A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images

In this paper, we proposed an enhanced reptile search algorithm (RSA) for global optimization and selected optimal thresholding values for multilevel image segmentation. RSA is a recent metaheuristic optimization algorithm depending on the hunting behavior of crocodiles. RSA is inclined to inadequat...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 152; p. 106404
Main Authors Emam, Marwa M., Houssein, Essam H., Ghoniem, Rania M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.01.2023
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2022.106404

Cover

Abstract In this paper, we proposed an enhanced reptile search algorithm (RSA) for global optimization and selected optimal thresholding values for multilevel image segmentation. RSA is a recent metaheuristic optimization algorithm depending on the hunting behavior of crocodiles. RSA is inclined to inadequate diversity, local optima, and unbalanced exploitation abilities as other metaheuristic algorithms. The RUNge Kutta optimizer (RUN) is a novel metaheuristic algorithm that has demonstrated effectiveness in solving real-world optimization problems. The enhanced solution quality (ESQ) in RUN utilizes the thus-far best solution to promote the quality of solutions, improve the convergence speed, and effectively balance the exploration and exploitation steps. Also, the Scale factor (SF) has a randomized adaptation nature, which helps RUN in further improving the exploration and exploitation steps. This parameter ensures a smooth transition from exploration to exploitation. In order to mitigate the drawbacks of the RSA algorithm, this paper proposed a modified RSA (mRSA), which combines the RSA algorithm with the RUN. The ESQ mechanism and the scale factor boost the original RSA’s performance, enhance convergence speed, bypass local optimum, and enhance the balance between exploitation and exploration. The validity of mRSA was verified using two experimental sequences. First, we applied mRSA to CEC’2020 benchmark functions of various types and dimensions, showing that mRSA has more robust search capabilities than the original RSA and popular counterpart algorithms concerning statistical, convergence, and diversity measurements. The second experiment evaluated mRSA for a real-world application to solve magnetic resonance imaging (MRI) brain image segmentation. Overall experimental results confirm that the mRSA has a strong optimization ability. Also, mRSA method is a more successful multilevel thresholding segmentation and outperforms comparison methods according to different performance measures. •A modified mRSA based on the ESQ mechanism is proposed.•The CEC’2020 test suite problems are used to demonstrate the performance mRSA.•Apply mRSA algorithm as multilevel image segmentation for MRI brain images.•The experimental results have been revealed the superiority of proposed mRSA.•Using Otsu’s method as fitness functions to assess agents.
AbstractList AbstractIn this paper, we proposed an enhanced reptile search algorithm (RSA) for global optimization and selected optimal thresholding values for multilevel image segmentation. RSA is a recent metaheuristic optimization algorithm depending on the hunting behavior of crocodiles. RSA is inclined to inadequate diversity, local optima, and unbalanced exploitation abilities as other metaheuristic algorithms. The RUNge Kutta optimizer (RUN) is a novel metaheuristic algorithm that has demonstrated effectiveness in solving real-world optimization problems. The enhanced solution quality (ESQ) in RUN utilizes the thus-far best solution to promote the quality of solutions, improve the convergence speed, and effectively balance the exploration and exploitation steps. Also, the Scale factor (SF) has a randomized adaptation nature, which helps RUN in further improving the exploration and exploitation steps. This parameter ensures a smooth transition from exploration to exploitation. In order to mitigate the drawbacks of the RSA algorithm, this paper proposed a modified RSA (mRSA), which combines the RSA algorithm with the RUN. The ESQ mechanism and the scale factor boost the original RSA’s performance, enhance convergence speed, bypass local optimum, and enhance the balance between exploitation and exploration. The validity of mRSA was verified using two experimental sequences. First, we applied mRSA to CEC’2020 benchmark functions of various types and dimensions, showing that mRSA has more robust search capabilities than the original RSA and popular counterpart algorithms concerning statistical, convergence, and diversity measurements. The second experiment evaluated mRSA for a real-world application to solve magnetic resonance imaging (MRI) brain image segmentation. Overall experimental results confirm that the mRSA has a strong optimization ability. Also, mRSA method is a more successful multilevel thresholding segmentation and outperforms comparison methods according to different performance measures.
In this paper, we proposed an enhanced reptile search algorithm (RSA) for global optimization and selected optimal thresholding values for multilevel image segmentation. RSA is a recent metaheuristic optimization algorithm depending on the hunting behavior of crocodiles. RSA is inclined to inadequate diversity, local optima, and unbalanced exploitation abilities as other metaheuristic algorithms. The RUNge Kutta optimizer (RUN) is a novel metaheuristic algorithm that has demonstrated effectiveness in solving real-world optimization problems. The enhanced solution quality (ESQ) in RUN utilizes the thus-far best solution to promote the quality of solutions, improve the convergence speed, and effectively balance the exploration and exploitation steps. Also, the Scale factor (SF) has a randomized adaptation nature, which helps RUN in further improving the exploration and exploitation steps. This parameter ensures a smooth transition from exploration to exploitation. In order to mitigate the drawbacks of the RSA algorithm, this paper proposed a modified RSA (mRSA), which combines the RSA algorithm with the RUN. The ESQ mechanism and the scale factor boost the original RSA’s performance, enhance convergence speed, bypass local optimum, and enhance the balance between exploitation and exploration. The validity of mRSA was verified using two experimental sequences. First, we applied mRSA to CEC’2020 benchmark functions of various types and dimensions, showing that mRSA has more robust search capabilities than the original RSA and popular counterpart algorithms concerning statistical, convergence, and diversity measurements. The second experiment evaluated mRSA for a real-world application to solve magnetic resonance imaging (MRI) brain image segmentation. Overall experimental results confirm that the mRSA has a strong optimization ability. Also, mRSA method is a more successful multilevel thresholding segmentation and outperforms comparison methods according to different performance measures. •A modified mRSA based on the ESQ mechanism is proposed.•The CEC’2020 test suite problems are used to demonstrate the performance mRSA.•Apply mRSA algorithm as multilevel image segmentation for MRI brain images.•The experimental results have been revealed the superiority of proposed mRSA.•Using Otsu’s method as fitness functions to assess agents.
In this paper, we proposed an enhanced reptile search algorithm (RSA) for global optimization and selected optimal thresholding values for multilevel image segmentation. RSA is a recent metaheuristic optimization algorithm depending on the hunting behavior of crocodiles. RSA is inclined to inadequate diversity, local optima, and unbalanced exploitation abilities as other metaheuristic algorithms. The RUNge Kutta optimizer (RUN) is a novel metaheuristic algorithm that has demonstrated effectiveness in solving real-world optimization problems. The enhanced solution quality (ESQ) in RUN utilizes the thus-far best solution to promote the quality of solutions, improve the convergence speed, and effectively balance the exploration and exploitation steps. Also, the Scale factor (SF) has a randomized adaptation nature, which helps RUN in further improving the exploration and exploitation steps. This parameter ensures a smooth transition from exploration to exploitation. In order to mitigate the drawbacks of the RSA algorithm, this paper proposed a modified RSA (mRSA), which combines the RSA algorithm with the RUN. The ESQ mechanism and the scale factor boost the original RSA’s performance, enhance convergence speed, bypass local optimum, and enhance the balance between exploitation and exploration. The validity of mRSA was verified using two experimental sequences. First, we applied mRSA to CEC’2020 benchmark functions of various types and dimensions, showing that mRSA has more robust search capabilities than the original RSA and popular counterpart algorithms concerning statistical, convergence, and diversity measurements. The second experiment evaluated mRSA for a real-world application to solve magnetic resonance imaging (MRI) brain image segmentation. Overall experimental results confirm that the mRSA has a strong optimization ability. Also, mRSA method is a more successful multilevel thresholding segmentation and outperforms comparison methods according to different performance measures.
In this paper, we proposed an enhanced reptile search algorithm (RSA) for global optimization and selected optimal thresholding values for multilevel image segmentation. RSA is a recent metaheuristic optimization algorithm depending on the hunting behavior of crocodiles. RSA is inclined to inadequate diversity, local optima, and unbalanced exploitation abilities as other metaheuristic algorithms. The RUNge Kutta optimizer (RUN) is a novel metaheuristic algorithm that has demonstrated effectiveness in solving real-world optimization problems. The enhanced solution quality (ESQ) in RUN utilizes the thus-far best solution to promote the quality of solutions, improve the convergence speed, and effectively balance the exploration and exploitation steps. Also, the Scale factor (SF) has a randomized adaptation nature, which helps RUN in further improving the exploration and exploitation steps. This parameter ensures a smooth transition from exploration to exploitation. In order to mitigate the drawbacks of the RSA algorithm, this paper proposed a modified RSA (mRSA), which combines the RSA algorithm with the RUN. The ESQ mechanism and the scale factor boost the original RSA's performance, enhance convergence speed, bypass local optimum, and enhance the balance between exploitation and exploration. The validity of mRSA was verified using two experimental sequences. First, we applied mRSA to CEC'2020 benchmark functions of various types and dimensions, showing that mRSA has more robust search capabilities than the original RSA and popular counterpart algorithms concerning statistical, convergence, and diversity measurements. The second experiment evaluated mRSA for a real-world application to solve magnetic resonance imaging (MRI) brain image segmentation. Overall experimental results confirm that the mRSA has a strong optimization ability. Also, mRSA method is a more successful multilevel thresholding segmentation and outperforms comparison methods according to different performance measures.In this paper, we proposed an enhanced reptile search algorithm (RSA) for global optimization and selected optimal thresholding values for multilevel image segmentation. RSA is a recent metaheuristic optimization algorithm depending on the hunting behavior of crocodiles. RSA is inclined to inadequate diversity, local optima, and unbalanced exploitation abilities as other metaheuristic algorithms. The RUNge Kutta optimizer (RUN) is a novel metaheuristic algorithm that has demonstrated effectiveness in solving real-world optimization problems. The enhanced solution quality (ESQ) in RUN utilizes the thus-far best solution to promote the quality of solutions, improve the convergence speed, and effectively balance the exploration and exploitation steps. Also, the Scale factor (SF) has a randomized adaptation nature, which helps RUN in further improving the exploration and exploitation steps. This parameter ensures a smooth transition from exploration to exploitation. In order to mitigate the drawbacks of the RSA algorithm, this paper proposed a modified RSA (mRSA), which combines the RSA algorithm with the RUN. The ESQ mechanism and the scale factor boost the original RSA's performance, enhance convergence speed, bypass local optimum, and enhance the balance between exploitation and exploration. The validity of mRSA was verified using two experimental sequences. First, we applied mRSA to CEC'2020 benchmark functions of various types and dimensions, showing that mRSA has more robust search capabilities than the original RSA and popular counterpart algorithms concerning statistical, convergence, and diversity measurements. The second experiment evaluated mRSA for a real-world application to solve magnetic resonance imaging (MRI) brain image segmentation. Overall experimental results confirm that the mRSA has a strong optimization ability. Also, mRSA method is a more successful multilevel thresholding segmentation and outperforms comparison methods according to different performance measures.
ArticleNumber 106404
Author Houssein, Essam H.
Emam, Marwa M.
Ghoniem, Rania M.
Author_xml – sequence: 1
  givenname: Marwa M.
  orcidid: 0000-0001-7399-6839
  surname: Emam
  fullname: Emam, Marwa M.
  email: marwa.khalef@mu.edu.eg
  organization: Faculty of Computers and Information, Minia University, Minia, Egypt
– sequence: 2
  givenname: Essam H.
  orcidid: 0000-0002-8127-7233
  surname: Houssein
  fullname: Houssein, Essam H.
  email: essam.halim@mu.edu.eg
  organization: Faculty of Computers and Information, Minia University, Minia, Egypt
– sequence: 3
  givenname: Rania M.
  orcidid: 0000-0002-7740-7402
  surname: Ghoniem
  fullname: Ghoniem, Rania M.
  email: RMGhoniem@pnu.edu.sa
  organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36521356$$D View this record in MEDLINE/PubMed
BookMark eNqVkt2LEzEUxYOsuLvVf0ECvvjSevM1aX0Q1-LHworgB_gWMsmdburMpCZTof71Zpy1woKwPgUuv3O4Oeeek5M-9kgIZbBgwKpn24WL3a4OsUO_4MB5GVcS5D1yxpZ6NQcl5Ak5A2Awl0uuTsl5zlsAkCDgATkVleJMqOqMxAvaRR-agJ4m3A2hRZrRJndNbbuJKQzXHW1iops21ralsSBd-GmHEHtqe09DZzejZNNhP_weP6drm8to2PsDrZMNPX3_8XIC80Nyv7Ftxkc374x8efP68_rd_OrD28v1xdXcKSaHuWW1RpC1XMLKN6yqNW84WlBSS-mc5kIC16i4r2unrPWs4o0WjAMTwnMtZuTp5LtL8fse82C6kB22re0x7rPhWimlxbLwM_LkFrqN-9SX7UZqpYFLwQv1-Iba1yV1s0vlQ-lg_kRZgOUEuBRzTtgcEQZmbM1szd_WzNiamVor0he3pC5MWQ4lvvYuBq8mAyyR_giYTHYBe4c-JHSD8TH8xxZHE9eGPjjbfsMD5mMozGRuwHwar2s8Ll5CZ4x_LQYv_21wtx1-AYmX44s
CitedBy_id crossref_primary_10_1063_5_0156080
crossref_primary_10_1016_j_compbiomed_2024_108265
crossref_primary_10_1016_j_compbiomed_2023_106839
crossref_primary_10_1016_j_compbiomed_2023_107487
crossref_primary_10_1016_j_compbiomed_2023_107881
crossref_primary_10_1080_21681163_2024_2420727
crossref_primary_10_1007_s42235_024_00539_x
crossref_primary_10_1007_s11831_023_09990_1
crossref_primary_10_1080_21681163_2023_2234054
crossref_primary_10_1007_s42235_023_00447_6
crossref_primary_10_1016_j_compbiomed_2024_108559
crossref_primary_10_1007_s10462_023_10412_8
crossref_primary_10_1038_s41598_023_48479_6
crossref_primary_10_1016_j_compbiomed_2023_106966
crossref_primary_10_1016_j_compbiomed_2023_107457
crossref_primary_10_1016_j_compbiomed_2023_107377
crossref_primary_10_3390_diagnostics13182958
crossref_primary_10_1016_j_cma_2025_117908
crossref_primary_10_35784_iapgos_5775
crossref_primary_10_1093_jcde_qwae046
crossref_primary_10_1007_s10586_024_04819_3
crossref_primary_10_1016_j_heliyon_2024_e36678
crossref_primary_10_1080_21681163_2024_2373996
crossref_primary_10_1016_j_compbiomed_2024_108440
crossref_primary_10_3390_math11040979
crossref_primary_10_1371_journal_pone_0285211
crossref_primary_10_1007_s00521_023_08492_2
crossref_primary_10_1007_s42235_023_00391_5
crossref_primary_10_1016_j_compbiomed_2024_108329
crossref_primary_10_1016_j_bspc_2024_106434
crossref_primary_10_1016_j_bspc_2024_106631
crossref_primary_10_3934_mbe_2023687
crossref_primary_10_3934_mbe_2023764
crossref_primary_10_1007_s10586_024_04525_0
crossref_primary_10_3934_mbe_2023443
crossref_primary_10_1016_j_compbiomed_2023_107389
crossref_primary_10_1007_s11227_024_06592_x
crossref_primary_10_1016_j_compbiomed_2023_107387
crossref_primary_10_1016_j_eswa_2023_120367
crossref_primary_10_3389_fmars_2023_1126556
crossref_primary_10_1007_s00521_024_09524_1
crossref_primary_10_3389_fphys_2024_1357404
crossref_primary_10_1080_21681163_2023_2225639
crossref_primary_10_1007_s10462_023_10585_2
crossref_primary_10_1007_s12530_023_09552_7
crossref_primary_10_1016_j_compbiomed_2024_108331
crossref_primary_10_32604_cmc_2024_051336
crossref_primary_10_1016_j_compbiomed_2024_107922
crossref_primary_10_1016_j_compbiomed_2024_107923
crossref_primary_10_1109_ACCESS_2024_3376629
crossref_primary_10_1016_j_matcom_2023_11_019
crossref_primary_10_1016_j_displa_2024_102740
crossref_primary_10_1007_s10462_024_10919_8
crossref_primary_10_1016_j_eswa_2023_121223
crossref_primary_10_3390_biomimetics8030305
crossref_primary_10_1080_21681163_2023_2213783
crossref_primary_10_1016_j_compbiomed_2024_109272
Cites_doi 10.1016/j.asoc.2014.07.024
10.1038/scientificamerican0792-66
10.1016/j.eswa.2022.116516
10.1016/j.eswa.2019.07.037
10.1016/j.knosys.2018.11.024
10.1016/j.asoc.2021.108043
10.1016/j.ins.2020.06.037
10.1016/j.eswa.2016.03.047
10.1016/j.eswa.2020.113428
10.1016/j.knosys.2018.06.001
10.1016/j.eswa.2021.114685
10.1016/j.engappai.2020.103541
10.1016/j.eswa.2021.114864
10.1016/j.knosys.2022.108457
10.1016/j.eswa.2022.116924
10.1007/s11042-020-10053-x
10.1016/j.asoc.2019.105704
10.1016/j.advengsoft.2013.12.007
10.1016/j.bspc.2021.103401
10.1016/j.eswa.2021.115079
10.1016/j.advengsoft.2016.01.008
10.1016/j.eswa.2020.113377
10.1016/j.compeleceng.2017.12.037
10.1007/s10664-013-9249-9
10.1007/s12652-020-02580-0
10.1007/s42235-021-0050-y
10.1016/j.asoc.2020.106542
10.4236/jcc.2019.73002
10.1016/j.asoc.2020.106642
10.1016/j.knosys.2021.107483
10.3390/math9192363
10.1007/s00521-021-06273-3
10.1016/j.patcog.2021.108434
10.1016/j.cma.2021.114194
10.1016/j.knosys.2020.105889
10.1016/j.neucom.2017.04.060
10.1016/j.asoc.2019.105515
10.1109/ACCESS.2020.2971249
10.1016/j.engappai.2021.104653
10.1016/j.mehy.2019.109531
10.1016/j.engappai.2019.03.021
10.1016/j.measurement.2018.08.007
10.1016/j.eswa.2020.114161
10.1007/s11432-020-3245-7
10.1016/j.knosys.2015.12.022
10.1016/j.eswa.2022.119015
10.1007/s12559-015-9324-1
10.1016/j.eswa.2021.116145
10.1016/j.matcom.2019.06.017
10.1016/j.asoc.2018.01.003
10.1049/ipr2.12419
10.1016/j.compeleceng.2018.02.015
10.1109/4235.585893
10.1016/j.engappai.2021.104155
10.1016/j.compbiomed.2022.106075
10.1016/j.eswa.2021.116235
10.1016/j.compbiomed.2022.105810
10.1016/j.eswa.2021.115651
10.1007/s00521-020-05118-9
10.1016/j.asoc.2018.06.010
10.1016/j.advengsoft.2017.05.014
10.1016/j.eswa.2020.114159
10.1016/j.knosys.2021.107348
10.1016/j.eswa.2022.116511
10.1016/j.future.2020.03.055
10.1016/j.eswa.2019.113103
10.1109/TSMC.1979.4310076
10.1155/2020/3504642
10.1016/j.eswa.2021.116158
10.1080/08839514.2020.1712788
10.1016/j.ins.2009.03.004
10.1109/ACCESS.2020.3047912
10.1016/j.future.2019.07.015
10.1016/j.compbiomed.2022.105347
10.1016/0734-189X(85)90125-2
10.1016/j.knosys.2018.08.030
10.1016/j.future.2019.02.028
10.1016/j.bspc.2020.102259
10.1016/j.eswa.2017.04.023
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
2022. Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: 2022. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2022.106404
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Research Library Prep
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 106404
ExternalDocumentID 36521356
10_1016_j_compbiomed_2022_106404
S001048252201112X
1_s2_0_S001048252201112X
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-a1b7e04b4809df16b72f2ea054744cc7234027e52dbbc5aad162f73120133d273
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sat Sep 27 23:31:51 EDT 2025
Tue Oct 07 06:28:48 EDT 2025
Mon Jul 21 06:01:18 EDT 2025
Wed Oct 01 05:22:28 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Fri Feb 23 02:38:42 EST 2024
Tue Feb 25 20:08:41 EST 2025
Tue Oct 14 19:33:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Image segmentation
Global optimization
Multi-level thresholding
Brain tumor images
Metaheuristics
RUNge kutta optimizer
Reptile search algorithm
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-a1b7e04b4809df16b72f2ea054744cc7234027e52dbbc5aad162f73120133d273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7740-7402
0000-0002-8127-7233
0000-0001-7399-6839
PMID 36521356
PQID 2759702432
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2755573801
proquest_journals_2759702432
pubmed_primary_36521356
crossref_primary_10_1016_j_compbiomed_2022_106404
crossref_citationtrail_10_1016_j_compbiomed_2022_106404
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_106404
elsevier_clinicalkeyesjournals_1_s2_0_S001048252201112X
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_106404
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Liao, Li, Luo (b93) 2006
Arora, Sharma, Anand (b15) 2020; 34
Cuevas, Gálvez, Avalos (b10) 2020
Hussien, Heidari, Ye, Liang, Chen, Pan (b84) 2022
Ahmadianfar, Heidari, Noshadian, Chen, Gandomi (b38) 2022; 195
Kuruvilla, Sukumaran, Sankar, Joy (b3) 2016
Houssein, Emam, Ali, Suganthan (b18) 2021; 167
Zhao, Wang, Zhang (b41) 2019; 163
Hassan, Houssein, Mahdy, Kamel (b14) 2021; 100
D. Yuvaraj, S.F. Noori, S. Swaminathan, Multi-perspective scaling convolutional neural networks for high-resolution mri brain image segmentation, Mater. Today: Proc.
Kotte, Pullakura, Injeti (b72) 2018; 130
Badem, Basturk, Caliskan, Yuksel (b59) 2018; 70
Ewees, Abd Elaziz, Al-Qaness, Khalil, Kim (b57) 2020; 8
Houssein, Emam, Ali (b17) 2022
Dhiman, Garg, Nagar, Kumar, Dehghani (b29) 2021; 12
Gupta, Deep, Mirjalili (b48) 2020; 96
Yousri, Abd Elaziz, Mirjalili (b49) 2020; 197
Abd Elaziz, Yousri, Al-qaness, AbdelAty, Radwan, Ewees (b11) 2021; 98
Wolpert, Macready (b44) 1997; 1
Ahmadianfar, Heidari, Gandomi, Chu, Chen (b65) 2021; 181
Alrosan, Alomoush, Norwawi, Alswaitti, Makhadmeh (b74) 2021; 33
Yang, Chen, Heidari, Gandomi (b71) 2021; 177
Toğaçar, Ergen, Cömert (b77) 2020; 134
Houssein, Helmy, Oliva, Elngar, Shaban (b90) 2021; 167
Zhao, Wang, Mirjalili (b35) 2022; 388
Arcuri, Fraser (b67) 2013; 18
Chen, Wang, Heidari, Shi, Hu, Zhang, Chen, Mafarja, Turabieh (b86) 2022; 194
Houssein, Emam, Ali (b2) 2021; 185
Yang, Deng, Wang, Liu (b30) 2021; 232
Mohamed, Hadi, Mohamed, Awad (b66) 2020
Rodríguez-Esparza, Zanella-Calzada, Oliva, Heidari, Zaldivar, Pérez-Cisneros, Foong (b89) 2020
Abdel-Basset, Mohamed, AbdelAziz, Abouhawwash (b55) 2022; 190
Yuan, Liu, Li, Yan, Chen, Wu, Yang, Sun (b37) 2021; 64
Holland (b36) 1992; 267
Zitouni, Harous, Maamri (b68) 2021; 9
Otsu (b4) 1979; 9
Dubey, Pandit, Panigrahi (b50) 2015; 7
Ewees, Abualigah, Yousri, Sahlol, Al-qaness, Alshathri, Elaziz (b52) 2021; 9
Attiya, Abd Elaziz, Xiong (b13) 2020
Rajamohana, Umamaheswari (b61) 2018; 67
Abd El Aziz, Ewees, Hassanien (b87) 2017; 83
Gao, Fu, Pun, Hu, Lan (b88) 2018; 70
Sharma, Saha, Majumder, Nama (b58) 2021; 80
Suyanto, Ariyanto, Ariyanto (b33) 2022; 114
Kaur, Awasthi, Sangal, Dhiman (b70) 2020; 90
Tarkhaneh, Shen (b73) 2019; 138
Chopra, Ansari (b34) 2022; 198
Wilcoxon (b92) 1992
Braik (b31) 2021; 174
Abualigah, Abd Elaziz, Sumari, Geem, Gandomi (b64) 2022; 191
Abd Elaziz, Heidari, Fujita, Moayedi (b8) 2020; 95
Kapur, Sahoo, Wong (b5) 1985; 29
Abd Elaziz, Lu, He (b56) 2021; 175
Wang, Chen, Yang, Zhao, Hu, Cai, Huang, Tong (b80) 2017; 267
Houssein, Emam, Ali (b6) 2021; 33
Houssein, Hussain, Abualigah, Abd Elaziz, Alomoush, Dhiman, Djenouri, Cuevas (b45) 2021; 229
Houssein, E.-d. Helmy, Oliva, Jangir, Premkumar, Elngar, Shaban (b47) 2022; 73
Nabil (b51) 2016; 57
Aranguren, Valdivia, Morales-Castañeda, Oliva, Abd Elaziz, Perez-Cisneros (b75) 2021; 64
Pham, Siarry, Oulhadj (b76) 2018; 65
Houssein, Oliva, Çelik, Emam, Ghoniem (b7) 2023; 213
Dhiman, Kumar (b23) 2018; 159
Fang, Wang (b78) 2022; 124
AlRassas, Al-Qaness, Ewees, Ren, Sun, Pan, Abd Elaziz (b12) 2021
Braik, Hammouri, Atwan, Al-Betar, Awadallah (b32) 2022; 243
Mirjalili, Mirjalili, Lewis (b22) 2014; 69
Eberhart, Kennedy (b19) 1995
Dhiman, Kumar (b21) 2017; 114
Hashim, Houssein, Mabrouk, Al-Atabany, Mirjalili (b42) 2019; 101
Bhandari, Rahul (b54) 2019; 81
Houssein, Abdelkareem, Emam, Hameed, Younan (b81) 2022
Sara, Akter, Uddin (b91) 2019; 7
Dhiman, Kaur (b25) 2019; 82
Ahmadianfar, Bozorg-Haddad, Chu (b40) 2020; 540
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b24) 2019; 97
Neggaz, Ewees, Abd Elaziz, Mafarja (b62) 2020; 145
Tu, Chen, Wang, Gandomi (b43) 2021; 18
Abdel-Basset, Chang, Mohamed (b63) 2020; 95
Mirjalili, Lewis (b20) 2016; 95
Houssein, Saber, Ali, Wazery (b53) 2022; 191
Zhao, Li, Yang, Ma, Zhu, Chen (b9) 2014; 24
Mafarja, Thaher, Too, Chantar, Turabieh, Houssein, Emam (b16) 2022
Yu, Song, Chen, Heidari, Liu, Chen, Zaguia, Mafarja (b85) 2022; 109
Li, Chen, Wang, Heidari, Mirjalili (b27) 2020; 111
Rashedi, Nezamabadi-Pour, Saryazdi (b39) 2009; 179
Mirjalili (b69) 2016; 96
Yu, Han, Li, Wei, Jiang, Chen, Yu (b83) 2022; 144
Ding, Dong, Zou (b60) 2019; 84
Qi, Zhao, Yu, Heidari, Wu, Cai, Alenezi, Mansour, Chen, Chen (b82) 2022; 148
Wang, Lei, Cui, Zhang, Meng, Nandi (b1) 2022; 16
Abd Elaziz, Ewees, Ibrahim, Lu (b46) 2020; 168
Dhiman, Kumar (b26) 2019; 165
Faramarzi, Heidarinejad, Mirjalili, Gandomi (b28) 2020
Sharma (10.1016/j.compbiomed.2022.106404_b58) 2021; 80
Houssein (10.1016/j.compbiomed.2022.106404_b81) 2022
Dhiman (10.1016/j.compbiomed.2022.106404_b21) 2017; 114
Aranguren (10.1016/j.compbiomed.2022.106404_b75) 2021; 64
Gao (10.1016/j.compbiomed.2022.106404_b88) 2018; 70
Rashedi (10.1016/j.compbiomed.2022.106404_b39) 2009; 179
Toğaçar (10.1016/j.compbiomed.2022.106404_b77) 2020; 134
Abd Elaziz (10.1016/j.compbiomed.2022.106404_b8) 2020; 95
Sara (10.1016/j.compbiomed.2022.106404_b91) 2019; 7
Abd Elaziz (10.1016/j.compbiomed.2022.106404_b11) 2021; 98
Pham (10.1016/j.compbiomed.2022.106404_b76) 2018; 65
Yu (10.1016/j.compbiomed.2022.106404_b85) 2022; 109
Wilcoxon (10.1016/j.compbiomed.2022.106404_b92) 1992
Houssein (10.1016/j.compbiomed.2022.106404_b2) 2021; 185
Zhao (10.1016/j.compbiomed.2022.106404_b9) 2014; 24
Rodríguez-Esparza (10.1016/j.compbiomed.2022.106404_b89) 2020
Heidari (10.1016/j.compbiomed.2022.106404_b24) 2019; 97
Tu (10.1016/j.compbiomed.2022.106404_b43) 2021; 18
Abdel-Basset (10.1016/j.compbiomed.2022.106404_b63) 2020; 95
10.1016/j.compbiomed.2022.106404_b79
Attiya (10.1016/j.compbiomed.2022.106404_b13) 2020
Dhiman (10.1016/j.compbiomed.2022.106404_b29) 2021; 12
Mirjalili (10.1016/j.compbiomed.2022.106404_b20) 2016; 95
Houssein (10.1016/j.compbiomed.2022.106404_b7) 2023; 213
Mafarja (10.1016/j.compbiomed.2022.106404_b16) 2022
Mirjalili (10.1016/j.compbiomed.2022.106404_b22) 2014; 69
Houssein (10.1016/j.compbiomed.2022.106404_b45) 2021; 229
Ewees (10.1016/j.compbiomed.2022.106404_b52) 2021; 9
Zitouni (10.1016/j.compbiomed.2022.106404_b68) 2021; 9
Dhiman (10.1016/j.compbiomed.2022.106404_b25) 2019; 82
Fang (10.1016/j.compbiomed.2022.106404_b78) 2022; 124
Mirjalili (10.1016/j.compbiomed.2022.106404_b69) 2016; 96
Neggaz (10.1016/j.compbiomed.2022.106404_b62) 2020; 145
Hussien (10.1016/j.compbiomed.2022.106404_b84) 2022
Houssein (10.1016/j.compbiomed.2022.106404_b53) 2022; 191
Badem (10.1016/j.compbiomed.2022.106404_b59) 2018; 70
Otsu (10.1016/j.compbiomed.2022.106404_b4) 1979; 9
Arora (10.1016/j.compbiomed.2022.106404_b15) 2020; 34
Suyanto (10.1016/j.compbiomed.2022.106404_b33) 2022; 114
Mohamed (10.1016/j.compbiomed.2022.106404_b66) 2020
Kaur (10.1016/j.compbiomed.2022.106404_b70) 2020; 90
Houssein (10.1016/j.compbiomed.2022.106404_b17) 2022
Abdel-Basset (10.1016/j.compbiomed.2022.106404_b55) 2022; 190
Chen (10.1016/j.compbiomed.2022.106404_b86) 2022; 194
Faramarzi (10.1016/j.compbiomed.2022.106404_b28) 2020
Qi (10.1016/j.compbiomed.2022.106404_b82) 2022; 148
Yang (10.1016/j.compbiomed.2022.106404_b30) 2021; 232
Ahmadianfar (10.1016/j.compbiomed.2022.106404_b40) 2020; 540
Ding (10.1016/j.compbiomed.2022.106404_b60) 2019; 84
Ewees (10.1016/j.compbiomed.2022.106404_b57) 2020; 8
Alrosan (10.1016/j.compbiomed.2022.106404_b74) 2021; 33
Kapur (10.1016/j.compbiomed.2022.106404_b5) 1985; 29
Wolpert (10.1016/j.compbiomed.2022.106404_b44) 1997; 1
Bhandari (10.1016/j.compbiomed.2022.106404_b54) 2019; 81
Hassan (10.1016/j.compbiomed.2022.106404_b14) 2021; 100
Zhao (10.1016/j.compbiomed.2022.106404_b35) 2022; 388
Houssein (10.1016/j.compbiomed.2022.106404_b90) 2021; 167
Kotte (10.1016/j.compbiomed.2022.106404_b72) 2018; 130
Dhiman (10.1016/j.compbiomed.2022.106404_b23) 2018; 159
Hashim (10.1016/j.compbiomed.2022.106404_b42) 2019; 101
AlRassas (10.1016/j.compbiomed.2022.106404_b12) 2021
Liao (10.1016/j.compbiomed.2022.106404_b93) 2006
Abualigah (10.1016/j.compbiomed.2022.106404_b64) 2022; 191
Abd Elaziz (10.1016/j.compbiomed.2022.106404_b56) 2021; 175
Dhiman (10.1016/j.compbiomed.2022.106404_b26) 2019; 165
Braik (10.1016/j.compbiomed.2022.106404_b31) 2021; 174
Abd Elaziz (10.1016/j.compbiomed.2022.106404_b46) 2020; 168
Eberhart (10.1016/j.compbiomed.2022.106404_b19) 1995
Tarkhaneh (10.1016/j.compbiomed.2022.106404_b73) 2019; 138
Ahmadianfar (10.1016/j.compbiomed.2022.106404_b65) 2021; 181
Houssein (10.1016/j.compbiomed.2022.106404_b47) 2022; 73
Rajamohana (10.1016/j.compbiomed.2022.106404_b61) 2018; 67
Houssein (10.1016/j.compbiomed.2022.106404_b6) 2021; 33
Braik (10.1016/j.compbiomed.2022.106404_b32) 2022; 243
Kuruvilla (10.1016/j.compbiomed.2022.106404_b3) 2016
Holland (10.1016/j.compbiomed.2022.106404_b36) 1992; 267
Nabil (10.1016/j.compbiomed.2022.106404_b51) 2016; 57
Yu (10.1016/j.compbiomed.2022.106404_b83) 2022; 144
Yang (10.1016/j.compbiomed.2022.106404_b71) 2021; 177
Wang (10.1016/j.compbiomed.2022.106404_b80) 2017; 267
Gupta (10.1016/j.compbiomed.2022.106404_b48) 2020; 96
Zhao (10.1016/j.compbiomed.2022.106404_b41) 2019; 163
Wang (10.1016/j.compbiomed.2022.106404_b1) 2022; 16
Yuan (10.1016/j.compbiomed.2022.106404_b37) 2021; 64
Arcuri (10.1016/j.compbiomed.2022.106404_b67) 2013; 18
Li (10.1016/j.compbiomed.2022.106404_b27) 2020; 111
Dubey (10.1016/j.compbiomed.2022.106404_b50) 2015; 7
Yousri (10.1016/j.compbiomed.2022.106404_b49) 2020; 197
Chopra (10.1016/j.compbiomed.2022.106404_b34) 2022; 198
Cuevas (10.1016/j.compbiomed.2022.106404_b10) 2020
Houssein (10.1016/j.compbiomed.2022.106404_b18) 2021; 167
Abd El Aziz (10.1016/j.compbiomed.2022.106404_b87) 2017; 83
Ahmadianfar (10.1016/j.compbiomed.2022.106404_b38) 2022; 195
References_xml – volume: 7
  start-page: 594
  year: 2015
  end-page: 608
  ident: b50
  article-title: A biologically inspired modified flower pollination algorithm for solving economic dispatch problems in modern power systems
  publication-title: Cogn. Comput.
– volume: 83
  start-page: 242
  year: 2017
  end-page: 256
  ident: b87
  article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation
  publication-title: Expert Syst. Appl.
– volume: 185
  year: 2021
  ident: b2
  article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm
  publication-title: Expert Syst. Appl.
– volume: 167
  year: 2021
  ident: b90
  article-title: A novel black widow optimization algorithm for multilevel thresholding image segmentation
  publication-title: Expert Syst. Appl.
– year: 2020
  ident: b28
  article-title: Marine predators algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
– volume: 73
  year: 2022
  ident: b47
  article-title: An efficient multi-thresholding based covid-19 ct images segmentation approach using an improved equilibrium optimizer
  publication-title: Biomed. Signal Process. Control
– volume: 148
  year: 2022
  ident: b82
  article-title: Directional mutation and crossover boosted ant colony optimization with application to covid-19 x-ray image segmentation
  publication-title: Comput. Biol. Med.
– volume: 16
  start-page: 1243
  year: 2022
  end-page: 1267
  ident: b1
  article-title: Medical image segmentation using deep learning: A survey
  publication-title: IET Image Process.
– volume: 96
  year: 2020
  ident: b48
  article-title: An efficient equilibrium optimizer with mutation strategy for numerical optimization
  publication-title: Appl. Soft Comput.
– volume: 100
  year: 2021
  ident: b14
  article-title: An improved manta ray foraging optimizer for cost-effective emission dispatch problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b24
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– volume: 18
  start-page: 594
  year: 2013
  end-page: 623
  ident: b67
  article-title: Parameter tuning or default values? an empirical investigation in search-based software engineering
  publication-title: Empir. Softw. Eng.
– year: 2020
  ident: b13
  article-title: Job scheduling in cloud computing using a modified harris hawks optimization and simulated annealing algorithm
  publication-title: Comput. Intell. Neurosci.
– volume: 81
  year: 2019
  ident: b54
  article-title: A novel local contrast fusion-based fuzzy model for color image multilevel thresholding using grasshopper optimization
  publication-title: Appl. Soft Comput.
– year: 2020
  ident: b89
  article-title: An efficient harris hawks-inspired image segmentation method
  publication-title: Expert Syst. Appl.
– volume: 18
  start-page: 674
  year: 2021
  end-page: 710
  ident: b43
  article-title: The colony predation algorithm
  publication-title: J. Bionic Eng.
– volume: 229
  year: 2021
  ident: b45
  article-title: An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation
  publication-title: Knowl.-Based Syst.
– start-page: 1
  year: 2020
  end-page: 8
  ident: b66
  article-title: Evaluating the performance of adaptive gaining sharing knowledge based algorithm on cec 2020 benchmark problems
  publication-title: 2020 IEEE Congress on Evolutionary Computation
– volume: 177
  year: 2021
  ident: b71
  article-title: Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts
  publication-title: Expert Syst. Appl.
– volume: 65
  start-page: 230
  year: 2018
  end-page: 242
  ident: b76
  article-title: Integrating fuzzy entropy clustering with an improved pso for mri brain image segmentation
  publication-title: Appl. Soft Comput.
– volume: 130
  start-page: 340
  year: 2018
  end-page: 361
  ident: b72
  article-title: Optimal multilevel thresholding selection for brain mri image segmentation based on adaptive wind driven optimization
  publication-title: Measurement
– start-page: 1
  year: 2022
  end-page: 27
  ident: b16
  article-title: An efficient high-dimensional feature selection approach driven by enhanced multi-strategy grey wolf optimizer for biological data classification
  publication-title: Neural Comput. Appl.
– volume: 181
  year: 2021
  ident: b65
  article-title: Run beyond the metaphor: an efficient optimization algorithm based on runge kutta method
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 585
  year: 2014
  end-page: 596
  ident: b9
  article-title: Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2020
  end-page: 8
  ident: b10
  article-title: Introduction to optimization and metaheuristic methods
  publication-title: Recent Metaheuristics Algorithms for Parameter Identification
– volume: 168
  start-page: 48
  year: 2020
  end-page: 75
  ident: b46
  article-title: Opposition-based moth-flame optimization improved by differential evolution for feature selection
  publication-title: Math. Comput. Simulation
– volume: 179
  start-page: 2232
  year: 2009
  end-page: 2248
  ident: b39
  article-title: Gsa: a gravitational search algorithm
  publication-title: Inform. Sci.
– reference: D. Yuvaraj, S.F. Noori, S. Swaminathan, Multi-perspective scaling convolutional neural networks for high-resolution mri brain image segmentation, Mater. Today: Proc.
– volume: 114
  start-page: 48
  year: 2017
  end-page: 70
  ident: b21
  article-title: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Adv. Eng. Softw.
– volume: 70
  start-page: 826
  year: 2018
  end-page: 844
  ident: b59
  article-title: A new hybrid optimization method combining artificial bee colony and limited-memory bfgs algorithms for efficient numerical optimization
  publication-title: Appl. Soft Comput.
– volume: 114
  year: 2022
  ident: b33
  article-title: Komodo mlipir algorithm
  publication-title: Appl. Soft Comput.
– volume: 70
  start-page: 931
  year: 2018
  end-page: 938
  ident: b88
  article-title: A multi-level thresholding image segmentation based on an improved artificial bee colony algorithm
  publication-title: Comput. Electr. Eng.
– volume: 267
  start-page: 66
  year: 1992
  end-page: 73
  ident: b36
  article-title: Genetic algorithms
  publication-title: Sci. Am.
– volume: 98
  year: 2021
  ident: b11
  article-title: A grunwald–letnikov based manta ray foraging optimizer for global optimization and image segmentation
  publication-title: Eng. Appl. Artif. Intell.
– volume: 167
  year: 2021
  ident: b18
  article-title: Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review
  publication-title: Expert Syst. Appl.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b20
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 101
  start-page: 646
  year: 2019
  end-page: 667
  ident: b42
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
– volume: 144
  year: 2022
  ident: b83
  article-title: Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: thyroid ultrasound image case study
  publication-title: Comput. Biol. Med.
– volume: 165
  start-page: 169
  year: 2019
  end-page: 196
  ident: b26
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl.-Based Syst.
– volume: 33
  start-page: 1671
  year: 2021
  end-page: 1697
  ident: b74
  article-title: An improved artificial bee colony algorithm based on mean best-guided approach for continuous optimization problems and real brain mri images segmentation
  publication-title: Neural Comput. Appl.
– volume: 267
  start-page: 69
  year: 2017
  end-page: 84
  ident: b80
  article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses
  publication-title: Neurocomputing
– start-page: 57
  year: 2006
  end-page: 66
  ident: b93
  article-title: Gene selection using wilcoxon rank sum test and support vector machine for cancer classification
  publication-title: International Conference on Computational and Information Science
– start-page: 196
  year: 1992
  end-page: 202
  ident: b92
  article-title: Individual comparisons by ranking methods
  publication-title: Breakthroughs in Statistics
– volume: 174
  year: 2021
  ident: b31
  article-title: Chameleon swarm algorithm: A bio-inspired optimizer for solving engineering design problems
  publication-title: Expert Syst. Appl.
– volume: 64
  start-page: 1
  year: 2021
  end-page: 11
  ident: b37
  article-title: Nas4rram: neural network architecture search for inference on rram-based accelerators
  publication-title: Sci. China Inf. Sci.
– volume: 90
  year: 2020
  ident: b70
  article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 243
  year: 2022
  ident: b32
  article-title: White shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 145
  year: 2020
  ident: b62
  article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b4
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b22
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 64
  year: 2021
  ident: b75
  article-title: Improving the segmentation of magnetic resonance brain images using the lshade optimization algorithm
  publication-title: Biomed. Signal Process. Control
– volume: 95
  year: 2020
  ident: b8
  article-title: A competitive chain-based harris hawks optimizer for global optimization and multi-level image thresholding problems
  publication-title: Appl. Soft Comput.
– volume: 190
  year: 2022
  ident: b55
  article-title: Hwoa: A hybrid whale optimization algorithm with a novel local minima avoidance method for multi-level thresholding color image segmentation
  publication-title: Expert Syst. Appl.
– volume: 95
  year: 2020
  ident: b63
  article-title: Hsma_woa: A hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest x-ray images
  publication-title: Appl. Soft Comput.
– volume: 163
  start-page: 283
  year: 2019
  end-page: 304
  ident: b41
  article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem
  publication-title: Knowl.-Based Syst.
– volume: 197
  year: 2020
  ident: b49
  article-title: Fractional-order calculus-based flower pollination algorithm with local search for global optimization and image segmentation
  publication-title: Knowl.-Based Syst.
– volume: 134
  year: 2020
  ident: b77
  article-title: Brainmrnet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model
  publication-title: Med. Hypotheses
– volume: 82
  start-page: 148
  year: 2019
  end-page: 174
  ident: b25
  article-title: Stoa: a bio-inspired based optimization algorithm for industrial engineering problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 111
  start-page: 300
  year: 2020
  end-page: 323
  ident: b27
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst.
– volume: 198
  year: 2022
  ident: b34
  article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications
  publication-title: Expert Syst. Appl.
– volume: 33
  start-page: 16899
  year: 2021
  end-page: 16919
  ident: b6
  article-title: Improved manta ray foraging optimization for multi-level thresholding using covid-19 ct images
  publication-title: Neural Comput. Appl.
– volume: 191
  year: 2022
  ident: b64
  article-title: Reptile search algorithm (rsa): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b69
  article-title: Sca: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 109
  year: 2022
  ident: b85
  article-title: Image segmentation of leaf spot diseases on maize using multi-stage cauchy-enabled grey wolf algorithm
  publication-title: Eng. Appl. Artif. Intell.
– volume: 194
  year: 2022
  ident: b86
  article-title: Multi-threshold image segmentation using a multi-strategy shuffled frog leaping algorithm
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 2363
  year: 2021
  ident: b52
  article-title: Modified artificial ecosystem-based optimization for multilevel thresholding image segmentation
  publication-title: Mathematics
– volume: 540
  start-page: 131
  year: 2020
  end-page: 159
  ident: b40
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inform. Sci.
– volume: 213
  year: 2023
  ident: b7
  article-title: Boosted sooty tern optimization algorithm for global optimization and feature selection
  publication-title: Expert Syst. Appl.
– start-page: 39
  year: 1995
  end-page: 43
  ident: b19
  article-title: A new optimizer using particle swarm theory
  publication-title: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science
– volume: 388
  year: 2022
  ident: b35
  article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
– start-page: 198
  year: 2016
  end-page: 203
  ident: b3
  article-title: A review on image processing and image segmentation
  publication-title: 2016 International Conference on Data Mining and Advanced Computing
– volume: 84
  year: 2019
  ident: b60
  article-title: Fruit fly optimization algorithm based on a hybrid adaptive-cooperative learning and its application in multilevel image thresholding
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b44
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 7
  start-page: 8
  year: 2019
  end-page: 18
  ident: b91
  article-title: Image quality assessment through fsim, ssim, mse and psnr–a comparative study
  publication-title: J. Comput. Commun.
– volume: 29
  start-page: 273
  year: 1985
  end-page: 285
  ident: b5
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Comput. Vis. Graph. Image Process.
– start-page: 1
  year: 2021
  end-page: 13
  ident: b12
  article-title: Advance artificial time series forecasting model for oil production using neuro fuzzy-based slime mould algorithm
  publication-title: J. Pet. Explor. Prod. Technol.
– volume: 138
  year: 2019
  ident: b73
  article-title: An adaptive differential evolution algorithm to optimal multi-level thresholding for mri brain image segmentation
  publication-title: Expert Syst. Appl.
– volume: 175
  year: 2021
  ident: b56
  article-title: A multi-leader whale optimization algorithm for global optimization and image segmentation
  publication-title: Expert Syst. Appl.
– volume: 195
  year: 2022
  ident: b38
  article-title: Info: An efficient optimization algorithm based on weighted mean of vectors
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 26304
  year: 2020
  end-page: 26315
  ident: b57
  article-title: Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation
  publication-title: Ieee Access
– volume: 67
  start-page: 497
  year: 2018
  end-page: 508
  ident: b61
  article-title: Hybrid approach of improved binary particle swarm optimization and shuffled frog leaping for feature selection
  publication-title: Comput. Electr. Eng.
– volume: 232
  year: 2021
  ident: b30
  article-title: Aptenodytes forsteri optimization: algorithm and applications
  publication-title: Knowl.-Based Syst.
– volume: 12
  start-page: 8457
  year: 2021
  end-page: 8482
  ident: b29
  article-title: A novel algorithm for global optimization: rat swarm optimizer
  publication-title: J. Ambient Intell. Humaniz. Comput.
– start-page: 1
  year: 2022
  end-page: 45
  ident: b84
  article-title: Boosting whale optimization with evolution strategy and gaussian random walks: an image segmentation method
  publication-title: Eng. Comput.
– volume: 57
  start-page: 192
  year: 2016
  end-page: 203
  ident: b51
  article-title: A modified flower pollination algorithm for global optimization
  publication-title: Expert Syst. Appl.
– volume: 124
  year: 2022
  ident: b78
  article-title: Brain tumor segmentation based on the dual-path network of multi-modal mri images
  publication-title: Pattern Recognit.
– volume: 80
  start-page: 12035
  year: 2021
  end-page: 12076
  ident: b58
  article-title: Mpboa-a novel hybrid butterfly optimization algorithm with symbiosis organisms search for global optimization and image segmentation
  publication-title: Multimedia Tools Appl.
– volume: 34
  start-page: 292
  year: 2020
  end-page: 328
  ident: b15
  article-title: A novel chaotic interior search algorithm for global optimization and feature selection
  publication-title: Appl. Artif. Intell.
– volume: 9
  start-page: 4542
  year: 2021
  end-page: 4565
  ident: b68
  article-title: The solar system algorithm: A novel metaheuristic method for global optimization
  publication-title: IEEE Access
– volume: 159
  start-page: 20
  year: 2018
  end-page: 50
  ident: b23
  article-title: Emperor penguin optimizer: a bio-inspired algorithm for engineering problems
  publication-title: Knowl.-Based Syst.
– start-page: 1
  year: 2022
  end-page: 19
  ident: b17
  article-title: An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm
  publication-title: Neural Comput. Appl.
– year: 2022
  ident: b81
  article-title: An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm
  publication-title: Comput. Biol. Med.
– volume: 191
  year: 2022
  ident: b53
  article-title: Centroid mutation-based search and rescue optimization algorithm for feature selection and classification
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 585
  year: 2014
  ident: 10.1016/j.compbiomed.2022.106404_b9
  article-title: Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.07.024
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 10.1016/j.compbiomed.2022.106404_b36
  article-title: Genetic algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– volume: 195
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b38
  article-title: Info: An efficient optimization algorithm based on weighted mean of vectors
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116516
– volume: 138
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106404_b73
  article-title: An adaptive differential evolution algorithm to optimal multi-level thresholding for mri brain image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.07.037
– volume: 165
  start-page: 169
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106404_b26
  article-title: Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.11.024
– volume: 114
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b33
  article-title: Komodo mlipir algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108043
– volume: 540
  start-page: 131
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b40
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.06.037
– volume: 57
  start-page: 192
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106404_b51
  article-title: A modified flower pollination algorithm for global optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.03.047
– year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b89
  article-title: An efficient harris hawks-inspired image segmentation method
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113428
– volume: 159
  start-page: 20
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106404_b23
  article-title: Emperor penguin optimizer: a bio-inspired algorithm for engineering problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.06.001
– volume: 174
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b31
  article-title: Chameleon swarm algorithm: A bio-inspired optimizer for solving engineering design problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114685
– volume: 90
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b70
  article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103541
– volume: 177
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b71
  article-title: Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114864
– volume: 98
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b11
  article-title: A grunwald–letnikov based manta ray foraging optimizer for global optimization and image segmentation
  publication-title: Eng. Appl. Artif. Intell.
– volume: 243
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b32
  article-title: White shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108457
– volume: 198
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b34
  article-title: Golden jackal optimization: A novel nature-inspired optimizer for engineering applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116924
– volume: 80
  start-page: 12035
  issue: 8
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b58
  article-title: Mpboa-a novel hybrid butterfly optimization algorithm with symbiosis organisms search for global optimization and image segmentation
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-10053-x
– volume: 84
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106404_b60
  article-title: Fruit fly optimization algorithm based on a hybrid adaptive-cooperative learning and its application in multilevel image thresholding
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105704
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.compbiomed.2022.106404_b22
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 73
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b47
  article-title: An efficient multi-thresholding based covid-19 ct images segmentation approach using an improved equilibrium optimizer
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103401
– start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b84
  article-title: Boosting whale optimization with evolution strategy and gaussian random walks: an image segmentation method
  publication-title: Eng. Comput.
– volume: 181
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b65
  article-title: Run beyond the metaphor: an efficient optimization algorithm based on runge kutta method
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115079
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106404_b20
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b28
  article-title: Marine predators algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 70
  start-page: 931
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106404_b88
  article-title: A multi-level thresholding image segmentation based on an improved artificial bee colony algorithm
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.12.037
– volume: 18
  start-page: 594
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiomed.2022.106404_b67
  article-title: Parameter tuning or default values? an empirical investigation in search-based software engineering
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-013-9249-9
– volume: 12
  start-page: 8457
  issue: 8
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b29
  article-title: A novel algorithm for global optimization: rat swarm optimizer
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02580-0
– volume: 18
  start-page: 674
  issue: 3
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b43
  article-title: The colony predation algorithm
  publication-title: J. Bionic Eng.
  doi: 10.1007/s42235-021-0050-y
– start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b17
  article-title: An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm
  publication-title: Neural Comput. Appl.
– volume: 96
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b48
  article-title: An efficient equilibrium optimizer with mutation strategy for numerical optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106542
– volume: 7
  start-page: 8
  issue: 3
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106404_b91
  article-title: Image quality assessment through fsim, ssim, mse and psnr–a comparative study
  publication-title: J. Comput. Commun.
  doi: 10.4236/jcc.2019.73002
– volume: 95
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b63
  article-title: Hsma_woa: A hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest x-ray images
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106642
– volume: 232
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b30
  article-title: Aptenodytes forsteri optimization: algorithm and applications
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107483
– volume: 9
  start-page: 2363
  issue: 19
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b52
  article-title: Modified artificial ecosystem-based optimization for multilevel thresholding image segmentation
  publication-title: Mathematics
  doi: 10.3390/math9192363
– start-page: 198
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106404_b3
  article-title: A review on image processing and image segmentation
– volume: 33
  start-page: 16899
  issue: 24
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b6
  article-title: Improved manta ray foraging optimization for multi-level thresholding using covid-19 ct images
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06273-3
– volume: 124
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b78
  article-title: Brain tumor segmentation based on the dual-path network of multi-modal mri images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108434
– volume: 388
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b35
  article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.114194
– volume: 197
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b49
  article-title: Fractional-order calculus-based flower pollination algorithm with local search for global optimization and image segmentation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105889
– volume: 267
  start-page: 69
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106404_b80
  article-title: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.060
– volume: 81
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106404_b54
  article-title: A novel local contrast fusion-based fuzzy model for color image multilevel thresholding using grasshopper optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105515
– volume: 8
  start-page: 26304
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b57
  article-title: Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2020.2971249
– volume: 109
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b85
  article-title: Image segmentation of leaf spot diseases on maize using multi-stage cauchy-enabled grey wolf algorithm
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104653
– volume: 134
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b77
  article-title: Brainmrnet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2019.109531
– start-page: 39
  year: 1995
  ident: 10.1016/j.compbiomed.2022.106404_b19
  article-title: A new optimizer using particle swarm theory
– start-page: 57
  year: 2006
  ident: 10.1016/j.compbiomed.2022.106404_b93
  article-title: Gene selection using wilcoxon rank sum test and support vector machine for cancer classification
– volume: 82
  start-page: 148
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106404_b25
  article-title: Stoa: a bio-inspired based optimization algorithm for industrial engineering problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.03.021
– volume: 130
  start-page: 340
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106404_b72
  article-title: Optimal multilevel thresholding selection for brain mri image segmentation based on adaptive wind driven optimization
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.08.007
– volume: 95
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b8
  article-title: A competitive chain-based harris hawks optimizer for global optimization and multi-level image thresholding problems
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b10
  article-title: Introduction to optimization and metaheuristic methods
– volume: 167
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b18
  article-title: Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114161
– volume: 64
  start-page: 1
  issue: 6
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b37
  article-title: Nas4rram: neural network architecture search for inference on rram-based accelerators
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-020-3245-7
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106404_b69
  article-title: Sca: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 213
  year: 2023
  ident: 10.1016/j.compbiomed.2022.106404_b7
  article-title: Boosted sooty tern optimization algorithm for global optimization and feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119015
– volume: 7
  start-page: 594
  issue: 5
  year: 2015
  ident: 10.1016/j.compbiomed.2022.106404_b50
  article-title: A biologically inspired modified flower pollination algorithm for solving economic dispatch problems in modern power systems
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-015-9324-1
– volume: 190
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b55
  article-title: Hwoa: A hybrid whale optimization algorithm with a novel local minima avoidance method for multi-level thresholding color image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116145
– volume: 168
  start-page: 48
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b46
  article-title: Opposition-based moth-flame optimization improved by differential evolution for feature selection
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2019.06.017
– volume: 65
  start-page: 230
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106404_b76
  article-title: Integrating fuzzy entropy clustering with an improved pso for mri brain image segmentation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.01.003
– start-page: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b12
  article-title: Advance artificial time series forecasting model for oil production using neuro fuzzy-based slime mould algorithm
  publication-title: J. Pet. Explor. Prod. Technol.
– volume: 16
  start-page: 1243
  issue: 5
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b1
  article-title: Medical image segmentation using deep learning: A survey
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.12419
– volume: 67
  start-page: 497
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106404_b61
  article-title: Hybrid approach of improved binary particle swarm optimization and shuffled frog leaping for feature selection
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2018.02.015
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.compbiomed.2022.106404_b44
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b66
  article-title: Evaluating the performance of adaptive gaining sharing knowledge based algorithm on cec 2020 benchmark problems
– ident: 10.1016/j.compbiomed.2022.106404_b79
– volume: 100
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b14
  article-title: An improved manta ray foraging optimizer for cost-effective emission dispatch problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104155
– year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b81
  article-title: An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106075
– volume: 191
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b53
  article-title: Centroid mutation-based search and rescue optimization algorithm for feature selection and classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116235
– volume: 148
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b82
  article-title: Directional mutation and crossover boosted ant colony optimization with application to covid-19 x-ray image segmentation
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105810
– volume: 185
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b2
  article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115651
– volume: 33
  start-page: 1671
  issue: 5
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b74
  article-title: An improved artificial bee colony algorithm based on mean best-guided approach for continuous optimization problems and real brain mri images segmentation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05118-9
– volume: 70
  start-page: 826
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106404_b59
  article-title: A new hybrid optimization method combining artificial bee colony and limited-memory bfgs algorithms for efficient numerical optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.06.010
– volume: 114
  start-page: 48
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106404_b21
  article-title: Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.05.014
– volume: 167
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b90
  article-title: A novel black widow optimization algorithm for multilevel thresholding image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114159
– volume: 229
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b45
  article-title: An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107348
– volume: 194
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b86
  article-title: Multi-threshold image segmentation using a multi-strategy shuffled frog leaping algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116511
– volume: 111
  start-page: 300
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b27
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.03.055
– volume: 145
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b62
  article-title: Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113103
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.compbiomed.2022.106404_b4
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1979.4310076
– start-page: 196
  year: 1992
  ident: 10.1016/j.compbiomed.2022.106404_b92
  article-title: Individual comparisons by ranking methods
– year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b13
  article-title: Job scheduling in cloud computing using a modified harris hawks optimization and simulated annealing algorithm
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2020/3504642
– start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b16
  article-title: An efficient high-dimensional feature selection approach driven by enhanced multi-strategy grey wolf optimizer for biological data classification
  publication-title: Neural Comput. Appl.
– volume: 175
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b56
  article-title: A multi-leader whale optimization algorithm for global optimization and image segmentation
  publication-title: Expert Syst. Appl.
– volume: 191
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b64
  article-title: Reptile search algorithm (rsa): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.116158
– volume: 34
  start-page: 292
  issue: 4
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106404_b15
  article-title: A novel chaotic interior search algorithm for global optimization and feature selection
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2020.1712788
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 10.1016/j.compbiomed.2022.106404_b39
  article-title: Gsa: a gravitational search algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2009.03.004
– volume: 9
  start-page: 4542
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b68
  article-title: The solar system algorithm: A novel metaheuristic method for global optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047912
– volume: 101
  start-page: 646
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106404_b42
  article-title: Henry gas solubility optimization: A novel physics-based algorithm
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.07.015
– volume: 144
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106404_b83
  article-title: Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: thyroid ultrasound image case study
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105347
– volume: 29
  start-page: 273
  issue: 3
  year: 1985
  ident: 10.1016/j.compbiomed.2022.106404_b5
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/0734-189X(85)90125-2
– volume: 163
  start-page: 283
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106404_b41
  article-title: Atom search optimization and its application to solve a hydrogeologic parameter estimation problem
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.08.030
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106404_b24
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 64
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106404_b75
  article-title: Improving the segmentation of magnetic resonance brain images using the lshade optimization algorithm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102259
– volume: 83
  start-page: 242
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106404_b87
  article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.023
SSID ssj0004030
Score 2.5661008
Snippet In this paper, we proposed an enhanced reptile search algorithm (RSA) for global optimization and selected optimal thresholding values for multilevel image...
AbstractIn this paper, we proposed an enhanced reptile search algorithm (RSA) for global optimization and selected optimal thresholding values for multilevel...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106404
SubjectTerms Algorithms
Animals
Benchmarking
Brain
Brain - diagnostic imaging
Brain cancer
Brain tumor images
Convergence
Crocodiles
Drug resistance
Exploitation
Exploration
Global optimization
Heuristic methods
Image enhancement
Image processing
Image segmentation
Information technology
Internal Medicine
Magnetic Resonance Imaging
Medical imaging
Metaheuristics
Methicillin-Resistant Staphylococcus aureus
Multi-level thresholding
Neuroimaging
Optimization
Other
Predatory behavior
Reptile search algorithm
Reptiles
RUNge kutta optimizer
Runge-Kutta method
Search algorithms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrYS4IMozUJCRuEYkthNvqBAqVauCtCtUqLQ3y47ttmiTlO72_3ccO9lLi_aaePLwjMef7ZlvAD5xXCNXelqnBbcm5UZx9IOlTlHhludu6lxPpjObl6fn_OeiWOzAfMiF8WGVg0_sHbXpar9H_pkKhL6ePo9-u_6X-qpR_nR1KKGhYmkF87WnGHsEu9QzY01g9_vx_NfZJlMyYyEpBb0Px8VRjO0JEV8-iDskveO6kVK8XPJYwO2eCeshQNpPTCfP4GlElOQwmMAe7Nj2OTyexTPzF9AdkqYzVw6xJrnxMSxLS4J9E7W8wF9cXzYEoSsJ3CCkwyZNzM4kqjXkqkGfgyIXTcxTar-QI5z8SE9NS7QvMkFmZz9Cw9VLOD85_nN0msYyC2mNaGmdqlwLm3HNp1llXF5qQR21CrGc4LyuBWW4xhS2oEbrulDK5CV1guUIHRgzCH9ewaTtWvsGCKtM5infXF2gqNBTm7lCuEo7lVPFeQJi6EtZRw5yXwpjKYdgs79yowXptSCDFhLIR8nrwMOxhUw1qEsOeaboGSVOFlvIivtk7SoO8ZXM5YrKTP7uGY7QlKiHUjldJHAwSkYUE9DJlu_dH-xKjq_a2H4CH8fb6Af84Y5qbXfbtykKwRBwJPA62OPYUaxEkMaK8u3_H_4OnuCXsLDBtA-T9c2tfY-Qa60_xHF0ByIjKg8
  priority: 102
  providerName: ProQuest
Title A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images
URI https://www.clinicalkey.com/#!/content/1-s2.0-S001048252201112X
https://www.clinicalkey.es/playcontent/1-s2.0-S001048252201112X
https://dx.doi.org/10.1016/j.compbiomed.2022.106404
https://www.ncbi.nlm.nih.gov/pubmed/36521356
https://www.proquest.com/docview/2759702432
https://www.proquest.com/docview/2755573801
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250903
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelg7GXse957YoGe_VqS7Jlb09ZaJZuJIyyQt6EZEmdR2yXJH3t376TJbuMdRDYi41tHTK6093v7PtA6D0DH7lURRVnzOiYaclAD-YqBoYbltrC2r6YzmKZzy_Z11W2OkDTIRfGhVUG3e91eq-tw53TsJqn13XtcnzBlQAHhzgblpKVy2Bn3HUx-HB7F-bBEurTUEDfuNEhmsfHeLmwbZ_mDp4iIXA7Z6Fl2z0m6l8QtDdFsyfoccCQeOJf8yk6MO0z9HAR_pI_R90EN52uLaBLvHFRK2uDvURjub7qNvXuZ4MBrGJfDQR3MKQJ-ZhYthrXDWgZILlqQmZS-xFPwdzhvhgtVq6tBF5cnPuB2xfocnb2YzqPQ2OFuAJ8tItlqrhJmGJFUmqb5ooTS4wE9MYZqypOKHiV3GREK1VlUuo0J5bTFBaaUg2A5yU6bLvWvEaYljpxRd5slQEpV4VJbMZtqaxMiWQsQnxYS1GFquOu-cVaDOFlv8QdF4TjgvBciFA6Ul77yht70JQDu8SQWQq6UIB52IOW30drtmFTb0UqtkQk4i_Bi9CnkfIP2d1z3uNBrsQ4FeHg6LlikSRC78bHsPPd7xzZmu6mH5NlnALEiNArL4_jQtEcYBnN8jf_9WpH6BFcUf_F6Rgd7jY35i1gsJ066TcZHPmKw7GYfTlBDybn3-ZLOH8-W36_-A38qjOv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwEXxJtAASPBMSKxnXgDqqpSWu3S7gqVVtqbsWO7FG2S0myF-HP8to5jZ_dS0F56TTxONGPPfGPPA6G3DHzkQg3KOGNGx0xLBnowVzEI3LDUDqztiumMJ_nwhH2ZZtM19LfPhXFhlb1O7BS1bkp3Rv6ecIC-rnwe2T7_FbuuUe52tW-hIUNrBb3VlRgLiR0H5s9vcOHardFnkPc7Qvb3jneHcegyEJcAFuaxTBU3CVNskBTaprnixBIjAcpwxsqSEwouFjcZ0UqVmZQ6zYnlNAXLSakG6w_z3kIbjLICnL-NT3uTr0fLzMyE-iQY0HYMnLEQS-QjzFzQuE-yBz-VEHics9Aw7hoD-S8A3BnC_fvoXkCweMcvuQdozdQP0e1xuKN_hJodXDX6zAK2xRcuZmZmsGcUlrNTYOn8R4UBKmNfiwQ3MKQK2aBY1hqfVaDjgOS0CnlR9Qe8C8YWd6VwsXJNLfD4aOQHto_RyY0w_Alar5vaPEOYFjpxJeZsmQEpVwOT2IzbQlmZEslYhHjPS1GGmueu9cZM9MFtP8VSCsJJQXgpRChdUJ77uh8r0BS9uESf1wqaWIBxWoGWX0dr2qBSWpGKlohEfOsqKsFSIg66pWQaoY8LyoCaPBpa8bub_boSi08t91qE3ixeg95xl0myNs1lNybLOAWAE6Gnfj0uGEVzAIU0y5__f_LX6M7weHwoDkeTgxfoLvwV9Ydbm2h9fnFpXgLcm6tXYU9h9P2mt_EVjnRluw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8GChgJjlET24k3IISqllWXshUCKu3N2IldijZJabZC_DV-HePY2b0UtJdeE08SzYxnvonnAfCSY4xc6FEZZ9xUMa8URzuY6xgFbnhqR9b2zXSmx_nhCf8wy2Yb8GeohXFplYNN7A111ZbuH_kuFQh9Xfs8umtDWsSng_G785-xmyDlTlqHcRpeRY7M718YvnVvJwco61eUjt9_3T-Mw4SBuESgsIhVqoVJuOajpKhsmmtBLTUKYYzgvCwFZRheCZPRSusyU6pKc2oFS9FrMlah58fn3oCbgrHCpROKmVjVZCbMl7-gneMYhoUsIp9b5tLFfXk9RqiU4uWch1FxV7jGf0Hf3gWO78DtgF3Jnle2u7BhmnuwNQ2n8_eh3SN1W51ZRLXkwmXLzA3xbCJqfooMXHyvCYJk4ruQkBaX1KEOlKimImc1WjckOa1DRVTzmuyjmyV9E1yi3TgLMv088Qu7B3ByLex-CJtN25htIKyoEtdczpYZkgo9MonNhC20VSlVnEcgBl7KMnQ7d0M35nJIa_shV1KQTgrSSyGCdEl57jt-rEFTDOKSQ0Ur2mCJbmkNWnEVremCMelkKjsqE_ml76WEqkQdaEvpLII3S8qAlzwOWvO9O4NeyeWrVrssghfL22hx3DGSakx72a_JMsEQ2kTwyOvjklEsRzjIsvzx_x_-HLZw88qPk-OjJ3ALP4r5v1o7sLm4uDRPEect9LN-QxH4dt07-C-7pWNV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+reptile+search+algorithm+for+global+optimization+and+image+segmentation%3A+Case+study+brain+MRI+images&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Emam%2C+Marwa+M.&rft.au=Houssein%2C+Essam+H.&rft.au=Ghoniem%2C+Rania+M.&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=152&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.106404&rft.externalDocID=S001048252201112X
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif