Optimized deep learning architecture for brain tumor classification using improved Hunger Games Search Algorithm

One of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for improving prognosis, and classifying tumors is a vital step in the disease’s treatment. Different classification strategies using deep learn...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 160; p. 106966
Main Authors Emam, Marwa M., Samee, Nagwan Abdel, Jamjoom, Mona M., Houssein, Essam H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.06.2023
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2023.106966

Cover

Abstract One of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for improving prognosis, and classifying tumors is a vital step in the disease’s treatment. Different classification strategies using deep learning have been presented for the diagnosis of brain tumors. However, several challenges exist, such as the need for a competent specialist in classifying brain cancers by deep learning models and the problem of building the most precise deep learning model for categorizing brain tumors. We propose an evolved and highly efficient model based on deep learning and improved metaheuristic algorithms to address these challenges. Specifically, we develop an optimized residual learning architecture for classifying multiple brain tumors and propose an improved variant of the Hunger Games Search algorithm (I-HGS) based on combining two enhancing strategies: Local Escaping Operator (LEO) and Brownian motion. These two strategies balance solution diversity and convergence speed, boosting the optimization performance and staying away from the local optima. First, we have evaluated the I-HGS algorithm on the IEEE Congress on Evolutionary Computation held in 2020 (CEC’2020) test functions, demonstrating that I-HGS outperformed the basic HGS and other popular algorithms regarding statistical convergence, and various measures. The suggested model is then applied to the optimization of the hyperparameters of the Residual Network 50 (ResNet50) model (I-HGS-ResNet50) for brain cancer identification, proving its overall efficacy. We utilize several publicly available, gold-standard datasets of brain MRI images. The proposed I-HGS-ResNet50 model is compared with other existing studies as well as with other deep learning architectures, including Visual Geometry Group 16-layer (VGG16), MobileNet, and Densely Connected Convolutional Network 201 (DenseNet201). The experiments demonstrated that the proposed I-HGS-ResNet50 model surpasses the previous studies and other well-known deep learning models. I-HGS-ResNet50 acquired an accuracy of 99.89%, 99.72%, and 99.88% for the three datasets. These results efficiently prove the potential of the proposed I-HGS-ResNet50 model for accurate brain tumor classification. •A new optimized deep learning architecture for brain tumor classification using MRI images.•Optimized the hyperparameters and architecture of Deep Residual Learning model.•I-HGS is proposed for optimizing the hyperparameters selection-based deep learning.•The proposed model surpasses other SOTA methods using three public datasets.•CEC’2020 benchmark functions are used to evaluate the proposed I-HGS.
AbstractList One of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for improving prognosis, and classifying tumors is a vital step in the disease's treatment. Different classification strategies using deep learning have been presented for the diagnosis of brain tumors. However, several challenges exist, such as the need for a competent specialist in classifying brain cancers by deep learning models and the problem of building the most precise deep learning model for categorizing brain tumors. We propose an evolved and highly efficient model based on deep learning and improved metaheuristic algorithms to address these challenges. Specifically, we develop an optimized residual learning architecture for classifying multiple brain tumors and propose an improved variant of the Hunger Games Search algorithm (I-HGS) based on combining two enhancing strategies: Local Escaping Operator (LEO) and Brownian motion. These two strategies balance solution diversity and convergence speed, boosting the optimization performance and staying away from the local optima. First, we have evaluated the I-HGS algorithm on the IEEE Congress on Evolutionary Computation held in 2020 (CEC'2020) test functions, demonstrating that I-HGS outperformed the basic HGS and other popular algorithms regarding statistical convergence, and various measures. The suggested model is then applied to the optimization of the hyperparameters of the Residual Network 50 (ResNet50) model (I-HGS-ResNet50) for brain cancer identification, proving its overall efficacy. We utilize several publicly available, gold-standard datasets of brain MRI images. The proposed I-HGS-ResNet50 model is compared with other existing studies as well as with other deep learning architectures, including Visual Geometry Group 16-layer (VGG16), MobileNet, and Densely Connected Convolutional Network 201 (DenseNet201). The experiments demonstrated that the proposed I-HGS-ResNet50 model surpasses the previous studies and other well-known deep learning models. I-HGS-ResNet50 acquired an accuracy of 99.89%, 99.72%, and 99.88% for the three datasets. These results efficiently prove the potential of the proposed I-HGS-ResNet50 model for accurate brain tumor classification.One of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for improving prognosis, and classifying tumors is a vital step in the disease's treatment. Different classification strategies using deep learning have been presented for the diagnosis of brain tumors. However, several challenges exist, such as the need for a competent specialist in classifying brain cancers by deep learning models and the problem of building the most precise deep learning model for categorizing brain tumors. We propose an evolved and highly efficient model based on deep learning and improved metaheuristic algorithms to address these challenges. Specifically, we develop an optimized residual learning architecture for classifying multiple brain tumors and propose an improved variant of the Hunger Games Search algorithm (I-HGS) based on combining two enhancing strategies: Local Escaping Operator (LEO) and Brownian motion. These two strategies balance solution diversity and convergence speed, boosting the optimization performance and staying away from the local optima. First, we have evaluated the I-HGS algorithm on the IEEE Congress on Evolutionary Computation held in 2020 (CEC'2020) test functions, demonstrating that I-HGS outperformed the basic HGS and other popular algorithms regarding statistical convergence, and various measures. The suggested model is then applied to the optimization of the hyperparameters of the Residual Network 50 (ResNet50) model (I-HGS-ResNet50) for brain cancer identification, proving its overall efficacy. We utilize several publicly available, gold-standard datasets of brain MRI images. The proposed I-HGS-ResNet50 model is compared with other existing studies as well as with other deep learning architectures, including Visual Geometry Group 16-layer (VGG16), MobileNet, and Densely Connected Convolutional Network 201 (DenseNet201). The experiments demonstrated that the proposed I-HGS-ResNet50 model surpasses the previous studies and other well-known deep learning models. I-HGS-ResNet50 acquired an accuracy of 99.89%, 99.72%, and 99.88% for the three datasets. These results efficiently prove the potential of the proposed I-HGS-ResNet50 model for accurate brain tumor classification.
One of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for improving prognosis, and classifying tumors is a vital step in the disease’s treatment. Different classification strategies using deep learning have been presented for the diagnosis of brain tumors. However, several challenges exist, such as the need for a competent specialist in classifying brain cancers by deep learning models and the problem of building the most precise deep learning model for categorizing brain tumors. We propose an evolved and highly efficient model based on deep learning and improved metaheuristic algorithms to address these challenges. Specifically, we develop an optimized residual learning architecture for classifying multiple brain tumors and propose an improved variant of the Hunger Games Search algorithm (I-HGS) based on combining two enhancing strategies: Local Escaping Operator (LEO) and Brownian motion. These two strategies balance solution diversity and convergence speed, boosting the optimization performance and staying away from the local optima. First, we have evaluated the I-HGS algorithm on the IEEE Congress on Evolutionary Computation held in 2020 (CEC’2020) test functions, demonstrating that I-HGS outperformed the basic HGS and other popular algorithms regarding statistical convergence, and various measures. The suggested model is then applied to the optimization of the hyperparameters of the Residual Network 50 (ResNet50) model (I-HGS-ResNet50) for brain cancer identification, proving its overall efficacy. We utilize several publicly available, gold-standard datasets of brain MRI images. The proposed I-HGS-ResNet50 model is compared with other existing studies as well as with other deep learning architectures, including Visual Geometry Group 16-layer (VGG16), MobileNet, and Densely Connected Convolutional Network 201 (DenseNet201). The experiments demonstrated that the proposed I-HGS-ResNet50 model surpasses the previous studies and other well-known deep learning models. I-HGS-ResNet50 acquired an accuracy of 99.89%, 99.72%, and 99.88% for the three datasets. These results efficiently prove the potential of the proposed I-HGS-ResNet50 model for accurate brain tumor classification.
AbstractOne of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for improving prognosis, and classifying tumors is a vital step in the disease’s treatment. Different classification strategies using deep learning have been presented for the diagnosis of brain tumors. However, several challenges exist, such as the need for a competent specialist in classifying brain cancers by deep learning models and the problem of building the most precise deep learning model for categorizing brain tumors. We propose an evolved and highly efficient model based on deep learning and improved metaheuristic algorithms to address these challenges. Specifically, we develop an optimized residual learning architecture for classifying multiple brain tumors and propose an improved variant of the Hunger Games Search algorithm (I-HGS) based on combining two enhancing strategies: Local Escaping Operator (LEO) and Brownian motion. These two strategies balance solution diversity and convergence speed, boosting the optimization performance and staying away from the local optima. First, we have evaluated the I-HGS algorithm on the IEEE Congress on Evolutionary Computation held in 2020 (CEC’2020) test functions, demonstrating that I-HGS outperformed the basic HGS and other popular algorithms regarding statistical convergence, and various measures. The suggested model is then applied to the optimization of the hyperparameters of the Residual Network 50 (ResNet50) model (I-HGS-ResNet50) for brain cancer identification, proving its overall efficacy. We utilize several publicly available, gold-standard datasets of brain MRI images. The proposed I-HGS-ResNet50 model is compared with other existing studies as well as with other deep learning architectures, including Visual Geometry Group 16-layer (VGG16), MobileNet, and Densely Connected Convolutional Network 201 (DenseNet201). The experiments demonstrated that the proposed I-HGS-ResNet50 model surpasses the previous studies and other well-known deep learning models. I-HGS-ResNet50 acquired an accuracy of 99.89%, 99.72%, and 99.88% for the three datasets. These results efficiently prove the potential of the proposed I-HGS-ResNet50 model for accurate brain tumor classification.
One of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for improving prognosis, and classifying tumors is a vital step in the disease’s treatment. Different classification strategies using deep learning have been presented for the diagnosis of brain tumors. However, several challenges exist, such as the need for a competent specialist in classifying brain cancers by deep learning models and the problem of building the most precise deep learning model for categorizing brain tumors. We propose an evolved and highly efficient model based on deep learning and improved metaheuristic algorithms to address these challenges. Specifically, we develop an optimized residual learning architecture for classifying multiple brain tumors and propose an improved variant of the Hunger Games Search algorithm (I-HGS) based on combining two enhancing strategies: Local Escaping Operator (LEO) and Brownian motion. These two strategies balance solution diversity and convergence speed, boosting the optimization performance and staying away from the local optima. First, we have evaluated the I-HGS algorithm on the IEEE Congress on Evolutionary Computation held in 2020 (CEC’2020) test functions, demonstrating that I-HGS outperformed the basic HGS and other popular algorithms regarding statistical convergence, and various measures. The suggested model is then applied to the optimization of the hyperparameters of the Residual Network 50 (ResNet50) model (I-HGS-ResNet50) for brain cancer identification, proving its overall efficacy. We utilize several publicly available, gold-standard datasets of brain MRI images. The proposed I-HGS-ResNet50 model is compared with other existing studies as well as with other deep learning architectures, including Visual Geometry Group 16-layer (VGG16), MobileNet, and Densely Connected Convolutional Network 201 (DenseNet201). The experiments demonstrated that the proposed I-HGS-ResNet50 model surpasses the previous studies and other well-known deep learning models. I-HGS-ResNet50 acquired an accuracy of 99.89%, 99.72%, and 99.88% for the three datasets. These results efficiently prove the potential of the proposed I-HGS-ResNet50 model for accurate brain tumor classification. •A new optimized deep learning architecture for brain tumor classification using MRI images.•Optimized the hyperparameters and architecture of Deep Residual Learning model.•I-HGS is proposed for optimizing the hyperparameters selection-based deep learning.•The proposed model surpasses other SOTA methods using three public datasets.•CEC’2020 benchmark functions are used to evaluate the proposed I-HGS.
ArticleNumber 106966
Author Jamjoom, Mona M.
Samee, Nagwan Abdel
Houssein, Essam H.
Emam, Marwa M.
Author_xml – sequence: 1
  givenname: Marwa M.
  orcidid: 0000-0001-7399-6839
  surname: Emam
  fullname: Emam, Marwa M.
  email: marwa.khalef@mu.edu.eg
  organization: Faculty of Computers and Information, Minia University, Minia, Egypt
– sequence: 2
  givenname: Nagwan Abdel
  orcidid: 0000-0001-5957-1383
  surname: Samee
  fullname: Samee, Nagwan Abdel
  email: nmabdelsamee@pnu.edu.sa
  organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
– sequence: 3
  givenname: Mona M.
  orcidid: 0000-0001-9149-2810
  surname: Jamjoom
  fullname: Jamjoom, Mona M.
  email: mmjamjoom@pnu.edu.sa
  organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
– sequence: 4
  givenname: Essam H.
  orcidid: 0000-0002-8127-7233
  surname: Houssein
  fullname: Houssein, Essam H.
  email: essam.halim@mu.edu.eg
  organization: Faculty of Computers and Information, Minia University, Minia, Egypt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37141655$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1rFDEYhYNU7Lb6FyTgjTez5mMyO7kRa9FWKPSieh0yyTvbrDPJmGQK9debcesKBaFeTRieczic856gIx88IIQpWVNCm3e7tQnj1Lkwgl0zwnj53cimeYZWtN3IigheH6EVIZRUdcvEMTpJaUcIqQknL9Ax39CaNkKs0HQ9ZTe6n2CxBZjwADp657dYR3PrMpg8R8B9iLiL2nmc57G8zaBTcr0zOrvg8ZwWhRunGO6K0eXstxDxhR4h4RtYnPDZsA3R5dvxJXre6yHBq4fvKfr2-dPX88vq6vriy_nZVWUErXPV6poDA8tBA7GsEdBZxpiwpIW-b_oWJHQbIiSVkhgpwPZ9YUQvOW2YkfwUvd37llA_ZkhZjS4ZGAbtIcxJsZaSIhZyQd88Qndhjr6kWygha8brulCvH6i5K7WrKbpRx3v1p8sCtHvAxJBShP6AUKKW2dRO_Z1NLbOp_WxF-v6R1Lj8u9tcWh-eYvBxbwCl0jsHUSXjwBuwLpYNlQ3uP1IcTMzgfBl5-A73kA6lUJWYIupmOa_luhgvh1VqLwYf_m3wtAy_AORs5o8
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107265
crossref_primary_10_1016_j_heliyon_2024_e33471
crossref_primary_10_1016_j_jksuci_2023_101907
crossref_primary_10_1007_s10462_024_10822_2
crossref_primary_10_3390_biomimetics8050441
crossref_primary_10_1038_s41598_024_54910_3
crossref_primary_10_1038_s41598_025_92020_w
crossref_primary_10_61186_jist_41748_12_47_170
crossref_primary_10_1016_j_compbiomed_2023_107389
crossref_primary_10_1016_j_eswa_2024_124581
crossref_primary_10_2174_0118750362358232250212111157
crossref_primary_10_1016_j_iswa_2024_200355
crossref_primary_10_1016_j_rineng_2024_102459
crossref_primary_10_1007_s10462_023_10585_2
crossref_primary_10_1016_j_health_2023_100238
crossref_primary_10_3390_diagnostics15050541
crossref_primary_10_1093_jcde_qwae080
crossref_primary_10_1016_j_health_2023_100270
crossref_primary_10_1007_s10278_024_01199_3
crossref_primary_10_1016_j_bspc_2025_107559
crossref_primary_10_1016_j_bbe_2024_06_003
crossref_primary_10_1186_s40537_024_00931_8
crossref_primary_10_1016_j_displa_2024_102740
crossref_primary_10_1007_s00607_024_01354_2
crossref_primary_10_1109_ACCESS_2024_3433483
crossref_primary_10_2174_0118750362335415240909061539
Cites_doi 10.1016/j.knosys.2022.108457
10.1109/CVPR.2016.90
10.1016/j.bbe.2020.05.009
10.1007/s00521-022-07364-5
10.1016/j.mehy.2020.109684
10.1007/s00521-021-06273-3
10.1016/j.ins.2020.06.037
10.1016/j.bspc.2022.104360
10.3390/app10061999
10.1016/j.eswa.2021.115651
10.1016/j.compbiomed.2021.104868
10.3390/s21062222
10.1016/j.eswa.2022.116516
10.1016/j.knosys.2021.107483
10.4236/jbise.2020.136010
10.1016/j.eswa.2021.115079
10.1016/j.asoc.2020.106742
10.1007/s00521-022-06929-8
10.1016/j.eswa.2022.119015
10.1016/j.compbiomed.2022.106404
10.1016/j.bbe.2018.10.004
10.1109/ACCESS.2019.2919122
10.1109/CVPR.2017.243
10.1016/j.bspc.2021.103155
10.1016/j.asoc.2021.108043
10.32604/cmc.2021.014158
10.1109/CVPR.2016.308
10.3390/app10051897
10.1007/s00034-019-01246-3
10.1016/j.bspc.2022.103949
10.1016/j.compmedimag.2021.101940
10.1109/4235.585893
10.1016/j.future.2019.02.028
10.1016/j.compchemeng.2019.106656
10.1007/s11517-020-02290-x
10.3390/math11030707
10.1016/j.advengsoft.2016.01.008
10.1016/j.compbiomed.2022.105857
10.1016/j.cma.2021.114194
10.1016/j.compbiomed.2022.106075
10.1016/j.bspc.2021.103356
10.1016/j.compbiomed.2022.106194
10.1007/s10664-013-9249-9
10.1016/j.neucom.2020.02.113
10.1007/s11554-021-01106-x
10.1016/j.eswa.2022.118776
10.1016/j.eswa.2020.113274
10.1016/j.advengsoft.2013.12.007
10.1016/j.mehy.2019.109531
10.1109/ACCESS.2018.2874767
10.1016/j.compbiomed.2022.106183
10.1016/j.compmedimag.2019.05.001
10.1016/j.neucom.2023.02.010
10.3390/su142214999
10.1016/j.future.2020.03.055
10.1016/j.eswa.2020.113377
10.1016/j.compbiomed.2022.105347
10.1016/j.eswa.2021.114864
10.1186/s40537-019-0197-0
10.1007/s11042-021-10927-8
10.1016/j.neucom.2022.10.064
10.1007/s42235-021-0050-y
10.1007/s10462-020-09825-6
10.1016/j.compbiomed.2019.103345
10.1155/2021/5513500
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
2023. Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
– notice: 2023. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2023.106966
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Proquest Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Research Library Prep


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 106966
ExternalDocumentID 37141655
10_1016_j_compbiomed_2023_106966
S0010482523004316
1_s2_0_S0010482523004316
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-8a43e2ed3eae0d265ebd2225d08eff6f8e9eb70591990c95edff5eb5f93162c93
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Thu Oct 02 09:48:48 EDT 2025
Tue Oct 07 06:34:12 EDT 2025
Thu Apr 03 07:01:24 EDT 2025
Wed Oct 01 05:23:45 EDT 2025
Thu Apr 24 23:06:19 EDT 2025
Fri Feb 23 02:35:17 EST 2024
Tue Feb 25 20:12:01 EST 2025
Tue Oct 14 19:33:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Brain tumor
Deep learning
Brownian motion
Hunger games search (HGS)
Local escaping operator
Transfer learning
Convolutional neural network
Residual network
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-8a43e2ed3eae0d265ebd2225d08eff6f8e9eb70591990c95edff5eb5f93162c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5957-1383
0000-0001-7399-6839
0000-0002-8127-7233
0000-0001-9149-2810
PMID 37141655
PQID 2815942344
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2810919599
proquest_journals_2815942344
pubmed_primary_37141655
crossref_primary_10_1016_j_compbiomed_2023_106966
crossref_citationtrail_10_1016_j_compbiomed_2023_106966
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_106966
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523004316
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_106966
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Nazir, Shakil, Khurshid (b1) 2021; 91
Houssein, Hosney, Oliva, Mohamed, Hassaballah (b27) 2020; 133
Alshayeji, Al-Buloushi, Ashkanani, Abed (b57) 2021; 80
Sultan, Salem, Al-Atabany (b82) 2019; 7
Suyanto, Ariyanto, Ariyanto (b36) 2022; 114
Başaran (b5) 2022; 148
Wang, Li, Song, Rong (b59) 2020; 10
Tu, Chen, Wang, Gandomi (b31) 2021; 18
Ahmadianfar, Bozorg-Haddad, Chu (b42) 2020; 540
Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (b91) 2017
Krizhevsky, Sutskever, Hinton (b62) 2012; 25
Kalaiselvi, Padmapriya, Sriramakrishnan, Somasundaram (b45) 2020; 12
Sarhan (b2) 2020; 13
Bansal, Jindal (b83) 2022; 34
Su, Zhao, Heidari, Liu, Zhang, Mafarja, Chen (b39) 2023; 532
Shahin, Aly, Aly (b4) 2023; 212
Braik, Hammouri, Atwan, Al-Betar, Awadallah (b35) 2022; 243
Glorot, Bordes, Bengio (b60) 2011
Ahmadianfar, Heidari, Gandomi, Chu, Chen (b44) 2021; 181
Shorten, Khoshgoftaar (b69) 2019; 6
Paul, Plassard, Landman, Fabbri (b79) 2017
Shanthi, Saradha, Smitha, Prasath, Anandakumar (b46) 2022
Singh, Manure (b76) 2020
Noreen, Palaniappan, Qayyum, Ahmad, Alassafi (b54) 2021; 67
Chollet, Yee, Prokofyev (b73) 2020
Ezzat, Hassanien, Ella (b10) 2021; 98
Mohamed, Hadi, Mohamed, Awad (b71) 2020
Mehnatkesh, Jalali, Khosravi, Nahavandi (b58) 2022
Kumar, Prasad, Metan (b56) 2022; 76
Öksüz, Urhan, Güllü (b87) 2022; 72
Wolpert, Macready (b41) 1997; 1
Simonyan, Zisserman (b64) 2014
Zhao, Wang, Mirjalili (b38) 2022; 388
Çinar, Yildirim (b51) 2020; 139
Eid, Kamel, Houssein (b26) 2022; 34
Toğaçar, Cömert, Ergen (b50) 2020; 149
Dar, Rasool, Assad (b13) 2022
Mondal, Shrivastava (b48) 2022; 150
Çelik, Talu (b6) 2022; 71
Toğaçar, Ergen, Cömert (b55) 2020; 134
Chen, Gan, Chen, Zeng, Xu, Heidari, Zhu, Liu (b15) 2023; 517
Houssein, Sayed (b20) 2023; 11
Bosman, Engelbrecht, Helbig (b77) 2020; 400
Bacanin, Bezdan, Venkatachalam, Al-Turjman (b18) 2021; 18
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
Ismael, Mohammed, Hefny (b49) 2020; 102
Mirjalili, Lewis (b28) 2016; 95
Liu, Ding, Luo, Sha, Li, Ju (b14) 2022; 150
Yang, Chen, Heidari, Gandomi (b40) 2021; 177
Kang, Ullah, Gwak (b88) 2021; 21
Arcuri, Fraser (b72) 2013; 18
Houssein, Oliva, Çelik, Emam, Ghoniem (b19) 2023; 213
Ahmadianfar, Bozorg-Haddad, Chu (b43) 2020; 540
Houssein, Emam, Ali (b24) 2021; 185
Li, Chen, Wang, Heidari, Mirjalili (b32) 2020; 111
Ahmadianfar, Heidari, Noshadian, Chen, Gandomi (b37) 2022; 195
Fathy, Rezk, Ferahtia, Ghoniem, Alkanhel, Ghoniem (b25) 2022; 14
Rajeev, Rajasekaran, Vishnuvarthanan, Arunprasath (b47) 2022; 78
Afshar, Plataniotis, Mohammadi (b80) 2019
Carneiro, Da Nóbrega, Nepomuceno, Bian, De Albuquerque, Reboucas Filho (b74) 2018; 6
Houssein, Emam, Ali (b23) 2021; 33
Prechelt (b75) 1998
Yurdusev, Adem, Hekim (b9) 2023; 80
Yu, Han, Li, Wei, Jiang, Chen, Yu (b16) 2022; 144
Kingma, Ba (b78) 2014
Yang, Deng, Wang, Liu (b34) 2021; 232
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Houssein, Abdelkareem, Emam, Hameed, Younan (b22) 2022; 149
Faramarzi, Heidarinejad, Mirjalili, Gandomi (b33) 2020
Goutte, Gaussier (b70) 2005
Abiwinanda, Hanif, Hesaputra, Handayani, Mengko (b84) 2019
Badža, Barjaktarović (b86) 2020; 10
Liao, Lan, Fan, Kelly, Innes, Liao (b12) 2021; 138
Zhao, Wang, Chen, Shi, Feng (b17) 2022
Simonyan, Zisserman (b90) 2014
Kumar, Mankame (b3) 2020; 40
Mirjalili, Mirjalili, Lewis (b29) 2014; 69
Emam, Houssein, Ghoniem (b21) 2023; 152
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b30) 2019; 97
Gaspar, Oliva, Cuevas, Zaldívar, Pérez, Pajares (b61) 2021
Toğaçar, Ergen, Cömert (b85) 2021; 59
Houssein, Emam, Ali, Suganthan (b11) 2020
Naseer, Yasir, Azhar, Shakeel, Zafar (b89) 2021; 2021
Rehman, Naz, Razzak, Akram, Imran (b53) 2020; 39
Anaraki, Ayati, Kazemi (b81) 2019; 39
Deepak, Ameer (b52) 2019; 111
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.
G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
Houssein, Emam, Ali (b8) 2022
Khan, Sohail, Zahoora, Qureshi (b68) 2020; 53
Swati, Zhao, Kabir, Ali, Ali, Ahmed, Lu (b7) 2019; 75
Bansal (10.1016/j.compbiomed.2023.106966_b83) 2022; 34
Emam (10.1016/j.compbiomed.2023.106966_b21) 2023; 152
Sarhan (10.1016/j.compbiomed.2023.106966_b2) 2020; 13
Houssein (10.1016/j.compbiomed.2023.106966_b8) 2022
Li (10.1016/j.compbiomed.2023.106966_b32) 2020; 111
Gaspar (10.1016/j.compbiomed.2023.106966_b61) 2021
Khan (10.1016/j.compbiomed.2023.106966_b68) 2020; 53
Eid (10.1016/j.compbiomed.2023.106966_b26) 2022; 34
Deepak (10.1016/j.compbiomed.2023.106966_b52) 2019; 111
Badža (10.1016/j.compbiomed.2023.106966_b86) 2020; 10
Tu (10.1016/j.compbiomed.2023.106966_b31) 2021; 18
Kingma (10.1016/j.compbiomed.2023.106966_b78) 2014
10.1016/j.compbiomed.2023.106966_b92
Başaran (10.1016/j.compbiomed.2023.106966_b5) 2022; 148
Zhao (10.1016/j.compbiomed.2023.106966_b17) 2022
Ahmadianfar (10.1016/j.compbiomed.2023.106966_b44) 2021; 181
Çinar (10.1016/j.compbiomed.2023.106966_b51) 2020; 139
Rehman (10.1016/j.compbiomed.2023.106966_b53) 2020; 39
Houssein (10.1016/j.compbiomed.2023.106966_b20) 2023; 11
Heidari (10.1016/j.compbiomed.2023.106966_b30) 2019; 97
Bacanin (10.1016/j.compbiomed.2023.106966_b18) 2021; 18
Prechelt (10.1016/j.compbiomed.2023.106966_b75) 1998
Singh (10.1016/j.compbiomed.2023.106966_b76) 2020
Nazir (10.1016/j.compbiomed.2023.106966_b1) 2021; 91
Afshar (10.1016/j.compbiomed.2023.106966_b80) 2019
Toğaçar (10.1016/j.compbiomed.2023.106966_b85) 2021; 59
Suyanto (10.1016/j.compbiomed.2023.106966_b36) 2022; 114
Toğaçar (10.1016/j.compbiomed.2023.106966_b55) 2020; 134
Toğaçar (10.1016/j.compbiomed.2023.106966_b50) 2020; 149
Chen (10.1016/j.compbiomed.2023.106966_b15) 2023; 517
Ahmadianfar (10.1016/j.compbiomed.2023.106966_b43) 2020; 540
Simonyan (10.1016/j.compbiomed.2023.106966_b64) 2014
Kumar (10.1016/j.compbiomed.2023.106966_b3) 2020; 40
Houssein (10.1016/j.compbiomed.2023.106966_b11) 2020
Yang (10.1016/j.compbiomed.2023.106966_b34) 2021; 232
Çelik (10.1016/j.compbiomed.2023.106966_b6) 2022; 71
Rajeev (10.1016/j.compbiomed.2023.106966_b47) 2022; 78
Sultan (10.1016/j.compbiomed.2023.106966_b82) 2019; 7
Swati (10.1016/j.compbiomed.2023.106966_b7) 2019; 75
Kang (10.1016/j.compbiomed.2023.106966_b88) 2021; 21
Mehnatkesh (10.1016/j.compbiomed.2023.106966_b58) 2022
Howard (10.1016/j.compbiomed.2023.106966_b91) 2017
Liu (10.1016/j.compbiomed.2023.106966_b14) 2022; 150
Ahmadianfar (10.1016/j.compbiomed.2023.106966_b37) 2022; 195
Yang (10.1016/j.compbiomed.2023.106966_b40) 2021; 177
Houssein (10.1016/j.compbiomed.2023.106966_b23) 2021; 33
Faramarzi (10.1016/j.compbiomed.2023.106966_b33) 2020
Shorten (10.1016/j.compbiomed.2023.106966_b69) 2019; 6
Mirjalili (10.1016/j.compbiomed.2023.106966_b29) 2014; 69
Arcuri (10.1016/j.compbiomed.2023.106966_b72) 2013; 18
Wolpert (10.1016/j.compbiomed.2023.106966_b41) 1997; 1
Mondal (10.1016/j.compbiomed.2023.106966_b48) 2022; 150
Houssein (10.1016/j.compbiomed.2023.106966_b24) 2021; 185
Fathy (10.1016/j.compbiomed.2023.106966_b25) 2022; 14
Mirjalili (10.1016/j.compbiomed.2023.106966_b28) 2016; 95
Houssein (10.1016/j.compbiomed.2023.106966_b22) 2022; 149
Su (10.1016/j.compbiomed.2023.106966_b39) 2023; 532
Zhao (10.1016/j.compbiomed.2023.106966_b38) 2022; 388
Ahmadianfar (10.1016/j.compbiomed.2023.106966_b42) 2020; 540
Glorot (10.1016/j.compbiomed.2023.106966_b60) 2011
Simonyan (10.1016/j.compbiomed.2023.106966_b90) 2014
Shanthi (10.1016/j.compbiomed.2023.106966_b46) 2022
Kumar (10.1016/j.compbiomed.2023.106966_b56) 2022; 76
Anaraki (10.1016/j.compbiomed.2023.106966_b81) 2019; 39
Braik (10.1016/j.compbiomed.2023.106966_b35) 2022; 243
Naseer (10.1016/j.compbiomed.2023.106966_b89) 2021; 2021
Houssein (10.1016/j.compbiomed.2023.106966_b19) 2023; 213
Krizhevsky (10.1016/j.compbiomed.2023.106966_b62) 2012; 25
Goutte (10.1016/j.compbiomed.2023.106966_b70) 2005
Mohamed (10.1016/j.compbiomed.2023.106966_b71) 2020
Dar (10.1016/j.compbiomed.2023.106966_b13) 2022
Carneiro (10.1016/j.compbiomed.2023.106966_b74) 2018; 6
Kalaiselvi (10.1016/j.compbiomed.2023.106966_b45) 2020; 12
Abiwinanda (10.1016/j.compbiomed.2023.106966_b84) 2019
Chollet (10.1016/j.compbiomed.2023.106966_b73) 2020
Paul (10.1016/j.compbiomed.2023.106966_b79) 2017
Ismael (10.1016/j.compbiomed.2023.106966_b49) 2020; 102
Yu (10.1016/j.compbiomed.2023.106966_b16) 2022; 144
Wang (10.1016/j.compbiomed.2023.106966_b59) 2020; 10
Shahin (10.1016/j.compbiomed.2023.106966_b4) 2023; 212
10.1016/j.compbiomed.2023.106966_b63
10.1016/j.compbiomed.2023.106966_b65
10.1016/j.compbiomed.2023.106966_b66
10.1016/j.compbiomed.2023.106966_b67
Öksüz (10.1016/j.compbiomed.2023.106966_b87) 2022; 72
Alshayeji (10.1016/j.compbiomed.2023.106966_b57) 2021; 80
Yurdusev (10.1016/j.compbiomed.2023.106966_b9) 2023; 80
Houssein (10.1016/j.compbiomed.2023.106966_b27) 2020; 133
Ezzat (10.1016/j.compbiomed.2023.106966_b10) 2021; 98
Liao (10.1016/j.compbiomed.2023.106966_b12) 2021; 138
Noreen (10.1016/j.compbiomed.2023.106966_b54) 2021; 67
Bosman (10.1016/j.compbiomed.2023.106966_b77) 2020; 400
References_xml – volume: 34
  start-page: 17145
  year: 2022
  end-page: 17173
  ident: b26
  article-title: An enhanced equilibrium optimizer for strategic planning of PV-BES units in radial distribution systems considering time-varying demand
  publication-title: Neural Comput. Appl.
– volume: 21
  start-page: 2222
  year: 2021
  ident: b88
  article-title: Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers
  publication-title: Sensors
– volume: 33
  start-page: 16899
  year: 2021
  end-page: 16919
  ident: b23
  article-title: Improved manta ray foraging optimization for multi-level thresholding using COVID-19 CT images
  publication-title: Neural Comput. Appl.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b28
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
– volume: 150
  year: 2022
  ident: b14
  article-title: Cx22: A new publicly available dataset for deep learning-based segmentation of cervical cytology images
  publication-title: Comput. Biol. Med.
– volume: 18
  start-page: 1085
  year: 2021
  end-page: 1098
  ident: b18
  article-title: Optimized convolutional neural network by firefly algorithm for magnetic resonance image classification of glioma brain tumor grade
  publication-title: J. Real-Time Image Process.
– start-page: 1
  year: 2022
  end-page: 19
  ident: b8
  article-title: An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm
  publication-title: Neural Comput. Appl.
– volume: 243
  year: 2022
  ident: b35
  article-title: White shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 71
  year: 2022
  ident: b6
  article-title: A new 3D MRI segmentation method based on generative adversarial network and atrous convolution
  publication-title: Biomed. Signal Process. Control
– volume: 540
  start-page: 131
  year: 2020
  end-page: 159
  ident: b43
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inform. Sci.
– volume: 134
  year: 2020
  ident: b55
  article-title: BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model
  publication-title: Med. Hypotheses
– volume: 72
  year: 2022
  ident: b87
  article-title: Brain tumor classification using the fused features extracted from expanded tumor region
  publication-title: Biomed. Signal Process. Control
– volume: 144
  year: 2022
  ident: b16
  article-title: Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: Thyroid ultrasound image case study
  publication-title: Comput. Biol. Med.
– volume: 39
  start-page: 63
  year: 2019
  end-page: 74
  ident: b81
  article-title: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms
  publication-title: Biocybern. Biomed. Eng.
– volume: 40
  start-page: 1190
  year: 2020
  end-page: 1204
  ident: b3
  article-title: Optimization driven deep convolution neural network for brain tumor classification
  publication-title: Biocybern. Biomed. Eng.
– volume: 139
  year: 2020
  ident: b51
  article-title: Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture
  publication-title: Med. Hypotheses
– year: 2014
  ident: b78
  article-title: Adam: A method for stochastic optimization
– volume: 111
  start-page: 300
  year: 2020
  end-page: 323
  ident: b32
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst.
– volume: 12
  start-page: 403
  year: 2020
  end-page: 408
  ident: b45
  article-title: Deriving tumor detection models using convolutional neural networks from MRI of human brain scans
  publication-title: Int. J. Inform. Technol.
– volume: 212
  year: 2023
  ident: b4
  article-title: MBTFCN: A novel modular fully convolutional network for MRI brain tumor multi-classification
  publication-title: Expert Syst. Appl.
– start-page: 253
  year: 2017
  end-page: 268
  ident: b79
  article-title: Deep learning for brain tumor classification
  publication-title: Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging, Vol. 10137
– volume: 150
  year: 2022
  ident: b48
  article-title: A novel parametric flatten-p Mish activation function based deep CNN model for brain tumor classification
  publication-title: Comput. Biol. Med.
– volume: 6
  start-page: 61677
  year: 2018
  end-page: 61685
  ident: b74
  article-title: Performance analysis of google colaboratory as a tool for accelerating deep learning applications
  publication-title: IEEE Access
– volume: 14
  start-page: 14999
  year: 2022
  ident: b25
  article-title: A new fractional-order load frequency control for multi-renewable energy interconnected plants using skill optimization algorithm
  publication-title: Sustainability
– start-page: 37
  year: 2021
  end-page: 59
  ident: b61
  article-title: Hyperparameter optimization in a convolutional neural network using metaheuristic algorithms
  publication-title: Metaheuristics in Machine Learning: Theory and Applications
– volume: 13
  start-page: 102
  year: 2020
  ident: b2
  article-title: Brain tumor classification in magnetic resonance images using deep learning and wavelet transform
  publication-title: J. Biomed. Sci. Eng.
– volume: 195
  year: 2022
  ident: b37
  article-title: INFO: An efficient optimization algorithm based on weighted mean of vectors
  publication-title: Expert Syst. Appl.
– volume: 532
  start-page: 183
  year: 2023
  end-page: 214
  ident: b39
  article-title: RIME: A physics-based optimization
  publication-title: Neurocomputing
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b41
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 102
  year: 2020
  ident: b49
  article-title: An enhanced deep learning approach for brain cancer MRI images classification using residual networks
  publication-title: Artif. Intell. Med.
– volume: 177
  year: 2021
  ident: b40
  article-title: Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts
  publication-title: Expert Syst. Appl.
– volume: 76
  year: 2022
  ident: b56
  article-title: A hybrid deep CNN-Cov-19-res-net transfer learning architype for an enhanced brain tumor detection and classification scheme in medical image processing
  publication-title: Biomed. Signal Process. Control
– start-page: 183
  year: 2019
  end-page: 189
  ident: b84
  article-title: Brain tumor classification using convolutional neural network
  publication-title: World Congress on Medical Physics and Biomedical Engineering 2018
– year: 2014
  ident: b90
  article-title: Very deep convolutional networks for large-scale image recognition
– year: 2020
  ident: b33
  article-title: Marine predators algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b30
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– volume: 39
  start-page: 757
  year: 2020
  end-page: 775
  ident: b53
  article-title: A deep learning-based framework for automatic brain tumors classification using transfer learning
  publication-title: Circuits Systems Signal Process.
– volume: 18
  start-page: 594
  year: 2013
  end-page: 623
  ident: b72
  article-title: Parameter tuning or default values? An empirical investigation in search-based software engineering
  publication-title: Empir. Softw. Eng.
– volume: 133
  year: 2020
  ident: b27
  article-title: A novel hybrid harris hawks optimization and support vector machines for drug design and discovery
  publication-title: Comput. Chem. Eng.
– reference: C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.
– reference: G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.
– volume: 7
  start-page: 69215
  year: 2019
  end-page: 69225
  ident: b82
  article-title: Multi-classification of brain tumor images using deep neural network
  publication-title: IEEE Access
– volume: 18
  start-page: 674
  year: 2021
  end-page: 710
  ident: b31
  article-title: The colony predation algorithm
  publication-title: J. Bionic Eng.
– year: 2020
  ident: b73
  article-title: Keras: Deep learning for humans. 2015
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– volume: 149
  year: 2020
  ident: b50
  article-title: Classification of brain MRI using hyper column technique with convolutional neural network and feature selection method
  publication-title: Expert Syst. Appl.
– volume: 2021
  year: 2021
  ident: b89
  article-title: Computer-aided brain tumor diagnosis: Performance evaluation of deep learner CNN using augmented brain MRI
  publication-title: Int. J. Biomed. Imaging
– year: 2022
  ident: b17
  article-title: JAMSNet: A remote pulse extraction network based on joint attention and multi-scale fusion
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 59
  start-page: 57
  year: 2021
  end-page: 70
  ident: b85
  article-title: Tumor type detection in brain MR images of the deep model developed using hypercolumn technique, attention modules, and residual blocks
  publication-title: Med. Biol. Eng. Comput.
– volume: 80
  start-page: 28897
  year: 2021
  end-page: 28917
  ident: b57
  article-title: Enhanced brain tumor classification using an optimized multi-layered convolutional neural network architecture
  publication-title: Multimedia Tools Appl.
– volume: 6
  start-page: 1
  year: 2019
  end-page: 48
  ident: b69
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
– volume: 400
  start-page: 113
  year: 2020
  end-page: 136
  ident: b77
  article-title: Visualising basins of attraction for the cross-entropy and the squared error neural network loss functions
  publication-title: Neurocomputing
– start-page: 1368
  year: 2019
  end-page: 1372
  ident: b80
  article-title: Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries
  publication-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 232
  year: 2021
  ident: b34
  article-title: Aptenodytes forsteri optimization: Algorithm and applications
  publication-title: Knowl.-Based Syst.
– volume: 148
  year: 2022
  ident: b5
  article-title: A new brain tumor diagnostic model: Selection of textural feature extraction algorithms and convolution neural network features with optimization algorithms
  publication-title: Comput. Biol. Med.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b29
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– start-page: 1
  year: 2020
  end-page: 8
  ident: b71
  article-title: Evaluating the performance of adaptive gaining sharing knowledge based algorithm on CEC 2020 benchmark problems
  publication-title: 2020 IEEE Congress on Evolutionary Computation
– volume: 185
  year: 2021
  ident: b24
  article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm
  publication-title: Expert Syst. Appl.
– start-page: 345
  year: 2005
  end-page: 359
  ident: b70
  article-title: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation
  publication-title: European Conference on Information Retrieval
– volume: 517
  start-page: 264
  year: 2023
  end-page: 278
  ident: b15
  article-title: Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet
  publication-title: Neurocomputing
– year: 2014
  ident: b64
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 34
  start-page: 9069
  year: 2022
  end-page: 9086
  ident: b83
  article-title: An improved hybrid classification of brain tumor MRI images based on conglomeration feature extraction techniques
  publication-title: Neural Comput. Appl.
– volume: 80
  year: 2023
  ident: b9
  article-title: Detection and classification of microcalcifications in mammograms images using difference filter and Yolov4 deep learning model
  publication-title: Biomed. Signal Process. Control
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: b62
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 388
  year: 2022
  ident: b38
  article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 67
  start-page: 3967
  year: 2021
  end-page: 3982
  ident: b54
  article-title: Brain tumor classification based on fine-tuned models and the ensemble method
  publication-title: Comput. Mater. Continua
– volume: 181
  year: 2021
  ident: b44
  article-title: RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method
  publication-title: Expert Syst. Appl.
– year: 2020
  ident: b11
  article-title: Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review
  publication-title: Expert Syst. Appl.
– volume: 114
  year: 2022
  ident: b36
  article-title: Komodo Mlipir algorithm
  publication-title: Appl. Soft Comput.
– volume: 111
  year: 2019
  ident: b52
  article-title: Brain tumor classification using deep CNN features via transfer learning
  publication-title: Comput. Biol. Med.
– volume: 10
  start-page: 1897
  year: 2020
  ident: b59
  article-title: The influence of the activation function in a convolution neural network model of facial expression recognition
  publication-title: Appl. Sci.
– volume: 138
  year: 2021
  ident: b12
  article-title: SIRVD-DL: A COVID-19 deep learning prediction model based on time-dependent SIRVD
  publication-title: Comput. Biol. Med.
– year: 2022
  ident: b13
  article-title: Breast cancer detection using deep learning: Datasets, methods, and challenges ahead
  publication-title: Comput. Biol. Med.
– year: 2017
  ident: b91
  article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications
– volume: 91
  year: 2021
  ident: b1
  article-title: Role of deep learning in brain tumor detection and classification (2015 to 2020): A review
  publication-title: Comput. Med. Imaging Graph.
– volume: 53
  start-page: 5455
  year: 2020
  end-page: 5516
  ident: b68
  article-title: A survey of the recent architectures of deep convolutional neural networks
  publication-title: Artif. Intell. Rev.
– start-page: 315
  year: 2011
  end-page: 323
  ident: b60
  article-title: Deep sparse rectifier neural networks
  publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
– volume: 152
  year: 2023
  ident: b21
  article-title: A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images
  publication-title: Comput. Biol. Med.
– volume: 149
  year: 2022
  ident: b22
  article-title: An efficient image segmentation method for skin cancer imaging using improved golden Jackal optimization algorithm
  publication-title: Comput. Biol. Med.
– year: 2022
  ident: b58
  article-title: An intelligent driven deep residual learning framework for brain tumor classification using MRI images
  publication-title: Expert Syst. Appl.
– volume: 213
  year: 2023
  ident: b19
  article-title: Boosted sooty tern optimization algorithm for global optimization and feature selection
  publication-title: Expert Syst. Appl.
– start-page: 53
  year: 2020
  end-page: 74
  ident: b76
  article-title: Neural networks and deep learning with TensorFlow
  publication-title: Learn TensorFlow 2.0
– volume: 78
  year: 2022
  ident: b47
  article-title: A biologically-inspired hybrid deep learning approach for brain tumor classification from magnetic resonance imaging using improved gabor wavelet transform and Elmann-BiLSTM network
  publication-title: Biomed. Signal Process. Control
– volume: 11
  start-page: 707
  year: 2023
  ident: b20
  article-title: Dynamic candidate solution boosted Beluga whale optimization algorithm for biomedical classification
  publication-title: Mathematics
– year: 2022
  ident: b46
  article-title: An efficient automatic brain tumor classification using optimized hybrid deep neural network
  publication-title: Int. J. Intell. Netw.
– volume: 98
  year: 2021
  ident: b10
  article-title: An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization
  publication-title: Appl. Soft Comput.
– volume: 540
  start-page: 131
  year: 2020
  end-page: 159
  ident: b42
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inform. Sci.
– start-page: 55
  year: 1998
  end-page: 69
  ident: b75
  article-title: Early stopping-but when?
  publication-title: Neural Networks: Tricks of the Trade
– volume: 10
  start-page: 1999
  year: 2020
  ident: b86
  article-title: Classification of brain tumors from MRI images using a convolutional neural network
  publication-title: Appl. Sci.
– volume: 75
  start-page: 34
  year: 2019
  end-page: 46
  ident: b7
  article-title: Brain tumor classification for MR images using transfer learning and fine-tuning
  publication-title: Comput. Med. Imaging Graph.
– start-page: 345
  year: 2005
  ident: 10.1016/j.compbiomed.2023.106966_b70
  article-title: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.compbiomed.2023.106966_b62
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 243
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b35
  article-title: White shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108457
– year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b13
  article-title: Breast cancer detection using deep learning: Datasets, methods, and challenges ahead
  publication-title: Comput. Biol. Med.
– ident: 10.1016/j.compbiomed.2023.106966_b65
  doi: 10.1109/CVPR.2016.90
– start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b71
  article-title: Evaluating the performance of adaptive gaining sharing knowledge based algorithm on CEC 2020 benchmark problems
– volume: 40
  start-page: 1190
  issue: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b3
  article-title: Optimization driven deep convolution neural network for brain tumor classification
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.05.009
– volume: 34
  start-page: 17145
  issue: 19
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b26
  article-title: An enhanced equilibrium optimizer for strategic planning of PV-BES units in radial distribution systems considering time-varying demand
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07364-5
– year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b73
– year: 2014
  ident: 10.1016/j.compbiomed.2023.106966_b64
– volume: 139
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b51
  article-title: Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2020.109684
– start-page: 55
  year: 1998
  ident: 10.1016/j.compbiomed.2023.106966_b75
  article-title: Early stopping-but when?
– volume: 33
  start-page: 16899
  issue: 24
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b23
  article-title: Improved manta ray foraging optimization for multi-level thresholding using COVID-19 CT images
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06273-3
– volume: 540
  start-page: 131
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b42
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.06.037
– volume: 80
  year: 2023
  ident: 10.1016/j.compbiomed.2023.106966_b9
  article-title: Detection and classification of microcalcifications in mammograms images using difference filter and Yolov4 deep learning model
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104360
– ident: 10.1016/j.compbiomed.2023.106966_b63
– volume: 10
  start-page: 1999
  issue: 6
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b86
  article-title: Classification of brain tumors from MRI images using a convolutional neural network
  publication-title: Appl. Sci.
  doi: 10.3390/app10061999
– volume: 185
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b24
  article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115651
– volume: 138
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b12
  article-title: SIRVD-DL: A COVID-19 deep learning prediction model based on time-dependent SIRVD
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104868
– volume: 21
  start-page: 2222
  issue: 6
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b88
  article-title: Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers
  publication-title: Sensors
  doi: 10.3390/s21062222
– volume: 195
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b37
  article-title: INFO: An efficient optimization algorithm based on weighted mean of vectors
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116516
– start-page: 1368
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106966_b80
  article-title: Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries
– volume: 232
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b34
  article-title: Aptenodytes forsteri optimization: Algorithm and applications
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107483
– volume: 13
  start-page: 102
  issue: 06
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b2
  article-title: Brain tumor classification in magnetic resonance images using deep learning and wavelet transform
  publication-title: J. Biomed. Sci. Eng.
  doi: 10.4236/jbise.2020.136010
– volume: 181
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b44
  article-title: RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115079
– start-page: 253
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106966_b79
  article-title: Deep learning for brain tumor classification
– volume: 98
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b10
  article-title: An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106742
– volume: 34
  start-page: 9069
  issue: 11
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b83
  article-title: An improved hybrid classification of brain tumor MRI images based on conglomeration feature extraction techniques
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-06929-8
– volume: 213
  year: 2023
  ident: 10.1016/j.compbiomed.2023.106966_b19
  article-title: Boosted sooty tern optimization algorithm for global optimization and feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119015
– volume: 152
  year: 2023
  ident: 10.1016/j.compbiomed.2023.106966_b21
  article-title: A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106404
– volume: 39
  start-page: 63
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106966_b81
  article-title: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.10.004
– start-page: 53
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b76
  article-title: Neural networks and deep learning with TensorFlow
– volume: 7
  start-page: 69215
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106966_b82
  article-title: Multi-classification of brain tumor images using deep neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2919122
– ident: 10.1016/j.compbiomed.2023.106966_b92
  doi: 10.1109/CVPR.2017.243
– volume: 71
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b6
  article-title: A new 3D MRI segmentation method based on generative adversarial network and atrous convolution
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103155
– volume: 114
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b36
  article-title: Komodo Mlipir algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.108043
– start-page: 183
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106966_b84
  article-title: Brain tumor classification using convolutional neural network
– volume: 67
  start-page: 3967
  issue: 3
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b54
  article-title: Brain tumor classification based on fine-tuned models and the ensemble method
  publication-title: Comput. Mater. Continua
  doi: 10.32604/cmc.2021.014158
– volume: 12
  start-page: 403
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b45
  article-title: Deriving tumor detection models using convolutional neural networks from MRI of human brain scans
  publication-title: Int. J. Inform. Technol.
– ident: 10.1016/j.compbiomed.2023.106966_b66
  doi: 10.1109/CVPR.2016.308
– volume: 10
  start-page: 1897
  issue: 5
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b59
  article-title: The influence of the activation function in a convolution neural network model of facial expression recognition
  publication-title: Appl. Sci.
  doi: 10.3390/app10051897
– volume: 39
  start-page: 757
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b53
  article-title: A deep learning-based framework for automatic brain tumors classification using transfer learning
  publication-title: Circuits Systems Signal Process.
  doi: 10.1007/s00034-019-01246-3
– volume: 78
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b47
  article-title: A biologically-inspired hybrid deep learning approach for brain tumor classification from magnetic resonance imaging using improved gabor wavelet transform and Elmann-BiLSTM network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103949
– volume: 91
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b1
  article-title: Role of deep learning in brain tumor detection and classification (2015 to 2020): A review
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2021.101940
– start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b8
  article-title: An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm
  publication-title: Neural Comput. Appl.
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.compbiomed.2023.106966_b41
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106966_b30
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– start-page: 37
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b61
  article-title: Hyperparameter optimization in a convolutional neural network using metaheuristic algorithms
– year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b46
  article-title: An efficient automatic brain tumor classification using optimized hybrid deep neural network
  publication-title: Int. J. Intell. Netw.
– ident: 10.1016/j.compbiomed.2023.106966_b67
  doi: 10.1109/CVPR.2017.243
– volume: 133
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b27
  article-title: A novel hybrid harris hawks optimization and support vector machines for drug design and discovery
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2019.106656
– volume: 59
  start-page: 57
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b85
  article-title: Tumor type detection in brain MR images of the deep model developed using hypercolumn technique, attention modules, and residual blocks
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-020-02290-x
– year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b11
  article-title: Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review
  publication-title: Expert Syst. Appl.
– volume: 11
  start-page: 707
  issue: 3
  year: 2023
  ident: 10.1016/j.compbiomed.2023.106966_b20
  article-title: Dynamic candidate solution boosted Beluga whale optimization algorithm for biomedical classification
  publication-title: Mathematics
  doi: 10.3390/math11030707
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.compbiomed.2023.106966_b28
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 102
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b49
  article-title: An enhanced deep learning approach for brain cancer MRI images classification using residual networks
  publication-title: Artif. Intell. Med.
– volume: 76
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b56
  article-title: A hybrid deep CNN-Cov-19-res-net transfer learning architype for an enhanced brain tumor detection and classification scheme in medical image processing
  publication-title: Biomed. Signal Process. Control
– year: 2014
  ident: 10.1016/j.compbiomed.2023.106966_b78
– volume: 148
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b5
  article-title: A new brain tumor diagnostic model: Selection of textural feature extraction algorithms and convolution neural network features with optimization algorithms
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105857
– year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b17
  article-title: JAMSNet: A remote pulse extraction network based on joint attention and multi-scale fusion
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 388
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b38
  article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.114194
– volume: 149
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b22
  article-title: An efficient image segmentation method for skin cancer imaging using improved golden Jackal optimization algorithm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106075
– volume: 72
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b87
  article-title: Brain tumor classification using the fused features extracted from expanded tumor region
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103356
– volume: 540
  start-page: 131
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b43
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.06.037
– volume: 150
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b14
  article-title: Cx22: A new publicly available dataset for deep learning-based segmentation of cervical cytology images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106194
– year: 2014
  ident: 10.1016/j.compbiomed.2023.106966_b90
– volume: 18
  start-page: 594
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiomed.2023.106966_b72
  article-title: Parameter tuning or default values? An empirical investigation in search-based software engineering
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-013-9249-9
– volume: 400
  start-page: 113
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b77
  article-title: Visualising basins of attraction for the cross-entropy and the squared error neural network loss functions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.02.113
– volume: 18
  start-page: 1085
  issue: 4
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b18
  article-title: Optimized convolutional neural network by firefly algorithm for magnetic resonance image classification of glioma brain tumor grade
  publication-title: J. Real-Time Image Process.
  doi: 10.1007/s11554-021-01106-x
– volume: 212
  year: 2023
  ident: 10.1016/j.compbiomed.2023.106966_b4
  article-title: MBTFCN: A novel modular fully convolutional network for MRI brain tumor multi-classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118776
– volume: 149
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b50
  article-title: Classification of brain MRI using hyper column technique with convolutional neural network and feature selection method
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113274
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.compbiomed.2023.106966_b29
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 134
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b55
  article-title: BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2019.109531
– volume: 6
  start-page: 61677
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106966_b74
  article-title: Performance analysis of google colaboratory as a tool for accelerating deep learning applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2874767
– volume: 150
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b48
  article-title: A novel parametric flatten-p Mish activation function based deep CNN model for brain tumor classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106183
– year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b58
  article-title: An intelligent driven deep residual learning framework for brain tumor classification using MRI images
  publication-title: Expert Syst. Appl.
– start-page: 315
  year: 2011
  ident: 10.1016/j.compbiomed.2023.106966_b60
  article-title: Deep sparse rectifier neural networks
– volume: 75
  start-page: 34
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106966_b7
  article-title: Brain tumor classification for MR images using transfer learning and fine-tuning
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.05.001
– volume: 532
  start-page: 183
  year: 2023
  ident: 10.1016/j.compbiomed.2023.106966_b39
  article-title: RIME: A physics-based optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.02.010
– volume: 14
  start-page: 14999
  issue: 22
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b25
  article-title: A new fractional-order load frequency control for multi-renewable energy interconnected plants using skill optimization algorithm
  publication-title: Sustainability
  doi: 10.3390/su142214999
– volume: 111
  start-page: 300
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b32
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.03.055
– year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b33
  article-title: Marine predators algorithm: A nature-inspired metaheuristic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113377
– volume: 144
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106966_b16
  article-title: Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: Thyroid ultrasound image case study
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105347
– year: 2017
  ident: 10.1016/j.compbiomed.2023.106966_b91
– volume: 177
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b40
  article-title: Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114864
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106966_b69
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 80
  start-page: 28897
  issue: 19
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b57
  article-title: Enhanced brain tumor classification using an optimized multi-layered convolutional neural network architecture
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-021-10927-8
– volume: 517
  start-page: 264
  year: 2023
  ident: 10.1016/j.compbiomed.2023.106966_b15
  article-title: Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.10.064
– volume: 18
  start-page: 674
  issue: 3
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b31
  article-title: The colony predation algorithm
  publication-title: J. Bionic Eng.
  doi: 10.1007/s42235-021-0050-y
– volume: 53
  start-page: 5455
  issue: 8
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106966_b68
  article-title: A survey of the recent architectures of deep convolutional neural networks
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09825-6
– volume: 111
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106966_b52
  article-title: Brain tumor classification using deep CNN features via transfer learning
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103345
– volume: 2021
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106966_b89
  article-title: Computer-aided brain tumor diagnosis: Performance evaluation of deep learner CNN using augmented brain MRI
  publication-title: Int. J. Biomed. Imaging
  doi: 10.1155/2021/5513500
SSID ssj0004030
Score 2.5132594
Snippet One of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for...
AbstractOne of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106966
SubjectTerms Algorithms
Basic converters
Brain
Brain - diagnostic imaging
Brain architecture
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain tumor
Brain tumors
Brownian motion
Cancer
Classification
Convergence
Convolutional neural network
Datasets
Deep Learning
Evolutionary computation
Games
Heuristic methods
Humans
Hunger
Hunger games search (HGS)
Internal Medicine
Local escaping operator
Machine learning
Operators (mathematics)
Optimization
Other
Residual network
Search algorithms
Synapses
Synaptogenesis
Transfer learning
Tumors
Visual discrimination learning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrYS4IN6kFGQkroE8HCcWQqiglhVSFwRU6s1K7Mm2qPugu3vh1zMTO1kOBe0tSjJJ5BnPfLG_mQF4VTrXtGXr4gSzOpba2lgrRxOPIFKJtlKqy5A7najxmfx8XpzvwaTPhWFaZe8TO0ftFpbXyN9kFQVeiv1Svl_-irlrFO-u9i006tBawb3rSozdgv2MK2ONYP_D8eTrt22mZJL7pBTyPpJ-jgK3xzO-mMTtk95fc1NxOq10Vz3xxoD1L0DaBaaTe3A3IEpx5E3gPuzh_AHcPg175g9h-YW8wuzyNzrhEJci9ImYir_3EARhV9Fwuwix3szo2DKqZhpRpznB9PipuOxWIOhB4w0vBopPTLEVnrEsjq6mNF7ri9kjODs5_vFxHIc-C7EluLSOq1rmmKHLscbEZarAxvFvoEsqbFvVVqixKQmHpRS6rC7QtS3dU7Q6T1Vmdf4YRvPFHJ-CaGrmaKnKSZlLUnUjU-nQZdaST60TjKDsB9PYUISce2FcmZ5t9tNs1WBYDcarIYJ0kFz6Qhw7yOheX6ZPNCXXaCha7CBb3iSLqzDHVyY1q8wk5ntX4ohsKePiZTQiEbwdJAOM8fBkx_ce9oZlhldtjT-Cl8NlcgS8u1PPcbHp7iHspwutI3jiDXIYKC7LmKqiOPj_w5_BHf4Sz4Q7hNH6eoPPCXOtmxdhIv0B4NEtzQ
  priority: 102
  providerName: ProQuest
Title Optimized deep learning architecture for brain tumor classification using improved Hunger Games Search Algorithm
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523004316
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523004316
https://dx.doi.org/10.1016/j.compbiomed.2023.106966
https://www.ncbi.nlm.nih.gov/pubmed/37141655
https://www.proquest.com/docview/2815942344
https://www.proquest.com/docview/2810919599
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250903
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiEuiDehpTIS17R5OE4sTkvV7QLqghCV9mYl9mQJ6j7UzV564LczEzspiCKtxCVPTxJ57PHn-JsZxt7m1lZ1XtswgqQMhTImVNJix0OIlIMppOw85C6mcnIpPs6y2R477X1hiFbpbb-z6Z219ldOfG2erJuGfHxxKoETnISCRqUxhd0WIqcsBsc_b2keIkqdGwraGyrt2TyO40W0befmfkxpxPGyVF28xDuHqH9B0G4oGj9iDz2G5CP3mY_ZHiyfsPsXfpX8KVt_RjuwaG7Acguw5j4zxJz_vmrAEa3yihJE8Ha7wGNDOJqIQ52uOBHi57zp_jnggyZb-v3Hz4lUyx1HmY-u5qvrpv2-eMYux2ffTiehz6wQGgRIbViUIoUEbAolRDaRGVSWJn42KqCuZV2AgipH5BXjYGVUBrausUxWK6znxKj0OdtfrpbwkvGqJFaWLKwQqUDlViIWFmxiDFrRMoKA5X1lauPDjlP2iyvd88t-6Fs1aFKDdmoIWDxIrl3ojR1kVK8v3buWojHUOD7sIJvfJQsb36s3OtabREf6r5YXsHeD5B-Nd8f3HvYNSw-vSgrEmQh1hQjYm-E2dn1azymXsNp2ZRDtqUypgL1wDXKoKArEGMsse_Vfn3bAHtCZo8Ydsv32eguvEYS11VHXy3Cbz3LcFuPzI3Zv9OHTZIr792fTL19_ARWzN1s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVgIuiDcpBYwEx0DiOA8LVahAy5Z2FwSt1JtJ7MnSqvuAzQrBj-O3MRM7uxwK2ktv0SZOVjPjmc_2NzOMPc2treq8tmEEogylMiZUmcWJhxApB1NkWZsh1x9kvWP5_iQ9WWO_u1wYolV2PrF11HZiaI_8hSgw8GLsl_LV9FtIXaPodLVroVH61gp2uy0x5hM7DuDnD1zCzbb336K-nwmxt3v0phf6LgOhQbDQhEUpExBgEyghsiJLobK0CLJRAXWd1QUoqHJEITE6bqNSsHWNz6S1SuJMGCrGhCFgQyZS4eJv4_Xu4OOnZWZmlLgkGPR2EhdjnkvkGGZEGndJ9s-piTn-nKm2WuOFAfJfALgNhHs32HWPYPmOM7mbbA3Gt9iVvj-jv82mH9ALjU5_geUWYMp9X4oh__vMgiNW5hW1p-DNfITXhlA80ZZaS-FExx_y03bHA1_Um9PmI39HlF7uGNJ853yI-mm-ju6w40uR-F22Pp6M4T7jVUmcsKywEuWPplXJWFqwwhj04WUEAcs7YWrji55T741z3bHbzvRSDZrUoJ0aAhYvRk5d4Y8VxqhOX7pLbEVXrDE6rTA2v2gszLxPmelYz4SO9Oe2pBLakqBiaSiRgL1cjPSwycGhFb-71RmWXnxqOdkC9mRxGx0PnSaVY5jM22cQa6pUqYDdcwa5EBSVgYyzNN38_8sfs6u9o_6hPtwfHDxg1-hfORbeFltvvs_hIeK9pnrkJxVnXy57Hv8B9UpsPw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlVcEOUZKGAkOIYmjuPEQghVlGVLaUGCSnsziT3ZFnUfZbNC8NP4dczESZZDQXvpLdpkkpXn4c_2NzOMPcucK6uscmEEogiltjbUyqHjIUTKwOZKNRlyR8dqeCLfj9LRBvvd5cIQrbKLiU2gdjNLe-S7IseJF-d-KXerlhbxaX_wen4RUgcpOmnt2ml4EzmEnz9w-bZ4dbCPun4uxODtlzfDsO0wEFoECnWYFzIBAS6BAiInVAqlowWQi3KoKlXloKHMEIHEGLStTsFVFT6TVjqJlbBUiAnD_7UsSTTRCbNRtsrJjBKf_oJxTuIyrGUReW4Z0cV9ev0Lal-OPyvd1Gm8dGr8F_RtpsDBTXajxa58zxvbNtuA6S22ddSezt9m848YfyZnv8BxBzDnbUeKMf_7tIIjSuYlNabg9XKC15bwOxGWGhvhRMQf87NmrwNfNFzStiN_R2Re7rnRfO98jNqoTyd32MmVjPddtjmdTeE-42VBbDCVOykTiUZVylg6cMJajN5FBAHLusE0ti13Tl03zk3Ha_tmVmowpAbj1RCwuJec-5Ifa8joTl-mS2nFIGxwXlpDNrtMFhZtNFmY2CyEicznppgS2pKgMmk4IgF72Uu2gMkDoTW_u9MZluk_tXKzgD3tb2PIoXOkYgqzZfMMokydah2we94g-4GiApCxStMH_3_5E7aF3ms-HBwfPmTX6U95-t0O26y_L-ERAr26fNx4FGdfr9qF_wAK-2nZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+deep+learning+architecture+for+brain+tumor+classification+using+improved+Hunger+Games+Search+Algorithm&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Emam%2C+Marwa+M.&rft.au=Samee%2C+Nagwan+Abdel&rft.au=Jamjoom%2C+Mona+M.&rft.au=Houssein%2C+Essam+H.&rft.date=2023-06-01&rft.issn=0010-4825&rft.volume=160&rft.spage=106966&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.106966&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2023_106966
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482523X00079%2Fcov150h.gif