CFD validation using in-vitro MRI velocity data – Methods for data matching and CFD error quantification
Predicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment planning but the solution can be inaccurate. Therefore, it is crucial to understand the simulation errors and calibrate the numerical model....
Saved in:
| Published in | Computers in biology and medicine Vol. 131; p. 104230 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.04.2021
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2021.104230 |
Cover
| Abstract | Predicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment planning but the solution can be inaccurate. Therefore, it is crucial to understand the simulation errors and calibrate the numerical model. In-vitro velocity-encoded MRI is a versatile tool to validate CFD. The comparison between CFD and in-vitro MRI velocity data, and the analysis of the simulation error are the objectives of this study. A three-step routine is presented to validate medical CFD data. First, a properly scaled model of the patient-specific geometry is fabricated to achieve high relative resolution in the MRI experiment. Second, the measured flow geometry is matched with the CFD data using one of two algorithms, Coherent Point Drift and Iterative Closest Point. The aligned data sets are then interpolated onto a common grid to enable a point-to-point comparison. Third, the global and local deviations between CFD and MRI velocity data are calculated using different algorithms to reliably estimate the simulation error. The routine is successfully tested with a patient-specific model of a cerebral aneurysm. In conclusion, the methods presented here provide a framework for CFD validation using in-vitro MRI velocity data.
[Display omitted]
•Framework for CFD validation with in-vitro 3D MRI velocity data.•Automatic alignment of numerical and experimental data via data matching.•Quantification and visualization of the CFD simulation error.•Minimal user input enables automated evaluation.•Demonstration of the process with a patient-specific cerebral aneurysm model. |
|---|---|
| AbstractList | Predicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment planning but the solution can be inaccurate. Therefore, it is crucial to understand the simulation errors and calibrate the numerical model. In-vitro velocity-encoded MRI is a versatile tool to validate CFD. The comparison between CFD and in-vitro MRI velocity data, and the analysis of the simulation error are the objectives of this study. A three-step routine is presented to validate medical CFD data. First, a properly scaled model of the patient-specific geometry is fabricated to achieve high relative resolution in the MRI experiment. Second, the measured flow geometry is matched with the CFD data using one of two algorithms, Coherent Point Drift and Iterative Closest Point. The aligned data sets are then interpolated onto a common grid to enable a point-to-point comparison. Third, the global and local deviations between CFD and MRI velocity data are calculated using different algorithms to reliably estimate the simulation error. The routine is successfully tested with a patient-specific model of a cerebral aneurysm. In conclusion, the methods presented here provide a framework for CFD validation using in-vitro MRI velocity data.
[Display omitted]
•Framework for CFD validation with in-vitro 3D MRI velocity data.•Automatic alignment of numerical and experimental data via data matching.•Quantification and visualization of the CFD simulation error.•Minimal user input enables automated evaluation.•Demonstration of the process with a patient-specific cerebral aneurysm model. Predicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment planning but the solution can be inaccurate. Therefore, it is crucial to understand the simulation errors and calibrate the numerical model. In-vitro velocity-encoded MRI is a versatile tool to validate CFD. The comparison between CFD and in-vitro MRI velocity data, and the analysis of the simulation error are the objectives of this study. A three-step routine is presented to validate medical CFD data. First, a properly scaled model of the patient-specific geometry is fabricated to achieve high relative resolution in the MRI experiment. Second, the measured flow geometry is matched with the CFD data using one of two algorithms, Coherent Point Drift and Iterative Closest Point. The aligned data sets are then interpolated onto a common grid to enable a point-to-point comparison. Third, the global and local deviations between CFD and MRI velocity data are calculated using different algorithms to reliably estimate the simulation error. The routine is successfully tested with a patient-specific model of a cerebral aneurysm. In conclusion, the methods presented here provide a framework for CFD validation using in-vitro MRI velocity data. AbstractPredicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment planning but the solution can be inaccurate. Therefore, it is crucial to understand the simulation errors and calibrate the numerical model. In-vitro velocity-encoded MRI is a versatile tool to validate CFD. The comparison between CFD and in-vitro MRI velocity data, and the analysis of the simulation error are the objectives of this study. A three-step routine is presented to validate medical CFD data. First, a properly scaled model of the patient-specific geometry is fabricated to achieve high relative resolution in the MRI experiment. Second, the measured flow geometry is matched with the CFD data using one of two algorithms, Coherent Point Drift and Iterative Closest Point. The aligned data sets are then interpolated onto a common grid to enable a point-to-point comparison. Third, the global and local deviations between CFD and MRI velocity data are calculated using different algorithms to reliably estimate the simulation error. The routine is successfully tested with a patient-specific model of a cerebral aneurysm. In conclusion, the methods presented here provide a framework for CFD validation using in-vitro MRI velocity data. Predicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment planning but the solution can be inaccurate. Therefore, it is crucial to understand the simulation errors and calibrate the numerical model. In-vitro velocity-encoded MRI is a versatile tool to validate CFD. The comparison between CFD and in-vitro MRI velocity data, and the analysis of the simulation error are the objectives of this study. A three-step routine is presented to validate medical CFD data. First, a properly scaled model of the patient-specific geometry is fabricated to achieve high relative resolution in the MRI experiment. Second, the measured flow geometry is matched with the CFD data using one of two algorithms, Coherent Point Drift and Iterative Closest Point. The aligned data sets are then interpolated onto a common grid to enable a point-to-point comparison. Third, the global and local deviations between CFD and MRI velocity data are calculated using different algorithms to reliably estimate the simulation error. The routine is successfully tested with a patient-specific model of a cerebral aneurysm. In conclusion, the methods presented here provide a framework for CFD validation using in-vitro MRI velocity data.Predicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment planning but the solution can be inaccurate. Therefore, it is crucial to understand the simulation errors and calibrate the numerical model. In-vitro velocity-encoded MRI is a versatile tool to validate CFD. The comparison between CFD and in-vitro MRI velocity data, and the analysis of the simulation error are the objectives of this study. A three-step routine is presented to validate medical CFD data. First, a properly scaled model of the patient-specific geometry is fabricated to achieve high relative resolution in the MRI experiment. Second, the measured flow geometry is matched with the CFD data using one of two algorithms, Coherent Point Drift and Iterative Closest Point. The aligned data sets are then interpolated onto a common grid to enable a point-to-point comparison. Third, the global and local deviations between CFD and MRI velocity data are calculated using different algorithms to reliably estimate the simulation error. The routine is successfully tested with a patient-specific model of a cerebral aneurysm. In conclusion, the methods presented here provide a framework for CFD validation using in-vitro MRI velocity data. |
| ArticleNumber | 104230 |
| Author | Wüstenhagen, Carolin Grundmann, Sven Bruschewski, Martin John, Kristine Langner, Sönke Brede, Martin |
| Author_xml | – sequence: 1 givenname: Carolin surname: Wüstenhagen fullname: Wüstenhagen, Carolin organization: Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, 18059, Rostock, Germany – sequence: 2 givenname: Kristine surname: John fullname: John, Kristine organization: Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, 18059, Rostock, Germany – sequence: 3 givenname: Sönke surname: Langner fullname: Langner, Sönke organization: Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, 18057, Rostock, Germany – sequence: 4 givenname: Martin surname: Brede fullname: Brede, Martin organization: Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, 18059, Rostock, Germany – sequence: 5 givenname: Sven orcidid: 0000-0003-3116-1918 surname: Grundmann fullname: Grundmann, Sven organization: Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, 18059, Rostock, Germany – sequence: 6 givenname: Martin orcidid: 0000-0003-0133-8348 surname: Bruschewski fullname: Bruschewski, Martin email: martin.bruschewski@uni-rostock.de organization: Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, 18059, Rostock, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33545507$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkl1rFDEUhoNU7If-BQl4482sJ5lkJnsj2tVqoUXwA7wLmcwZm3U22SYzC3vnf_Af-kvMdOsKBaFeDWSe83B433NMDnzwSAhlMGPAqhfLmQ2rdePCCtsZB87ys-AlPCBHTNXzAmQpDsgRAINCKC4PyXFKSwAQUMIjcliWUkgJ9RFZLs7e0I3pXWsGFzwdk_PfqPPFxg0x0MuP53SDfbBu2NKMGPrrx096icNVaBPtQtw9rsxgr6ZB41s6GTHG_O96NH5wnbM37sfkYWf6hE9uvyfky9nbz4v3xcWHd-eL1xeFlUwMRd1w1rSVVAYaJarSzMuaKVs2gtvaKtuhQpRto2zdVdBVFYoOpcRG1nOcWyxPyPOddx3D9Yhp0CuXLPa98RjGpLlQNauACZbRZ3fQZRijz9tpLoEpKWuoMvX0lhqbHLheR7cycav_pJgBtQNsDClF7PYIAz0Vppf6b2F6KkzvCsujL--M5qhv4hqicf19BKc7AeZINw6jTtaht9i6iHbQbXD_scVeYnvnc2_9d9xi2ofCdOIa9KfpsKa74izfFBdfs-DVvwX32-E3aF_i3g |
| CitedBy_id | crossref_primary_10_1109_TMI_2023_3251734 crossref_primary_10_1115_1_4055611 crossref_primary_10_1007_s00348_023_03666_z crossref_primary_10_3390_app11062595 crossref_primary_10_1002_mrm_29404 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123110 crossref_primary_10_1115_1_4062556 crossref_primary_10_1007_s10494_025_00636_9 crossref_primary_10_1063_5_0118097 crossref_primary_10_1177_1420326X231183082 crossref_primary_10_3390_bioengineering9070326 |
| Cites_doi | 10.1109/TPAMI.2010.46 10.1111/sms.12009 10.1002/jmri.23632 10.1007/s00380-017-0979-2 10.1002/nbm.4063 10.1007/s00380-013-0381-7 10.1371/journal.pone.0190696 10.1002/jmri.10243 10.1002/mrm.21861 10.1007/s00380-015-0680-2 10.1002/jmri.24051 10.1080/21681163.2017.1278619 10.1561/2300000035 10.1002/jmri.1880020517 10.1007/s00348-016-2163-3 10.1002/mrm.21331 10.1016/j.wneu.2016.01.031 10.1007/s10439-010-9978-5 10.1016/0262-8856(92)90066-C 10.1016/j.ejmp.2014.05.002 10.1016/j.ijforecast.2015.12.003 10.3390/s19051191 10.1136/neurintsurg-2018-013921 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. 2021. Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. – notice: 2021. Elsevier Ltd |
| DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2021.104230 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) ProQuest Nursing and Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 104230 |
| ExternalDocumentID | 33545507 10_1016_j_compbiomed_2021_104230 S001048252100024X 1_s2_0_S001048252100024X |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c514t-7b21bd658a0b8463a93718c3b42c7c8cfe8ee5db8c7f60f66e4fe55eb579e9ce3 |
| IEDL.DBID | BENPR |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Thu Oct 02 11:39:06 EDT 2025 Tue Oct 07 06:33:48 EDT 2025 Thu Apr 03 06:53:10 EDT 2025 Wed Oct 01 05:20:30 EDT 2025 Thu Apr 24 22:59:25 EDT 2025 Fri Feb 23 02:45:19 EST 2024 Tue Feb 25 20:03:25 EST 2025 Tue Oct 14 19:33:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Three-dimensional geometry matching Simulation error Reynolds similarity Computational fluid mechanics Magnetic resonance velocimetry three-dimensional geometry matching Keyterms: Computational Fluid Mechanics simulation error |
| Language | English |
| License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-7b21bd658a0b8463a93718c3b42c7c8cfe8ee5db8c7f60f66e4fe55eb579e9ce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0133-8348 0000-0003-3116-1918 |
| PMID | 33545507 |
| PQID | 2501855706 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2487160141 proquest_journals_2501855706 pubmed_primary_33545507 crossref_primary_10_1016_j_compbiomed_2021_104230 crossref_citationtrail_10_1016_j_compbiomed_2021_104230 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_104230 elsevier_clinicalkeyesjournals_1_s2_0_S001048252100024X elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_104230 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Papathanasopoulou, Zhao, Köhler, Robertson, Long, Hoskins, Xu, Marshall (bib14) 2003; 17 Qian, Liu, Itatani, Miyaji, Umezu (bib17) 2010; 38 Myronenko, Song (bib13) 2010; 32 Rutkowski, Reeder, Fernandez, Roldán-Alzate (bib19) 2018; 6 Kim, Kim (bib7) 2016; 32 Pomerleau, Colas, Siegwart (bib15) 2015; 4 Munarriz, Gómez, Paredes, Castaño-Leon, Cepeda, Lagares (bib12) 2016; 88 Van Ooij, Potters, Guédon, Schneiders, Marquering, Majoie, vanBavel, Nederveen (bib22) 2013; 38 Lyngeraa, Pedersen, Mantoni, Belhage, Rasmussen, van Lieshout, Pott (bib9) 2013; 23 Koyama, Kitamura, Itatani, Yamamoto, Miyazaki, Oka, Nakashima, Horai, Ono, Miyaji (bib8) 2016; 31 Roloff, Stucht, Beuing, Berg (bib18) 2019; 11 Markl, Frydrychowicz, Kozerke, Hope, Wieben (bib10) 2012; 36 Bernstein, Shimakawa, Pelc (bib1) 1992; 2 Puiseux, Sewonu, Meyrignac, Rousseau, Nicoud, Mendez, Moreno (bib16) 2019; 32 Zhu, Guo, Zou, Li, Yuen, Mihaylova, Leung (bib23) 2019; 19 Bruschewski, Freudenhammer, Buchenberg, Schiffer, Grundmann (bib3) 2016; 57 Chen, Medioni (bib5) 1991; 10 Canstein, Cachot, Faust, Stalder, Bock, Frydrychowicz, Küffer, Hennig, Markl (bib4) 2008; 59 Den Dekker, Sijbers (bib6) 2014; 30 Sughimoto, Takahara, Mogi, Yamazaki, Tsubota, Liang, Liu (bib21) 2014; 29 Sindeev, Arnold, Frolov, Prothmann, Liepsch, Balasso, Berg, Kaczmarz, Kirschke (bib20) 2018; 13 Boussel, Rayz, Martin, Acevedo-Bolton, Lawton, Higashida, Smith, Young, Saloner (bib2) 2009; 61 Miyazaki, Itatani, Furusawa, Nishino, Sugiyama, Takehara, Yasukochi (bib11) 2017; 32 Canstein (10.1016/j.compbiomed.2021.104230_bib4) 2008; 59 Lyngeraa (10.1016/j.compbiomed.2021.104230_bib9) 2013; 23 Bernstein (10.1016/j.compbiomed.2021.104230_bib1) 1992; 2 Den Dekker (10.1016/j.compbiomed.2021.104230_bib6) 2014; 30 Boussel (10.1016/j.compbiomed.2021.104230_bib2) 2009; 61 Munarriz (10.1016/j.compbiomed.2021.104230_bib12) 2016; 88 Pomerleau (10.1016/j.compbiomed.2021.104230_bib15) 2015; 4 Sughimoto (10.1016/j.compbiomed.2021.104230_bib21) 2014; 29 Papathanasopoulou (10.1016/j.compbiomed.2021.104230_bib14) 2003; 17 Kim (10.1016/j.compbiomed.2021.104230_bib7) 2016; 32 Myronenko (10.1016/j.compbiomed.2021.104230_bib13) 2010; 32 Zhu (10.1016/j.compbiomed.2021.104230_bib23) 2019; 19 Puiseux (10.1016/j.compbiomed.2021.104230_bib16) 2019; 32 Markl (10.1016/j.compbiomed.2021.104230_bib10) 2012; 36 Rutkowski (10.1016/j.compbiomed.2021.104230_bib19) 2018; 6 Chen (10.1016/j.compbiomed.2021.104230_bib5) 1991; 10 Roloff (10.1016/j.compbiomed.2021.104230_bib18) 2019; 11 Van Ooij (10.1016/j.compbiomed.2021.104230_bib22) 2013; 38 Bruschewski (10.1016/j.compbiomed.2021.104230_bib3) 2016; 57 Koyama (10.1016/j.compbiomed.2021.104230_bib8) 2016; 31 Sindeev (10.1016/j.compbiomed.2021.104230_bib20) 2018; 13 Miyazaki (10.1016/j.compbiomed.2021.104230_bib11) 2017; 32 Qian (10.1016/j.compbiomed.2021.104230_bib17) 2010; 38 |
| References_xml | – volume: 57 start-page: 83 year: 2016 ident: bib3 article-title: Estimation of the measurement uncertainty in magnetic resonance velocimetry based on statistical models publication-title: Exp. Fluid – volume: 4 start-page: 1 year: 2015 end-page: 104 ident: bib15 article-title: A review of point cloud registration algorithms for mobile robotics publication-title: Foundations and Trends in Robotics. Now Publishers – volume: 13 year: 2018 ident: bib20 article-title: Phase-contrast MRI versus numerical simulation to quantify hemodynamical changes in cerebral aneurysms after flow diverter treatment publication-title: PloS One – volume: 30 start-page: 725 year: 2014 end-page: 741 ident: bib6 article-title: Data distributions in magnetic resonance images: a review publication-title: Phys. Med. – volume: 36 start-page: 1015 year: 2012 end-page: 1036 ident: bib10 article-title: 4D flow MRI publication-title: J. Magn. Reson. Imag. – volume: 38 start-page: 2302 year: 2010 end-page: 2313 ident: bib17 article-title: Computational hemodynamic analysis in congenital heart disease: simulation of the Norwood procedure publication-title: Ann. Biomed. Eng. – volume: 61 start-page: 409 year: 2009 end-page: 417 ident: bib2 article-title: Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics publication-title: Magn. Reson. Med. – volume: 88 start-page: 311 year: 2016 end-page: 319 ident: bib12 article-title: Basic principles of hemodynamics and cerebral aneurysms publication-title: World Neurosurg – volume: 38 start-page: 876 year: 2013 end-page: 888 ident: bib22 article-title: Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm publication-title: J. Magn. Reson. Imag. – volume: 11 start-page: 275 year: 2019 end-page: 282 ident: bib18 article-title: Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD publication-title: J NeuroIntervent Surg – volume: 6 start-page: 545 year: 2018 end-page: 555 ident: bib19 article-title: Surgical planning for living donor liver transplant using 4D flow MRI, computational fluid dynamics and in vitro experiments publication-title: Comput Methods Biomech Biomed Eng Imaging Vis – volume: 19 start-page: 1191 year: 2019 ident: bib23 article-title: A review of point set registration: from pairwise registration to groupwise registration publication-title: Sensors – volume: 59 start-page: 535 year: 2008 end-page: 546 ident: bib4 article-title: 3D MR flow analysis in realistic rapid‐prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries publication-title: Magn. Reson. Med. – volume: 23 start-page: e32 year: 2013 end-page: e37 ident: bib9 article-title: Middle cerebral artery blood velocity during running publication-title: Scand. J. Med. Sci. Sports – volume: 32 year: 2019 ident: bib16 article-title: Reconciling PC‐MRI and CFD: an in‐vitro study publication-title: NMR Biomed. – volume: 10 start-page: 145 year: 1991 end-page: 155 ident: bib5 article-title: Object modeling by registration of multiple range images publication-title: Image Vis Comput. – volume: 2 start-page: 583 year: 1992 end-page: 588 ident: bib1 article-title: Minimizing TE in moment‐nulled or flow‐encoded two‐and three‐dimensional gradient‐echo imaging publication-title: J. Magn. Reson. Imag. – volume: 32 start-page: 2262 year: 2010 end-page: 2275 ident: bib13 article-title: Point set registration: coherent point drift publication-title: IEEE PAMI – volume: 32 start-page: 669 year: 2016 end-page: 679 ident: bib7 article-title: A new metric of absolute percentage error for intermittent demand forecasts publication-title: Int. J. Forecast. – volume: 31 start-page: 643 year: 2016 end-page: 648 ident: bib8 article-title: Impact of top end anastomosis design on patency and flow stability in coronary artery bypass grafting publication-title: Heart Ves. – volume: 17 start-page: 153 year: 2003 end-page: 162 ident: bib14 article-title: MRI measurement of time‐resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions publication-title: J. Magn. Reson. Imag. – volume: 32 start-page: 1032 year: 2017 end-page: 1044 ident: bib11 article-title: Validation of numerical simulation methods in aortic arch using 4D Flow MRI publication-title: Heart Ves. – volume: 29 start-page: 404 year: 2014 end-page: 412 ident: bib21 article-title: Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms publication-title: Heart Ves. – volume: 32 start-page: 2262 issue: 12 year: 2010 ident: 10.1016/j.compbiomed.2021.104230_bib13 article-title: Point set registration: coherent point drift publication-title: IEEE PAMI doi: 10.1109/TPAMI.2010.46 – volume: 23 start-page: e32 year: 2013 ident: 10.1016/j.compbiomed.2021.104230_bib9 article-title: Middle cerebral artery blood velocity during running publication-title: Scand. J. Med. Sci. Sports doi: 10.1111/sms.12009 – volume: 36 start-page: 1015 issue: 5 year: 2012 ident: 10.1016/j.compbiomed.2021.104230_bib10 article-title: 4D flow MRI publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.23632 – volume: 32 start-page: 1032 issue: 8 year: 2017 ident: 10.1016/j.compbiomed.2021.104230_bib11 article-title: Validation of numerical simulation methods in aortic arch using 4D Flow MRI publication-title: Heart Ves. doi: 10.1007/s00380-017-0979-2 – volume: 32 issue: 5 year: 2019 ident: 10.1016/j.compbiomed.2021.104230_bib16 article-title: Reconciling PC‐MRI and CFD: an in‐vitro study publication-title: NMR Biomed. doi: 10.1002/nbm.4063 – volume: 29 start-page: 404 issue: 3 year: 2014 ident: 10.1016/j.compbiomed.2021.104230_bib21 article-title: Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms publication-title: Heart Ves. doi: 10.1007/s00380-013-0381-7 – volume: 13 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2021.104230_bib20 article-title: Phase-contrast MRI versus numerical simulation to quantify hemodynamical changes in cerebral aneurysms after flow diverter treatment publication-title: PloS One doi: 10.1371/journal.pone.0190696 – volume: 17 start-page: 153 issue: 2 year: 2003 ident: 10.1016/j.compbiomed.2021.104230_bib14 article-title: MRI measurement of time‐resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.10243 – volume: 61 start-page: 409 issue: 2 year: 2009 ident: 10.1016/j.compbiomed.2021.104230_bib2 article-title: Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21861 – volume: 31 start-page: 643 issue: 5 year: 2016 ident: 10.1016/j.compbiomed.2021.104230_bib8 article-title: Impact of top end anastomosis design on patency and flow stability in coronary artery bypass grafting publication-title: Heart Ves. doi: 10.1007/s00380-015-0680-2 – volume: 38 start-page: 876 issue: 4 year: 2013 ident: 10.1016/j.compbiomed.2021.104230_bib22 article-title: Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.24051 – volume: 6 start-page: 545 issue: 5 year: 2018 ident: 10.1016/j.compbiomed.2021.104230_bib19 article-title: Surgical planning for living donor liver transplant using 4D flow MRI, computational fluid dynamics and in vitro experiments publication-title: Comput Methods Biomech Biomed Eng Imaging Vis doi: 10.1080/21681163.2017.1278619 – volume: 4 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2021.104230_bib15 article-title: A review of point cloud registration algorithms for mobile robotics publication-title: Foundations and Trends in Robotics. Now Publishers doi: 10.1561/2300000035 – volume: 2 start-page: 583 issue: 5 year: 1992 ident: 10.1016/j.compbiomed.2021.104230_bib1 article-title: Minimizing TE in moment‐nulled or flow‐encoded two‐and three‐dimensional gradient‐echo imaging publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.1880020517 – volume: 57 start-page: 83 year: 2016 ident: 10.1016/j.compbiomed.2021.104230_bib3 article-title: Estimation of the measurement uncertainty in magnetic resonance velocimetry based on statistical models publication-title: Exp. Fluid doi: 10.1007/s00348-016-2163-3 – volume: 59 start-page: 535 issue: 3 year: 2008 ident: 10.1016/j.compbiomed.2021.104230_bib4 article-title: 3D MR flow analysis in realistic rapid‐prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21331 – volume: 88 start-page: 311 year: 2016 ident: 10.1016/j.compbiomed.2021.104230_bib12 article-title: Basic principles of hemodynamics and cerebral aneurysms publication-title: World Neurosurg doi: 10.1016/j.wneu.2016.01.031 – volume: 38 start-page: 2302 issue: 7 year: 2010 ident: 10.1016/j.compbiomed.2021.104230_bib17 article-title: Computational hemodynamic analysis in congenital heart disease: simulation of the Norwood procedure publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-9978-5 – volume: 10 start-page: 145 issue: 3 year: 1991 ident: 10.1016/j.compbiomed.2021.104230_bib5 article-title: Object modeling by registration of multiple range images publication-title: Image Vis Comput. doi: 10.1016/0262-8856(92)90066-C – volume: 30 start-page: 725 year: 2014 ident: 10.1016/j.compbiomed.2021.104230_bib6 article-title: Data distributions in magnetic resonance images: a review publication-title: Phys. Med. doi: 10.1016/j.ejmp.2014.05.002 – volume: 32 start-page: 669 issue: 3 year: 2016 ident: 10.1016/j.compbiomed.2021.104230_bib7 article-title: A new metric of absolute percentage error for intermittent demand forecasts publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2015.12.003 – volume: 19 start-page: 1191 issue: 5 year: 2019 ident: 10.1016/j.compbiomed.2021.104230_bib23 article-title: A review of point set registration: from pairwise registration to groupwise registration publication-title: Sensors doi: 10.3390/s19051191 – volume: 11 start-page: 275 issue: 3 year: 2019 ident: 10.1016/j.compbiomed.2021.104230_bib18 article-title: Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD publication-title: J NeuroIntervent Surg doi: 10.1136/neurintsurg-2018-013921 |
| SSID | ssj0004030 |
| Score | 2.3695982 |
| Snippet | Predicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment... AbstractPredicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 104230 |
| SubjectTerms | Accuracy Algorithms Blood flow Boundary conditions Computational fluid dynamics Computational fluid mechanics Computer applications Datasets Error analysis Flow geometry Flow velocity Geometry Internal Medicine Iterative algorithms Magnetic resonance imaging Magnetic resonance velocimetry Mathematical models Noise Numerical models Other Patients Reynolds similarity Simulation Simulation error Three-dimensional geometry matching Velocity |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqHhAXxD-BUhmJa2ji2LGjntDSVUFaDohKe7NsZ4JSoWzZH46Id-AN-yTMxEkqRJFW4hjH41j2ePw5_maGsddOhdLjzpAWIqtTqU2WellACqoBr_NQy4qckxcfy_ML-WGplgdsNvrCEK1ysP3RpvfWeig5GUbz5KptyccXjxJ4wBH0i1rIJXmwS01ZDN78uKF5yKyIbihob6j2wOaJHC-ibUc3dzwpipwuPAXxoW_fov4FQfutaH6f3RswJH8bu_mAHUD3kN1ZDLfkj9jlbP6Oowa1MV8SJ277F9526fd2u17xxaf3nJhCAQE4J4Yov_75iy_6VNIbjiA2FiKU7XmW3HU1pxZhvcZ333Yu8ov6th-zi_nZ59l5OuRUSANCo22qvch9jbDDZR6hR-EoHp4JhZci6GBCAwZA1d4E3ZRZU5YgG1AKvNIVVAGKJ-ywW3XwjHHlpBO6qasacJQhM1XtaiPzRhoXnHEJ0-Mw2jAEHKe8F1_tyCy7tDcTYGkCbJyAhOWT5FUMurGHTDXOlB2dStEMWtwZ9pDVt8nCZljPG5vbjbCZ_UvnEnY6Sf6htnt-92hUKTt9SlCIRQqMVibs1fQaFz3d5LgOVjusI-mcSxzdhD2NqjgNVFEo8lTXz_-ray_YXXqKHKUjdrhd7-Alwq-tP-7X12-c7S7j priority: 102 providerName: Elsevier |
| Title | CFD validation using in-vitro MRI velocity data – Methods for data matching and CFD error quantification |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S001048252100024X https://www.clinicalkey.es/playcontent/1-s2.0-S001048252100024X https://dx.doi.org/10.1016/j.compbiomed.2021.104230 https://www.ncbi.nlm.nih.gov/pubmed/33545507 https://www.proquest.com/docview/2501855706 https://www.proquest.com/docview/2487160141 |
| Volume | 131 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250903 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB61uxLigvhvoKyMxDWQOE6cCCHUli5b0K5QodLeLMd20FYo2-4PR8Q78IY8SWfiZPdS0F58SDJOZI_HnzPfzAC80qnJStwZwoRHNhQyj8JSJC50aeVKGRsrCgpOHk-y0YX4NE2nezDpYmGIVtnZxMZQ27mhf-RvOGWeo3xR2fur65CqRpF3tSuhodvSCvZdk2JsH_qcMmP1oH98Ovlyvo2UjBIflILWR-DhqOX2eMYXkbh90DueG3lM7k9O7OjbN6x_AdJmYxreh3stomRHXgUewJ6rH8KdceszfwSXJ8MPDPVp5qsnMWK6f2ezOvw5Wy3mbHx-xog3ZBCOM-KLsr-__7BxU1h6yRDS-osIbBvWJdO1ZdSjWyzw3vVae7ZR0_djuBiefjsZhW2FhdAgUFqFsuRxaRGE6KhEIJJoyo6Xm6QU3EiTm8rlzqW2zI2ssqjKMicql6auTGXhCuOSJ9Cr57U7AJZqobmsbGEdjrKL8sJqm4u4Erk2OtcByG4YlWnTj1MVjB-q45ldqu0EKJoA5ScggHgjeeVTcOwgU3QzpboQUzSKCveJHWTlbbJu2a7upYrVkqtIfW2SG6EWcXKScDEN4O1GsgUwHpjs-N7DTqXU5lVbtQ_g5eY2mgDy6-jazdf4jKBTLzF2A3jqVXEzUEmSUty6fPb_zp_DXfoST0k6hN5qsXYvEG2tygHsv_4VYyunEtt8-HEA_aOzz6PJoF1cN3AOLpM |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVoJeEG8MBRYJjhb2ev0SqhC0jRJaR6i0Um7LvoxSVU4bJyBu_Af-Dz-GX8KM13YuBeXSq-1ZWzuz8_B8M0PIKxnrRIFl8CMWGJ-nWeArHlnfxqVVaagNz7E4uRgnw1P-cRJPNsjvrhYGYZWdTmwUtZlp_Ef-hmHnOewXlby7uPRxahRmV7sRGrIdrWB2mxZjbWHHof3xHUK4ene0D_x-zdjg4GRv6LdTBnwNzsLCTxULlQFDLAMFxjiS2CEu05HiTKc606XNrI2NynRaJkGZJJaXNo6titPc5tpGsO4NssUjnkPwt_XhYPzpeFWZGUSuCAa0HYdgrMUSOYQZgsZdkT3EqSzEdCtDNPbVBvJfDnBjCAd3yO3Wg6XvncjdJRu2ukduFm2O_j452xvsU5DfqZvWRBFZ_5VOK__bdDGf0eJ4RBGnpMH9p4hPpX9-_qJFM8i6puBCu4vgSDcoTyorQ3FFO5_DvculdOimZu0H5PRa9voh2axmlX1MaCy5ZGlpcmNhl22Q5UaajIclz6SWmfRI2m2j0G27c5y6cS46XNuZWDFAIAOEY4BHwp7ywrX8WIMm7zglupJWUMIC7NIatOlVtLZutUktQlEzEYjPTTMlkCKGSRnGJx5521O2DpNzhNZ8704nUqJ_1eqYeeRlfxtUDuaRZGVnS3iGY5SNCGGPPHKi2G9UFMVYJ58--f_iL8it4UlxJI5G48OnZBu_ysGhdsjmYr60z8DTW6jn7XGi5Mt1n-C_ePVoug |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VIlVcEP-4LbBIcLRq7669thBCqCFqKKkQUCm3Zf-MUiGnzQ-IG-_A2_A4PAkzXtu5FJRLr3FmHe3Mznyb-WaGkGc6s7mByBBzlrhYyCKJjeA-9lnljUytEyUWJ49P8qNT8XaSTbbI764WBmmVnU9sHLWbWfyP_IBh5znsF5UfVC0t4v1g-Or8IsYJUphp7cZpBBM59j--w_Vt8XI0AF0_Z2z45tPhUdxOGIgtAIVlLA1LjYMgrBMDgZhr7A5XWG4Es9IWtvKF95kzhZVVnlR57kXls8ybTJa-tJ7DutfIdcl5iXRCOZHrmsyEh_IX8HMCrmEtiyhwy5AuHsrr4YbKUky0MuRhXx4a_wV9mxA4vEVuttiVvg7Gdpts-foO2Rm32fm75OxwOKBgudMwp4kip_4Lndbxt-lyPqPjDyOKDCULwJ8iM5X--fmLjpsR1gsK4Dl8CBC64XdSXTuKK_r5HJ5drHTgNTVr3yOnV7LT98l2Pav9Q0IzLTSTlSudh132SVE67QqRVqLQVhc6IrLbRmXbRuc4b-Or6hhtZ2qtAIUKUEEBEUl7yfPQ7GMDmbLTlOqKWcH9KohIG8jKy2T9ovUjC5WqBVOJ-ti0UQIrYpiOYWISkRe9ZAuVAgTa8L37nUmp_lXrAxaRp_1jcDaYQdK1n63gOwLv18gNjsiDYIr9RnGeYYW83P3_4k_IDpxb9W50crxHbuCPCjyofbK9nK_8I4B4S_O4OUuUfL7qw_sXo1VmVA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+validation+using+in-vitro+MRI+velocity+data+%E2%80%93+methods+for+data+matching+and+CFD+error+quantification&rft.jtitle=Computers+in+biology+and+medicine&rft.au=W%C3%BCstenhagen%2C+Carolin&rft.au=John%2C+Kristine&rft.au=Langner%2C+S%C3%B6nke&rft.au=Brede%2C+Martin&rft.date=2021-04-01&rft.issn=0010-4825&rft.spage=104230&rft.epage=104230&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.104230&rft.externalDBID=ECK1-s2.0-S001048252100024X&rft.externalDocID=1_s2_0_S001048252100024X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |