J. Med. Syst. – volume: 31 start-page: 241 year: 1993 end-page: 272 ident: bib22 article-title: Image analysis with two-dimensional continuous wavelet transform publication-title: Signal Process. – volume: 75 start-page: 54 year: 2015 end-page: 62 ident: bib61 article-title: Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index publication-title: Comput. Biol. Med. – volume: 53 start-page: 55 year: 2014 end-page: 64 ident: bib40 article-title: Automated diagnosis of age-related macular degeneration using greyscale features from digital fundus images publication-title: Comput. Biol. Med. – volume: 4 start-page: 255 year: 2015 end-page: 260 ident: bib52 article-title: An overview on particle swarm optimization: basic concepts and modified variants publication-title: Int. J. Sci. Res. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib29 article-title: Random forests publication-title: Mach. Learn. – reference: M. S. Haleem, L. Han, J. van Hemert, B. Li, Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review Computerized Medical Imaging and Graphics, vol. 37, 2013, pp. 581–596. – volume: 27 start-page: 623 year: 1948 end-page: 656 ident: bib10 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. – volume: 3 start-page: 169 year: 2010 end-page: 208 ident: bib31 article-title: Retinal imaging and image analysis publication-title: IEEE Rev. Biomed. Eng. – volume: 122 start-page: 564 year: 2004 end-page: 572 ident: bib12 article-title: Prevalence of age-related macular degeneration in the United States publication-title: JAMA Ophthalmol. – volume: 52 start-page: 259 year: 1996 end-page: 281 ident: bib23 article-title: Two-dimensional directional wavelets and the scale-angle representation publication-title: Signal Process. – start-page: 57 year: 2015 end-page: 68 ident: bib33 article-title: Data mining for AMD screening: a classification based approach publication-title: Int. J. Simul. Syst. Sci. Technol. – reference: A. Singh, B. Singh, Texture features extraction in mammograms using non-shanon entropies, Machine Learning and Systems Engineering Lecture Notes in Electrical Engineering 68, Springer, 2010, pp. 341–351. – volume: 5 year: 2014 ident: bib13 article-title: Validation of biomarkers of diabetic retinopathy for preventing and predictive medicine in diabetic complications publication-title: Proc. EPMW World Congr. – volume: 89 start-page: 654 year: 2015 end-page: 668 ident: bib37 article-title: Automated detection of age-related macular degeneration using empirical mode decomposition publication-title: Knowl.-Based Syst. – volume: 35 year: 2006 ident: bib55 publication-title: Towards 2020 Vision in Singapore – volume: 32 start-page: 107 year: 2008 end-page: 115 ident: bib19 article-title: Automated identification of diabetic retinopathy stages using digital fundus images publication-title: J. Med. Syst. – volume: 36 start-page: 145 year: 2012 end-page: 157 ident: bib46 article-title: Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review publication-title: J. Med. Syst. – reference: NIH National Eye Institute (NEI), 〈 – volume: 8 start-page: 191 year: 2011 end-page: 200 ident: bib68 article-title: An improved particle swarm optimization for feature selection publication-title: J. Bionic Eng. – volume: 10 start-page: 174 year: 2014 end-page: 183 ident: bib26 article-title: Automated classification of glaucoma stages using higher order cumulant features publication-title: Biomed. Signal Process. Control – volume: 20 start-page: 341 year: 1992 end-page: 358 ident: bib50 article-title: Entropy measures under similarity relations publication-title: Int. J. Gen. Syst. – volume: 39 start-page: 9 year: 2013 end-page: 22 ident: bib42 article-title: Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach publication-title: Knowl.-Based Syst. – reference: P. Subirats, J. Dumoulin, V. Legeay, D. Barba, Automation of pavement surface crack detection using the continuous wavelet transform, in: Proceedings of the IEEE International Conference on Image Processing, 2006. – reference: X. Wanga, B.S. Wong, T.C. Guan, Image enhancement for radiography inspection, in: Proceedings of the International Conference on Experimental Mechanics, 2004, pp. 462–468. – volume: 124 start-page: 108 year: 2016 end-page: 120 ident: bib4 article-title: Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image publication-title: Comput. Methods Prog. Biomed. – volume: 53 year: 2012 ident: bib69 article-title: Automated “disease/no disease” grading of age-related macular degeneration by an image mining approach publication-title: Investig. Ophthalmol. Vis. Sci. – reference: V.K. Reddy, K.K. Siramoju, P. Sircar, Object detection by 2-D continuous wavelet transform, in: Proceedings of the IEEE International Conference on Computational Science and Computational Intelligence, 2014, pp. 162–167. – volume: 16 start-page: 80 year: 2012 end-page: 87 ident: bib51 article-title: Wavelet based energy features for glaucomatous image classification publication-title: IEEE Trans. Inf. Technol. Biomed. – start-page: 227 year: 2013 end-page: 251 ident: bib27 article-title: Decision support system for diabetes retinopathy using discrete wavelet transform publication-title: Proc. Inst. Mech. Eng. Part H: J. Eng. Med. – volume: 52 start-page: 663 year: 2014 end-page: 672 ident: bib25 article-title: Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images publication-title: Med. Biol. Eng. Comput. – volume: 45 start-page: 8722 year: 2007 end-page: 8732 ident: bib32 article-title: Spatial carrier fringe pattern demodulation using a two-dimensional continuous wavelet transform publication-title: PubMed Appl. Opt. – volume: 25 start-page: 12 year: 2012 end-page: 21 ident: bib65 article-title: On the effectiveness of preprocessing methods when dealing with different levels of class imbalance publication-title: Knowl.-Based Syst. Spec. Issue New Trends Data Min. – volume: 52 start-page: 781 year: 2014 end-page: 796 ident: bib39 article-title: Decision support system for age-related macular degeneration using discrete wavelet transform publication-title: Med. Biol. Eng. Comput. – volume: 17 start-page: 109 year: 2008 end-page: 114 ident: bib49 article-title: Detection of glaucomatous eye via color fundus images using fractal dimensions publication-title: Radio Eng. – volume: 36 start-page: 2011 year: 2012 end-page: 2020 ident: bib57 article-title: An integrated index for the identification of diabetic retinopathy stages using texture parameters publication-title: J. Med. Syst. – volume: 27 start-page: 652 year: 2009 end-page: 666 ident: bib45 article-title: Two-dimensional continuous wavelet analysis and its application to meteorological data publication-title: J. Atmos. Ocean. Technol. – reference: A. Renyi, On measures of entropy and information, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, University of California Press, 1961, pp. 547–561. – volume: 29 start-page: 273 year: 1985 end-page: 285 ident: bib21 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Comput. Vis. Graph. Image Process. – reference: A. Khosla, S. Kumar, K.R. Ghosh, A Comparison of Computational Efforts between particle swarm optimization and genetic algorithm for identification of fuzzy models, in: Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS, 2007, pp. 245–250. – volume: 33 start-page: 73 year: 2012 end-page: 82 ident: bib36 article-title: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features publication-title: Knowl.-Based Syst. – volume: 21 start-page: 753 year: 2008 end-page: 763 ident: bib17 article-title: A comparative study on rough set based class imbalance learning publication-title: Knowl.-Based Syst. – volume: 178 start-page: 106 year: 2008 end-page: 121 ident: bib30 article-title: Identification of different stages of diabetic retinopathy using retinal optical images publication-title: Inf. Sci. – volume: 29 start-page: 83 year: 2012 end-page: 92 ident: bib34 article-title: Data mining techniques for the screening of age-related macular degeneration publication-title: Knowl.-Based Syst. – volume: 43 start-page: 1656 year: 2013 end-page: 1671 ident: bib8 article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach publication-title: IEEE Trans. Cybern. – volume: 52 start-page: 5862 year: 2011 end-page: 5871 ident: bib9 article-title: Automatic detection of diabetic retinopathy and age-related macular degeneration in digital fundus images publication-title: Investig. Ophthalmol. Vis. Sci. – year: 2011 ident: bib6 article-title: A decision support system for automatic screening of non-proliferative diabetic retinopathy publication-title: J. Med. Syst. – year: 2017 ident: bib64 article-title: Automated screening of congestive heart failure using variational mode decomposition and texture features extracted from ultrasound images publication-title: Neural Comput. Appl. – volume: 39 start-page: 234 year: 2012 ident: 10.1016/j.compbiomed.2017.03.008_bib28 article-title: Multifocal electroretinogram diagnosis of glaucoma applying neural networks and structural pattern analysis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.013 – volume: 29 start-page: 273 year: 1985 ident: 10.1016/j.compbiomed.2017.03.008_bib21 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Comput. Vis. Graph. Image Process. doi: 10.1016/0734-189X(85)90125-2 – volume: 31 start-page: 241 year: 1993 ident: 10.1016/j.compbiomed.2017.03.008_bib22 article-title: Image analysis with two-dimensional continuous wavelet transform publication-title: Signal Process. doi: 10.1016/0165-1684(93)90085-O – volume: 43 start-page: 2136 year: 2013 ident: 10.1016/j.compbiomed.2017.03.008_bib41 article-title: Computer-aided diagnosis of diabetic retinopathy: a review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2013.10.007 – volume: 3 start-page: 169 year: 2010 ident: 10.1016/j.compbiomed.2017.03.008_bib31 article-title: Retinal imaging and image analysis publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2010.2084567 – volume: 53 start-page: 55 year: 2014 ident: 10.1016/j.compbiomed.2017.03.008_bib40 article-title: Automated diagnosis of age-related macular degeneration using greyscale features from digital fundus images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.07.015 – year: 2006 ident: 10.1016/j.compbiomed.2017.03.008_bib24 – volume: 5 year: 2014 ident: 10.1016/j.compbiomed.2017.03.008_bib13 article-title: Validation of biomarkers of diabetic retinopathy for preventing and predictive medicine in diabetic complications publication-title: Proc. EPMW World Congr. – ident: 10.1016/j.compbiomed.2017.03.008_bib3 doi: 10.1007/978-90-481-9419-3_26 – volume: 36 start-page: 2011 issue: 3 year: 2012 ident: 10.1016/j.compbiomed.2017.03.008_bib57 article-title: An integrated index for the identification of diabetic retinopathy stages using texture parameters publication-title: J. Med. Syst. doi: 10.1007/s10916-011-9663-8 – volume: 14 start-page: 471 year: 2010 ident: 10.1016/j.compbiomed.2017.03.008_bib48 article-title: Glaucoma risk index: automated glaucoma detection from color fundus images publication-title: Med. Image Anal. doi: 10.1016/j.media.2009.12.006 – volume: 96 start-page: 614 issue: 5 year: 2012 ident: 10.1016/j.compbiomed.2017.03.008_bib11 article-title: Global estimates of visual impairment: 2010 publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2011-300539 – year: 2017 ident: 10.1016/j.compbiomed.2017.03.008_bib64 article-title: Automated screening of congestive heart failure using variational mode decomposition and texture features extracted from ultrasound images publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2839-5 – ident: 10.1016/j.compbiomed.2017.03.008_bib66 doi: 10.1109/CSCI.2014.34 – volume: 21 start-page: 753 issue: 8 year: 2008 ident: 10.1016/j.compbiomed.2017.03.008_bib17 article-title: A comparative study on rough set based class imbalance learning publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2008.03.031 – volume: 63 start-page: 208 year: 2015 ident: 10.1016/j.compbiomed.2017.03.008_bib38 article-title: Local configuration pattern features for age-related macular degeneration characterization and classification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.05.019 – volume: 75 start-page: 54 year: 2015 ident: 10.1016/j.compbiomed.2017.03.008_bib61 article-title: Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.04.015 – volume: 35 year: 2006 ident: 10.1016/j.compbiomed.2017.03.008_bib55 – volume: 206 start-page: 528 issue: 3 year: 2010 ident: 10.1016/j.compbiomed.2017.03.008_bib5 article-title: A discrete particle swarm optimization method for feature selection in binary classification problems publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2010.02.032 – year: 2016 ident: 10.1016/j.compbiomed.2017.03.008_bib53 article-title: Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images publication-title: IEEE J. Biomed. Health Inform. – volume: 32 start-page: 617 year: 2010 ident: 10.1016/j.compbiomed.2017.03.008_bib18 article-title: Glaucoma detection by wavelet-based analysis of the global flash multifocal electroretinogram publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.02.019 – volume: 27 start-page: 623 issue: 379–423 year: 1948 ident: 10.1016/j.compbiomed.2017.03.008_bib10 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb00917.x – start-page: 545 year: 2009 ident: 10.1016/j.compbiomed.2017.03.008_bib56 article-title: Computer-based detection of diabetes retinopathy stages using digital fundus images publication-title: Proc. Inst. Mech. Eng. Part H. J. Eng. Med. doi: 10.1243/09544119JEIM486 – volume: 25 start-page: 12 issue: 1 year: 2012 ident: 10.1016/j.compbiomed.2017.03.008_bib65 article-title: On the effectiveness of preprocessing methods when dealing with different levels of class imbalance publication-title: Knowl.-Based Syst. Spec. Issue New Trends Data Min. – volume: 39 start-page: 355 issue: 3 year: 1987 ident: 10.1016/j.compbiomed.2017.03.008_bib54 article-title: Adaptive histogram equalization and its variations, Computer Vision publication-title: Graph., Image Process. doi: 10.1016/S0734-189X(87)80186-X – start-page: 57 year: 2015 ident: 10.1016/j.compbiomed.2017.03.008_bib33 article-title: Data mining for AMD screening: a classification based approach publication-title: Int. J. Simul. Syst. Sci. Technol. – volume: 40 start-page: 165 year: 1986 ident: 10.1016/j.compbiomed.2017.03.008_bib7 article-title: Fuzzy entropy and conditioning publication-title: Inf. Sci. doi: 10.1016/0020-0255(86)90006-X – volume: 32 start-page: 481 issue: 6 year: 2008 ident: 10.1016/j.compbiomed.2017.03.008_bib59 article-title: Application of higher order spectra for the identification of diabetes retinopathy stages publication-title: J. Med. Syst. doi: 10.1007/s10916-008-9154-8 – volume: 73 start-page: 131 year: 2016 ident: 10.1016/j.compbiomed.2017.03.008_bib60 article-title: Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.04.009 – volume: 52 start-page: 781 issue: 9 year: 2014 ident: 10.1016/j.compbiomed.2017.03.008_bib39 article-title: Decision support system for age-related macular degeneration using discrete wavelet transform publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-014-1180-8 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.compbiomed.2017.03.008_bib29 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 32 start-page: 107 issue: 2 year: 2008 ident: 10.1016/j.compbiomed.2017.03.008_bib19 article-title: Automated identification of diabetic retinopathy stages using digital fundus images publication-title: J. Med. Syst. doi: 10.1007/s10916-007-9113-9 – volume: 29 start-page: 83 year: 2012 ident: 10.1016/j.compbiomed.2017.03.008_bib34 article-title: Data mining techniques for the screening of age-related macular degeneration publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2011.07.002 – start-page: 227 year: 2013 ident: 10.1016/j.compbiomed.2017.03.008_bib27 article-title: Decision support system for diabetes retinopathy using discrete wavelet transform publication-title: Proc. Inst. Mech. Eng. Part H: J. Eng. Med. – volume: 45 start-page: 8722 issue: 34 year: 2007 ident: 10.1016/j.compbiomed.2017.03.008_bib32 article-title: Spatial carrier fringe pattern demodulation using a two-dimensional continuous wavelet transform publication-title: PubMed Appl. Opt. doi: 10.1364/AO.45.008722 – ident: 10.1016/j.compbiomed.2017.03.008_bib1 doi: 10.1109/NAFIPS.2007.383845 – volume: 4 start-page: 255 issue: 5 year: 2015 ident: 10.1016/j.compbiomed.2017.03.008_bib52 article-title: An overview on particle swarm optimization: basic concepts and modified variants publication-title: Int. J. Sci. Res. – volume: 27 start-page: 652 year: 2009 ident: 10.1016/j.compbiomed.2017.03.008_bib45 article-title: Two-dimensional continuous wavelet analysis and its application to meteorological data publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/2009JTECHA1338.1 – volume: 52 start-page: 5862 issue: 8 year: 2011 ident: 10.1016/j.compbiomed.2017.03.008_bib9 article-title: Automatic detection of diabetic retinopathy and age-related macular degeneration in digital fundus images publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.10-7075 – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 10.1016/j.compbiomed.2017.03.008_bib14 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.239 – ident: 10.1016/j.compbiomed.2017.03.008_bib43 doi: 10.1016/j.compmedimag.2013.09.005 – volume: 17 start-page: 109 issue: 3 year: 2008 ident: 10.1016/j.compbiomed.2017.03.008_bib49 article-title: Detection of glaucomatous eye via color fundus images using fractal dimensions publication-title: Radio Eng. – volume: 52 start-page: 663 issue: 8 year: 2014 ident: 10.1016/j.compbiomed.2017.03.008_bib25 article-title: Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-014-1167-5 – volume: 39 start-page: 9 year: 2013 ident: 10.1016/j.compbiomed.2017.03.008_bib42 article-title: Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: a hybrid feature extraction approach publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.09.008 – ident: 10.1016/j.compbiomed.2017.03.008_bib47 doi: 10.1109/ICIP.2006.313007 – volume: 52 start-page: 259 year: 1996 ident: 10.1016/j.compbiomed.2017.03.008_bib23 article-title: Two-dimensional directional wavelets and the scale-angle representation publication-title: Signal Process. doi: 10.1016/0165-1684(96)00065-5 – volume: 124 start-page: 108 year: 2016 ident: 10.1016/j.compbiomed.2017.03.008_bib4 article-title: Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2015.10.010 – volume: 122 start-page: 564 issue: 4 year: 2004 ident: 10.1016/j.compbiomed.2017.03.008_bib12 article-title: Prevalence of age-related macular degeneration in the United States publication-title: JAMA Ophthalmol. – start-page: 1322 year: 2008 ident: 10.1016/j.compbiomed.2017.03.008_bib15 article-title: ADASYN: adaptive synthetic sampling approach for imbalanced learning publication-title: IEEE Int. Jt. Conf. Neural Netw. – ident: 10.1016/j.compbiomed.2017.03.008_bib44 – volume: 15 start-page: 18 year: 2015 ident: 10.1016/j.compbiomed.2017.03.008_bib58 article-title: Decision support system for the glaucoma using gabor transformation publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.09.004 – volume: 36 start-page: 145 year: 2012 ident: 10.1016/j.compbiomed.2017.03.008_bib46 article-title: Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review publication-title: J. Med. Syst. doi: 10.1007/s10916-010-9454-7 – volume: 33 start-page: 73 year: 2012 ident: 10.1016/j.compbiomed.2017.03.008_bib36 article-title: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.02.010 – volume: 20 start-page: 341 issue: 4 year: 1992 ident: 10.1016/j.compbiomed.2017.03.008_bib50 article-title: Entropy measures under similarity relations publication-title: Int. J. Gen. Syst. doi: 10.1080/03081079208945039 – year: 2011 ident: 10.1016/j.compbiomed.2017.03.008_bib6 article-title: A decision support system for automatic screening of non-proliferative diabetic retinopathy publication-title: J. Med. Syst. doi: 10.1007/s10916-009-9337-y – volume: 89 start-page: 654 year: 2015 ident: 10.1016/j.compbiomed.2017.03.008_bib37 article-title: Automated detection of age-related macular degeneration using empirical mode decomposition publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.09.012 – volume: 41 start-page: 257 year: 2014 ident: 10.1016/j.compbiomed.2017.03.008_bib63 article-title: Computer-aided diagnosis of alcoholism-related EEG signals publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2014.10.001 – volume: 53 issue: 13 year: 2012 ident: 10.1016/j.compbiomed.2017.03.008_bib69 article-title: Automated “disease/no disease” grading of age-related macular degeneration by an image mining approach publication-title: Investig. Ophthalmol. Vis. Sci. – ident: 10.1016/j.compbiomed.2017.03.008_bib35 doi: 10.1109/IJCNN.2010.5596320 – ident: 10.1016/j.compbiomed.2017.03.008_bib2 – volume: 178 start-page: 106 year: 2008 ident: 10.1016/j.compbiomed.2017.03.008_bib30 article-title: Identification of different stages of diabetic retinopathy using retinal optical images publication-title: Inf. Sci. doi: 10.1016/j.ins.2007.07.020 – volume: 15 start-page: 449 issue: 3 year: 2011 ident: 10.1016/j.compbiomed.2017.03.008_bib62 article-title: Automated diagnosis of glaucoma using texture and higher order spectra features publication-title: IEEE Trans. Inf. Technol. Biomed.: A Publ. IEEE Eng. Med. Biol. Soc. doi: 10.1109/TITB.2011.2119322 – ident: 10.1016/j.compbiomed.2017.03.008_bib67 doi: 10.1117/12.621707 – volume: 43 start-page: 1656 issue: 6 year: 2013 ident: 10.1016/j.compbiomed.2017.03.008_bib8 article-title: Particle swarm optimization for feature selection in classification: a multi-objective approach publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2227469 – volume: 16 start-page: 80 issue: 1 year: 2012 ident: 10.1016/j.compbiomed.2017.03.008_bib51 article-title: Wavelet based energy features for glaucomatous image classification publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2011.2176540 – volume: 8 start-page: 191 year: 2011 ident: 10.1016/j.compbiomed.2017.03.008_bib68 article-title: An improved particle swarm optimization for feature selection publication-title: J. Bionic Eng. doi: 10.1016/S1672-6529(11)60020-6 – start-page: 1942 year: 1995 ident: 10.1016/j.compbiomed.2017.03.008_bib16 article-title: Particle swarm optimization publication-title: Proc. IEEE Int. Conf. Neural Netw. doi: 10.1109/ICNN.1995.488968 – volume: 33 start-page: 337 issue: 5 year: 2009 ident: 10.1016/j.compbiomed.2017.03.008_bib20 article-title: Automated diagnosis of glaucoma using fundus images publication-title: J. Med. Syst. doi: 10.1007/s10916-008-9195-z – volume: 10 start-page: 174 year: 2014 ident: 10.1016/j.compbiomed.2017.03.008_bib26 article-title: Automated classification of glaucoma stages using higher order cumulant features publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.11.006  | 
    
| SSID | ssj0004030 | 
    
| Score | 2.4309924 | 
    
| Snippet | Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma,... Abstract Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as...  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 89 | 
    
| SubjectTerms | Accuracy Age Age-related macular degeneration Alcoholism Algorithms Amplitude modulation Automation Bleeding Blindness Blood vessels Classification Computation Computer applications Congestive heart failure Continuous wavelet transform Data processing Databases, Factual Decomposition Diabetes Diabetic retinopathy Diagnosis Diagnostic Techniques, Ophthalmological Digital computers Drug abuse Electroencephalography Entropy Epilepsy Evaluation Eye diseases Frequency dependence Frequency modulation Fundus Fundus Oculi Genetic transformation Glaucoma Glaucoma - diagnostic imaging Heart Humans Identification Image Interpretation, Computer-Assisted - methods Inspection Intelligence Internal Medicine International conferences Learning algorithms Machine learning Macular degeneration Medical diagnosis Medical imaging Morphology Neural networks Other Particle swarm optimization Photography Probability theory Quality Radiography Retina Retina - diagnostic imaging Retinal Diseases - diagnostic imaging Risk Technology utilization Ultrasound Vision Visual perception Warning Wavelet Analysis Wavelet transforms  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXKVkJcKr5ZWpCROMAhInacOlGFEJRWFVJXCFrRm-XEdhWgydJkxd_vTGxnLxTt1cnEUWY8nonfvCHkNbeSmaqok1pzm8BKLJKC1VmSOl1owUwpHCaKp4v9k3Px5SK_2CKLWAuDsMroE0dHbboa_5G_Y0XJpUS6rA_LPwl2jcLT1dhCQ4fWCub9SDF2h2xzZMaake1PR4uv39aVkmnmi1LA-whIjgK2xyO-EMTti94R8iUD-eltG9ZtAem4MR3fJzshoqQfvQk8IFu2fUjunoYz80fk12ePpmt62jmKRYt4u69_pE1LTXOJjUMo7HBm1dPmCjxMTxEPf0kRyN60qw7G_2psUTHQIUa69M3hj7O3VLeG4h_ibgk592Nyfnx0dniShBYLSQ2R0pDomvEqtwLSDGtcUZgMRlKXImu9yU2lHajQMFHZSucu5_uZKF0-BmFWcm6yJ2TWdq19RqjLDKullTUvIcV0QtvSpeDWubUOeevnRMbvqOrAP45tMH6rCDT7qdYaUKgBlWYKNDAnbJJceg6ODWTKqCoVa0zBKyrYKDaQlf-StX1Y3r1iqucqVd9HdiMs_h1Z_6WYk4NJMkQwPjLZcN69aFNqPdVk93PyaroMPgAPdnRrwQLgHojjilTiCzz1tjh9KOTTQ0qk5_9_-C65h2_ioZx7ZDZcr-wLCLeG6mVYQzcniius priority: 102 providerName: ProQuest  | 
    
| Title | Diagnosis of retinal health in digital fundus images using continuous wavelet transform (CWT) and entropies | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482517300574 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482517300574 https://dx.doi.org/10.1016/j.compbiomed.2017.03.008 https://www.ncbi.nlm.nih.gov/pubmed/28351716 https://www.proquest.com/docview/1892775681 https://www.proquest.com/docview/1882080774  | 
    
| Volume | 84 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhbKXsbb7yNYVFfawPXi1ZbmS6VOXNk03GsZoWd6EbEnF-3DC7LC3_e29s-SEsRUCfbGxImGhO53u4t_9jpA3zIrEFLKMSs1sBDtRRjIp0yh2WmqemJw7DBSvJsfjG_5xmk03yLDPhUFYZbD93qZ31jq0HIXVPJpXFeb4QiiBmZcd5bpATlDOBVYxeP9nBfPgcerTUMDeYO-A5vEYL4Rt-zR3BHmJQHd63xF1nwvaHUWjJ-Rx8CHpqZ_mDtmw9S7ZvgpfyffI9zOPn6saOnMU0xSxu894pFVNTXWLpUIonGlm0dDqJ9iUhiIC_pYidL2qFzNo_62xKEVL2963pW-HX6_fUV0biv8Jz-YQZT8lN6Pz6-E4CkUVohJ8ozbSZcKKzHIILKxxUpoUWmIXI0-9yUyhHQjNJLywhc5cxo5Tnrusc7usYMykz8hmPavtC0JdapJSWFGyHIJKx7XNXQyGnFnrkKl-QES_jqoMjONY-OKH6qFl39RKAgoloOJUgQQGJFmOnHvWjTXG5L2oVJ9VCnZQwdGwxljxv7G2CRu6UYlqmIrVP0o3ICfLkX_p7Zrv3e91Sq1eJXMmBBLDDcjh8mfY9fgpR9cWNAD6gOcmY4ETeO51cblQyKCHJEgvHzS1V-QRPnls5z7ZbH8t7Gvwv9rioNtgcBVTAVc5ujggW6eXn8YTuH84n3z-cgf37jVL | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwEXxJuFAkYCCQ4RiePUiVCFoA9taXeFYKv2ZpzYrsIjWUhWFX-O38ZM7GQvFO2lV28myXrsecTffEPIc2ZEpPO0CArFTAA7MQ3SqIiD0KpU8Uhn3GKiOJlujY_5h9PkdI386WthEFbZ28TOUOu6wG_kr6M0Y0IgXdbb-c8Au0bh6WrfQkP51gp6u6MY84Udh-b3OaRwzfbBLuj7BWP7e7OdceC7DAQFBAttoIqI5YnhEGkbbdNUxzAS2hCJ23Wic2XhX-iI5yZXiU3YVswzm3RxiBGM6Rjue4VscBiG5G_j_d7046dlZWYYuyIYsHYckjGPJXIIMwSNuyJ7hJgJT7Z6kYO8KADuHOH-TXLDR7D0nVtyt8iaqW6TqxN_Rn-HfNt16L2yobWlWCSJl7t6S1pWVJdn2KiEgkfVi4aWP8CiNRTx92cUgfNltahh_FxhS4yWtn1kTV_unMxeUVVpil-k6znk-HfJ8aVM9j2yXtWVeUCojXVUCCMKlkFKa7kymQ3BjTBjLPLkj4jo51EWnu8c2258lz2w7atcakCiBmQYS9DAiESD5Nxxfqwgk_Wqkn1NK1hhCY5pBVnxL1nTeHPSyEg2TIbyc8emhMXGXZcBwUfkzSDpIyYXCa343M1-Tcnlo4Z9NiLPhp_B5uBBkqoMrAC4BuLGNBT4AvfdWhwmCvn7kILp4f9v_pRcG88mR_LoYHr4iFzHt3Iw0k2y3v5amMcQ6rX5E7-fKPly2Vv4L-TpaUY | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEG8WChgJJDhETeykToQQQl1WLaUVEq3Ym3FiuwqPZCFZVfw1fh0zcZK9ULSXXpNMHp53_M0MwDNuZWTytAgKzW2AmpgGaVSIIHQ61XFksthRonh0vLt_Gr-fJ_MN-DPUwhCscrCJnaE2dUH_yHeiNONSUrusHdfDIj5OZ28WPwOaIEU7rcM4DS8ih_b3OaZvzeuDKfL6Oeezdyd7-0E_YSAoMFBoA11EPE9sjFG2NS5NjcAjoQupabtJTK4dfoGJ4tzmOnEJ3xVx5pIuBrGScyPwvlfgqhQiIzihnMtVTWYofPkL2rkY07AeReSxZQQX9-X1BC6TfZvVi1zjRaFv5wJnN-B6H7uyt17YbsKGrW7B1lG_O38bvk09bq9sWO0YlUfS5b7SkpUVM-UZjShh6EvNsmHlD7RlDSPk_RkjyHxZLWs8fq5pGEbL2iGmZi_2Pp-8ZLoyjP5F1wvM7u_A6aUs9V3YrOrK3gfmhIkKaWXBM0xmXaxt5kJ0INxaRx3yJyCHdVRF3-mcBm58VwOk7atacUARB1QoFHJgAtFIufDdPtagyQZWqaGaFe2vQpe0Bq38F61tekPSqEg1XIXqU9dHicqMu_kCMp7Aq5Gyj5V8DLTmc7cHmVKrR40aNoGn42m0NrSFpCuLEoDXYMSYhpJe4J6XxXGhqHMfNV968P-bP4EtVFz14eD48CFco5fy-NFt2Gx_Le0jjPHa_HGnTAy-XLb2_gULZmbg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+retinal+health+in+digital+fundus+images+using+continuous+wavelet+transform+%28CWT%29+and+entropies&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Koh%2C+Joel+E.W.&rft.au=Acharya%2C+U.+Rajendra&rft.au=Hagiwara%2C+Yuki&rft.au=Raghavendra%2C+U.&rft.date=2017-05-01&rft.issn=0010-4825&rft.volume=84&rft.spage=89&rft.epage=97&rft_id=info:doi/10.1016%2Fj.compbiomed.2017.03.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2017_03_008 | 
    
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif |