Optimized deep learning architecture for brain tumor classification using improved Hunger Games Search Algorithm
One of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for improving prognosis, and classifying tumors is a vital step in the disease’s treatment. Different classification strategies using deep learn...
Saved in:
| Published in | Computers in biology and medicine Vol. 160; p. 106966 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.06.2023
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2023.106966 |
Cover
| Abstract | One of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for improving prognosis, and classifying tumors is a vital step in the disease’s treatment. Different classification strategies using deep learning have been presented for the diagnosis of brain tumors. However, several challenges exist, such as the need for a competent specialist in classifying brain cancers by deep learning models and the problem of building the most precise deep learning model for categorizing brain tumors. We propose an evolved and highly efficient model based on deep learning and improved metaheuristic algorithms to address these challenges. Specifically, we develop an optimized residual learning architecture for classifying multiple brain tumors and propose an improved variant of the Hunger Games Search algorithm (I-HGS) based on combining two enhancing strategies: Local Escaping Operator (LEO) and Brownian motion. These two strategies balance solution diversity and convergence speed, boosting the optimization performance and staying away from the local optima. First, we have evaluated the I-HGS algorithm on the IEEE Congress on Evolutionary Computation held in 2020 (CEC’2020) test functions, demonstrating that I-HGS outperformed the basic HGS and other popular algorithms regarding statistical convergence, and various measures. The suggested model is then applied to the optimization of the hyperparameters of the Residual Network 50 (ResNet50) model (I-HGS-ResNet50) for brain cancer identification, proving its overall efficacy. We utilize several publicly available, gold-standard datasets of brain MRI images. The proposed I-HGS-ResNet50 model is compared with other existing studies as well as with other deep learning architectures, including Visual Geometry Group 16-layer (VGG16), MobileNet, and Densely Connected Convolutional Network 201 (DenseNet201). The experiments demonstrated that the proposed I-HGS-ResNet50 model surpasses the previous studies and other well-known deep learning models. I-HGS-ResNet50 acquired an accuracy of 99.89%, 99.72%, and 99.88% for the three datasets. These results efficiently prove the potential of the proposed I-HGS-ResNet50 model for accurate brain tumor classification.
•A new optimized deep learning architecture for brain tumor classification using MRI images.•Optimized the hyperparameters and architecture of Deep Residual Learning model.•I-HGS is proposed for optimizing the hyperparameters selection-based deep learning.•The proposed model surpasses other SOTA methods using three public datasets.•CEC’2020 benchmark functions are used to evaluate the proposed I-HGS. |
|---|---|
| AbstractList | One of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for improving prognosis, and classifying tumors is a vital step in the disease's treatment. Different classification strategies using deep learning have been presented for the diagnosis of brain tumors. However, several challenges exist, such as the need for a competent specialist in classifying brain cancers by deep learning models and the problem of building the most precise deep learning model for categorizing brain tumors. We propose an evolved and highly efficient model based on deep learning and improved metaheuristic algorithms to address these challenges. Specifically, we develop an optimized residual learning architecture for classifying multiple brain tumors and propose an improved variant of the Hunger Games Search algorithm (I-HGS) based on combining two enhancing strategies: Local Escaping Operator (LEO) and Brownian motion. These two strategies balance solution diversity and convergence speed, boosting the optimization performance and staying away from the local optima. First, we have evaluated the I-HGS algorithm on the IEEE Congress on Evolutionary Computation held in 2020 (CEC'2020) test functions, demonstrating that I-HGS outperformed the basic HGS and other popular algorithms regarding statistical convergence, and various measures. The suggested model is then applied to the optimization of the hyperparameters of the Residual Network 50 (ResNet50) model (I-HGS-ResNet50) for brain cancer identification, proving its overall efficacy. We utilize several publicly available, gold-standard datasets of brain MRI images. The proposed I-HGS-ResNet50 model is compared with other existing studies as well as with other deep learning architectures, including Visual Geometry Group 16-layer (VGG16), MobileNet, and Densely Connected Convolutional Network 201 (DenseNet201). The experiments demonstrated that the proposed I-HGS-ResNet50 model surpasses the previous studies and other well-known deep learning models. I-HGS-ResNet50 acquired an accuracy of 99.89%, 99.72%, and 99.88% for the three datasets. These results efficiently prove the potential of the proposed I-HGS-ResNet50 model for accurate brain tumor classification.One of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for improving prognosis, and classifying tumors is a vital step in the disease's treatment. Different classification strategies using deep learning have been presented for the diagnosis of brain tumors. However, several challenges exist, such as the need for a competent specialist in classifying brain cancers by deep learning models and the problem of building the most precise deep learning model for categorizing brain tumors. We propose an evolved and highly efficient model based on deep learning and improved metaheuristic algorithms to address these challenges. Specifically, we develop an optimized residual learning architecture for classifying multiple brain tumors and propose an improved variant of the Hunger Games Search algorithm (I-HGS) based on combining two enhancing strategies: Local Escaping Operator (LEO) and Brownian motion. These two strategies balance solution diversity and convergence speed, boosting the optimization performance and staying away from the local optima. First, we have evaluated the I-HGS algorithm on the IEEE Congress on Evolutionary Computation held in 2020 (CEC'2020) test functions, demonstrating that I-HGS outperformed the basic HGS and other popular algorithms regarding statistical convergence, and various measures. The suggested model is then applied to the optimization of the hyperparameters of the Residual Network 50 (ResNet50) model (I-HGS-ResNet50) for brain cancer identification, proving its overall efficacy. We utilize several publicly available, gold-standard datasets of brain MRI images. The proposed I-HGS-ResNet50 model is compared with other existing studies as well as with other deep learning architectures, including Visual Geometry Group 16-layer (VGG16), MobileNet, and Densely Connected Convolutional Network 201 (DenseNet201). The experiments demonstrated that the proposed I-HGS-ResNet50 model surpasses the previous studies and other well-known deep learning models. I-HGS-ResNet50 acquired an accuracy of 99.89%, 99.72%, and 99.88% for the three datasets. These results efficiently prove the potential of the proposed I-HGS-ResNet50 model for accurate brain tumor classification. One of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for improving prognosis, and classifying tumors is a vital step in the disease’s treatment. Different classification strategies using deep learning have been presented for the diagnosis of brain tumors. However, several challenges exist, such as the need for a competent specialist in classifying brain cancers by deep learning models and the problem of building the most precise deep learning model for categorizing brain tumors. We propose an evolved and highly efficient model based on deep learning and improved metaheuristic algorithms to address these challenges. Specifically, we develop an optimized residual learning architecture for classifying multiple brain tumors and propose an improved variant of the Hunger Games Search algorithm (I-HGS) based on combining two enhancing strategies: Local Escaping Operator (LEO) and Brownian motion. These two strategies balance solution diversity and convergence speed, boosting the optimization performance and staying away from the local optima. First, we have evaluated the I-HGS algorithm on the IEEE Congress on Evolutionary Computation held in 2020 (CEC’2020) test functions, demonstrating that I-HGS outperformed the basic HGS and other popular algorithms regarding statistical convergence, and various measures. The suggested model is then applied to the optimization of the hyperparameters of the Residual Network 50 (ResNet50) model (I-HGS-ResNet50) for brain cancer identification, proving its overall efficacy. We utilize several publicly available, gold-standard datasets of brain MRI images. The proposed I-HGS-ResNet50 model is compared with other existing studies as well as with other deep learning architectures, including Visual Geometry Group 16-layer (VGG16), MobileNet, and Densely Connected Convolutional Network 201 (DenseNet201). The experiments demonstrated that the proposed I-HGS-ResNet50 model surpasses the previous studies and other well-known deep learning models. I-HGS-ResNet50 acquired an accuracy of 99.89%, 99.72%, and 99.88% for the three datasets. These results efficiently prove the potential of the proposed I-HGS-ResNet50 model for accurate brain tumor classification. AbstractOne of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for improving prognosis, and classifying tumors is a vital step in the disease’s treatment. Different classification strategies using deep learning have been presented for the diagnosis of brain tumors. However, several challenges exist, such as the need for a competent specialist in classifying brain cancers by deep learning models and the problem of building the most precise deep learning model for categorizing brain tumors. We propose an evolved and highly efficient model based on deep learning and improved metaheuristic algorithms to address these challenges. Specifically, we develop an optimized residual learning architecture for classifying multiple brain tumors and propose an improved variant of the Hunger Games Search algorithm (I-HGS) based on combining two enhancing strategies: Local Escaping Operator (LEO) and Brownian motion. These two strategies balance solution diversity and convergence speed, boosting the optimization performance and staying away from the local optima. First, we have evaluated the I-HGS algorithm on the IEEE Congress on Evolutionary Computation held in 2020 (CEC’2020) test functions, demonstrating that I-HGS outperformed the basic HGS and other popular algorithms regarding statistical convergence, and various measures. The suggested model is then applied to the optimization of the hyperparameters of the Residual Network 50 (ResNet50) model (I-HGS-ResNet50) for brain cancer identification, proving its overall efficacy. We utilize several publicly available, gold-standard datasets of brain MRI images. The proposed I-HGS-ResNet50 model is compared with other existing studies as well as with other deep learning architectures, including Visual Geometry Group 16-layer (VGG16), MobileNet, and Densely Connected Convolutional Network 201 (DenseNet201). The experiments demonstrated that the proposed I-HGS-ResNet50 model surpasses the previous studies and other well-known deep learning models. I-HGS-ResNet50 acquired an accuracy of 99.89%, 99.72%, and 99.88% for the three datasets. These results efficiently prove the potential of the proposed I-HGS-ResNet50 model for accurate brain tumor classification. One of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for improving prognosis, and classifying tumors is a vital step in the disease’s treatment. Different classification strategies using deep learning have been presented for the diagnosis of brain tumors. However, several challenges exist, such as the need for a competent specialist in classifying brain cancers by deep learning models and the problem of building the most precise deep learning model for categorizing brain tumors. We propose an evolved and highly efficient model based on deep learning and improved metaheuristic algorithms to address these challenges. Specifically, we develop an optimized residual learning architecture for classifying multiple brain tumors and propose an improved variant of the Hunger Games Search algorithm (I-HGS) based on combining two enhancing strategies: Local Escaping Operator (LEO) and Brownian motion. These two strategies balance solution diversity and convergence speed, boosting the optimization performance and staying away from the local optima. First, we have evaluated the I-HGS algorithm on the IEEE Congress on Evolutionary Computation held in 2020 (CEC’2020) test functions, demonstrating that I-HGS outperformed the basic HGS and other popular algorithms regarding statistical convergence, and various measures. The suggested model is then applied to the optimization of the hyperparameters of the Residual Network 50 (ResNet50) model (I-HGS-ResNet50) for brain cancer identification, proving its overall efficacy. We utilize several publicly available, gold-standard datasets of brain MRI images. The proposed I-HGS-ResNet50 model is compared with other existing studies as well as with other deep learning architectures, including Visual Geometry Group 16-layer (VGG16), MobileNet, and Densely Connected Convolutional Network 201 (DenseNet201). The experiments demonstrated that the proposed I-HGS-ResNet50 model surpasses the previous studies and other well-known deep learning models. I-HGS-ResNet50 acquired an accuracy of 99.89%, 99.72%, and 99.88% for the three datasets. These results efficiently prove the potential of the proposed I-HGS-ResNet50 model for accurate brain tumor classification. •A new optimized deep learning architecture for brain tumor classification using MRI images.•Optimized the hyperparameters and architecture of Deep Residual Learning model.•I-HGS is proposed for optimizing the hyperparameters selection-based deep learning.•The proposed model surpasses other SOTA methods using three public datasets.•CEC’2020 benchmark functions are used to evaluate the proposed I-HGS. |
| ArticleNumber | 106966 |
| Author | Jamjoom, Mona M. Samee, Nagwan Abdel Houssein, Essam H. Emam, Marwa M. |
| Author_xml | – sequence: 1 givenname: Marwa M. orcidid: 0000-0001-7399-6839 surname: Emam fullname: Emam, Marwa M. email: marwa.khalef@mu.edu.eg organization: Faculty of Computers and Information, Minia University, Minia, Egypt – sequence: 2 givenname: Nagwan Abdel orcidid: 0000-0001-5957-1383 surname: Samee fullname: Samee, Nagwan Abdel email: nmabdelsamee@pnu.edu.sa organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia – sequence: 3 givenname: Mona M. orcidid: 0000-0001-9149-2810 surname: Jamjoom fullname: Jamjoom, Mona M. email: mmjamjoom@pnu.edu.sa organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia – sequence: 4 givenname: Essam H. orcidid: 0000-0002-8127-7233 surname: Houssein fullname: Houssein, Essam H. email: essam.halim@mu.edu.eg organization: Faculty of Computers and Information, Minia University, Minia, Egypt |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37141655$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkl1rFDEYhYNU7Lb6FyTgjTez5mMyO7kRa9FWKPSieh0yyTvbrDPJmGQK9debcesKBaFeTRieczic856gIx88IIQpWVNCm3e7tQnj1Lkwgl0zwnj53cimeYZWtN3IigheH6EVIZRUdcvEMTpJaUcIqQknL9Ax39CaNkKs0HQ9ZTe6n2CxBZjwADp657dYR3PrMpg8R8B9iLiL2nmc57G8zaBTcr0zOrvg8ZwWhRunGO6K0eXstxDxhR4h4RtYnPDZsA3R5dvxJXre6yHBq4fvKfr2-dPX88vq6vriy_nZVWUErXPV6poDA8tBA7GsEdBZxpiwpIW-b_oWJHQbIiSVkhgpwPZ9YUQvOW2YkfwUvd37llA_ZkhZjS4ZGAbtIcxJsZaSIhZyQd88Qndhjr6kWygha8brulCvH6i5K7WrKbpRx3v1p8sCtHvAxJBShP6AUKKW2dRO_Z1NLbOp_WxF-v6R1Lj8u9tcWh-eYvBxbwCl0jsHUSXjwBuwLpYNlQ3uP1IcTMzgfBl5-A73kA6lUJWYIupmOa_luhgvh1VqLwYf_m3wtAy_AORs5o8 |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107265 crossref_primary_10_1016_j_heliyon_2024_e33471 crossref_primary_10_1016_j_jksuci_2023_101907 crossref_primary_10_1007_s10462_024_10822_2 crossref_primary_10_3390_biomimetics8050441 crossref_primary_10_1038_s41598_024_54910_3 crossref_primary_10_1038_s41598_025_92020_w crossref_primary_10_61186_jist_41748_12_47_170 crossref_primary_10_1016_j_compbiomed_2023_107389 crossref_primary_10_1016_j_eswa_2024_124581 crossref_primary_10_2174_0118750362358232250212111157 crossref_primary_10_1016_j_iswa_2024_200355 crossref_primary_10_1016_j_rineng_2024_102459 crossref_primary_10_1007_s10462_023_10585_2 crossref_primary_10_1016_j_health_2023_100238 crossref_primary_10_3390_diagnostics15050541 crossref_primary_10_1093_jcde_qwae080 crossref_primary_10_1016_j_health_2023_100270 crossref_primary_10_1007_s10278_024_01199_3 crossref_primary_10_1016_j_bspc_2025_107559 crossref_primary_10_1016_j_bbe_2024_06_003 crossref_primary_10_1186_s40537_024_00931_8 crossref_primary_10_1016_j_displa_2024_102740 crossref_primary_10_1007_s00607_024_01354_2 crossref_primary_10_1109_ACCESS_2024_3433483 crossref_primary_10_2174_0118750362335415240909061539 |
| Cites_doi | 10.1016/j.knosys.2022.108457 10.1109/CVPR.2016.90 10.1016/j.bbe.2020.05.009 10.1007/s00521-022-07364-5 10.1016/j.mehy.2020.109684 10.1007/s00521-021-06273-3 10.1016/j.ins.2020.06.037 10.1016/j.bspc.2022.104360 10.3390/app10061999 10.1016/j.eswa.2021.115651 10.1016/j.compbiomed.2021.104868 10.3390/s21062222 10.1016/j.eswa.2022.116516 10.1016/j.knosys.2021.107483 10.4236/jbise.2020.136010 10.1016/j.eswa.2021.115079 10.1016/j.asoc.2020.106742 10.1007/s00521-022-06929-8 10.1016/j.eswa.2022.119015 10.1016/j.compbiomed.2022.106404 10.1016/j.bbe.2018.10.004 10.1109/ACCESS.2019.2919122 10.1109/CVPR.2017.243 10.1016/j.bspc.2021.103155 10.1016/j.asoc.2021.108043 10.32604/cmc.2021.014158 10.1109/CVPR.2016.308 10.3390/app10051897 10.1007/s00034-019-01246-3 10.1016/j.bspc.2022.103949 10.1016/j.compmedimag.2021.101940 10.1109/4235.585893 10.1016/j.future.2019.02.028 10.1016/j.compchemeng.2019.106656 10.1007/s11517-020-02290-x 10.3390/math11030707 10.1016/j.advengsoft.2016.01.008 10.1016/j.compbiomed.2022.105857 10.1016/j.cma.2021.114194 10.1016/j.compbiomed.2022.106075 10.1016/j.bspc.2021.103356 10.1016/j.compbiomed.2022.106194 10.1007/s10664-013-9249-9 10.1016/j.neucom.2020.02.113 10.1007/s11554-021-01106-x 10.1016/j.eswa.2022.118776 10.1016/j.eswa.2020.113274 10.1016/j.advengsoft.2013.12.007 10.1016/j.mehy.2019.109531 10.1109/ACCESS.2018.2874767 10.1016/j.compbiomed.2022.106183 10.1016/j.compmedimag.2019.05.001 10.1016/j.neucom.2023.02.010 10.3390/su142214999 10.1016/j.future.2020.03.055 10.1016/j.eswa.2020.113377 10.1016/j.compbiomed.2022.105347 10.1016/j.eswa.2021.114864 10.1186/s40537-019-0197-0 10.1007/s11042-021-10927-8 10.1016/j.neucom.2022.10.064 10.1007/s42235-021-0050-y 10.1007/s10462-020-09825-6 10.1016/j.compbiomed.2019.103345 10.1155/2021/5513500 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. 2023. Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. – notice: 2023. Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2023.106966 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) Medical Database Proquest Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 106966 |
| ExternalDocumentID | 37141655 10_1016_j_compbiomed_2023_106966 S0010482523004316 1_s2_0_S0010482523004316 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c514t-8a43e2ed3eae0d265ebd2225d08eff6f8e9eb70591990c95edff5eb5f93162c93 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Thu Oct 02 09:48:48 EDT 2025 Tue Oct 07 06:34:12 EDT 2025 Thu Apr 03 07:01:24 EDT 2025 Wed Oct 01 05:23:45 EDT 2025 Thu Apr 24 23:06:19 EDT 2025 Fri Feb 23 02:35:17 EST 2024 Tue Feb 25 20:12:01 EST 2025 Tue Oct 14 19:33:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Brain tumor Deep learning Brownian motion Hunger games search (HGS) Local escaping operator Transfer learning Convolutional neural network Residual network |
| Language | English |
| License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-8a43e2ed3eae0d265ebd2225d08eff6f8e9eb70591990c95edff5eb5f93162c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5957-1383 0000-0001-7399-6839 0000-0002-8127-7233 0000-0001-9149-2810 |
| PMID | 37141655 |
| PQID | 2815942344 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2810919599 proquest_journals_2815942344 pubmed_primary_37141655 crossref_primary_10_1016_j_compbiomed_2023_106966 crossref_citationtrail_10_1016_j_compbiomed_2023_106966 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_106966 elsevier_clinicalkeyesjournals_1_s2_0_S0010482523004316 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_106966 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Nazir, Shakil, Khurshid (b1) 2021; 91 Houssein, Hosney, Oliva, Mohamed, Hassaballah (b27) 2020; 133 Alshayeji, Al-Buloushi, Ashkanani, Abed (b57) 2021; 80 Sultan, Salem, Al-Atabany (b82) 2019; 7 Suyanto, Ariyanto, Ariyanto (b36) 2022; 114 Başaran (b5) 2022; 148 Wang, Li, Song, Rong (b59) 2020; 10 Tu, Chen, Wang, Gandomi (b31) 2021; 18 Ahmadianfar, Bozorg-Haddad, Chu (b42) 2020; 540 Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, Adam (b91) 2017 Krizhevsky, Sutskever, Hinton (b62) 2012; 25 Kalaiselvi, Padmapriya, Sriramakrishnan, Somasundaram (b45) 2020; 12 Sarhan (b2) 2020; 13 Bansal, Jindal (b83) 2022; 34 Su, Zhao, Heidari, Liu, Zhang, Mafarja, Chen (b39) 2023; 532 Shahin, Aly, Aly (b4) 2023; 212 Braik, Hammouri, Atwan, Al-Betar, Awadallah (b35) 2022; 243 Glorot, Bordes, Bengio (b60) 2011 Ahmadianfar, Heidari, Gandomi, Chu, Chen (b44) 2021; 181 Shorten, Khoshgoftaar (b69) 2019; 6 Paul, Plassard, Landman, Fabbri (b79) 2017 Shanthi, Saradha, Smitha, Prasath, Anandakumar (b46) 2022 Singh, Manure (b76) 2020 Noreen, Palaniappan, Qayyum, Ahmad, Alassafi (b54) 2021; 67 Chollet, Yee, Prokofyev (b73) 2020 Ezzat, Hassanien, Ella (b10) 2021; 98 Mohamed, Hadi, Mohamed, Awad (b71) 2020 Mehnatkesh, Jalali, Khosravi, Nahavandi (b58) 2022 Kumar, Prasad, Metan (b56) 2022; 76 Öksüz, Urhan, Güllü (b87) 2022; 72 Wolpert, Macready (b41) 1997; 1 Simonyan, Zisserman (b64) 2014 Zhao, Wang, Mirjalili (b38) 2022; 388 Çinar, Yildirim (b51) 2020; 139 Eid, Kamel, Houssein (b26) 2022; 34 Toğaçar, Cömert, Ergen (b50) 2020; 149 Dar, Rasool, Assad (b13) 2022 Mondal, Shrivastava (b48) 2022; 150 Çelik, Talu (b6) 2022; 71 Toğaçar, Ergen, Cömert (b55) 2020; 134 Chen, Gan, Chen, Zeng, Xu, Heidari, Zhu, Liu (b15) 2023; 517 Houssein, Sayed (b20) 2023; 11 Bosman, Engelbrecht, Helbig (b77) 2020; 400 Bacanin, Bezdan, Venkatachalam, Al-Turjman (b18) 2021; 18 A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105. Ismael, Mohammed, Hefny (b49) 2020; 102 Mirjalili, Lewis (b28) 2016; 95 Liu, Ding, Luo, Sha, Li, Ju (b14) 2022; 150 Yang, Chen, Heidari, Gandomi (b40) 2021; 177 Kang, Ullah, Gwak (b88) 2021; 21 Arcuri, Fraser (b72) 2013; 18 Houssein, Oliva, Çelik, Emam, Ghoniem (b19) 2023; 213 Ahmadianfar, Bozorg-Haddad, Chu (b43) 2020; 540 Houssein, Emam, Ali (b24) 2021; 185 Li, Chen, Wang, Heidari, Mirjalili (b32) 2020; 111 Ahmadianfar, Heidari, Noshadian, Chen, Gandomi (b37) 2022; 195 Fathy, Rezk, Ferahtia, Ghoniem, Alkanhel, Ghoniem (b25) 2022; 14 Rajeev, Rajasekaran, Vishnuvarthanan, Arunprasath (b47) 2022; 78 Afshar, Plataniotis, Mohammadi (b80) 2019 Carneiro, Da Nóbrega, Nepomuceno, Bian, De Albuquerque, Reboucas Filho (b74) 2018; 6 Houssein, Emam, Ali (b23) 2021; 33 Prechelt (b75) 1998 Yurdusev, Adem, Hekim (b9) 2023; 80 Yu, Han, Li, Wei, Jiang, Chen, Yu (b16) 2022; 144 Kingma, Ba (b78) 2014 Yang, Deng, Wang, Liu (b34) 2021; 232 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. Houssein, Abdelkareem, Emam, Hameed, Younan (b22) 2022; 149 Faramarzi, Heidarinejad, Mirjalili, Gandomi (b33) 2020 Goutte, Gaussier (b70) 2005 Abiwinanda, Hanif, Hesaputra, Handayani, Mengko (b84) 2019 Badža, Barjaktarović (b86) 2020; 10 Liao, Lan, Fan, Kelly, Innes, Liao (b12) 2021; 138 Zhao, Wang, Chen, Shi, Feng (b17) 2022 Simonyan, Zisserman (b90) 2014 Kumar, Mankame (b3) 2020; 40 Mirjalili, Mirjalili, Lewis (b29) 2014; 69 Emam, Houssein, Ghoniem (b21) 2023; 152 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b30) 2019; 97 Gaspar, Oliva, Cuevas, Zaldívar, Pérez, Pajares (b61) 2021 Toğaçar, Ergen, Cömert (b85) 2021; 59 Houssein, Emam, Ali, Suganthan (b11) 2020 Naseer, Yasir, Azhar, Shakeel, Zafar (b89) 2021; 2021 Rehman, Naz, Razzak, Akram, Imran (b53) 2020; 39 Anaraki, Ayati, Kazemi (b81) 2019; 39 Deepak, Ameer (b52) 2019; 111 C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826. G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708. Houssein, Emam, Ali (b8) 2022 Khan, Sohail, Zahoora, Qureshi (b68) 2020; 53 Swati, Zhao, Kabir, Ali, Ali, Ahmed, Lu (b7) 2019; 75 Bansal (10.1016/j.compbiomed.2023.106966_b83) 2022; 34 Emam (10.1016/j.compbiomed.2023.106966_b21) 2023; 152 Sarhan (10.1016/j.compbiomed.2023.106966_b2) 2020; 13 Houssein (10.1016/j.compbiomed.2023.106966_b8) 2022 Li (10.1016/j.compbiomed.2023.106966_b32) 2020; 111 Gaspar (10.1016/j.compbiomed.2023.106966_b61) 2021 Khan (10.1016/j.compbiomed.2023.106966_b68) 2020; 53 Eid (10.1016/j.compbiomed.2023.106966_b26) 2022; 34 Deepak (10.1016/j.compbiomed.2023.106966_b52) 2019; 111 Badža (10.1016/j.compbiomed.2023.106966_b86) 2020; 10 Tu (10.1016/j.compbiomed.2023.106966_b31) 2021; 18 Kingma (10.1016/j.compbiomed.2023.106966_b78) 2014 10.1016/j.compbiomed.2023.106966_b92 Başaran (10.1016/j.compbiomed.2023.106966_b5) 2022; 148 Zhao (10.1016/j.compbiomed.2023.106966_b17) 2022 Ahmadianfar (10.1016/j.compbiomed.2023.106966_b44) 2021; 181 Çinar (10.1016/j.compbiomed.2023.106966_b51) 2020; 139 Rehman (10.1016/j.compbiomed.2023.106966_b53) 2020; 39 Houssein (10.1016/j.compbiomed.2023.106966_b20) 2023; 11 Heidari (10.1016/j.compbiomed.2023.106966_b30) 2019; 97 Bacanin (10.1016/j.compbiomed.2023.106966_b18) 2021; 18 Prechelt (10.1016/j.compbiomed.2023.106966_b75) 1998 Singh (10.1016/j.compbiomed.2023.106966_b76) 2020 Nazir (10.1016/j.compbiomed.2023.106966_b1) 2021; 91 Afshar (10.1016/j.compbiomed.2023.106966_b80) 2019 Toğaçar (10.1016/j.compbiomed.2023.106966_b85) 2021; 59 Suyanto (10.1016/j.compbiomed.2023.106966_b36) 2022; 114 Toğaçar (10.1016/j.compbiomed.2023.106966_b55) 2020; 134 Toğaçar (10.1016/j.compbiomed.2023.106966_b50) 2020; 149 Chen (10.1016/j.compbiomed.2023.106966_b15) 2023; 517 Ahmadianfar (10.1016/j.compbiomed.2023.106966_b43) 2020; 540 Simonyan (10.1016/j.compbiomed.2023.106966_b64) 2014 Kumar (10.1016/j.compbiomed.2023.106966_b3) 2020; 40 Houssein (10.1016/j.compbiomed.2023.106966_b11) 2020 Yang (10.1016/j.compbiomed.2023.106966_b34) 2021; 232 Çelik (10.1016/j.compbiomed.2023.106966_b6) 2022; 71 Rajeev (10.1016/j.compbiomed.2023.106966_b47) 2022; 78 Sultan (10.1016/j.compbiomed.2023.106966_b82) 2019; 7 Swati (10.1016/j.compbiomed.2023.106966_b7) 2019; 75 Kang (10.1016/j.compbiomed.2023.106966_b88) 2021; 21 Mehnatkesh (10.1016/j.compbiomed.2023.106966_b58) 2022 Howard (10.1016/j.compbiomed.2023.106966_b91) 2017 Liu (10.1016/j.compbiomed.2023.106966_b14) 2022; 150 Ahmadianfar (10.1016/j.compbiomed.2023.106966_b37) 2022; 195 Yang (10.1016/j.compbiomed.2023.106966_b40) 2021; 177 Houssein (10.1016/j.compbiomed.2023.106966_b23) 2021; 33 Faramarzi (10.1016/j.compbiomed.2023.106966_b33) 2020 Shorten (10.1016/j.compbiomed.2023.106966_b69) 2019; 6 Mirjalili (10.1016/j.compbiomed.2023.106966_b29) 2014; 69 Arcuri (10.1016/j.compbiomed.2023.106966_b72) 2013; 18 Wolpert (10.1016/j.compbiomed.2023.106966_b41) 1997; 1 Mondal (10.1016/j.compbiomed.2023.106966_b48) 2022; 150 Houssein (10.1016/j.compbiomed.2023.106966_b24) 2021; 185 Fathy (10.1016/j.compbiomed.2023.106966_b25) 2022; 14 Mirjalili (10.1016/j.compbiomed.2023.106966_b28) 2016; 95 Houssein (10.1016/j.compbiomed.2023.106966_b22) 2022; 149 Su (10.1016/j.compbiomed.2023.106966_b39) 2023; 532 Zhao (10.1016/j.compbiomed.2023.106966_b38) 2022; 388 Ahmadianfar (10.1016/j.compbiomed.2023.106966_b42) 2020; 540 Glorot (10.1016/j.compbiomed.2023.106966_b60) 2011 Simonyan (10.1016/j.compbiomed.2023.106966_b90) 2014 Shanthi (10.1016/j.compbiomed.2023.106966_b46) 2022 Kumar (10.1016/j.compbiomed.2023.106966_b56) 2022; 76 Anaraki (10.1016/j.compbiomed.2023.106966_b81) 2019; 39 Braik (10.1016/j.compbiomed.2023.106966_b35) 2022; 243 Naseer (10.1016/j.compbiomed.2023.106966_b89) 2021; 2021 Houssein (10.1016/j.compbiomed.2023.106966_b19) 2023; 213 Krizhevsky (10.1016/j.compbiomed.2023.106966_b62) 2012; 25 Goutte (10.1016/j.compbiomed.2023.106966_b70) 2005 Mohamed (10.1016/j.compbiomed.2023.106966_b71) 2020 Dar (10.1016/j.compbiomed.2023.106966_b13) 2022 Carneiro (10.1016/j.compbiomed.2023.106966_b74) 2018; 6 Kalaiselvi (10.1016/j.compbiomed.2023.106966_b45) 2020; 12 Abiwinanda (10.1016/j.compbiomed.2023.106966_b84) 2019 Chollet (10.1016/j.compbiomed.2023.106966_b73) 2020 Paul (10.1016/j.compbiomed.2023.106966_b79) 2017 Ismael (10.1016/j.compbiomed.2023.106966_b49) 2020; 102 Yu (10.1016/j.compbiomed.2023.106966_b16) 2022; 144 Wang (10.1016/j.compbiomed.2023.106966_b59) 2020; 10 Shahin (10.1016/j.compbiomed.2023.106966_b4) 2023; 212 10.1016/j.compbiomed.2023.106966_b63 10.1016/j.compbiomed.2023.106966_b65 10.1016/j.compbiomed.2023.106966_b66 10.1016/j.compbiomed.2023.106966_b67 Öksüz (10.1016/j.compbiomed.2023.106966_b87) 2022; 72 Alshayeji (10.1016/j.compbiomed.2023.106966_b57) 2021; 80 Yurdusev (10.1016/j.compbiomed.2023.106966_b9) 2023; 80 Houssein (10.1016/j.compbiomed.2023.106966_b27) 2020; 133 Ezzat (10.1016/j.compbiomed.2023.106966_b10) 2021; 98 Liao (10.1016/j.compbiomed.2023.106966_b12) 2021; 138 Noreen (10.1016/j.compbiomed.2023.106966_b54) 2021; 67 Bosman (10.1016/j.compbiomed.2023.106966_b77) 2020; 400 |
| References_xml | – volume: 34 start-page: 17145 year: 2022 end-page: 17173 ident: b26 article-title: An enhanced equilibrium optimizer for strategic planning of PV-BES units in radial distribution systems considering time-varying demand publication-title: Neural Comput. Appl. – volume: 21 start-page: 2222 year: 2021 ident: b88 article-title: Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers publication-title: Sensors – volume: 33 start-page: 16899 year: 2021 end-page: 16919 ident: b23 article-title: Improved manta ray foraging optimization for multi-level thresholding using COVID-19 CT images publication-title: Neural Comput. Appl. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b28 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – reference: A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097–1105. – volume: 150 year: 2022 ident: b14 article-title: Cx22: A new publicly available dataset for deep learning-based segmentation of cervical cytology images publication-title: Comput. Biol. Med. – volume: 18 start-page: 1085 year: 2021 end-page: 1098 ident: b18 article-title: Optimized convolutional neural network by firefly algorithm for magnetic resonance image classification of glioma brain tumor grade publication-title: J. Real-Time Image Process. – start-page: 1 year: 2022 end-page: 19 ident: b8 article-title: An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm publication-title: Neural Comput. Appl. – volume: 243 year: 2022 ident: b35 article-title: White shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems publication-title: Knowl.-Based Syst. – volume: 71 year: 2022 ident: b6 article-title: A new 3D MRI segmentation method based on generative adversarial network and atrous convolution publication-title: Biomed. Signal Process. Control – volume: 540 start-page: 131 year: 2020 end-page: 159 ident: b43 article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm publication-title: Inform. Sci. – volume: 134 year: 2020 ident: b55 article-title: BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model publication-title: Med. Hypotheses – volume: 72 year: 2022 ident: b87 article-title: Brain tumor classification using the fused features extracted from expanded tumor region publication-title: Biomed. Signal Process. Control – volume: 144 year: 2022 ident: b16 article-title: Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: Thyroid ultrasound image case study publication-title: Comput. Biol. Med. – volume: 39 start-page: 63 year: 2019 end-page: 74 ident: b81 article-title: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms publication-title: Biocybern. Biomed. Eng. – volume: 40 start-page: 1190 year: 2020 end-page: 1204 ident: b3 article-title: Optimization driven deep convolution neural network for brain tumor classification publication-title: Biocybern. Biomed. Eng. – volume: 139 year: 2020 ident: b51 article-title: Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture publication-title: Med. Hypotheses – year: 2014 ident: b78 article-title: Adam: A method for stochastic optimization – volume: 111 start-page: 300 year: 2020 end-page: 323 ident: b32 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Gener. Comput. Syst. – volume: 12 start-page: 403 year: 2020 end-page: 408 ident: b45 article-title: Deriving tumor detection models using convolutional neural networks from MRI of human brain scans publication-title: Int. J. Inform. Technol. – volume: 212 year: 2023 ident: b4 article-title: MBTFCN: A novel modular fully convolutional network for MRI brain tumor multi-classification publication-title: Expert Syst. Appl. – start-page: 253 year: 2017 end-page: 268 ident: b79 article-title: Deep learning for brain tumor classification publication-title: Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging, Vol. 10137 – volume: 150 year: 2022 ident: b48 article-title: A novel parametric flatten-p Mish activation function based deep CNN model for brain tumor classification publication-title: Comput. Biol. Med. – volume: 6 start-page: 61677 year: 2018 end-page: 61685 ident: b74 article-title: Performance analysis of google colaboratory as a tool for accelerating deep learning applications publication-title: IEEE Access – volume: 14 start-page: 14999 year: 2022 ident: b25 article-title: A new fractional-order load frequency control for multi-renewable energy interconnected plants using skill optimization algorithm publication-title: Sustainability – start-page: 37 year: 2021 end-page: 59 ident: b61 article-title: Hyperparameter optimization in a convolutional neural network using metaheuristic algorithms publication-title: Metaheuristics in Machine Learning: Theory and Applications – volume: 13 start-page: 102 year: 2020 ident: b2 article-title: Brain tumor classification in magnetic resonance images using deep learning and wavelet transform publication-title: J. Biomed. Sci. Eng. – volume: 195 year: 2022 ident: b37 article-title: INFO: An efficient optimization algorithm based on weighted mean of vectors publication-title: Expert Syst. Appl. – volume: 532 start-page: 183 year: 2023 end-page: 214 ident: b39 article-title: RIME: A physics-based optimization publication-title: Neurocomputing – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b41 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 102 year: 2020 ident: b49 article-title: An enhanced deep learning approach for brain cancer MRI images classification using residual networks publication-title: Artif. Intell. Med. – volume: 177 year: 2021 ident: b40 article-title: Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts publication-title: Expert Syst. Appl. – volume: 76 year: 2022 ident: b56 article-title: A hybrid deep CNN-Cov-19-res-net transfer learning architype for an enhanced brain tumor detection and classification scheme in medical image processing publication-title: Biomed. Signal Process. Control – start-page: 183 year: 2019 end-page: 189 ident: b84 article-title: Brain tumor classification using convolutional neural network publication-title: World Congress on Medical Physics and Biomedical Engineering 2018 – year: 2014 ident: b90 article-title: Very deep convolutional networks for large-scale image recognition – year: 2020 ident: b33 article-title: Marine predators algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b30 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. – volume: 39 start-page: 757 year: 2020 end-page: 775 ident: b53 article-title: A deep learning-based framework for automatic brain tumors classification using transfer learning publication-title: Circuits Systems Signal Process. – volume: 18 start-page: 594 year: 2013 end-page: 623 ident: b72 article-title: Parameter tuning or default values? An empirical investigation in search-based software engineering publication-title: Empir. Softw. Eng. – volume: 133 year: 2020 ident: b27 article-title: A novel hybrid harris hawks optimization and support vector machines for drug design and discovery publication-title: Comput. Chem. Eng. – reference: C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826. – reference: G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708. – volume: 7 start-page: 69215 year: 2019 end-page: 69225 ident: b82 article-title: Multi-classification of brain tumor images using deep neural network publication-title: IEEE Access – volume: 18 start-page: 674 year: 2021 end-page: 710 ident: b31 article-title: The colony predation algorithm publication-title: J. Bionic Eng. – year: 2020 ident: b73 article-title: Keras: Deep learning for humans. 2015 – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. – volume: 149 year: 2020 ident: b50 article-title: Classification of brain MRI using hyper column technique with convolutional neural network and feature selection method publication-title: Expert Syst. Appl. – volume: 2021 year: 2021 ident: b89 article-title: Computer-aided brain tumor diagnosis: Performance evaluation of deep learner CNN using augmented brain MRI publication-title: Int. J. Biomed. Imaging – year: 2022 ident: b17 article-title: JAMSNet: A remote pulse extraction network based on joint attention and multi-scale fusion publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 59 start-page: 57 year: 2021 end-page: 70 ident: b85 article-title: Tumor type detection in brain MR images of the deep model developed using hypercolumn technique, attention modules, and residual blocks publication-title: Med. Biol. Eng. Comput. – volume: 80 start-page: 28897 year: 2021 end-page: 28917 ident: b57 article-title: Enhanced brain tumor classification using an optimized multi-layered convolutional neural network architecture publication-title: Multimedia Tools Appl. – volume: 6 start-page: 1 year: 2019 end-page: 48 ident: b69 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data – volume: 400 start-page: 113 year: 2020 end-page: 136 ident: b77 article-title: Visualising basins of attraction for the cross-entropy and the squared error neural network loss functions publication-title: Neurocomputing – start-page: 1368 year: 2019 end-page: 1372 ident: b80 article-title: Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries publication-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 232 year: 2021 ident: b34 article-title: Aptenodytes forsteri optimization: Algorithm and applications publication-title: Knowl.-Based Syst. – volume: 148 year: 2022 ident: b5 article-title: A new brain tumor diagnostic model: Selection of textural feature extraction algorithms and convolution neural network features with optimization algorithms publication-title: Comput. Biol. Med. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b29 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – start-page: 1 year: 2020 end-page: 8 ident: b71 article-title: Evaluating the performance of adaptive gaining sharing knowledge based algorithm on CEC 2020 benchmark problems publication-title: 2020 IEEE Congress on Evolutionary Computation – volume: 185 year: 2021 ident: b24 article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm publication-title: Expert Syst. Appl. – start-page: 345 year: 2005 end-page: 359 ident: b70 article-title: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation publication-title: European Conference on Information Retrieval – volume: 517 start-page: 264 year: 2023 end-page: 278 ident: b15 article-title: Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet publication-title: Neurocomputing – year: 2014 ident: b64 article-title: Very deep convolutional networks for large-scale image recognition – volume: 34 start-page: 9069 year: 2022 end-page: 9086 ident: b83 article-title: An improved hybrid classification of brain tumor MRI images based on conglomeration feature extraction techniques publication-title: Neural Comput. Appl. – volume: 80 year: 2023 ident: b9 article-title: Detection and classification of microcalcifications in mammograms images using difference filter and Yolov4 deep learning model publication-title: Biomed. Signal Process. Control – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: b62 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 388 year: 2022 ident: b38 article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 67 start-page: 3967 year: 2021 end-page: 3982 ident: b54 article-title: Brain tumor classification based on fine-tuned models and the ensemble method publication-title: Comput. Mater. Continua – volume: 181 year: 2021 ident: b44 article-title: RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method publication-title: Expert Syst. Appl. – year: 2020 ident: b11 article-title: Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review publication-title: Expert Syst. Appl. – volume: 114 year: 2022 ident: b36 article-title: Komodo Mlipir algorithm publication-title: Appl. Soft Comput. – volume: 111 year: 2019 ident: b52 article-title: Brain tumor classification using deep CNN features via transfer learning publication-title: Comput. Biol. Med. – volume: 10 start-page: 1897 year: 2020 ident: b59 article-title: The influence of the activation function in a convolution neural network model of facial expression recognition publication-title: Appl. Sci. – volume: 138 year: 2021 ident: b12 article-title: SIRVD-DL: A COVID-19 deep learning prediction model based on time-dependent SIRVD publication-title: Comput. Biol. Med. – year: 2022 ident: b13 article-title: Breast cancer detection using deep learning: Datasets, methods, and challenges ahead publication-title: Comput. Biol. Med. – year: 2017 ident: b91 article-title: Mobilenets: Efficient convolutional neural networks for mobile vision applications – volume: 91 year: 2021 ident: b1 article-title: Role of deep learning in brain tumor detection and classification (2015 to 2020): A review publication-title: Comput. Med. Imaging Graph. – volume: 53 start-page: 5455 year: 2020 end-page: 5516 ident: b68 article-title: A survey of the recent architectures of deep convolutional neural networks publication-title: Artif. Intell. Rev. – start-page: 315 year: 2011 end-page: 323 ident: b60 article-title: Deep sparse rectifier neural networks publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics – volume: 152 year: 2023 ident: b21 article-title: A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images publication-title: Comput. Biol. Med. – volume: 149 year: 2022 ident: b22 article-title: An efficient image segmentation method for skin cancer imaging using improved golden Jackal optimization algorithm publication-title: Comput. Biol. Med. – year: 2022 ident: b58 article-title: An intelligent driven deep residual learning framework for brain tumor classification using MRI images publication-title: Expert Syst. Appl. – volume: 213 year: 2023 ident: b19 article-title: Boosted sooty tern optimization algorithm for global optimization and feature selection publication-title: Expert Syst. Appl. – start-page: 53 year: 2020 end-page: 74 ident: b76 article-title: Neural networks and deep learning with TensorFlow publication-title: Learn TensorFlow 2.0 – volume: 78 year: 2022 ident: b47 article-title: A biologically-inspired hybrid deep learning approach for brain tumor classification from magnetic resonance imaging using improved gabor wavelet transform and Elmann-BiLSTM network publication-title: Biomed. Signal Process. Control – volume: 11 start-page: 707 year: 2023 ident: b20 article-title: Dynamic candidate solution boosted Beluga whale optimization algorithm for biomedical classification publication-title: Mathematics – year: 2022 ident: b46 article-title: An efficient automatic brain tumor classification using optimized hybrid deep neural network publication-title: Int. J. Intell. Netw. – volume: 98 year: 2021 ident: b10 article-title: An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization publication-title: Appl. Soft Comput. – volume: 540 start-page: 131 year: 2020 end-page: 159 ident: b42 article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm publication-title: Inform. Sci. – start-page: 55 year: 1998 end-page: 69 ident: b75 article-title: Early stopping-but when? publication-title: Neural Networks: Tricks of the Trade – volume: 10 start-page: 1999 year: 2020 ident: b86 article-title: Classification of brain tumors from MRI images using a convolutional neural network publication-title: Appl. Sci. – volume: 75 start-page: 34 year: 2019 end-page: 46 ident: b7 article-title: Brain tumor classification for MR images using transfer learning and fine-tuning publication-title: Comput. Med. Imaging Graph. – start-page: 345 year: 2005 ident: 10.1016/j.compbiomed.2023.106966_b70 article-title: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.compbiomed.2023.106966_b62 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 243 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b35 article-title: White shark optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108457 – year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b13 article-title: Breast cancer detection using deep learning: Datasets, methods, and challenges ahead publication-title: Comput. Biol. Med. – ident: 10.1016/j.compbiomed.2023.106966_b65 doi: 10.1109/CVPR.2016.90 – start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b71 article-title: Evaluating the performance of adaptive gaining sharing knowledge based algorithm on CEC 2020 benchmark problems – volume: 40 start-page: 1190 issue: 3 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b3 article-title: Optimization driven deep convolution neural network for brain tumor classification publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.05.009 – volume: 34 start-page: 17145 issue: 19 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b26 article-title: An enhanced equilibrium optimizer for strategic planning of PV-BES units in radial distribution systems considering time-varying demand publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07364-5 – year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b73 – year: 2014 ident: 10.1016/j.compbiomed.2023.106966_b64 – volume: 139 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b51 article-title: Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2020.109684 – start-page: 55 year: 1998 ident: 10.1016/j.compbiomed.2023.106966_b75 article-title: Early stopping-but when? – volume: 33 start-page: 16899 issue: 24 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b23 article-title: Improved manta ray foraging optimization for multi-level thresholding using COVID-19 CT images publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06273-3 – volume: 540 start-page: 131 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b42 article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.06.037 – volume: 80 year: 2023 ident: 10.1016/j.compbiomed.2023.106966_b9 article-title: Detection and classification of microcalcifications in mammograms images using difference filter and Yolov4 deep learning model publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104360 – ident: 10.1016/j.compbiomed.2023.106966_b63 – volume: 10 start-page: 1999 issue: 6 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b86 article-title: Classification of brain tumors from MRI images using a convolutional neural network publication-title: Appl. Sci. doi: 10.3390/app10061999 – volume: 185 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b24 article-title: An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115651 – volume: 138 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b12 article-title: SIRVD-DL: A COVID-19 deep learning prediction model based on time-dependent SIRVD publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104868 – volume: 21 start-page: 2222 issue: 6 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b88 article-title: Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers publication-title: Sensors doi: 10.3390/s21062222 – volume: 195 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b37 article-title: INFO: An efficient optimization algorithm based on weighted mean of vectors publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116516 – start-page: 1368 year: 2019 ident: 10.1016/j.compbiomed.2023.106966_b80 article-title: Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries – volume: 232 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b34 article-title: Aptenodytes forsteri optimization: Algorithm and applications publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107483 – volume: 13 start-page: 102 issue: 06 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b2 article-title: Brain tumor classification in magnetic resonance images using deep learning and wavelet transform publication-title: J. Biomed. Sci. Eng. doi: 10.4236/jbise.2020.136010 – volume: 181 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b44 article-title: RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115079 – start-page: 253 year: 2017 ident: 10.1016/j.compbiomed.2023.106966_b79 article-title: Deep learning for brain tumor classification – volume: 98 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b10 article-title: An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106742 – volume: 34 start-page: 9069 issue: 11 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b83 article-title: An improved hybrid classification of brain tumor MRI images based on conglomeration feature extraction techniques publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-06929-8 – volume: 213 year: 2023 ident: 10.1016/j.compbiomed.2023.106966_b19 article-title: Boosted sooty tern optimization algorithm for global optimization and feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119015 – volume: 152 year: 2023 ident: 10.1016/j.compbiomed.2023.106966_b21 article-title: A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106404 – volume: 39 start-page: 63 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2023.106966_b81 article-title: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2018.10.004 – start-page: 53 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b76 article-title: Neural networks and deep learning with TensorFlow – volume: 7 start-page: 69215 year: 2019 ident: 10.1016/j.compbiomed.2023.106966_b82 article-title: Multi-classification of brain tumor images using deep neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2919122 – ident: 10.1016/j.compbiomed.2023.106966_b92 doi: 10.1109/CVPR.2017.243 – volume: 71 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b6 article-title: A new 3D MRI segmentation method based on generative adversarial network and atrous convolution publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103155 – volume: 114 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b36 article-title: Komodo Mlipir algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.108043 – start-page: 183 year: 2019 ident: 10.1016/j.compbiomed.2023.106966_b84 article-title: Brain tumor classification using convolutional neural network – volume: 67 start-page: 3967 issue: 3 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b54 article-title: Brain tumor classification based on fine-tuned models and the ensemble method publication-title: Comput. Mater. Continua doi: 10.32604/cmc.2021.014158 – volume: 12 start-page: 403 issue: 2 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b45 article-title: Deriving tumor detection models using convolutional neural networks from MRI of human brain scans publication-title: Int. J. Inform. Technol. – ident: 10.1016/j.compbiomed.2023.106966_b66 doi: 10.1109/CVPR.2016.308 – volume: 10 start-page: 1897 issue: 5 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b59 article-title: The influence of the activation function in a convolution neural network model of facial expression recognition publication-title: Appl. Sci. doi: 10.3390/app10051897 – volume: 39 start-page: 757 issue: 2 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b53 article-title: A deep learning-based framework for automatic brain tumors classification using transfer learning publication-title: Circuits Systems Signal Process. doi: 10.1007/s00034-019-01246-3 – volume: 78 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b47 article-title: A biologically-inspired hybrid deep learning approach for brain tumor classification from magnetic resonance imaging using improved gabor wavelet transform and Elmann-BiLSTM network publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.103949 – volume: 91 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b1 article-title: Role of deep learning in brain tumor detection and classification (2015 to 2020): A review publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2021.101940 – start-page: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b8 article-title: An optimized deep learning architecture for breast cancer diagnosis based on improved marine predators algorithm publication-title: Neural Comput. Appl. – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.compbiomed.2023.106966_b41 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.compbiomed.2023.106966_b30 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – start-page: 37 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b61 article-title: Hyperparameter optimization in a convolutional neural network using metaheuristic algorithms – year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b46 article-title: An efficient automatic brain tumor classification using optimized hybrid deep neural network publication-title: Int. J. Intell. Netw. – ident: 10.1016/j.compbiomed.2023.106966_b67 doi: 10.1109/CVPR.2017.243 – volume: 133 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b27 article-title: A novel hybrid harris hawks optimization and support vector machines for drug design and discovery publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106656 – volume: 59 start-page: 57 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b85 article-title: Tumor type detection in brain MR images of the deep model developed using hypercolumn technique, attention modules, and residual blocks publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-020-02290-x – year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b11 article-title: Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review publication-title: Expert Syst. Appl. – volume: 11 start-page: 707 issue: 3 year: 2023 ident: 10.1016/j.compbiomed.2023.106966_b20 article-title: Dynamic candidate solution boosted Beluga whale optimization algorithm for biomedical classification publication-title: Mathematics doi: 10.3390/math11030707 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.compbiomed.2023.106966_b28 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 102 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b49 article-title: An enhanced deep learning approach for brain cancer MRI images classification using residual networks publication-title: Artif. Intell. Med. – volume: 76 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b56 article-title: A hybrid deep CNN-Cov-19-res-net transfer learning architype for an enhanced brain tumor detection and classification scheme in medical image processing publication-title: Biomed. Signal Process. Control – year: 2014 ident: 10.1016/j.compbiomed.2023.106966_b78 – volume: 148 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b5 article-title: A new brain tumor diagnostic model: Selection of textural feature extraction algorithms and convolution neural network features with optimization algorithms publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105857 – year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b17 article-title: JAMSNet: A remote pulse extraction network based on joint attention and multi-scale fusion publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 388 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b38 article-title: Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.114194 – volume: 149 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b22 article-title: An efficient image segmentation method for skin cancer imaging using improved golden Jackal optimization algorithm publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106075 – volume: 72 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b87 article-title: Brain tumor classification using the fused features extracted from expanded tumor region publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103356 – volume: 540 start-page: 131 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b43 article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.06.037 – volume: 150 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b14 article-title: Cx22: A new publicly available dataset for deep learning-based segmentation of cervical cytology images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106194 – year: 2014 ident: 10.1016/j.compbiomed.2023.106966_b90 – volume: 18 start-page: 594 issue: 3 year: 2013 ident: 10.1016/j.compbiomed.2023.106966_b72 article-title: Parameter tuning or default values? An empirical investigation in search-based software engineering publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-013-9249-9 – volume: 400 start-page: 113 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b77 article-title: Visualising basins of attraction for the cross-entropy and the squared error neural network loss functions publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.02.113 – volume: 18 start-page: 1085 issue: 4 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b18 article-title: Optimized convolutional neural network by firefly algorithm for magnetic resonance image classification of glioma brain tumor grade publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-021-01106-x – volume: 212 year: 2023 ident: 10.1016/j.compbiomed.2023.106966_b4 article-title: MBTFCN: A novel modular fully convolutional network for MRI brain tumor multi-classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118776 – volume: 149 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b50 article-title: Classification of brain MRI using hyper column technique with convolutional neural network and feature selection method publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113274 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.compbiomed.2023.106966_b29 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 134 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b55 article-title: BrainMRNet: Brain tumor detection using magnetic resonance images with a novel convolutional neural network model publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2019.109531 – volume: 6 start-page: 61677 year: 2018 ident: 10.1016/j.compbiomed.2023.106966_b74 article-title: Performance analysis of google colaboratory as a tool for accelerating deep learning applications publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2874767 – volume: 150 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b48 article-title: A novel parametric flatten-p Mish activation function based deep CNN model for brain tumor classification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106183 – year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b58 article-title: An intelligent driven deep residual learning framework for brain tumor classification using MRI images publication-title: Expert Syst. Appl. – start-page: 315 year: 2011 ident: 10.1016/j.compbiomed.2023.106966_b60 article-title: Deep sparse rectifier neural networks – volume: 75 start-page: 34 year: 2019 ident: 10.1016/j.compbiomed.2023.106966_b7 article-title: Brain tumor classification for MR images using transfer learning and fine-tuning publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.05.001 – volume: 532 start-page: 183 year: 2023 ident: 10.1016/j.compbiomed.2023.106966_b39 article-title: RIME: A physics-based optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.02.010 – volume: 14 start-page: 14999 issue: 22 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b25 article-title: A new fractional-order load frequency control for multi-renewable energy interconnected plants using skill optimization algorithm publication-title: Sustainability doi: 10.3390/su142214999 – volume: 111 start-page: 300 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b32 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.03.055 – year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b33 article-title: Marine predators algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 144 year: 2022 ident: 10.1016/j.compbiomed.2023.106966_b16 article-title: Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: Thyroid ultrasound image case study publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105347 – year: 2017 ident: 10.1016/j.compbiomed.2023.106966_b91 – volume: 177 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b40 article-title: Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114864 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2023.106966_b69 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 80 start-page: 28897 issue: 19 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b57 article-title: Enhanced brain tumor classification using an optimized multi-layered convolutional neural network architecture publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-021-10927-8 – volume: 517 start-page: 264 year: 2023 ident: 10.1016/j.compbiomed.2023.106966_b15 article-title: Accurate iris segmentation and recognition using an end-to-end unified framework based on MADNet and DSANet publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.10.064 – volume: 18 start-page: 674 issue: 3 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b31 article-title: The colony predation algorithm publication-title: J. Bionic Eng. doi: 10.1007/s42235-021-0050-y – volume: 53 start-page: 5455 issue: 8 year: 2020 ident: 10.1016/j.compbiomed.2023.106966_b68 article-title: A survey of the recent architectures of deep convolutional neural networks publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09825-6 – volume: 111 year: 2019 ident: 10.1016/j.compbiomed.2023.106966_b52 article-title: Brain tumor classification using deep CNN features via transfer learning publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103345 – volume: 2021 year: 2021 ident: 10.1016/j.compbiomed.2023.106966_b89 article-title: Computer-aided brain tumor diagnosis: Performance evaluation of deep learner CNN using augmented brain MRI publication-title: Int. J. Biomed. Imaging doi: 10.1155/2021/5513500 |
| SSID | ssj0004030 |
| Score | 2.5132594 |
| Snippet | One of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is essential for... AbstractOne of the worst diseases is a brain tumor, which is defined by abnormal development of synapses in the brain. Early detection of brain tumors is... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 106966 |
| SubjectTerms | Algorithms Basic converters Brain Brain - diagnostic imaging Brain architecture Brain cancer Brain Neoplasms - diagnostic imaging Brain tumor Brain tumors Brownian motion Cancer Classification Convergence Convolutional neural network Datasets Deep Learning Evolutionary computation Games Heuristic methods Humans Hunger Hunger games search (HGS) Internal Medicine Local escaping operator Machine learning Operators (mathematics) Optimization Other Residual network Search algorithms Synapses Synaptogenesis Transfer learning Tumors Visual discrimination learning |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrYS4IN6kFGQkroE8HCcWQqiglhVSFwRU6s1K7Mm2qPugu3vh1zMTO1kOBe0tSjJJ5BnPfLG_mQF4VTrXtGXr4gSzOpba2lgrRxOPIFKJtlKqy5A7najxmfx8XpzvwaTPhWFaZe8TO0ftFpbXyN9kFQVeiv1Svl_-irlrFO-u9i006tBawb3rSozdgv2MK2ONYP_D8eTrt22mZJL7pBTyPpJ-jgK3xzO-mMTtk95fc1NxOq10Vz3xxoD1L0DaBaaTe3A3IEpx5E3gPuzh_AHcPg175g9h-YW8wuzyNzrhEJci9ImYir_3EARhV9Fwuwix3szo2DKqZhpRpznB9PipuOxWIOhB4w0vBopPTLEVnrEsjq6mNF7ri9kjODs5_vFxHIc-C7EluLSOq1rmmKHLscbEZarAxvFvoEsqbFvVVqixKQmHpRS6rC7QtS3dU7Q6T1Vmdf4YRvPFHJ-CaGrmaKnKSZlLUnUjU-nQZdaST60TjKDsB9PYUISce2FcmZ5t9tNs1WBYDcarIYJ0kFz6Qhw7yOheX6ZPNCXXaCha7CBb3iSLqzDHVyY1q8wk5ntX4ohsKePiZTQiEbwdJAOM8fBkx_ce9oZlhldtjT-Cl8NlcgS8u1PPcbHp7iHspwutI3jiDXIYKC7LmKqiOPj_w5_BHf4Sz4Q7hNH6eoPPCXOtmxdhIv0B4NEtzQ priority: 102 providerName: ProQuest |
| Title | Optimized deep learning architecture for brain tumor classification using improved Hunger Games Search Algorithm |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523004316 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523004316 https://dx.doi.org/10.1016/j.compbiomed.2023.106966 https://www.ncbi.nlm.nih.gov/pubmed/37141655 https://www.proquest.com/docview/2815942344 https://www.proquest.com/docview/2810919599 |
| Volume | 160 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250903 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiEuiDehpTIS17R5OE4sTkvV7QLqghCV9mYl9mQJ6j7UzV564LczEzspiCKtxCVPTxJ57PHn-JsZxt7m1lZ1XtswgqQMhTImVNJix0OIlIMppOw85C6mcnIpPs6y2R477X1hiFbpbb-z6Z219ldOfG2erJuGfHxxKoETnISCRqUxhd0WIqcsBsc_b2keIkqdGwraGyrt2TyO40W0befmfkxpxPGyVF28xDuHqH9B0G4oGj9iDz2G5CP3mY_ZHiyfsPsXfpX8KVt_RjuwaG7Acguw5j4zxJz_vmrAEa3yihJE8Ha7wGNDOJqIQ52uOBHi57zp_jnggyZb-v3Hz4lUyx1HmY-u5qvrpv2-eMYux2ffTiehz6wQGgRIbViUIoUEbAolRDaRGVSWJn42KqCuZV2AgipH5BXjYGVUBrausUxWK6znxKj0OdtfrpbwkvGqJFaWLKwQqUDlViIWFmxiDFrRMoKA5X1lauPDjlP2iyvd88t-6Fs1aFKDdmoIWDxIrl3ojR1kVK8v3buWojHUOD7sIJvfJQsb36s3OtabREf6r5YXsHeD5B-Nd8f3HvYNSw-vSgrEmQh1hQjYm-E2dn1azymXsNp2ZRDtqUypgL1wDXKoKArEGMsse_Vfn3bAHtCZo8Ydsv32eguvEYS11VHXy3Cbz3LcFuPzI3Zv9OHTZIr792fTL19_ARWzN1s |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVgIuiDcpBYwEx0DiOA8LVahAy5Z2FwSt1JtJ7MnSqvuAzQrBj-O3MRM7uxwK2ktv0SZOVjPjmc_2NzOMPc2treq8tmEEogylMiZUmcWJhxApB1NkWZsh1x9kvWP5_iQ9WWO_u1wYolV2PrF11HZiaI_8hSgw8GLsl_LV9FtIXaPodLVroVH61gp2uy0x5hM7DuDnD1zCzbb336K-nwmxt3v0phf6LgOhQbDQhEUpExBgEyghsiJLobK0CLJRAXWd1QUoqHJEITE6bqNSsHWNz6S1SuJMGCrGhCFgQyZS4eJv4_Xu4OOnZWZmlLgkGPR2EhdjnkvkGGZEGndJ9s-piTn-nKm2WuOFAfJfALgNhHs32HWPYPmOM7mbbA3Gt9iVvj-jv82mH9ALjU5_geUWYMp9X4oh__vMgiNW5hW1p-DNfITXhlA80ZZaS-FExx_y03bHA1_Um9PmI39HlF7uGNJ853yI-mm-ju6w40uR-F22Pp6M4T7jVUmcsKywEuWPplXJWFqwwhj04WUEAcs7YWrji55T741z3bHbzvRSDZrUoJ0aAhYvRk5d4Y8VxqhOX7pLbEVXrDE6rTA2v2gszLxPmelYz4SO9Oe2pBLakqBiaSiRgL1cjPSwycGhFb-71RmWXnxqOdkC9mRxGx0PnSaVY5jM22cQa6pUqYDdcwa5EBSVgYyzNN38_8sfs6u9o_6hPtwfHDxg1-hfORbeFltvvs_hIeK9pnrkJxVnXy57Hv8B9UpsPw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlVcEOUZKGAkOIYmjuPEQghVlGVLaUGCSnsziT3ZFnUfZbNC8NP4dczESZZDQXvpLdpkkpXn4c_2NzOMPcucK6uscmEEogiltjbUyqHjIUTKwOZKNRlyR8dqeCLfj9LRBvvd5cIQrbKLiU2gdjNLe-S7IseJF-d-KXerlhbxaX_wen4RUgcpOmnt2ml4EzmEnz9w-bZ4dbCPun4uxODtlzfDsO0wEFoECnWYFzIBAS6BAiInVAqlowWQi3KoKlXloKHMEIHEGLStTsFVFT6TVjqJlbBUiAnD_7UsSTTRCbNRtsrJjBKf_oJxTuIyrGUReW4Z0cV9ev0Lal-OPyvd1Gm8dGr8F_RtpsDBTXajxa58zxvbNtuA6S22ddSezt9m848YfyZnv8BxBzDnbUeKMf_7tIIjSuYlNabg9XKC15bwOxGWGhvhRMQf87NmrwNfNFzStiN_R2Re7rnRfO98jNqoTyd32MmVjPddtjmdTeE-42VBbDCVOykTiUZVylg6cMJajN5FBAHLusE0ti13Tl03zk3Ha_tmVmowpAbj1RCwuJec-5Ifa8joTl-mS2nFIGxwXlpDNrtMFhZtNFmY2CyEicznppgS2pKgMmk4IgF72Uu2gMkDoTW_u9MZluk_tXKzgD3tb2PIoXOkYgqzZfMMokydah2we94g-4GiApCxStMH_3_5E7aF3ms-HBwfPmTX6U95-t0O26y_L-ERAr26fNx4FGdfr9qF_wAK-2nZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+deep+learning+architecture+for+brain+tumor+classification+using+improved+Hunger+Games+Search+Algorithm&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Emam%2C+Marwa+M.&rft.au=Samee%2C+Nagwan+Abdel&rft.au=Jamjoom%2C+Mona+M.&rft.au=Houssein%2C+Essam+H.&rft.date=2023-06-01&rft.issn=0010-4825&rft.volume=160&rft.spage=106966&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.106966&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2023_106966 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482523X00079%2Fcov150h.gif |