Self-adaptive weighted level set evolution based on local intensity difference for parotid ducts segmentation
Parotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable...
Saved in:
| Published in | Computers in biology and medicine Vol. 114; p. 103432 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.11.2019
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2019.103432 |
Cover
| Abstract | Parotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable success in medical imaging segmentation, it is still a challenging task for existing LSMs to precisely and self-adaptively segment PDs from parotid duct (PD) images with both noise, intensity inhomogeneity, and vague boundary. In this paper, we propose a novel Self-adaptive Weighted level set method via Local intensity Difference (SWLD) to comprehensively solve the above issues.
Firstly, a new adaptive weighted operator based on local intensity variance difference has been proposed to overcome the limitations of previous LSMs that are sensitive to parameters, which achieves the aim of automatic segmentation. Secondly, we introduce local intensity mean difference into the energy function to improve the curve evolution efficiency. Thirdly, we eliminate the effects of intensity inhomogeneity, noise, and boundary blur in the parotid image through a local similarity factor with two different neighborhood sizes.
Using the same dataset, segmentation of PDs is performed using the proposed SWLD algorithm and existing LSM algorithms. The mean Dice score for the proposed algorithm is 91.3%, and the corresponding mean Hausdorff distance (HD) is 1.746.
Experimental results demonstrate that the proposed algorithm is superior to many existing level set segmentation algorithms, and it can accurately and automatically segment the PDs even in complex gradient boundaries.
•Proposed method performs better in segmenting parotid duct images with noise, intensity inhomogeneity, and blurred border.•We introduces a new adaptive weighted operator to remove sensitivity to parameters.•Local intensity mean difference accelerates the convergence of weights of local energy terms. |
|---|---|
| AbstractList | Parotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable success in medical imaging segmentation, it is still a challenging task for existing LSMs to precisely and self-adaptively segment PDs from parotid duct (PD) images with both noise, intensity inhomogeneity, and vague boundary. In this paper, we propose a novel Self-adaptive Weighted level set method via Local intensity Difference (SWLD) to comprehensively solve the above issues.
Firstly, a new adaptive weighted operator based on local intensity variance difference has been proposed to overcome the limitations of previous LSMs that are sensitive to parameters, which achieves the aim of automatic segmentation. Secondly, we introduce local intensity mean difference into the energy function to improve the curve evolution efficiency. Thirdly, we eliminate the effects of intensity inhomogeneity, noise, and boundary blur in the parotid image through a local similarity factor with two different neighborhood sizes.
Using the same dataset, segmentation of PDs is performed using the proposed SWLD algorithm and existing LSM algorithms. The mean Dice score for the proposed algorithm is 91.3%, and the corresponding mean Hausdorff distance (HD) is 1.746.
Experimental results demonstrate that the proposed algorithm is superior to many existing level set segmentation algorithms, and it can accurately and automatically segment the PDs even in complex gradient boundaries.
•Proposed method performs better in segmenting parotid duct images with noise, intensity inhomogeneity, and blurred border.•We introduces a new adaptive weighted operator to remove sensitivity to parameters.•Local intensity mean difference accelerates the convergence of weights of local energy terms. Parotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable success in medical imaging segmentation, it is still a challenging task for existing LSMs to precisely and self-adaptively segment PDs from parotid duct (PD) images with both noise, intensity inhomogeneity, and vague boundary. In this paper, we propose a novel Self-adaptive Weighted level set method via Local intensity Difference (SWLD) to comprehensively solve the above issues. Firstly, a new adaptive weighted operator based on local intensity variance difference has been proposed to overcome the limitations of previous LSMs that are sensitive to parameters, which achieves the aim of automatic segmentation. Secondly, we introduce local intensity mean difference into the energy function to improve the curve evolution efficiency. Thirdly, we eliminate the effects of intensity inhomogeneity, noise, and boundary blur in the parotid image through a local similarity factor with two different neighborhood sizes. Using the same dataset, segmentation of PDs is performed using the proposed SWLD algorithm and existing LSM algorithms. The mean Dice score for the proposed algorithm is 91.3%, and the corresponding mean Hausdorff distance (HD) is 1.746. Experimental results demonstrate that the proposed algorithm is superior to many existing level set segmentation algorithms, and it can accurately and automatically segment the PDs even in complex gradient boundaries. BackgroundParotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable success in medical imaging segmentation, it is still a challenging task for existing LSMs to precisely and self-adaptively segment PDs from parotid duct (PD) images with both noise, intensity inhomogeneity, and vague boundary. In this paper, we propose a novel Self-adaptive Weighted level set method via Local intensity Difference (SWLD) to comprehensively solve the above issues.MethodFirstly, a new adaptive weighted operator based on local intensity variance difference has been proposed to overcome the limitations of previous LSMs that are sensitive to parameters, which achieves the aim of automatic segmentation. Secondly, we introduce local intensity mean difference into the energy function to improve the curve evolution efficiency. Thirdly, we eliminate the effects of intensity inhomogeneity, noise, and boundary blur in the parotid image through a local similarity factor with two different neighborhood sizes.ResultsUsing the same dataset, segmentation of PDs is performed using the proposed SWLD algorithm and existing LSM algorithms. The mean Dice score for the proposed algorithm is 91.3%, and the corresponding mean Hausdorff distance (HD) is 1.746.ConclusionExperimental results demonstrate that the proposed algorithm is superior to many existing level set segmentation algorithms, and it can accurately and automatically segment the PDs even in complex gradient boundaries. Parotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable success in medical imaging segmentation, it is still a challenging task for existing LSMs to precisely and self-adaptively segment PDs from parotid duct (PD) images with both noise, intensity inhomogeneity, and vague boundary. In this paper, we propose a novel Self-adaptive Weighted level set method via Local intensity Difference (SWLD) to comprehensively solve the above issues.BACKGROUNDParotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable success in medical imaging segmentation, it is still a challenging task for existing LSMs to precisely and self-adaptively segment PDs from parotid duct (PD) images with both noise, intensity inhomogeneity, and vague boundary. In this paper, we propose a novel Self-adaptive Weighted level set method via Local intensity Difference (SWLD) to comprehensively solve the above issues.Firstly, a new adaptive weighted operator based on local intensity variance difference has been proposed to overcome the limitations of previous LSMs that are sensitive to parameters, which achieves the aim of automatic segmentation. Secondly, we introduce local intensity mean difference into the energy function to improve the curve evolution efficiency. Thirdly, we eliminate the effects of intensity inhomogeneity, noise, and boundary blur in the parotid image through a local similarity factor with two different neighborhood sizes.METHODFirstly, a new adaptive weighted operator based on local intensity variance difference has been proposed to overcome the limitations of previous LSMs that are sensitive to parameters, which achieves the aim of automatic segmentation. Secondly, we introduce local intensity mean difference into the energy function to improve the curve evolution efficiency. Thirdly, we eliminate the effects of intensity inhomogeneity, noise, and boundary blur in the parotid image through a local similarity factor with two different neighborhood sizes.Using the same dataset, segmentation of PDs is performed using the proposed SWLD algorithm and existing LSM algorithms. The mean Dice score for the proposed algorithm is 91.3%, and the corresponding mean Hausdorff distance (HD) is 1.746.RESULTSUsing the same dataset, segmentation of PDs is performed using the proposed SWLD algorithm and existing LSM algorithms. The mean Dice score for the proposed algorithm is 91.3%, and the corresponding mean Hausdorff distance (HD) is 1.746.Experimental results demonstrate that the proposed algorithm is superior to many existing level set segmentation algorithms, and it can accurately and automatically segment the PDs even in complex gradient boundaries.CONCLUSIONExperimental results demonstrate that the proposed algorithm is superior to many existing level set segmentation algorithms, and it can accurately and automatically segment the PDs even in complex gradient boundaries. AbstractBackgroundParotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable success in medical imaging segmentation, it is still a challenging task for existing LSMs to precisely and self-adaptively segment PDs from parotid duct (PD) images with both noise, intensity inhomogeneity, and vague boundary. In this paper, we propose a novel Self-adaptive Weighted level set method via Local intensity Difference (SWLD) to comprehensively solve the above issues. MethodFirstly, a new adaptive weighted operator based on local intensity variance difference has been proposed to overcome the limitations of previous LSMs that are sensitive to parameters, which achieves the aim of automatic segmentation. Secondly, we introduce local intensity mean difference into the energy function to improve the curve evolution efficiency. Thirdly, we eliminate the effects of intensity inhomogeneity, noise, and boundary blur in the parotid image through a local similarity factor with two different neighborhood sizes. ResultsUsing the same dataset, segmentation of PDs is performed using the proposed SWLD algorithm and existing LSM algorithms. The mean Dice score for the proposed algorithm is 91.3%, and the corresponding mean Hausdorff distance (HD) is 1.746. ConclusionExperimental results demonstrate that the proposed algorithm is superior to many existing level set segmentation algorithms, and it can accurately and automatically segment the PDs even in complex gradient boundaries. |
| ArticleNumber | 103432 |
| Author | Chen, Zhifeng Lu, Zhentai Lan, Tianjun Tao, Qian Deng, Xuan Zhang, Minghui |
| Author_xml | – sequence: 1 givenname: Xuan surname: Deng fullname: Deng, Xuan organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China – sequence: 2 givenname: Tianjun surname: Lan fullname: Lan, Tianjun organization: Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China – sequence: 3 givenname: Zhifeng surname: Chen fullname: Chen, Zhifeng organization: Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China – sequence: 4 givenname: Minghui surname: Zhang fullname: Zhang, Minghui organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China – sequence: 5 givenname: Qian surname: Tao fullname: Tao, Qian organization: Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China – sequence: 6 givenname: Zhentai surname: Lu fullname: Lu, Zhentai email: luzhentai@163.com organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31521897$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkkuLFDEUhYOMOD2jf0ECbtxUe1OpVzaiDr5gwMXoOqSSW2PaVKVNUi39701RYwsDwrhKSE4-Ts65F-Rs8hMSQhlsGbDm1W6r_bjvrR_RbEtgIh_zipePyIZ1rSig5tUZ2QAwKKqurM_JRYw7AKiAwxNyzlldsk60GzLeoBsKZdQ-2QPSX2hvvyc01OEBHY2YKB68m5P1E-1VzDd547xWjtop4RRtOlJjhwEDThrp4APdq-CTNdTMOsXMuB1xSmpBPCWPB-UiPrtbL8m3D--_Xn0qrr98_Hz19rrQNatSobqOi-zVcBwarPLfRNU2lQIQLfSVYawGZVothga6usEGedu3DMAopSrT8UvycuXug_85Y0xytFGjc2pCP0dZlgJEV5dNmaUv7kl3fg5TdidLDi1vGt5CVj2_U819zlzugx1VOMo_QWZBtwp08DEGHE4SBnLpTO7k387k0plcO8tPX997qu0aVwrKuocA3q0AzJEeLAYZtV3aMDagTtJ4-x8uThDt7GRz0T_wiPEUCpOxlCBvltlaRosJnmdKiAx482_Awzz8BqAZ48M |
| CitedBy_id | crossref_primary_10_1080_21681163_2020_1866670 crossref_primary_10_1016_j_compbiomed_2019_103568 |
| Cites_doi | 10.1038/s41598-017-15617-w 10.1109/TPAMI.2002.1114849 10.1016/j.ijom.2012.10.006 10.1023/A:1020874308076 10.1007/s11263-008-0153-5 10.1109/TIP.2012.2202674 10.1023/A:1007979827043 10.1109/34.537343 10.1109/TIP.2005.863956 10.1016/j.aanat.2012.11.003 10.1016/j.patcog.2016.01.021 10.1186/1748-717X-9-173 10.1109/83.902291 10.1109/TIP.2008.2002304 10.1109/TMI.2009.2017941 10.4208/cicp.2009.09.026 10.1109/34.368173 10.1016/j.cviu.2006.11.004 10.1016/j.patcog.2009.10.010 10.1007/BF01427153 10.1016/j.patcog.2016.07.022 10.1007/BF00133570 10.1016/j.imavis.2010.12.004 10.1109/83.935033 10.1002/cpa.3160420503 10.1016/j.media.2017.01.002 10.1016/j.patrec.2004.09.001 10.1007/BF01385685 10.1016/j.patcog.2012.12.006 10.1117/1.3574770 10.1016/j.patcog.2018.03.010 10.1016/j.sigpro.2016.06.013 10.1109/TIP.2005.852200 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. 2019. Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. – notice: 2019. Elsevier Ltd |
| DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2019.103432 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Research Library Prep MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 103432 |
| ExternalDocumentID | 31521897 10_1016_j_compbiomed_2019_103432 S0010482519303099 1_s2_0_S0010482519303099 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c514t-a8839040d3ef6e410394764a00970b4d1150ad7c9f60856e6e37b7100daaa4d83 |
| IEDL.DBID | BENPR |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sat Sep 27 23:18:20 EDT 2025 Tue Oct 07 06:37:17 EDT 2025 Thu Apr 03 07:02:09 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Wed Oct 01 05:20:16 EDT 2025 Fri Feb 23 02:42:45 EST 2024 Sun Feb 23 10:19:13 EST 2025 Tue Oct 14 19:33:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | PDs segmentation Local variance difference Local mean difference Self-adaptive weighted Level set method |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-a8839040d3ef6e410394764a00970b4d1150ad7c9f60856e6e37b7100daaa4d83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| PMID | 31521897 |
| PQID | 2307366370 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2290985262 proquest_journals_2307366370 pubmed_primary_31521897 crossref_primary_10_1016_j_compbiomed_2019_103432 crossref_citationtrail_10_1016_j_compbiomed_2019_103432 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_103432 elsevier_clinicalkeyesjournals_1_s2_0_S0010482519303099 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_103432 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-11-01 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Brox, Cremers (bib26) 2009; 84 Vasilevskiy, Siddiqi (bib18) 2002; 24 Mumford, Shah (bib30) 1989; 42 Zhang, Song, Zhang (bib27) 2010; 43 Gao, Bui (bib32) 2005; 14 Zhu, Yuille (bib9) 1996; 18 Horsburgh (bib2) 2013; 42 Malladi, Sethian, Vemuri (bib16) 1995; 17 Mabood, Ali, Badshah, Chen, Khan (bib21) 2016; 55 Thomson, Boylan, Liptrot, Aitkenhead (bib43) 2014; 9 Liu, Liu, Xing (bib22) 2017; 130 Wang, Xiang, Pan, Wang, Meng (bib29) 2013; 46 Drage, Wilson, McGurk (bib1) 2002; 31 Hoogi, F Beaulieu, M Cunha (bib42) 2017; 37 Li, Xu, Gui (bib35) 2005; 1 Lee, Park, Cho (bib14) 2007 Lie, Lysaker, Tai (bib38) 2006 Vese, Chan (bib24) 2002; 50 Tsai, Yezzi, Willsky (bib31) 2001; 10 Horsburgh, Massoud (bib3) 2013; 195 Badshah, Chen (bib19) 2010; 7 Zhi, Shen (bib40) 2018; 80 Li, Kao, Gore, Ding (bib7) 2008; 17 Al-Diri, Hunter, Steel, Snakes (bib11) 2009; 28 Niu, Chen, Ji (bib34) 2017; 61 Song, Sanchez, Eldaly (bib13) 2017; 64 Caselles, Coll (bib6) 1993; 66 Kass, Witkin, Terzopoulos, Snakes (bib8) 1988; 1 Meijs, Patel, Leemput (bib37) 2017; 7 Zhang, Song, Zhang (bib39) 2010; 43 Caselles, Kimmel, Sapiro (bib17) 1997; 22 Ebrahimdoost, Dehmeshki, Ellis (bib15) 2010 Srikrishnan, Chaudhuri (bib12) 2011; 29 Lie, Lysaker, Tai (bib33) 2006; 15 Li, He, Zhan (bib20) 2011; 20 Estellers, Zosso, Osher (bib28) 2012; 21 Chan, Vese (bib5) 2001; 10 Ni, Ahujab, Bansalc (bib4) 2007; 107 Hou, Han (bib10) 2005; 26 Rousson, Deriche (bib25) 2002 Li, Gore, Ding (bib36) 2007; 1 Piovano, Papadopoulo (bib41) 2011 Ronfard (bib23) 1994; 13 Horsburgh (10.1016/j.compbiomed.2019.103432_bib3) 2013; 195 Caselles (10.1016/j.compbiomed.2019.103432_bib6) 1993; 66 Li (10.1016/j.compbiomed.2019.103432_bib7) 2008; 17 Horsburgh (10.1016/j.compbiomed.2019.103432_bib2) 2013; 42 Vese (10.1016/j.compbiomed.2019.103432_bib24) 2002; 50 Srikrishnan (10.1016/j.compbiomed.2019.103432_bib12) 2011; 29 Thomson (10.1016/j.compbiomed.2019.103432_bib43) 2014; 9 Hoogi (10.1016/j.compbiomed.2019.103432_bib42) 2017; 37 Caselles (10.1016/j.compbiomed.2019.103432_bib17) 1997; 22 Badshah (10.1016/j.compbiomed.2019.103432_bib19) 2010; 7 Mabood (10.1016/j.compbiomed.2019.103432_bib21) 2016; 55 Wang (10.1016/j.compbiomed.2019.103432_bib29) 2013; 46 Kass (10.1016/j.compbiomed.2019.103432_bib8) 1988; 1 Lie (10.1016/j.compbiomed.2019.103432_bib38) 2006 Zhang (10.1016/j.compbiomed.2019.103432_bib39) 2010; 43 Meijs (10.1016/j.compbiomed.2019.103432_bib37) 2017; 7 Brox (10.1016/j.compbiomed.2019.103432_bib26) 2009; 84 Lee (10.1016/j.compbiomed.2019.103432_bib14) 2007 Ebrahimdoost (10.1016/j.compbiomed.2019.103432_bib15) 2010 Piovano (10.1016/j.compbiomed.2019.103432_bib41) 2011 Li (10.1016/j.compbiomed.2019.103432_bib20) 2011; 20 Lie (10.1016/j.compbiomed.2019.103432_bib33) 2006; 15 Ni (10.1016/j.compbiomed.2019.103432_bib4) 2007; 107 Tsai (10.1016/j.compbiomed.2019.103432_bib31) 2001; 10 Drage (10.1016/j.compbiomed.2019.103432_bib1) 2002; 31 Liu (10.1016/j.compbiomed.2019.103432_bib22) 2017; 130 Gao (10.1016/j.compbiomed.2019.103432_bib32) 2005; 14 Li (10.1016/j.compbiomed.2019.103432_bib36) 2007; 1 Niu (10.1016/j.compbiomed.2019.103432_bib34) 2017; 61 Zhang (10.1016/j.compbiomed.2019.103432_bib27) 2010; 43 Zhu (10.1016/j.compbiomed.2019.103432_bib9) 1996; 18 Chan (10.1016/j.compbiomed.2019.103432_bib5) 2001; 10 Estellers (10.1016/j.compbiomed.2019.103432_bib28) 2012; 21 Malladi (10.1016/j.compbiomed.2019.103432_bib16) 1995; 17 Vasilevskiy (10.1016/j.compbiomed.2019.103432_bib18) 2002; 24 Mumford (10.1016/j.compbiomed.2019.103432_bib30) 1989; 42 Hou (10.1016/j.compbiomed.2019.103432_bib10) 2005; 26 Al-Diri (10.1016/j.compbiomed.2019.103432_bib11) 2009; 28 Song (10.1016/j.compbiomed.2019.103432_bib13) 2017; 64 Zhi (10.1016/j.compbiomed.2019.103432_bib40) 2018; 80 Rousson (10.1016/j.compbiomed.2019.103432_bib25) 2002 Li (10.1016/j.compbiomed.2019.103432_bib35) 2005; 1 Ronfard (10.1016/j.compbiomed.2019.103432_bib23) 1994; 13 |
| References_xml | – volume: 50 start-page: 271 year: 2002 end-page: 293 ident: bib24 article-title: A multiphase level set framework for image segmentation using the mumford and shah model publication-title: Int. J. Comput. Vis. – volume: 43 start-page: 1199 year: 2010 end-page: 1206 ident: bib39 article-title: Active contours driven by local image fitting en- ergy publication-title: Pattern Recognit. – volume: 64 start-page: 2913 year: 2017 end-page: 2923 ident: bib13 article-title: Dual-channel active contour model for megakaryocytic cell segmentation in bone marrow trephine histology images publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 1 start-page: 1 year: 2007 end-page: 7 ident: bib36 article-title: Implicit active contours driven by local binary fitting energy publication-title: IEEE Conf. Comput. Vis. Pattern Recognit. – volume: 7 start-page: 15622 year: 2017 ident: bib37 article-title: Robust segmentation of the full cerebral vasculature in 4D CT of suspected stroke patients publication-title: Sci. Rep. – start-page: 269 year: 2010 end-page: 273 ident: bib15 article-title: Medical image segmentation using active contours and a level set model: application to pulmonary embolism (PE) segmentation publication-title: International Conference on Digital Society – volume: 22 start-page: 61 year: 1997 end-page: 79 ident: bib17 article-title: Geodesic active contours publication-title: Int. J. Comput. Vis. – start-page: 1171 year: 2006 end-page: 1181 ident: bib38 article-title: A binary level set model and some application to Mumford–Shah image segmentation publication-title: IEEE Trans. Image Process. – volume: 18 start-page: 884 year: 1996 end-page: 900 ident: bib9 article-title: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 107 start-page: 210 year: 2007 end-page: 224 ident: bib4 article-title: Object segmentation using graph cuts based active contours publication-title: Comput. Vis. Image Understand. – volume: 1 start-page: 321 year: 1988 end-page: 331 ident: bib8 article-title: Active contour models publication-title: Int. J. Comput. Vis. – start-page: 56 year: 2002 end-page: 61 ident: bib25 article-title: A variational framework for active and adaptative segmentation of vector valued images publication-title: IEEE Workshop Motion Video Comput. – volume: 17 start-page: 1940 year: 2008 end-page: 1949 ident: bib7 article-title: Minimization of region-scalable fitting energy for image segmentation publication-title: IEEE Trans. Image Process. – volume: 42 start-page: 124 year: 2013 end-page: 128 ident: bib2 article-title: The role of salivary duct morphology in the aetiology of sialadenitis: statistical analysis of sialographic features publication-title: Int. J. Oral Maxillofac. Surg. – volume: 46 start-page: 1734 year: 2013 end-page: 1746 ident: bib29 article-title: Level set evolution with locally linear classification for image segmentation publication-title: Pattern Recognit. – volume: 24 start-page: 1565 year: 2002 end-page: 1578 ident: bib18 article-title: Flux maximizing geometric flows publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 37 start-page: 46 year: 2017 end-page: 55 ident: bib42 article-title: Adaptive local window for level set segmentation of CT and MRI liver lesions publication-title: Med. Image Anal. – volume: 13 start-page: 229 year: 1994 end-page: 251 ident: bib23 article-title: Region-based strategies for active contour models publication-title: Int. J. Comput. Vis. – volume: 10 start-page: 266 year: 2001 end-page: 277 ident: bib5 article-title: Active contours without edges publication-title: IEEE Trans. Image Process. – volume: 14 start-page: 1537 year: 2005 end-page: 1549 ident: bib32 article-title: Image segmentation and selective smoothing by using mumford-shah model publication-title: IEEE Trans. Image Process. – volume: 17 start-page: 158 year: 1995 end-page: 175 ident: bib16 article-title: Shape modeling with front propagation: a level set approach publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 195 start-page: 238 year: 2013 end-page: 242 ident: bib3 article-title: The salivary ducts of Wharton and Stenson, Analysis of normal variant sialographic morphometry and a historical review publication-title: Ann. Anat. – volume: 29 start-page: 317 year: 2011 end-page: 328 ident: bib12 article-title: Adaptive smoothness based robust active contours publication-title: Image Vis Comput. – volume: 1 start-page: 430 year: 2005 end-page: 436 ident: bib35 article-title: Level set evolution without Re-initialization: a new variational formulation publication-title: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – volume: 7 start-page: 759 year: 2010 end-page: 778 ident: bib19 article-title: Image selective segmentation under geometrical constraints using an active contour approach publication-title: Commun. Comput. Phys. – start-page: 87 year: 2011 end-page: 93 ident: bib41 article-title: Local Statistic Based Region Segmentation with Automatic Scale Selection – volume: 21 start-page: 4722 year: 2012 end-page: 4734 ident: bib28 article-title: Efficient algorithm for level set method preserving distance function publication-title: IEEE Trans. Image Process. – volume: 10 start-page: 1169 year: 2001 end-page: 1186 ident: bib31 article-title: Curve evolution implementation of the mumfordshah functional for image segmentation, denoising, interpolation, and magnification publication-title: IEEE Trans. Image Process. – volume: 61 start-page: 104 year: 2017 end-page: 119 ident: bib34 article-title: Robust noise region-based active contour model via local similarity factor for image segmentation publication-title: Pattern Recognit. – volume: 80 start-page: 241 year: 2018 end-page: 255 ident: bib40 article-title: Saliency driven region-e dge-base d top down level set evolution reveals the asynchronous focus in image segmentation publication-title: Pattern Recognit. – volume: 55 start-page: 87 year: 2016 end-page: 99 ident: bib21 article-title: Active contours textural and inhomogeneous object extraction publication-title: Pattern Recognit. – volume: 15 start-page: 1171 year: 2006 end-page: 1181 ident: bib33 article-title: A binary level set model and some applications to Mumford-Shah image segmentation publication-title: IEEE Trans. Image Process. – volume: 9 start-page: 173 year: 2014 ident: bib43 article-title: Evaluation of an automatic segmentation algorithm for definition of head and neck organs at risk publication-title: Radiat. Oncol. – start-page: 577 year: 2007 end-page: 580 ident: bib14 article-title: Medical image segmentation using a geometric active contour model based on level set method publication-title: IEEE Pacific Rim Conference on Communications – volume: 43 start-page: 1199 year: 2010 end-page: 1206 ident: bib27 article-title: Active contours driven by local image fitting energy publication-title: Pattern Recognit. – volume: 26 start-page: 513 year: 2005 end-page: 526 ident: bib10 article-title: Force field analysis snake: an improved parametric active contour model publication-title: Pattern Recognit. Lett. – volume: 66 start-page: 1 year: 1993 end-page: 31 ident: bib6 article-title: A geometric model for active contours in image processing publication-title: Numer. Math. – volume: 42 start-page: 577 year: 1989 end-page: 685 ident: bib30 article-title: Optimal approximations by piecewise smooth functions and associated variational problems publication-title: Commun. Pure Appl. Math. – volume: 31 start-page: 15 year: 2002 end-page: 18 ident: bib1 article-title: The genu of the submandibular duct - is the angle significant in salivary gland disease? publication-title: Dentomaxillofacial Radiol. – volume: 130 start-page: 12 year: 2017 end-page: 21 ident: bib22 article-title: An improved edge-based level set method combining local regional fitting information for noisy image segmentation publication-title: Signal Process. – volume: 28 start-page: 1488 year: 2009 end-page: 1497 ident: bib11 article-title: An active contour model for segmenting and measuring retinal vessels publication-title: IEEE Trans. Med. Imaging – volume: 20 year: 2011 ident: bib20 article-title: Adaptive level-set evolution without initial contours for image segmentation publication-title: J. Electron. Imaging – volume: 84 start-page: 184 year: 2009 end-page: 193 ident: bib26 article-title: On local region models and a statistical interpretation of the piecewise smooth mumford-shah functional publication-title: Int. J. Comput. Vis. – volume: 7 start-page: 15622 issue: 1 year: 2017 ident: 10.1016/j.compbiomed.2019.103432_bib37 article-title: Robust segmentation of the full cerebral vasculature in 4D CT of suspected stroke patients publication-title: Sci. Rep. doi: 10.1038/s41598-017-15617-w – volume: 24 start-page: 1565 issue: 12 year: 2002 ident: 10.1016/j.compbiomed.2019.103432_bib18 article-title: Flux maximizing geometric flows publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1114849 – volume: 1 start-page: 1 year: 2007 ident: 10.1016/j.compbiomed.2019.103432_bib36 article-title: Implicit active contours driven by local binary fitting energy publication-title: IEEE Conf. Comput. Vis. Pattern Recognit. – start-page: 56 year: 2002 ident: 10.1016/j.compbiomed.2019.103432_bib25 article-title: A variational framework for active and adaptative segmentation of vector valued images publication-title: IEEE Workshop Motion Video Comput. – volume: 1 start-page: 430 year: 2005 ident: 10.1016/j.compbiomed.2019.103432_bib35 article-title: Level set evolution without Re-initialization: a new variational formulation publication-title: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. – volume: 42 start-page: 124 issue: 1 year: 2013 ident: 10.1016/j.compbiomed.2019.103432_bib2 article-title: The role of salivary duct morphology in the aetiology of sialadenitis: statistical analysis of sialographic features publication-title: Int. J. Oral Maxillofac. Surg. doi: 10.1016/j.ijom.2012.10.006 – volume: 50 start-page: 271 issue: 3 year: 2002 ident: 10.1016/j.compbiomed.2019.103432_bib24 article-title: A multiphase level set framework for image segmentation using the mumford and shah model publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1020874308076 – volume: 84 start-page: 184 issue: 2 year: 2009 ident: 10.1016/j.compbiomed.2019.103432_bib26 article-title: On local region models and a statistical interpretation of the piecewise smooth mumford-shah functional publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-008-0153-5 – volume: 21 start-page: 4722 issue: 12 year: 2012 ident: 10.1016/j.compbiomed.2019.103432_bib28 article-title: Efficient algorithm for level set method preserving distance function publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2202674 – volume: 22 start-page: 61 issue: 1 year: 1997 ident: 10.1016/j.compbiomed.2019.103432_bib17 article-title: Geodesic active contours publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1007979827043 – volume: 31 start-page: 15 issue: 1 year: 2002 ident: 10.1016/j.compbiomed.2019.103432_bib1 article-title: The genu of the submandibular duct - is the angle significant in salivary gland disease? publication-title: Dentomaxillofacial Radiol. – volume: 18 start-page: 884 year: 1996 ident: 10.1016/j.compbiomed.2019.103432_bib9 article-title: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.537343 – volume: 15 start-page: 1171 issue: 5 year: 2006 ident: 10.1016/j.compbiomed.2019.103432_bib33 article-title: A binary level set model and some applications to Mumford-Shah image segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.863956 – volume: 195 start-page: 238 issue: 3 year: 2013 ident: 10.1016/j.compbiomed.2019.103432_bib3 article-title: The salivary ducts of Wharton and Stenson, Analysis of normal variant sialographic morphometry and a historical review publication-title: Ann. Anat. doi: 10.1016/j.aanat.2012.11.003 – volume: 55 start-page: 87 year: 2016 ident: 10.1016/j.compbiomed.2019.103432_bib21 article-title: Active contours textural and inhomogeneous object extraction publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.01.021 – volume: 9 start-page: 173 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2019.103432_bib43 article-title: Evaluation of an automatic segmentation algorithm for definition of head and neck organs at risk publication-title: Radiat. Oncol. doi: 10.1186/1748-717X-9-173 – start-page: 1171 year: 2006 ident: 10.1016/j.compbiomed.2019.103432_bib38 article-title: A binary level set model and some application to Mumford–Shah image segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.863956 – volume: 10 start-page: 266 issue: 2 year: 2001 ident: 10.1016/j.compbiomed.2019.103432_bib5 article-title: Active contours without edges publication-title: IEEE Trans. Image Process. doi: 10.1109/83.902291 – volume: 17 start-page: 1940 year: 2008 ident: 10.1016/j.compbiomed.2019.103432_bib7 article-title: Minimization of region-scalable fitting energy for image segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2008.2002304 – volume: 28 start-page: 1488 issue: 9 year: 2009 ident: 10.1016/j.compbiomed.2019.103432_bib11 article-title: An active contour model for segmenting and measuring retinal vessels publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2017941 – start-page: 269 year: 2010 ident: 10.1016/j.compbiomed.2019.103432_bib15 article-title: Medical image segmentation using active contours and a level set model: application to pulmonary embolism (PE) segmentation – volume: 7 start-page: 759 issue: 4 year: 2010 ident: 10.1016/j.compbiomed.2019.103432_bib19 article-title: Image selective segmentation under geometrical constraints using an active contour approach publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.2009.09.026 – start-page: 577 year: 2007 ident: 10.1016/j.compbiomed.2019.103432_bib14 article-title: Medical image segmentation using a geometric active contour model based on level set method – volume: 17 start-page: 158 issue: 2 year: 1995 ident: 10.1016/j.compbiomed.2019.103432_bib16 article-title: Shape modeling with front propagation: a level set approach publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.368173 – volume: 64 start-page: 2913 issue: 12 year: 2017 ident: 10.1016/j.compbiomed.2019.103432_bib13 article-title: Dual-channel active contour model for megakaryocytic cell segmentation in bone marrow trephine histology images publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 107 start-page: 210 issue: 3 year: 2007 ident: 10.1016/j.compbiomed.2019.103432_bib4 article-title: Object segmentation using graph cuts based active contours publication-title: Comput. Vis. Image Understand. doi: 10.1016/j.cviu.2006.11.004 – volume: 43 start-page: 1199 year: 2010 ident: 10.1016/j.compbiomed.2019.103432_bib39 article-title: Active contours driven by local image fitting en- ergy publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.10.010 – volume: 13 start-page: 229 issue: 2 year: 1994 ident: 10.1016/j.compbiomed.2019.103432_bib23 article-title: Region-based strategies for active contour models publication-title: Int. J. Comput. Vis. doi: 10.1007/BF01427153 – volume: 61 start-page: 104 year: 2017 ident: 10.1016/j.compbiomed.2019.103432_bib34 article-title: Robust noise region-based active contour model via local similarity factor for image segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.07.022 – volume: 1 start-page: 321 issue: 3 year: 1988 ident: 10.1016/j.compbiomed.2019.103432_bib8 article-title: Active contour models publication-title: Int. J. Comput. Vis. doi: 10.1007/BF00133570 – volume: 29 start-page: 317 issue: 5 year: 2011 ident: 10.1016/j.compbiomed.2019.103432_bib12 article-title: Adaptive smoothness based robust active contours publication-title: Image Vis Comput. doi: 10.1016/j.imavis.2010.12.004 – volume: 10 start-page: 1169 issue: 8 year: 2001 ident: 10.1016/j.compbiomed.2019.103432_bib31 article-title: Curve evolution implementation of the mumfordshah functional for image segmentation, denoising, interpolation, and magnification publication-title: IEEE Trans. Image Process. doi: 10.1109/83.935033 – volume: 42 start-page: 577 issue: 5 year: 1989 ident: 10.1016/j.compbiomed.2019.103432_bib30 article-title: Optimal approximations by piecewise smooth functions and associated variational problems publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160420503 – volume: 37 start-page: 46 year: 2017 ident: 10.1016/j.compbiomed.2019.103432_bib42 article-title: Adaptive local window for level set segmentation of CT and MRI liver lesions publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.01.002 – volume: 26 start-page: 513 issue: 5 year: 2005 ident: 10.1016/j.compbiomed.2019.103432_bib10 article-title: Force field analysis snake: an improved parametric active contour model publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2004.09.001 – start-page: 87 year: 2011 ident: 10.1016/j.compbiomed.2019.103432_bib41 – volume: 43 start-page: 1199 issue: 4 year: 2010 ident: 10.1016/j.compbiomed.2019.103432_bib27 article-title: Active contours driven by local image fitting energy publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.10.010 – volume: 66 start-page: 1 issue: 1 year: 1993 ident: 10.1016/j.compbiomed.2019.103432_bib6 article-title: A geometric model for active contours in image processing publication-title: Numer. Math. doi: 10.1007/BF01385685 – volume: 46 start-page: 1734 issue: 6 year: 2013 ident: 10.1016/j.compbiomed.2019.103432_bib29 article-title: Level set evolution with locally linear classification for image segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.12.006 – volume: 20 year: 2011 ident: 10.1016/j.compbiomed.2019.103432_bib20 article-title: Adaptive level-set evolution without initial contours for image segmentation publication-title: J. Electron. Imaging doi: 10.1117/1.3574770 – volume: 80 start-page: 241 year: 2018 ident: 10.1016/j.compbiomed.2019.103432_bib40 article-title: Saliency driven region-e dge-base d top down level set evolution reveals the asynchronous focus in image segmentation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.03.010 – volume: 130 start-page: 12 year: 2017 ident: 10.1016/j.compbiomed.2019.103432_bib22 article-title: An improved edge-based level set method combining local regional fitting information for noisy image segmentation publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.06.013 – volume: 14 start-page: 1537 issue: 10 year: 2005 ident: 10.1016/j.compbiomed.2019.103432_bib32 article-title: Image segmentation and selective smoothing by using mumford-shah model publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.852200 |
| SSID | ssj0004030 |
| Score | 2.2524314 |
| SecondaryResourceType | review_article |
| Snippet | Parotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT)... AbstractBackgroundParotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed... BackgroundParotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 103432 |
| SubjectTerms | Algorithms Computed tomography Evolution Image processing Image segmentation Impact analysis Inhomogeneity Internal Medicine Level set method Local mean difference Local variance difference Medical diagnosis Medical imaging Methods Metric space Neighborhoods Noise Noise intensity Other Parameter sensitivity Parotid gland PDs segmentation Self-adaptive weighted |
| SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iQbyIb9cXEbxW2yYmLZ5EFBH0ooK3kDSprKzdxVbFi7_dmSatiAoL3vbRaUsymfnafN8MIftFYlIjDHYNwLdVjOkoZ9ZGJU-k00Kboi2mc3UtLu745f3R_Qw57bQwSKsMsd_H9DZah18Ow2geToZD1PjCo0SrvGS4T4AiPs4ldjE4-PiiefCYeRkKxBs8OrB5PMcLadte5o4krxwV6Jylf6WovyBom4rOF8lCwJD0xN_mEplx1TKZuwq75Cvk6caNykhbPcFYRt_at5_O0hEShGjtGupeg8dRzGKWwoc2qdGhZ7Q377TrnFI4CriWTvTzuBlaiuVhazjHw1MQLVWr5O787Pb0IgptFaIC0FET6QxAEYyLZa4UjuNeMJeCa5R0xIZbxIjayiIvBeAx4YRj0mARIKu15jZja2S2Gldug1BjWYr1fyATOh7rzBSxKX2Nl6JMk3JAZDeSqgg1x7H1xUh15LJH9TUHCudA-TkYkKS3nPi6G1PY5N1kqU5XCpFQQXKYwlb-ZuvqsKRrlag6VbH64XYDctxbfvPcKa-73XmV6i-F5HwGUFDGA7LX_w3rHjdzdOXGL3BMmsd5dpQKOMW698Z-oBiCsiyXm_-6tS0yj9-88HKbzDbPL24HEFhjdtsl9gmZWy7e priority: 102 providerName: Elsevier |
| Title | Self-adaptive weighted level set evolution based on local intensity difference for parotid ducts segmentation |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519303099 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482519303099 https://dx.doi.org/10.1016/j.compbiomed.2019.103432 https://www.ncbi.nlm.nih.gov/pubmed/31521897 https://www.proquest.com/docview/2307366370 https://www.proquest.com/docview/2290985262 |
| Volume | 114 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250828 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5trYR4QfymMCoj8RpIYi9OhBAaaKWAViHGpL5ZduxMoC4tSwbihb-du9hJXxjqS1SpPaeynbsvvvu-A3heJiY1maGuAXRaxbmOCm5tVIlEOp1pU3ZiOieLbH4mPi4Pl3uw6LkwVFbZ-8TOUdt1SWfkL6lgmWN4lPGbzY-IukZRdrVvoaFDawX7upMY24dxSspYIxi_PV58_rJlSsbck1LQ-wh8OQq1Pb7ii4q4PemdSr4K4qMLnl4XsK4DpF1gmt2GWwFRsiO_Be7Anqvvwo2TkDO_BxenblVF2uoNeTb2qzsLdZatqFyINa5l7mfYf4ximmX4oQtx7Juvb29_s76PSukYoly20ZdrnAZGYrENjnF-EShM9X04mx1_fTePQpOFqESs1EY6R4iE82K5qzInKDMsZCY0ETxiIywhRm1lWVQZorPMZY5LQ5JAVmstbM4fwKhe1-4RMGN5SmpAGBediHVuythUXvGlrNKkmoDsZ1KVQYGcGmGsVF9q9l1t10DRGii_BhNIBsuNV-HYwaboF0v1LFP0iwpDxQ628l-2rgkPeKMS1aQqVqedvlFH_-WUrCom8GqwDBjGY5Md73vQ7yo13Gq78yfwbPgavQCldnTt1lf4m7SIi_wwzXCIh343DhPFCaLlhXz8_8GfwE36J55neQCj9vLKPUXA1Zop7L_4k-BVLiVe89n7KYyPPnyaL6bh-foLqDYujw |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkNpeKvrelrau1B6jJrHJQxWqoAUthV1VBSRuxo6dCrRktyQU8ef625iJneylVHvhFmljZ-UZz3z2zDcD8KGIdKwTTV0D6LaKcxXk3JigFFFqVaJ00RbTGY2T4ZH4frx-vAR_Oy4MpVV2NrE11GZa0B35J0pY5uge0_DL7HdAXaMoutq10FC-tYLZaEuMeWLHnr2-wiNcvbH7DeX9MY53tg-_DgPfZSAoECw0gcoQI6AqG27LxAoKjYo0EYoYDqEWhiCTMmmRlwnCk8QmlqeaauIYpZQwGcd578GK4CLHw9_K1vb4x885MzPkjgSD1k7gYcznErkMM0oadyR7SjHLif8ueHybg7wNALeOcGcVHnkEyzadyj2GJVs9gfsjH6N_CucHdlIGyqgZWVJ21d69WsMmlJ7Eatsw-8frOyMfahg-tC6Vnbp8-uaadX1bCssQVbOZupjisjMqTlvjHL_OPWWqegZHd7Lcz2G5mlb2JTBteEzVh9APWxGqTBehLl2FmaKMo3IAabeSsvAVz6nxxkR2qW1nci4DSTKQTgYDiPqRM1f1Y4ExeScs2bFa0Q5LdE0LjE3_NdbW3qDUMpJ1LEN50NZTaunGnIJj-QA-9yM9ZnJYaMHvrnVaJftPzXfaAN73P6PVoVCSquz0Et-J8zDP1uMEp3jhtLFfKE6QMMvTV_-f_B08GB6O9uX-7njvNTykf-U4nmuw3Fxc2jcI9hr91u8oBid3vYlvAD4lZVY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIU28IH6vMIaR4DFaEntxIoSmaaPaGJuQxqS-GTt20FCXliVj2r_GX8dd7KQvDPVlb5Xacyrf-e6L77s7gHdlYlKTGZoaQLdVnOuo4NZGlUik05k2ZddM5_gkOzgTnyfbkxX409fCEK2y94mdo7azku7It4iwzDE8ynirCrSIr_vjnfmviCZIUaa1H6fhTeTI3Vzj61vz8XAfdf0-Tcefvu0dRGHCQFQiUGgjnSM-QDO23FWZE5QWFTITmqobYiMswSVtZVlUGUKTzGWOS0P9cKzWWtic47r34L7kvCA6oZzIRU1mzH35C_o5ga9hgUXkuWVEF_fl9UQuK6jyXfD0ttB4G_TtQuD4ETwM2JXtemN7DCuufgJrxyE7_xQuTt20irTVc_Kh7Lq7dXWWTYmYxBrXMvc7WDqj6GkZfuiCKTv3TPr2hvUTW0rHEE-zub6cteeWUVvaBtf4cRGKpepncHYnm_0cVutZ7daBGctT6juEEdiJWOemjE3le8uUVZpUI5D9Tqoy9DqnkRtT1ZPafqqFDhTpQHkdjCAZJOe-38cSMkWvLNXXs6IHVhiUlpCV_5J1TXAljUpUk6pYnXadlLpCY05psWIEHwbJgJY8ClryuRu9VanhUYszNoK3w9fobyiJpGs3u8LfpEVc5Ntphku88NY4bBQnMJgX8uX_F38Da3h01ZfDk6NX8ID-lC_u3IDV9vLKvUaU15rN7jgx-H7X5_cvbR9i8A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-adaptive+weighted+level+set+evolution+based+on+local+intensity+difference+for+parotid+ducts+segmentation&rft.jtitle=Computers+in+biology+and+medicine&rft.date=2019-11-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=114&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.103432&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482519X00104%2Fcov150h.gif |