CFD validation using in-vitro MRI velocity data – Methods for data matching and CFD error quantification

Predicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment planning but the solution can be inaccurate. Therefore, it is crucial to understand the simulation errors and calibrate the numerical model....

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 131; p. 104230
Main Authors Wüstenhagen, Carolin, John, Kristine, Langner, Sönke, Brede, Martin, Grundmann, Sven, Bruschewski, Martin
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.04.2021
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2021.104230

Cover

Abstract Predicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment planning but the solution can be inaccurate. Therefore, it is crucial to understand the simulation errors and calibrate the numerical model. In-vitro velocity-encoded MRI is a versatile tool to validate CFD. The comparison between CFD and in-vitro MRI velocity data, and the analysis of the simulation error are the objectives of this study. A three-step routine is presented to validate medical CFD data. First, a properly scaled model of the patient-specific geometry is fabricated to achieve high relative resolution in the MRI experiment. Second, the measured flow geometry is matched with the CFD data using one of two algorithms, Coherent Point Drift and Iterative Closest Point. The aligned data sets are then interpolated onto a common grid to enable a point-to-point comparison. Third, the global and local deviations between CFD and MRI velocity data are calculated using different algorithms to reliably estimate the simulation error. The routine is successfully tested with a patient-specific model of a cerebral aneurysm. In conclusion, the methods presented here provide a framework for CFD validation using in-vitro MRI velocity data. [Display omitted] •Framework for CFD validation with in-vitro 3D MRI velocity data.•Automatic alignment of numerical and experimental data via data matching.•Quantification and visualization of the CFD simulation error.•Minimal user input enables automated evaluation.•Demonstration of the process with a patient-specific cerebral aneurysm model.
AbstractList Predicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment planning but the solution can be inaccurate. Therefore, it is crucial to understand the simulation errors and calibrate the numerical model. In-vitro velocity-encoded MRI is a versatile tool to validate CFD. The comparison between CFD and in-vitro MRI velocity data, and the analysis of the simulation error are the objectives of this study. A three-step routine is presented to validate medical CFD data. First, a properly scaled model of the patient-specific geometry is fabricated to achieve high relative resolution in the MRI experiment. Second, the measured flow geometry is matched with the CFD data using one of two algorithms, Coherent Point Drift and Iterative Closest Point. The aligned data sets are then interpolated onto a common grid to enable a point-to-point comparison. Third, the global and local deviations between CFD and MRI velocity data are calculated using different algorithms to reliably estimate the simulation error. The routine is successfully tested with a patient-specific model of a cerebral aneurysm. In conclusion, the methods presented here provide a framework for CFD validation using in-vitro MRI velocity data. [Display omitted] •Framework for CFD validation with in-vitro 3D MRI velocity data.•Automatic alignment of numerical and experimental data via data matching.•Quantification and visualization of the CFD simulation error.•Minimal user input enables automated evaluation.•Demonstration of the process with a patient-specific cerebral aneurysm model.
Predicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment planning but the solution can be inaccurate. Therefore, it is crucial to understand the simulation errors and calibrate the numerical model. In-vitro velocity-encoded MRI is a versatile tool to validate CFD. The comparison between CFD and in-vitro MRI velocity data, and the analysis of the simulation error are the objectives of this study. A three-step routine is presented to validate medical CFD data. First, a properly scaled model of the patient-specific geometry is fabricated to achieve high relative resolution in the MRI experiment. Second, the measured flow geometry is matched with the CFD data using one of two algorithms, Coherent Point Drift and Iterative Closest Point. The aligned data sets are then interpolated onto a common grid to enable a point-to-point comparison. Third, the global and local deviations between CFD and MRI velocity data are calculated using different algorithms to reliably estimate the simulation error. The routine is successfully tested with a patient-specific model of a cerebral aneurysm. In conclusion, the methods presented here provide a framework for CFD validation using in-vitro MRI velocity data.
AbstractPredicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment planning but the solution can be inaccurate. Therefore, it is crucial to understand the simulation errors and calibrate the numerical model. In-vitro velocity-encoded MRI is a versatile tool to validate CFD. The comparison between CFD and in-vitro MRI velocity data, and the analysis of the simulation error are the objectives of this study. A three-step routine is presented to validate medical CFD data. First, a properly scaled model of the patient-specific geometry is fabricated to achieve high relative resolution in the MRI experiment. Second, the measured flow geometry is matched with the CFD data using one of two algorithms, Coherent Point Drift and Iterative Closest Point. The aligned data sets are then interpolated onto a common grid to enable a point-to-point comparison. Third, the global and local deviations between CFD and MRI velocity data are calculated using different algorithms to reliably estimate the simulation error. The routine is successfully tested with a patient-specific model of a cerebral aneurysm. In conclusion, the methods presented here provide a framework for CFD validation using in-vitro MRI velocity data.
Predicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment planning but the solution can be inaccurate. Therefore, it is crucial to understand the simulation errors and calibrate the numerical model. In-vitro velocity-encoded MRI is a versatile tool to validate CFD. The comparison between CFD and in-vitro MRI velocity data, and the analysis of the simulation error are the objectives of this study. A three-step routine is presented to validate medical CFD data. First, a properly scaled model of the patient-specific geometry is fabricated to achieve high relative resolution in the MRI experiment. Second, the measured flow geometry is matched with the CFD data using one of two algorithms, Coherent Point Drift and Iterative Closest Point. The aligned data sets are then interpolated onto a common grid to enable a point-to-point comparison. Third, the global and local deviations between CFD and MRI velocity data are calculated using different algorithms to reliably estimate the simulation error. The routine is successfully tested with a patient-specific model of a cerebral aneurysm. In conclusion, the methods presented here provide a framework for CFD validation using in-vitro MRI velocity data.Predicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment planning but the solution can be inaccurate. Therefore, it is crucial to understand the simulation errors and calibrate the numerical model. In-vitro velocity-encoded MRI is a versatile tool to validate CFD. The comparison between CFD and in-vitro MRI velocity data, and the analysis of the simulation error are the objectives of this study. A three-step routine is presented to validate medical CFD data. First, a properly scaled model of the patient-specific geometry is fabricated to achieve high relative resolution in the MRI experiment. Second, the measured flow geometry is matched with the CFD data using one of two algorithms, Coherent Point Drift and Iterative Closest Point. The aligned data sets are then interpolated onto a common grid to enable a point-to-point comparison. Third, the global and local deviations between CFD and MRI velocity data are calculated using different algorithms to reliably estimate the simulation error. The routine is successfully tested with a patient-specific model of a cerebral aneurysm. In conclusion, the methods presented here provide a framework for CFD validation using in-vitro MRI velocity data.
ArticleNumber 104230
Author Wüstenhagen, Carolin
Grundmann, Sven
Bruschewski, Martin
John, Kristine
Langner, Sönke
Brede, Martin
Author_xml – sequence: 1
  givenname: Carolin
  surname: Wüstenhagen
  fullname: Wüstenhagen, Carolin
  organization: Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, 18059, Rostock, Germany
– sequence: 2
  givenname: Kristine
  surname: John
  fullname: John, Kristine
  organization: Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, 18059, Rostock, Germany
– sequence: 3
  givenname: Sönke
  surname: Langner
  fullname: Langner, Sönke
  organization: Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, Rostock University Medical Center, 18057, Rostock, Germany
– sequence: 4
  givenname: Martin
  surname: Brede
  fullname: Brede, Martin
  organization: Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, 18059, Rostock, Germany
– sequence: 5
  givenname: Sven
  orcidid: 0000-0003-3116-1918
  surname: Grundmann
  fullname: Grundmann, Sven
  organization: Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, 18059, Rostock, Germany
– sequence: 6
  givenname: Martin
  orcidid: 0000-0003-0133-8348
  surname: Bruschewski
  fullname: Bruschewski, Martin
  email: martin.bruschewski@uni-rostock.de
  organization: Institute of Fluid Mechanics, University of Rostock, Justus-von-Liebig-Weg 2, 18059, Rostock, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33545507$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1rFDEUhoNU7If-BQl4482sJ5lkJnsj2tVqoUXwA7wLmcwZm3U22SYzC3vnf_Af-kvMdOsKBaFeDWSe83B433NMDnzwSAhlMGPAqhfLmQ2rdePCCtsZB87ys-AlPCBHTNXzAmQpDsgRAINCKC4PyXFKSwAQUMIjcliWUkgJ9RFZLs7e0I3pXWsGFzwdk_PfqPPFxg0x0MuP53SDfbBu2NKMGPrrx096icNVaBPtQtw9rsxgr6ZB41s6GTHG_O96NH5wnbM37sfkYWf6hE9uvyfky9nbz4v3xcWHd-eL1xeFlUwMRd1w1rSVVAYaJarSzMuaKVs2gtvaKtuhQpRto2zdVdBVFYoOpcRG1nOcWyxPyPOddx3D9Yhp0CuXLPa98RjGpLlQNauACZbRZ3fQZRijz9tpLoEpKWuoMvX0lhqbHLheR7cycav_pJgBtQNsDClF7PYIAz0Vppf6b2F6KkzvCsujL--M5qhv4hqicf19BKc7AeZINw6jTtaht9i6iHbQbXD_scVeYnvnc2_9d9xi2ofCdOIa9KfpsKa74izfFBdfs-DVvwX32-E3aF_i3g
CitedBy_id crossref_primary_10_1109_TMI_2023_3251734
crossref_primary_10_1115_1_4055611
crossref_primary_10_1007_s00348_023_03666_z
crossref_primary_10_3390_app11062595
crossref_primary_10_1002_mrm_29404
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123110
crossref_primary_10_1115_1_4062556
crossref_primary_10_1007_s10494_025_00636_9
crossref_primary_10_1063_5_0118097
crossref_primary_10_1177_1420326X231183082
crossref_primary_10_3390_bioengineering9070326
Cites_doi 10.1109/TPAMI.2010.46
10.1111/sms.12009
10.1002/jmri.23632
10.1007/s00380-017-0979-2
10.1002/nbm.4063
10.1007/s00380-013-0381-7
10.1371/journal.pone.0190696
10.1002/jmri.10243
10.1002/mrm.21861
10.1007/s00380-015-0680-2
10.1002/jmri.24051
10.1080/21681163.2017.1278619
10.1561/2300000035
10.1002/jmri.1880020517
10.1007/s00348-016-2163-3
10.1002/mrm.21331
10.1016/j.wneu.2016.01.031
10.1007/s10439-010-9978-5
10.1016/0262-8856(92)90066-C
10.1016/j.ejmp.2014.05.002
10.1016/j.ijforecast.2015.12.003
10.3390/s19051191
10.1136/neurintsurg-2018-013921
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
2021. Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
– notice: 2021. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2021.104230
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
ProQuest Nursing and Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed

MEDLINE - Academic
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 104230
ExternalDocumentID 33545507
10_1016_j_compbiomed_2021_104230
S001048252100024X
1_s2_0_S001048252100024X
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-7b21bd658a0b8463a93718c3b42c7c8cfe8ee5db8c7f60f66e4fe55eb579e9ce3
IEDL.DBID BENPR
ISSN 0010-4825
1879-0534
IngestDate Thu Oct 02 11:39:06 EDT 2025
Tue Oct 07 06:33:48 EDT 2025
Thu Apr 03 06:53:10 EDT 2025
Wed Oct 01 05:20:30 EDT 2025
Thu Apr 24 22:59:25 EDT 2025
Fri Feb 23 02:45:19 EST 2024
Tue Feb 25 20:03:25 EST 2025
Tue Oct 14 19:33:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Three-dimensional geometry matching
Simulation error
Reynolds similarity
Computational fluid mechanics
Magnetic resonance velocimetry
three-dimensional geometry matching
Keyterms: Computational Fluid Mechanics
simulation error
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-7b21bd658a0b8463a93718c3b42c7c8cfe8ee5db8c7f60f66e4fe55eb579e9ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0133-8348
0000-0003-3116-1918
PMID 33545507
PQID 2501855706
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2487160141
proquest_journals_2501855706
pubmed_primary_33545507
crossref_primary_10_1016_j_compbiomed_2021_104230
crossref_citationtrail_10_1016_j_compbiomed_2021_104230
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_104230
elsevier_clinicalkeyesjournals_1_s2_0_S001048252100024X
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_104230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Papathanasopoulou, Zhao, Köhler, Robertson, Long, Hoskins, Xu, Marshall (bib14) 2003; 17
Qian, Liu, Itatani, Miyaji, Umezu (bib17) 2010; 38
Myronenko, Song (bib13) 2010; 32
Rutkowski, Reeder, Fernandez, Roldán-Alzate (bib19) 2018; 6
Kim, Kim (bib7) 2016; 32
Pomerleau, Colas, Siegwart (bib15) 2015; 4
Munarriz, Gómez, Paredes, Castaño-Leon, Cepeda, Lagares (bib12) 2016; 88
Van Ooij, Potters, Guédon, Schneiders, Marquering, Majoie, vanBavel, Nederveen (bib22) 2013; 38
Lyngeraa, Pedersen, Mantoni, Belhage, Rasmussen, van Lieshout, Pott (bib9) 2013; 23
Koyama, Kitamura, Itatani, Yamamoto, Miyazaki, Oka, Nakashima, Horai, Ono, Miyaji (bib8) 2016; 31
Roloff, Stucht, Beuing, Berg (bib18) 2019; 11
Markl, Frydrychowicz, Kozerke, Hope, Wieben (bib10) 2012; 36
Bernstein, Shimakawa, Pelc (bib1) 1992; 2
Puiseux, Sewonu, Meyrignac, Rousseau, Nicoud, Mendez, Moreno (bib16) 2019; 32
Zhu, Guo, Zou, Li, Yuen, Mihaylova, Leung (bib23) 2019; 19
Bruschewski, Freudenhammer, Buchenberg, Schiffer, Grundmann (bib3) 2016; 57
Chen, Medioni (bib5) 1991; 10
Canstein, Cachot, Faust, Stalder, Bock, Frydrychowicz, Küffer, Hennig, Markl (bib4) 2008; 59
Den Dekker, Sijbers (bib6) 2014; 30
Sughimoto, Takahara, Mogi, Yamazaki, Tsubota, Liang, Liu (bib21) 2014; 29
Sindeev, Arnold, Frolov, Prothmann, Liepsch, Balasso, Berg, Kaczmarz, Kirschke (bib20) 2018; 13
Boussel, Rayz, Martin, Acevedo-Bolton, Lawton, Higashida, Smith, Young, Saloner (bib2) 2009; 61
Miyazaki, Itatani, Furusawa, Nishino, Sugiyama, Takehara, Yasukochi (bib11) 2017; 32
Canstein (10.1016/j.compbiomed.2021.104230_bib4) 2008; 59
Lyngeraa (10.1016/j.compbiomed.2021.104230_bib9) 2013; 23
Bernstein (10.1016/j.compbiomed.2021.104230_bib1) 1992; 2
Den Dekker (10.1016/j.compbiomed.2021.104230_bib6) 2014; 30
Boussel (10.1016/j.compbiomed.2021.104230_bib2) 2009; 61
Munarriz (10.1016/j.compbiomed.2021.104230_bib12) 2016; 88
Pomerleau (10.1016/j.compbiomed.2021.104230_bib15) 2015; 4
Sughimoto (10.1016/j.compbiomed.2021.104230_bib21) 2014; 29
Papathanasopoulou (10.1016/j.compbiomed.2021.104230_bib14) 2003; 17
Kim (10.1016/j.compbiomed.2021.104230_bib7) 2016; 32
Myronenko (10.1016/j.compbiomed.2021.104230_bib13) 2010; 32
Zhu (10.1016/j.compbiomed.2021.104230_bib23) 2019; 19
Puiseux (10.1016/j.compbiomed.2021.104230_bib16) 2019; 32
Markl (10.1016/j.compbiomed.2021.104230_bib10) 2012; 36
Rutkowski (10.1016/j.compbiomed.2021.104230_bib19) 2018; 6
Chen (10.1016/j.compbiomed.2021.104230_bib5) 1991; 10
Roloff (10.1016/j.compbiomed.2021.104230_bib18) 2019; 11
Van Ooij (10.1016/j.compbiomed.2021.104230_bib22) 2013; 38
Bruschewski (10.1016/j.compbiomed.2021.104230_bib3) 2016; 57
Koyama (10.1016/j.compbiomed.2021.104230_bib8) 2016; 31
Sindeev (10.1016/j.compbiomed.2021.104230_bib20) 2018; 13
Miyazaki (10.1016/j.compbiomed.2021.104230_bib11) 2017; 32
Qian (10.1016/j.compbiomed.2021.104230_bib17) 2010; 38
References_xml – volume: 57
  start-page: 83
  year: 2016
  ident: bib3
  article-title: Estimation of the measurement uncertainty in magnetic resonance velocimetry based on statistical models
  publication-title: Exp. Fluid
– volume: 4
  start-page: 1
  year: 2015
  end-page: 104
  ident: bib15
  article-title: A review of point cloud registration algorithms for mobile robotics
  publication-title: Foundations and Trends in Robotics. Now Publishers
– volume: 13
  year: 2018
  ident: bib20
  article-title: Phase-contrast MRI versus numerical simulation to quantify hemodynamical changes in cerebral aneurysms after flow diverter treatment
  publication-title: PloS One
– volume: 30
  start-page: 725
  year: 2014
  end-page: 741
  ident: bib6
  article-title: Data distributions in magnetic resonance images: a review
  publication-title: Phys. Med.
– volume: 36
  start-page: 1015
  year: 2012
  end-page: 1036
  ident: bib10
  article-title: 4D flow MRI
  publication-title: J. Magn. Reson. Imag.
– volume: 38
  start-page: 2302
  year: 2010
  end-page: 2313
  ident: bib17
  article-title: Computational hemodynamic analysis in congenital heart disease: simulation of the Norwood procedure
  publication-title: Ann. Biomed. Eng.
– volume: 61
  start-page: 409
  year: 2009
  end-page: 417
  ident: bib2
  article-title: Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics
  publication-title: Magn. Reson. Med.
– volume: 88
  start-page: 311
  year: 2016
  end-page: 319
  ident: bib12
  article-title: Basic principles of hemodynamics and cerebral aneurysms
  publication-title: World Neurosurg
– volume: 38
  start-page: 876
  year: 2013
  end-page: 888
  ident: bib22
  article-title: Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm
  publication-title: J. Magn. Reson. Imag.
– volume: 11
  start-page: 275
  year: 2019
  end-page: 282
  ident: bib18
  article-title: Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD
  publication-title: J NeuroIntervent Surg
– volume: 6
  start-page: 545
  year: 2018
  end-page: 555
  ident: bib19
  article-title: Surgical planning for living donor liver transplant using 4D flow MRI, computational fluid dynamics and in vitro experiments
  publication-title: Comput Methods Biomech Biomed Eng Imaging Vis
– volume: 19
  start-page: 1191
  year: 2019
  ident: bib23
  article-title: A review of point set registration: from pairwise registration to groupwise registration
  publication-title: Sensors
– volume: 59
  start-page: 535
  year: 2008
  end-page: 546
  ident: bib4
  article-title: 3D MR flow analysis in realistic rapid‐prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries
  publication-title: Magn. Reson. Med.
– volume: 23
  start-page: e32
  year: 2013
  end-page: e37
  ident: bib9
  article-title: Middle cerebral artery blood velocity during running
  publication-title: Scand. J. Med. Sci. Sports
– volume: 32
  year: 2019
  ident: bib16
  article-title: Reconciling PC‐MRI and CFD: an in‐vitro study
  publication-title: NMR Biomed.
– volume: 10
  start-page: 145
  year: 1991
  end-page: 155
  ident: bib5
  article-title: Object modeling by registration of multiple range images
  publication-title: Image Vis Comput.
– volume: 2
  start-page: 583
  year: 1992
  end-page: 588
  ident: bib1
  article-title: Minimizing TE in moment‐nulled or flow‐encoded two‐and three‐dimensional gradient‐echo imaging
  publication-title: J. Magn. Reson. Imag.
– volume: 32
  start-page: 2262
  year: 2010
  end-page: 2275
  ident: bib13
  article-title: Point set registration: coherent point drift
  publication-title: IEEE PAMI
– volume: 32
  start-page: 669
  year: 2016
  end-page: 679
  ident: bib7
  article-title: A new metric of absolute percentage error for intermittent demand forecasts
  publication-title: Int. J. Forecast.
– volume: 31
  start-page: 643
  year: 2016
  end-page: 648
  ident: bib8
  article-title: Impact of top end anastomosis design on patency and flow stability in coronary artery bypass grafting
  publication-title: Heart Ves.
– volume: 17
  start-page: 153
  year: 2003
  end-page: 162
  ident: bib14
  article-title: MRI measurement of time‐resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions
  publication-title: J. Magn. Reson. Imag.
– volume: 32
  start-page: 1032
  year: 2017
  end-page: 1044
  ident: bib11
  article-title: Validation of numerical simulation methods in aortic arch using 4D Flow MRI
  publication-title: Heart Ves.
– volume: 29
  start-page: 404
  year: 2014
  end-page: 412
  ident: bib21
  article-title: Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms
  publication-title: Heart Ves.
– volume: 32
  start-page: 2262
  issue: 12
  year: 2010
  ident: 10.1016/j.compbiomed.2021.104230_bib13
  article-title: Point set registration: coherent point drift
  publication-title: IEEE PAMI
  doi: 10.1109/TPAMI.2010.46
– volume: 23
  start-page: e32
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104230_bib9
  article-title: Middle cerebral artery blood velocity during running
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/sms.12009
– volume: 36
  start-page: 1015
  issue: 5
  year: 2012
  ident: 10.1016/j.compbiomed.2021.104230_bib10
  article-title: 4D flow MRI
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.23632
– volume: 32
  start-page: 1032
  issue: 8
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104230_bib11
  article-title: Validation of numerical simulation methods in aortic arch using 4D Flow MRI
  publication-title: Heart Ves.
  doi: 10.1007/s00380-017-0979-2
– volume: 32
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104230_bib16
  article-title: Reconciling PC‐MRI and CFD: an in‐vitro study
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.4063
– volume: 29
  start-page: 404
  issue: 3
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104230_bib21
  article-title: Blood flow dynamic improvement with aneurysm repair detected by a patient-specific model of multiple aortic aneurysms
  publication-title: Heart Ves.
  doi: 10.1007/s00380-013-0381-7
– volume: 13
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104230_bib20
  article-title: Phase-contrast MRI versus numerical simulation to quantify hemodynamical changes in cerebral aneurysms after flow diverter treatment
  publication-title: PloS One
  doi: 10.1371/journal.pone.0190696
– volume: 17
  start-page: 153
  issue: 2
  year: 2003
  ident: 10.1016/j.compbiomed.2021.104230_bib14
  article-title: MRI measurement of time‐resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.10243
– volume: 61
  start-page: 409
  issue: 2
  year: 2009
  ident: 10.1016/j.compbiomed.2021.104230_bib2
  article-title: Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21861
– volume: 31
  start-page: 643
  issue: 5
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104230_bib8
  article-title: Impact of top end anastomosis design on patency and flow stability in coronary artery bypass grafting
  publication-title: Heart Ves.
  doi: 10.1007/s00380-015-0680-2
– volume: 38
  start-page: 876
  issue: 4
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104230_bib22
  article-title: Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.24051
– volume: 6
  start-page: 545
  issue: 5
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104230_bib19
  article-title: Surgical planning for living donor liver transplant using 4D flow MRI, computational fluid dynamics and in vitro experiments
  publication-title: Comput Methods Biomech Biomed Eng Imaging Vis
  doi: 10.1080/21681163.2017.1278619
– volume: 4
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2021.104230_bib15
  article-title: A review of point cloud registration algorithms for mobile robotics
  publication-title: Foundations and Trends in Robotics. Now Publishers
  doi: 10.1561/2300000035
– volume: 2
  start-page: 583
  issue: 5
  year: 1992
  ident: 10.1016/j.compbiomed.2021.104230_bib1
  article-title: Minimizing TE in moment‐nulled or flow‐encoded two‐and three‐dimensional gradient‐echo imaging
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.1880020517
– volume: 57
  start-page: 83
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104230_bib3
  article-title: Estimation of the measurement uncertainty in magnetic resonance velocimetry based on statistical models
  publication-title: Exp. Fluid
  doi: 10.1007/s00348-016-2163-3
– volume: 59
  start-page: 535
  issue: 3
  year: 2008
  ident: 10.1016/j.compbiomed.2021.104230_bib4
  article-title: 3D MR flow analysis in realistic rapid‐prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21331
– volume: 88
  start-page: 311
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104230_bib12
  article-title: Basic principles of hemodynamics and cerebral aneurysms
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2016.01.031
– volume: 38
  start-page: 2302
  issue: 7
  year: 2010
  ident: 10.1016/j.compbiomed.2021.104230_bib17
  article-title: Computational hemodynamic analysis in congenital heart disease: simulation of the Norwood procedure
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-9978-5
– volume: 10
  start-page: 145
  issue: 3
  year: 1991
  ident: 10.1016/j.compbiomed.2021.104230_bib5
  article-title: Object modeling by registration of multiple range images
  publication-title: Image Vis Comput.
  doi: 10.1016/0262-8856(92)90066-C
– volume: 30
  start-page: 725
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104230_bib6
  article-title: Data distributions in magnetic resonance images: a review
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2014.05.002
– volume: 32
  start-page: 669
  issue: 3
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104230_bib7
  article-title: A new metric of absolute percentage error for intermittent demand forecasts
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.12.003
– volume: 19
  start-page: 1191
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104230_bib23
  article-title: A review of point set registration: from pairwise registration to groupwise registration
  publication-title: Sensors
  doi: 10.3390/s19051191
– volume: 11
  start-page: 275
  issue: 3
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104230_bib18
  article-title: Comparison of intracranial aneurysm flow quantification techniques: standard PIV vs stereoscopic PIV vs tomographic PIV vs phase-contrast MRI vs CFD
  publication-title: J NeuroIntervent Surg
  doi: 10.1136/neurintsurg-2018-013921
SSID ssj0004030
Score 2.3695982
Snippet Predicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and treatment...
AbstractPredicting blood flow velocities in patient-specific geometries with Computational Fluid Dynamics (CFD) can provide additional data for diagnosis and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104230
SubjectTerms Accuracy
Algorithms
Blood flow
Boundary conditions
Computational fluid dynamics
Computational fluid mechanics
Computer applications
Datasets
Error analysis
Flow geometry
Flow velocity
Geometry
Internal Medicine
Iterative algorithms
Magnetic resonance imaging
Magnetic resonance velocimetry
Mathematical models
Noise
Numerical models
Other
Patients
Reynolds similarity
Simulation
Simulation error
Three-dimensional geometry matching
Velocity
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqHhAXxD-BUhmJa2ji2LGjntDSVUFaDohKe7NsZ4JSoWzZH46Id-AN-yTMxEkqRJFW4hjH41j2ePw5_maGsddOhdLjzpAWIqtTqU2WellACqoBr_NQy4qckxcfy_ML-WGplgdsNvrCEK1ysP3RpvfWeig5GUbz5KptyccXjxJ4wBH0i1rIJXmwS01ZDN78uKF5yKyIbihob6j2wOaJHC-ibUc3dzwpipwuPAXxoW_fov4FQfutaH6f3RswJH8bu_mAHUD3kN1ZDLfkj9jlbP6Oowa1MV8SJ277F9526fd2u17xxaf3nJhCAQE4J4Yov_75iy_6VNIbjiA2FiKU7XmW3HU1pxZhvcZ333Yu8ov6th-zi_nZ59l5OuRUSANCo22qvch9jbDDZR6hR-EoHp4JhZci6GBCAwZA1d4E3ZRZU5YgG1AKvNIVVAGKJ-ywW3XwjHHlpBO6qasacJQhM1XtaiPzRhoXnHEJ0-Mw2jAEHKe8F1_tyCy7tDcTYGkCbJyAhOWT5FUMurGHTDXOlB2dStEMWtwZ9pDVt8nCZljPG5vbjbCZ_UvnEnY6Sf6htnt-92hUKTt9SlCIRQqMVibs1fQaFz3d5LgOVjusI-mcSxzdhD2NqjgNVFEo8lTXz_-ray_YXXqKHKUjdrhd7-Alwq-tP-7X12-c7S7j
  priority: 102
  providerName: Elsevier
Title CFD validation using in-vitro MRI velocity data – Methods for data matching and CFD error quantification
URI https://www.clinicalkey.com/#!/content/1-s2.0-S001048252100024X
https://www.clinicalkey.es/playcontent/1-s2.0-S001048252100024X
https://dx.doi.org/10.1016/j.compbiomed.2021.104230
https://www.ncbi.nlm.nih.gov/pubmed/33545507
https://www.proquest.com/docview/2501855706
https://www.proquest.com/docview/2487160141
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250903
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB61uxLigvhvoKyMxDWQOE6cCCHUli5b0K5QodLeLMd20FYo2-4PR8Q78IY8SWfiZPdS0F58SDJOZI_HnzPfzAC80qnJStwZwoRHNhQyj8JSJC50aeVKGRsrCgpOHk-y0YX4NE2nezDpYmGIVtnZxMZQ27mhf-RvOGWeo3xR2fur65CqRpF3tSuhodvSCvZdk2JsH_qcMmP1oH98Ovlyvo2UjBIflILWR-DhqOX2eMYXkbh90DueG3lM7k9O7OjbN6x_AdJmYxreh3stomRHXgUewJ6rH8KdceszfwSXJ8MPDPVp5qsnMWK6f2ezOvw5Wy3mbHx-xog3ZBCOM-KLsr-__7BxU1h6yRDS-osIbBvWJdO1ZdSjWyzw3vVae7ZR0_djuBiefjsZhW2FhdAgUFqFsuRxaRGE6KhEIJJoyo6Xm6QU3EiTm8rlzqW2zI2ssqjKMicql6auTGXhCuOSJ9Cr57U7AJZqobmsbGEdjrKL8sJqm4u4Erk2OtcByG4YlWnTj1MVjB-q45ldqu0EKJoA5ScggHgjeeVTcOwgU3QzpboQUzSKCveJHWTlbbJu2a7upYrVkqtIfW2SG6EWcXKScDEN4O1GsgUwHpjs-N7DTqXU5lVbtQ_g5eY2mgDy6-jazdf4jKBTLzF2A3jqVXEzUEmSUty6fPb_zp_DXfoST0k6hN5qsXYvEG2tygHsv_4VYyunEtt8-HEA_aOzz6PJoF1cN3AOLpM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVoJeEG8MBRYJjhb2ev0SqhC0jRJaR6i0Um7LvoxSVU4bJyBu_Af-Dz-GX8KM13YuBeXSq-1ZWzuz8_B8M0PIKxnrRIFl8CMWGJ-nWeArHlnfxqVVaagNz7E4uRgnw1P-cRJPNsjvrhYGYZWdTmwUtZlp_Ef-hmHnOewXlby7uPRxahRmV7sRGrIdrWB2mxZjbWHHof3xHUK4ene0D_x-zdjg4GRv6LdTBnwNzsLCTxULlQFDLAMFxjiS2CEu05HiTKc606XNrI2NynRaJkGZJJaXNo6titPc5tpGsO4NssUjnkPwt_XhYPzpeFWZGUSuCAa0HYdgrMUSOYQZgsZdkT3EqSzEdCtDNPbVBvJfDnBjCAd3yO3Wg6XvncjdJRu2ukduFm2O_j452xvsU5DfqZvWRBFZ_5VOK__bdDGf0eJ4RBGnpMH9p4hPpX9-_qJFM8i6puBCu4vgSDcoTyorQ3FFO5_DvculdOimZu0H5PRa9voh2axmlX1MaCy5ZGlpcmNhl22Q5UaajIclz6SWmfRI2m2j0G27c5y6cS46XNuZWDFAIAOEY4BHwp7ywrX8WIMm7zglupJWUMIC7NIatOlVtLZutUktQlEzEYjPTTMlkCKGSRnGJx5521O2DpNzhNZ8704nUqJ_1eqYeeRlfxtUDuaRZGVnS3iGY5SNCGGPPHKi2G9UFMVYJ58--f_iL8it4UlxJI5G48OnZBu_ysGhdsjmYr60z8DTW6jn7XGi5Mt1n-C_ePVoug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VIlVcEP-4LbBIcLRq7669thBCqCFqKKkQUCm3Zf-MUiGnzQ-IG-_A2_A4PAkzXtu5FJRLr3FmHe3Mznyb-WaGkGc6s7mByBBzlrhYyCKJjeA-9lnljUytEyUWJ49P8qNT8XaSTbbI764WBmmVnU9sHLWbWfyP_IBh5znsF5UfVC0t4v1g-Or8IsYJUphp7cZpBBM59j--w_Vt8XI0AF0_Z2z45tPhUdxOGIgtAIVlLA1LjYMgrBMDgZhr7A5XWG4Es9IWtvKF95kzhZVVnlR57kXls8ybTJa-tJ7DutfIdcl5iXRCOZHrmsyEh_IX8HMCrmEtiyhwy5AuHsrr4YbKUky0MuRhXx4a_wV9mxA4vEVuttiVvg7Gdpts-foO2Rm32fm75OxwOKBgudMwp4kip_4Lndbxt-lyPqPjDyOKDCULwJ8iM5X--fmLjpsR1gsK4Dl8CBC64XdSXTuKK_r5HJ5drHTgNTVr3yOnV7LT98l2Pav9Q0IzLTSTlSudh132SVE67QqRVqLQVhc6IrLbRmXbRuc4b-Or6hhtZ2qtAIUKUEEBEUl7yfPQ7GMDmbLTlOqKWcH9KohIG8jKy2T9ovUjC5WqBVOJ-ti0UQIrYpiOYWISkRe9ZAuVAgTa8L37nUmp_lXrAxaRp_1jcDaYQdK1n63gOwLv18gNjsiDYIr9RnGeYYW83P3_4k_IDpxb9W50crxHbuCPCjyofbK9nK_8I4B4S_O4OUuUfL7qw_sXo1VmVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+validation+using+in-vitro+MRI+velocity+data+%E2%80%93+methods+for+data+matching+and+CFD+error+quantification&rft.jtitle=Computers+in+biology+and+medicine&rft.au=W%C3%BCstenhagen%2C+Carolin&rft.au=John%2C+Kristine&rft.au=Langner%2C+S%C3%B6nke&rft.au=Brede%2C+Martin&rft.date=2021-04-01&rft.issn=0010-4825&rft.spage=104230&rft.epage=104230&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.104230&rft.externalDBID=ECK1-s2.0-S001048252100024X&rft.externalDocID=1_s2_0_S001048252100024X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon