A computer vision based method for 3D posture estimation of symmetrical lifting

Work-related musculoskeletal disorders (WMSD) are commonly observed among the workers involved in material handling tasks such as lifting. To improve work place safety, it is necessary to assess musculoskeletal and biomechanical risk exposures associated with these tasks. Such an assessment has been...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 69; pp. 40 - 46
Main Authors Mehrizi, Rahil, Peng, Xi, Xu, Xu, Zhang, Shaoting, Metaxas, Dimitris, Li, Kang
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2018
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0021-9290
1873-2380
1873-2380
DOI10.1016/j.jbiomech.2018.01.012

Cover

Abstract Work-related musculoskeletal disorders (WMSD) are commonly observed among the workers involved in material handling tasks such as lifting. To improve work place safety, it is necessary to assess musculoskeletal and biomechanical risk exposures associated with these tasks. Such an assessment has been mainly conducted using surface marker-based methods, which is time consuming and tedious. During the past decade, computer vision based pose estimation techniques have gained an increasing interest and may be a viable alternative for surface marker-based human movement analysis. The aim of this study is to develop and validate a computer vision based marker-less motion capture method to assess 3D joint kinematics of lifting tasks. Twelve subjects performing three types of symmetrical lifting tasks were filmed from two views using optical cameras. The joints kinematics were calculated by the proposed computer vision based motion capture method as well as a surface marker-based motion capture method. The joint kinematics estimated from the computer vision based method were practically comparable to the joint kinematics obtained by the surface marker-based method. The mean and standard deviation of the difference between the joint angles estimated by the computer vision based method and these obtained by the surface marker-based method was 2.31 ± 4.00°. One potential application of the proposed computer vision based marker-less method is to noninvasively assess 3D joint kinematics of industrial tasks such as lifting.
AbstractList Work-related musculoskeletal disorders (WMSD) are commonly observed among the workers involved in material handling tasks such as lifting. To improve work place safety, it is necessary to assess musculoskeletal and biomechanical risk exposures associated with these tasks. Such an assessment has been mainly conducted using surface marker-based methods, which is time consuming and tedious. During the past decade, computer vision based pose estimation techniques have gained an increasing interest and may be a viable alternative for surface marker-based human movement analysis. The aim of this study is to develop and validate a computer vision based marker-less motion capture method to assess 3D joint kinematics of lifting tasks. Twelve subjects performing three types of symmetrical lifting tasks were filmed from two views using optical cameras. The joints kinematics were calculated by the proposed computer vision based motion capture method as well as a surface marker-based motion capture method. The joint kinematics estimated from the computer vision based method were practically comparable to the joint kinematics obtained by the surface marker-based method. The mean and standard deviation of the difference between the joint angles estimated by the computer vision based method and these obtained by the surface marker-based method was 2.31 ± 4.00°. One potential application of the proposed computer vision based marker-less method is to noninvasively assess 3D joint kinematics of industrial tasks such as lifting.
Work-related musculoskeletal disorders (WMSD) are commonly observed among the workers involved in material handling tasks such as lifting. To improve work place safety, it is necessary to assess musculoskeletal and biomechanical risk exposures associated with these tasks. Such an assessment has been mainly conducted using surface marker-based methods, which is time consuming and tedious. During the past decade, computer vision based pose estimation techniques have gained an increasing interest and may be a viable alternative for surface marker-based human movement analysis. The aim of this study is to develop and validate a computer vision based marker-less motion capture method to assess 3D joint kinematics of lifting tasks. Twelve subjects performing three types of symmetrical lifting tasks were filmed from two views using optical cameras. The joints kinematics were calculated by the proposed computer vision based motion capture method as well as a surface marker-based motion capture method. The joint kinematics estimated from the computer vision based method were practically comparable to the joint kinematics obtained by the surface marker-based method. The mean and standard deviation of the difference between the joint angles estimated by the computer vision based method and these obtained by the surface marker-based method was 2.31 ± 4.00°. One potential application of the proposed computer vision based marker-less method is to noninvasively assess 3D joint kinematics of industrial tasks such as lifting.Work-related musculoskeletal disorders (WMSD) are commonly observed among the workers involved in material handling tasks such as lifting. To improve work place safety, it is necessary to assess musculoskeletal and biomechanical risk exposures associated with these tasks. Such an assessment has been mainly conducted using surface marker-based methods, which is time consuming and tedious. During the past decade, computer vision based pose estimation techniques have gained an increasing interest and may be a viable alternative for surface marker-based human movement analysis. The aim of this study is to develop and validate a computer vision based marker-less motion capture method to assess 3D joint kinematics of lifting tasks. Twelve subjects performing three types of symmetrical lifting tasks were filmed from two views using optical cameras. The joints kinematics were calculated by the proposed computer vision based motion capture method as well as a surface marker-based motion capture method. The joint kinematics estimated from the computer vision based method were practically comparable to the joint kinematics obtained by the surface marker-based method. The mean and standard deviation of the difference between the joint angles estimated by the computer vision based method and these obtained by the surface marker-based method was 2.31 ± 4.00°. One potential application of the proposed computer vision based marker-less method is to noninvasively assess 3D joint kinematics of industrial tasks such as lifting.
Author Metaxas, Dimitris
Xu, Xu
Mehrizi, Rahil
Zhang, Shaoting
Li, Kang
Peng, Xi
Author_xml – sequence: 1
  givenname: Rahil
  surname: Mehrizi
  fullname: Mehrizi, Rahil
  organization: Department of Industrial & Systems Engineering, Rutgers University, Piscataway, New Jersey, USA
– sequence: 2
  givenname: Xi
  surname: Peng
  fullname: Peng, Xi
  organization: Department of Computer Science, Rutgers University, Piscataway, New Jersey, USA
– sequence: 3
  givenname: Xu
  surname: Xu
  fullname: Xu, Xu
  organization: Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA
– sequence: 4
  givenname: Shaoting
  surname: Zhang
  fullname: Zhang, Shaoting
  organization: Department of Computer Science, University of North Carolina, Charlotte, North Carolina, USA
– sequence: 5
  givenname: Dimitris
  surname: Metaxas
  fullname: Metaxas, Dimitris
  organization: Department of Computer Science, Rutgers University, Piscataway, New Jersey, USA
– sequence: 6
  givenname: Kang
  surname: Li
  fullname: Li, Kang
  email: kl419@soe.rutgers.edu
  organization: Department of Industrial & Systems Engineering, Rutgers University, Piscataway, New Jersey, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29398001$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtrHDEQhEVwiNePv2AEueQym5Y0L0EIMXYSBwy-JGcxknpiTWZGG0lj2H8fbdZ72YsNDbp8VequOiMns5-RkCsGawas_jisB-38hOZxzYG1a2B5-BuyYm0jCi5aOCErAM4KySWckrMYBwBoyka-I6dcCtkCsBV5uKbGT5slYaBPLjo_U91FtHTC9Ogt7X2g4pZufExLQIoxualLO8z3NG6njAVnupGOrk9u_n1B3vbdGPHy-T0nv759_XlzV9w_fP9xc31fmIqVqZCa2Zr1Rgu0VYudZn3bg-waq5uy6sAaUTYGdF1qlCUIibq0vW4ZVlzquhLn5MPedxP83yWvpSYXDY5jN6NfomJSlqIWsmwy-v4IHfwS5ryd4jmDirUVrzN19UwtekKrNiEfGrbqEFUGPu0BE3yMAXtlXPofRQqdGxUDtWtGDerQjNo1o4Dl4VleH8kPP7wo_LIXYo7zyWFQ0TicDVoX0CRlvXvZ4vORhRndvKvtD25fY_AP8qLBDA
CitedBy_id crossref_primary_10_1016_j_compag_2022_107435
crossref_primary_10_1016_j_jbiomech_2018_12_022
crossref_primary_10_1109_THMS_2018_2884811
crossref_primary_10_1016_j_jbiomech_2020_110086
crossref_primary_10_1080_10803548_2025_2458442
crossref_primary_10_1109_ACCESS_2024_3427651
crossref_primary_10_3390_s18103202
crossref_primary_10_1080_00140139_2019_1618500
crossref_primary_10_1016_j_rcim_2023_102626
crossref_primary_10_1080_00140139_2020_1745898
crossref_primary_10_3390_s22228898
crossref_primary_10_1007_s12652_020_01926_y
crossref_primary_10_1108_SASBE_02_2023_0037
crossref_primary_10_1016_j_apergo_2021_103574
crossref_primary_10_1109_THMS_2021_3112962
crossref_primary_10_1016_j_knosys_2019_02_028
crossref_primary_10_1007_s11227_022_04314_9
crossref_primary_10_3390_s20195687
crossref_primary_10_1109_THMS_2019_2892318
crossref_primary_10_1016_j_cie_2023_109556
crossref_primary_10_1016_j_eswa_2023_122391
crossref_primary_10_32604_cmes_2023_027676
crossref_primary_10_1016_j_smhl_2021_100228
crossref_primary_10_1109_ACCESS_2024_3451172
crossref_primary_10_1080_00140139_2024_2308705
crossref_primary_10_1177_0018720818791367
crossref_primary_10_1177_11795727211022330
crossref_primary_10_1016_j_autcon_2021_103669
crossref_primary_10_1016_j_jsr_2023_08_008
crossref_primary_10_1155_2019_4136874
crossref_primary_10_1016_j_apergo_2020_103284
crossref_primary_10_1007_s00138_019_01033_9
crossref_primary_10_1016_j_jbiomech_2021_110860
crossref_primary_10_1109_ACCESS_2024_3491655
crossref_primary_10_1109_THMS_2018_2883001
crossref_primary_10_3390_biomechanics4040044
crossref_primary_10_29147_datjournal_v8i2_720
Cites_doi 10.1002/ajim.20750
10.1109/TBME.2007.901024
10.1109/JSTSP.2012.2196975
10.1371/journal.pone.0087640
10.1016/j.medengphy.2014.07.007
10.1016/S0169-8141(99)00006-2
10.1023/A:1023012723347
10.2486/indhealth.48.145
10.1016/j.cviu.2006.10.016
10.7146/ece.v1i6.21221
10.1016/j.jbiomech.2017.01.028
10.1006/cviu.1998.0716
10.1109/CVPR.2013.98
10.1061/9780784412329.087
10.1016/j.apergo.2011.09.011
10.1016/j.apergo.2013.12.001
10.1016/j.apergo.2017.01.007
10.1109/IVS.2006.1689629
10.1016/j.jbiomech.2010.06.025
10.1109/CVPR.2011.5995741
10.1186/1743-0003-3-6
10.1007/s10439-006-9122-8
10.1007/s11263-008-0204-y
10.1016/0268-0033(95)91394-T
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Mar 1, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Mar 1, 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2018.01.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 46
ExternalDocumentID 29398001
10_1016_j_jbiomech_2018_01_012
S0021929018300277
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUFD
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
~HD
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
.GJ
29J
53G
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AI.
AIGII
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
PUEGO
R2-
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-9b1d61fcb3ed58eab1f8f09a7db745a0dc347c0b64be94039eb4dfb81e529b653
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Sat Sep 27 16:39:56 EDT 2025
Tue Oct 07 06:37:44 EDT 2025
Mon Jul 21 06:05:41 EDT 2025
Thu Apr 24 22:51:21 EDT 2025
Wed Oct 01 05:58:56 EDT 2025
Fri Feb 23 02:20:31 EST 2024
Tue Oct 14 19:30:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Computer vision
Discriminative approach
Marker-less motion capture
Lifting
Joint kinematics assessment
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-9b1d61fcb3ed58eab1f8f09a7db745a0dc347c0b64be94039eb4dfb81e529b653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29398001
PQID 2001518526
PQPubID 1226346
PageCount 7
ParticipantIDs proquest_miscellaneous_1994363947
proquest_journals_2001518526
pubmed_primary_29398001
crossref_citationtrail_10_1016_j_jbiomech_2018_01_012
crossref_primary_10_1016_j_jbiomech_2018_01_012
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2018_01_012
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2018_01_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Gavrila (b0065) 1999; 73
Bo, Sminchisescu (b0010) 2010; 87
Suard, F., Rakotomamonjy, A., Bensrhair, A., and Broggi, A., (2006). Pedestrian detection using infrared images and histograms of oriented gradients. Intelligent Vehicles Symposium, 2006 IEEE, IEEE.
Dalal, N., and Triggs, B., (2005). Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), IEEE
Dutta (b0060) 2012; 43
Mikić, Trivedi, Hunter, Cosman (b0090) 2003; 53
Oreifej, O., and Liu, Z., 2013. Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Plantard, Shum, Le Pierres, Multon (b0115) 2016
Saboune, J., and François Charpillet. (2005). “Markerless human motion capture for gait analysis. arXiv preprint cs/0510063.
Drory, Li, Hartley (b0055) 2017; 55
Kuiper, Burdorf, Verbeek, Frings-Dresen, van der Beek, Viikari-Juntura (b0080) 1999; 24
Nimbarte, Aghazadeh, Ikuma, Harvey (b0105) 2010; 48
Andersen, M.R., Jensen, T., Lisouski, P., Mortensen, A.K., Hansen, M.K., Gregersen, T., and Ahrendt P., (2012). Kinect depth sensor evaluation for computer vision applications. Electrical and Computer Engineering Technical Report ECE-TR-6.
Weerasinghe, Ruwanpura, Boyd, Habib (b0140) 2012
Mündermann, L., Anguelov, D., Corazza, S., Chaudhari, A.M., and Andriacchi, T.P., (2005). Validation of a markerless motion capture system for the calculation of lower extremity kinematics. Proc. American Society of Biomechanics, Cleveland, USA
Yang, Y., and Ramanan, D., (2011). Articulated pose estimation with flexible mixtures-of-parts. Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, IEEE
Hamner, Seth, Delp (b0070) 2010; 43
Mehrizi, Xu, Zhang, Pavlovic, Metaxas, Li (b0085) 2017
Zhu, Q., Yeh, M.-C., Cheng, K.-T., and Avidan, S., (2006). Fast human detection using a cascade of histograms of oriented gradients. Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, IEEE
Mündermann, Corazza, Andriacchi (b0100) 2006; 3
Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (b0045) 2007; 54
Diego-Mas, Alcaide-Marzal (b0050) 2014; 45
Poppe (b0120) 2007; 108
Holte, Tran, Trivedi, Moeslund (b0075) 2012; 6
Sandau, Koblauch, Moeslund, Aanæs, Alkjær, Simonsen (b0130) 2014; 36
Ceseracciu, Sawacha, Cobelli (b0025) 2014; 9
Cappozzo, Catani, Della Croce, Leardini (b0020) 1995; 10
da Costa, Vieira (b0035) 2010; 53
Bodor, R., Jackson, B., and Papanikolopoulos, N., (2003). Vision-based human tracking and activity recognition. Proc. of the 11th Mediterranean Conf. on Control and Automation
Corazza, Muendermann, Chaudhari, Demattio, Cobelli, Andriacchi (b0030) 2006; 34
Hamner (10.1016/j.jbiomech.2018.01.012_b0070) 2010; 43
Plantard (10.1016/j.jbiomech.2018.01.012_b0115) 2016
10.1016/j.jbiomech.2018.01.012_b0110
Corazza (10.1016/j.jbiomech.2018.01.012_b0030) 2006; 34
10.1016/j.jbiomech.2018.01.012_b0095
10.1016/j.jbiomech.2018.01.012_b0150
Bo (10.1016/j.jbiomech.2018.01.012_b0010) 2010; 87
da Costa (10.1016/j.jbiomech.2018.01.012_b0035) 2010; 53
Holte (10.1016/j.jbiomech.2018.01.012_b0075) 2012; 6
10.1016/j.jbiomech.2018.01.012_b0125
10.1016/j.jbiomech.2018.01.012_b0005
Diego-Mas (10.1016/j.jbiomech.2018.01.012_b0050) 2014; 45
Weerasinghe (10.1016/j.jbiomech.2018.01.012_b0140) 2012
Dutta (10.1016/j.jbiomech.2018.01.012_b0060) 2012; 43
Sandau (10.1016/j.jbiomech.2018.01.012_b0130) 2014; 36
Kuiper (10.1016/j.jbiomech.2018.01.012_b0080) 1999; 24
Delp (10.1016/j.jbiomech.2018.01.012_b0045) 2007; 54
10.1016/j.jbiomech.2018.01.012_b0145
10.1016/j.jbiomech.2018.01.012_b0040
Gavrila (10.1016/j.jbiomech.2018.01.012_b0065) 1999; 73
Cappozzo (10.1016/j.jbiomech.2018.01.012_b0020) 1995; 10
Poppe (10.1016/j.jbiomech.2018.01.012_b0120) 2007; 108
Nimbarte (10.1016/j.jbiomech.2018.01.012_b0105) 2010; 48
10.1016/j.jbiomech.2018.01.012_b0015
Ceseracciu (10.1016/j.jbiomech.2018.01.012_b0025) 2014; 9
10.1016/j.jbiomech.2018.01.012_b0135
Drory (10.1016/j.jbiomech.2018.01.012_b0055) 2017; 55
Mehrizi (10.1016/j.jbiomech.2018.01.012_b0085) 2017
Mikić (10.1016/j.jbiomech.2018.01.012_b0090) 2003; 53
Mündermann (10.1016/j.jbiomech.2018.01.012_b0100) 2006; 3
References_xml – volume: 87
  start-page: 28
  year: 2010
  end-page: 52
  ident: b0010
  article-title: Twin gaussian processes for structured prediction
  publication-title: Internat. J. Comput. Vision
– volume: 9
  start-page: e87640
  year: 2014
  ident: b0025
  article-title: Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept
  publication-title: PloS One
– volume: 54
  start-page: 1940
  year: 2007
  end-page: 1950
  ident: b0045
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Transact. Biomed. Eng.
– reference: Dalal, N., and Triggs, B., (2005). Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), IEEE
– reference: Saboune, J., and François Charpillet. (2005). “Markerless human motion capture for gait analysis. arXiv preprint cs/0510063.
– year: 2016
  ident: b0115
  article-title: Validation of an ergonomic assessment method using Kinect data in real workplace conditions
  publication-title: Appl. Ergon.
– volume: 43
  start-page: 2709
  year: 2010
  end-page: 2716
  ident: b0070
  article-title: Muscle contributions to propulsion and support during running
  publication-title: J. Biomech.
– volume: 10
  start-page: 171
  year: 1995
  end-page: 178
  ident: b0020
  article-title: Position and orientation in space of bones during movement: anatomical frame definition and determination
  publication-title: Clin. Biomech.
– volume: 53
  start-page: 285
  year: 2010
  end-page: 323
  ident: b0035
  article-title: Risk factors for work-related musculoskeletal disorders: a systematic review of recent longitudinal studies
  publication-title: Am. J. Indust. Med.
– volume: 24
  start-page: 389
  year: 1999
  end-page: 404
  ident: b0080
  article-title: Epidemiologic evidence on manual materials handling as a risk factor for back disorders: a systematic review
  publication-title: Int. J. Ind. Ergon.
– volume: 36
  start-page: 1168
  year: 2014
  end-page: 1175
  ident: b0130
  article-title: Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane
  publication-title: Med. Eng. Phys.
– year: 2012
  ident: b0140
  article-title: Application of Microsoft Kinect sensor for tracking construction workers
  publication-title: Construct. Res. Congress 2012: Construct. Challenges in a Flat World
– year: 2017
  ident: b0085
  article-title: Using a marker-less method for estimating L5/S1 moments during symmetrical lifting
  publication-title: Appl. Ergon.
– reference: Mündermann, L., Anguelov, D., Corazza, S., Chaudhari, A.M., and Andriacchi, T.P., (2005). Validation of a markerless motion capture system for the calculation of lower extremity kinematics. Proc. American Society of Biomechanics, Cleveland, USA
– volume: 3
  start-page: 1
  year: 2006
  ident: b0100
  article-title: The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications
  publication-title: J. NeuroEng. Rehabil.
– reference: Andersen, M.R., Jensen, T., Lisouski, P., Mortensen, A.K., Hansen, M.K., Gregersen, T., and Ahrendt P., (2012). Kinect depth sensor evaluation for computer vision applications. Electrical and Computer Engineering Technical Report ECE-TR-6.
– volume: 48
  start-page: 145
  year: 2010
  end-page: 153
  ident: b0105
  article-title: Neck disorders among construction workers: understanding the physical loads on the cervical spine during static lifting tasks
  publication-title: Industrial health
– volume: 43
  start-page: 645
  year: 2012
  end-page: 649
  ident: b0060
  article-title: Evaluation of the Kinect™ sensor for 3-D kinematic measurement in the workplace
  publication-title: Appl. Ergon.
– volume: 73
  start-page: 82
  year: 1999
  end-page: 98
  ident: b0065
  article-title: The visual analysis of human movement: a survey
  publication-title: Comput. Vision Image Understand.
– reference: Zhu, Q., Yeh, M.-C., Cheng, K.-T., and Avidan, S., (2006). Fast human detection using a cascade of histograms of oriented gradients. Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, IEEE
– reference: Bodor, R., Jackson, B., and Papanikolopoulos, N., (2003). Vision-based human tracking and activity recognition. Proc. of the 11th Mediterranean Conf. on Control and Automation
– volume: 108
  start-page: 4
  year: 2007
  end-page: 18
  ident: b0120
  article-title: Vision-based human motion analysis: an overview
  publication-title: Comput. Vision Image Understand.
– reference: Suard, F., Rakotomamonjy, A., Bensrhair, A., and Broggi, A., (2006). Pedestrian detection using infrared images and histograms of oriented gradients. Intelligent Vehicles Symposium, 2006 IEEE, IEEE.
– volume: 6
  start-page: 538
  year: 2012
  end-page: 552
  ident: b0075
  article-title: Human pose estimation and activity recognition from multi-view videos: comparative explorations of recent developments
  publication-title: IEEE J. Selected Top. Signal Process.
– volume: 55
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0055
  article-title: A learning-based markerless approach for full-body kinematics estimation in-natura from a single image
  publication-title: J. Biomech.
– reference: Oreifej, O., and Liu, Z., 2013. Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 45
  start-page: 976
  year: 2014
  end-page: 985
  ident: b0050
  article-title: Using Kinect™ sensor in observational methods for assessing postures at work
  publication-title: Appl. Ergon.
– volume: 34
  start-page: 1019
  year: 2006
  end-page: 1029
  ident: b0030
  article-title: A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach
  publication-title: Annal. Biomed. Eng.
– volume: 53
  start-page: 199
  year: 2003
  end-page: 223
  ident: b0090
  article-title: Human body model acquisition and tracking using voxel data
  publication-title: Int. J. Comput. Vision
– reference: Yang, Y., and Ramanan, D., (2011). Articulated pose estimation with flexible mixtures-of-parts. Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, IEEE
– volume: 53
  start-page: 285
  issue: 3
  year: 2010
  ident: 10.1016/j.jbiomech.2018.01.012_b0035
  article-title: Risk factors for work-related musculoskeletal disorders: a systematic review of recent longitudinal studies
  publication-title: Am. J. Indust. Med.
  doi: 10.1002/ajim.20750
– volume: 54
  start-page: 1940
  issue: 11
  year: 2007
  ident: 10.1016/j.jbiomech.2018.01.012_b0045
  article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Transact. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– volume: 6
  start-page: 538
  issue: 5
  year: 2012
  ident: 10.1016/j.jbiomech.2018.01.012_b0075
  article-title: Human pose estimation and activity recognition from multi-view videos: comparative explorations of recent developments
  publication-title: IEEE J. Selected Top. Signal Process.
  doi: 10.1109/JSTSP.2012.2196975
– volume: 9
  start-page: e87640
  issue: 3
  year: 2014
  ident: 10.1016/j.jbiomech.2018.01.012_b0025
  article-title: Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept
  publication-title: PloS One
  doi: 10.1371/journal.pone.0087640
– volume: 36
  start-page: 1168
  issue: 9
  year: 2014
  ident: 10.1016/j.jbiomech.2018.01.012_b0130
  article-title: Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2014.07.007
– volume: 24
  start-page: 389
  issue: 4
  year: 1999
  ident: 10.1016/j.jbiomech.2018.01.012_b0080
  article-title: Epidemiologic evidence on manual materials handling as a risk factor for back disorders: a systematic review
  publication-title: Int. J. Ind. Ergon.
  doi: 10.1016/S0169-8141(99)00006-2
– volume: 53
  start-page: 199
  issue: 3
  year: 2003
  ident: 10.1016/j.jbiomech.2018.01.012_b0090
  article-title: Human body model acquisition and tracking using voxel data
  publication-title: Int. J. Comput. Vision
  doi: 10.1023/A:1023012723347
– ident: 10.1016/j.jbiomech.2018.01.012_b0040
– volume: 48
  start-page: 145
  issue: 2
  year: 2010
  ident: 10.1016/j.jbiomech.2018.01.012_b0105
  article-title: Neck disorders among construction workers: understanding the physical loads on the cervical spine during static lifting tasks
  publication-title: Industrial health
  doi: 10.2486/indhealth.48.145
– year: 2016
  ident: 10.1016/j.jbiomech.2018.01.012_b0115
  article-title: Validation of an ergonomic assessment method using Kinect data in real workplace conditions
  publication-title: Appl. Ergon.
– volume: 108
  start-page: 4
  issue: 1
  year: 2007
  ident: 10.1016/j.jbiomech.2018.01.012_b0120
  article-title: Vision-based human motion analysis: an overview
  publication-title: Comput. Vision Image Understand.
  doi: 10.1016/j.cviu.2006.10.016
– ident: 10.1016/j.jbiomech.2018.01.012_b0005
  doi: 10.7146/ece.v1i6.21221
– ident: 10.1016/j.jbiomech.2018.01.012_b0095
– volume: 55
  start-page: 1
  year: 2017
  ident: 10.1016/j.jbiomech.2018.01.012_b0055
  article-title: A learning-based markerless approach for full-body kinematics estimation in-natura from a single image
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.01.028
– volume: 73
  start-page: 82
  issue: 1
  year: 1999
  ident: 10.1016/j.jbiomech.2018.01.012_b0065
  article-title: The visual analysis of human movement: a survey
  publication-title: Comput. Vision Image Understand.
  doi: 10.1006/cviu.1998.0716
– ident: 10.1016/j.jbiomech.2018.01.012_b0150
– ident: 10.1016/j.jbiomech.2018.01.012_b0015
– ident: 10.1016/j.jbiomech.2018.01.012_b0110
  doi: 10.1109/CVPR.2013.98
– year: 2012
  ident: 10.1016/j.jbiomech.2018.01.012_b0140
  article-title: Application of Microsoft Kinect sensor for tracking construction workers
  publication-title: Construct. Res. Congress 2012: Construct. Challenges in a Flat World
  doi: 10.1061/9780784412329.087
– volume: 43
  start-page: 645
  issue: 4
  year: 2012
  ident: 10.1016/j.jbiomech.2018.01.012_b0060
  article-title: Evaluation of the Kinect™ sensor for 3-D kinematic measurement in the workplace
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2011.09.011
– volume: 45
  start-page: 976
  issue: 4
  year: 2014
  ident: 10.1016/j.jbiomech.2018.01.012_b0050
  article-title: Using Kinect™ sensor in observational methods for assessing postures at work
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2013.12.001
– year: 2017
  ident: 10.1016/j.jbiomech.2018.01.012_b0085
  article-title: Using a marker-less method for estimating L5/S1 moments during symmetrical lifting
  publication-title: Appl. Ergon.
  doi: 10.1016/j.apergo.2017.01.007
– ident: 10.1016/j.jbiomech.2018.01.012_b0135
  doi: 10.1109/IVS.2006.1689629
– volume: 43
  start-page: 2709
  issue: 14
  year: 2010
  ident: 10.1016/j.jbiomech.2018.01.012_b0070
  article-title: Muscle contributions to propulsion and support during running
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.06.025
– ident: 10.1016/j.jbiomech.2018.01.012_b0145
  doi: 10.1109/CVPR.2011.5995741
– ident: 10.1016/j.jbiomech.2018.01.012_b0125
– volume: 3
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.jbiomech.2018.01.012_b0100
  article-title: The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/1743-0003-3-6
– volume: 34
  start-page: 1019
  issue: 6
  year: 2006
  ident: 10.1016/j.jbiomech.2018.01.012_b0030
  article-title: A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach
  publication-title: Annal. Biomed. Eng.
  doi: 10.1007/s10439-006-9122-8
– volume: 87
  start-page: 28
  issue: 1–2
  year: 2010
  ident: 10.1016/j.jbiomech.2018.01.012_b0010
  article-title: Twin gaussian processes for structured prediction
  publication-title: Internat. J. Comput. Vision
  doi: 10.1007/s11263-008-0204-y
– volume: 10
  start-page: 171
  issue: 4
  year: 1995
  ident: 10.1016/j.jbiomech.2018.01.012_b0020
  article-title: Position and orientation in space of bones during movement: anatomical frame definition and determination
  publication-title: Clin. Biomech.
  doi: 10.1016/0268-0033(95)91394-T
SSID ssj0007479
Score 2.470349
Snippet Work-related musculoskeletal disorders (WMSD) are commonly observed among the workers involved in material handling tasks such as lifting. To improve work...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 40
SubjectTerms Algorithms
Biomechanical Phenomena
Biomechanics
Camcorders
Cameras
Computer vision
Discriminative approach
Female
Histograms
Hoisting
Human mechanics
Human motion
Humans
Joint kinematics assessment
Joints - physiology
Kinematics
Lifting
Male
Marker-less motion capture
Materials handling
Methods
Middle Aged
Motion capture
Movement
Musculoskeletal diseases
Pattern recognition
Photography
Posture
Studies
Surface markers
Workers
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VrYTggGDLx0JBRkLcQuPYTuIDQgu0qpBYEKJSb5Y_pa66ydLdHvrvazt26KUUKbdooiQez7xkZt4DeIdJrZiVrjCNdgX1PlVI7Xjh043lRFlKVezyXdTHJ_TbKTvdgUWehQltlTkmxkBteh3-kR-E3h8WJn3rT-s_RVCNCtXVLKEhk7SC-Rgpxu7BbhWYsSaw-_lw8fPXGJs9eE5NH7jwwKC8MTO8_LCME--xRIHbSOaJq9vS1W1wNKalo8fwKOFJNB8c4Ans2G4Ke_POf0uvrtB7FDs846_zKTy8QT44hfvfU1l9D37MkU7qDmgYNkchuxk06EsjD2wR-YrW_SbUG1Ag5hgmHlHv0OZqtQqyXH6x0fmZC23UT-Hk6PD3l-MiKS0U2gOmbcEVNjV2WhFrWGulwq51JZeNUQ1lsjSa0EaXqqbKcloSbhU1TrXYsoqrmpFnMOn6zr4A1DJFlVFEybqkfnu3jaukI84jH8Ia0s6A5RcqdKIhD2oY5yL3my1FXggRFkKU2B_VDA5Gu_VAxHGnRZPXS-QxUx8Yhc8Vd1ry0TIBkQFg_JftfnYNkcLBRvx13hm8HU_7jRyqM7Kz_eVGBJJm4vEibWbwfHCp8UE9JuMe2eOX_774K3gQ7mRokduHyfbi0r72mGmr3qSNcA2JWRWb
  priority: 102
  providerName: ProQuest
Title A computer vision based method for 3D posture estimation of symmetrical lifting
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929018300277
https://dx.doi.org/10.1016/j.jbiomech.2018.01.012
https://www.ncbi.nlm.nih.gov/pubmed/29398001
https://www.proquest.com/docview/2001518526
https://www.proquest.com/docview/1994363947
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AKRWK
  dateStart: 19680101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20250903
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1873-2380
  dateEnd: 20250903
  omitProxy: true
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KB2N7GFu6j2xd0WDszY1lSZb0mHUt2cayMVbIm7BsCRIaJyzpQ1_6t_cky1n3UDoYGBt_HMi-091Pvi-A95SVVrjKZ42sfcZRprKq9jpDc-M0s45zG6N8p-XknH-ZidkenPS5MCGsMun-TqdHbZ2ujNLXHK3n85Dji7MtuAEVC4urkFHOuQxdDI6v_4R5IFxOYR40C0_fyhJeHC9ijnt0SlAVy3fS4i4DdRcAjYbo7Ck8SQiSjLtBPoM91w7gYNzi6nl5RT6QGNMZf5YP4PGtcoMDePgtOdIP4PuY1KmfA-nSy0mwZw3pOkoThLKEfSLr1SZ4GEgoxdHlOJKVJ5ur5TI04kL2kou5D4HTz-H87PTXySRLvRWyGiHSNtOWNiX1tWWuEcpVlnrlc13JxkouqrypGZd1bktuneY5087yxltFnSi0LQV7AfvtqnWvgChhuW0ss1WZc5zQSvqi8swj1mFCMjUE0X9QU6fC46H_xYXpI8wWpmeECYwwOcWtGMJoR7fuSm_cSyF7fpk-sRRVoUHrcC-l3lH-JX7_RHvYi4ZJCmATunsillKiKIfwbncbp27wx1StW11uTCjLzBAhcjmEl51I7V4UUZhGLE9f_8fA3sCjcNZFzB3C_vb3pXuLEGprj-Icwb2cySN4MP78dTLF48fT6Y-fNxxZHaI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrcTjgMqWx0ILRgJuoXHsPHyoqoW22tJ2QaiVejNxbEususlCtkL75_htHSdO6KWUS6XcoomSzHjms-fxAbylLFGxyW2g08IGHG0qyAsrAgw3RjBlOFdNle8kGZ_xz-fx-Qr86XphXFll5xMbR62rwp2Rb7van9h1-ia785-BY41y2dWOQiP31Ap6pxkx5hs7jszyN27h6p3DPdT3uyg62D_9NA48y0BQIFhYBEJRnVBbKGZ0nJlcUZvZUOSpVimP81AXjKdFqBKujOAhE0ZxbVVGTRwJlTjWCAwBa5xxgZu_tY_7k6_f-liAYN0XmdAAgUh4rUd5-mHadNg3KRGaNcNDaXRTeLwJ_jZh8GAdHnn8SkatwT2GFVMOYGNU4t59tiTvSVNR2hzVD-DhtWGHA7h34tP4G_BlRArPJkHa5nbioqkmLZ81QSBN2B6ZV7XLbxA3CKTtsCSVJfVyNnM0YGhc5OKHdWXbT-DsTv75U1gtq9I8B5LFiiutmMqTkKM7yVIb5ZZZRFosTlk2hLj7obLwY88d-8aF7OrbprJThHSKkCHFKxrCdi83bwd_3CqRdvqSXVsrOmKJselWSdFLeuDTApr_kt3sTEN691PLv4tlCG_62-g4XDYoL011WUs3FJohPuXpEJ61JtV_KGJAgTsJ-uLfD38N98enJ8fy-HBy9BIeuLdqy_M2YXXx69JsIV5bqFd-URD4ftfr8AowmFQ3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRarggGDLY6GAkYBb2Dh24viA0Ipl1VIoHKi0NxMntsSqmyxkK7R_jV_HTF70UsqlUm7RRElmPPPZ880MwAsuEhu7zAeFyn0g0aaCLPc6wHDjtLBOStuwfE-Sw1P5YREvduB3XwtDtMreJzaOuqhyOiOfEPcnpkrfZOI7WsSX2fzt-kdAE6Qo09qP02hN5Nhtf-H2rX5zNENdv4yi-fuv7w6DbsJAkCNQ2ATa8iLhPrfCFXHqMst96kOdqcIqGWdhkQup8tAm0jotQ6GdlYW3KXdxpG1CEyPQ_d9QQmiiE6rFsNmjvvQdvYQHCEHCC9XJy9fLpra-SYbwtGkbyqPLAuNlwLcJgPM7cLtDrmzamtpd2HHlCPanJe7aV1v2ijVc0uaQfgS3LrQ5HMHepy6Bvw-fpyzv5kiwtqydURwtWDvJmiGEZmLG1lVNmQ1GLUDa2kpWeVZvVysaAIZmxc6-eyJs34PTa_nj92G3rEr3EFgaW2kLK2yWhBIdSap8lHnhEWOJWIl0DHH_Q03eNTynuRtnpme2LU2vCEOKMCHHKxrDZJBbty0_rpRQvb5MX9CKLthgVLpSUg-SHeRpocx_yR70pmE6x1Obv8tkDM-H2-gyKA-Ula46rw21gxaITKUaw4PWpIYPRfSncQ_BH_374c9gD1ef-Xh0cvwYbtJLtby8A9jd_Dx3TxCobezTZkUw-HbdS_AP5SpR0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computer+vision+based+method+for+3D+posture+estimation+of+symmetrical+lifting&rft.jtitle=Journal+of+biomechanics&rft.au=Mehrizi%2C+Rahil&rft.au=Peng%2C+Xi&rft.au=Xu%2C+Xu&rft.au=Zhang%2C+Shaoting&rft.date=2018-03-01&rft.issn=0021-9290&rft.volume=69&rft.spage=40&rft.epage=46&rft_id=info:doi/10.1016%2Fj.jbiomech.2018.01.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2018_01_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon