Self-adaptive weighted level set evolution based on local intensity difference for parotid ducts segmentation

Parotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 114; p. 103432
Main Authors Deng, Xuan, Lan, Tianjun, Chen, Zhifeng, Zhang, Minghui, Tao, Qian, Lu, Zhentai
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2019
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2019.103432

Cover

Abstract Parotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable success in medical imaging segmentation, it is still a challenging task for existing LSMs to precisely and self-adaptively segment PDs from parotid duct (PD) images with both noise, intensity inhomogeneity, and vague boundary. In this paper, we propose a novel Self-adaptive Weighted level set method via Local intensity Difference (SWLD) to comprehensively solve the above issues. Firstly, a new adaptive weighted operator based on local intensity variance difference has been proposed to overcome the limitations of previous LSMs that are sensitive to parameters, which achieves the aim of automatic segmentation. Secondly, we introduce local intensity mean difference into the energy function to improve the curve evolution efficiency. Thirdly, we eliminate the effects of intensity inhomogeneity, noise, and boundary blur in the parotid image through a local similarity factor with two different neighborhood sizes. Using the same dataset, segmentation of PDs is performed using the proposed SWLD algorithm and existing LSM algorithms. The mean Dice score for the proposed algorithm is 91.3%, and the corresponding mean Hausdorff distance (HD) is 1.746. Experimental results demonstrate that the proposed algorithm is superior to many existing level set segmentation algorithms, and it can accurately and automatically segment the PDs even in complex gradient boundaries. •Proposed method performs better in segmenting parotid duct images with noise, intensity inhomogeneity, and blurred border.•We introduces a new adaptive weighted operator to remove sensitivity to parameters.•Local intensity mean difference accelerates the convergence of weights of local energy terms.
AbstractList Parotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable success in medical imaging segmentation, it is still a challenging task for existing LSMs to precisely and self-adaptively segment PDs from parotid duct (PD) images with both noise, intensity inhomogeneity, and vague boundary. In this paper, we propose a novel Self-adaptive Weighted level set method via Local intensity Difference (SWLD) to comprehensively solve the above issues. Firstly, a new adaptive weighted operator based on local intensity variance difference has been proposed to overcome the limitations of previous LSMs that are sensitive to parameters, which achieves the aim of automatic segmentation. Secondly, we introduce local intensity mean difference into the energy function to improve the curve evolution efficiency. Thirdly, we eliminate the effects of intensity inhomogeneity, noise, and boundary blur in the parotid image through a local similarity factor with two different neighborhood sizes. Using the same dataset, segmentation of PDs is performed using the proposed SWLD algorithm and existing LSM algorithms. The mean Dice score for the proposed algorithm is 91.3%, and the corresponding mean Hausdorff distance (HD) is 1.746. Experimental results demonstrate that the proposed algorithm is superior to many existing level set segmentation algorithms, and it can accurately and automatically segment the PDs even in complex gradient boundaries. •Proposed method performs better in segmenting parotid duct images with noise, intensity inhomogeneity, and blurred border.•We introduces a new adaptive weighted operator to remove sensitivity to parameters.•Local intensity mean difference accelerates the convergence of weights of local energy terms.
Parotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable success in medical imaging segmentation, it is still a challenging task for existing LSMs to precisely and self-adaptively segment PDs from parotid duct (PD) images with both noise, intensity inhomogeneity, and vague boundary. In this paper, we propose a novel Self-adaptive Weighted level set method via Local intensity Difference (SWLD) to comprehensively solve the above issues. Firstly, a new adaptive weighted operator based on local intensity variance difference has been proposed to overcome the limitations of previous LSMs that are sensitive to parameters, which achieves the aim of automatic segmentation. Secondly, we introduce local intensity mean difference into the energy function to improve the curve evolution efficiency. Thirdly, we eliminate the effects of intensity inhomogeneity, noise, and boundary blur in the parotid image through a local similarity factor with two different neighborhood sizes. Using the same dataset, segmentation of PDs is performed using the proposed SWLD algorithm and existing LSM algorithms. The mean Dice score for the proposed algorithm is 91.3%, and the corresponding mean Hausdorff distance (HD) is 1.746. Experimental results demonstrate that the proposed algorithm is superior to many existing level set segmentation algorithms, and it can accurately and automatically segment the PDs even in complex gradient boundaries.
BackgroundParotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable success in medical imaging segmentation, it is still a challenging task for existing LSMs to precisely and self-adaptively segment PDs from parotid duct (PD) images with both noise, intensity inhomogeneity, and vague boundary. In this paper, we propose a novel Self-adaptive Weighted level set method via Local intensity Difference (SWLD) to comprehensively solve the above issues.MethodFirstly, a new adaptive weighted operator based on local intensity variance difference has been proposed to overcome the limitations of previous LSMs that are sensitive to parameters, which achieves the aim of automatic segmentation. Secondly, we introduce local intensity mean difference into the energy function to improve the curve evolution efficiency. Thirdly, we eliminate the effects of intensity inhomogeneity, noise, and boundary blur in the parotid image through a local similarity factor with two different neighborhood sizes.ResultsUsing the same dataset, segmentation of PDs is performed using the proposed SWLD algorithm and existing LSM algorithms. The mean Dice score for the proposed algorithm is 91.3%, and the corresponding mean Hausdorff distance (HD) is 1.746.ConclusionExperimental results demonstrate that the proposed algorithm is superior to many existing level set segmentation algorithms, and it can accurately and automatically segment the PDs even in complex gradient boundaries.
Parotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable success in medical imaging segmentation, it is still a challenging task for existing LSMs to precisely and self-adaptively segment PDs from parotid duct (PD) images with both noise, intensity inhomogeneity, and vague boundary. In this paper, we propose a novel Self-adaptive Weighted level set method via Local intensity Difference (SWLD) to comprehensively solve the above issues.BACKGROUNDParotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable success in medical imaging segmentation, it is still a challenging task for existing LSMs to precisely and self-adaptively segment PDs from parotid duct (PD) images with both noise, intensity inhomogeneity, and vague boundary. In this paper, we propose a novel Self-adaptive Weighted level set method via Local intensity Difference (SWLD) to comprehensively solve the above issues.Firstly, a new adaptive weighted operator based on local intensity variance difference has been proposed to overcome the limitations of previous LSMs that are sensitive to parameters, which achieves the aim of automatic segmentation. Secondly, we introduce local intensity mean difference into the energy function to improve the curve evolution efficiency. Thirdly, we eliminate the effects of intensity inhomogeneity, noise, and boundary blur in the parotid image through a local similarity factor with two different neighborhood sizes.METHODFirstly, a new adaptive weighted operator based on local intensity variance difference has been proposed to overcome the limitations of previous LSMs that are sensitive to parameters, which achieves the aim of automatic segmentation. Secondly, we introduce local intensity mean difference into the energy function to improve the curve evolution efficiency. Thirdly, we eliminate the effects of intensity inhomogeneity, noise, and boundary blur in the parotid image through a local similarity factor with two different neighborhood sizes.Using the same dataset, segmentation of PDs is performed using the proposed SWLD algorithm and existing LSM algorithms. The mean Dice score for the proposed algorithm is 91.3%, and the corresponding mean Hausdorff distance (HD) is 1.746.RESULTSUsing the same dataset, segmentation of PDs is performed using the proposed SWLD algorithm and existing LSM algorithms. The mean Dice score for the proposed algorithm is 91.3%, and the corresponding mean Hausdorff distance (HD) is 1.746.Experimental results demonstrate that the proposed algorithm is superior to many existing level set segmentation algorithms, and it can accurately and automatically segment the PDs even in complex gradient boundaries.CONCLUSIONExperimental results demonstrate that the proposed algorithm is superior to many existing level set segmentation algorithms, and it can accurately and automatically segment the PDs even in complex gradient boundaries.
AbstractBackgroundParotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT) images has a significant impact to the pathological analysis of the parotid gland. Although level set methods (LSMs) have achieved considerable success in medical imaging segmentation, it is still a challenging task for existing LSMs to precisely and self-adaptively segment PDs from parotid duct (PD) images with both noise, intensity inhomogeneity, and vague boundary. In this paper, we propose a novel Self-adaptive Weighted level set method via Local intensity Difference (SWLD) to comprehensively solve the above issues. MethodFirstly, a new adaptive weighted operator based on local intensity variance difference has been proposed to overcome the limitations of previous LSMs that are sensitive to parameters, which achieves the aim of automatic segmentation. Secondly, we introduce local intensity mean difference into the energy function to improve the curve evolution efficiency. Thirdly, we eliminate the effects of intensity inhomogeneity, noise, and boundary blur in the parotid image through a local similarity factor with two different neighborhood sizes. ResultsUsing the same dataset, segmentation of PDs is performed using the proposed SWLD algorithm and existing LSM algorithms. The mean Dice score for the proposed algorithm is 91.3%, and the corresponding mean Hausdorff distance (HD) is 1.746. ConclusionExperimental results demonstrate that the proposed algorithm is superior to many existing level set segmentation algorithms, and it can accurately and automatically segment the PDs even in complex gradient boundaries.
ArticleNumber 103432
Author Chen, Zhifeng
Lu, Zhentai
Lan, Tianjun
Tao, Qian
Deng, Xuan
Zhang, Minghui
Author_xml – sequence: 1
  givenname: Xuan
  surname: Deng
  fullname: Deng, Xuan
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 2
  givenname: Tianjun
  surname: Lan
  fullname: Lan, Tianjun
  organization: Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
– sequence: 3
  givenname: Zhifeng
  surname: Chen
  fullname: Chen, Zhifeng
  organization: Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
– sequence: 4
  givenname: Minghui
  surname: Zhang
  fullname: Zhang, Minghui
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China
– sequence: 5
  givenname: Qian
  surname: Tao
  fullname: Tao, Qian
  organization: Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
– sequence: 6
  givenname: Zhentai
  surname: Lu
  fullname: Lu, Zhentai
  email: luzhentai@163.com
  organization: School of Biomedical Engineering, Southern Medical University, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31521897$$D View this record in MEDLINE/PubMed
BookMark eNqVkkuLFDEUhYOMOD2jf0ECbtxUe1OpVzaiDr5gwMXoOqSSW2PaVKVNUi39701RYwsDwrhKSE4-Ts65F-Rs8hMSQhlsGbDm1W6r_bjvrR_RbEtgIh_zipePyIZ1rSig5tUZ2QAwKKqurM_JRYw7AKiAwxNyzlldsk60GzLeoBsKZdQ-2QPSX2hvvyc01OEBHY2YKB68m5P1E-1VzDd547xWjtop4RRtOlJjhwEDThrp4APdq-CTNdTMOsXMuB1xSmpBPCWPB-UiPrtbL8m3D--_Xn0qrr98_Hz19rrQNatSobqOi-zVcBwarPLfRNU2lQIQLfSVYawGZVothga6usEGedu3DMAopSrT8UvycuXug_85Y0xytFGjc2pCP0dZlgJEV5dNmaUv7kl3fg5TdidLDi1vGt5CVj2_U819zlzugx1VOMo_QWZBtwp08DEGHE4SBnLpTO7k387k0plcO8tPX997qu0aVwrKuocA3q0AzJEeLAYZtV3aMDagTtJ4-x8uThDt7GRz0T_wiPEUCpOxlCBvltlaRosJnmdKiAx482_Awzz8BqAZ48M
CitedBy_id crossref_primary_10_1080_21681163_2020_1866670
crossref_primary_10_1016_j_compbiomed_2019_103568
Cites_doi 10.1038/s41598-017-15617-w
10.1109/TPAMI.2002.1114849
10.1016/j.ijom.2012.10.006
10.1023/A:1020874308076
10.1007/s11263-008-0153-5
10.1109/TIP.2012.2202674
10.1023/A:1007979827043
10.1109/34.537343
10.1109/TIP.2005.863956
10.1016/j.aanat.2012.11.003
10.1016/j.patcog.2016.01.021
10.1186/1748-717X-9-173
10.1109/83.902291
10.1109/TIP.2008.2002304
10.1109/TMI.2009.2017941
10.4208/cicp.2009.09.026
10.1109/34.368173
10.1016/j.cviu.2006.11.004
10.1016/j.patcog.2009.10.010
10.1007/BF01427153
10.1016/j.patcog.2016.07.022
10.1007/BF00133570
10.1016/j.imavis.2010.12.004
10.1109/83.935033
10.1002/cpa.3160420503
10.1016/j.media.2017.01.002
10.1016/j.patrec.2004.09.001
10.1007/BF01385685
10.1016/j.patcog.2012.12.006
10.1117/1.3574770
10.1016/j.patcog.2018.03.010
10.1016/j.sigpro.2016.06.013
10.1109/TIP.2005.852200
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
2019. Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
– notice: 2019. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2019.103432
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

Research Library Prep
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 103432
ExternalDocumentID 31521897
10_1016_j_compbiomed_2019_103432
S0010482519303099
1_s2_0_S0010482519303099
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-a8839040d3ef6e410394764a00970b4d1150ad7c9f60856e6e37b7100daaa4d83
IEDL.DBID BENPR
ISSN 0010-4825
1879-0534
IngestDate Sat Sep 27 23:18:20 EDT 2025
Tue Oct 07 06:37:17 EDT 2025
Thu Apr 03 07:02:09 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Wed Oct 01 05:20:16 EDT 2025
Fri Feb 23 02:42:45 EST 2024
Sun Feb 23 10:19:13 EST 2025
Tue Oct 14 19:33:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords PDs segmentation
Local variance difference
Local mean difference
Self-adaptive weighted
Level set method
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-a8839040d3ef6e410394764a00970b4d1150ad7c9f60856e6e37b7100daaa4d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 31521897
PQID 2307366370
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2290985262
proquest_journals_2307366370
pubmed_primary_31521897
crossref_primary_10_1016_j_compbiomed_2019_103432
crossref_citationtrail_10_1016_j_compbiomed_2019_103432
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_103432
elsevier_clinicalkeyesjournals_1_s2_0_S0010482519303099
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_103432
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Brox, Cremers (bib26) 2009; 84
Vasilevskiy, Siddiqi (bib18) 2002; 24
Mumford, Shah (bib30) 1989; 42
Zhang, Song, Zhang (bib27) 2010; 43
Gao, Bui (bib32) 2005; 14
Zhu, Yuille (bib9) 1996; 18
Horsburgh (bib2) 2013; 42
Malladi, Sethian, Vemuri (bib16) 1995; 17
Mabood, Ali, Badshah, Chen, Khan (bib21) 2016; 55
Thomson, Boylan, Liptrot, Aitkenhead (bib43) 2014; 9
Liu, Liu, Xing (bib22) 2017; 130
Wang, Xiang, Pan, Wang, Meng (bib29) 2013; 46
Drage, Wilson, McGurk (bib1) 2002; 31
Hoogi, F Beaulieu, M Cunha (bib42) 2017; 37
Li, Xu, Gui (bib35) 2005; 1
Lee, Park, Cho (bib14) 2007
Lie, Lysaker, Tai (bib38) 2006
Vese, Chan (bib24) 2002; 50
Tsai, Yezzi, Willsky (bib31) 2001; 10
Horsburgh, Massoud (bib3) 2013; 195
Badshah, Chen (bib19) 2010; 7
Zhi, Shen (bib40) 2018; 80
Li, Kao, Gore, Ding (bib7) 2008; 17
Al-Diri, Hunter, Steel, Snakes (bib11) 2009; 28
Niu, Chen, Ji (bib34) 2017; 61
Song, Sanchez, Eldaly (bib13) 2017; 64
Caselles, Coll (bib6) 1993; 66
Kass, Witkin, Terzopoulos, Snakes (bib8) 1988; 1
Meijs, Patel, Leemput (bib37) 2017; 7
Zhang, Song, Zhang (bib39) 2010; 43
Caselles, Kimmel, Sapiro (bib17) 1997; 22
Ebrahimdoost, Dehmeshki, Ellis (bib15) 2010
Srikrishnan, Chaudhuri (bib12) 2011; 29
Lie, Lysaker, Tai (bib33) 2006; 15
Li, He, Zhan (bib20) 2011; 20
Estellers, Zosso, Osher (bib28) 2012; 21
Chan, Vese (bib5) 2001; 10
Ni, Ahujab, Bansalc (bib4) 2007; 107
Hou, Han (bib10) 2005; 26
Rousson, Deriche (bib25) 2002
Li, Gore, Ding (bib36) 2007; 1
Piovano, Papadopoulo (bib41) 2011
Ronfard (bib23) 1994; 13
Horsburgh (10.1016/j.compbiomed.2019.103432_bib3) 2013; 195
Caselles (10.1016/j.compbiomed.2019.103432_bib6) 1993; 66
Li (10.1016/j.compbiomed.2019.103432_bib7) 2008; 17
Horsburgh (10.1016/j.compbiomed.2019.103432_bib2) 2013; 42
Vese (10.1016/j.compbiomed.2019.103432_bib24) 2002; 50
Srikrishnan (10.1016/j.compbiomed.2019.103432_bib12) 2011; 29
Thomson (10.1016/j.compbiomed.2019.103432_bib43) 2014; 9
Hoogi (10.1016/j.compbiomed.2019.103432_bib42) 2017; 37
Caselles (10.1016/j.compbiomed.2019.103432_bib17) 1997; 22
Badshah (10.1016/j.compbiomed.2019.103432_bib19) 2010; 7
Mabood (10.1016/j.compbiomed.2019.103432_bib21) 2016; 55
Wang (10.1016/j.compbiomed.2019.103432_bib29) 2013; 46
Kass (10.1016/j.compbiomed.2019.103432_bib8) 1988; 1
Lie (10.1016/j.compbiomed.2019.103432_bib38) 2006
Zhang (10.1016/j.compbiomed.2019.103432_bib39) 2010; 43
Meijs (10.1016/j.compbiomed.2019.103432_bib37) 2017; 7
Brox (10.1016/j.compbiomed.2019.103432_bib26) 2009; 84
Lee (10.1016/j.compbiomed.2019.103432_bib14) 2007
Ebrahimdoost (10.1016/j.compbiomed.2019.103432_bib15) 2010
Piovano (10.1016/j.compbiomed.2019.103432_bib41) 2011
Li (10.1016/j.compbiomed.2019.103432_bib20) 2011; 20
Lie (10.1016/j.compbiomed.2019.103432_bib33) 2006; 15
Ni (10.1016/j.compbiomed.2019.103432_bib4) 2007; 107
Tsai (10.1016/j.compbiomed.2019.103432_bib31) 2001; 10
Drage (10.1016/j.compbiomed.2019.103432_bib1) 2002; 31
Liu (10.1016/j.compbiomed.2019.103432_bib22) 2017; 130
Gao (10.1016/j.compbiomed.2019.103432_bib32) 2005; 14
Li (10.1016/j.compbiomed.2019.103432_bib36) 2007; 1
Niu (10.1016/j.compbiomed.2019.103432_bib34) 2017; 61
Zhang (10.1016/j.compbiomed.2019.103432_bib27) 2010; 43
Zhu (10.1016/j.compbiomed.2019.103432_bib9) 1996; 18
Chan (10.1016/j.compbiomed.2019.103432_bib5) 2001; 10
Estellers (10.1016/j.compbiomed.2019.103432_bib28) 2012; 21
Malladi (10.1016/j.compbiomed.2019.103432_bib16) 1995; 17
Vasilevskiy (10.1016/j.compbiomed.2019.103432_bib18) 2002; 24
Mumford (10.1016/j.compbiomed.2019.103432_bib30) 1989; 42
Hou (10.1016/j.compbiomed.2019.103432_bib10) 2005; 26
Al-Diri (10.1016/j.compbiomed.2019.103432_bib11) 2009; 28
Song (10.1016/j.compbiomed.2019.103432_bib13) 2017; 64
Zhi (10.1016/j.compbiomed.2019.103432_bib40) 2018; 80
Rousson (10.1016/j.compbiomed.2019.103432_bib25) 2002
Li (10.1016/j.compbiomed.2019.103432_bib35) 2005; 1
Ronfard (10.1016/j.compbiomed.2019.103432_bib23) 1994; 13
References_xml – volume: 50
  start-page: 271
  year: 2002
  end-page: 293
  ident: bib24
  article-title: A multiphase level set framework for image segmentation using the mumford and shah model
  publication-title: Int. J. Comput. Vis.
– volume: 43
  start-page: 1199
  year: 2010
  end-page: 1206
  ident: bib39
  article-title: Active contours driven by local image fitting en- ergy
  publication-title: Pattern Recognit.
– volume: 64
  start-page: 2913
  year: 2017
  end-page: 2923
  ident: bib13
  article-title: Dual-channel active contour model for megakaryocytic cell segmentation in bone marrow trephine histology images
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 1
  start-page: 1
  year: 2007
  end-page: 7
  ident: bib36
  article-title: Implicit active contours driven by local binary fitting energy
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 7
  start-page: 15622
  year: 2017
  ident: bib37
  article-title: Robust segmentation of the full cerebral vasculature in 4D CT of suspected stroke patients
  publication-title: Sci. Rep.
– start-page: 269
  year: 2010
  end-page: 273
  ident: bib15
  article-title: Medical image segmentation using active contours and a level set model: application to pulmonary embolism (PE) segmentation
  publication-title: International Conference on Digital Society
– volume: 22
  start-page: 61
  year: 1997
  end-page: 79
  ident: bib17
  article-title: Geodesic active contours
  publication-title: Int. J. Comput. Vis.
– start-page: 1171
  year: 2006
  end-page: 1181
  ident: bib38
  article-title: A binary level set model and some application to Mumford–Shah image segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 18
  start-page: 884
  year: 1996
  end-page: 900
  ident: bib9
  article-title: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 107
  start-page: 210
  year: 2007
  end-page: 224
  ident: bib4
  article-title: Object segmentation using graph cuts based active contours
  publication-title: Comput. Vis. Image Understand.
– volume: 1
  start-page: 321
  year: 1988
  end-page: 331
  ident: bib8
  article-title: Active contour models
  publication-title: Int. J. Comput. Vis.
– start-page: 56
  year: 2002
  end-page: 61
  ident: bib25
  article-title: A variational framework for active and adaptative segmentation of vector valued images
  publication-title: IEEE Workshop Motion Video Comput.
– volume: 17
  start-page: 1940
  year: 2008
  end-page: 1949
  ident: bib7
  article-title: Minimization of region-scalable fitting energy for image segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 42
  start-page: 124
  year: 2013
  end-page: 128
  ident: bib2
  article-title: The role of salivary duct morphology in the aetiology of sialadenitis: statistical analysis of sialographic features
  publication-title: Int. J. Oral Maxillofac. Surg.
– volume: 46
  start-page: 1734
  year: 2013
  end-page: 1746
  ident: bib29
  article-title: Level set evolution with locally linear classification for image segmentation
  publication-title: Pattern Recognit.
– volume: 24
  start-page: 1565
  year: 2002
  end-page: 1578
  ident: bib18
  article-title: Flux maximizing geometric flows
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 37
  start-page: 46
  year: 2017
  end-page: 55
  ident: bib42
  article-title: Adaptive local window for level set segmentation of CT and MRI liver lesions
  publication-title: Med. Image Anal.
– volume: 13
  start-page: 229
  year: 1994
  end-page: 251
  ident: bib23
  article-title: Region-based strategies for active contour models
  publication-title: Int. J. Comput. Vis.
– volume: 10
  start-page: 266
  year: 2001
  end-page: 277
  ident: bib5
  article-title: Active contours without edges
  publication-title: IEEE Trans. Image Process.
– volume: 14
  start-page: 1537
  year: 2005
  end-page: 1549
  ident: bib32
  article-title: Image segmentation and selective smoothing by using mumford-shah model
  publication-title: IEEE Trans. Image Process.
– volume: 17
  start-page: 158
  year: 1995
  end-page: 175
  ident: bib16
  article-title: Shape modeling with front propagation: a level set approach
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 195
  start-page: 238
  year: 2013
  end-page: 242
  ident: bib3
  article-title: The salivary ducts of Wharton and Stenson, Analysis of normal variant sialographic morphometry and a historical review
  publication-title: Ann. Anat.
– volume: 29
  start-page: 317
  year: 2011
  end-page: 328
  ident: bib12
  article-title: Adaptive smoothness based robust active contours
  publication-title: Image Vis Comput.
– volume: 1
  start-page: 430
  year: 2005
  end-page: 436
  ident: bib35
  article-title: Level set evolution without Re-initialization: a new variational formulation
  publication-title: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– volume: 7
  start-page: 759
  year: 2010
  end-page: 778
  ident: bib19
  article-title: Image selective segmentation under geometrical constraints using an active contour approach
  publication-title: Commun. Comput. Phys.
– start-page: 87
  year: 2011
  end-page: 93
  ident: bib41
  article-title: Local Statistic Based Region Segmentation with Automatic Scale Selection
– volume: 21
  start-page: 4722
  year: 2012
  end-page: 4734
  ident: bib28
  article-title: Efficient algorithm for level set method preserving distance function
  publication-title: IEEE Trans. Image Process.
– volume: 10
  start-page: 1169
  year: 2001
  end-page: 1186
  ident: bib31
  article-title: Curve evolution implementation of the mumfordshah functional for image segmentation, denoising, interpolation, and magnification
  publication-title: IEEE Trans. Image Process.
– volume: 61
  start-page: 104
  year: 2017
  end-page: 119
  ident: bib34
  article-title: Robust noise region-based active contour model via local similarity factor for image segmentation
  publication-title: Pattern Recognit.
– volume: 80
  start-page: 241
  year: 2018
  end-page: 255
  ident: bib40
  article-title: Saliency driven region-e dge-base d top down level set evolution reveals the asynchronous focus in image segmentation
  publication-title: Pattern Recognit.
– volume: 55
  start-page: 87
  year: 2016
  end-page: 99
  ident: bib21
  article-title: Active contours textural and inhomogeneous object extraction
  publication-title: Pattern Recognit.
– volume: 15
  start-page: 1171
  year: 2006
  end-page: 1181
  ident: bib33
  article-title: A binary level set model and some applications to Mumford-Shah image segmentation
  publication-title: IEEE Trans. Image Process.
– volume: 9
  start-page: 173
  year: 2014
  ident: bib43
  article-title: Evaluation of an automatic segmentation algorithm for definition of head and neck organs at risk
  publication-title: Radiat. Oncol.
– start-page: 577
  year: 2007
  end-page: 580
  ident: bib14
  article-title: Medical image segmentation using a geometric active contour model based on level set method
  publication-title: IEEE Pacific Rim Conference on Communications
– volume: 43
  start-page: 1199
  year: 2010
  end-page: 1206
  ident: bib27
  article-title: Active contours driven by local image fitting energy
  publication-title: Pattern Recognit.
– volume: 26
  start-page: 513
  year: 2005
  end-page: 526
  ident: bib10
  article-title: Force field analysis snake: an improved parametric active contour model
  publication-title: Pattern Recognit. Lett.
– volume: 66
  start-page: 1
  year: 1993
  end-page: 31
  ident: bib6
  article-title: A geometric model for active contours in image processing
  publication-title: Numer. Math.
– volume: 42
  start-page: 577
  year: 1989
  end-page: 685
  ident: bib30
  article-title: Optimal approximations by piecewise smooth functions and associated variational problems
  publication-title: Commun. Pure Appl. Math.
– volume: 31
  start-page: 15
  year: 2002
  end-page: 18
  ident: bib1
  article-title: The genu of the submandibular duct - is the angle significant in salivary gland disease?
  publication-title: Dentomaxillofacial Radiol.
– volume: 130
  start-page: 12
  year: 2017
  end-page: 21
  ident: bib22
  article-title: An improved edge-based level set method combining local regional fitting information for noisy image segmentation
  publication-title: Signal Process.
– volume: 28
  start-page: 1488
  year: 2009
  end-page: 1497
  ident: bib11
  article-title: An active contour model for segmenting and measuring retinal vessels
  publication-title: IEEE Trans. Med. Imaging
– volume: 20
  year: 2011
  ident: bib20
  article-title: Adaptive level-set evolution without initial contours for image segmentation
  publication-title: J. Electron. Imaging
– volume: 84
  start-page: 184
  year: 2009
  end-page: 193
  ident: bib26
  article-title: On local region models and a statistical interpretation of the piecewise smooth mumford-shah functional
  publication-title: Int. J. Comput. Vis.
– volume: 7
  start-page: 15622
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103432_bib37
  article-title: Robust segmentation of the full cerebral vasculature in 4D CT of suspected stroke patients
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15617-w
– volume: 24
  start-page: 1565
  issue: 12
  year: 2002
  ident: 10.1016/j.compbiomed.2019.103432_bib18
  article-title: Flux maximizing geometric flows
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1114849
– volume: 1
  start-page: 1
  year: 2007
  ident: 10.1016/j.compbiomed.2019.103432_bib36
  article-title: Implicit active contours driven by local binary fitting energy
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit.
– start-page: 56
  year: 2002
  ident: 10.1016/j.compbiomed.2019.103432_bib25
  article-title: A variational framework for active and adaptative segmentation of vector valued images
  publication-title: IEEE Workshop Motion Video Comput.
– volume: 1
  start-page: 430
  year: 2005
  ident: 10.1016/j.compbiomed.2019.103432_bib35
  article-title: Level set evolution without Re-initialization: a new variational formulation
  publication-title: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
– volume: 42
  start-page: 124
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103432_bib2
  article-title: The role of salivary duct morphology in the aetiology of sialadenitis: statistical analysis of sialographic features
  publication-title: Int. J. Oral Maxillofac. Surg.
  doi: 10.1016/j.ijom.2012.10.006
– volume: 50
  start-page: 271
  issue: 3
  year: 2002
  ident: 10.1016/j.compbiomed.2019.103432_bib24
  article-title: A multiphase level set framework for image segmentation using the mumford and shah model
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1020874308076
– volume: 84
  start-page: 184
  issue: 2
  year: 2009
  ident: 10.1016/j.compbiomed.2019.103432_bib26
  article-title: On local region models and a statistical interpretation of the piecewise smooth mumford-shah functional
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-008-0153-5
– volume: 21
  start-page: 4722
  issue: 12
  year: 2012
  ident: 10.1016/j.compbiomed.2019.103432_bib28
  article-title: Efficient algorithm for level set method preserving distance function
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2202674
– volume: 22
  start-page: 61
  issue: 1
  year: 1997
  ident: 10.1016/j.compbiomed.2019.103432_bib17
  article-title: Geodesic active contours
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1007979827043
– volume: 31
  start-page: 15
  issue: 1
  year: 2002
  ident: 10.1016/j.compbiomed.2019.103432_bib1
  article-title: The genu of the submandibular duct - is the angle significant in salivary gland disease?
  publication-title: Dentomaxillofacial Radiol.
– volume: 18
  start-page: 884
  year: 1996
  ident: 10.1016/j.compbiomed.2019.103432_bib9
  article-title: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.537343
– volume: 15
  start-page: 1171
  issue: 5
  year: 2006
  ident: 10.1016/j.compbiomed.2019.103432_bib33
  article-title: A binary level set model and some applications to Mumford-Shah image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.863956
– volume: 195
  start-page: 238
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103432_bib3
  article-title: The salivary ducts of Wharton and Stenson, Analysis of normal variant sialographic morphometry and a historical review
  publication-title: Ann. Anat.
  doi: 10.1016/j.aanat.2012.11.003
– volume: 55
  start-page: 87
  year: 2016
  ident: 10.1016/j.compbiomed.2019.103432_bib21
  article-title: Active contours textural and inhomogeneous object extraction
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.01.021
– volume: 9
  start-page: 173
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2019.103432_bib43
  article-title: Evaluation of an automatic segmentation algorithm for definition of head and neck organs at risk
  publication-title: Radiat. Oncol.
  doi: 10.1186/1748-717X-9-173
– start-page: 1171
  year: 2006
  ident: 10.1016/j.compbiomed.2019.103432_bib38
  article-title: A binary level set model and some application to Mumford–Shah image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.863956
– volume: 10
  start-page: 266
  issue: 2
  year: 2001
  ident: 10.1016/j.compbiomed.2019.103432_bib5
  article-title: Active contours without edges
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.902291
– volume: 17
  start-page: 1940
  year: 2008
  ident: 10.1016/j.compbiomed.2019.103432_bib7
  article-title: Minimization of region-scalable fitting energy for image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.2002304
– volume: 28
  start-page: 1488
  issue: 9
  year: 2009
  ident: 10.1016/j.compbiomed.2019.103432_bib11
  article-title: An active contour model for segmenting and measuring retinal vessels
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2017941
– start-page: 269
  year: 2010
  ident: 10.1016/j.compbiomed.2019.103432_bib15
  article-title: Medical image segmentation using active contours and a level set model: application to pulmonary embolism (PE) segmentation
– volume: 7
  start-page: 759
  issue: 4
  year: 2010
  ident: 10.1016/j.compbiomed.2019.103432_bib19
  article-title: Image selective segmentation under geometrical constraints using an active contour approach
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.2009.09.026
– start-page: 577
  year: 2007
  ident: 10.1016/j.compbiomed.2019.103432_bib14
  article-title: Medical image segmentation using a geometric active contour model based on level set method
– volume: 17
  start-page: 158
  issue: 2
  year: 1995
  ident: 10.1016/j.compbiomed.2019.103432_bib16
  article-title: Shape modeling with front propagation: a level set approach
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.368173
– volume: 64
  start-page: 2913
  issue: 12
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103432_bib13
  article-title: Dual-channel active contour model for megakaryocytic cell segmentation in bone marrow trephine histology images
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 107
  start-page: 210
  issue: 3
  year: 2007
  ident: 10.1016/j.compbiomed.2019.103432_bib4
  article-title: Object segmentation using graph cuts based active contours
  publication-title: Comput. Vis. Image Understand.
  doi: 10.1016/j.cviu.2006.11.004
– volume: 43
  start-page: 1199
  year: 2010
  ident: 10.1016/j.compbiomed.2019.103432_bib39
  article-title: Active contours driven by local image fitting en- ergy
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.10.010
– volume: 13
  start-page: 229
  issue: 2
  year: 1994
  ident: 10.1016/j.compbiomed.2019.103432_bib23
  article-title: Region-based strategies for active contour models
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF01427153
– volume: 61
  start-page: 104
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103432_bib34
  article-title: Robust noise region-based active contour model via local similarity factor for image segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.07.022
– volume: 1
  start-page: 321
  issue: 3
  year: 1988
  ident: 10.1016/j.compbiomed.2019.103432_bib8
  article-title: Active contour models
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF00133570
– volume: 29
  start-page: 317
  issue: 5
  year: 2011
  ident: 10.1016/j.compbiomed.2019.103432_bib12
  article-title: Adaptive smoothness based robust active contours
  publication-title: Image Vis Comput.
  doi: 10.1016/j.imavis.2010.12.004
– volume: 10
  start-page: 1169
  issue: 8
  year: 2001
  ident: 10.1016/j.compbiomed.2019.103432_bib31
  article-title: Curve evolution implementation of the mumfordshah functional for image segmentation, denoising, interpolation, and magnification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.935033
– volume: 42
  start-page: 577
  issue: 5
  year: 1989
  ident: 10.1016/j.compbiomed.2019.103432_bib30
  article-title: Optimal approximations by piecewise smooth functions and associated variational problems
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160420503
– volume: 37
  start-page: 46
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103432_bib42
  article-title: Adaptive local window for level set segmentation of CT and MRI liver lesions
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.01.002
– volume: 26
  start-page: 513
  issue: 5
  year: 2005
  ident: 10.1016/j.compbiomed.2019.103432_bib10
  article-title: Force field analysis snake: an improved parametric active contour model
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2004.09.001
– start-page: 87
  year: 2011
  ident: 10.1016/j.compbiomed.2019.103432_bib41
– volume: 43
  start-page: 1199
  issue: 4
  year: 2010
  ident: 10.1016/j.compbiomed.2019.103432_bib27
  article-title: Active contours driven by local image fitting energy
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.10.010
– volume: 66
  start-page: 1
  issue: 1
  year: 1993
  ident: 10.1016/j.compbiomed.2019.103432_bib6
  article-title: A geometric model for active contours in image processing
  publication-title: Numer. Math.
  doi: 10.1007/BF01385685
– volume: 46
  start-page: 1734
  issue: 6
  year: 2013
  ident: 10.1016/j.compbiomed.2019.103432_bib29
  article-title: Level set evolution with locally linear classification for image segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.12.006
– volume: 20
  year: 2011
  ident: 10.1016/j.compbiomed.2019.103432_bib20
  article-title: Adaptive level-set evolution without initial contours for image segmentation
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.3574770
– volume: 80
  start-page: 241
  year: 2018
  ident: 10.1016/j.compbiomed.2019.103432_bib40
  article-title: Saliency driven region-e dge-base d top down level set evolution reveals the asynchronous focus in image segmentation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.03.010
– volume: 130
  start-page: 12
  year: 2017
  ident: 10.1016/j.compbiomed.2019.103432_bib22
  article-title: An improved edge-based level set method combining local regional fitting information for noisy image segmentation
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.06.013
– volume: 14
  start-page: 1537
  issue: 10
  year: 2005
  ident: 10.1016/j.compbiomed.2019.103432_bib32
  article-title: Image segmentation and selective smoothing by using mumford-shah model
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.852200
SSID ssj0004030
Score 2.2524314
SecondaryResourceType review_article
Snippet Parotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography (CBCT)...
AbstractBackgroundParotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed...
BackgroundParotid ducts (PDs) play an important role in the diagnosis and treatment of parotid lesions. Segmentation of PDs from Cone beam computed tomography...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 103432
SubjectTerms Algorithms
Computed tomography
Evolution
Image processing
Image segmentation
Impact analysis
Inhomogeneity
Internal Medicine
Level set method
Local mean difference
Local variance difference
Medical diagnosis
Medical imaging
Methods
Metric space
Neighborhoods
Noise
Noise intensity
Other
Parameter sensitivity
Parotid gland
PDs segmentation
Self-adaptive weighted
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iQbyIb9cXEbxW2yYmLZ5EFBH0ooK3kDSprKzdxVbFi7_dmSatiAoL3vbRaUsymfnafN8MIftFYlIjDHYNwLdVjOkoZ9ZGJU-k00Kboi2mc3UtLu745f3R_Qw57bQwSKsMsd_H9DZah18Ow2geToZD1PjCo0SrvGS4T4AiPs4ldjE4-PiiefCYeRkKxBs8OrB5PMcLadte5o4krxwV6Jylf6WovyBom4rOF8lCwJD0xN_mEplx1TKZuwq75Cvk6caNykhbPcFYRt_at5_O0hEShGjtGupeg8dRzGKWwoc2qdGhZ7Q377TrnFI4CriWTvTzuBlaiuVhazjHw1MQLVWr5O787Pb0IgptFaIC0FET6QxAEYyLZa4UjuNeMJeCa5R0xIZbxIjayiIvBeAx4YRj0mARIKu15jZja2S2Gldug1BjWYr1fyATOh7rzBSxKX2Nl6JMk3JAZDeSqgg1x7H1xUh15LJH9TUHCudA-TkYkKS3nPi6G1PY5N1kqU5XCpFQQXKYwlb-ZuvqsKRrlag6VbH64XYDctxbfvPcKa-73XmV6i-F5HwGUFDGA7LX_w3rHjdzdOXGL3BMmsd5dpQKOMW698Z-oBiCsiyXm_-6tS0yj9-88HKbzDbPL24HEFhjdtsl9gmZWy7e
  priority: 102
  providerName: Elsevier
Title Self-adaptive weighted level set evolution based on local intensity difference for parotid ducts segmentation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519303099
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482519303099
https://dx.doi.org/10.1016/j.compbiomed.2019.103432
https://www.ncbi.nlm.nih.gov/pubmed/31521897
https://www.proquest.com/docview/2307366370
https://www.proquest.com/docview/2290985262
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250828
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5trYR4QfymMCoj8RpIYi9OhBAaaKWAViHGpL5ZduxMoC4tSwbihb-du9hJXxjqS1SpPaeynbsvvvu-A3heJiY1maGuAXRaxbmOCm5tVIlEOp1pU3ZiOieLbH4mPi4Pl3uw6LkwVFbZ-8TOUdt1SWfkL6lgmWN4lPGbzY-IukZRdrVvoaFDawX7upMY24dxSspYIxi_PV58_rJlSsbck1LQ-wh8OQq1Pb7ii4q4PemdSr4K4qMLnl4XsK4DpF1gmt2GWwFRsiO_Be7Anqvvwo2TkDO_BxenblVF2uoNeTb2qzsLdZatqFyINa5l7mfYf4ximmX4oQtx7Juvb29_s76PSukYoly20ZdrnAZGYrENjnF-EShM9X04mx1_fTePQpOFqESs1EY6R4iE82K5qzInKDMsZCY0ETxiIywhRm1lWVQZorPMZY5LQ5JAVmstbM4fwKhe1-4RMGN5SmpAGBediHVuythUXvGlrNKkmoDsZ1KVQYGcGmGsVF9q9l1t10DRGii_BhNIBsuNV-HYwaboF0v1LFP0iwpDxQ628l-2rgkPeKMS1aQqVqedvlFH_-WUrCom8GqwDBjGY5Md73vQ7yo13Gq78yfwbPgavQCldnTt1lf4m7SIi_wwzXCIh343DhPFCaLlhXz8_8GfwE36J55neQCj9vLKPUXA1Zop7L_4k-BVLiVe89n7KYyPPnyaL6bh-foLqDYujw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkNpeKvrelrau1B6jJrHJQxWqoAUthV1VBSRuxo6dCrRktyQU8ef625iJneylVHvhFmljZ-UZz3z2zDcD8KGIdKwTTV0D6LaKcxXk3JigFFFqVaJ00RbTGY2T4ZH4frx-vAR_Oy4MpVV2NrE11GZa0B35J0pY5uge0_DL7HdAXaMoutq10FC-tYLZaEuMeWLHnr2-wiNcvbH7DeX9MY53tg-_DgPfZSAoECw0gcoQI6AqG27LxAoKjYo0EYoYDqEWhiCTMmmRlwnCk8QmlqeaauIYpZQwGcd578GK4CLHw9_K1vb4x885MzPkjgSD1k7gYcznErkMM0oadyR7SjHLif8ueHybg7wNALeOcGcVHnkEyzadyj2GJVs9gfsjH6N_CucHdlIGyqgZWVJ21d69WsMmlJ7Eatsw-8frOyMfahg-tC6Vnbp8-uaadX1bCssQVbOZupjisjMqTlvjHL_OPWWqegZHd7Lcz2G5mlb2JTBteEzVh9APWxGqTBehLl2FmaKMo3IAabeSsvAVz6nxxkR2qW1nci4DSTKQTgYDiPqRM1f1Y4ExeScs2bFa0Q5LdE0LjE3_NdbW3qDUMpJ1LEN50NZTaunGnIJj-QA-9yM9ZnJYaMHvrnVaJftPzXfaAN73P6PVoVCSquz0Et-J8zDP1uMEp3jhtLFfKE6QMMvTV_-f_B08GB6O9uX-7njvNTykf-U4nmuw3Fxc2jcI9hr91u8oBid3vYlvAD4lZVY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIU28IH6vMIaR4DFaEntxIoSmaaPaGJuQxqS-GTt20FCXliVj2r_GX8dd7KQvDPVlb5Xacyrf-e6L77s7gHdlYlKTGZoaQLdVnOuo4NZGlUik05k2ZddM5_gkOzgTnyfbkxX409fCEK2y94mdo7azku7It4iwzDE8ynirCrSIr_vjnfmviCZIUaa1H6fhTeTI3Vzj61vz8XAfdf0-Tcefvu0dRGHCQFQiUGgjnSM-QDO23FWZE5QWFTITmqobYiMswSVtZVlUGUKTzGWOS0P9cKzWWtic47r34L7kvCA6oZzIRU1mzH35C_o5ga9hgUXkuWVEF_fl9UQuK6jyXfD0ttB4G_TtQuD4ETwM2JXtemN7DCuufgJrxyE7_xQuTt20irTVc_Kh7Lq7dXWWTYmYxBrXMvc7WDqj6GkZfuiCKTv3TPr2hvUTW0rHEE-zub6cteeWUVvaBtf4cRGKpepncHYnm_0cVutZ7daBGctT6juEEdiJWOemjE3le8uUVZpUI5D9Tqoy9DqnkRtT1ZPafqqFDhTpQHkdjCAZJOe-38cSMkWvLNXXs6IHVhiUlpCV_5J1TXAljUpUk6pYnXadlLpCY05psWIEHwbJgJY8ClryuRu9VanhUYszNoK3w9fobyiJpGs3u8LfpEVc5Ntphku88NY4bBQnMJgX8uX_F38Da3h01ZfDk6NX8ID-lC_u3IDV9vLKvUaU15rN7jgx-H7X5_cvbR9i8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-adaptive+weighted+level+set+evolution+based+on+local+intensity+difference+for+parotid+ducts+segmentation&rft.jtitle=Computers+in+biology+and+medicine&rft.date=2019-11-01&rft.pub=Elsevier+Limited&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=114&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.103432&rft.externalDBID=HAS_PDF_LINK
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482519X00104%2Fcov150h.gif