Pancreatic cancer pathology image segmentation with channel and spatial long-range dependencies

Based on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes. However, compared to traditional image segmentation tasks, the large size of tissues in pathology images requires a larger receptive field. Whi...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 169; p. 107844
Main Authors Chen, Zhao-Min, Liao, Yifan, Zhou, Xingjian, Yu, Wenyao, Zhang, Guodao, Ge, Yisu, Ke, Tan, Shi, Keqing
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.02.2024
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2023.107844

Cover

Abstract Based on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes. However, compared to traditional image segmentation tasks, the large size of tissues in pathology images requires a larger receptive field. While methods based on dilated convolutions or attention mechanisms can enhance the receptive field, they cannot capture long-range feature dependencies. Directly applying self-attention mechanisms to capture long-range dependencies results in intolerable computational complexity. To address these challenges, we introduce a channel and spatial self-attention (CS) Module designed for efficiently capturing both channel and spatial long-range feature dependencies in pancreatic cancer pathological images. Specifically, the channel and spatial self-attention module consists of an adaptive channel self-attention module and a window-shift spatial self-attention module. The adaptive channel self-attention module adaptively pools features to a fixed size to capture long-range feature dependencies. While the window-shift spatial self-attention module captures spatial long-range dependencies in a window-based manner. Additionally, we propose a re-weighted cross-entropy loss to mitigate the impact of long-tail distribution on performance. Our proposed method surpasses state-of-the-art on both our Pancreatic Cancer Pathology Image (PCPI) dataset and the GlaS challenge dataset. The mDice and mIoU have achieved 73.93% and 59.42% in our PCPI dataset. •Presenting introduce a channel and spatial self-attention module to efficiently captures long-range dependencies.•Presenting a re-weighted cross-entropy loss function that balances the learning of various tissue categories.•Collecting and annotating a dataset of pancreatic cancer pathology images. On this dataset, our method achieves state-of-the-art performance.
AbstractList AbstractBased on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes. However, compared to traditional image segmentation tasks, the large size of tissues in pathology images requires a larger receptive field. While methods based on dilated convolutions or attention mechanisms can enhance the receptive field, they cannot capture long-range feature dependencies. Directly applying self-attention mechanisms to capture long-range dependencies results in intolerable computational complexity. To address these challenges, we introduce a channel and spatial self-attention (CS) Module designed for efficiently capturing both channel and spatial long-range feature dependencies in pancreatic cancer pathological images. Specifically, the channel and spatial self-attention module consists of an adaptive channel self-attention module and a window-shift spatial self-attention module. The adaptive channel self-attention module adaptively pools features to a fixed size to capture long-range feature dependencies. While the window-shift spatial self-attention module captures spatial long-range dependencies in a window-based manner. Additionally, we propose a re-weighted cross-entropy loss to mitigate the impact of long-tail distribution on performance. Our proposed method surpasses state-of-the-art on both our Pancreatic Cancer Pathology Image (PCPI) dataset and the GlaS challenge dataset. The mDice and mIoU have achieved 73.93% and 59.42% in our PCPI dataset.
Based on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes. However, compared to traditional image segmentation tasks, the large size of tissues in pathology images requires a larger receptive field. While methods based on dilated convolutions or attention mechanisms can enhance the receptive field, they cannot capture long-range feature dependencies. Directly applying self-attention mechanisms to capture long-range dependencies results in intolerable computational complexity. To address these challenges, we introduce a channel and spatial self-attention (CS) Module designed for efficiently capturing both channel and spatial long-range feature dependencies in pancreatic cancer pathological images. Specifically, the channel and spatial self-attention module consists of an adaptive channel self-attention module and a window-shift spatial self-attention module. The adaptive channel self-attention module adaptively pools features to a fixed size to capture long-range feature dependencies. While the window-shift spatial self-attention module captures spatial long-range dependencies in a window-based manner. Additionally, we propose a re-weighted cross-entropy loss to mitigate the impact of long-tail distribution on performance. Our proposed method surpasses state-of-the-art on both our Pancreatic Cancer Pathology Image (PCPI) dataset and the GlaS challenge dataset. The mDice and mIoU have achieved 73.93% and 59.42% in our PCPI dataset. •Presenting introduce a channel and spatial self-attention module to efficiently captures long-range dependencies.•Presenting a re-weighted cross-entropy loss function that balances the learning of various tissue categories.•Collecting and annotating a dataset of pancreatic cancer pathology images. On this dataset, our method achieves state-of-the-art performance.
Based on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes. However, compared to traditional image segmentation tasks, the large size of tissues in pathology images requires a larger receptive field. While methods based on dilated convolutions or attention mechanisms can enhance the receptive field, they cannot capture long-range feature dependencies. Directly applying self-attention mechanisms to capture long-range dependencies results in intolerable computational complexity. To address these challenges, we introduce a channel and spatial self-attention (CS) Module designed for efficiently capturing both channel and spatial long-range feature dependencies in pancreatic cancer pathological images. Specifically, the channel and spatial self-attention module consists of an adaptive channel self-attention module and a window-shift spatial self-attention module. The adaptive channel self-attention module adaptively pools features to a fixed size to capture long-range feature dependencies. While the window-shift spatial self-attention module captures spatial long-range dependencies in a window-based manner. Additionally, we propose a re-weighted cross-entropy loss to mitigate the impact of long-tail distribution on performance. Our proposed method surpasses state-of-the-art on both our Pancreatic Cancer Pathology Image (PCPI) dataset and the GlaS challenge dataset. The mDice and mIoU have achieved 73.93% and 59.42% in our PCPI dataset.
Based on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes. However, compared to traditional image segmentation tasks, the large size of tissues in pathology images requires a larger receptive field. While methods based on dilated convolutions or attention mechanisms can enhance the receptive field, they cannot capture long-range feature dependencies. Directly applying self-attention mechanisms to capture long-range dependencies results in intolerable computational complexity. To address these challenges, we introduce a channel and spatial self-attention (CS) Module designed for efficiently capturing both channel and spatial long-range feature dependencies in pancreatic cancer pathological images. Specifically, the channel and spatial self-attention module consists of an adaptive channel self-attention module and a window-shift spatial self-attention module. The adaptive channel self-attention module adaptively pools features to a fixed size to capture long-range feature dependencies. While the window-shift spatial self-attention module captures spatial long-range dependencies in a window-based manner. Additionally, we propose a re-weighted cross-entropy loss to mitigate the impact of long-tail distribution on performance. Our proposed method surpasses state-of-the-art on both our Pancreatic Cancer Pathology Image (PCPI) dataset and the GlaS challenge dataset. The mDice and mIoU have achieved 73.93% and 59.42% in our PCPI dataset.Based on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes. However, compared to traditional image segmentation tasks, the large size of tissues in pathology images requires a larger receptive field. While methods based on dilated convolutions or attention mechanisms can enhance the receptive field, they cannot capture long-range feature dependencies. Directly applying self-attention mechanisms to capture long-range dependencies results in intolerable computational complexity. To address these challenges, we introduce a channel and spatial self-attention (CS) Module designed for efficiently capturing both channel and spatial long-range feature dependencies in pancreatic cancer pathological images. Specifically, the channel and spatial self-attention module consists of an adaptive channel self-attention module and a window-shift spatial self-attention module. The adaptive channel self-attention module adaptively pools features to a fixed size to capture long-range feature dependencies. While the window-shift spatial self-attention module captures spatial long-range dependencies in a window-based manner. Additionally, we propose a re-weighted cross-entropy loss to mitigate the impact of long-tail distribution on performance. Our proposed method surpasses state-of-the-art on both our Pancreatic Cancer Pathology Image (PCPI) dataset and the GlaS challenge dataset. The mDice and mIoU have achieved 73.93% and 59.42% in our PCPI dataset.
ArticleNumber 107844
Author Zhang, Guodao
Yu, Wenyao
Chen, Zhao-Min
Zhou, Xingjian
Ke, Tan
Shi, Keqing
Liao, Yifan
Ge, Yisu
Author_xml – sequence: 1
  givenname: Zhao-Min
  orcidid: 0000-0001-8955-1789
  surname: Chen
  fullname: Chen, Zhao-Min
  email: chenzhaomin123@gmail.com
  organization: Zhejiang Key Laboratory of Intelligent Informatics for Safety & Emergency, Wenzhou University, Wenzhou, 325035, China
– sequence: 2
  givenname: Yifan
  surname: Liao
  fullname: Liao, Yifan
  email: liaoyifan156@gmail.com
  organization: The College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China
– sequence: 3
  givenname: Xingjian
  orcidid: 0000-0001-5463-893X
  surname: Zhou
  fullname: Zhou, Xingjian
  email: zxj18758696329@163.com
  organization: Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
– sequence: 4
  givenname: Wenyao
  orcidid: 0009-0001-8970-3997
  surname: Yu
  fullname: Yu, Wenyao
  email: wzyuwenyao@gmail.com
  organization: Department of Mathematics, University of California, San Diego, California, 92093, USA
– sequence: 5
  givenname: Guodao
  surname: Zhang
  fullname: Zhang, Guodao
  email: guodaozhang@hdu.edu.cn
  organization: Institute of Intelligent Media Computing, Hangzhou Dianzi University, Hangzhou, 310018, China
– sequence: 6
  givenname: Yisu
  surname: Ge
  fullname: Ge, Yisu
  email: 594yisuge@gmail.com
  organization: Zhejiang Key Laboratory of Intelligent Informatics for Safety & Emergency, Wenzhou University, Wenzhou, 325035, China
– sequence: 7
  givenname: Tan
  surname: Ke
  fullname: Ke, Tan
  email: tanke123@sina.com
  organization: Educational Technology Center, The PLA General Hospital, Beijing, 100853, China
– sequence: 8
  givenname: Keqing
  surname: Shi
  fullname: Shi, Keqing
  email: skochilly@wmu.edu.cn
  organization: Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38103482$$D View this record in MEDLINE/PubMed
BookMark eNqVkl9rFDEUxYNU7Lb6FSTgiy-z3iTz90XUYlUoKKjPIZPc2c2aSdZkVtlv3wxTVygI9SUJye8eDufkgpz54JEQymDNgNWvdmsdxn1vw4hmzYGLfN20ZfmIrFjbdAVUojwjKwAGRdny6pxcpLQDgBIEPCHnomUg8sOKyC_K64hqsprqfMRI92raBhc2R2pHtUGacDOinzISPP1tpy3VW-U9Oqq8oSnjVjnqgt8UUfk8YHCP3qDXFtNT8nhQLuGzu_2SfL9-_-3qY3Hz-cOnq7c3ha5YORUNasYNtjw7rJpW606X2Bjsq06BULpXTTvkte-NqbseGGNDx0vDGygHhYO4JC8X3X0MPw-YJjnapNE55TEckuQdCMFrUdUZfXEP3YVD9NldpjjUrOyamXp-Rx36nLLcx5xGPMo_0WWgXQAdQ0oRhxPCQM4tyZ3825KcW5JLS3n09b1RbZd8p6ise4jAu0UAc6S_LEaZcti5PWMj6kmaYP_DxUlEO-utVu4HHjGdQmEycQny6_yb5s_EBTAB3Szw5t8CD_NwC7Q44Fw
CitedBy_id crossref_primary_10_1007_s11760_024_03100_9
crossref_primary_10_1016_j_bspc_2025_107696
crossref_primary_10_1016_j_compbiomed_2024_108184
crossref_primary_10_1016_j_eswa_2024_126125
crossref_primary_10_1142_S0218126625500264
crossref_primary_10_3390_s24144749
crossref_primary_10_1016_j_compbiomed_2024_108624
Cites_doi 10.1109/CVPR.2019.00326
10.1109/LGRS.2018.2802944
10.1109/TIP.2020.3042065
10.1109/TMI.2018.2865709
10.1609/aaai.v36i3.20144
10.1109/CVPR.2018.00745
10.1109/TPAMI.2017.2699184
10.1016/j.compbiomed.2023.107378
10.1109/TMI.2019.2959609
10.2214/ajr.183.4.1831149
10.1038/nature14539
10.1016/j.compbiomed.2022.105365
10.1007/s11042-021-10536-5
10.1016/j.media.2016.08.008
10.1016/j.patcog.2020.107404
10.1016/j.compbiomed.2022.106411
10.1109/CVPR.2016.90
10.1109/ICCV48922.2021.00986
10.1109/CVPR52688.2022.00135
10.1109/ICCV.2019.00069
10.1109/CVPR.2017.660
10.1016/j.cca.2018.06.020
10.1186/s12935-019-0743-z
10.1016/j.compbiomed.2022.106228
10.1109/CVPR.2017.106
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
2023. Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
– notice: 2023. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
NAPCQ
P64
7X8
DOI 10.1016/j.compbiomed.2023.107844
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
ProQuest Nursing and Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
ProQuest Computer Science Collection
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Nursing & Allied Health Premium

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 107844
ExternalDocumentID 38103482
10_1016_j_compbiomed_2023_107844
S0010482523013094
1_s2_0_S0010482523013094
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
AAYXX
CITATION
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
JQ2
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c514t-7ec12de82040578cc9c4e7deb59a03acba78fcbabbdd69b0111f924d2704faef3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Thu Oct 02 06:55:39 EDT 2025
Tue Oct 07 06:33:18 EDT 2025
Wed Feb 19 02:02:37 EST 2025
Wed Oct 01 04:08:02 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Sat Jul 13 15:30:54 EDT 2024
Tue Feb 25 20:12:00 EST 2025
Tue Oct 14 19:33:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Channel and spatial self-attention
Long-tailed distribution
Window shift
Pancreatic cancer pathology image segmentation
Long-range dependencies
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-7ec12de82040578cc9c4e7deb59a03acba78fcbabbdd69b0111f924d2704faef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8955-1789
0000-0001-5463-893X
0009-0001-8970-3997
PMID 38103482
PQID 2920614976
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2903326356
proquest_journals_2920614976
pubmed_primary_38103482
crossref_primary_10_1016_j_compbiomed_2023_107844
crossref_citationtrail_10_1016_j_compbiomed_2023_107844
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107844
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523013094
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107844
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References LeCun, Bengio, Hinton (b4) 2015; 521
Chen, Zhang, He, Qiao, Chen, Shi, Wu, Tang (b11) 2019
Hossen, Islam, Reza, Kibria, Horaira, Tuly, Faruqe, Kabir, Mollah (b7) 2023; 152
Zhou, Rahman Siddiquee, Tajbakhsh, Liang (b12) 2018
Valanarasu, Oza, Hacihaliloglu, Patel (b42) 2021
Zhou, Siddiquee, Tajbakhsh, Liang (b40) 2019; 39
H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: IEEE Conf. Comput. Vis. Pattern Recog., 2017, pp. 2881–2890.
Qin, Zhang, Huang, Dehghan, Zaiane, Jagersand (b20) 2020; 106
B. Cheng, I. Misra, A.G. Schwing, A. Kirillov, R. Girdhar, Masked-attention mask transformer for universal image segmentation, in: IEEE Conf. Comput. Vis. Pattern Recog., 2022, pp. 1290–1299.
Wang, Li, Zhuang (b28) 2021
H. Wang, P. Cao, J. Wang, O.R. Zaiane, Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer, in: Proc. AAAI Conf. Artif. Intell., 2022, pp. 2441–2449.
Gao, Jiang, Zhou, Yang, Chen, Zhu, Shi, Chen, Zheng, Bian (b5) 2022; 151
Christ, Elshaer, Ettlinger, Tatavarty, Bickel, Bilic, Rempfler, Armbruster, Hofmann, D’Anastasi (b10) 2016
Chan, Huang, Bai, Ding, Chen (b8) 2022; 81
J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, Dual attention network for scene segmentation, in: IEEE Conf. Comput. Vis. Pattern Recog., 2019, pp. 3146–3154.
J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
Ronneberger, Fischer, Brox (b9) 2015
Zhang, Liu, Wang (b16) 2018; 15
Yu, Koltun (b27) 2015
Soler, Hostettler, Agnus, Charnoz, Fasquel, Moreau, Osswald, Bouhadjar, Marescaux (b15) 2010
Cao, Wang, Chen, Jiang, Zhang, Tian, Wang (b43) 2022
Cai, Shi, Li, Chen, Shi, Johnson, Lai, Toyoda, Zhou (b2) 2018; 485
Contributors (b32) 2020
Chen, Lu, Yu, Luo, Adeli, Wang, Lu, Yuille, Zhou (b41) 2021
Zhou, Onder, Dou, Tsougenis, Chen, Heng (b23) 2019
Jha, Smedsrud, Riegler, Johansen, De Lange, Halvorsen, Johansen (b17) 2019
Schnurr, Schad, Zöllner (b13) 2019
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp. 770–778.
Sardanelli, Giuseppetti, Panizza, Bazzocchi, Fausto, Simonetti, Lattanzio, Del Maschio (b3) 2004; 183
Wu, Tang, Zhang, Cao, Zhang (b21) 2020; 30
T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: IEEE Conf. Comput. Vis. Pattern Recog., 2017, pp. 2117–2125.
Ronneberger, Fischer, Brox (b36) 2015
Chen, Papandreou, Kokkinos, Murphy, Yuille (b37) 2017; 40
Dong, Ying, Shi (b1) 2019; 19
Naylor, Laé, Reyal, Walter (b22) 2018; 38
Sirinukunwattana, Pluim, Chen, Qi, Heng, Guo, Wang, Matuszewski, Bruni, Sanchez, Böhm, Ronneberger, Cheikh, Racoceanu, Kainz, Pfeiffer, Urschler, Snead, Rajpoot (b31) 2017; 35
Paul, Azhar, Das, Bairagi, Chatterjee (b6) 2022; 144
Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, W. Liu, Ccnet: Criss-cross attention for semantic segmentation, in: Int. Conf. Comput. Vis., 2019, pp. 603–612.
Contributors (b14) 2017
Imtiaz, Fattah, Kung (b24) 2023; 165
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Int. Conf. Comput. Vis., 2021, pp. 10012–10022.
Pan, Chen, Shi (b34) 2023
Chen, Papandreou, Schroff, Adam (b19) 2017
Macenko, Niethammer, Marron, Borland, Woosley, Guan, Schmitt, Thomas (b30) 2009
Schnurr (10.1016/j.compbiomed.2023.107844_b13) 2019
Contributors (10.1016/j.compbiomed.2023.107844_b14) 2017
10.1016/j.compbiomed.2023.107844_b33
Chen (10.1016/j.compbiomed.2023.107844_b19) 2017
Qin (10.1016/j.compbiomed.2023.107844_b20) 2020; 106
Ronneberger (10.1016/j.compbiomed.2023.107844_b9) 2015
Valanarasu (10.1016/j.compbiomed.2023.107844_b42) 2021
Wu (10.1016/j.compbiomed.2023.107844_b21) 2020; 30
Zhou (10.1016/j.compbiomed.2023.107844_b40) 2019; 39
Chan (10.1016/j.compbiomed.2023.107844_b8) 2022; 81
10.1016/j.compbiomed.2023.107844_b39
10.1016/j.compbiomed.2023.107844_b38
10.1016/j.compbiomed.2023.107844_b18
LeCun (10.1016/j.compbiomed.2023.107844_b4) 2015; 521
10.1016/j.compbiomed.2023.107844_b35
Jha (10.1016/j.compbiomed.2023.107844_b17) 2019
Pan (10.1016/j.compbiomed.2023.107844_b34) 2023
Zhang (10.1016/j.compbiomed.2023.107844_b16) 2018; 15
Paul (10.1016/j.compbiomed.2023.107844_b6) 2022; 144
Imtiaz (10.1016/j.compbiomed.2023.107844_b24) 2023; 165
Dong (10.1016/j.compbiomed.2023.107844_b1) 2019; 19
Cai (10.1016/j.compbiomed.2023.107844_b2) 2018; 485
Zhou (10.1016/j.compbiomed.2023.107844_b12) 2018
Ronneberger (10.1016/j.compbiomed.2023.107844_b36) 2015
Sardanelli (10.1016/j.compbiomed.2023.107844_b3) 2004; 183
Soler (10.1016/j.compbiomed.2023.107844_b15) 2010
10.1016/j.compbiomed.2023.107844_b44
Contributors (10.1016/j.compbiomed.2023.107844_b32) 2020
Hossen (10.1016/j.compbiomed.2023.107844_b7) 2023; 152
Zhou (10.1016/j.compbiomed.2023.107844_b23) 2019
Wang (10.1016/j.compbiomed.2023.107844_b28) 2021
Gao (10.1016/j.compbiomed.2023.107844_b5) 2022; 151
Chen (10.1016/j.compbiomed.2023.107844_b37) 2017; 40
Cao (10.1016/j.compbiomed.2023.107844_b43) 2022
Chen (10.1016/j.compbiomed.2023.107844_b11) 2019
10.1016/j.compbiomed.2023.107844_b29
Sirinukunwattana (10.1016/j.compbiomed.2023.107844_b31) 2017; 35
10.1016/j.compbiomed.2023.107844_b26
10.1016/j.compbiomed.2023.107844_b25
Christ (10.1016/j.compbiomed.2023.107844_b10) 2016
Yu (10.1016/j.compbiomed.2023.107844_b27) 2015
Chen (10.1016/j.compbiomed.2023.107844_b41) 2021
Macenko (10.1016/j.compbiomed.2023.107844_b30) 2009
Naylor (10.1016/j.compbiomed.2023.107844_b22) 2018; 38
References_xml – volume: 106
  year: 2020
  ident: b20
  article-title: U2-net: Going deeper with nested U-structure for salient object detection
  publication-title: Pattern Recognit.
– year: 2020
  ident: b32
  article-title: MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark
– year: 2017
  ident: b14
  article-title: LiTS:liver tumor segmentation challenge
– start-page: 1107
  year: 2009
  end-page: 1110
  ident: b30
  article-title: A method for normalizing histology slides for quantitative analysis
  publication-title: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro
– volume: 152
  year: 2023
  ident: b7
  article-title: Robust identification of common genomic biomarkers from multiple gene expression profiles for the prognosis, diagnosis, and therapies of pancreatic cancer
  publication-title: Comput. Biol. Med.
– year: 2021
  ident: b41
  article-title: Transunet: Transformers make strong encoders for medical image segmentation
– year: 2023
  ident: b34
  article-title: Masked diffusion as self-supervised representation learner
– reference: T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in: IEEE Conf. Comput. Vis. Pattern Recog., 2017, pp. 2117–2125.
– volume: 19
  start-page: 1
  year: 2019
  end-page: 11
  ident: b1
  article-title: Expression of the wnt ligands gene family and its relationship to prognosis in hepatocellular carcinoma
  publication-title: Cancer Cell Int.
– start-page: 205
  year: 2022
  end-page: 218
  ident: b43
  article-title: Swin-unet: Unet-like pure transformer for medical image segmentation
  publication-title: Eur. Conf. Comput. Vis.
– volume: 485
  start-page: 187
  year: 2018
  end-page: 194
  ident: b2
  article-title: A nomogram integrating hepatic reserve and tumor characteristics for hepatocellular carcinoma following curative liver resection
  publication-title: Clin. Chim. Acta
– volume: 15
  start-page: 749
  year: 2018
  end-page: 753
  ident: b16
  article-title: Road extraction by deep residual u-net
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 40
  start-page: 834
  year: 2017
  end-page: 848
  ident: b37
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
– start-page: 1
  year: 2019
  end-page: 7
  ident: b11
  article-title: Prostate segmentation using 2D bridged U-net
  publication-title: 2019 International Joint Conference on Neural Networks (IJCNN)
– volume: 144
  year: 2022
  ident: b6
  article-title: Elucidating the metabolic characteristics of pancreatic
  publication-title: Comput. Biol. Med.
– volume: 165
  year: 2023
  ident: b24
  article-title: BAWGNet: Boundary aware wavelet guided network for the nuclei segmentation in histopathology images
  publication-title: Comput. Biol. Med.
– volume: 81
  start-page: 13275
  year: 2022
  end-page: 13288
  ident: b8
  article-title: Res2-unext: a novel deep learning framework for few-shot cell image segmentation
  publication-title: Multimedia Tools Appl.
– volume: 151
  year: 2022
  ident: b5
  article-title: Automatic multi-tissue segmentation in pancreatic pathological images with selected multi-scale attention network
  publication-title: Comput. Biol. Med.
– start-page: 36
  year: 2021
  end-page: 46
  ident: b42
  article-title: Medical transformer: Gated axial-attention for medical image segmentation
  publication-title: MICCAI
– volume: 30
  start-page: 1169
  year: 2020
  end-page: 1179
  ident: b21
  article-title: Cgnet: A light-weight context guided network for semantic segmentation
  publication-title: IEEE Trans. Image Process.
– start-page: 3
  year: 2018
  end-page: 11
  ident: b12
  article-title: Unet++: A nested u-net architecture for medical image segmentation
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp. 770–778.
– start-page: 80
  year: 2019
  end-page: 85
  ident: b13
  article-title: Sparsely connected convolutional layers in CNNs for liver segmentation in CT
  publication-title: Bildverarbeitung Für Die Medizin 2019: Algorithmen–Systeme–Anwendungen. Proceedings Des Workshops Vom 17. Bis 19. März 2019 in Lübeck
– volume: 39
  start-page: 1856
  year: 2019
  end-page: 1867
  ident: b40
  article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans. Med. Imaging
– start-page: 234
  year: 2015
  end-page: 241
  ident: b36
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 225
  year: 2019
  end-page: 2255
  ident: b17
  article-title: Resunet++: An advanced architecture for medical image segmentation
  publication-title: 2019 IEEE International Symposium on Multimedia (ISM)
– volume: 35
  start-page: 489
  year: 2017
  end-page: 502
  ident: b31
  article-title: Gland segmentation in colon histology images: The glas challenge contest
  publication-title: Med. Image Anal.
– reference: H. Wang, P. Cao, J. Wang, O.R. Zaiane, Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer, in: Proc. AAAI Conf. Artif. Intell., 2022, pp. 2441–2449.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b4
  article-title: Deep learning
  publication-title: Nature
– volume: 183
  start-page: 1149
  year: 2004
  end-page: 1157
  ident: b3
  article-title: Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in fatty and dense breasts using the whole-breast pathologic examination as a gold standard
  publication-title: Amer. J. Roentgenol.
– year: 2010
  ident: b15
  article-title: 3D image reconstruction for comparison of algorithm database
– reference: Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin transformer: Hierarchical vision transformer using shifted windows, in: Int. Conf. Comput. Vis., 2021, pp. 10012–10022.
– start-page: 234
  year: 2015
  end-page: 241
  ident: b9
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18
– start-page: 415
  year: 2016
  end-page: 423
  ident: b10
  article-title: Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19
– reference: B. Cheng, I. Misra, A.G. Schwing, A. Kirillov, R. Girdhar, Masked-attention mask transformer for universal image segmentation, in: IEEE Conf. Comput. Vis. Pattern Recog., 2022, pp. 1290–1299.
– reference: H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid scene parsing network, in: IEEE Conf. Comput. Vis. Pattern Recog., 2017, pp. 2881–2890.
– volume: 38
  start-page: 448
  year: 2018
  end-page: 459
  ident: b22
  article-title: Segmentation of nuclei in histopathology images by deep regression of the distance map
  publication-title: IEEE Trans. Med. Imaging
– reference: Z. Huang, X. Wang, L. Huang, C. Huang, Y. Wei, W. Liu, Ccnet: Criss-cross attention for semantic segmentation, in: Int. Conf. Comput. Vis., 2019, pp. 603–612.
– year: 2017
  ident: b19
  article-title: Rethinking atrous convolution for semantic image segmentation
– start-page: 682
  year: 2019
  end-page: 693
  ident: b23
  article-title: Cia-net: Robust nuclei instance segmentation with contour-aware information aggregation
  publication-title: Information Processing in Medical Imaging: 26th International Conference, IPMI 2019, Hong Kong, China, June 2–7, 2019, Proceedings 26
– year: 2015
  ident: b27
  article-title: Multi-scale context aggregation by dilated convolutions
– reference: J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, H. Lu, Dual attention network for scene segmentation, in: IEEE Conf. Comput. Vis. Pattern Recog., 2019, pp. 3146–3154.
– start-page: 302
  year: 2021
  end-page: 311
  ident: b28
  article-title: Attu-net: attention U-net for brain tumor segmentation
  publication-title: MICCAI Workshop
– ident: 10.1016/j.compbiomed.2023.107844_b26
  doi: 10.1109/CVPR.2019.00326
– volume: 15
  start-page: 749
  issue: 5
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107844_b16
  article-title: Road extraction by deep residual u-net
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2802944
– volume: 30
  start-page: 1169
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107844_b21
  article-title: Cgnet: A light-weight context guided network for semantic segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3042065
– year: 2017
  ident: 10.1016/j.compbiomed.2023.107844_b14
– start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107844_b11
  article-title: Prostate segmentation using 2D bridged U-net
– volume: 38
  start-page: 448
  issue: 2
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107844_b22
  article-title: Segmentation of nuclei in histopathology images by deep regression of the distance map
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2865709
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107844_b32
– ident: 10.1016/j.compbiomed.2023.107844_b44
  doi: 10.1609/aaai.v36i3.20144
– ident: 10.1016/j.compbiomed.2023.107844_b18
  doi: 10.1109/CVPR.2018.00745
– volume: 40
  start-page: 834
  issue: 4
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107844_b37
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: 165
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107844_b24
  article-title: BAWGNet: Boundary aware wavelet guided network for the nuclei segmentation in histopathology images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.107378
– year: 2017
  ident: 10.1016/j.compbiomed.2023.107844_b19
– start-page: 1107
  year: 2009
  ident: 10.1016/j.compbiomed.2023.107844_b30
  article-title: A method for normalizing histology slides for quantitative analysis
– volume: 39
  start-page: 1856
  issue: 6
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107844_b40
  article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2959609
– start-page: 36
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107844_b42
  article-title: Medical transformer: Gated axial-attention for medical image segmentation
– volume: 183
  start-page: 1149
  issue: 4
  year: 2004
  ident: 10.1016/j.compbiomed.2023.107844_b3
  article-title: Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in fatty and dense breasts using the whole-breast pathologic examination as a gold standard
  publication-title: Amer. J. Roentgenol.
  doi: 10.2214/ajr.183.4.1831149
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107844_b4
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2010
  ident: 10.1016/j.compbiomed.2023.107844_b15
– volume: 144
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107844_b6
  article-title: Elucidating the metabolic characteristics of pancreatic β-cells from patients with type 2 diabetes (T2D) using a genome-scale metabolic modeling
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105365
– volume: 81
  start-page: 13275
  issue: 10
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107844_b8
  article-title: Res2-unext: a novel deep learning framework for few-shot cell image segmentation
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-021-10536-5
– volume: 35
  start-page: 489
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107844_b31
  article-title: Gland segmentation in colon histology images: The glas challenge contest
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.08.008
– volume: 106
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107844_b20
  article-title: U2-net: Going deeper with nested U-structure for salient object detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107404
– volume: 152
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107844_b7
  article-title: Robust identification of common genomic biomarkers from multiple gene expression profiles for the prognosis, diagnosis, and therapies of pancreatic cancer
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106411
– start-page: 682
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107844_b23
  article-title: Cia-net: Robust nuclei instance segmentation with contour-aware information aggregation
– ident: 10.1016/j.compbiomed.2023.107844_b25
  doi: 10.1109/CVPR.2016.90
– start-page: 234
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107844_b9
  article-title: U-net: Convolutional networks for biomedical image segmentation
– ident: 10.1016/j.compbiomed.2023.107844_b29
  doi: 10.1109/ICCV48922.2021.00986
– year: 2021
  ident: 10.1016/j.compbiomed.2023.107844_b41
– start-page: 302
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107844_b28
  article-title: Attu-net: attention U-net for brain tumor segmentation
– ident: 10.1016/j.compbiomed.2023.107844_b33
  doi: 10.1109/CVPR52688.2022.00135
– ident: 10.1016/j.compbiomed.2023.107844_b39
  doi: 10.1109/ICCV.2019.00069
– ident: 10.1016/j.compbiomed.2023.107844_b38
  doi: 10.1109/CVPR.2017.660
– start-page: 80
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107844_b13
  article-title: Sparsely connected convolutional layers in CNNs for liver segmentation in CT
– start-page: 234
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107844_b36
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 485
  start-page: 187
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107844_b2
  article-title: A nomogram integrating hepatic reserve and tumor characteristics for hepatocellular carcinoma following curative liver resection
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2018.06.020
– start-page: 3
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107844_b12
  article-title: Unet++: A nested u-net architecture for medical image segmentation
– year: 2023
  ident: 10.1016/j.compbiomed.2023.107844_b34
– start-page: 225
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107844_b17
  article-title: Resunet++: An advanced architecture for medical image segmentation
– year: 2015
  ident: 10.1016/j.compbiomed.2023.107844_b27
– start-page: 415
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107844_b10
  article-title: Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields
– start-page: 205
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107844_b43
  article-title: Swin-unet: Unet-like pure transformer for medical image segmentation
– volume: 19
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107844_b1
  article-title: Expression of the wnt ligands gene family and its relationship to prognosis in hepatocellular carcinoma
  publication-title: Cancer Cell Int.
  doi: 10.1186/s12935-019-0743-z
– volume: 151
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107844_b5
  article-title: Automatic multi-tissue segmentation in pancreatic pathological images with selected multi-scale attention network
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106228
– ident: 10.1016/j.compbiomed.2023.107844_b35
  doi: 10.1109/CVPR.2017.106
SSID ssj0004030
Score 2.4388757
Snippet Based on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment outcomes....
AbstractBased on deep learning, pancreatic cancer pathology image segmentation technology effectively assists pathologists in achieving improved treatment...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107844
SubjectTerms Cancer
Channel and spatial self-attention
Datasets
Deep learning
Entropy
Humans
Image processing
Image Processing, Computer-Assisted
Image segmentation
Internal Medicine
Long-range dependencies
Long-tailed distribution
Medical imaging
Modules
Other
Pancreatic cancer
Pancreatic cancer pathology image segmentation
Pancreatic Neoplasms
Pathology
Receptive field
Window shift
Title Pancreatic cancer pathology image segmentation with channel and spatial long-range dependencies
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523013094
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523013094
https://dx.doi.org/10.1016/j.compbiomed.2023.107844
https://www.ncbi.nlm.nih.gov/pubmed/38103482
https://www.proquest.com/docview/2920614976
https://www.proquest.com/docview/2903326356
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250901
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-QwEB_EA_FFvPNrPZUc-NrdfmSblnsScW_vjhUfFHwLSZrKytqV7frq3-5Mk3YRT1i4l0DTDCkzyeQ36XwAnKdFpJNSh3QHIAKeqjDQOlVBlhk9LNFg0YruOybX6fiO_7kf3m_AZRsLQ26VXvc7nd5oa98z8NwcPE-nFOOLpgQaOAiiURHnlBOUc0FVDPqvKzcPHiYuDAX1DY323jzOx4vctl2Ye5_KiGO3yDj_7Ij6DII2R9FoF3Y8hmQX7jO_woatvsHWxP8l3wN5g6JswKBhhqS6YFR4uLlAZ9Mn1CCstg9PPuqoYnQXyygCuLIzpqqC1eRmjTPM5tVDsKDwA9YWy0UW1ftwN7q6vRwHvpBCYBAPLQNhTRQXFg97gmeZMbnhVhRWD3MVJsqgPLISW62LIs01lZ8v0S4rYhHyUtkyOYDNal7ZI2BpggbUUMRxaFIuSq6iSCNoRPscRWviogei5Z00Pss4FbuYydad7FGuuC6J69JxvQdRR_nsMm2sQZO34pFtJCnqPonHwRq04l-0tvabuJaRrGMZyg8LrQc_O8p3a3XNeU_adSS7qahmGAIlxIY9-NG9xp1Ov29UZecvNCZMEsodhGMO3frrGEV52ihN0fF_fdp32MYn7pzST2BzuXixp4i5lvqs2VTYZqNfZ_Dl4vff8fUb5SItvQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BlQoXRN_Lq67UayAPJ07ECSHQ8ljUA0jcLNtxVouWLNosV347M7ETVLVIK3HJwfHI1ow9_saeB8DvrIx0UumQ7gBEwDMVBlpnKshzo9MKDRat6L5jdJ0Nb_nFXXq3AiddLAy5VXrd73R6q619y6Hn5uHjZEIxvmhKoIGDIBoVccFX4QNPY0EW2MHzq58HDxMXh4IKh7p7dx7n5EV-2y7O_YDqiGOzyDl_64x6C4O2Z9HZFmx6EMmO3Tw_wYqtP8PHkX8m_wLyD8qyRYOGGRLrnFHl4fYGnU0eUIWwxo4ffNhRzegyllEIcG2nTNUla8jPGkeYzupxMKf4A9ZVy0UeNV_h9uz05mQY-EoKgUFAtAiENVFcWjztCZ_lxhSGW1FanRYqTJRBgeQVfrUuy6zQVH--QsOsjEXIK2Wr5Bus1bPa_gCWJWhBpSKOQ5NxUXEVRRpRIxroKFsTlwMQHe-k8WnGqdrFVHb-ZPfyleuSuC4d1wcQ9ZSPLtXGEjRFJx7ZhZKi8pN4HixBK_5Haxu_ixsZySaWofxnpQ3gqKf8a7EuOe5ut45kPxQVDUOkhOBwAL_637jV6f1G1Xb2RH3CJKHkQdjnu1t_PaMoURvlKdp-19R-wvrwZnQlr86vL3dgA_9w56G-C2uL-ZPdQwC20PvtBnsBhzQubA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pancreatic+cancer+pathology+image+segmentation+with+channel+and+spatial+long-range+dependencies&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Chen%2C+Zhao-Min&rft.au=Liao%2C+Yifan&rft.au=Zhou%2C+Xingjian&rft.au=Yu%2C+Wenyao&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=169&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107844&rft.externalDocID=S0010482523013094
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif