Disentangling sequential and concerted fragmentations of molecular polycations with covariant native frame analysis

We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmenta...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 24; no. 37; pp. 22699 - 2279
Main Authors McManus, Joseph W, Walmsley, Tiffany, Nagaya, Kiyonobu, Harries, James R, Kumagai, Yoshiaki, Iwayama, Hiroshi, Ashfold, Michael N.R, Britton, Mathew, Bucksbaum, Philip H, Downes-Ward, Briony, Driver, Taran, Heathcote, David, Hockett, Paul, Howard, Andrew J, Kukk, Edwin, Lee, Jason W. L, Liu, Yusong, Milesevic, Dennis, Minns, Russell S, Niozu, Akinobu, Niskanen, Johannes, Orr-Ewing, Andrew J, Owada, Shigeki, Rolles, Daniel, Robertson, Patrick A, Rudenko, Artem, Ueda, Kiyoshi, Unwin, James, Vallance, Claire, Burt, Michael, Brouard, Mark, Forbes, Ruaridh, Allum, Felix
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 28.09.2022
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/D2CP03029B

Cover

Abstract We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot⁻¹). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.
NRC publication: Yes
AbstractList We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot−1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.
We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot⁻¹). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.
We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot-1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot-1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.
We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot −1 ). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals. Using covariance analysis methods, we study the fragmentation dynamics of multiply ionized 1- and 2-iodopropane. Signatures of isomer-specific nuclear motion occurring during sequential fragmentation pathways are identified.
We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (~12 ions shot-1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.
We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot −1 ). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.
Author Harries, James R
Downes-Ward, Briony
Rudenko, Artem
Britton, Mathew
Kumagai, Yoshiaki
Hockett, Paul
Lee, Jason W. L
Vallance, Claire
Owada, Shigeki
Ashfold, Michael N.R
Bucksbaum, Philip H
Milesevic, Dennis
Allum, Felix
Robertson, Patrick A
Nagaya, Kiyonobu
Brouard, Mark
Niozu, Akinobu
McManus, Joseph W
Walmsley, Tiffany
Driver, Taran
Minns, Russell S
Unwin, James
Forbes, Ruaridh
Heathcote, David
Kukk, Edwin
Burt, Michael
Niskanen, Johannes
Rolles, Daniel
Iwayama, Hiroshi
Liu, Yusong
Howard, Andrew J
Orr-Ewing, Andrew J
Ueda, Kiyoshi
AuthorAffiliation QST, SPring-8
Department of Physics and Astronomy, University of Turku
Chemistry, University of Southampton
Department of Physics, Kyoto University
J. R. Macdonald Laboratory, Department of Physics, Kansas State University
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
Deutsches Elektronen-Synchrotron (DESY)
Linac Coherent Light Source, SLAC National Accelerator Laboratory
Japan Synchrotron Radiation Research Institute
School of Chemistry, University of Bristol, Cantock's Close
Stanford PULSE Institute, SLAC National Accelerator Laboratory
Chemistry Research Laboratory, Department of Chemistry, University of Oxford
UVSOR Synchrotron Facility, Institute for Molecular Science
RIKEN SPring-8 Center
National Research Council of Canada
Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588
Graduate School of Advanced Science and Engineering, Hiroshima University
AuthorAffiliation_xml – name: J. R. Macdonald Laboratory, Department of Physics, Kansas State University
– name: QST, SPring-8
– name: Stanford PULSE Institute, SLAC National Accelerator Laboratory
– name: Chemistry Research Laboratory, Department of Chemistry, University of Oxford
– name: Department of Physics and Astronomy, University of Turku
– name: School of Chemistry, University of Bristol, Cantock's Close
– name: Chemistry, University of Southampton
– name: RIKEN SPring-8 Center
– name: National Research Council of Canada
– name: Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588
– name: Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
– name: Graduate School of Advanced Science and Engineering, Hiroshima University
– name: Department of Physics, Kyoto University
– name: Deutsches Elektronen-Synchrotron (DESY)
– name: UVSOR Synchrotron Facility, Institute for Molecular Science
– name: Japan Synchrotron Radiation Research Institute
– name: Linac Coherent Light Source, SLAC National Accelerator Laboratory
Author_xml – sequence: 1
  fullname: McManus, Joseph W
– sequence: 2
  fullname: Walmsley, Tiffany
– sequence: 3
  fullname: Nagaya, Kiyonobu
– sequence: 4
  fullname: Harries, James R
– sequence: 5
  fullname: Kumagai, Yoshiaki
– sequence: 6
  fullname: Iwayama, Hiroshi
– sequence: 7
  fullname: Ashfold, Michael N.R
– sequence: 8
  fullname: Britton, Mathew
– sequence: 9
  fullname: Bucksbaum, Philip H
– sequence: 10
  fullname: Downes-Ward, Briony
– sequence: 11
  fullname: Driver, Taran
– sequence: 12
  fullname: Heathcote, David
– sequence: 13
  fullname: Hockett, Paul
– sequence: 14
  fullname: Howard, Andrew J
– sequence: 15
  fullname: Kukk, Edwin
– sequence: 16
  fullname: Lee, Jason W. L
– sequence: 17
  fullname: Liu, Yusong
– sequence: 18
  fullname: Milesevic, Dennis
– sequence: 19
  fullname: Minns, Russell S
– sequence: 20
  fullname: Niozu, Akinobu
– sequence: 21
  fullname: Niskanen, Johannes
– sequence: 22
  fullname: Orr-Ewing, Andrew J
– sequence: 23
  fullname: Owada, Shigeki
– sequence: 24
  fullname: Rolles, Daniel
– sequence: 25
  fullname: Robertson, Patrick A
– sequence: 26
  fullname: Rudenko, Artem
– sequence: 27
  fullname: Ueda, Kiyoshi
– sequence: 28
  fullname: Unwin, James
– sequence: 29
  fullname: Vallance, Claire
– sequence: 30
  fullname: Burt, Michael
– sequence: 31
  fullname: Brouard, Mark
– sequence: 32
  fullname: Forbes, Ruaridh
– sequence: 33
  fullname: Allum, Felix
BackLink https://www.osti.gov/biblio/1887595$$D View this record in Osti.gov
BookMark eNptkU1v1DAQhiNUJNrChTtSBBeEtGA7dmwf6ZYvqRIc4GxNnMnWVWIH21u0_x5nUy1SxWXGM_O8I8_MRXXmg8eqeknJe0oa_eGabX-QhjB99aQ6p7xtNpoofnZ6y_ZZdZHSHSGECtqcV-naJfQZ_G50flcn_L0voYOxBt_XNniLMWNfDxF20wJmF3yqw1BPYUS7HyHWcxgP9qHwx-XbIruH6MDn2pf0PS7qCUtHGA_JpefV0wHGhC8e_GX16_Onn9uvm5vvX75tP95srKA8b3TLOGeq6wSzjMAgW90oArrjg0CAXkgkmlPOUHetGDQghY4xEJICNP3QXFav174hZWeSdRntbRnJo82GKiWFFgV6u0JzDGX2lM3kksVxBI9hnwyTZXVCSq4K-uYRehf2sQx1pJRQVFJZqHcrZWNIKeJg5ugmiAdDiVmOZP4dqcDkEVx-eVxljuDG_0terZKY7Kl1z-x8rHel3q91H60tK-_hRAVwpf-yDLc4UwhjjwbWvJ-hRE2LqLDnhumWmzI9NaBoMQ3RPeO2p1Q1fwFsnsRX
CitedBy_id crossref_primary_10_1021_acs_jpca_4c00999
crossref_primary_10_1088_1361_6455_ad8695
crossref_primary_10_1088_1361_6455_ad9a2f
crossref_primary_10_1039_D3CP01740K
crossref_primary_10_1063_4_0000197
crossref_primary_10_1088_1361_6455_ad8799
crossref_primary_10_1021_acsphyschemau_4c00036
crossref_primary_10_1103_PhysRevA_110_053104
crossref_primary_10_1103_PhysRevLett_130_093001
crossref_primary_10_1103_PhysRevLett_133_193002
crossref_primary_10_1103_PhysRevA_108_043113
crossref_primary_10_1039_D3CP06079A
crossref_primary_10_1038_s42005_023_01414_7
crossref_primary_10_1103_PhysRevA_109_042802
crossref_primary_10_1088_1361_6455_adaf87
crossref_primary_10_1039_D2CP05309H
crossref_primary_10_1021_acs_jpca_4c01084
Cites_doi 10.1038/s41567-022-01507-0
10.1088/1367-2630/17/7/073002
10.1038/s41598-020-77408-0
10.1016/0168-1176(92)85038-2
10.1021/acs.jpca.0c06545
10.1063/1.4998648
10.1088/0953-4075/49/15/152004
10.1021/ar00167a002
10.1016/j.pss.2014.04.020
10.1088/0953-4075/39/13/S23
10.1063/1.5095430
10.1016/S0301-0104(97)00368-6
10.1002/(SICI)1096-9888(199609)31:9<1054::AID-JMS395>3.0.CO;2-0
10.1063/1.454129
10.1038/s41467-016-0009-6
10.1126/science.246.4933.1029
10.1107/S1600577520008516
10.1126/science.abc2960
10.1088/0953-4075/30/20/015
10.1002/qua.20436
10.1038/s42004-019-0249-6
10.1039/c3cp54677b
10.1063/1.465851
10.1103/PhysRevA.98.053429
10.1103/PhysRevLett.120.103001
10.1063/5.0024833
10.1016/0368-2048(86)85010-1
10.1063/1.1652544
10.1039/C7CP01379E
10.1103/PhysRevA.89.011401
10.1088/0953-4075/45/21/215201
10.1063/1.5001121
10.1088/0067-0049/204/2/20
10.1103/PhysRevLett.74.3780
10.1063/1.1148310
10.1021/acs.jpclett.1c02481
10.1039/c1cp21957j
10.1002/oms.1210210510
10.1103/PhysRevA.91.053424
10.1103/PhysRevA.89.053418
10.1021/acs.jpclett.2c01007
10.1016/j.nima.2018.03.017
10.1103/PhysRevLett.111.073002
10.1088/0953-4075/46/16/164034
10.1051/0004-6361:20065991
10.1007/s12210-012-0215-z
10.1107/S1600577517015685
10.1021/acs.jpca.1c04548
10.1080/00268978700101421
10.1039/c0cp02333g
10.1021/acs.jpclett.0c02959
10.1039/D0FD00115E
ContentType Journal Article
Copyright Creative Commons, Attribution 3.0 Unported (CC BY 3.0) (http://creativecommons.org/licenses/by/3.0/) Creative Commons, Attribution 3.0 non transposé (CC BY 3.0) (https://creativecommons.org/licenses/by/3.0/deed.fr)
Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Creative Commons, Attribution 3.0 Unported (CC BY 3.0) (http://creativecommons.org/licenses/by/3.0/) Creative Commons, Attribution 3.0 non transposé (CC BY 3.0) (https://creativecommons.org/licenses/by/3.0/deed.fr)
– notice: Copyright Royal Society of Chemistry 2022
CorporateAuthor SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
DBID -LJ
GXV
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
OTOTI
DOI 10.1039/D2CP03029B
DatabaseName National Research Council Canada Archive
CISTI Source
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences
Chemistry
EISSN 1463-9084
EndPage 2279
ExternalDocumentID 1887595
10_1039_D2CP03029B
d2cp03029b
oai_cisti_icist_nrc_cnrc_ca_cistinparc_36ee8ed4_2964_4651_a811_a309d24cd118
GroupedDBID ---
-DZ
-LJ
-~X
0-7
0R~
123
29O
2WC
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
GXV
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
YNT
-JG
1TJ
70J
AAGNR
ABFLS
ABGFH
AGSTE
AGSWI
OK1
UCJ
XOL
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
OTOTI
ID FETCH-LOGICAL-c514t-9624428bb52c20af769380a9b4f5eaad57e094142e9b65f9ae1ab22a571aa3df3
ISSN 1463-9076
1463-9084
IngestDate Mon Mar 24 04:18:06 EDT 2025
Thu Jul 10 19:22:12 EDT 2025
Sun Jun 29 16:12:20 EDT 2025
Tue Jul 01 00:54:18 EDT 2025
Thu Apr 24 23:01:52 EDT 2025
Thu Sep 29 05:00:16 EDT 2022
Fri Sep 26 16:39:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c514t-9624428bb52c20af769380a9b4f5eaad57e094142e9b65f9ae1ab22a571aa3df3
Notes https://doi.org/10.1039/d2cp03029b
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
UK Research and Innovation (UKRI)
USDOE
Japan Society for the Promotion of Science (JSPS)
European Research Council (ERC)
AC02-76SF00515; FG02-86ER13491; 20K14427; ERC-RA-0043; EP/R010609/1; EP/V026690/1; EP/T021675; EP/S028617/1
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0002-3761-6883
0000-0002-3965-3477
0000-0001-9561-8433
0000-0002-7292-5630
0000-0002-1261-6246
0000-0003-3880-8614
0000-0001-5762-7048
0000-0003-3421-0850
0000-0002-8044-8969
0000-0002-5501-3082
0000-0002-7317-8649
0000-0003-0611-8555
0000-0002-5156-6720
0000-0002-7911-2042
0000-0003-4909-5293
0000-0003-0935-3331
0000-0003-2097-5991
0000-0002-1446-5904
0000-0001-5551-9609
0000-0001-6009-6735
0000-0001-6775-2977
0000000237616883
0000000239653477
0000000214465904
0000000309353331
0000000279112042
0000000349095293
0000000280448969
0000000334210850
0000000155519609
0000000195618433
0000000338808614
0000000160096735
0000000255013082
0000000212616246
0000000167752977
0000000306118555
0000000320975991
0000000157627048
0000000251566720
0000000272925630
0000000273178649
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2022/cp/d2cp03029b
PQID 2718581717
PQPubID 2047499
PageCount 11
ParticipantIDs osti_scitechconnect_1887595
crossref_primary_10_1039_D2CP03029B
proquest_miscellaneous_2714657748
proquest_journals_2718581717
crossref_citationtrail_10_1039_D2CP03029B
rsc_primary_d2cp03029b
nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_36ee8ed4_2964_4651_a811_a309d24cd118
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-28
PublicationDateYYYYMMDD 2022-09-28
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-28
  day: 28
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: United States
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Richardson (D2CP03029B/cit2/1) 1986; 21
Allum (D2CP03029B/cit23/1) 2021; 228
Zhaunerchyk (D2CP03029B/cit43/1) 2014; 89
Corrales (D2CP03029B/cit50/1) 2014; 16
Thissen (D2CP03029B/cit4/1) 1993; 99
Eland (D2CP03029B/cit29/1) 1986; 41
Mucke (D2CP03029B/cit45/1) 2015; 17
Zhou (D2CP03029B/cit53/1) 2020; 153
Lee (D2CP03029B/cit34/1) 2020; 3
Owada (D2CP03029B/cit36/1) 2018; 25
Gronoff (D2CP03029B/cit11/1) 2007; 465
Boll (D2CP03029B/cit24/1) 2022; 18
Eland (D2CP03029B/cit1/1) 1987; 61
Légaré (D2CP03029B/cit17/1) 2006; 39
Mebel (D2CP03029B/cit8/1) 2005; 102
Bhattacharyya (D2CP03029B/cit21/1) 2022; 13
Gutsev (D2CP03029B/cit10/1) 2020; 124
Slater (D2CP03029B/cit32/1) 2015; 91
Owada (D2CP03029B/cit35/1) 2020; 27
Eland (D2CP03029B/cit49/1) 1989; 22
Rajput (D2CP03029B/cit28/1) 2020; 10
Allum (D2CP03029B/cit33/1) 2021; 12
Olney (D2CP03029B/cit39/1) 1998; 232
Ablikim (D2CP03029B/cit26/1) 2017; 19
Matsuda (D2CP03029B/cit18/1) 2011; 13
Eppink (D2CP03029B/cit37/1) 1997; 68
Dutuit (D2CP03029B/cit14/1) 2013; 204
Saito (D2CP03029B/cit40/1) 1992; 115
Price (D2CP03029B/cit3/1) 1988; 88
Reitsma (D2CP03029B/cit9/1) 2012; 45
Rajput (D2CP03029B/cit27/1) 2018; 120
Stapelfeldt (D2CP03029B/cit16/1) 1995; 74
Amini (D2CP03029B/cit22/1) 2018; 5
Heathcote (D2CP03029B/cit46/1) 2021; 125
Yeh (D2CP03029B/cit41/1) 1993
Fukuzawa (D2CP03029B/cit38/1) 2018; 907
Hochlaf (D2CP03029B/cit7/1) 2004; 120
Frasinski (D2CP03029B/cit30/1) 1989; 246
Pathak (D2CP03029B/cit25/1) 2020; 11
Kumar (D2CP03029B/cit48/1) 2018; 148
Frasinski (D2CP03029B/cit42/1) 2013; 111
Thissen (D2CP03029B/cit12/1) 2011; 13
Streeter (D2CP03029B/cit52/1) 2018; 98
Ding (D2CP03029B/cit19/1) 2019; 151
Hsieh (D2CP03029B/cit5/1) 1996; 31
Li (D2CP03029B/cit51/1) 2017; 8
Alagia (D2CP03029B/cit13/1) 2013; 24
Endo (D2CP03029B/cit20/1) 2020; 370
Zhaunerchyk (D2CP03029B/cit44/1) 2013; 46
Slater (D2CP03029B/cit31/1) 2014; 89
Falcinelli (D2CP03029B/cit15/1) 2014; 99
Frasinski (D2CP03029B/cit47/1) 2016; 49
Hsieh (D2CP03029B/cit6/1) 1997; 30
References_xml – issn: 1993
  publication-title: Atomic Calculation of Photoionization Cross-sections and Asymmetry Parameters
  doi: Yeh
– volume: 18
  start-page: 423
  year: 2022
  ident: D2CP03029B/cit24/1
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-022-01507-0
– volume: 17
  start-page: 073002
  year: 2015
  ident: D2CP03029B/cit45/1
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/7/073002
– volume: 10
  start-page: 1
  year: 2020
  ident: D2CP03029B/cit28/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-77408-0
– volume: 115
  start-page: 157
  year: 1992
  ident: D2CP03029B/cit40/1
  publication-title: Int. J. Mass Spectrom. Ion Process.
  doi: 10.1016/0168-1176(92)85038-2
– volume: 124
  start-page: 7427
  year: 2020
  ident: D2CP03029B/cit10/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.0c06545
– volume: 5
  start-page: 014301
  year: 2018
  ident: D2CP03029B/cit22/1
  publication-title: Struct. Dyn.
  doi: 10.1063/1.4998648
– volume: 49
  start-page: 152004
  year: 2016
  ident: D2CP03029B/cit47/1
  publication-title: J. Phys. B: Atom., Mol. Opt. Phys.
  doi: 10.1088/0953-4075/49/15/152004
– volume: 22
  start-page: 381
  year: 1989
  ident: D2CP03029B/cit49/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00167a002
– volume: 99
  start-page: 149
  year: 2014
  ident: D2CP03029B/cit15/1
  publication-title: Planetary Space Sci.
  doi: 10.1016/j.pss.2014.04.020
– volume: 39
  start-page: S503
  year: 2006
  ident: D2CP03029B/cit17/1
  publication-title: J. Phys. B: Atom., Mol. Opt. Phys.
  doi: 10.1088/0953-4075/39/13/S23
– volume: 151
  start-page: 174301
  year: 2019
  ident: D2CP03029B/cit19/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5095430
– volume: 232
  start-page: 211
  year: 1998
  ident: D2CP03029B/cit39/1
  publication-title: Chem. Phys.
  doi: 10.1016/S0301-0104(97)00368-6
– volume: 31
  start-page: 1054
  year: 1996
  ident: D2CP03029B/cit5/1
  publication-title: J. Mass Spectrom.
  doi: 10.1002/(SICI)1096-9888(199609)31:9<1054::AID-JMS395>3.0.CO;2-0
– volume: 88
  start-page: 1511
  year: 1988
  ident: D2CP03029B/cit3/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.454129
– volume: 8
  start-page: 1
  year: 2017
  ident: D2CP03029B/cit51/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-016-0009-6
– volume: 246
  start-page: 1029
  year: 1989
  ident: D2CP03029B/cit30/1
  publication-title: Science
  doi: 10.1126/science.246.4933.1029
– volume: 27
  start-page: 1362
  year: 2020
  ident: D2CP03029B/cit35/1
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S1600577520008516
– volume: 370
  start-page: 1072
  year: 2020
  ident: D2CP03029B/cit20/1
  publication-title: Science
  doi: 10.1126/science.abc2960
– volume: 30
  start-page: 4515
  year: 1997
  ident: D2CP03029B/cit6/1
  publication-title: J. Phys. B: Atom., Mol. Opt. Phys.
  doi: 10.1088/0953-4075/30/20/015
– volume: 102
  start-page: 506
  year: 2005
  ident: D2CP03029B/cit8/1
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.20436
– volume: 3
  start-page: 1
  year: 2020
  ident: D2CP03029B/cit34/1
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-019-0249-6
– volume: 16
  start-page: 8812
  year: 2014
  ident: D2CP03029B/cit50/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp54677b
– volume: 99
  start-page: 6590
  year: 1993
  ident: D2CP03029B/cit4/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465851
– volume: 98
  start-page: 053429
  year: 2018
  ident: D2CP03029B/cit52/1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.053429
– volume: 120
  start-page: 103001
  year: 2018
  ident: D2CP03029B/cit27/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.103001
– volume: 153
  start-page: 184201
  year: 2020
  ident: D2CP03029B/cit53/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0024833
– volume: 41
  start-page: 297
  year: 1986
  ident: D2CP03029B/cit29/1
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/0368-2048(86)85010-1
– volume: 120
  start-page: 6449
  year: 2004
  ident: D2CP03029B/cit7/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1652544
– volume: 19
  start-page: 13419
  year: 2017
  ident: D2CP03029B/cit26/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP01379E
– volume: 89
  start-page: 011401
  year: 2014
  ident: D2CP03029B/cit31/1
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.89.011401
– volume: 45
  start-page: 215201
  year: 2012
  ident: D2CP03029B/cit9/1
  publication-title: J. Phys. B: Atom., Mol. Opt. Phys.
  doi: 10.1088/0953-4075/45/21/215201
– volume: 148
  start-page: 064302
  year: 2018
  ident: D2CP03029B/cit48/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5001121
– volume: 204
  start-page: 20
  year: 2013
  ident: D2CP03029B/cit14/1
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1088/0067-0049/204/2/20
– volume: 74
  start-page: 3780
  year: 1995
  ident: D2CP03029B/cit16/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.3780
– volume: 68
  start-page: 3477
  year: 1997
  ident: D2CP03029B/cit37/1
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1148310
– volume: 12
  start-page: 8302
  year: 2021
  ident: D2CP03029B/cit33/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c02481
– volume: 13
  start-page: 18264
  year: 2011
  ident: D2CP03029B/cit12/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21957j
– volume: 21
  start-page: 289
  year: 1986
  ident: D2CP03029B/cit2/1
  publication-title: Org. Mass Spectrom.
  doi: 10.1002/oms.1210210510
– volume: 91
  start-page: 053424
  year: 2015
  ident: D2CP03029B/cit32/1
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.91.053424
– volume: 89
  start-page: 053418
  year: 2014
  ident: D2CP03029B/cit43/1
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.89.053418
– volume: 13
  start-page: 5845
  year: 2022
  ident: D2CP03029B/cit21/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c01007
– volume: 907
  start-page: 116
  year: 2018
  ident: D2CP03029B/cit38/1
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/j.nima.2018.03.017
– volume: 111
  start-page: 073002
  year: 2013
  ident: D2CP03029B/cit42/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.073002
– volume: 46
  start-page: 164034
  year: 2013
  ident: D2CP03029B/cit44/1
  publication-title: J. Phys. B: Atom., Mol. Opt. Phys.
  doi: 10.1088/0953-4075/46/16/164034
– volume: 465
  start-page: 641
  year: 2007
  ident: D2CP03029B/cit11/1
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20065991
– volume: 24
  start-page: 53
  year: 2013
  ident: D2CP03029B/cit13/1
  publication-title: Rendiconti Lincei
  doi: 10.1007/s12210-012-0215-z
– volume: 25
  start-page: 282
  year: 2018
  ident: D2CP03029B/cit36/1
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S1600577517015685
– volume: 125
  start-page: 7092
  year: 2021
  ident: D2CP03029B/cit46/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.1c04548
– volume: 61
  start-page: 725
  year: 1987
  ident: D2CP03029B/cit1/1
  publication-title: Mol. Phys.
  doi: 10.1080/00268978700101421
– volume: 13
  start-page: 8697
  year: 2011
  ident: D2CP03029B/cit18/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp02333g
– volume: 11
  start-page: 10205
  year: 2020
  ident: D2CP03029B/cit25/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02959
– volume: 228
  start-page: 571
  year: 2021
  ident: D2CP03029B/cit23/1
  publication-title: Faraday Disc.
  doi: 10.1039/D0FD00115E
– volume-title: Atomic Calculation of Photoionization Cross-sections and Asymmetry Parameters
  year: 1993
  ident: D2CP03029B/cit41/1
SSID ssj0001513
Score 2.5160093
Snippet We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme...
SourceID osti
proquest
crossref
rsc
nrccanada
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22699
SubjectTerms Angular distribution
Covariance
Femtosecond pulses
Fragmentation
Imaging
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Polyelectrolytes
Title Disentangling sequential and concerted fragmentations of molecular polycations with covariant native frame analysis
URI https://nrc-publications.canada.ca/eng/view/object/?id=36ee8ed4-2964-4651-a811-a309d24cd118
https://www.proquest.com/docview/2718581717
https://www.proquest.com/docview/2714657748
https://www.osti.gov/biblio/1887595
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer
  customDbUrl: https://pubs.rsc.org
  eissn: 1463-9084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001513
  issn: 1463-9076
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67mG8IG4TZQMZwQuqWhLn6sepGxqIogp1Yi_IchxnqkTTqhek8t_4b5wTx07K9jB4SSvXSZucr8ffOT4XQt56aRbqOOSDlGlMycn5gIdYcj-LNAfKHBSVM2f8Jb68Cj9dR9edzu9W1NJ2kw3VrzvzSv5HqjAGcsUs2X-QrLsoDMB7kC8cQcJwvJeMz2dV6hBm4qJXoIqK3szq7H-FCYkrJJTFSt7M6xwjE_U2t01xsUnDzgaU12HoP8F8hufdL-ua4Bi-BVc0xUvaZHZiZaxs1zjzDoeMx2RdeRwmo5HLIhursSy3rc2H_rdhy6k_tz706aworJ5CX7W8kTuTvTbbLcpFtm1U5wqtfRfx2_86bHsywAjGzZ228g3jYADGel0auz1m2shZjW2yrmtkmpoxVv-y2PRbqhdzxpKq-sLtlcILsNDqORtNQM0x3uwXuRiAv5ZJF7xYbdsHXDTnHpBDlsQx65LDs4vpx8-OCgCdCkx6m7kxWx834O-bs_cY0VG5UlW4HxCl7gK0_J7lc7CybWkq-jN9RB7Wdgs9MyB8TDq6fEKORlbwT8l6D4y0ASMFMFIHRroPRrooqAMjbYGRIhipAyM1YKQVGKkF4zNy9eFiOroc1B09BgqI-WbAY2CTLM2yiCnmyQIbcaae5FlYRFrKPEq0B6oiZJpncVRwqX2ZMSajxJcyyIvgmHTLRamfE-pj4b8gzHMVF9g1nfNI-bH2cuC7eZzyHnlnn6pQdbl77LryQ9yWX4-8cXOXpsjLnbO-O-G4aVidXeFqLGb4ImCGUNVBmvFyCQuWCGKtU52HAqMcBPx0X8gUTG8ZeDxnocrBzu-RExS4AOqL9ZsVBrqpjfCBBkQ86pFTiwNRq6C1YMAso9RP_KRHXruPQfC46ydLvdhWc-D7wMqDLzgG_LifnjO1rO4se3Gv-z8hD5p_7SnpblZb_RIY-SZ7VeP-DwP35Q8
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentangling+sequential+and+concerted+fragmentations+of+molecular+polycations+with+covariant+native+frame+analysis&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=McManus%2C+Joseph+W.&rft.au=Walmsley%2C+Tiffany&rft.au=Nagaya%2C+Kiyonobu&rft.au=Harries%2C+James+R.&rft.date=2022-09-28&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=24&rft.issue=37&rft.spage=22699&rft.epage=22709&rft_id=info:doi/10.1039%2FD2CP03029B&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2CP03029B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon