Disentangling sequential and concerted fragmentations of molecular polycations with covariant native frame analysis
We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmenta...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 24; no. 37; pp. 22699 - 2279 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
28.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1463-9076 1463-9084 1463-9084 |
DOI | 10.1039/D2CP03029B |
Cover
Abstract | We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot⁻¹). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals. NRC publication: Yes |
---|---|
AbstractList | We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot−1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals. We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot⁻¹). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals. We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot-1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals.We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot-1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals. We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot −1 ). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals. Using covariance analysis methods, we study the fragmentation dynamics of multiply ionized 1- and 2-iodopropane. Signatures of isomer-specific nuclear motion occurring during sequential fragmentation pathways are identified. We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (~12 ions shot-1). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals. We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Using covariance imaging analysis, a range of observed fragmentation pathways of the resulting polycations can be isolated and interrogated in detail at relatively high ion count rates (∼12 ions shot −1 ). By incorporating the recently developed native frames analysis approach into the three-dimensional covariance imaging procedure, contributions from three-body concerted and sequential fragmentation mechanisms can be isolated. The angular distribution of the fragment ions is much more complex than in previously reported studies for triatomic polycations, and differs substantially between the two isomeric species. With support of simple simulations of the dissociation channels of interest, detailed physical insights into the fragmentation dynamics are obtained, including how the initial dissociation step in a sequential mechanism influences rovibrational dynamics in the metastable intermediate ion and how signatures of this nuclear motion manifest in the measured signals. |
Author | Harries, James R Downes-Ward, Briony Rudenko, Artem Britton, Mathew Kumagai, Yoshiaki Hockett, Paul Lee, Jason W. L Vallance, Claire Owada, Shigeki Ashfold, Michael N.R Bucksbaum, Philip H Milesevic, Dennis Allum, Felix Robertson, Patrick A Nagaya, Kiyonobu Brouard, Mark Niozu, Akinobu McManus, Joseph W Walmsley, Tiffany Driver, Taran Minns, Russell S Unwin, James Forbes, Ruaridh Heathcote, David Kukk, Edwin Burt, Michael Niskanen, Johannes Rolles, Daniel Iwayama, Hiroshi Liu, Yusong Howard, Andrew J Orr-Ewing, Andrew J Ueda, Kiyoshi |
AuthorAffiliation | QST, SPring-8 Department of Physics and Astronomy, University of Turku Chemistry, University of Southampton Department of Physics, Kyoto University J. R. Macdonald Laboratory, Department of Physics, Kansas State University Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Deutsches Elektronen-Synchrotron (DESY) Linac Coherent Light Source, SLAC National Accelerator Laboratory Japan Synchrotron Radiation Research Institute School of Chemistry, University of Bristol, Cantock's Close Stanford PULSE Institute, SLAC National Accelerator Laboratory Chemistry Research Laboratory, Department of Chemistry, University of Oxford UVSOR Synchrotron Facility, Institute for Molecular Science RIKEN SPring-8 Center National Research Council of Canada Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588 Graduate School of Advanced Science and Engineering, Hiroshima University |
AuthorAffiliation_xml | – name: J. R. Macdonald Laboratory, Department of Physics, Kansas State University – name: QST, SPring-8 – name: Stanford PULSE Institute, SLAC National Accelerator Laboratory – name: Chemistry Research Laboratory, Department of Chemistry, University of Oxford – name: Department of Physics and Astronomy, University of Turku – name: School of Chemistry, University of Bristol, Cantock's Close – name: Chemistry, University of Southampton – name: RIKEN SPring-8 Center – name: National Research Council of Canada – name: Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588 – name: Institute of Multidisciplinary Research for Advanced Materials, Tohoku University – name: Graduate School of Advanced Science and Engineering, Hiroshima University – name: Department of Physics, Kyoto University – name: Deutsches Elektronen-Synchrotron (DESY) – name: UVSOR Synchrotron Facility, Institute for Molecular Science – name: Japan Synchrotron Radiation Research Institute – name: Linac Coherent Light Source, SLAC National Accelerator Laboratory |
Author_xml | – sequence: 1 fullname: McManus, Joseph W – sequence: 2 fullname: Walmsley, Tiffany – sequence: 3 fullname: Nagaya, Kiyonobu – sequence: 4 fullname: Harries, James R – sequence: 5 fullname: Kumagai, Yoshiaki – sequence: 6 fullname: Iwayama, Hiroshi – sequence: 7 fullname: Ashfold, Michael N.R – sequence: 8 fullname: Britton, Mathew – sequence: 9 fullname: Bucksbaum, Philip H – sequence: 10 fullname: Downes-Ward, Briony – sequence: 11 fullname: Driver, Taran – sequence: 12 fullname: Heathcote, David – sequence: 13 fullname: Hockett, Paul – sequence: 14 fullname: Howard, Andrew J – sequence: 15 fullname: Kukk, Edwin – sequence: 16 fullname: Lee, Jason W. L – sequence: 17 fullname: Liu, Yusong – sequence: 18 fullname: Milesevic, Dennis – sequence: 19 fullname: Minns, Russell S – sequence: 20 fullname: Niozu, Akinobu – sequence: 21 fullname: Niskanen, Johannes – sequence: 22 fullname: Orr-Ewing, Andrew J – sequence: 23 fullname: Owada, Shigeki – sequence: 24 fullname: Rolles, Daniel – sequence: 25 fullname: Robertson, Patrick A – sequence: 26 fullname: Rudenko, Artem – sequence: 27 fullname: Ueda, Kiyoshi – sequence: 28 fullname: Unwin, James – sequence: 29 fullname: Vallance, Claire – sequence: 30 fullname: Burt, Michael – sequence: 31 fullname: Brouard, Mark – sequence: 32 fullname: Forbes, Ruaridh – sequence: 33 fullname: Allum, Felix |
BackLink | https://www.osti.gov/biblio/1887595$$D View this record in Osti.gov |
BookMark | eNptkU1v1DAQhiNUJNrChTtSBBeEtGA7dmwf6ZYvqRIc4GxNnMnWVWIH21u0_x5nUy1SxWXGM_O8I8_MRXXmg8eqeknJe0oa_eGabX-QhjB99aQ6p7xtNpoofnZ6y_ZZdZHSHSGECtqcV-naJfQZ_G50flcn_L0voYOxBt_XNniLMWNfDxF20wJmF3yqw1BPYUS7HyHWcxgP9qHwx-XbIruH6MDn2pf0PS7qCUtHGA_JpefV0wHGhC8e_GX16_Onn9uvm5vvX75tP95srKA8b3TLOGeq6wSzjMAgW90oArrjg0CAXkgkmlPOUHetGDQghY4xEJICNP3QXFav174hZWeSdRntbRnJo82GKiWFFgV6u0JzDGX2lM3kksVxBI9hnwyTZXVCSq4K-uYRehf2sQx1pJRQVFJZqHcrZWNIKeJg5ugmiAdDiVmOZP4dqcDkEVx-eVxljuDG_0terZKY7Kl1z-x8rHel3q91H60tK-_hRAVwpf-yDLc4UwhjjwbWvJ-hRE2LqLDnhumWmzI9NaBoMQ3RPeO2p1Q1fwFsnsRX |
CitedBy_id | crossref_primary_10_1021_acs_jpca_4c00999 crossref_primary_10_1088_1361_6455_ad8695 crossref_primary_10_1088_1361_6455_ad9a2f crossref_primary_10_1039_D3CP01740K crossref_primary_10_1063_4_0000197 crossref_primary_10_1088_1361_6455_ad8799 crossref_primary_10_1021_acsphyschemau_4c00036 crossref_primary_10_1103_PhysRevA_110_053104 crossref_primary_10_1103_PhysRevLett_130_093001 crossref_primary_10_1103_PhysRevLett_133_193002 crossref_primary_10_1103_PhysRevA_108_043113 crossref_primary_10_1039_D3CP06079A crossref_primary_10_1038_s42005_023_01414_7 crossref_primary_10_1103_PhysRevA_109_042802 crossref_primary_10_1088_1361_6455_adaf87 crossref_primary_10_1039_D2CP05309H crossref_primary_10_1021_acs_jpca_4c01084 |
Cites_doi | 10.1038/s41567-022-01507-0 10.1088/1367-2630/17/7/073002 10.1038/s41598-020-77408-0 10.1016/0168-1176(92)85038-2 10.1021/acs.jpca.0c06545 10.1063/1.4998648 10.1088/0953-4075/49/15/152004 10.1021/ar00167a002 10.1016/j.pss.2014.04.020 10.1088/0953-4075/39/13/S23 10.1063/1.5095430 10.1016/S0301-0104(97)00368-6 10.1002/(SICI)1096-9888(199609)31:9<1054::AID-JMS395>3.0.CO;2-0 10.1063/1.454129 10.1038/s41467-016-0009-6 10.1126/science.246.4933.1029 10.1107/S1600577520008516 10.1126/science.abc2960 10.1088/0953-4075/30/20/015 10.1002/qua.20436 10.1038/s42004-019-0249-6 10.1039/c3cp54677b 10.1063/1.465851 10.1103/PhysRevA.98.053429 10.1103/PhysRevLett.120.103001 10.1063/5.0024833 10.1016/0368-2048(86)85010-1 10.1063/1.1652544 10.1039/C7CP01379E 10.1103/PhysRevA.89.011401 10.1088/0953-4075/45/21/215201 10.1063/1.5001121 10.1088/0067-0049/204/2/20 10.1103/PhysRevLett.74.3780 10.1063/1.1148310 10.1021/acs.jpclett.1c02481 10.1039/c1cp21957j 10.1002/oms.1210210510 10.1103/PhysRevA.91.053424 10.1103/PhysRevA.89.053418 10.1021/acs.jpclett.2c01007 10.1016/j.nima.2018.03.017 10.1103/PhysRevLett.111.073002 10.1088/0953-4075/46/16/164034 10.1051/0004-6361:20065991 10.1007/s12210-012-0215-z 10.1107/S1600577517015685 10.1021/acs.jpca.1c04548 10.1080/00268978700101421 10.1039/c0cp02333g 10.1021/acs.jpclett.0c02959 10.1039/D0FD00115E |
ContentType | Journal Article |
Copyright | Creative Commons, Attribution 3.0 Unported (CC BY 3.0) (http://creativecommons.org/licenses/by/3.0/) Creative Commons, Attribution 3.0 non transposé (CC BY 3.0) (https://creativecommons.org/licenses/by/3.0/deed.fr) Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Creative Commons, Attribution 3.0 Unported (CC BY 3.0) (http://creativecommons.org/licenses/by/3.0/) Creative Commons, Attribution 3.0 non transposé (CC BY 3.0) (https://creativecommons.org/licenses/by/3.0/deed.fr) – notice: Copyright Royal Society of Chemistry 2022 |
CorporateAuthor | SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) |
CorporateAuthor_xml | – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) |
DBID | -LJ GXV AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 OTOTI |
DOI | 10.1039/D2CP03029B |
DatabaseName | National Research Council Canada Archive CISTI Source CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences Chemistry |
EISSN | 1463-9084 |
EndPage | 2279 |
ExternalDocumentID | 1887595 10_1039_D2CP03029B d2cp03029b oai_cisti_icist_nrc_cnrc_ca_cistinparc_36ee8ed4_2964_4651_a811_a309d24cd118 |
GroupedDBID | --- -DZ -LJ -~X 0-7 0R~ 123 29O 2WC 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO GXV H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- P2P R56 R7B R7C RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 YNT -JG 1TJ 70J AAGNR ABFLS ABGFH AGSTE AGSWI OK1 UCJ XOL AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 OTOTI |
ID | FETCH-LOGICAL-c514t-9624428bb52c20af769380a9b4f5eaad57e094142e9b65f9ae1ab22a571aa3df3 |
ISSN | 1463-9076 1463-9084 |
IngestDate | Mon Mar 24 04:18:06 EDT 2025 Thu Jul 10 19:22:12 EDT 2025 Sun Jun 29 16:12:20 EDT 2025 Tue Jul 01 00:54:18 EDT 2025 Thu Apr 24 23:01:52 EDT 2025 Thu Sep 29 05:00:16 EDT 2022 Fri Sep 26 16:39:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c514t-9624428bb52c20af769380a9b4f5eaad57e094142e9b65f9ae1ab22a571aa3df3 |
Notes | https://doi.org/10.1039/d2cp03029b Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 UK Research and Innovation (UKRI) USDOE Japan Society for the Promotion of Science (JSPS) European Research Council (ERC) AC02-76SF00515; FG02-86ER13491; 20K14427; ERC-RA-0043; EP/R010609/1; EP/V026690/1; EP/T021675; EP/S028617/1 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ORCID | 0000-0002-3761-6883 0000-0002-3965-3477 0000-0001-9561-8433 0000-0002-7292-5630 0000-0002-1261-6246 0000-0003-3880-8614 0000-0001-5762-7048 0000-0003-3421-0850 0000-0002-8044-8969 0000-0002-5501-3082 0000-0002-7317-8649 0000-0003-0611-8555 0000-0002-5156-6720 0000-0002-7911-2042 0000-0003-4909-5293 0000-0003-0935-3331 0000-0003-2097-5991 0000-0002-1446-5904 0000-0001-5551-9609 0000-0001-6009-6735 0000-0001-6775-2977 0000000237616883 0000000239653477 0000000214465904 0000000309353331 0000000279112042 0000000349095293 0000000280448969 0000000334210850 0000000155519609 0000000195618433 0000000338808614 0000000160096735 0000000255013082 0000000212616246 0000000167752977 0000000306118555 0000000320975991 0000000157627048 0000000251566720 0000000272925630 0000000273178649 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2022/cp/d2cp03029b |
PQID | 2718581717 |
PQPubID | 2047499 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1887595 crossref_primary_10_1039_D2CP03029B proquest_miscellaneous_2714657748 proquest_journals_2718581717 crossref_citationtrail_10_1039_D2CP03029B rsc_primary_d2cp03029b nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_36ee8ed4_2964_4651_a811_a309d24cd118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-28 |
PublicationDateYYYYMMDD | 2022-09-28 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge – name: United States |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Richardson (D2CP03029B/cit2/1) 1986; 21 Allum (D2CP03029B/cit23/1) 2021; 228 Zhaunerchyk (D2CP03029B/cit43/1) 2014; 89 Corrales (D2CP03029B/cit50/1) 2014; 16 Thissen (D2CP03029B/cit4/1) 1993; 99 Eland (D2CP03029B/cit29/1) 1986; 41 Mucke (D2CP03029B/cit45/1) 2015; 17 Zhou (D2CP03029B/cit53/1) 2020; 153 Lee (D2CP03029B/cit34/1) 2020; 3 Owada (D2CP03029B/cit36/1) 2018; 25 Gronoff (D2CP03029B/cit11/1) 2007; 465 Boll (D2CP03029B/cit24/1) 2022; 18 Eland (D2CP03029B/cit1/1) 1987; 61 Légaré (D2CP03029B/cit17/1) 2006; 39 Mebel (D2CP03029B/cit8/1) 2005; 102 Bhattacharyya (D2CP03029B/cit21/1) 2022; 13 Gutsev (D2CP03029B/cit10/1) 2020; 124 Slater (D2CP03029B/cit32/1) 2015; 91 Owada (D2CP03029B/cit35/1) 2020; 27 Eland (D2CP03029B/cit49/1) 1989; 22 Rajput (D2CP03029B/cit28/1) 2020; 10 Allum (D2CP03029B/cit33/1) 2021; 12 Olney (D2CP03029B/cit39/1) 1998; 232 Ablikim (D2CP03029B/cit26/1) 2017; 19 Matsuda (D2CP03029B/cit18/1) 2011; 13 Eppink (D2CP03029B/cit37/1) 1997; 68 Dutuit (D2CP03029B/cit14/1) 2013; 204 Saito (D2CP03029B/cit40/1) 1992; 115 Price (D2CP03029B/cit3/1) 1988; 88 Reitsma (D2CP03029B/cit9/1) 2012; 45 Rajput (D2CP03029B/cit27/1) 2018; 120 Stapelfeldt (D2CP03029B/cit16/1) 1995; 74 Amini (D2CP03029B/cit22/1) 2018; 5 Heathcote (D2CP03029B/cit46/1) 2021; 125 Yeh (D2CP03029B/cit41/1) 1993 Fukuzawa (D2CP03029B/cit38/1) 2018; 907 Hochlaf (D2CP03029B/cit7/1) 2004; 120 Frasinski (D2CP03029B/cit30/1) 1989; 246 Pathak (D2CP03029B/cit25/1) 2020; 11 Kumar (D2CP03029B/cit48/1) 2018; 148 Frasinski (D2CP03029B/cit42/1) 2013; 111 Thissen (D2CP03029B/cit12/1) 2011; 13 Streeter (D2CP03029B/cit52/1) 2018; 98 Ding (D2CP03029B/cit19/1) 2019; 151 Hsieh (D2CP03029B/cit5/1) 1996; 31 Li (D2CP03029B/cit51/1) 2017; 8 Alagia (D2CP03029B/cit13/1) 2013; 24 Endo (D2CP03029B/cit20/1) 2020; 370 Zhaunerchyk (D2CP03029B/cit44/1) 2013; 46 Slater (D2CP03029B/cit31/1) 2014; 89 Falcinelli (D2CP03029B/cit15/1) 2014; 99 Frasinski (D2CP03029B/cit47/1) 2016; 49 Hsieh (D2CP03029B/cit6/1) 1997; 30 |
References_xml | – issn: 1993 publication-title: Atomic Calculation of Photoionization Cross-sections and Asymmetry Parameters doi: Yeh – volume: 18 start-page: 423 year: 2022 ident: D2CP03029B/cit24/1 publication-title: Nat. Phys. doi: 10.1038/s41567-022-01507-0 – volume: 17 start-page: 073002 year: 2015 ident: D2CP03029B/cit45/1 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/7/073002 – volume: 10 start-page: 1 year: 2020 ident: D2CP03029B/cit28/1 publication-title: Sci. Rep. doi: 10.1038/s41598-020-77408-0 – volume: 115 start-page: 157 year: 1992 ident: D2CP03029B/cit40/1 publication-title: Int. J. Mass Spectrom. Ion Process. doi: 10.1016/0168-1176(92)85038-2 – volume: 124 start-page: 7427 year: 2020 ident: D2CP03029B/cit10/1 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.0c06545 – volume: 5 start-page: 014301 year: 2018 ident: D2CP03029B/cit22/1 publication-title: Struct. Dyn. doi: 10.1063/1.4998648 – volume: 49 start-page: 152004 year: 2016 ident: D2CP03029B/cit47/1 publication-title: J. Phys. B: Atom., Mol. Opt. Phys. doi: 10.1088/0953-4075/49/15/152004 – volume: 22 start-page: 381 year: 1989 ident: D2CP03029B/cit49/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar00167a002 – volume: 99 start-page: 149 year: 2014 ident: D2CP03029B/cit15/1 publication-title: Planetary Space Sci. doi: 10.1016/j.pss.2014.04.020 – volume: 39 start-page: S503 year: 2006 ident: D2CP03029B/cit17/1 publication-title: J. Phys. B: Atom., Mol. Opt. Phys. doi: 10.1088/0953-4075/39/13/S23 – volume: 151 start-page: 174301 year: 2019 ident: D2CP03029B/cit19/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5095430 – volume: 232 start-page: 211 year: 1998 ident: D2CP03029B/cit39/1 publication-title: Chem. Phys. doi: 10.1016/S0301-0104(97)00368-6 – volume: 31 start-page: 1054 year: 1996 ident: D2CP03029B/cit5/1 publication-title: J. Mass Spectrom. doi: 10.1002/(SICI)1096-9888(199609)31:9<1054::AID-JMS395>3.0.CO;2-0 – volume: 88 start-page: 1511 year: 1988 ident: D2CP03029B/cit3/1 publication-title: J. Chem. Phys. doi: 10.1063/1.454129 – volume: 8 start-page: 1 year: 2017 ident: D2CP03029B/cit51/1 publication-title: Nat. Commun. doi: 10.1038/s41467-016-0009-6 – volume: 246 start-page: 1029 year: 1989 ident: D2CP03029B/cit30/1 publication-title: Science doi: 10.1126/science.246.4933.1029 – volume: 27 start-page: 1362 year: 2020 ident: D2CP03029B/cit35/1 publication-title: J. Synchrotron Radiat. doi: 10.1107/S1600577520008516 – volume: 370 start-page: 1072 year: 2020 ident: D2CP03029B/cit20/1 publication-title: Science doi: 10.1126/science.abc2960 – volume: 30 start-page: 4515 year: 1997 ident: D2CP03029B/cit6/1 publication-title: J. Phys. B: Atom., Mol. Opt. Phys. doi: 10.1088/0953-4075/30/20/015 – volume: 102 start-page: 506 year: 2005 ident: D2CP03029B/cit8/1 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.20436 – volume: 3 start-page: 1 year: 2020 ident: D2CP03029B/cit34/1 publication-title: Commun. Chem. doi: 10.1038/s42004-019-0249-6 – volume: 16 start-page: 8812 year: 2014 ident: D2CP03029B/cit50/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp54677b – volume: 99 start-page: 6590 year: 1993 ident: D2CP03029B/cit4/1 publication-title: J. Chem. Phys. doi: 10.1063/1.465851 – volume: 98 start-page: 053429 year: 2018 ident: D2CP03029B/cit52/1 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.053429 – volume: 120 start-page: 103001 year: 2018 ident: D2CP03029B/cit27/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.103001 – volume: 153 start-page: 184201 year: 2020 ident: D2CP03029B/cit53/1 publication-title: J. Chem. Phys. doi: 10.1063/5.0024833 – volume: 41 start-page: 297 year: 1986 ident: D2CP03029B/cit29/1 publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/0368-2048(86)85010-1 – volume: 120 start-page: 6449 year: 2004 ident: D2CP03029B/cit7/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1652544 – volume: 19 start-page: 13419 year: 2017 ident: D2CP03029B/cit26/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP01379E – volume: 89 start-page: 011401 year: 2014 ident: D2CP03029B/cit31/1 publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.89.011401 – volume: 45 start-page: 215201 year: 2012 ident: D2CP03029B/cit9/1 publication-title: J. Phys. B: Atom., Mol. Opt. Phys. doi: 10.1088/0953-4075/45/21/215201 – volume: 148 start-page: 064302 year: 2018 ident: D2CP03029B/cit48/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5001121 – volume: 204 start-page: 20 year: 2013 ident: D2CP03029B/cit14/1 publication-title: Astrophys. J. Suppl. Ser. doi: 10.1088/0067-0049/204/2/20 – volume: 74 start-page: 3780 year: 1995 ident: D2CP03029B/cit16/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.3780 – volume: 68 start-page: 3477 year: 1997 ident: D2CP03029B/cit37/1 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1148310 – volume: 12 start-page: 8302 year: 2021 ident: D2CP03029B/cit33/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c02481 – volume: 13 start-page: 18264 year: 2011 ident: D2CP03029B/cit12/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp21957j – volume: 21 start-page: 289 year: 1986 ident: D2CP03029B/cit2/1 publication-title: Org. Mass Spectrom. doi: 10.1002/oms.1210210510 – volume: 91 start-page: 053424 year: 2015 ident: D2CP03029B/cit32/1 publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.91.053424 – volume: 89 start-page: 053418 year: 2014 ident: D2CP03029B/cit43/1 publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.89.053418 – volume: 13 start-page: 5845 year: 2022 ident: D2CP03029B/cit21/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c01007 – volume: 907 start-page: 116 year: 2018 ident: D2CP03029B/cit38/1 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/j.nima.2018.03.017 – volume: 111 start-page: 073002 year: 2013 ident: D2CP03029B/cit42/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.073002 – volume: 46 start-page: 164034 year: 2013 ident: D2CP03029B/cit44/1 publication-title: J. Phys. B: Atom., Mol. Opt. Phys. doi: 10.1088/0953-4075/46/16/164034 – volume: 465 start-page: 641 year: 2007 ident: D2CP03029B/cit11/1 publication-title: Astron. Astrophys. doi: 10.1051/0004-6361:20065991 – volume: 24 start-page: 53 year: 2013 ident: D2CP03029B/cit13/1 publication-title: Rendiconti Lincei doi: 10.1007/s12210-012-0215-z – volume: 25 start-page: 282 year: 2018 ident: D2CP03029B/cit36/1 publication-title: J. Synchrotron Radiat. doi: 10.1107/S1600577517015685 – volume: 125 start-page: 7092 year: 2021 ident: D2CP03029B/cit46/1 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.1c04548 – volume: 61 start-page: 725 year: 1987 ident: D2CP03029B/cit1/1 publication-title: Mol. Phys. doi: 10.1080/00268978700101421 – volume: 13 start-page: 8697 year: 2011 ident: D2CP03029B/cit18/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp02333g – volume: 11 start-page: 10205 year: 2020 ident: D2CP03029B/cit25/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02959 – volume: 228 start-page: 571 year: 2021 ident: D2CP03029B/cit23/1 publication-title: Faraday Disc. doi: 10.1039/D0FD00115E – volume-title: Atomic Calculation of Photoionization Cross-sections and Asymmetry Parameters year: 1993 ident: D2CP03029B/cit41/1 |
SSID | ssj0001513 |
Score | 2.5160093 |
Snippet | We present results from an experimental ion imaging study into the fragmentation dynamics of 1-iodopropane and 2-iodopropane following interaction with extreme... |
SourceID | osti proquest crossref rsc nrccanada |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 22699 |
SubjectTerms | Angular distribution Covariance Femtosecond pulses Fragmentation Imaging INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Polyelectrolytes |
Title | Disentangling sequential and concerted fragmentations of molecular polycations with covariant native frame analysis |
URI | https://nrc-publications.canada.ca/eng/view/object/?id=36ee8ed4-2964-4651-a811-a309d24cd118 https://www.proquest.com/docview/2718581717 https://www.proquest.com/docview/2714657748 https://www.osti.gov/biblio/1887595 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customer customDbUrl: https://pubs.rsc.org eissn: 1463-9084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001513 issn: 1463-9076 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67mG8IG4TZQMZwQuqWhLn6sepGxqIogp1Yi_IchxnqkTTqhek8t_4b5wTx07K9jB4SSvXSZucr8ffOT4XQt56aRbqOOSDlGlMycn5gIdYcj-LNAfKHBSVM2f8Jb68Cj9dR9edzu9W1NJ2kw3VrzvzSv5HqjAGcsUs2X-QrLsoDMB7kC8cQcJwvJeMz2dV6hBm4qJXoIqK3szq7H-FCYkrJJTFSt7M6xwjE_U2t01xsUnDzgaU12HoP8F8hufdL-ua4Bi-BVc0xUvaZHZiZaxs1zjzDoeMx2RdeRwmo5HLIhursSy3rc2H_rdhy6k_tz706aworJ5CX7W8kTuTvTbbLcpFtm1U5wqtfRfx2_86bHsywAjGzZ228g3jYADGel0auz1m2shZjW2yrmtkmpoxVv-y2PRbqhdzxpKq-sLtlcILsNDqORtNQM0x3uwXuRiAv5ZJF7xYbdsHXDTnHpBDlsQx65LDs4vpx8-OCgCdCkx6m7kxWx834O-bs_cY0VG5UlW4HxCl7gK0_J7lc7CybWkq-jN9RB7Wdgs9MyB8TDq6fEKORlbwT8l6D4y0ASMFMFIHRroPRrooqAMjbYGRIhipAyM1YKQVGKkF4zNy9eFiOroc1B09BgqI-WbAY2CTLM2yiCnmyQIbcaae5FlYRFrKPEq0B6oiZJpncVRwqX2ZMSajxJcyyIvgmHTLRamfE-pj4b8gzHMVF9g1nfNI-bH2cuC7eZzyHnlnn6pQdbl77LryQ9yWX4-8cXOXpsjLnbO-O-G4aVidXeFqLGb4ImCGUNVBmvFyCQuWCGKtU52HAqMcBPx0X8gUTG8ZeDxnocrBzu-RExS4AOqL9ZsVBrqpjfCBBkQ86pFTiwNRq6C1YMAso9RP_KRHXruPQfC46ydLvdhWc-D7wMqDLzgG_LifnjO1rO4se3Gv-z8hD5p_7SnpblZb_RIY-SZ7VeP-DwP35Q8 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentangling+sequential+and+concerted+fragmentations+of+molecular+polycations+with+covariant+native+frame+analysis&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=McManus%2C+Joseph+W.&rft.au=Walmsley%2C+Tiffany&rft.au=Nagaya%2C+Kiyonobu&rft.au=Harries%2C+James+R.&rft.date=2022-09-28&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=24&rft.issue=37&rft.spage=22699&rft.epage=22709&rft_id=info:doi/10.1039%2FD2CP03029B&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D2CP03029B |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |