A computer vision based method for 3D posture estimation of symmetrical lifting
Work-related musculoskeletal disorders (WMSD) are commonly observed among the workers involved in material handling tasks such as lifting. To improve work place safety, it is necessary to assess musculoskeletal and biomechanical risk exposures associated with these tasks. Such an assessment has been...
        Saved in:
      
    
          | Published in | Journal of biomechanics Vol. 69; pp. 40 - 46 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        01.03.2018
     Elsevier Limited  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0021-9290 1873-2380 1873-2380  | 
| DOI | 10.1016/j.jbiomech.2018.01.012 | 
Cover
| Abstract | Work-related musculoskeletal disorders (WMSD) are commonly observed among the workers involved in material handling tasks such as lifting. To improve work place safety, it is necessary to assess musculoskeletal and biomechanical risk exposures associated with these tasks. Such an assessment has been mainly conducted using surface marker-based methods, which is time consuming and tedious. During the past decade, computer vision based pose estimation techniques have gained an increasing interest and may be a viable alternative for surface marker-based human movement analysis. The aim of this study is to develop and validate a computer vision based marker-less motion capture method to assess 3D joint kinematics of lifting tasks. Twelve subjects performing three types of symmetrical lifting tasks were filmed from two views using optical cameras. The joints kinematics were calculated by the proposed computer vision based motion capture method as well as a surface marker-based motion capture method. The joint kinematics estimated from the computer vision based method were practically comparable to the joint kinematics obtained by the surface marker-based method. The mean and standard deviation of the difference between the joint angles estimated by the computer vision based method and these obtained by the surface marker-based method was 2.31 ± 4.00°. One potential application of the proposed computer vision based marker-less method is to noninvasively assess 3D joint kinematics of industrial tasks such as lifting. | 
    
|---|---|
| AbstractList | Work-related musculoskeletal disorders (WMSD) are commonly observed among the workers involved in material handling tasks such as lifting. To improve work place safety, it is necessary to assess musculoskeletal and biomechanical risk exposures associated with these tasks. Such an assessment has been mainly conducted using surface marker-based methods, which is time consuming and tedious. During the past decade, computer vision based pose estimation techniques have gained an increasing interest and may be a viable alternative for surface marker-based human movement analysis. The aim of this study is to develop and validate a computer vision based marker-less motion capture method to assess 3D joint kinematics of lifting tasks. Twelve subjects performing three types of symmetrical lifting tasks were filmed from two views using optical cameras. The joints kinematics were calculated by the proposed computer vision based motion capture method as well as a surface marker-based motion capture method. The joint kinematics estimated from the computer vision based method were practically comparable to the joint kinematics obtained by the surface marker-based method. The mean and standard deviation of the difference between the joint angles estimated by the computer vision based method and these obtained by the surface marker-based method was 2.31 ± 4.00°. One potential application of the proposed computer vision based marker-less method is to noninvasively assess 3D joint kinematics of industrial tasks such as lifting. Work-related musculoskeletal disorders (WMSD) are commonly observed among the workers involved in material handling tasks such as lifting. To improve work place safety, it is necessary to assess musculoskeletal and biomechanical risk exposures associated with these tasks. Such an assessment has been mainly conducted using surface marker-based methods, which is time consuming and tedious. During the past decade, computer vision based pose estimation techniques have gained an increasing interest and may be a viable alternative for surface marker-based human movement analysis. The aim of this study is to develop and validate a computer vision based marker-less motion capture method to assess 3D joint kinematics of lifting tasks. Twelve subjects performing three types of symmetrical lifting tasks were filmed from two views using optical cameras. The joints kinematics were calculated by the proposed computer vision based motion capture method as well as a surface marker-based motion capture method. The joint kinematics estimated from the computer vision based method were practically comparable to the joint kinematics obtained by the surface marker-based method. The mean and standard deviation of the difference between the joint angles estimated by the computer vision based method and these obtained by the surface marker-based method was 2.31 ± 4.00°. One potential application of the proposed computer vision based marker-less method is to noninvasively assess 3D joint kinematics of industrial tasks such as lifting.Work-related musculoskeletal disorders (WMSD) are commonly observed among the workers involved in material handling tasks such as lifting. To improve work place safety, it is necessary to assess musculoskeletal and biomechanical risk exposures associated with these tasks. Such an assessment has been mainly conducted using surface marker-based methods, which is time consuming and tedious. During the past decade, computer vision based pose estimation techniques have gained an increasing interest and may be a viable alternative for surface marker-based human movement analysis. The aim of this study is to develop and validate a computer vision based marker-less motion capture method to assess 3D joint kinematics of lifting tasks. Twelve subjects performing three types of symmetrical lifting tasks were filmed from two views using optical cameras. The joints kinematics were calculated by the proposed computer vision based motion capture method as well as a surface marker-based motion capture method. The joint kinematics estimated from the computer vision based method were practically comparable to the joint kinematics obtained by the surface marker-based method. The mean and standard deviation of the difference between the joint angles estimated by the computer vision based method and these obtained by the surface marker-based method was 2.31 ± 4.00°. One potential application of the proposed computer vision based marker-less method is to noninvasively assess 3D joint kinematics of industrial tasks such as lifting.  | 
    
| Author | Metaxas, Dimitris Xu, Xu Mehrizi, Rahil Zhang, Shaoting Li, Kang Peng, Xi  | 
    
| Author_xml | – sequence: 1 givenname: Rahil surname: Mehrizi fullname: Mehrizi, Rahil organization: Department of Industrial & Systems Engineering, Rutgers University, Piscataway, New Jersey, USA – sequence: 2 givenname: Xi surname: Peng fullname: Peng, Xi organization: Department of Computer Science, Rutgers University, Piscataway, New Jersey, USA – sequence: 3 givenname: Xu surname: Xu fullname: Xu, Xu organization: Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina, USA – sequence: 4 givenname: Shaoting surname: Zhang fullname: Zhang, Shaoting organization: Department of Computer Science, University of North Carolina, Charlotte, North Carolina, USA – sequence: 5 givenname: Dimitris surname: Metaxas fullname: Metaxas, Dimitris organization: Department of Computer Science, Rutgers University, Piscataway, New Jersey, USA – sequence: 6 givenname: Kang surname: Li fullname: Li, Kang email: kl419@soe.rutgers.edu organization: Department of Industrial & Systems Engineering, Rutgers University, Piscataway, New Jersey, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29398001$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkUtrHDEQhEVwiNePv2AEueQym5Y0L0EIMXYSBwy-JGcxknpiTWZGG0lj2H8fbdZ72YsNDbp8VequOiMns5-RkCsGawas_jisB-38hOZxzYG1a2B5-BuyYm0jCi5aOCErAM4KySWckrMYBwBoyka-I6dcCtkCsBV5uKbGT5slYaBPLjo_U91FtHTC9Ogt7X2g4pZufExLQIoxualLO8z3NG6njAVnupGOrk9u_n1B3vbdGPHy-T0nv759_XlzV9w_fP9xc31fmIqVqZCa2Zr1Rgu0VYudZn3bg-waq5uy6sAaUTYGdF1qlCUIibq0vW4ZVlzquhLn5MPedxP83yWvpSYXDY5jN6NfomJSlqIWsmwy-v4IHfwS5ryd4jmDirUVrzN19UwtekKrNiEfGrbqEFUGPu0BE3yMAXtlXPofRQqdGxUDtWtGDerQjNo1o4Dl4VleH8kPP7wo_LIXYo7zyWFQ0TicDVoX0CRlvXvZ4vORhRndvKvtD25fY_AP8qLBDA | 
    
| CitedBy_id | crossref_primary_10_1016_j_compag_2022_107435 crossref_primary_10_1016_j_jbiomech_2018_12_022 crossref_primary_10_1109_THMS_2018_2884811 crossref_primary_10_1016_j_jbiomech_2020_110086 crossref_primary_10_1080_10803548_2025_2458442 crossref_primary_10_1109_ACCESS_2024_3427651 crossref_primary_10_3390_s18103202 crossref_primary_10_1080_00140139_2019_1618500 crossref_primary_10_1016_j_rcim_2023_102626 crossref_primary_10_1080_00140139_2020_1745898 crossref_primary_10_3390_s22228898 crossref_primary_10_1007_s12652_020_01926_y crossref_primary_10_1108_SASBE_02_2023_0037 crossref_primary_10_1016_j_apergo_2021_103574 crossref_primary_10_1109_THMS_2021_3112962 crossref_primary_10_1016_j_knosys_2019_02_028 crossref_primary_10_1007_s11227_022_04314_9 crossref_primary_10_3390_s20195687 crossref_primary_10_1109_THMS_2019_2892318 crossref_primary_10_1016_j_cie_2023_109556 crossref_primary_10_1016_j_eswa_2023_122391 crossref_primary_10_32604_cmes_2023_027676 crossref_primary_10_1016_j_smhl_2021_100228 crossref_primary_10_1109_ACCESS_2024_3451172 crossref_primary_10_1080_00140139_2024_2308705 crossref_primary_10_1177_0018720818791367 crossref_primary_10_1177_11795727211022330 crossref_primary_10_1016_j_autcon_2021_103669 crossref_primary_10_1016_j_jsr_2023_08_008 crossref_primary_10_1155_2019_4136874 crossref_primary_10_1016_j_apergo_2020_103284 crossref_primary_10_1007_s00138_019_01033_9 crossref_primary_10_1016_j_jbiomech_2021_110860 crossref_primary_10_1109_ACCESS_2024_3491655 crossref_primary_10_1109_THMS_2018_2883001 crossref_primary_10_3390_biomechanics4040044 crossref_primary_10_29147_datjournal_v8i2_720  | 
    
| Cites_doi | 10.1002/ajim.20750 10.1109/TBME.2007.901024 10.1109/JSTSP.2012.2196975 10.1371/journal.pone.0087640 10.1016/j.medengphy.2014.07.007 10.1016/S0169-8141(99)00006-2 10.1023/A:1023012723347 10.2486/indhealth.48.145 10.1016/j.cviu.2006.10.016 10.7146/ece.v1i6.21221 10.1016/j.jbiomech.2017.01.028 10.1006/cviu.1998.0716 10.1109/CVPR.2013.98 10.1061/9780784412329.087 10.1016/j.apergo.2011.09.011 10.1016/j.apergo.2013.12.001 10.1016/j.apergo.2017.01.007 10.1109/IVS.2006.1689629 10.1016/j.jbiomech.2010.06.025 10.1109/CVPR.2011.5995741 10.1186/1743-0003-3-6 10.1007/s10439-006-9122-8 10.1007/s11263-008-0204-y 10.1016/0268-0033(95)91394-T  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Mar 1, 2018  | 
    
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Mar 1, 2018  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8  | 
    
| DOI | 10.1016/j.jbiomech.2018.01.012 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Engineering Anatomy & Physiology  | 
    
| EISSN | 1873-2380 | 
    
| EndPage | 46 | 
    
| ExternalDocumentID | 29398001 10_1016_j_jbiomech_2018_01_012 S0021929018300277  | 
    
| Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article  | 
    
| GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUFD ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- ~HD 3V. AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AI. AIGII APXCP ASPBG AVWKF AZFZN CITATION EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT PUEGO R2- RPZ SAE SEW VH1 WUQ XOL XPP ZGI AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8  | 
    
| ID | FETCH-LOGICAL-c514t-9b1d61fcb3ed58eab1f8f09a7db745a0dc347c0b64be94039eb4dfb81e529b653 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0021-9290 1873-2380  | 
    
| IngestDate | Sat Sep 27 16:39:56 EDT 2025 Tue Oct 07 06:37:44 EDT 2025 Mon Jul 21 06:05:41 EDT 2025 Thu Apr 24 22:51:21 EDT 2025 Wed Oct 01 05:58:56 EDT 2025 Fri Feb 23 02:20:31 EST 2024 Tue Oct 14 19:30:10 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Computer vision Discriminative approach Marker-less motion capture Lifting Joint kinematics assessment  | 
    
| Language | English | 
    
| License | Copyright © 2018 Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c514t-9b1d61fcb3ed58eab1f8f09a7db745a0dc347c0b64be94039eb4dfb81e529b653 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PMID | 29398001 | 
    
| PQID | 2001518526 | 
    
| PQPubID | 1226346 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | proquest_miscellaneous_1994363947 proquest_journals_2001518526 pubmed_primary_29398001 crossref_citationtrail_10_1016_j_jbiomech_2018_01_012 crossref_primary_10_1016_j_jbiomech_2018_01_012 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2018_01_012 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2018_01_012  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-03-01 | 
    
| PublicationDateYYYYMMDD | 2018-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Kidlington  | 
    
| PublicationTitle | Journal of biomechanics | 
    
| PublicationTitleAlternate | J Biomech | 
    
| PublicationYear | 2018 | 
    
| Publisher | Elsevier Ltd Elsevier Limited  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited  | 
    
| References | Gavrila (b0065) 1999; 73 Bo, Sminchisescu (b0010) 2010; 87 Suard, F., Rakotomamonjy, A., Bensrhair, A., and Broggi, A., (2006). Pedestrian detection using infrared images and histograms of oriented gradients. Intelligent Vehicles Symposium, 2006 IEEE, IEEE. Dalal, N., and Triggs, B., (2005). Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), IEEE Dutta (b0060) 2012; 43 Mikić, Trivedi, Hunter, Cosman (b0090) 2003; 53 Oreifej, O., and Liu, Z., 2013. Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Plantard, Shum, Le Pierres, Multon (b0115) 2016 Saboune, J., and François Charpillet. (2005). “Markerless human motion capture for gait analysis. arXiv preprint cs/0510063. Drory, Li, Hartley (b0055) 2017; 55 Kuiper, Burdorf, Verbeek, Frings-Dresen, van der Beek, Viikari-Juntura (b0080) 1999; 24 Nimbarte, Aghazadeh, Ikuma, Harvey (b0105) 2010; 48 Andersen, M.R., Jensen, T., Lisouski, P., Mortensen, A.K., Hansen, M.K., Gregersen, T., and Ahrendt P., (2012). Kinect depth sensor evaluation for computer vision applications. Electrical and Computer Engineering Technical Report ECE-TR-6. Weerasinghe, Ruwanpura, Boyd, Habib (b0140) 2012 Mündermann, L., Anguelov, D., Corazza, S., Chaudhari, A.M., and Andriacchi, T.P., (2005). Validation of a markerless motion capture system for the calculation of lower extremity kinematics. Proc. American Society of Biomechanics, Cleveland, USA Yang, Y., and Ramanan, D., (2011). Articulated pose estimation with flexible mixtures-of-parts. Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, IEEE Hamner, Seth, Delp (b0070) 2010; 43 Mehrizi, Xu, Zhang, Pavlovic, Metaxas, Li (b0085) 2017 Zhu, Q., Yeh, M.-C., Cheng, K.-T., and Avidan, S., (2006). Fast human detection using a cascade of histograms of oriented gradients. Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, IEEE Mündermann, Corazza, Andriacchi (b0100) 2006; 3 Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (b0045) 2007; 54 Diego-Mas, Alcaide-Marzal (b0050) 2014; 45 Poppe (b0120) 2007; 108 Holte, Tran, Trivedi, Moeslund (b0075) 2012; 6 Sandau, Koblauch, Moeslund, Aanæs, Alkjær, Simonsen (b0130) 2014; 36 Ceseracciu, Sawacha, Cobelli (b0025) 2014; 9 Cappozzo, Catani, Della Croce, Leardini (b0020) 1995; 10 da Costa, Vieira (b0035) 2010; 53 Bodor, R., Jackson, B., and Papanikolopoulos, N., (2003). Vision-based human tracking and activity recognition. Proc. of the 11th Mediterranean Conf. on Control and Automation Corazza, Muendermann, Chaudhari, Demattio, Cobelli, Andriacchi (b0030) 2006; 34 Hamner (10.1016/j.jbiomech.2018.01.012_b0070) 2010; 43 Plantard (10.1016/j.jbiomech.2018.01.012_b0115) 2016 10.1016/j.jbiomech.2018.01.012_b0110 Corazza (10.1016/j.jbiomech.2018.01.012_b0030) 2006; 34 10.1016/j.jbiomech.2018.01.012_b0095 10.1016/j.jbiomech.2018.01.012_b0150 Bo (10.1016/j.jbiomech.2018.01.012_b0010) 2010; 87 da Costa (10.1016/j.jbiomech.2018.01.012_b0035) 2010; 53 Holte (10.1016/j.jbiomech.2018.01.012_b0075) 2012; 6 10.1016/j.jbiomech.2018.01.012_b0125 10.1016/j.jbiomech.2018.01.012_b0005 Diego-Mas (10.1016/j.jbiomech.2018.01.012_b0050) 2014; 45 Weerasinghe (10.1016/j.jbiomech.2018.01.012_b0140) 2012 Dutta (10.1016/j.jbiomech.2018.01.012_b0060) 2012; 43 Sandau (10.1016/j.jbiomech.2018.01.012_b0130) 2014; 36 Kuiper (10.1016/j.jbiomech.2018.01.012_b0080) 1999; 24 Delp (10.1016/j.jbiomech.2018.01.012_b0045) 2007; 54 10.1016/j.jbiomech.2018.01.012_b0145 10.1016/j.jbiomech.2018.01.012_b0040 Gavrila (10.1016/j.jbiomech.2018.01.012_b0065) 1999; 73 Cappozzo (10.1016/j.jbiomech.2018.01.012_b0020) 1995; 10 Poppe (10.1016/j.jbiomech.2018.01.012_b0120) 2007; 108 Nimbarte (10.1016/j.jbiomech.2018.01.012_b0105) 2010; 48 10.1016/j.jbiomech.2018.01.012_b0015 Ceseracciu (10.1016/j.jbiomech.2018.01.012_b0025) 2014; 9 10.1016/j.jbiomech.2018.01.012_b0135 Drory (10.1016/j.jbiomech.2018.01.012_b0055) 2017; 55 Mehrizi (10.1016/j.jbiomech.2018.01.012_b0085) 2017 Mikić (10.1016/j.jbiomech.2018.01.012_b0090) 2003; 53 Mündermann (10.1016/j.jbiomech.2018.01.012_b0100) 2006; 3  | 
    
| References_xml | – volume: 87 start-page: 28 year: 2010 end-page: 52 ident: b0010 article-title: Twin gaussian processes for structured prediction publication-title: Internat. J. Comput. Vision – volume: 9 start-page: e87640 year: 2014 ident: b0025 article-title: Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept publication-title: PloS One – volume: 54 start-page: 1940 year: 2007 end-page: 1950 ident: b0045 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Transact. Biomed. Eng. – reference: Dalal, N., and Triggs, B., (2005). Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), IEEE – reference: Saboune, J., and François Charpillet. (2005). “Markerless human motion capture for gait analysis. arXiv preprint cs/0510063. – year: 2016 ident: b0115 article-title: Validation of an ergonomic assessment method using Kinect data in real workplace conditions publication-title: Appl. Ergon. – volume: 43 start-page: 2709 year: 2010 end-page: 2716 ident: b0070 article-title: Muscle contributions to propulsion and support during running publication-title: J. Biomech. – volume: 10 start-page: 171 year: 1995 end-page: 178 ident: b0020 article-title: Position and orientation in space of bones during movement: anatomical frame definition and determination publication-title: Clin. Biomech. – volume: 53 start-page: 285 year: 2010 end-page: 323 ident: b0035 article-title: Risk factors for work-related musculoskeletal disorders: a systematic review of recent longitudinal studies publication-title: Am. J. Indust. Med. – volume: 24 start-page: 389 year: 1999 end-page: 404 ident: b0080 article-title: Epidemiologic evidence on manual materials handling as a risk factor for back disorders: a systematic review publication-title: Int. J. Ind. Ergon. – volume: 36 start-page: 1168 year: 2014 end-page: 1175 ident: b0130 article-title: Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane publication-title: Med. Eng. Phys. – year: 2012 ident: b0140 article-title: Application of Microsoft Kinect sensor for tracking construction workers publication-title: Construct. Res. Congress 2012: Construct. Challenges in a Flat World – year: 2017 ident: b0085 article-title: Using a marker-less method for estimating L5/S1 moments during symmetrical lifting publication-title: Appl. Ergon. – reference: Mündermann, L., Anguelov, D., Corazza, S., Chaudhari, A.M., and Andriacchi, T.P., (2005). Validation of a markerless motion capture system for the calculation of lower extremity kinematics. Proc. American Society of Biomechanics, Cleveland, USA – volume: 3 start-page: 1 year: 2006 ident: b0100 article-title: The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications publication-title: J. NeuroEng. Rehabil. – reference: Andersen, M.R., Jensen, T., Lisouski, P., Mortensen, A.K., Hansen, M.K., Gregersen, T., and Ahrendt P., (2012). Kinect depth sensor evaluation for computer vision applications. Electrical and Computer Engineering Technical Report ECE-TR-6. – volume: 48 start-page: 145 year: 2010 end-page: 153 ident: b0105 article-title: Neck disorders among construction workers: understanding the physical loads on the cervical spine during static lifting tasks publication-title: Industrial health – volume: 43 start-page: 645 year: 2012 end-page: 649 ident: b0060 article-title: Evaluation of the Kinect™ sensor for 3-D kinematic measurement in the workplace publication-title: Appl. Ergon. – volume: 73 start-page: 82 year: 1999 end-page: 98 ident: b0065 article-title: The visual analysis of human movement: a survey publication-title: Comput. Vision Image Understand. – reference: Zhu, Q., Yeh, M.-C., Cheng, K.-T., and Avidan, S., (2006). Fast human detection using a cascade of histograms of oriented gradients. Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, IEEE – reference: Bodor, R., Jackson, B., and Papanikolopoulos, N., (2003). Vision-based human tracking and activity recognition. Proc. of the 11th Mediterranean Conf. on Control and Automation – volume: 108 start-page: 4 year: 2007 end-page: 18 ident: b0120 article-title: Vision-based human motion analysis: an overview publication-title: Comput. Vision Image Understand. – reference: Suard, F., Rakotomamonjy, A., Bensrhair, A., and Broggi, A., (2006). Pedestrian detection using infrared images and histograms of oriented gradients. Intelligent Vehicles Symposium, 2006 IEEE, IEEE. – volume: 6 start-page: 538 year: 2012 end-page: 552 ident: b0075 article-title: Human pose estimation and activity recognition from multi-view videos: comparative explorations of recent developments publication-title: IEEE J. Selected Top. Signal Process. – volume: 55 start-page: 1 year: 2017 end-page: 10 ident: b0055 article-title: A learning-based markerless approach for full-body kinematics estimation in-natura from a single image publication-title: J. Biomech. – reference: Oreifej, O., and Liu, Z., 2013. Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 45 start-page: 976 year: 2014 end-page: 985 ident: b0050 article-title: Using Kinect™ sensor in observational methods for assessing postures at work publication-title: Appl. Ergon. – volume: 34 start-page: 1019 year: 2006 end-page: 1029 ident: b0030 article-title: A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach publication-title: Annal. Biomed. Eng. – volume: 53 start-page: 199 year: 2003 end-page: 223 ident: b0090 article-title: Human body model acquisition and tracking using voxel data publication-title: Int. J. Comput. Vision – reference: Yang, Y., and Ramanan, D., (2011). Articulated pose estimation with flexible mixtures-of-parts. Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, IEEE – volume: 53 start-page: 285 issue: 3 year: 2010 ident: 10.1016/j.jbiomech.2018.01.012_b0035 article-title: Risk factors for work-related musculoskeletal disorders: a systematic review of recent longitudinal studies publication-title: Am. J. Indust. Med. doi: 10.1002/ajim.20750 – volume: 54 start-page: 1940 issue: 11 year: 2007 ident: 10.1016/j.jbiomech.2018.01.012_b0045 article-title: OpenSim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Transact. Biomed. Eng. doi: 10.1109/TBME.2007.901024 – volume: 6 start-page: 538 issue: 5 year: 2012 ident: 10.1016/j.jbiomech.2018.01.012_b0075 article-title: Human pose estimation and activity recognition from multi-view videos: comparative explorations of recent developments publication-title: IEEE J. Selected Top. Signal Process. doi: 10.1109/JSTSP.2012.2196975 – volume: 9 start-page: e87640 issue: 3 year: 2014 ident: 10.1016/j.jbiomech.2018.01.012_b0025 article-title: Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept publication-title: PloS One doi: 10.1371/journal.pone.0087640 – volume: 36 start-page: 1168 issue: 9 year: 2014 ident: 10.1016/j.jbiomech.2018.01.012_b0130 article-title: Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2014.07.007 – volume: 24 start-page: 389 issue: 4 year: 1999 ident: 10.1016/j.jbiomech.2018.01.012_b0080 article-title: Epidemiologic evidence on manual materials handling as a risk factor for back disorders: a systematic review publication-title: Int. J. Ind. Ergon. doi: 10.1016/S0169-8141(99)00006-2 – volume: 53 start-page: 199 issue: 3 year: 2003 ident: 10.1016/j.jbiomech.2018.01.012_b0090 article-title: Human body model acquisition and tracking using voxel data publication-title: Int. J. Comput. Vision doi: 10.1023/A:1023012723347 – ident: 10.1016/j.jbiomech.2018.01.012_b0040 – volume: 48 start-page: 145 issue: 2 year: 2010 ident: 10.1016/j.jbiomech.2018.01.012_b0105 article-title: Neck disorders among construction workers: understanding the physical loads on the cervical spine during static lifting tasks publication-title: Industrial health doi: 10.2486/indhealth.48.145 – year: 2016 ident: 10.1016/j.jbiomech.2018.01.012_b0115 article-title: Validation of an ergonomic assessment method using Kinect data in real workplace conditions publication-title: Appl. Ergon. – volume: 108 start-page: 4 issue: 1 year: 2007 ident: 10.1016/j.jbiomech.2018.01.012_b0120 article-title: Vision-based human motion analysis: an overview publication-title: Comput. Vision Image Understand. doi: 10.1016/j.cviu.2006.10.016 – ident: 10.1016/j.jbiomech.2018.01.012_b0005 doi: 10.7146/ece.v1i6.21221 – ident: 10.1016/j.jbiomech.2018.01.012_b0095 – volume: 55 start-page: 1 year: 2017 ident: 10.1016/j.jbiomech.2018.01.012_b0055 article-title: A learning-based markerless approach for full-body kinematics estimation in-natura from a single image publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.01.028 – volume: 73 start-page: 82 issue: 1 year: 1999 ident: 10.1016/j.jbiomech.2018.01.012_b0065 article-title: The visual analysis of human movement: a survey publication-title: Comput. Vision Image Understand. doi: 10.1006/cviu.1998.0716 – ident: 10.1016/j.jbiomech.2018.01.012_b0150 – ident: 10.1016/j.jbiomech.2018.01.012_b0015 – ident: 10.1016/j.jbiomech.2018.01.012_b0110 doi: 10.1109/CVPR.2013.98 – year: 2012 ident: 10.1016/j.jbiomech.2018.01.012_b0140 article-title: Application of Microsoft Kinect sensor for tracking construction workers publication-title: Construct. Res. Congress 2012: Construct. Challenges in a Flat World doi: 10.1061/9780784412329.087 – volume: 43 start-page: 645 issue: 4 year: 2012 ident: 10.1016/j.jbiomech.2018.01.012_b0060 article-title: Evaluation of the Kinect™ sensor for 3-D kinematic measurement in the workplace publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2011.09.011 – volume: 45 start-page: 976 issue: 4 year: 2014 ident: 10.1016/j.jbiomech.2018.01.012_b0050 article-title: Using Kinect™ sensor in observational methods for assessing postures at work publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2013.12.001 – year: 2017 ident: 10.1016/j.jbiomech.2018.01.012_b0085 article-title: Using a marker-less method for estimating L5/S1 moments during symmetrical lifting publication-title: Appl. Ergon. doi: 10.1016/j.apergo.2017.01.007 – ident: 10.1016/j.jbiomech.2018.01.012_b0135 doi: 10.1109/IVS.2006.1689629 – volume: 43 start-page: 2709 issue: 14 year: 2010 ident: 10.1016/j.jbiomech.2018.01.012_b0070 article-title: Muscle contributions to propulsion and support during running publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.06.025 – ident: 10.1016/j.jbiomech.2018.01.012_b0145 doi: 10.1109/CVPR.2011.5995741 – ident: 10.1016/j.jbiomech.2018.01.012_b0125 – volume: 3 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.jbiomech.2018.01.012_b0100 article-title: The evolution of methods for the capture of human movement leading to markerless motion capture for biomechanical applications publication-title: J. NeuroEng. Rehabil. doi: 10.1186/1743-0003-3-6 – volume: 34 start-page: 1019 issue: 6 year: 2006 ident: 10.1016/j.jbiomech.2018.01.012_b0030 article-title: A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach publication-title: Annal. Biomed. Eng. doi: 10.1007/s10439-006-9122-8 – volume: 87 start-page: 28 issue: 1–2 year: 2010 ident: 10.1016/j.jbiomech.2018.01.012_b0010 article-title: Twin gaussian processes for structured prediction publication-title: Internat. J. Comput. Vision doi: 10.1007/s11263-008-0204-y – volume: 10 start-page: 171 issue: 4 year: 1995 ident: 10.1016/j.jbiomech.2018.01.012_b0020 article-title: Position and orientation in space of bones during movement: anatomical frame definition and determination publication-title: Clin. Biomech. doi: 10.1016/0268-0033(95)91394-T  | 
    
| SSID | ssj0007479 | 
    
| Score | 2.470349 | 
    
| Snippet | Work-related musculoskeletal disorders (WMSD) are commonly observed among the workers involved in material handling tasks such as lifting. To improve work... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 40 | 
    
| SubjectTerms | Algorithms Biomechanical Phenomena Biomechanics Camcorders Cameras Computer vision Discriminative approach Female Histograms Hoisting Human mechanics Human motion Humans Joint kinematics assessment Joints - physiology Kinematics Lifting Male Marker-less motion capture Materials handling Methods Middle Aged Motion capture Movement Musculoskeletal diseases Pattern recognition Photography Posture Studies Surface markers Workers  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VrYTggGDLx0JBRkLcQuPYTuIDQgu0qpBYEKJSb5Y_pa66ydLdHvrvazt26KUUKbdooiQez7xkZt4DeIdJrZiVrjCNdgX1PlVI7Xjh043lRFlKVezyXdTHJ_TbKTvdgUWehQltlTkmxkBteh3-kR-E3h8WJn3rT-s_RVCNCtXVLKEhk7SC-Rgpxu7BbhWYsSaw-_lw8fPXGJs9eE5NH7jwwKC8MTO8_LCME--xRIHbSOaJq9vS1W1wNKalo8fwKOFJNB8c4Ans2G4Ke_POf0uvrtB7FDs846_zKTy8QT44hfvfU1l9D37MkU7qDmgYNkchuxk06EsjD2wR-YrW_SbUG1Ag5hgmHlHv0OZqtQqyXH6x0fmZC23UT-Hk6PD3l-MiKS0U2gOmbcEVNjV2WhFrWGulwq51JZeNUQ1lsjSa0EaXqqbKcloSbhU1TrXYsoqrmpFnMOn6zr4A1DJFlVFEybqkfnu3jaukI84jH8Ia0s6A5RcqdKIhD2oY5yL3my1FXggRFkKU2B_VDA5Gu_VAxHGnRZPXS-QxUx8Yhc8Vd1ry0TIBkQFg_JftfnYNkcLBRvx13hm8HU_7jRyqM7Kz_eVGBJJm4vEibWbwfHCp8UE9JuMe2eOX_774K3gQ7mRokduHyfbi0r72mGmr3qSNcA2JWRWb priority: 102 providerName: ProQuest  | 
    
| Title | A computer vision based method for 3D posture estimation of symmetrical lifting | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929018300277 https://dx.doi.org/10.1016/j.jbiomech.2018.01.012 https://www.ncbi.nlm.nih.gov/pubmed/29398001 https://www.proquest.com/docview/2001518526 https://www.proquest.com/docview/1994363947  | 
    
| Volume | 69 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2380 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AKRWK dateStart: 19680101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1873-2380 dateEnd: 20250903 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1873-2380 dateEnd: 20250903 omitProxy: true ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED9KB2N7GFu6j2xd0WDszY1lSZb0mHUt2cayMVbIm7BsCRIaJyzpQ1_6t_cky1n3UDoYGBt_HMi-091Pvi-A95SVVrjKZ42sfcZRprKq9jpDc-M0s45zG6N8p-XknH-ZidkenPS5MCGsMun-TqdHbZ2ujNLXHK3n85Dji7MtuAEVC4urkFHOuQxdDI6v_4R5IFxOYR40C0_fyhJeHC9ijnt0SlAVy3fS4i4DdRcAjYbo7Ck8SQiSjLtBPoM91w7gYNzi6nl5RT6QGNMZf5YP4PGtcoMDePgtOdIP4PuY1KmfA-nSy0mwZw3pOkoThLKEfSLr1SZ4GEgoxdHlOJKVJ5ur5TI04kL2kou5D4HTz-H87PTXySRLvRWyGiHSNtOWNiX1tWWuEcpVlnrlc13JxkouqrypGZd1bktuneY5087yxltFnSi0LQV7AfvtqnWvgChhuW0ss1WZc5zQSvqi8swj1mFCMjUE0X9QU6fC46H_xYXpI8wWpmeECYwwOcWtGMJoR7fuSm_cSyF7fpk-sRRVoUHrcC-l3lH-JX7_RHvYi4ZJCmATunsillKiKIfwbncbp27wx1StW11uTCjLzBAhcjmEl51I7V4UUZhGLE9f_8fA3sCjcNZFzB3C_vb3pXuLEGprj-Icwb2cySN4MP78dTLF48fT6Y-fNxxZHaI | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrcTjgMqWx0ILRgJuoXHsPHyoqoW22tJ2QaiVejNxbEususlCtkL75_htHSdO6KWUS6XcoomSzHjms-fxAbylLFGxyW2g08IGHG0qyAsrAgw3RjBlOFdNle8kGZ_xz-fx-Qr86XphXFll5xMbR62rwp2Rb7van9h1-ia785-BY41y2dWOQiP31Ap6pxkx5hs7jszyN27h6p3DPdT3uyg62D_9NA48y0BQIFhYBEJRnVBbKGZ0nJlcUZvZUOSpVimP81AXjKdFqBKujOAhE0ZxbVVGTRwJlTjWCAwBa5xxgZu_tY_7k6_f-liAYN0XmdAAgUh4rUd5-mHadNg3KRGaNcNDaXRTeLwJ_jZh8GAdHnn8SkatwT2GFVMOYGNU4t59tiTvSVNR2hzVD-DhtWGHA7h34tP4G_BlRArPJkHa5nbioqkmLZ81QSBN2B6ZV7XLbxA3CKTtsCSVJfVyNnM0YGhc5OKHdWXbT-DsTv75U1gtq9I8B5LFiiutmMqTkKM7yVIb5ZZZRFosTlk2hLj7obLwY88d-8aF7OrbprJThHSKkCHFKxrCdi83bwd_3CqRdvqSXVsrOmKJselWSdFLeuDTApr_kt3sTEN691PLv4tlCG_62-g4XDYoL011WUs3FJohPuXpEJ61JtV_KGJAgTsJ-uLfD38N98enJ8fy-HBy9BIeuLdqy_M2YXXx69JsIV5bqFd-URD4ftfr8AowmFQ3 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRarggGDLY6GAkYBb2Dh24viA0Ipl1VIoHKi0NxMntsSqmyxkK7R_jV_HTF70UsqlUm7RRElmPPPZ880MwAsuEhu7zAeFyn0g0aaCLPc6wHDjtLBOStuwfE-Sw1P5YREvduB3XwtDtMreJzaOuqhyOiOfEPcnpkrfZOI7WsSX2fzt-kdAE6Qo09qP02hN5Nhtf-H2rX5zNENdv4yi-fuv7w6DbsJAkCNQ2ATa8iLhPrfCFXHqMst96kOdqcIqGWdhkQup8tAm0jotQ6GdlYW3KXdxpG1CEyPQ_d9QQmiiE6rFsNmjvvQdvYQHCEHCC9XJy9fLpra-SYbwtGkbyqPLAuNlwLcJgPM7cLtDrmzamtpd2HHlCPanJe7aV1v2ijVc0uaQfgS3LrQ5HMHepy6Bvw-fpyzv5kiwtqydURwtWDvJmiGEZmLG1lVNmQ1GLUDa2kpWeVZvVysaAIZmxc6-eyJs34PTa_nj92G3rEr3EFgaW2kLK2yWhBIdSap8lHnhEWOJWIl0DHH_Q03eNTynuRtnpme2LU2vCEOKMCHHKxrDZJBbty0_rpRQvb5MX9CKLthgVLpSUg-SHeRpocx_yR70pmE6x1Obv8tkDM-H2-gyKA-Ula46rw21gxaITKUaw4PWpIYPRfSncQ_BH_374c9gD1ef-Xh0cvwYbtJLtby8A9jd_Dx3TxCobezTZkUw-HbdS_AP5SpR0Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computer+vision+based+method+for+3D+posture+estimation+of+symmetrical+lifting&rft.jtitle=Journal+of+biomechanics&rft.au=Mehrizi%2C+Rahil&rft.au=Peng%2C+Xi&rft.au=Xu%2C+Xu&rft.au=Zhang%2C+Shaoting&rft.date=2018-03-01&rft.issn=0021-9290&rft.volume=69&rft.spage=40&rft.epage=46&rft_id=info:doi/10.1016%2Fj.jbiomech.2018.01.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbiomech_2018_01_012 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |