Effective detection of Alzheimer's disease by optimizing fuzzy K-nearest neighbors based on salp swarm algorithm

Alzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have been used in the diagnosis of AD. In this paper, a fuzzy k-nearest neighbor method based on the improved binary salp swarm algorithm (IBS...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 159; p. 106930
Main Authors Lu, Dongwan, Yue, Yinggao, Hu, Zhongyi, Xu, Minghai, Tong, Yinsheng, Ma, Hanjie
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.06.2023
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2023.106930

Cover

Abstract Alzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have been used in the diagnosis of AD. In this paper, a fuzzy k-nearest neighbor method based on the improved binary salp swarm algorithm (IBSSA-FKNN) is proposed for the early diagnosis of AD, so as to distinguish between patients with mild cognitive impairment (MCI), Alzheimer's disease (AD) and normal controls (NC). First, the performance and feature selection accuracy of the method are validated on 5 different benchmark datasets. Secondly, the paper uses the Structural Magnetic Resolution Imaging (sMRI) dataset, in terms of classification accuracy, sensitivity, specificity, etc., the effectiveness of the method on the AD dataset is verified. The simulation results show that the classification accuracy of this method for AD and MCI, AD and NC, MCI and NC are 95.37%, 100%, and 93.95%, respectively. These accuracies are better than the other five comparison methods. The method proposed in this paper can learn better feature subsets from serial multimodal features, so as to improve the performance of early AD diagnosis. It has a good application prospect and will bring great convenience for clinicians to make better decisions in clinical diagnosis. •A fuzzy k-nearest neighbor method based on the improved binary salps swarm algorithm (IBSSA-FKNN) is proposed.•The proposed method is compared with some algorithms on UCI dataset and AD dataset respectively.•The results reveal the outstanding performance of the proposed algorithm.
AbstractList Alzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have been used in the diagnosis of AD. In this paper, a fuzzy k-nearest neighbor method based on the improved binary salp swarm algorithm (IBSSA-FKNN) is proposed for the early diagnosis of AD, so as to distinguish between patients with mild cognitive impairment (MCI), Alzheimer's disease (AD) and normal controls (NC). First, the performance and feature selection accuracy of the method are validated on 5 different benchmark datasets. Secondly, the paper uses the Structural Magnetic Resolution Imaging (sMRI) dataset, in terms of classification accuracy, sensitivity, specificity, etc., the effectiveness of the method on the AD dataset is verified. The simulation results show that the classification accuracy of this method for AD and MCI, AD and NC, MCI and NC are 95.37%, 100%, and 93.95%, respectively. These accuracies are better than the other five comparison methods. The method proposed in this paper can learn better feature subsets from serial multimodal features, so as to improve the performance of early AD diagnosis. It has a good application prospect and will bring great convenience for clinicians to make better decisions in clinical diagnosis. •A fuzzy k-nearest neighbor method based on the improved binary salps swarm algorithm (IBSSA-FKNN) is proposed.•The proposed method is compared with some algorithms on UCI dataset and AD dataset respectively.•The results reveal the outstanding performance of the proposed algorithm.
Alzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have been used in the diagnosis of AD. In this paper, a fuzzy k-nearest neighbor method based on the improved binary salp swarm algorithm (IBSSA-FKNN) is proposed for the early diagnosis of AD, so as to distinguish between patients with mild cognitive impairment (MCI), Alzheimer's disease (AD) and normal controls (NC). First, the performance and feature selection accuracy of the method are validated on 5 different benchmark datasets. Secondly, the paper uses the Structural Magnetic Resolution Imaging (sMRI) dataset, in terms of classification accuracy, sensitivity, specificity, etc., the effectiveness of the method on the AD dataset is verified. The simulation results show that the classification accuracy of this method for AD and MCI, AD and NC, MCI and NC are 95.37%, 100%, and 93.95%, respectively. These accuracies are better than the other five comparison methods. The method proposed in this paper can learn better feature subsets from serial multimodal features, so as to improve the performance of early AD diagnosis. It has a good application prospect and will bring great convenience for clinicians to make better decisions in clinical diagnosis.
AbstractAlzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have been used in the diagnosis of AD. In this paper, a fuzzy k-nearest neighbor method based on the improved binary salp swarm algorithm (IBSSA-FKNN) is proposed for the early diagnosis of AD, so as to distinguish between patients with mild cognitive impairment (MCI), Alzheimer's disease (AD) and normal controls (NC). First, the performance and feature selection accuracy of the method are validated on 5 different benchmark datasets. Secondly, the paper uses the Structural Magnetic Resolution Imaging (sMRI) dataset, in terms of classification accuracy, sensitivity, specificity, etc., the effectiveness of the method on the AD dataset is verified. The simulation results show that the classification accuracy of this method for AD and MCI, AD and NC, MCI and NC are 95.37%, 100%, and 93.95%, respectively. These accuracies are better than the other five comparison methods. The method proposed in this paper can learn better feature subsets from serial multimodal features, so as to improve the performance of early AD diagnosis. It has a good application prospect and will bring great convenience for clinicians to make better decisions in clinical diagnosis.
Alzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have been used in the diagnosis of AD. In this paper, a fuzzy k-nearest neighbor method based on the improved binary salp swarm algorithm (IBSSA-FKNN) is proposed for the early diagnosis of AD, so as to distinguish between patients with mild cognitive impairment (MCI), Alzheimer's disease (AD) and normal controls (NC). First, the performance and feature selection accuracy of the method are validated on 5 different benchmark datasets. Secondly, the paper uses the Structural Magnetic Resolution Imaging (sMRI) dataset, in terms of classification accuracy, sensitivity, specificity, etc., the effectiveness of the method on the AD dataset is verified. The simulation results show that the classification accuracy of this method for AD and MCI, AD and NC, MCI and NC are 95.37%, 100%, and 93.95%, respectively. These accuracies are better than the other five comparison methods. The method proposed in this paper can learn better feature subsets from serial multimodal features, so as to improve the performance of early AD diagnosis. It has a good application prospect and will bring great convenience for clinicians to make better decisions in clinical diagnosis.Alzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have been used in the diagnosis of AD. In this paper, a fuzzy k-nearest neighbor method based on the improved binary salp swarm algorithm (IBSSA-FKNN) is proposed for the early diagnosis of AD, so as to distinguish between patients with mild cognitive impairment (MCI), Alzheimer's disease (AD) and normal controls (NC). First, the performance and feature selection accuracy of the method are validated on 5 different benchmark datasets. Secondly, the paper uses the Structural Magnetic Resolution Imaging (sMRI) dataset, in terms of classification accuracy, sensitivity, specificity, etc., the effectiveness of the method on the AD dataset is verified. The simulation results show that the classification accuracy of this method for AD and MCI, AD and NC, MCI and NC are 95.37%, 100%, and 93.95%, respectively. These accuracies are better than the other five comparison methods. The method proposed in this paper can learn better feature subsets from serial multimodal features, so as to improve the performance of early AD diagnosis. It has a good application prospect and will bring great convenience for clinicians to make better decisions in clinical diagnosis.
ArticleNumber 106930
Author Xu, Minghai
Lu, Dongwan
Hu, Zhongyi
Tong, Yinsheng
Ma, Hanjie
Yue, Yinggao
Author_xml – sequence: 1
  givenname: Dongwan
  orcidid: 0000-0002-7913-1868
  surname: Lu
  fullname: Lu, Dongwan
  organization: School of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China
– sequence: 2
  givenname: Yinggao
  orcidid: 0000-0002-5582-8791
  surname: Yue
  fullname: Yue, Yinggao
  organization: School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou, 325035, China
– sequence: 3
  givenname: Zhongyi
  orcidid: 0000-0002-9672-3734
  surname: Hu
  fullname: Hu, Zhongyi
  email: hujunyi@163.com
  organization: School of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China
– sequence: 4
  givenname: Minghai
  surname: Xu
  fullname: Xu, Minghai
  email: xmhemail@126.com
  organization: School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou, 325035, China
– sequence: 5
  givenname: Yinsheng
  surname: Tong
  fullname: Tong, Yinsheng
  organization: School of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China
– sequence: 6
  givenname: Hanjie
  surname: Ma
  fullname: Ma, Hanjie
  organization: School of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37087779$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAUhi00xLrCX0CWuICblOOPNMnNxJi2gZjEBXBt2c5J65LEwU6H2l-Po24gVULqlS3r8euj5_UFOet9j4RQBgsGbPl-s7C-G4zzHdYLDlyk42Ul4BmZsbKoMsiFPCMzAAaZLHl-Ti5i3ACABAEvyLkooCyKopqR4aZp0I7uAWmN47TzPfUNvWr3a3QdhreR1i6ijkjNjvphdJ3bu35Fm-1-v6Nfsh51wDjSHt1qbXyI1CS4pikn6nag8bcOHdXtygc3rruX5Hmj24ivHtc5-XF78_36U3b_9e7z9dV9ZnMmx6zKS8uQlWZZNcIUIFhVl1W9FPW0FMYIJqSRWpei4BXncslRMsYbmeeCmUbMybtD7hD8r20aUHUuWmxb3aPfRsVLyHNWgKwS-uYI3fht6NN0iUq-c8kBEvX6kdqapF0NwXU67NSTywRcHgAbfIwBG2XdqCehY9CuVQzUVJ7aqH_lqak8dSgvBZRHAU9vnHD14-EqJqUPDoOK1mFvsXYhlapq704JuTwKsa3rndXtT9xh_CuFqcgVqG_T95p-FxdJT5W8z8mH_wecNsMfntLkQQ
CitedBy_id crossref_primary_10_1007_s10462_024_10789_0
crossref_primary_10_1016_j_dajour_2024_100442
crossref_primary_10_1093_cercor_bhae498
crossref_primary_10_1093_jcde_qwae073
crossref_primary_10_3390_biomimetics9050270
crossref_primary_10_1038_s41598_024_59846_2
crossref_primary_10_1016_j_bspc_2024_106721
crossref_primary_10_1016_j_compbiomed_2025_109810
crossref_primary_10_1038_s41598_024_59287_x
crossref_primary_10_3390_s23218787
crossref_primary_10_1038_s41598_024_54910_3
crossref_primary_10_1007_s12597_023_00682_9
crossref_primary_10_3390_biomimetics8020235
crossref_primary_10_1007_s10489_023_04920_x
crossref_primary_10_1007_s13748_024_00327_y
crossref_primary_10_1016_j_abst_2024_08_004
crossref_primary_10_1016_j_aej_2024_06_096
crossref_primary_10_1007_s13755_024_00297_4
crossref_primary_10_3390_math12131955
crossref_primary_10_1007_s10586_024_04441_3
crossref_primary_10_1002_rnc_7883
crossref_primary_10_3390_biomimetics8030306
crossref_primary_10_1016_j_compbiomed_2023_107392
Cites_doi 10.1016/j.patcog.2005.01.018
10.1016/j.swevo.2018.04.008
10.1016/j.eswa.2022.116516
10.1109/JIOT.2019.2913176
10.1016/j.neucom.2015.06.083
10.1016/j.eswa.2012.07.014
10.1016/j.advengsoft.2017.07.002
10.7763/IJMLC.2012.V2.114
10.1016/j.neucom.2020.10.038
10.1109/TIM.2020.2983233
10.1007/s12293-016-0212-3
10.3233/JAD-2011-101371
10.1016/j.future.2019.02.028
10.1007/s00521-015-1923-y
10.1093/bioinformatics/btg366
10.1002/adma.202109175
10.1016/j.media.2014.04.006
10.1002/int.22744
10.3390/s20247212
10.1002/cpe.7099
10.1109/TITS.2020.3025796
10.1007/s13369-020-05206-x
10.3390/bdcc6010002
10.1093/scan/nsaa046
10.1007/s00500-014-1543-y
10.1109/ACCESS.2020.2981968
10.1016/j.matcom.2020.06.012
10.1016/j.eswa.2021.114864
10.1016/j.cie.2018.06.017
10.1016/0168-9274(95)00108-5
10.1016/j.future.2020.03.055
10.1007/s11042-016-3907-z
10.1007/s42235-021-0050-y
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
2023. Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
– notice: 2023. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2023.106930
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library (Proquest)
Biological Science Database (Proquest)
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Research Library Prep
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 106930
ExternalDocumentID 37087779
10_1016_j_compbiomed_2023_106930
S0010482523003955
1_s2_0_S0010482523003955
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
AFCTW
AGCQF
AGRNS
ALIPV
RIG
3V.
AACTN
AFKWA
AJOXV
AMFUW
M0N
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-958c1e18b69f3b70319d89d63dd89d7bb3134b4aa8372922462e4112f45531bf3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sat Sep 27 21:33:50 EDT 2025
Tue Oct 07 06:46:46 EDT 2025
Mon Jul 21 06:03:31 EDT 2025
Wed Oct 01 04:07:55 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
Sat Jan 18 16:09:15 EST 2025
Wed Jun 18 06:48:28 EDT 2025
Tue Oct 14 19:33:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Salp swarm algorithm
Swarm intelligence algorithm
Feature selection
Medical diagnosis
Alzheimer's disease
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-958c1e18b69f3b70319d89d63dd89d7bb3134b4aa8372922462e4112f45531bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7913-1868
0000-0002-9672-3734
0000-0002-5582-8791
PMID 37087779
PQID 2810154200
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2805517049
proquest_journals_2810154200
pubmed_primary_37087779
crossref_citationtrail_10_1016_j_compbiomed_2023_106930
crossref_primary_10_1016_j_compbiomed_2023_106930
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_106930
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523003955
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_106930
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Shan, Qiao, Heidari (bib15) 2021; 214
Li, Chen, Wang (bib31) 2020; 111
Singh, Janghel (bib5) 2022
Butcher (bib34) 1996; 20
Pang, Zhou, Tsai (bib28) 2018; 123
Emary, Zawbaa, Hassanien (bib46) 2016; 172
Venkatesh, Anuradha (bib29) 2019; 19
Seo, Laine, Oh (bib8) 2020; 20
Wang, Deb, Cui (bib30) 2019; 31
Shokrzade, Ramezani, Tab (bib10) 2021; 183
Deng, Liu, Xu (bib26) 2020; 69
Deng, Xu, Zhao (bib27) 2020; 23
Zhang, Xu, Yu (bib22) 2020; 141
Tu, Chen, Liu (bib19) 2021; 212
Zeng, Xie, Chen (bib24) 2019; 44
Yang, Chen, Heidari (bib33) 2021; 177
Wang (bib32) 2018; 10
Weller, Budson (bib1) 2018; 7
Pan, Luo, Zeng (bib6) 2022
Feng, Zhang, Zhu (bib41) 2017; 76
Patil, Soni, Prakash (bib44) 2022; 13
Huang, Li (bib11) 2004; 20
Kwak, Pedrycz (bib12) 2005; 38
Batmanghelich, Taskar, Davatzikos (bib49) 2009; vol. 5636
Zheng, Yu, Lei (bib9) 2022; 34
Zhu, Ma, Zhao (bib23) 2020; 8
Mirjalili, Hashim (bib42) 2012; 2
Janoušová, Vounou, Wolz (bib48) 2012
Chen, Zeng, Lu (bib25) 2019; 6
Zhang, Liu, Heidari (bib17) 2021; 430
Fan, Wang, Mafarja (bib21) 2021; 213
Liu, Liu, Cai (bib50) 2014
Yang, Lui, Gao (bib52) 2011; 24
Rasmussen, Langerman (bib2) 2019; 9
Mirjalili, Gandomi, Mirjalili (bib38) 2017; 114
Nakamura, Pereira, Costa (bib43) 2012
Wang, Zhao, Li (bib16) 2020; 15
Song, Wang, Heidari (bib20) 2021; 215
Abbad Ur Rehman, Lin, Mushtaq (bib40) 2021; 46
Chen, Huang, Yu (bib13) 2013; 40
Jiao, Chong, Huang (bib18) 2020; 203
Tong, Wolz, Gao (bib51) 2014; 18
Yu, Cai, Ye (bib45) 2020; 178
Velliangiri, Pandiaraj, Muthubalaji (bib7) 2022; 34
Tu, Chen, Wang (bib35) 2021; 18
Emmanuel, Jabez (bib39) 2022; 13
Mondal, Ghosh, Ghosh (bib14) 2016; 20
Ahmadianfar, Heidari, Noshadian (bib36) 2022; 195
Lu, Popuri, Ding (bib3) 2018; 8
Gharaibeh, Almahmoud, Ali (bib4) 2022; 6
Heidari, Mirjalili, Faris (bib37) 2019; 97
Hu, Heidari, Zhang (bib47) 2022; 37
Rasmussen (10.1016/j.compbiomed.2023.106930_bib2) 2019; 9
Pan (10.1016/j.compbiomed.2023.106930_bib6) 2022
Jiao (10.1016/j.compbiomed.2023.106930_bib18) 2020; 203
Deng (10.1016/j.compbiomed.2023.106930_bib26) 2020; 69
Mirjalili (10.1016/j.compbiomed.2023.106930_bib38) 2017; 114
Kwak (10.1016/j.compbiomed.2023.106930_bib12) 2005; 38
Lu (10.1016/j.compbiomed.2023.106930_bib3) 2018; 8
Tong (10.1016/j.compbiomed.2023.106930_bib51) 2014; 18
Mirjalili (10.1016/j.compbiomed.2023.106930_bib42) 2012; 2
Butcher (10.1016/j.compbiomed.2023.106930_bib34) 1996; 20
Zhu (10.1016/j.compbiomed.2023.106930_bib23) 2020; 8
Yu (10.1016/j.compbiomed.2023.106930_bib45) 2020; 178
Liu (10.1016/j.compbiomed.2023.106930_bib50) 2014
Song (10.1016/j.compbiomed.2023.106930_bib20) 2021; 215
Heidari (10.1016/j.compbiomed.2023.106930_bib37) 2019; 97
Ahmadianfar (10.1016/j.compbiomed.2023.106930_bib36) 2022; 195
Huang (10.1016/j.compbiomed.2023.106930_bib11) 2004; 20
Zeng (10.1016/j.compbiomed.2023.106930_bib24) 2019; 44
Janoušová (10.1016/j.compbiomed.2023.106930_bib48) 2012
Feng (10.1016/j.compbiomed.2023.106930_bib41) 2017; 76
Chen (10.1016/j.compbiomed.2023.106930_bib13) 2013; 40
Emary (10.1016/j.compbiomed.2023.106930_bib46) 2016; 172
Zhang (10.1016/j.compbiomed.2023.106930_bib22) 2020; 141
Deng (10.1016/j.compbiomed.2023.106930_bib27) 2020; 23
Batmanghelich (10.1016/j.compbiomed.2023.106930_bib49) 2009; vol. 5636
Weller (10.1016/j.compbiomed.2023.106930_bib1) 2018; 7
Venkatesh (10.1016/j.compbiomed.2023.106930_bib29) 2019; 19
Gharaibeh (10.1016/j.compbiomed.2023.106930_bib4) 2022; 6
Nakamura (10.1016/j.compbiomed.2023.106930_bib43) 2012
Shan (10.1016/j.compbiomed.2023.106930_bib15) 2021; 214
Pang (10.1016/j.compbiomed.2023.106930_bib28) 2018; 123
Yang (10.1016/j.compbiomed.2023.106930_bib33) 2021; 177
Patil (10.1016/j.compbiomed.2023.106930_bib44) 2022; 13
Tu (10.1016/j.compbiomed.2023.106930_bib35) 2021; 18
Singh (10.1016/j.compbiomed.2023.106930_bib5) 2022
Yang (10.1016/j.compbiomed.2023.106930_bib52) 2011; 24
Wang (10.1016/j.compbiomed.2023.106930_bib16) 2020; 15
Emmanuel (10.1016/j.compbiomed.2023.106930_bib39) 2022; 13
Velliangiri (10.1016/j.compbiomed.2023.106930_bib7) 2022; 34
Wang (10.1016/j.compbiomed.2023.106930_bib30) 2019; 31
Wang (10.1016/j.compbiomed.2023.106930_bib32) 2018; 10
Fan (10.1016/j.compbiomed.2023.106930_bib21) 2021; 213
Abbad Ur Rehman (10.1016/j.compbiomed.2023.106930_bib40) 2021; 46
Li (10.1016/j.compbiomed.2023.106930_bib31) 2020; 111
Seo (10.1016/j.compbiomed.2023.106930_bib8) 2020; 20
Zheng (10.1016/j.compbiomed.2023.106930_bib9) 2022; 34
Chen (10.1016/j.compbiomed.2023.106930_bib25) 2019; 6
Shokrzade (10.1016/j.compbiomed.2023.106930_bib10) 2021; 183
Tu (10.1016/j.compbiomed.2023.106930_bib19) 2021; 212
Mondal (10.1016/j.compbiomed.2023.106930_bib14) 2016; 20
Hu (10.1016/j.compbiomed.2023.106930_bib47) 2022; 37
Zhang (10.1016/j.compbiomed.2023.106930_bib17) 2021; 430
References_xml – volume: 34
  year: 2022
  ident: bib7
  article-title: Multiclass recognition of AD neurological diseases using a bag of deep reduced features coupled with gradient descent optimized twin support vector machine classifier for early diagnosis[J]
  publication-title: Concurrency Comput. Pract. Ex.
– volume: 215
  year: 2021
  ident: bib20
  article-title: Dimension decided Harris hawks optimization with Gaussian mutation: balance analysis and diversity patterns[J]
  publication-title: Knowl. Base Syst.
– volume: 212
  year: 2021
  ident: bib19
  article-title: Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance[J]
  publication-title: Knowl. Base Syst.
– volume: 430
  start-page: 185
  year: 2021
  end-page: 212
  ident: bib17
  article-title: Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis[J]
  publication-title: Neurocomputing
– volume: 2
  start-page: 204
  year: 2012
  ident: bib42
  article-title: BMOA: binary magnetic optimization algorithm[J]
  publication-title: International Journal of Machine Learning and Computing
– volume: 13
  start-page: 797
  year: 2022
  end-page: 809
  ident: bib44
  article-title: A BMFO-KNN based intelligent fault detection approach for reciprocating compressor[J]
  publication-title: International Journal of System Assurance Engineering and Management
– volume: 20
  start-page: 21
  year: 2004
  end-page: 28
  ident: bib11
  article-title: Prediction of protein subcellular locations using fuzzy k-NN method[J]
  publication-title: Bioinformatics
– volume: 9
  start-page: 123
  year: 2019
  end-page: 130
  ident: bib2
  article-title: Alzheimer's disease–why we need early diagnosis[J]
  publication-title: Degener. Neurol. Neuromuscul. Dis.
– volume: vol. 5636
  start-page: 423
  year: 2009
  end-page: 434
  ident: bib49
  article-title: A general and unifying framework for feature construction
  publication-title: Image-Based Pattern classification[C]//International Conference on Information Processing in Medical Imaging
– volume: 19
  start-page: 3
  year: 2019
  end-page: 26
  ident: bib29
  article-title: A review of feature selection and its methods[J]
  publication-title: Cybern. Inf. Technol.
– volume: 20
  start-page: 7212
  year: 2020
  end-page: 7225
  ident: bib8
  article-title: EEG-based emotion classification for Alzheimer's disease patients using conventional machine learning and recurrent neural network models[J]
  publication-title: Sensors
– volume: 213
  year: 2021
  ident: bib21
  article-title: A bioinformatic variant fruit fly optimizer for tackling optimization problems[J]
  publication-title: Knowl. Base Syst.
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: bib38
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems[J]
  publication-title: Adv. Eng. Software
– volume: 123
  start-page: 54
  year: 2018
  end-page: 66
  ident: bib28
  article-title: A scatter simulated annealing algorithm for the bi-objective scheduling problem for the wet station of semiconductor manufacturing[J]
  publication-title: Comput. Ind. Eng.
– volume: 40
  start-page: 263
  year: 2013
  end-page: 271
  ident: bib13
  article-title: An efficient diagnosis system for detection of Parkinson's disease using fuzzy k-nearest neighbor approach[J]
  publication-title: Expert Syst. Appl.
– volume: 111
  start-page: 300
  year: 2020
  end-page: 323
  ident: bib31
  article-title: Slime mould algorithm: a new method for stochastic optimization[J]
  publication-title: Future Generat. Comput. Syst.
– volume: 44
  start-page: 320
  year: 2019
  end-page: 334
  ident: bib24
  article-title: Adaptive population extremal optimization-based PID neural network for multivariable nonlinear control systems[J]
  publication-title: Swarm Evol. Comput.
– volume: 20
  start-page: 247
  year: 1996
  end-page: 260
  ident: bib34
  article-title: A history of Runge-Kutta methods[J]
  publication-title: Appl. Numer. Math.
– volume: 18
  start-page: 808
  year: 2014
  end-page: 818
  ident: bib51
  article-title: Multiple instance learning for classification of dementia in brain MRI[J]
  publication-title: Med. Image Anal.
– volume: 203
  year: 2020
  ident: bib18
  article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models[J]
  publication-title: Energy
– volume: 178
  start-page: 259
  year: 2020
  end-page: 289
  ident: bib45
  article-title: Quantum-like mutation-induced dragonfly-inspired optimization approach[J]
  publication-title: Math. Comput. Simulat.
– year: 2022
  ident: bib6
  article-title: Adaptive 3DCNN-Based Interpretable Ensemble Model for Early Diagnosis of Alzheimer's Disease[J]
– volume: 34
  year: 2022
  ident: bib9
  article-title: Compositionally graded KNN‐based multilayer composite with excellent piezoelectric temperature stability[J]
  publication-title: Adv. Mater.
– volume: 183
  year: 2021
  ident: bib10
  article-title: A novel extreme learning machine based kNN classification method for dealing with big data[J]
  publication-title: Expert Syst. Appl.
– start-page: 291
  year: 2012
  end-page: 297
  ident: bib43
  article-title: BBA: a binary bat algorithm for feature selection[C]
  publication-title: 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images
– volume: 38
  start-page: 1717
  year: 2005
  end-page: 1732
  ident: bib12
  article-title: Face recognition using a fuzzy fisherface classifier[J]
  publication-title: Pattern Recogn.
– volume: 76
  start-page: 17405
  year: 2017
  end-page: 17436
  ident: bib41
  article-title: A novel chaos optimization algorithm[J]
  publication-title: Multimed. Tool. Appl.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib3
  article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer's disease using structural MR and FDG-PET images[J]
  publication-title: Sci. Rep.
– start-page: 1015
  year: 2014
  end-page: 1018
  ident: bib50
  article-title: Early diagnosis of Alzheimer's disease with deep learning[C]
  publication-title: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)
– volume: 18
  start-page: 674
  year: 2021
  end-page: 710
  ident: bib35
  article-title: The colony predation algorithm[J]
  publication-title: J. Bionic Eng.
– volume: 37
  start-page: 4864
  year: 2022
  end-page: 4927
  ident: bib47
  article-title: Chaotic diffusion‐limited aggregation enhanced grey wolf optimizer: insights, analysis, binarization, and feature selection[J]
  publication-title: Int. J. Intell. Syst.
– volume: 6
  start-page: 2
  year: 2022
  ident: bib4
  article-title: Early diagnosis of alzheimer's disease using cerebral catheter angiogram neuroimaging: a novel model based on deep learning approaches[J]
  publication-title: Big Data and Cognitive Computing
– volume: 7
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib1
  article-title: Current understanding of Alzheimer's disease diagnosis and treatment[J]
  publication-title: F1000Research
– volume: 69
  start-page: 7319
  year: 2020
  end-page: 7327
  ident: bib26
  article-title: An improved quantum-inspired differential evolution algorithm for deep belief network[J]
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 46
  start-page: 9437
  year: 2021
  end-page: 9449
  ident: bib40
  article-title: Performance analysis of machine learning algorithms for thyroid disease[J]
  publication-title: Arabian J. Sci. Eng.
– volume: 6
  start-page: 6997
  year: 2019
  end-page: 7010
  ident: bib25
  article-title: A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM[J]
  publication-title: IEEE Internet Things J.
– volume: 31
  start-page: 1995
  year: 2019
  end-page: 2014
  ident: bib30
  article-title: Monarch butterfly optimization[J]
  publication-title: Neural Comput. Appl.
– start-page: 1
  year: 2012
  end-page: 11
  ident: bib48
  article-title: Biomarker discovery for sparse classification of brain images in Alzheimer's disease[J]
  publication-title: Annals of the BMVA
– volume: 177
  year: 2021
  ident: bib33
  article-title: Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts[J]
  publication-title: Expert Syst. Appl.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: bib37
  article-title: Harris hawks optimization: algorithm and applications[J]
  publication-title: Future Generat. Comput. Syst.
– volume: 214
  year: 2021
  ident: bib15
  article-title: Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis[J]
  publication-title: Knowl. Base Syst.
– volume: 8
  start-page: 61107
  year: 2020
  end-page: 61123
  ident: bib23
  article-title: Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine[J]
  publication-title: IEEE Access
– volume: 23
  start-page: 1737
  year: 2020
  end-page: 1745
  ident: bib27
  article-title: A novel gate resource allocation method using improved PSO-based QEA[J]
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 15
  start-page: 395
  year: 2020
  end-page: 404
  ident: bib16
  article-title: Neurostructural correlates of hope: dispositional hope mediates the impact of the SMA gray matter volume on subjective well-being in late adolescence[J]
  publication-title: Soc. Cognit. Affect Neurosci.
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: bib46
  article-title: Binary grey wolf optimization approaches for feature selection[J]
  publication-title: Neurocomputing
– start-page: 15
  year: 2022
  end-page: 31
  ident: bib5
  article-title: Early diagnosis of alzheimer's disease using aco optimized deep cnn classifier[C]//Ubiquitous Intelligent Systems
  publication-title: Proceedings of ICUIS 2021
– volume: 20
  start-page: 785
  year: 2016
  end-page: 805
  ident: bib14
  article-title: Efficient silhouette-based contour tracking using local information[J]
  publication-title: Soft Comput.
– volume: 195
  year: 2022
  ident: bib36
  article-title: INFO: an efficient optimization algorithm based on weighted mean of vectors[J]
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 775
  year: 2011
  end-page: 783
  ident: bib52
  article-title: Independent component analysis-based classification of Alzheimer's disease MRI data[J]
  publication-title: J. Alzheim. Dis.
– volume: 141
  year: 2020
  ident: bib22
  article-title: Gaussian mutational chaotic fruit fly-built optimization and feature selection[J]
  publication-title: Expert Syst. Appl.
– volume: 13
  start-page: 89
  year: 2022
  end-page: 103
  ident: bib39
  article-title: An enhanced fuzzy based KNN classification method for Alzheimer's disease identification from SMRI images[J]
  publication-title: JOURNAL OF ALGEBRAIC STATISTICS
– volume: 10
  start-page: 151
  year: 2018
  end-page: 164
  ident: bib32
  article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems[J]
  publication-title: Memetic Computing
– volume: 38
  start-page: 1717
  issue: 10
  year: 2005
  ident: 10.1016/j.compbiomed.2023.106930_bib12
  article-title: Face recognition using a fuzzy fisherface classifier[J]
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2005.01.018
– volume: 44
  start-page: 320
  issue: 2
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106930_bib24
  article-title: Adaptive population extremal optimization-based PID neural network for multivariable nonlinear control systems[J]
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.04.008
– volume: 13
  start-page: 797
  issue: 2
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106930_bib44
  article-title: A BMFO-KNN based intelligent fault detection approach for reciprocating compressor[J]
  publication-title: International Journal of System Assurance Engineering and Management
– volume: 13
  start-page: 89
  issue: 3
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106930_bib39
  article-title: An enhanced fuzzy based KNN classification method for Alzheimer's disease identification from SMRI images[J]
  publication-title: JOURNAL OF ALGEBRAIC STATISTICS
– volume: 195
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106930_bib36
  article-title: INFO: an efficient optimization algorithm based on weighted mean of vectors[J]
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116516
– volume: 6
  start-page: 6997
  issue: 4
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106930_bib25
  article-title: A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM[J]
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2913176
– volume: 172
  start-page: 371
  year: 2016
  ident: 10.1016/j.compbiomed.2023.106930_bib46
  article-title: Binary grey wolf optimization approaches for feature selection[J]
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 40
  start-page: 263
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2023.106930_bib13
  article-title: An efficient diagnosis system for detection of Parkinson's disease using fuzzy k-nearest neighbor approach[J]
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.07.014
– start-page: 1
  issue: 2
  year: 2012
  ident: 10.1016/j.compbiomed.2023.106930_bib48
  article-title: Biomarker discovery for sparse classification of brain images in Alzheimer's disease[J]
  publication-title: Annals of the BMVA
– volume: 215
  issue: 3
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106930_bib20
  article-title: Dimension decided Harris hawks optimization with Gaussian mutation: balance analysis and diversity patterns[J]
  publication-title: Knowl. Base Syst.
– volume: vol. 5636
  start-page: 423
  year: 2009
  ident: 10.1016/j.compbiomed.2023.106930_bib49
  article-title: A general and unifying framework for feature construction
– volume: 183
  issue: 11
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106930_bib10
  article-title: A novel extreme learning machine based kNN classification method for dealing with big data[J]
  publication-title: Expert Syst. Appl.
– volume: 114
  start-page: 163
  issue: 12
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106930_bib38
  article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems[J]
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 2
  start-page: 204
  issue: 3
  year: 2012
  ident: 10.1016/j.compbiomed.2023.106930_bib42
  article-title: BMOA: binary magnetic optimization algorithm[J]
  publication-title: International Journal of Machine Learning and Computing
  doi: 10.7763/IJMLC.2012.V2.114
– volume: 213
  issue: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106930_bib21
  article-title: A bioinformatic variant fruit fly optimizer for tackling optimization problems[J]
  publication-title: Knowl. Base Syst.
– volume: 430
  start-page: 185
  issue: 3
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106930_bib17
  article-title: Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis[J]
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.038
– volume: 69
  start-page: 7319
  issue: 10
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106930_bib26
  article-title: An improved quantum-inspired differential evolution algorithm for deep belief network[J]
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2983233
– volume: 10
  start-page: 151
  issue: 2
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106930_bib32
  article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems[J]
  publication-title: Memetic Computing
  doi: 10.1007/s12293-016-0212-3
– volume: 24
  start-page: 775
  issue: 4
  year: 2011
  ident: 10.1016/j.compbiomed.2023.106930_bib52
  article-title: Independent component analysis-based classification of Alzheimer's disease MRI data[J]
  publication-title: J. Alzheim. Dis.
  doi: 10.3233/JAD-2011-101371
– volume: 141
  issue: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106930_bib22
  article-title: Gaussian mutational chaotic fruit fly-built optimization and feature selection[J]
  publication-title: Expert Syst. Appl.
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106930_bib37
  article-title: Harris hawks optimization: algorithm and applications[J]
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 31
  start-page: 1995
  issue: 7
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106930_bib30
  article-title: Monarch butterfly optimization[J]
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1923-y
– volume: 20
  start-page: 21
  issue: 1
  year: 2004
  ident: 10.1016/j.compbiomed.2023.106930_bib11
  article-title: Prediction of protein subcellular locations using fuzzy k-NN method[J]
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg366
– volume: 34
  issue: 8
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106930_bib9
  article-title: Compositionally graded KNN‐based multilayer composite with excellent piezoelectric temperature stability[J]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202109175
– year: 2022
  ident: 10.1016/j.compbiomed.2023.106930_bib6
– volume: 18
  start-page: 808
  issue: 5
  year: 2014
  ident: 10.1016/j.compbiomed.2023.106930_bib51
  article-title: Multiple instance learning for classification of dementia in brain MRI[J]
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.04.006
– volume: 19
  start-page: 3
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106930_bib29
  article-title: A review of feature selection and its methods[J]
  publication-title: Cybern. Inf. Technol.
– volume: 37
  start-page: 4864
  issue: 8
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106930_bib47
  article-title: Chaotic diffusion‐limited aggregation enhanced grey wolf optimizer: insights, analysis, binarization, and feature selection[J]
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22744
– volume: 20
  start-page: 7212
  issue: 24
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106930_bib8
  article-title: EEG-based emotion classification for Alzheimer's disease patients using conventional machine learning and recurrent neural network models[J]
  publication-title: Sensors
  doi: 10.3390/s20247212
– volume: 214
  issue: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106930_bib15
  article-title: Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis[J]
  publication-title: Knowl. Base Syst.
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106930_bib3
  article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer's disease using structural MR and FDG-PET images[J]
  publication-title: Sci. Rep.
– volume: 34
  issue: 21
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106930_bib7
  article-title: Multiclass recognition of AD neurological diseases using a bag of deep reduced features coupled with gradient descent optimized twin support vector machine classifier for early diagnosis[J]
  publication-title: Concurrency Comput. Pract. Ex.
  doi: 10.1002/cpe.7099
– volume: 203
  issue: 7
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106930_bib18
  article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models[J]
  publication-title: Energy
– start-page: 15
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106930_bib5
  article-title: Early diagnosis of alzheimer's disease using aco optimized deep cnn classifier[C]//Ubiquitous Intelligent Systems
– volume: 7
  start-page: 1
  issue: 7
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106930_bib1
  article-title: Current understanding of Alzheimer's disease diagnosis and treatment[J]
  publication-title: F1000Research
– volume: 212
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106930_bib19
  article-title: Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance[J]
  publication-title: Knowl. Base Syst.
– volume: 23
  start-page: 1737
  issue: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106930_bib27
  article-title: A novel gate resource allocation method using improved PSO-based QEA[J]
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2020.3025796
– volume: 46
  start-page: 9437
  issue: 10
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106930_bib40
  article-title: Performance analysis of machine learning algorithms for thyroid disease[J]
  publication-title: Arabian J. Sci. Eng.
  doi: 10.1007/s13369-020-05206-x
– volume: 6
  start-page: 2
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106930_bib4
  article-title: Early diagnosis of alzheimer's disease using cerebral catheter angiogram neuroimaging: a novel model based on deep learning approaches[J]
  publication-title: Big Data and Cognitive Computing
  doi: 10.3390/bdcc6010002
– volume: 15
  start-page: 395
  issue: 4
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106930_bib16
  article-title: Neurostructural correlates of hope: dispositional hope mediates the impact of the SMA gray matter volume on subjective well-being in late adolescence[J]
  publication-title: Soc. Cognit. Affect Neurosci.
  doi: 10.1093/scan/nsaa046
– volume: 20
  start-page: 785
  issue: 2
  year: 2016
  ident: 10.1016/j.compbiomed.2023.106930_bib14
  article-title: Efficient silhouette-based contour tracking using local information[J]
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1543-y
– volume: 8
  start-page: 61107
  issue: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106930_bib23
  article-title: Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine[J]
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981968
– start-page: 1015
  year: 2014
  ident: 10.1016/j.compbiomed.2023.106930_bib50
  article-title: Early diagnosis of Alzheimer's disease with deep learning[C]
– volume: 178
  start-page: 259
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106930_bib45
  article-title: Quantum-like mutation-induced dragonfly-inspired optimization approach[J]
  publication-title: Math. Comput. Simulat.
  doi: 10.1016/j.matcom.2020.06.012
– volume: 9
  start-page: 123
  issue: 12
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106930_bib2
  article-title: Alzheimer's disease–why we need early diagnosis[J]
  publication-title: Degener. Neurol. Neuromuscul. Dis.
– start-page: 291
  year: 2012
  ident: 10.1016/j.compbiomed.2023.106930_bib43
  article-title: BBA: a binary bat algorithm for feature selection[C]
– volume: 177
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106930_bib33
  article-title: Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts[J]
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114864
– volume: 123
  start-page: 54
  issue: 9
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106930_bib28
  article-title: A scatter simulated annealing algorithm for the bi-objective scheduling problem for the wet station of semiconductor manufacturing[J]
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2018.06.017
– volume: 20
  start-page: 247
  issue: 3
  year: 1996
  ident: 10.1016/j.compbiomed.2023.106930_bib34
  article-title: A history of Runge-Kutta methods[J]
  publication-title: Appl. Numer. Math.
  doi: 10.1016/0168-9274(95)00108-5
– volume: 111
  start-page: 300
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106930_bib31
  article-title: Slime mould algorithm: a new method for stochastic optimization[J]
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2020.03.055
– volume: 76
  start-page: 17405
  issue: 16
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106930_bib41
  article-title: A novel chaos optimization algorithm[J]
  publication-title: Multimed. Tool. Appl.
  doi: 10.1007/s11042-016-3907-z
– volume: 18
  start-page: 674
  issue: 3
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106930_bib35
  article-title: The colony predation algorithm[J]
  publication-title: J. Bionic Eng.
  doi: 10.1007/s42235-021-0050-y
SSID ssj0004030
Score 2.518613
Snippet Alzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have...
AbstractAlzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106930
SubjectTerms Accuracy
Algorithms
Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Artificial Intelligence
Brain
Classification
Cognitive ability
Cognitive Dysfunction - diagnostic imaging
Datasets
Diagnosis
Disease control
Feature selection
Fuzzy sets
Humans
Internal Medicine
Machine learning
Magnetic Resonance Imaging - methods
Medical diagnosis
Neural networks
Neurodegenerative diseases
Optimization
Other
Performance enhancement
Salp swarm algorithm
Support vector machines
Swarm intelligence algorithm
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_OHogv4rfVU1YQfIom2c3HIiKn3HEoV0Q9uLclm93cnbRJbVLk-tc7k92kL570qdB2Nu3O7MwvmZnfALxOw1wgbJWBTUsZYLy1gYyNQYUIqcMSA7ahjO7pLD05E1_Ok_M9mA29MFRWOfjE3lGbpqRn5O9iYqJKBCr14_J3QFOjKLs6jNAo_GgF86GnGLsF-zExY01g_9PR7Nv3badkyF1TCnofgTdHvrbHVXxREbdren9LQ8XxbZoTeFPAugmQ9oHp-B7c9YiSHToTuA97tn4At099zvwhLB1BMXo1ZmzXV17VrKnY4Xxzaa8WdvWmZT5Nw_Q1a9CHLK42GNFYtd5srtnXoCae27ZjNT1GRZtpGcU-w3CdtpgvWfunWC1YMb_A_eouF4_g7Pjo5-eTwM9ZCEqES10gk7yMbJTrVFZcE6G9NLk0KTf0kmnNIy60KIqccnzEQBdbgTitEgmeYF3xxzCpm9o-BUa1awWvMp1yhDo2lmVVZhEtTrgkT6aQDZupSk9CTrMw5mqoNvultmpQpAbl1DCFaJRcOiKOHWTkoC81NJqia1QYLXaQzf4la1t_xlsVqTZWofrRUxyhLeHNXMhlgv_x_SjpYYyDJzte92AwLDVeamv8U3g1foyOgLI7RW2bNX0nRNPP8IxN4YkzyHGjeNbzPspn_1_8OdyhX-Iq4Q5g0q3W9gVirk6_9AfpL42eKdQ
  priority: 102
  providerName: ProQuest
Title Effective detection of Alzheimer's disease by optimizing fuzzy K-nearest neighbors based on salp swarm algorithm
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523003955
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523003955
https://dx.doi.org/10.1016/j.compbiomed.2023.106930
https://www.ncbi.nlm.nih.gov/pubmed/37087779
https://www.proquest.com/docview/2810154200
https://www.proquest.com/docview/2805517049
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na5xAFB9CCqWX0u_apmEKhZ5MdGd0HHLahmy3DVlKaWBvg6NjYtnVZXUJ2UP_9r7njIbSBhZ6Udb1qcz7-un7IuRDHCQcYKv0TZxJH_yt8eUoz4EhXOogA4edY0T3YhZPL_nXeTTfI6d9LQymVTrbb216Z63dkWO3mserssQaX3iVgBccANEBkxEWmnMucIrB0a-7NA8eMFuGAvYGz3bZPDbHC9O2bZn7EY4Rh8M4GfA-F3UfBO1c0eQJeewwJB3bx3xK9kz1jDy8cFHy52RlWxKDHaO5abtcq4rWBR0vttemXJr1x4a6wAzVt7QGq7Est-DDaLHZbm_puV9hZ9umpRV-OAUpaSh6u5zCdZp0saLNTbpe0nRxVa_L9nr5glxOzn6cTn03WcHPACC1voySLDRhomNZMI0t7GWeyDxmOe6E1ixkXPM0TTCqhz3nRoYDMit4BDqrC_aS7Fd1ZV4TitlqKSuEjhmAGzOSWZGJEC-OSCSJPCL6xVSZazuO0y8Wqs8v-6nu2KCQDcqywSPhQLmyrTd2oJE9v1RfWgrGUIF_2IFW_IvWNE6rGxWqZqQC9ZfkeeRkoPxDeHe870EvWGq41Qgbr0UcbJhH3g9_g-pjPCetTL3BcwLAuwK0yiOvrEAOC8VE1-lRvvmvR3tLHuEvmxp3QPbb9ca8AxDW6sNOy2Ar5gK2yeTzIXkw_nI-ncH-09ns2_ffWXkzhw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgEviDuFAUYC8RSWxM7FQhMasKmja4Vgk_ZmktjZRW1SmlRT--P4bZwTO-kLQ33ZU6Smx2l9bp9zboS8Dd2YA2wVjg4z4YC_1Y7wlQKGcJG6GThshRHd4Sjsn_Bvp8HpBvnT1sJgWmVrExtDrcoM35Hv-NiJKuDA1E_T3w5OjcLoajtCI7GjFdRu02LMFnYM9OIKjnDV7uFX4Pc73z_YP_7Sd-yUAScDsFA7IogzT3txGoqcpdjOXahYqJApvERpyjzGU54kMUa4sP-arzmglJwHIL9pzmDdW2SLMy7g8Lf1eX_0_ceqMtNlpggGrB2Hw5jNJTIZZpg0borsP-AQc_gY5xJe5yCvA8CNIzy4T-5ZBEv3jMg9IBu6eEhuD22M_hGZmobIYEWp0nWT6VXQMqd74-W5vpjo2fuK2rAQTRe0BJs1uViCB6X5fLlc0IFTYF_dqqYFvrYFGa0o-lpFYZ0qGU9pdZXMJjQZnwF_6vPJY3JyIzv-hGwWZaGfEYq5cgnLozRkAK20L7I8izxcHHFQHPRI1G6mzGzTc5y9MZZtdtulXLFBIhukYUOPeB3l1DT-WINGtPySbWErmGIJ3mkN2uhftLqyNqWSnqx86cqfTUslkCU4PLpMBPAfP3aUFjYZOLTmc7dbwZLdo1bK1iNvuttgeDCalBS6nON3XFC1CHS6R54agew2ikVNn0nx_P-LvyZ3-sfDI3l0OBq8IHfxV5ksvG2yWc_m-iXgvTp9ZZWKkl83rcd_AS-hZMI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVcEG9SCiwSiJOp7bW9XiGEKkrUElohQaXcFq-9pkWJncaOquSn8euY8drOhaJcerIUZ9bJzutbzwvgdeTGAcJW6ZgolQ76W-NIP8uQIYHUbooOO6OI7slpdHQWfBmH4y3409XCUFplZxMbQ52VKb0j3_epE1UYIFP38zYt4tvh8OPs0qEJUhRp7cZpWBEZmeUVHt-qD8eHyOs3vj_8_OPTkdNOGHBSBAq1I8M49YwX60jmXFMrd5nFMot4RhehNfd4oIMkiSm6Rb3XfBMgQsmDEGVX5xzXvQW3BeeS0gnFWKxrMl1uy1_QzgV4DGuziGxuGaWL2_L6dzS-HD-miYTXucbroG_jAof34G6LXdmBFbb7sGWKB7Bz0kbnH8LMtkJG-8kyUzc5XgUrc3YwWZ2bi6mZv61YGxBieslKtFbTixX6TpYvVqslGzkFddStalbQC1uUzoqRl80YrlMlkxmrrpL5lCWTX8iN-nz6CM5uZL8fw3ZRFuYpMMqSS3gudMQRVBlfpnkqPFqcEFAcDkB0m6nStt05Td2YqC6v7bdas0ERG5RlwwC8nnJmW35sQCM7fqmupBWNsEK_tAGt-BetqVprUilPVb5y1femmRLKEh4bXZQ4_I_ve8oWMFkgtOFz9zrBUv2j1mo2gFf9bTQ5FEdKClMu6Dsu4myB2jyAJ1Yg-43ioukwKXf_v_hL2EHtVV-PT0fP4A79KJt-twfb9XxhniPQq_WLRqMY_LxpFf4LYcxiXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+detection+of+Alzheimer%27s+disease+by+optimizing+fuzzy+K-nearest+neighbors+based+on+salp+swarm+algorithm&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Lu%2C+Dongwan&rft.au=Yue%2C+Yinggao&rft.au=Hu%2C+Zhongyi&rft.au=Xu%2C+Minghai&rft.date=2023-06-01&rft.eissn=1879-0534&rft.volume=159&rft.spage=106930&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.106930&rft_id=info%3Apmid%2F37087779&rft.externalDocID=37087779
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482523X00067%2Fcov150h.gif