Effective detection of Alzheimer's disease by optimizing fuzzy K-nearest neighbors based on salp swarm algorithm
Alzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have been used in the diagnosis of AD. In this paper, a fuzzy k-nearest neighbor method based on the improved binary salp swarm algorithm (IBS...
        Saved in:
      
    
          | Published in | Computers in biology and medicine Vol. 159; p. 106930 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        01.06.2023
     Elsevier Limited  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0010-4825 1879-0534 1879-0534  | 
| DOI | 10.1016/j.compbiomed.2023.106930 | 
Cover
| Abstract | Alzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have been used in the diagnosis of AD. In this paper, a fuzzy k-nearest neighbor method based on the improved binary salp swarm algorithm (IBSSA-FKNN) is proposed for the early diagnosis of AD, so as to distinguish between patients with mild cognitive impairment (MCI), Alzheimer's disease (AD) and normal controls (NC). First, the performance and feature selection accuracy of the method are validated on 5 different benchmark datasets. Secondly, the paper uses the Structural Magnetic Resolution Imaging (sMRI) dataset, in terms of classification accuracy, sensitivity, specificity, etc., the effectiveness of the method on the AD dataset is verified. The simulation results show that the classification accuracy of this method for AD and MCI, AD and NC, MCI and NC are 95.37%, 100%, and 93.95%, respectively. These accuracies are better than the other five comparison methods. The method proposed in this paper can learn better feature subsets from serial multimodal features, so as to improve the performance of early AD diagnosis. It has a good application prospect and will bring great convenience for clinicians to make better decisions in clinical diagnosis.
•A fuzzy k-nearest neighbor method based on the improved binary salps swarm algorithm (IBSSA-FKNN) is proposed.•The proposed method is compared with some algorithms on UCI dataset and AD dataset respectively.•The results reveal the outstanding performance of the proposed algorithm. | 
    
|---|---|
| AbstractList | Alzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have been used in the diagnosis of AD. In this paper, a fuzzy k-nearest neighbor method based on the improved binary salp swarm algorithm (IBSSA-FKNN) is proposed for the early diagnosis of AD, so as to distinguish between patients with mild cognitive impairment (MCI), Alzheimer's disease (AD) and normal controls (NC). First, the performance and feature selection accuracy of the method are validated on 5 different benchmark datasets. Secondly, the paper uses the Structural Magnetic Resolution Imaging (sMRI) dataset, in terms of classification accuracy, sensitivity, specificity, etc., the effectiveness of the method on the AD dataset is verified. The simulation results show that the classification accuracy of this method for AD and MCI, AD and NC, MCI and NC are 95.37%, 100%, and 93.95%, respectively. These accuracies are better than the other five comparison methods. The method proposed in this paper can learn better feature subsets from serial multimodal features, so as to improve the performance of early AD diagnosis. It has a good application prospect and will bring great convenience for clinicians to make better decisions in clinical diagnosis.
•A fuzzy k-nearest neighbor method based on the improved binary salps swarm algorithm (IBSSA-FKNN) is proposed.•The proposed method is compared with some algorithms on UCI dataset and AD dataset respectively.•The results reveal the outstanding performance of the proposed algorithm. Alzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have been used in the diagnosis of AD. In this paper, a fuzzy k-nearest neighbor method based on the improved binary salp swarm algorithm (IBSSA-FKNN) is proposed for the early diagnosis of AD, so as to distinguish between patients with mild cognitive impairment (MCI), Alzheimer's disease (AD) and normal controls (NC). First, the performance and feature selection accuracy of the method are validated on 5 different benchmark datasets. Secondly, the paper uses the Structural Magnetic Resolution Imaging (sMRI) dataset, in terms of classification accuracy, sensitivity, specificity, etc., the effectiveness of the method on the AD dataset is verified. The simulation results show that the classification accuracy of this method for AD and MCI, AD and NC, MCI and NC are 95.37%, 100%, and 93.95%, respectively. These accuracies are better than the other five comparison methods. The method proposed in this paper can learn better feature subsets from serial multimodal features, so as to improve the performance of early AD diagnosis. It has a good application prospect and will bring great convenience for clinicians to make better decisions in clinical diagnosis. AbstractAlzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have been used in the diagnosis of AD. In this paper, a fuzzy k-nearest neighbor method based on the improved binary salp swarm algorithm (IBSSA-FKNN) is proposed for the early diagnosis of AD, so as to distinguish between patients with mild cognitive impairment (MCI), Alzheimer's disease (AD) and normal controls (NC). First, the performance and feature selection accuracy of the method are validated on 5 different benchmark datasets. Secondly, the paper uses the Structural Magnetic Resolution Imaging (sMRI) dataset, in terms of classification accuracy, sensitivity, specificity, etc., the effectiveness of the method on the AD dataset is verified. The simulation results show that the classification accuracy of this method for AD and MCI, AD and NC, MCI and NC are 95.37%, 100%, and 93.95%, respectively. These accuracies are better than the other five comparison methods. The method proposed in this paper can learn better feature subsets from serial multimodal features, so as to improve the performance of early AD diagnosis. It has a good application prospect and will bring great convenience for clinicians to make better decisions in clinical diagnosis. Alzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have been used in the diagnosis of AD. In this paper, a fuzzy k-nearest neighbor method based on the improved binary salp swarm algorithm (IBSSA-FKNN) is proposed for the early diagnosis of AD, so as to distinguish between patients with mild cognitive impairment (MCI), Alzheimer's disease (AD) and normal controls (NC). First, the performance and feature selection accuracy of the method are validated on 5 different benchmark datasets. Secondly, the paper uses the Structural Magnetic Resolution Imaging (sMRI) dataset, in terms of classification accuracy, sensitivity, specificity, etc., the effectiveness of the method on the AD dataset is verified. The simulation results show that the classification accuracy of this method for AD and MCI, AD and NC, MCI and NC are 95.37%, 100%, and 93.95%, respectively. These accuracies are better than the other five comparison methods. The method proposed in this paper can learn better feature subsets from serial multimodal features, so as to improve the performance of early AD diagnosis. It has a good application prospect and will bring great convenience for clinicians to make better decisions in clinical diagnosis.Alzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have been used in the diagnosis of AD. In this paper, a fuzzy k-nearest neighbor method based on the improved binary salp swarm algorithm (IBSSA-FKNN) is proposed for the early diagnosis of AD, so as to distinguish between patients with mild cognitive impairment (MCI), Alzheimer's disease (AD) and normal controls (NC). First, the performance and feature selection accuracy of the method are validated on 5 different benchmark datasets. Secondly, the paper uses the Structural Magnetic Resolution Imaging (sMRI) dataset, in terms of classification accuracy, sensitivity, specificity, etc., the effectiveness of the method on the AD dataset is verified. The simulation results show that the classification accuracy of this method for AD and MCI, AD and NC, MCI and NC are 95.37%, 100%, and 93.95%, respectively. These accuracies are better than the other five comparison methods. The method proposed in this paper can learn better feature subsets from serial multimodal features, so as to improve the performance of early AD diagnosis. It has a good application prospect and will bring great convenience for clinicians to make better decisions in clinical diagnosis.  | 
    
| ArticleNumber | 106930 | 
    
| Author | Xu, Minghai Lu, Dongwan Hu, Zhongyi Tong, Yinsheng Ma, Hanjie Yue, Yinggao  | 
    
| Author_xml | – sequence: 1 givenname: Dongwan orcidid: 0000-0002-7913-1868 surname: Lu fullname: Lu, Dongwan organization: School of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China – sequence: 2 givenname: Yinggao orcidid: 0000-0002-5582-8791 surname: Yue fullname: Yue, Yinggao organization: School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou, 325035, China – sequence: 3 givenname: Zhongyi orcidid: 0000-0002-9672-3734 surname: Hu fullname: Hu, Zhongyi email: hujunyi@163.com organization: School of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China – sequence: 4 givenname: Minghai surname: Xu fullname: Xu, Minghai email: xmhemail@126.com organization: School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou, 325035, China – sequence: 5 givenname: Yinsheng surname: Tong fullname: Tong, Yinsheng organization: School of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China – sequence: 6 givenname: Hanjie surname: Ma fullname: Ma, Hanjie organization: School of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37087779$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkl1v0zAUhi00xLrCX0CWuICblOOPNMnNxJi2gZjEBXBt2c5J65LEwU6H2l-Po24gVULqlS3r8euj5_UFOet9j4RQBgsGbPl-s7C-G4zzHdYLDlyk42Ul4BmZsbKoMsiFPCMzAAaZLHl-Ti5i3ACABAEvyLkooCyKopqR4aZp0I7uAWmN47TzPfUNvWr3a3QdhreR1i6ijkjNjvphdJ3bu35Fm-1-v6Nfsh51wDjSHt1qbXyI1CS4pikn6nag8bcOHdXtygc3rruX5Hmj24ivHtc5-XF78_36U3b_9e7z9dV9ZnMmx6zKS8uQlWZZNcIUIFhVl1W9FPW0FMYIJqSRWpei4BXncslRMsYbmeeCmUbMybtD7hD8r20aUHUuWmxb3aPfRsVLyHNWgKwS-uYI3fht6NN0iUq-c8kBEvX6kdqapF0NwXU67NSTywRcHgAbfIwBG2XdqCehY9CuVQzUVJ7aqH_lqak8dSgvBZRHAU9vnHD14-EqJqUPDoOK1mFvsXYhlapq704JuTwKsa3rndXtT9xh_CuFqcgVqG_T95p-FxdJT5W8z8mH_wecNsMfntLkQQ | 
    
| CitedBy_id | crossref_primary_10_1007_s10462_024_10789_0 crossref_primary_10_1016_j_dajour_2024_100442 crossref_primary_10_1093_cercor_bhae498 crossref_primary_10_1093_jcde_qwae073 crossref_primary_10_3390_biomimetics9050270 crossref_primary_10_1038_s41598_024_59846_2 crossref_primary_10_1016_j_bspc_2024_106721 crossref_primary_10_1016_j_compbiomed_2025_109810 crossref_primary_10_1038_s41598_024_59287_x crossref_primary_10_3390_s23218787 crossref_primary_10_1038_s41598_024_54910_3 crossref_primary_10_1007_s12597_023_00682_9 crossref_primary_10_3390_biomimetics8020235 crossref_primary_10_1007_s10489_023_04920_x crossref_primary_10_1007_s13748_024_00327_y crossref_primary_10_1016_j_abst_2024_08_004 crossref_primary_10_1016_j_aej_2024_06_096 crossref_primary_10_1007_s13755_024_00297_4 crossref_primary_10_3390_math12131955 crossref_primary_10_1007_s10586_024_04441_3 crossref_primary_10_1002_rnc_7883 crossref_primary_10_3390_biomimetics8030306 crossref_primary_10_1016_j_compbiomed_2023_107392  | 
    
| Cites_doi | 10.1016/j.patcog.2005.01.018 10.1016/j.swevo.2018.04.008 10.1016/j.eswa.2022.116516 10.1109/JIOT.2019.2913176 10.1016/j.neucom.2015.06.083 10.1016/j.eswa.2012.07.014 10.1016/j.advengsoft.2017.07.002 10.7763/IJMLC.2012.V2.114 10.1016/j.neucom.2020.10.038 10.1109/TIM.2020.2983233 10.1007/s12293-016-0212-3 10.3233/JAD-2011-101371 10.1016/j.future.2019.02.028 10.1007/s00521-015-1923-y 10.1093/bioinformatics/btg366 10.1002/adma.202109175 10.1016/j.media.2014.04.006 10.1002/int.22744 10.3390/s20247212 10.1002/cpe.7099 10.1109/TITS.2020.3025796 10.1007/s13369-020-05206-x 10.3390/bdcc6010002 10.1093/scan/nsaa046 10.1007/s00500-014-1543-y 10.1109/ACCESS.2020.2981968 10.1016/j.matcom.2020.06.012 10.1016/j.eswa.2021.114864 10.1016/j.cie.2018.06.017 10.1016/0168-9274(95)00108-5 10.1016/j.future.2020.03.055 10.1007/s11042-016-3907-z 10.1007/s42235-021-0050-y  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Elsevier Ltd Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. 2023. Elsevier Ltd  | 
    
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. – notice: 2023. Elsevier Ltd  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8  | 
    
| DOI | 10.1016/j.compbiomed.2023.106930 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) Medical Database Research Library (Proquest) Biological Science Database (Proquest) Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1879-0534 | 
    
| EndPage | 106930 | 
    
| ExternalDocumentID | 37087779 10_1016_j_compbiomed_2023_106930 S0010482523003955 1_s2_0_S0010482523003955  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD AFCTW AGCQF AGRNS ALIPV RIG 3V. AACTN AFKWA AJOXV AMFUW M0N AAYXX CITATION PUEGO CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8  | 
    
| ID | FETCH-LOGICAL-c514t-958c1e18b69f3b70319d89d63dd89d7bb3134b4aa8372922462e4112f45531bf3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0010-4825 1879-0534  | 
    
| IngestDate | Sat Sep 27 21:33:50 EDT 2025 Tue Oct 07 06:46:46 EDT 2025 Mon Jul 21 06:03:31 EDT 2025 Wed Oct 01 04:07:55 EDT 2025 Thu Apr 24 23:05:26 EDT 2025 Sat Jan 18 16:09:15 EST 2025 Wed Jun 18 06:48:28 EDT 2025 Tue Oct 14 19:33:07 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Salp swarm algorithm Swarm intelligence algorithm Feature selection Medical diagnosis Alzheimer's disease  | 
    
| Language | English | 
    
| License | Copyright © 2023 Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c514t-958c1e18b69f3b70319d89d63dd89d7bb3134b4aa8372922462e4112f45531bf3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-7913-1868 0000-0002-9672-3734 0000-0002-5582-8791  | 
    
| PMID | 37087779 | 
    
| PQID | 2810154200 | 
    
| PQPubID | 1226355 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | proquest_miscellaneous_2805517049 proquest_journals_2810154200 pubmed_primary_37087779 crossref_citationtrail_10_1016_j_compbiomed_2023_106930 crossref_primary_10_1016_j_compbiomed_2023_106930 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_106930 elsevier_clinicalkeyesjournals_1_s2_0_S0010482523003955 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_106930  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-06-01 | 
    
| PublicationDateYYYYMMDD | 2023-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Oxford  | 
    
| PublicationTitle | Computers in biology and medicine | 
    
| PublicationTitleAlternate | Comput Biol Med | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Ltd Elsevier Limited  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited  | 
    
| References | Shan, Qiao, Heidari (bib15) 2021; 214 Li, Chen, Wang (bib31) 2020; 111 Singh, Janghel (bib5) 2022 Butcher (bib34) 1996; 20 Pang, Zhou, Tsai (bib28) 2018; 123 Emary, Zawbaa, Hassanien (bib46) 2016; 172 Venkatesh, Anuradha (bib29) 2019; 19 Seo, Laine, Oh (bib8) 2020; 20 Wang, Deb, Cui (bib30) 2019; 31 Shokrzade, Ramezani, Tab (bib10) 2021; 183 Deng, Liu, Xu (bib26) 2020; 69 Deng, Xu, Zhao (bib27) 2020; 23 Zhang, Xu, Yu (bib22) 2020; 141 Tu, Chen, Liu (bib19) 2021; 212 Zeng, Xie, Chen (bib24) 2019; 44 Yang, Chen, Heidari (bib33) 2021; 177 Wang (bib32) 2018; 10 Weller, Budson (bib1) 2018; 7 Pan, Luo, Zeng (bib6) 2022 Feng, Zhang, Zhu (bib41) 2017; 76 Patil, Soni, Prakash (bib44) 2022; 13 Huang, Li (bib11) 2004; 20 Kwak, Pedrycz (bib12) 2005; 38 Batmanghelich, Taskar, Davatzikos (bib49) 2009; vol. 5636 Zheng, Yu, Lei (bib9) 2022; 34 Zhu, Ma, Zhao (bib23) 2020; 8 Mirjalili, Hashim (bib42) 2012; 2 Janoušová, Vounou, Wolz (bib48) 2012 Chen, Zeng, Lu (bib25) 2019; 6 Zhang, Liu, Heidari (bib17) 2021; 430 Fan, Wang, Mafarja (bib21) 2021; 213 Liu, Liu, Cai (bib50) 2014 Yang, Lui, Gao (bib52) 2011; 24 Rasmussen, Langerman (bib2) 2019; 9 Mirjalili, Gandomi, Mirjalili (bib38) 2017; 114 Nakamura, Pereira, Costa (bib43) 2012 Wang, Zhao, Li (bib16) 2020; 15 Song, Wang, Heidari (bib20) 2021; 215 Abbad Ur Rehman, Lin, Mushtaq (bib40) 2021; 46 Chen, Huang, Yu (bib13) 2013; 40 Jiao, Chong, Huang (bib18) 2020; 203 Tong, Wolz, Gao (bib51) 2014; 18 Yu, Cai, Ye (bib45) 2020; 178 Velliangiri, Pandiaraj, Muthubalaji (bib7) 2022; 34 Tu, Chen, Wang (bib35) 2021; 18 Emmanuel, Jabez (bib39) 2022; 13 Mondal, Ghosh, Ghosh (bib14) 2016; 20 Ahmadianfar, Heidari, Noshadian (bib36) 2022; 195 Lu, Popuri, Ding (bib3) 2018; 8 Gharaibeh, Almahmoud, Ali (bib4) 2022; 6 Heidari, Mirjalili, Faris (bib37) 2019; 97 Hu, Heidari, Zhang (bib47) 2022; 37 Rasmussen (10.1016/j.compbiomed.2023.106930_bib2) 2019; 9 Pan (10.1016/j.compbiomed.2023.106930_bib6) 2022 Jiao (10.1016/j.compbiomed.2023.106930_bib18) 2020; 203 Deng (10.1016/j.compbiomed.2023.106930_bib26) 2020; 69 Mirjalili (10.1016/j.compbiomed.2023.106930_bib38) 2017; 114 Kwak (10.1016/j.compbiomed.2023.106930_bib12) 2005; 38 Lu (10.1016/j.compbiomed.2023.106930_bib3) 2018; 8 Tong (10.1016/j.compbiomed.2023.106930_bib51) 2014; 18 Mirjalili (10.1016/j.compbiomed.2023.106930_bib42) 2012; 2 Butcher (10.1016/j.compbiomed.2023.106930_bib34) 1996; 20 Zhu (10.1016/j.compbiomed.2023.106930_bib23) 2020; 8 Yu (10.1016/j.compbiomed.2023.106930_bib45) 2020; 178 Liu (10.1016/j.compbiomed.2023.106930_bib50) 2014 Song (10.1016/j.compbiomed.2023.106930_bib20) 2021; 215 Heidari (10.1016/j.compbiomed.2023.106930_bib37) 2019; 97 Ahmadianfar (10.1016/j.compbiomed.2023.106930_bib36) 2022; 195 Huang (10.1016/j.compbiomed.2023.106930_bib11) 2004; 20 Zeng (10.1016/j.compbiomed.2023.106930_bib24) 2019; 44 Janoušová (10.1016/j.compbiomed.2023.106930_bib48) 2012 Feng (10.1016/j.compbiomed.2023.106930_bib41) 2017; 76 Chen (10.1016/j.compbiomed.2023.106930_bib13) 2013; 40 Emary (10.1016/j.compbiomed.2023.106930_bib46) 2016; 172 Zhang (10.1016/j.compbiomed.2023.106930_bib22) 2020; 141 Deng (10.1016/j.compbiomed.2023.106930_bib27) 2020; 23 Batmanghelich (10.1016/j.compbiomed.2023.106930_bib49) 2009; vol. 5636 Weller (10.1016/j.compbiomed.2023.106930_bib1) 2018; 7 Venkatesh (10.1016/j.compbiomed.2023.106930_bib29) 2019; 19 Gharaibeh (10.1016/j.compbiomed.2023.106930_bib4) 2022; 6 Nakamura (10.1016/j.compbiomed.2023.106930_bib43) 2012 Shan (10.1016/j.compbiomed.2023.106930_bib15) 2021; 214 Pang (10.1016/j.compbiomed.2023.106930_bib28) 2018; 123 Yang (10.1016/j.compbiomed.2023.106930_bib33) 2021; 177 Patil (10.1016/j.compbiomed.2023.106930_bib44) 2022; 13 Tu (10.1016/j.compbiomed.2023.106930_bib35) 2021; 18 Singh (10.1016/j.compbiomed.2023.106930_bib5) 2022 Yang (10.1016/j.compbiomed.2023.106930_bib52) 2011; 24 Wang (10.1016/j.compbiomed.2023.106930_bib16) 2020; 15 Emmanuel (10.1016/j.compbiomed.2023.106930_bib39) 2022; 13 Velliangiri (10.1016/j.compbiomed.2023.106930_bib7) 2022; 34 Wang (10.1016/j.compbiomed.2023.106930_bib30) 2019; 31 Wang (10.1016/j.compbiomed.2023.106930_bib32) 2018; 10 Fan (10.1016/j.compbiomed.2023.106930_bib21) 2021; 213 Abbad Ur Rehman (10.1016/j.compbiomed.2023.106930_bib40) 2021; 46 Li (10.1016/j.compbiomed.2023.106930_bib31) 2020; 111 Seo (10.1016/j.compbiomed.2023.106930_bib8) 2020; 20 Zheng (10.1016/j.compbiomed.2023.106930_bib9) 2022; 34 Chen (10.1016/j.compbiomed.2023.106930_bib25) 2019; 6 Shokrzade (10.1016/j.compbiomed.2023.106930_bib10) 2021; 183 Tu (10.1016/j.compbiomed.2023.106930_bib19) 2021; 212 Mondal (10.1016/j.compbiomed.2023.106930_bib14) 2016; 20 Hu (10.1016/j.compbiomed.2023.106930_bib47) 2022; 37 Zhang (10.1016/j.compbiomed.2023.106930_bib17) 2021; 430  | 
    
| References_xml | – volume: 34 year: 2022 ident: bib7 article-title: Multiclass recognition of AD neurological diseases using a bag of deep reduced features coupled with gradient descent optimized twin support vector machine classifier for early diagnosis[J] publication-title: Concurrency Comput. Pract. Ex. – volume: 215 year: 2021 ident: bib20 article-title: Dimension decided Harris hawks optimization with Gaussian mutation: balance analysis and diversity patterns[J] publication-title: Knowl. Base Syst. – volume: 212 year: 2021 ident: bib19 article-title: Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance[J] publication-title: Knowl. Base Syst. – volume: 430 start-page: 185 year: 2021 end-page: 212 ident: bib17 article-title: Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis[J] publication-title: Neurocomputing – volume: 2 start-page: 204 year: 2012 ident: bib42 article-title: BMOA: binary magnetic optimization algorithm[J] publication-title: International Journal of Machine Learning and Computing – volume: 13 start-page: 797 year: 2022 end-page: 809 ident: bib44 article-title: A BMFO-KNN based intelligent fault detection approach for reciprocating compressor[J] publication-title: International Journal of System Assurance Engineering and Management – volume: 20 start-page: 21 year: 2004 end-page: 28 ident: bib11 article-title: Prediction of protein subcellular locations using fuzzy k-NN method[J] publication-title: Bioinformatics – volume: 9 start-page: 123 year: 2019 end-page: 130 ident: bib2 article-title: Alzheimer's disease–why we need early diagnosis[J] publication-title: Degener. Neurol. Neuromuscul. Dis. – volume: vol. 5636 start-page: 423 year: 2009 end-page: 434 ident: bib49 article-title: A general and unifying framework for feature construction publication-title: Image-Based Pattern classification[C]//International Conference on Information Processing in Medical Imaging – volume: 19 start-page: 3 year: 2019 end-page: 26 ident: bib29 article-title: A review of feature selection and its methods[J] publication-title: Cybern. Inf. Technol. – volume: 20 start-page: 7212 year: 2020 end-page: 7225 ident: bib8 article-title: EEG-based emotion classification for Alzheimer's disease patients using conventional machine learning and recurrent neural network models[J] publication-title: Sensors – volume: 213 year: 2021 ident: bib21 article-title: A bioinformatic variant fruit fly optimizer for tackling optimization problems[J] publication-title: Knowl. Base Syst. – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: bib38 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems[J] publication-title: Adv. Eng. Software – volume: 123 start-page: 54 year: 2018 end-page: 66 ident: bib28 article-title: A scatter simulated annealing algorithm for the bi-objective scheduling problem for the wet station of semiconductor manufacturing[J] publication-title: Comput. Ind. Eng. – volume: 40 start-page: 263 year: 2013 end-page: 271 ident: bib13 article-title: An efficient diagnosis system for detection of Parkinson's disease using fuzzy k-nearest neighbor approach[J] publication-title: Expert Syst. Appl. – volume: 111 start-page: 300 year: 2020 end-page: 323 ident: bib31 article-title: Slime mould algorithm: a new method for stochastic optimization[J] publication-title: Future Generat. Comput. Syst. – volume: 44 start-page: 320 year: 2019 end-page: 334 ident: bib24 article-title: Adaptive population extremal optimization-based PID neural network for multivariable nonlinear control systems[J] publication-title: Swarm Evol. Comput. – volume: 20 start-page: 247 year: 1996 end-page: 260 ident: bib34 article-title: A history of Runge-Kutta methods[J] publication-title: Appl. Numer. Math. – volume: 18 start-page: 808 year: 2014 end-page: 818 ident: bib51 article-title: Multiple instance learning for classification of dementia in brain MRI[J] publication-title: Med. Image Anal. – volume: 203 year: 2020 ident: bib18 article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models[J] publication-title: Energy – volume: 178 start-page: 259 year: 2020 end-page: 289 ident: bib45 article-title: Quantum-like mutation-induced dragonfly-inspired optimization approach[J] publication-title: Math. Comput. Simulat. – year: 2022 ident: bib6 article-title: Adaptive 3DCNN-Based Interpretable Ensemble Model for Early Diagnosis of Alzheimer's Disease[J] – volume: 34 year: 2022 ident: bib9 article-title: Compositionally graded KNN‐based multilayer composite with excellent piezoelectric temperature stability[J] publication-title: Adv. Mater. – volume: 183 year: 2021 ident: bib10 article-title: A novel extreme learning machine based kNN classification method for dealing with big data[J] publication-title: Expert Syst. Appl. – start-page: 291 year: 2012 end-page: 297 ident: bib43 article-title: BBA: a binary bat algorithm for feature selection[C] publication-title: 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images – volume: 38 start-page: 1717 year: 2005 end-page: 1732 ident: bib12 article-title: Face recognition using a fuzzy fisherface classifier[J] publication-title: Pattern Recogn. – volume: 76 start-page: 17405 year: 2017 end-page: 17436 ident: bib41 article-title: A novel chaos optimization algorithm[J] publication-title: Multimed. Tool. Appl. – volume: 8 start-page: 1 year: 2018 end-page: 13 ident: bib3 article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer's disease using structural MR and FDG-PET images[J] publication-title: Sci. Rep. – start-page: 1015 year: 2014 end-page: 1018 ident: bib50 article-title: Early diagnosis of Alzheimer's disease with deep learning[C] publication-title: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI) – volume: 18 start-page: 674 year: 2021 end-page: 710 ident: bib35 article-title: The colony predation algorithm[J] publication-title: J. Bionic Eng. – volume: 37 start-page: 4864 year: 2022 end-page: 4927 ident: bib47 article-title: Chaotic diffusion‐limited aggregation enhanced grey wolf optimizer: insights, analysis, binarization, and feature selection[J] publication-title: Int. J. Intell. Syst. – volume: 6 start-page: 2 year: 2022 ident: bib4 article-title: Early diagnosis of alzheimer's disease using cerebral catheter angiogram neuroimaging: a novel model based on deep learning approaches[J] publication-title: Big Data and Cognitive Computing – volume: 7 start-page: 1 year: 2018 end-page: 9 ident: bib1 article-title: Current understanding of Alzheimer's disease diagnosis and treatment[J] publication-title: F1000Research – volume: 69 start-page: 7319 year: 2020 end-page: 7327 ident: bib26 article-title: An improved quantum-inspired differential evolution algorithm for deep belief network[J] publication-title: IEEE Trans. Instrum. Meas. – volume: 46 start-page: 9437 year: 2021 end-page: 9449 ident: bib40 article-title: Performance analysis of machine learning algorithms for thyroid disease[J] publication-title: Arabian J. Sci. Eng. – volume: 6 start-page: 6997 year: 2019 end-page: 7010 ident: bib25 article-title: A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM[J] publication-title: IEEE Internet Things J. – volume: 31 start-page: 1995 year: 2019 end-page: 2014 ident: bib30 article-title: Monarch butterfly optimization[J] publication-title: Neural Comput. Appl. – start-page: 1 year: 2012 end-page: 11 ident: bib48 article-title: Biomarker discovery for sparse classification of brain images in Alzheimer's disease[J] publication-title: Annals of the BMVA – volume: 177 year: 2021 ident: bib33 article-title: Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts[J] publication-title: Expert Syst. Appl. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: bib37 article-title: Harris hawks optimization: algorithm and applications[J] publication-title: Future Generat. Comput. Syst. – volume: 214 year: 2021 ident: bib15 article-title: Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis[J] publication-title: Knowl. Base Syst. – volume: 8 start-page: 61107 year: 2020 end-page: 61123 ident: bib23 article-title: Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine[J] publication-title: IEEE Access – volume: 23 start-page: 1737 year: 2020 end-page: 1745 ident: bib27 article-title: A novel gate resource allocation method using improved PSO-based QEA[J] publication-title: IEEE Trans. Intell. Transport. Syst. – volume: 15 start-page: 395 year: 2020 end-page: 404 ident: bib16 article-title: Neurostructural correlates of hope: dispositional hope mediates the impact of the SMA gray matter volume on subjective well-being in late adolescence[J] publication-title: Soc. Cognit. Affect Neurosci. – volume: 172 start-page: 371 year: 2016 end-page: 381 ident: bib46 article-title: Binary grey wolf optimization approaches for feature selection[J] publication-title: Neurocomputing – start-page: 15 year: 2022 end-page: 31 ident: bib5 article-title: Early diagnosis of alzheimer's disease using aco optimized deep cnn classifier[C]//Ubiquitous Intelligent Systems publication-title: Proceedings of ICUIS 2021 – volume: 20 start-page: 785 year: 2016 end-page: 805 ident: bib14 article-title: Efficient silhouette-based contour tracking using local information[J] publication-title: Soft Comput. – volume: 195 year: 2022 ident: bib36 article-title: INFO: an efficient optimization algorithm based on weighted mean of vectors[J] publication-title: Expert Syst. Appl. – volume: 24 start-page: 775 year: 2011 end-page: 783 ident: bib52 article-title: Independent component analysis-based classification of Alzheimer's disease MRI data[J] publication-title: J. Alzheim. Dis. – volume: 141 year: 2020 ident: bib22 article-title: Gaussian mutational chaotic fruit fly-built optimization and feature selection[J] publication-title: Expert Syst. Appl. – volume: 13 start-page: 89 year: 2022 end-page: 103 ident: bib39 article-title: An enhanced fuzzy based KNN classification method for Alzheimer's disease identification from SMRI images[J] publication-title: JOURNAL OF ALGEBRAIC STATISTICS – volume: 10 start-page: 151 year: 2018 end-page: 164 ident: bib32 article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems[J] publication-title: Memetic Computing – volume: 38 start-page: 1717 issue: 10 year: 2005 ident: 10.1016/j.compbiomed.2023.106930_bib12 article-title: Face recognition using a fuzzy fisherface classifier[J] publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2005.01.018 – volume: 44 start-page: 320 issue: 2 year: 2019 ident: 10.1016/j.compbiomed.2023.106930_bib24 article-title: Adaptive population extremal optimization-based PID neural network for multivariable nonlinear control systems[J] publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.04.008 – volume: 13 start-page: 797 issue: 2 year: 2022 ident: 10.1016/j.compbiomed.2023.106930_bib44 article-title: A BMFO-KNN based intelligent fault detection approach for reciprocating compressor[J] publication-title: International Journal of System Assurance Engineering and Management – volume: 13 start-page: 89 issue: 3 year: 2022 ident: 10.1016/j.compbiomed.2023.106930_bib39 article-title: An enhanced fuzzy based KNN classification method for Alzheimer's disease identification from SMRI images[J] publication-title: JOURNAL OF ALGEBRAIC STATISTICS – volume: 195 year: 2022 ident: 10.1016/j.compbiomed.2023.106930_bib36 article-title: INFO: an efficient optimization algorithm based on weighted mean of vectors[J] publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116516 – volume: 6 start-page: 6997 issue: 4 year: 2019 ident: 10.1016/j.compbiomed.2023.106930_bib25 article-title: A two-layer nonlinear combination method for short-term wind speed prediction based on ELM, ENN, and LSTM[J] publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2913176 – volume: 172 start-page: 371 year: 2016 ident: 10.1016/j.compbiomed.2023.106930_bib46 article-title: Binary grey wolf optimization approaches for feature selection[J] publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – volume: 40 start-page: 263 issue: 1 year: 2013 ident: 10.1016/j.compbiomed.2023.106930_bib13 article-title: An efficient diagnosis system for detection of Parkinson's disease using fuzzy k-nearest neighbor approach[J] publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.07.014 – start-page: 1 issue: 2 year: 2012 ident: 10.1016/j.compbiomed.2023.106930_bib48 article-title: Biomarker discovery for sparse classification of brain images in Alzheimer's disease[J] publication-title: Annals of the BMVA – volume: 215 issue: 3 year: 2021 ident: 10.1016/j.compbiomed.2023.106930_bib20 article-title: Dimension decided Harris hawks optimization with Gaussian mutation: balance analysis and diversity patterns[J] publication-title: Knowl. Base Syst. – volume: vol. 5636 start-page: 423 year: 2009 ident: 10.1016/j.compbiomed.2023.106930_bib49 article-title: A general and unifying framework for feature construction – volume: 183 issue: 11 year: 2021 ident: 10.1016/j.compbiomed.2023.106930_bib10 article-title: A novel extreme learning machine based kNN classification method for dealing with big data[J] publication-title: Expert Syst. Appl. – volume: 114 start-page: 163 issue: 12 year: 2017 ident: 10.1016/j.compbiomed.2023.106930_bib38 article-title: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems[J] publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2017.07.002 – volume: 2 start-page: 204 issue: 3 year: 2012 ident: 10.1016/j.compbiomed.2023.106930_bib42 article-title: BMOA: binary magnetic optimization algorithm[J] publication-title: International Journal of Machine Learning and Computing doi: 10.7763/IJMLC.2012.V2.114 – volume: 213 issue: 2 year: 2021 ident: 10.1016/j.compbiomed.2023.106930_bib21 article-title: A bioinformatic variant fruit fly optimizer for tackling optimization problems[J] publication-title: Knowl. Base Syst. – volume: 430 start-page: 185 issue: 3 year: 2021 ident: 10.1016/j.compbiomed.2023.106930_bib17 article-title: Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis[J] publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.038 – volume: 69 start-page: 7319 issue: 10 year: 2020 ident: 10.1016/j.compbiomed.2023.106930_bib26 article-title: An improved quantum-inspired differential evolution algorithm for deep belief network[J] publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.2983233 – volume: 10 start-page: 151 issue: 2 year: 2018 ident: 10.1016/j.compbiomed.2023.106930_bib32 article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems[J] publication-title: Memetic Computing doi: 10.1007/s12293-016-0212-3 – volume: 24 start-page: 775 issue: 4 year: 2011 ident: 10.1016/j.compbiomed.2023.106930_bib52 article-title: Independent component analysis-based classification of Alzheimer's disease MRI data[J] publication-title: J. Alzheim. Dis. doi: 10.3233/JAD-2011-101371 – volume: 141 issue: 3 year: 2020 ident: 10.1016/j.compbiomed.2023.106930_bib22 article-title: Gaussian mutational chaotic fruit fly-built optimization and feature selection[J] publication-title: Expert Syst. Appl. – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.compbiomed.2023.106930_bib37 article-title: Harris hawks optimization: algorithm and applications[J] publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 31 start-page: 1995 issue: 7 year: 2019 ident: 10.1016/j.compbiomed.2023.106930_bib30 article-title: Monarch butterfly optimization[J] publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1923-y – volume: 20 start-page: 21 issue: 1 year: 2004 ident: 10.1016/j.compbiomed.2023.106930_bib11 article-title: Prediction of protein subcellular locations using fuzzy k-NN method[J] publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg366 – volume: 34 issue: 8 year: 2022 ident: 10.1016/j.compbiomed.2023.106930_bib9 article-title: Compositionally graded KNN‐based multilayer composite with excellent piezoelectric temperature stability[J] publication-title: Adv. Mater. doi: 10.1002/adma.202109175 – year: 2022 ident: 10.1016/j.compbiomed.2023.106930_bib6 – volume: 18 start-page: 808 issue: 5 year: 2014 ident: 10.1016/j.compbiomed.2023.106930_bib51 article-title: Multiple instance learning for classification of dementia in brain MRI[J] publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.04.006 – volume: 19 start-page: 3 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2023.106930_bib29 article-title: A review of feature selection and its methods[J] publication-title: Cybern. Inf. Technol. – volume: 37 start-page: 4864 issue: 8 year: 2022 ident: 10.1016/j.compbiomed.2023.106930_bib47 article-title: Chaotic diffusion‐limited aggregation enhanced grey wolf optimizer: insights, analysis, binarization, and feature selection[J] publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22744 – volume: 20 start-page: 7212 issue: 24 year: 2020 ident: 10.1016/j.compbiomed.2023.106930_bib8 article-title: EEG-based emotion classification for Alzheimer's disease patients using conventional machine learning and recurrent neural network models[J] publication-title: Sensors doi: 10.3390/s20247212 – volume: 214 issue: 2 year: 2021 ident: 10.1016/j.compbiomed.2023.106930_bib15 article-title: Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis[J] publication-title: Knowl. Base Syst. – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2023.106930_bib3 article-title: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer's disease using structural MR and FDG-PET images[J] publication-title: Sci. Rep. – volume: 34 issue: 21 year: 2022 ident: 10.1016/j.compbiomed.2023.106930_bib7 article-title: Multiclass recognition of AD neurological diseases using a bag of deep reduced features coupled with gradient descent optimized twin support vector machine classifier for early diagnosis[J] publication-title: Concurrency Comput. Pract. Ex. doi: 10.1002/cpe.7099 – volume: 203 issue: 7 year: 2020 ident: 10.1016/j.compbiomed.2023.106930_bib18 article-title: Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models[J] publication-title: Energy – start-page: 15 year: 2022 ident: 10.1016/j.compbiomed.2023.106930_bib5 article-title: Early diagnosis of alzheimer's disease using aco optimized deep cnn classifier[C]//Ubiquitous Intelligent Systems – volume: 7 start-page: 1 issue: 7 year: 2018 ident: 10.1016/j.compbiomed.2023.106930_bib1 article-title: Current understanding of Alzheimer's disease diagnosis and treatment[J] publication-title: F1000Research – volume: 212 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.106930_bib19 article-title: Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance[J] publication-title: Knowl. Base Syst. – volume: 23 start-page: 1737 issue: 3 year: 2020 ident: 10.1016/j.compbiomed.2023.106930_bib27 article-title: A novel gate resource allocation method using improved PSO-based QEA[J] publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2020.3025796 – volume: 46 start-page: 9437 issue: 10 year: 2021 ident: 10.1016/j.compbiomed.2023.106930_bib40 article-title: Performance analysis of machine learning algorithms for thyroid disease[J] publication-title: Arabian J. Sci. Eng. doi: 10.1007/s13369-020-05206-x – volume: 6 start-page: 2 issue: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.106930_bib4 article-title: Early diagnosis of alzheimer's disease using cerebral catheter angiogram neuroimaging: a novel model based on deep learning approaches[J] publication-title: Big Data and Cognitive Computing doi: 10.3390/bdcc6010002 – volume: 15 start-page: 395 issue: 4 year: 2020 ident: 10.1016/j.compbiomed.2023.106930_bib16 article-title: Neurostructural correlates of hope: dispositional hope mediates the impact of the SMA gray matter volume on subjective well-being in late adolescence[J] publication-title: Soc. Cognit. Affect Neurosci. doi: 10.1093/scan/nsaa046 – volume: 20 start-page: 785 issue: 2 year: 2016 ident: 10.1016/j.compbiomed.2023.106930_bib14 article-title: Efficient silhouette-based contour tracking using local information[J] publication-title: Soft Comput. doi: 10.1007/s00500-014-1543-y – volume: 8 start-page: 61107 issue: 3 year: 2020 ident: 10.1016/j.compbiomed.2023.106930_bib23 article-title: Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine[J] publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981968 – start-page: 1015 year: 2014 ident: 10.1016/j.compbiomed.2023.106930_bib50 article-title: Early diagnosis of Alzheimer's disease with deep learning[C] – volume: 178 start-page: 259 year: 2020 ident: 10.1016/j.compbiomed.2023.106930_bib45 article-title: Quantum-like mutation-induced dragonfly-inspired optimization approach[J] publication-title: Math. Comput. Simulat. doi: 10.1016/j.matcom.2020.06.012 – volume: 9 start-page: 123 issue: 12 year: 2019 ident: 10.1016/j.compbiomed.2023.106930_bib2 article-title: Alzheimer's disease–why we need early diagnosis[J] publication-title: Degener. Neurol. Neuromuscul. Dis. – start-page: 291 year: 2012 ident: 10.1016/j.compbiomed.2023.106930_bib43 article-title: BBA: a binary bat algorithm for feature selection[C] – volume: 177 year: 2021 ident: 10.1016/j.compbiomed.2023.106930_bib33 article-title: Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts[J] publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114864 – volume: 123 start-page: 54 issue: 9 year: 2018 ident: 10.1016/j.compbiomed.2023.106930_bib28 article-title: A scatter simulated annealing algorithm for the bi-objective scheduling problem for the wet station of semiconductor manufacturing[J] publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.06.017 – volume: 20 start-page: 247 issue: 3 year: 1996 ident: 10.1016/j.compbiomed.2023.106930_bib34 article-title: A history of Runge-Kutta methods[J] publication-title: Appl. Numer. Math. doi: 10.1016/0168-9274(95)00108-5 – volume: 111 start-page: 300 year: 2020 ident: 10.1016/j.compbiomed.2023.106930_bib31 article-title: Slime mould algorithm: a new method for stochastic optimization[J] publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2020.03.055 – volume: 76 start-page: 17405 issue: 16 year: 2017 ident: 10.1016/j.compbiomed.2023.106930_bib41 article-title: A novel chaos optimization algorithm[J] publication-title: Multimed. Tool. Appl. doi: 10.1007/s11042-016-3907-z – volume: 18 start-page: 674 issue: 3 year: 2021 ident: 10.1016/j.compbiomed.2023.106930_bib35 article-title: The colony predation algorithm[J] publication-title: J. Bionic Eng. doi: 10.1007/s42235-021-0050-y  | 
    
| SSID | ssj0004030 | 
    
| Score | 2.518613 | 
    
| Snippet | Alzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence methods have... AbstractAlzheimer's disease (AD) is a typical senile degenerative disease that has received increasing attention worldwide. Many artificial intelligence...  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 106930 | 
    
| SubjectTerms | Accuracy Algorithms Alzheimer Disease - diagnostic imaging Alzheimer's disease Artificial Intelligence Brain Classification Cognitive ability Cognitive Dysfunction - diagnostic imaging Datasets Diagnosis Disease control Feature selection Fuzzy sets Humans Internal Medicine Machine learning Magnetic Resonance Imaging - methods Medical diagnosis Neural networks Neurodegenerative diseases Optimization Other Performance enhancement Salp swarm algorithm Support vector machines Swarm intelligence algorithm  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB_OHogv4rfVU1YQfIom2c3HIiKn3HEoV0Q9uLclm93cnbRJbVLk-tc7k92kL570qdB2Nu3O7MwvmZnfALxOw1wgbJWBTUsZYLy1gYyNQYUIqcMSA7ahjO7pLD05E1_Ok_M9mA29MFRWOfjE3lGbpqRn5O9iYqJKBCr14_J3QFOjKLs6jNAo_GgF86GnGLsF-zExY01g_9PR7Nv3badkyF1TCnofgTdHvrbHVXxREbdren9LQ8XxbZoTeFPAugmQ9oHp-B7c9YiSHToTuA97tn4At099zvwhLB1BMXo1ZmzXV17VrKnY4Xxzaa8WdvWmZT5Nw_Q1a9CHLK42GNFYtd5srtnXoCae27ZjNT1GRZtpGcU-w3CdtpgvWfunWC1YMb_A_eouF4_g7Pjo5-eTwM9ZCEqES10gk7yMbJTrVFZcE6G9NLk0KTf0kmnNIy60KIqccnzEQBdbgTitEgmeYF3xxzCpm9o-BUa1awWvMp1yhDo2lmVVZhEtTrgkT6aQDZupSk9CTrMw5mqoNvultmpQpAbl1DCFaJRcOiKOHWTkoC81NJqia1QYLXaQzf4la1t_xlsVqTZWofrRUxyhLeHNXMhlgv_x_SjpYYyDJzte92AwLDVeamv8U3g1foyOgLI7RW2bNX0nRNPP8IxN4YkzyHGjeNbzPspn_1_8OdyhX-Iq4Q5g0q3W9gVirk6_9AfpL42eKdQ priority: 102 providerName: ProQuest  | 
    
| Title | Effective detection of Alzheimer's disease by optimizing fuzzy K-nearest neighbors based on salp swarm algorithm | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523003955 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523003955 https://dx.doi.org/10.1016/j.compbiomed.2023.106930 https://www.ncbi.nlm.nih.gov/pubmed/37087779 https://www.proquest.com/docview/2810154200 https://www.proquest.com/docview/2805517049  | 
    
| Volume | 159 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na5xAFB9CCqWX0u_apmEKhZ5MdGd0HHLahmy3DVlKaWBvg6NjYtnVZXUJ2UP_9r7njIbSBhZ6Udb1qcz7-un7IuRDHCQcYKv0TZxJH_yt8eUoz4EhXOogA4edY0T3YhZPL_nXeTTfI6d9LQymVTrbb216Z63dkWO3mserssQaX3iVgBccANEBkxEWmnMucIrB0a-7NA8eMFuGAvYGz3bZPDbHC9O2bZn7EY4Rh8M4GfA-F3UfBO1c0eQJeewwJB3bx3xK9kz1jDy8cFHy52RlWxKDHaO5abtcq4rWBR0vttemXJr1x4a6wAzVt7QGq7Est-DDaLHZbm_puV9hZ9umpRV-OAUpaSh6u5zCdZp0saLNTbpe0nRxVa_L9nr5glxOzn6cTn03WcHPACC1voySLDRhomNZMI0t7GWeyDxmOe6E1ixkXPM0TTCqhz3nRoYDMit4BDqrC_aS7Fd1ZV4TitlqKSuEjhmAGzOSWZGJEC-OSCSJPCL6xVSZazuO0y8Wqs8v-6nu2KCQDcqywSPhQLmyrTd2oJE9v1RfWgrGUIF_2IFW_IvWNE6rGxWqZqQC9ZfkeeRkoPxDeHe870EvWGq41Qgbr0UcbJhH3g9_g-pjPCetTL3BcwLAuwK0yiOvrEAOC8VE1-lRvvmvR3tLHuEvmxp3QPbb9ca8AxDW6sNOy2Ar5gK2yeTzIXkw_nI-ncH-09ns2_ffWXkzhw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgEviDuFAUYC8RSWxM7FQhMasKmja4Vgk_ZmktjZRW1SmlRT--P4bZwTO-kLQ33ZU6Smx2l9bp9zboS8Dd2YA2wVjg4z4YC_1Y7wlQKGcJG6GThshRHd4Sjsn_Bvp8HpBvnT1sJgWmVrExtDrcoM35Hv-NiJKuDA1E_T3w5OjcLoajtCI7GjFdRu02LMFnYM9OIKjnDV7uFX4Pc73z_YP_7Sd-yUAScDsFA7IogzT3txGoqcpdjOXahYqJApvERpyjzGU54kMUa4sP-arzmglJwHIL9pzmDdW2SLMy7g8Lf1eX_0_ceqMtNlpggGrB2Hw5jNJTIZZpg0borsP-AQc_gY5xJe5yCvA8CNIzy4T-5ZBEv3jMg9IBu6eEhuD22M_hGZmobIYEWp0nWT6VXQMqd74-W5vpjo2fuK2rAQTRe0BJs1uViCB6X5fLlc0IFTYF_dqqYFvrYFGa0o-lpFYZ0qGU9pdZXMJjQZnwF_6vPJY3JyIzv-hGwWZaGfEYq5cgnLozRkAK20L7I8izxcHHFQHPRI1G6mzGzTc5y9MZZtdtulXLFBIhukYUOPeB3l1DT-WINGtPySbWErmGIJ3mkN2uhftLqyNqWSnqx86cqfTUslkCU4PLpMBPAfP3aUFjYZOLTmc7dbwZLdo1bK1iNvuttgeDCalBS6nON3XFC1CHS6R54agew2ikVNn0nx_P-LvyZ3-sfDI3l0OBq8IHfxV5ksvG2yWc_m-iXgvTp9ZZWKkl83rcd_AS-hZMI | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVcEG9SCiwSiJOp7bW9XiGEKkrUElohQaXcFq-9pkWJncaOquSn8euY8drOhaJcerIUZ9bJzutbzwvgdeTGAcJW6ZgolQ76W-NIP8uQIYHUbooOO6OI7slpdHQWfBmH4y3409XCUFplZxMbQ52VKb0j3_epE1UYIFP38zYt4tvh8OPs0qEJUhRp7cZpWBEZmeUVHt-qD8eHyOs3vj_8_OPTkdNOGHBSBAq1I8M49YwX60jmXFMrd5nFMot4RhehNfd4oIMkiSm6Rb3XfBMgQsmDEGVX5xzXvQW3BeeS0gnFWKxrMl1uy1_QzgV4DGuziGxuGaWL2_L6dzS-HD-miYTXucbroG_jAof34G6LXdmBFbb7sGWKB7Bz0kbnH8LMtkJG-8kyUzc5XgUrc3YwWZ2bi6mZv61YGxBieslKtFbTixX6TpYvVqslGzkFddStalbQC1uUzoqRl80YrlMlkxmrrpL5lCWTX8iN-nz6CM5uZL8fw3ZRFuYpMMqSS3gudMQRVBlfpnkqPFqcEFAcDkB0m6nStt05Td2YqC6v7bdas0ERG5RlwwC8nnJmW35sQCM7fqmupBWNsEK_tAGt-BetqVprUilPVb5y1femmRLKEh4bXZQ4_I_ve8oWMFkgtOFz9zrBUv2j1mo2gFf9bTQ5FEdKClMu6Dsu4myB2jyAJ1Yg-43ioukwKXf_v_hL2EHtVV-PT0fP4A79KJt-twfb9XxhniPQq_WLRqMY_LxpFf4LYcxiXA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+detection+of+Alzheimer%27s+disease+by+optimizing+fuzzy+K-nearest+neighbors+based+on+salp+swarm+algorithm&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Lu%2C+Dongwan&rft.au=Yue%2C+Yinggao&rft.au=Hu%2C+Zhongyi&rft.au=Xu%2C+Minghai&rft.date=2023-06-01&rft.eissn=1879-0534&rft.volume=159&rft.spage=106930&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.106930&rft_id=info%3Apmid%2F37087779&rft.externalDocID=37087779 | 
    
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482523X00067%2Fcov150h.gif |