Pancreatic cancer pathology image segmentation with channel and spatial long-range dependencies
Based on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes. However, compared to traditional image segmentation tasks, the large size of tissues in pathology images requires a larger receptive field. Whi...
Saved in:
| Published in | Computers in biology and medicine Vol. 169; p. 107844 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.02.2024
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2023.107844 |
Cover
| Abstract | Based on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes. However, compared to traditional image segmentation tasks, the large size of tissues in pathology images requires a larger receptive field. While methods based on dilated convolutions or attention mechanisms can enhance the receptive field, they cannot capture long-range feature dependencies. Directly applying self-attention mechanisms to capture long-range dependencies results in intolerable computational complexity. To address these challenges, we introduce a channel and spatial self-attention (CS) Module designed for efficiently capturing both channel and spatial long-range feature dependencies in pancreatic cancer pathological images. Specifically, the channel and spatial self-attention module consists of an adaptive channel self-attention module and a window-shift spatial self-attention module. The adaptive channel self-attention module adaptively pools features to a fixed size to capture long-range feature dependencies. While the window-shift spatial self-attention module captures spatial long-range dependencies in a window-based manner. Additionally, we propose a re-weighted cross-entropy loss to mitigate the impact of long-tail distribution on performance. Our proposed method surpasses state-of-the-art on both our Pancreatic Cancer Pathology Image (PCPI) dataset and the GlaS challenge dataset. The mDice and mIoU have achieved 73.93% and 59.42% in our PCPI dataset.
•Presenting introduce a channel and spatial self-attention module to efficiently captures long-range dependencies.•Presenting a re-weighted cross-entropy loss function that balances the learning of various tissue categories.•Collecting and annotating a dataset of pancreatic cancer pathology images. On this dataset, our method achieves state-of-the-art performance. |
|---|---|
| AbstractList | AbstractBased on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes. However, compared to traditional image segmentation tasks, the large size of tissues in pathology images requires a larger receptive field. While methods based on dilated convolutions or attention mechanisms can enhance the receptive field, they cannot capture long-range feature dependencies. Directly applying self-attention mechanisms to capture long-range dependencies results in intolerable computational complexity. To address these challenges, we introduce a channel and spatial self-attention (CS) Module designed for efficiently capturing both channel and spatial long-range feature dependencies in pancreatic cancer pathological images. Specifically, the channel and spatial self-attention module consists of an adaptive channel self-attention module and a window-shift spatial self-attention module. The adaptive channel self-attention module adaptively pools features to a fixed size to capture long-range feature dependencies. While the window-shift spatial self-attention module captures spatial long-range dependencies in a window-based manner. Additionally, we propose a re-weighted cross-entropy loss to mitigate the impact of long-tail distribution on performance. Our proposed method surpasses state-of-the-art on both our Pancreatic Cancer Pathology Image (PCPI) dataset and the GlaS challenge dataset. The mDice and mIoU have achieved 73.93% and 59.42% in our PCPI dataset. Based on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes. However, compared to traditional image segmentation tasks, the large size of tissues in pathology images requires a larger receptive field. While methods based on dilated convolutions or attention mechanisms can enhance the receptive field, they cannot capture long-range feature dependencies. Directly applying self-attention mechanisms to capture long-range dependencies results in intolerable computational complexity. To address these challenges, we introduce a channel and spatial self-attention (CS) Module designed for efficiently capturing both channel and spatial long-range feature dependencies in pancreatic cancer pathological images. Specifically, the channel and spatial self-attention module consists of an adaptive channel self-attention module and a window-shift spatial self-attention module. The adaptive channel self-attention module adaptively pools features to a fixed size to capture long-range feature dependencies. While the window-shift spatial self-attention module captures spatial long-range dependencies in a window-based manner. Additionally, we propose a re-weighted cross-entropy loss to mitigate the impact of long-tail distribution on performance. Our proposed method surpasses state-of-the-art on both our Pancreatic Cancer Pathology Image (PCPI) dataset and the GlaS challenge dataset. The mDice and mIoU have achieved 73.93% and 59.42% in our PCPI dataset. •Presenting introduce a channel and spatial self-attention module to efficiently captures long-range dependencies.•Presenting a re-weighted cross-entropy loss function that balances the learning of various tissue categories.•Collecting and annotating a dataset of pancreatic cancer pathology images. On this dataset, our method achieves state-of-the-art performance. Based on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes. However, compared to traditional image segmentation tasks, the large size of tissues in pathology images requires a larger receptive field. While methods based on dilated convolutions or attention mechanisms can enhance the receptive field, they cannot capture long-range feature dependencies. Directly applying self-attention mechanisms to capture long-range dependencies results in intolerable computational complexity. To address these challenges, we introduce a channel and spatial self-attention (CS) Module designed for efficiently capturing both channel and spatial long-range feature dependencies in pancreatic cancer pathological images. Specifically, the channel and spatial self-attention module consists of an adaptive channel self-attention module and a window-shift spatial self-attention module. The adaptive channel self-attention module adaptively pools features to a fixed size to capture long-range feature dependencies. While the window-shift spatial self-attention module captures spatial long-range dependencies in a window-based manner. Additionally, we propose a re-weighted cross-entropy loss to mitigate the impact of long-tail distribution on performance. Our proposed method surpasses state-of-the-art on both our Pancreatic Cancer Pathology Image (PCPI) dataset and the GlaS challenge dataset. The mDice and mIoU have achieved 73.93% and 59.42% in our PCPI dataset. Based on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes. However, compared to traditional image segmentation tasks, the large size of tissues in pathology images requires a larger receptive field. While methods based on dilated convolutions or attention mechanisms can enhance the receptive field, they cannot capture long-range feature dependencies. Directly applying self-attention mechanisms to capture long-range dependencies results in intolerable computational complexity. To address these challenges, we introduce a channel and spatial self-attention (CS) Module designed for efficiently capturing both channel and spatial long-range feature dependencies in pancreatic cancer pathological images. Specifically, the channel and spatial self-attention module consists of an adaptive channel self-attention module and a window-shift spatial self-attention module. The adaptive channel self-attention module adaptively pools features to a fixed size to capture long-range feature dependencies. While the window-shift spatial self-attention module captures spatial long-range dependencies in a window-based manner. Additionally, we propose a re-weighted cross-entropy loss to mitigate the impact of long-tail distribution on performance. Our proposed method surpasses state-of-the-art on both our Pancreatic Cancer Pathology Image (PCPI) dataset and the GlaS challenge dataset. The mDice and mIoU have achieved 73.93% and 59.42% in our PCPI dataset.Based on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes. However, compared to traditional image segmentation tasks, the large size of tissues in pathology images requires a larger receptive field. While methods based on dilated convolutions or attention mechanisms can enhance the receptive field, they cannot capture long-range feature dependencies. Directly applying self-attention mechanisms to capture long-range dependencies results in intolerable computational complexity. To address these challenges, we introduce a channel and spatial self-attention (CS) Module designed for efficiently capturing both channel and spatial long-range feature dependencies in pancreatic cancer pathological images. Specifically, the channel and spatial self-attention module consists of an adaptive channel self-attention module and a window-shift spatial self-attention module. The adaptive channel self-attention module adaptively pools features to a fixed size to capture long-range feature dependencies. While the window-shift spatial self-attention module captures spatial long-range dependencies in a window-based manner. Additionally, we propose a re-weighted cross-entropy loss to mitigate the impact of long-tail distribution on performance. Our proposed method surpasses state-of-the-art on both our Pancreatic Cancer Pathology Image (PCPI) dataset and the GlaS challenge dataset. The mDice and mIoU have achieved 73.93% and 59.42% in our PCPI dataset. |
| ArticleNumber | 107844 |
| Author | Zhang, Guodao Yu, Wenyao Chen, Zhao-Min Zhou, Xingjian Ke, Tan Shi, Keqing Liao, Yifan Ge, Yisu |
| Author_xml | – sequence: 1 givenname: Zhao-Min orcidid: 0000-0001-8955-1789 surname: Chen fullname: Chen, Zhao-Min email: chenzhaomin123@gmail.com organization: Zhejiang Key Laboratory of Intelligent Informatics for Safety & Emergency, Wenzhou University, Wenzhou, 325035, China – sequence: 2 givenname: Yifan surname: Liao fullname: Liao, Yifan email: liaoyifan156@gmail.com organization: The College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China – sequence: 3 givenname: Xingjian orcidid: 0000-0001-5463-893X surname: Zhou fullname: Zhou, Xingjian email: zxj18758696329@163.com organization: Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China – sequence: 4 givenname: Wenyao orcidid: 0009-0001-8970-3997 surname: Yu fullname: Yu, Wenyao email: wzyuwenyao@gmail.com organization: Department of Mathematics, University of California, San Diego, California, 92093, USA – sequence: 5 givenname: Guodao surname: Zhang fullname: Zhang, Guodao email: guodaozhang@hdu.edu.cn organization: Institute of Intelligent Media Computing, Hangzhou Dianzi University, Hangzhou, 310018, China – sequence: 6 givenname: Yisu surname: Ge fullname: Ge, Yisu email: 594yisuge@gmail.com organization: Zhejiang Key Laboratory of Intelligent Informatics for Safety & Emergency, Wenzhou University, Wenzhou, 325035, China – sequence: 7 givenname: Tan surname: Ke fullname: Ke, Tan email: tanke123@sina.com organization: Educational Technology Center, The PLA General Hospital, Beijing, 100853, China – sequence: 8 givenname: Keqing surname: Shi fullname: Shi, Keqing email: skochilly@wmu.edu.cn organization: Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38103482$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkl9rFDEUxYNU7Lb6FSTgiy-z3iTz90XUYlUoKKjPIZPc2c2aSdZkVtlv3wxTVygI9SUJye8eDufkgpz54JEQymDNgNWvdmsdxn1vw4hmzYGLfN20ZfmIrFjbdAVUojwjKwAGRdny6pxcpLQDgBIEPCHnomUg8sOKyC_K64hqsprqfMRI92raBhc2R2pHtUGacDOinzISPP1tpy3VW-U9Oqq8oSnjVjnqgt8UUfk8YHCP3qDXFtNT8nhQLuGzu_2SfL9-_-3qY3Hz-cOnq7c3ha5YORUNasYNtjw7rJpW606X2Bjsq06BULpXTTvkte-NqbseGGNDx0vDGygHhYO4JC8X3X0MPw-YJjnapNE55TEckuQdCMFrUdUZfXEP3YVD9NldpjjUrOyamXp-Rx36nLLcx5xGPMo_0WWgXQAdQ0oRhxPCQM4tyZ3825KcW5JLS3n09b1RbZd8p6ise4jAu0UAc6S_LEaZcti5PWMj6kmaYP_DxUlEO-utVu4HHjGdQmEycQny6_yb5s_EBTAB3Szw5t8CD_NwC7Q44Fw |
| CitedBy_id | crossref_primary_10_1007_s11760_024_03100_9 crossref_primary_10_1016_j_bspc_2025_107696 crossref_primary_10_1016_j_compbiomed_2024_108184 crossref_primary_10_1016_j_eswa_2024_126125 crossref_primary_10_1142_S0218126625500264 crossref_primary_10_3390_s24144749 crossref_primary_10_1016_j_compbiomed_2024_108624 |
| Cites_doi | 10.1109/CVPR.2019.00326 10.1109/LGRS.2018.2802944 10.1109/TIP.2020.3042065 10.1109/TMI.2018.2865709 10.1609/aaai.v36i3.20144 10.1109/CVPR.2018.00745 10.1109/TPAMI.2017.2699184 10.1016/j.compbiomed.2023.107378 10.1109/TMI.2019.2959609 10.2214/ajr.183.4.1831149 10.1038/nature14539 10.1016/j.compbiomed.2022.105365 10.1007/s11042-021-10536-5 10.1016/j.media.2016.08.008 10.1016/j.patcog.2020.107404 10.1016/j.compbiomed.2022.106411 10.1109/CVPR.2016.90 10.1109/ICCV48922.2021.00986 10.1109/CVPR52688.2022.00135 10.1109/ICCV.2019.00069 10.1109/CVPR.2017.660 10.1016/j.cca.2018.06.020 10.1186/s12935-019-0743-z 10.1016/j.compbiomed.2022.106228 10.1109/CVPR.2017.106 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. 2023. Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. – notice: 2023. Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 JQ2 K9. M7Z NAPCQ P64 7X8 |
| DOI | 10.1016/j.compbiomed.2023.107844 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 ProQuest Nursing and Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Technology Research Database ProQuest Computer Science Collection Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Nursing & Allied Health Premium |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 107844 |
| ExternalDocumentID | 38103482 10_1016_j_compbiomed_2023_107844 S0010482523013094 1_s2_0_S0010482523013094 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV AAYXX CITATION PUEGO CGR CUY CVF ECM EIF NPM 8FD FR3 JQ2 K9. M7Z P64 7X8 |
| ID | FETCH-LOGICAL-c514t-7ec12de82040578cc9c4e7deb59a03acba78fcbabbdd69b0111f924d2704faef3 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Thu Oct 02 06:55:39 EDT 2025 Tue Oct 07 06:33:18 EDT 2025 Wed Feb 19 02:02:37 EST 2025 Wed Oct 01 04:08:02 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Sat Jul 13 15:30:54 EDT 2024 Tue Feb 25 20:12:00 EST 2025 Tue Oct 14 19:33:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Channel and spatial self-attention Long-tailed distribution Window shift Pancreatic cancer pathology image segmentation Long-range dependencies |
| Language | English |
| License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-7ec12de82040578cc9c4e7deb59a03acba78fcbabbdd69b0111f924d2704faef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8955-1789 0000-0001-5463-893X 0009-0001-8970-3997 |
| PMID | 38103482 |
| PQID | 2920614976 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2903326356 proquest_journals_2920614976 pubmed_primary_38103482 crossref_primary_10_1016_j_compbiomed_2023_107844 crossref_citationtrail_10_1016_j_compbiomed_2023_107844 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107844 elsevier_clinicalkeyesjournals_1_s2_0_S0010482523013094 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107844 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | LeCun, Bengio, Hinton (b4) 2015; 521 Chen, Zhang, He, Qiao, Chen, Shi, Wu, Tang (b11) 2019 Hossen, Islam, Reza, Kibria, Horaira, Tuly, Faruqe, Kabir, Mollah (b7) 2023; 152 Zhou, Rahman Siddiquee, Tajbakhsh, Liang (b12) 2018 Valanarasu, Oza, Hacihaliloglu, Patel (b42) 2021 Zhou, Siddiquee, Tajbakhsh, Liang (b40) 2019; 39 H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: IEEE Conf. Comput. Vis. Pattern Recog., 2017, pp. 2881–2890. Qin, Zhang, Huang, Dehghan, Zaiane, Jagersand (b20) 2020; 106 B. Cheng, I. Misra, A.G. Schwing, A. Kirillov, R. Girdhar, Masked-attention mask transformer for universal image segmentation, in: IEEE Conf. Comput. Vis. Pattern Recog., 2022, pp. 1290–1299. Wang, Li, Zhuang (b28) 2021 H. Wang, P. Cao, J. Wang, O.R. Zaiane, Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer, in: Proc. AAAI Conf. Artif. Intell., 2022, pp. 2441–2449. Gao, Jiang, Zhou, Yang, Chen, Zhu, Shi, Chen, Zheng, Bian (b5) 2022; 151 Christ, Elshaer, Ettlinger, Tatavarty, Bickel, Bilic, Rempfler, Armbruster, Hofmann, D’Anastasi (b10) 2016 Chan, Huang, Bai, Ding, Chen (b8) 2022; 81 J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, Dual attention network for scene segmentation, in: IEEE Conf. Comput. Vis. Pattern Recog., 2019, pp. 3146–3154. J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141. Ronneberger, Fischer, Brox (b9) 2015 Zhang, Liu, Wang (b16) 2018; 15 Yu, Koltun (b27) 2015 Soler, Hostettler, Agnus, Charnoz, Fasquel, Moreau, Osswald, Bouhadjar, Marescaux (b15) 2010 Cao, Wang, Chen, Jiang, Zhang, Tian, Wang (b43) 2022 Cai, Shi, Li, Chen, Shi, Johnson, Lai, Toyoda, Zhou (b2) 2018; 485 Contributors (b32) 2020 Chen, Lu, Yu, Luo, Adeli, Wang, Lu, Yuille, Zhou (b41) 2021 Zhou, Onder, Dou, Tsougenis, Chen, Heng (b23) 2019 Jha, Smedsrud, Riegler, Johansen, De Lange, Halvorsen, Johansen (b17) 2019 Schnurr, Schad, Zöllner (b13) 2019 K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp. 770–778. Sardanelli, Giuseppetti, Panizza, Bazzocchi, Fausto, Simonetti, Lattanzio, Del Maschio (b3) 2004; 183 Wu, Tang, Zhang, Cao, Zhang (b21) 2020; 30 T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: IEEE Conf. Comput. Vis. Pattern Recog., 2017, pp. 2117–2125. Ronneberger, Fischer, Brox (b36) 2015 Chen, Papandreou, Kokkinos, Murphy, Yuille (b37) 2017; 40 Dong, Ying, Shi (b1) 2019; 19 Naylor, Laé, Reyal, Walter (b22) 2018; 38 Sirinukunwattana, Pluim, Chen, Qi, Heng, Guo, Wang, Matuszewski, Bruni, Sanchez, Böhm, Ronneberger, Cheikh, Racoceanu, Kainz, Pfeiffer, Urschler, Snead, Rajpoot (b31) 2017; 35 Paul, Azhar, Das, Bairagi, Chatterjee (b6) 2022; 144 Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, W. Liu, Ccnet: Criss-cross attention for semantic segmentation, in: Int. Conf. Comput. Vis., 2019, pp. 603–612. Contributors (b14) 2017 Imtiaz, Fattah, Kung (b24) 2023; 165 Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Int. Conf. Comput. Vis., 2021, pp. 10012–10022. Pan, Chen, Shi (b34) 2023 Chen, Papandreou, Schroff, Adam (b19) 2017 Macenko, Niethammer, Marron, Borland, Woosley, Guan, Schmitt, Thomas (b30) 2009 Schnurr (10.1016/j.compbiomed.2023.107844_b13) 2019 Contributors (10.1016/j.compbiomed.2023.107844_b14) 2017 10.1016/j.compbiomed.2023.107844_b33 Chen (10.1016/j.compbiomed.2023.107844_b19) 2017 Qin (10.1016/j.compbiomed.2023.107844_b20) 2020; 106 Ronneberger (10.1016/j.compbiomed.2023.107844_b9) 2015 Valanarasu (10.1016/j.compbiomed.2023.107844_b42) 2021 Wu (10.1016/j.compbiomed.2023.107844_b21) 2020; 30 Zhou (10.1016/j.compbiomed.2023.107844_b40) 2019; 39 Chan (10.1016/j.compbiomed.2023.107844_b8) 2022; 81 10.1016/j.compbiomed.2023.107844_b39 10.1016/j.compbiomed.2023.107844_b38 10.1016/j.compbiomed.2023.107844_b18 LeCun (10.1016/j.compbiomed.2023.107844_b4) 2015; 521 10.1016/j.compbiomed.2023.107844_b35 Jha (10.1016/j.compbiomed.2023.107844_b17) 2019 Pan (10.1016/j.compbiomed.2023.107844_b34) 2023 Zhang (10.1016/j.compbiomed.2023.107844_b16) 2018; 15 Paul (10.1016/j.compbiomed.2023.107844_b6) 2022; 144 Imtiaz (10.1016/j.compbiomed.2023.107844_b24) 2023; 165 Dong (10.1016/j.compbiomed.2023.107844_b1) 2019; 19 Cai (10.1016/j.compbiomed.2023.107844_b2) 2018; 485 Zhou (10.1016/j.compbiomed.2023.107844_b12) 2018 Ronneberger (10.1016/j.compbiomed.2023.107844_b36) 2015 Sardanelli (10.1016/j.compbiomed.2023.107844_b3) 2004; 183 Soler (10.1016/j.compbiomed.2023.107844_b15) 2010 10.1016/j.compbiomed.2023.107844_b44 Contributors (10.1016/j.compbiomed.2023.107844_b32) 2020 Hossen (10.1016/j.compbiomed.2023.107844_b7) 2023; 152 Zhou (10.1016/j.compbiomed.2023.107844_b23) 2019 Wang (10.1016/j.compbiomed.2023.107844_b28) 2021 Gao (10.1016/j.compbiomed.2023.107844_b5) 2022; 151 Chen (10.1016/j.compbiomed.2023.107844_b37) 2017; 40 Cao (10.1016/j.compbiomed.2023.107844_b43) 2022 Chen (10.1016/j.compbiomed.2023.107844_b11) 2019 10.1016/j.compbiomed.2023.107844_b29 Sirinukunwattana (10.1016/j.compbiomed.2023.107844_b31) 2017; 35 10.1016/j.compbiomed.2023.107844_b26 10.1016/j.compbiomed.2023.107844_b25 Christ (10.1016/j.compbiomed.2023.107844_b10) 2016 Yu (10.1016/j.compbiomed.2023.107844_b27) 2015 Chen (10.1016/j.compbiomed.2023.107844_b41) 2021 Macenko (10.1016/j.compbiomed.2023.107844_b30) 2009 Naylor (10.1016/j.compbiomed.2023.107844_b22) 2018; 38 |
| References_xml | – volume: 106 year: 2020 ident: b20 article-title: U2-net: Going deeper with nested U-structure for salient object detection publication-title: Pattern Recognit. – year: 2020 ident: b32 article-title: MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark – year: 2017 ident: b14 article-title: LiTS:liver tumor segmentation challenge – start-page: 1107 year: 2009 end-page: 1110 ident: b30 article-title: A method for normalizing histology slides for quantitative analysis publication-title: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro – volume: 152 year: 2023 ident: b7 article-title: Robust identification of common genomic biomarkers from multiple gene expression profiles for the prognosis, diagnosis, and therapies of pancreatic cancer publication-title: Comput. Biol. Med. – year: 2021 ident: b41 article-title: Transunet: Transformers make strong encoders for medical image segmentation – year: 2023 ident: b34 article-title: Masked diffusion as self-supervised representation learner – reference: T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: IEEE Conf. Comput. Vis. Pattern Recog., 2017, pp. 2117–2125. – volume: 19 start-page: 1 year: 2019 end-page: 11 ident: b1 article-title: Expression of the wnt ligands gene family and its relationship to prognosis in hepatocellular carcinoma publication-title: Cancer Cell Int. – start-page: 205 year: 2022 end-page: 218 ident: b43 article-title: Swin-unet: Unet-like pure transformer for medical image segmentation publication-title: Eur. Conf. Comput. Vis. – volume: 485 start-page: 187 year: 2018 end-page: 194 ident: b2 article-title: A nomogram integrating hepatic reserve and tumor characteristics for hepatocellular carcinoma following curative liver resection publication-title: Clin. Chim. Acta – volume: 15 start-page: 749 year: 2018 end-page: 753 ident: b16 article-title: Road extraction by deep residual u-net publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 40 start-page: 834 year: 2017 end-page: 848 ident: b37 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141. – start-page: 1 year: 2019 end-page: 7 ident: b11 article-title: Prostate segmentation using 2D bridged U-net publication-title: 2019 International Joint Conference on Neural Networks (IJCNN) – volume: 144 year: 2022 ident: b6 article-title: Elucidating the metabolic characteristics of pancreatic publication-title: Comput. Biol. Med. – volume: 165 year: 2023 ident: b24 article-title: BAWGNet: Boundary aware wavelet guided network for the nuclei segmentation in histopathology images publication-title: Comput. Biol. Med. – volume: 81 start-page: 13275 year: 2022 end-page: 13288 ident: b8 article-title: Res2-unext: a novel deep learning framework for few-shot cell image segmentation publication-title: Multimedia Tools Appl. – volume: 151 year: 2022 ident: b5 article-title: Automatic multi-tissue segmentation in pancreatic pathological images with selected multi-scale attention network publication-title: Comput. Biol. Med. – start-page: 36 year: 2021 end-page: 46 ident: b42 article-title: Medical transformer: Gated axial-attention for medical image segmentation publication-title: MICCAI – volume: 30 start-page: 1169 year: 2020 end-page: 1179 ident: b21 article-title: Cgnet: A light-weight context guided network for semantic segmentation publication-title: IEEE Trans. Image Process. – start-page: 3 year: 2018 end-page: 11 ident: b12 article-title: Unet++: A nested u-net architecture for medical image segmentation publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4 – reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp. 770–778. – start-page: 80 year: 2019 end-page: 85 ident: b13 article-title: Sparsely connected convolutional layers in CNNs for liver segmentation in CT publication-title: Bildverarbeitung Für Die Medizin 2019: Algorithmen–Systeme–Anwendungen. Proceedings Des Workshops Vom 17. Bis 19. März 2019 in Lübeck – volume: 39 start-page: 1856 year: 2019 end-page: 1867 ident: b40 article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Trans. Med. Imaging – start-page: 234 year: 2015 end-page: 241 ident: b36 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 225 year: 2019 end-page: 2255 ident: b17 article-title: Resunet++: An advanced architecture for medical image segmentation publication-title: 2019 IEEE International Symposium on Multimedia (ISM) – volume: 35 start-page: 489 year: 2017 end-page: 502 ident: b31 article-title: Gland segmentation in colon histology images: The glas challenge contest publication-title: Med. Image Anal. – reference: H. Wang, P. Cao, J. Wang, O.R. Zaiane, Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer, in: Proc. AAAI Conf. Artif. Intell., 2022, pp. 2441–2449. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b4 article-title: Deep learning publication-title: Nature – volume: 183 start-page: 1149 year: 2004 end-page: 1157 ident: b3 article-title: Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in fatty and dense breasts using the whole-breast pathologic examination as a gold standard publication-title: Amer. J. Roentgenol. – year: 2010 ident: b15 article-title: 3D image reconstruction for comparison of algorithm database – reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Int. Conf. Comput. Vis., 2021, pp. 10012–10022. – start-page: 234 year: 2015 end-page: 241 ident: b9 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 – start-page: 415 year: 2016 end-page: 423 ident: b10 article-title: Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19 – reference: B. Cheng, I. Misra, A.G. Schwing, A. Kirillov, R. Girdhar, Masked-attention mask transformer for universal image segmentation, in: IEEE Conf. Comput. Vis. Pattern Recog., 2022, pp. 1290–1299. – reference: H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: IEEE Conf. Comput. Vis. Pattern Recog., 2017, pp. 2881–2890. – volume: 38 start-page: 448 year: 2018 end-page: 459 ident: b22 article-title: Segmentation of nuclei in histopathology images by deep regression of the distance map publication-title: IEEE Trans. Med. Imaging – reference: Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, W. Liu, Ccnet: Criss-cross attention for semantic segmentation, in: Int. Conf. Comput. Vis., 2019, pp. 603–612. – year: 2017 ident: b19 article-title: Rethinking atrous convolution for semantic image segmentation – start-page: 682 year: 2019 end-page: 693 ident: b23 article-title: Cia-net: Robust nuclei instance segmentation with contour-aware information aggregation publication-title: Information Processing in Medical Imaging: 26th International Conference, IPMI 2019, Hong Kong, China, June 2–7, 2019, Proceedings 26 – year: 2015 ident: b27 article-title: Multi-scale context aggregation by dilated convolutions – reference: J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, Dual attention network for scene segmentation, in: IEEE Conf. Comput. Vis. Pattern Recog., 2019, pp. 3146–3154. – start-page: 302 year: 2021 end-page: 311 ident: b28 article-title: Attu-net: attention U-net for brain tumor segmentation publication-title: MICCAI Workshop – ident: 10.1016/j.compbiomed.2023.107844_b26 doi: 10.1109/CVPR.2019.00326 – volume: 15 start-page: 749 issue: 5 year: 2018 ident: 10.1016/j.compbiomed.2023.107844_b16 article-title: Road extraction by deep residual u-net publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2802944 – volume: 30 start-page: 1169 year: 2020 ident: 10.1016/j.compbiomed.2023.107844_b21 article-title: Cgnet: A light-weight context guided network for semantic segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3042065 – year: 2017 ident: 10.1016/j.compbiomed.2023.107844_b14 – start-page: 1 year: 2019 ident: 10.1016/j.compbiomed.2023.107844_b11 article-title: Prostate segmentation using 2D bridged U-net – volume: 38 start-page: 448 issue: 2 year: 2018 ident: 10.1016/j.compbiomed.2023.107844_b22 article-title: Segmentation of nuclei in histopathology images by deep regression of the distance map publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2865709 – year: 2020 ident: 10.1016/j.compbiomed.2023.107844_b32 – ident: 10.1016/j.compbiomed.2023.107844_b44 doi: 10.1609/aaai.v36i3.20144 – ident: 10.1016/j.compbiomed.2023.107844_b18 doi: 10.1109/CVPR.2018.00745 – volume: 40 start-page: 834 issue: 4 year: 2017 ident: 10.1016/j.compbiomed.2023.107844_b37 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – volume: 165 year: 2023 ident: 10.1016/j.compbiomed.2023.107844_b24 article-title: BAWGNet: Boundary aware wavelet guided network for the nuclei segmentation in histopathology images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.107378 – year: 2017 ident: 10.1016/j.compbiomed.2023.107844_b19 – start-page: 1107 year: 2009 ident: 10.1016/j.compbiomed.2023.107844_b30 article-title: A method for normalizing histology slides for quantitative analysis – volume: 39 start-page: 1856 issue: 6 year: 2019 ident: 10.1016/j.compbiomed.2023.107844_b40 article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2959609 – start-page: 36 year: 2021 ident: 10.1016/j.compbiomed.2023.107844_b42 article-title: Medical transformer: Gated axial-attention for medical image segmentation – volume: 183 start-page: 1149 issue: 4 year: 2004 ident: 10.1016/j.compbiomed.2023.107844_b3 article-title: Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in fatty and dense breasts using the whole-breast pathologic examination as a gold standard publication-title: Amer. J. Roentgenol. doi: 10.2214/ajr.183.4.1831149 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.compbiomed.2023.107844_b4 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2010 ident: 10.1016/j.compbiomed.2023.107844_b15 – volume: 144 year: 2022 ident: 10.1016/j.compbiomed.2023.107844_b6 article-title: Elucidating the metabolic characteristics of pancreatic β-cells from patients with type 2 diabetes (T2D) using a genome-scale metabolic modeling publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105365 – volume: 81 start-page: 13275 issue: 10 year: 2022 ident: 10.1016/j.compbiomed.2023.107844_b8 article-title: Res2-unext: a novel deep learning framework for few-shot cell image segmentation publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-021-10536-5 – volume: 35 start-page: 489 year: 2017 ident: 10.1016/j.compbiomed.2023.107844_b31 article-title: Gland segmentation in colon histology images: The glas challenge contest publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.08.008 – volume: 106 year: 2020 ident: 10.1016/j.compbiomed.2023.107844_b20 article-title: U2-net: Going deeper with nested U-structure for salient object detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107404 – volume: 152 year: 2023 ident: 10.1016/j.compbiomed.2023.107844_b7 article-title: Robust identification of common genomic biomarkers from multiple gene expression profiles for the prognosis, diagnosis, and therapies of pancreatic cancer publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106411 – start-page: 682 year: 2019 ident: 10.1016/j.compbiomed.2023.107844_b23 article-title: Cia-net: Robust nuclei instance segmentation with contour-aware information aggregation – ident: 10.1016/j.compbiomed.2023.107844_b25 doi: 10.1109/CVPR.2016.90 – start-page: 234 year: 2015 ident: 10.1016/j.compbiomed.2023.107844_b9 article-title: U-net: Convolutional networks for biomedical image segmentation – ident: 10.1016/j.compbiomed.2023.107844_b29 doi: 10.1109/ICCV48922.2021.00986 – year: 2021 ident: 10.1016/j.compbiomed.2023.107844_b41 – start-page: 302 year: 2021 ident: 10.1016/j.compbiomed.2023.107844_b28 article-title: Attu-net: attention U-net for brain tumor segmentation – ident: 10.1016/j.compbiomed.2023.107844_b33 doi: 10.1109/CVPR52688.2022.00135 – ident: 10.1016/j.compbiomed.2023.107844_b39 doi: 10.1109/ICCV.2019.00069 – ident: 10.1016/j.compbiomed.2023.107844_b38 doi: 10.1109/CVPR.2017.660 – start-page: 80 year: 2019 ident: 10.1016/j.compbiomed.2023.107844_b13 article-title: Sparsely connected convolutional layers in CNNs for liver segmentation in CT – start-page: 234 year: 2015 ident: 10.1016/j.compbiomed.2023.107844_b36 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 485 start-page: 187 year: 2018 ident: 10.1016/j.compbiomed.2023.107844_b2 article-title: A nomogram integrating hepatic reserve and tumor characteristics for hepatocellular carcinoma following curative liver resection publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2018.06.020 – start-page: 3 year: 2018 ident: 10.1016/j.compbiomed.2023.107844_b12 article-title: Unet++: A nested u-net architecture for medical image segmentation – year: 2023 ident: 10.1016/j.compbiomed.2023.107844_b34 – start-page: 225 year: 2019 ident: 10.1016/j.compbiomed.2023.107844_b17 article-title: Resunet++: An advanced architecture for medical image segmentation – year: 2015 ident: 10.1016/j.compbiomed.2023.107844_b27 – start-page: 415 year: 2016 ident: 10.1016/j.compbiomed.2023.107844_b10 article-title: Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields – start-page: 205 year: 2022 ident: 10.1016/j.compbiomed.2023.107844_b43 article-title: Swin-unet: Unet-like pure transformer for medical image segmentation – volume: 19 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2023.107844_b1 article-title: Expression of the wnt ligands gene family and its relationship to prognosis in hepatocellular carcinoma publication-title: Cancer Cell Int. doi: 10.1186/s12935-019-0743-z – volume: 151 year: 2022 ident: 10.1016/j.compbiomed.2023.107844_b5 article-title: Automatic multi-tissue segmentation in pancreatic pathological images with selected multi-scale attention network publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106228 – ident: 10.1016/j.compbiomed.2023.107844_b35 doi: 10.1109/CVPR.2017.106 |
| SSID | ssj0004030 |
| Score | 2.4388757 |
| Snippet | Based on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes.... AbstractBased on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 107844 |
| SubjectTerms | Cancer Channel and spatial self-attention Datasets Deep learning Entropy Humans Image processing Image Processing, Computer-Assisted Image segmentation Internal Medicine Long-range dependencies Long-tailed distribution Medical imaging Modules Other Pancreatic cancer Pancreatic cancer pathology image segmentation Pancreatic Neoplasms Pathology Receptive field Window shift |
| Title | Pancreatic cancer pathology image segmentation with channel and spatial long-range dependencies |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523013094 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523013094 https://dx.doi.org/10.1016/j.compbiomed.2023.107844 https://www.ncbi.nlm.nih.gov/pubmed/38103482 https://www.proquest.com/docview/2920614976 https://www.proquest.com/docview/2903326356 |
| Volume | 169 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250901 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB_EA_FFvPNrPZUc-NrdfmSblnsScW_vjhUfFHwLSZrKytqV7frq3-5Mk3YRT1i4l0DTDCkzyeQ36XwAnKdFpJNSh3QHIAKeqjDQOlVBlhk9LNFg0YruOybX6fiO_7kf3m_AZRsLQ26VXvc7nd5oa98z8NwcPE-nFOOLpgQaOAiiURHnlBOUc0FVDPqvKzcPHiYuDAX1DY323jzOx4vctl2Ye5_KiGO3yDj_7Ij6DII2R9FoF3Y8hmQX7jO_woatvsHWxP8l3wN5g6JswKBhhqS6YFR4uLlAZ9Mn1CCstg9PPuqoYnQXyygCuLIzpqqC1eRmjTPM5tVDsKDwA9YWy0UW1ftwN7q6vRwHvpBCYBAPLQNhTRQXFg97gmeZMbnhVhRWD3MVJsqgPLISW62LIs01lZ8v0S4rYhHyUtkyOYDNal7ZI2BpggbUUMRxaFIuSq6iSCNoRPscRWviogei5Z00Pss4FbuYydad7FGuuC6J69JxvQdRR_nsMm2sQZO34pFtJCnqPonHwRq04l-0tvabuJaRrGMZyg8LrQc_O8p3a3XNeU_adSS7qahmGAIlxIY9-NG9xp1Ov29UZecvNCZMEsodhGMO3frrGEV52ihN0fF_fdp32MYn7pzST2BzuXixp4i5lvqs2VTYZqNfZ_Dl4vff8fUb5SItvQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BlQoXRN_Lq67UayAPJ07ECSHQ8ljUA0jcLNtxVouWLNosV347M7ETVLVIK3HJwfHI1ow9_saeB8DvrIx0UumQ7gBEwDMVBlpnKshzo9MKDRat6L5jdJ0Nb_nFXXq3AiddLAy5VXrd73R6q619y6Hn5uHjZEIxvmhKoIGDIBoVccFX4QNPY0EW2MHzq58HDxMXh4IKh7p7dx7n5EV-2y7O_YDqiGOzyDl_64x6C4O2Z9HZFmx6EMmO3Tw_wYqtP8PHkX8m_wLyD8qyRYOGGRLrnFHl4fYGnU0eUIWwxo4ffNhRzegyllEIcG2nTNUla8jPGkeYzupxMKf4A9ZVy0UeNV_h9uz05mQY-EoKgUFAtAiENVFcWjztCZ_lxhSGW1FanRYqTJRBgeQVfrUuy6zQVH--QsOsjEXIK2Wr5Bus1bPa_gCWJWhBpSKOQ5NxUXEVRRpRIxroKFsTlwMQHe-k8WnGqdrFVHb-ZPfyleuSuC4d1wcQ9ZSPLtXGEjRFJx7ZhZKi8pN4HixBK_5Haxu_ixsZySaWofxnpQ3gqKf8a7EuOe5ut45kPxQVDUOkhOBwAL_637jV6f1G1Xb2RH3CJKHkQdjnu1t_PaMoURvlKdp-19R-wvrwZnQlr86vL3dgA_9w56G-C2uL-ZPdQwC20PvtBnsBhzQubA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pancreatic+cancer+pathology+image+segmentation+with+channel+and+spatial+long-range+dependencies&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Chen%2C+Zhao-Min&rft.au=Liao%2C+Yifan&rft.au=Zhou%2C+Xingjian&rft.au=Yu%2C+Wenyao&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=169&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107844&rft.externalDocID=S0010482523013094 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif |