Computer aided diagnosis for suspect keratoconus detection

To develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use. The CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was a...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 109; pp. 33 - 42
Main Authors Issarti, Ikram, Consejo, Alejandra, Jiménez-García, Marta, Hershko, Sarah, Koppen, Carina, Rozema, Jos J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.06.2019
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2019.04.024

Cover

Abstract To develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use. The CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was applied to retrospective data of 851 subjects for whom corneal elevation and thickness data was available. These data were divided into four groups: a control group (312 eyes) with bilateral normal tomography, keratoconus suspect (77 eyes) with a clinically diagnosed keratoconus in one eye and a normal fellow eye, mild keratoconus (220 eyes), and moderate keratoconus (229 eyes). The proposed framework is validated using 10-cross-validation, holdout validation and ROC curves. The CAD detects suspect keratoconus with an accuracy of 96.56% (sensitivity 97.78%, specificity 95.56%) versus an accuracy of 89.00% (sensitivity 83.00%, specificity 95.00%) for Belin/Ambrosio Deviation (BADD), and an accuracy of 79.00% (sensitivity 58.00%, specificity 99.70%) for Topographical Keratoconus Classification (TKC). For the detection of mild to moderate keratoconus CAD shows nearly similar accuracies as previously described methods, with an average accuracy of 99.50% for CAD, versus 99.46% for BADD and 96.50% for TKC. The proposed algorithm also provides a 70% reduction in computation time, while increasing stability and convergence with respect to traditional machine learning techniques. The proposed algorithm is highly accurate and provides a stable screening platform to assist ophthalmologists with the early detection of keratoconus. This framework could potentially be set up for any Scheimpflug tomography system. •A computer aided diagnosis (CAD) for keratoconus detection is presented.•The capabilities of the CAD in reducing time computation is demonstrated.•An iterative method is proposed to improve the feedforward neural network.•Grossberg-Runge Kutta2 is suggested to improve the stability of the feedforward neural network.•The developed approach is platform independent and reproducible.
AbstractList To develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use. The CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was applied to retrospective data of 851 subjects for whom corneal elevation and thickness data was available. These data were divided into four groups: a control group (312 eyes) with bilateral normal tomography, keratoconus suspect (77 eyes) with a clinically diagnosed keratoconus in one eye and a normal fellow eye, mild keratoconus (220 eyes), and moderate keratoconus (229 eyes). The proposed framework is validated using 10-cross-validation, holdout validation and ROC curves. The CAD detects suspect keratoconus with an accuracy of 96.56% (sensitivity 97.78%, specificity 95.56%) versus an accuracy of 89.00% (sensitivity 83.00%, specificity 95.00%) for Belin/Ambrosio Deviation (BADD), and an accuracy of 79.00% (sensitivity 58.00%, specificity 99.70%) for Topographical Keratoconus Classification (TKC). For the detection of mild to moderate keratoconus CAD shows nearly similar accuracies as previously described methods, with an average accuracy of 99.50% for CAD, versus 99.46% for BADD and 96.50% for TKC. The proposed algorithm also provides a 70% reduction in computation time, while increasing stability and convergence with respect to traditional machine learning techniques. The proposed algorithm is highly accurate and provides a stable screening platform to assist ophthalmologists with the early detection of keratoconus. This framework could potentially be set up for any Scheimpflug tomography system. •A computer aided diagnosis (CAD) for keratoconus detection is presented.•The capabilities of the CAD in reducing time computation is demonstrated.•An iterative method is proposed to improve the feedforward neural network.•Grossberg-Runge Kutta2 is suggested to improve the stability of the feedforward neural network.•The developed approach is platform independent and reproducible.
To develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use. The CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was applied to retrospective data of 851 subjects for whom corneal elevation and thickness data was available. These data were divided into four groups: a control group (312 eyes) with bilateral normal tomography, keratoconus suspect (77 eyes) with a clinically diagnosed keratoconus in one eye and a normal fellow eye, mild keratoconus (220 eyes), and moderate keratoconus (229 eyes). The proposed framework is validated using 10-cross-validation, holdout validation and ROC curves. The CAD detects suspect keratoconus with an accuracy of 96.56% (sensitivity 97.78%, specificity 95.56%) versus an accuracy of 89.00% (sensitivity 83.00%, specificity 95.00%) for Belin/Ambrosio Deviation (BADD), and an accuracy of 79.00% (sensitivity 58.00%, specificity 99.70%) for Topographical Keratoconus Classification (TKC). For the detection of mild to moderate keratoconus CAD shows nearly similar accuracies as previously described methods, with an average accuracy of 99.50% for CAD, versus 99.46% for BADD and 96.50% for TKC. The proposed algorithm also provides a 70% reduction in computation time, while increasing stability and convergence with respect to traditional machine learning techniques. The proposed algorithm is highly accurate and provides a stable screening platform to assist ophthalmologists with the early detection of keratoconus. This framework could potentially be set up for any Scheimpflug tomography system.
AbstractPurposeTo develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use. MethodsThe CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was applied to retrospective data of 851 subjects for whom corneal elevation and thickness data was available. These data were divided into four groups: a control group ( 312 eyes) with bilateral normal tomography, keratoconus suspect ( 77 eyes) with a clinically diagnosed keratoconus in one eye and a normal fellow eye, mild keratoconus ( 220 eyes), and moderate keratoconus ( 229 eyes). The proposed framework is validated using 10-cross-validation, holdout validation and ROC curves. ResultsThe CAD detects suspect keratoconus with an accuracy of 96.56% (sensitivity 97.78%, specificity 95.56%) versus an accuracy of 89.00% (sensitivity 83.00%, specificity 95.00%) for Belin/Ambrosio Deviation (BADD), and an accuracy of 79.00% (sensitivity 58.00%, specificity 99.70%) for Topographical Keratoconus Classification (TKC). For the detection of mild to moderate keratoconus CAD shows nearly similar accuracies as previously described methods, with an average accuracy of 99.50% for CAD, versus 99.46% for BADD and 96.50% for TKC. The proposed algorithm also provides a 70% reduction in computation time, while increasing stability and convergence with respect to traditional machine learning techniques. ConclusionThe proposed algorithm is highly accurate and provides a stable screening platform to assist ophthalmologists with the early detection of keratoconus. This framework could potentially be set up for any Scheimpflug tomography system.
PurposeTo develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use.MethodsThe CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was applied to retrospective data of 851 subjects for whom corneal elevation and thickness data was available. These data were divided into four groups: a control group (312 eyes) with bilateral normal tomography, keratoconus suspect (77 eyes) with a clinically diagnosed keratoconus in one eye and a normal fellow eye, mild keratoconus (220 eyes), and moderate keratoconus (229 eyes). The proposed framework is validated using 10-cross-validation, holdout validation and ROC curves.ResultsThe CAD detects suspect keratoconus with an accuracy of 96.56% (sensitivity 97.78%, specificity 95.56%) versus an accuracy of 89.00% (sensitivity 83.00%, specificity 95.00%) for Belin/Ambrosio Deviation (BADD), and an accuracy of 79.00% (sensitivity 58.00%, specificity 99.70%) for Topographical Keratoconus Classification (TKC). For the detection of mild to moderate keratoconus CAD shows nearly similar accuracies as previously described methods, with an average accuracy of 99.50% for CAD, versus 99.46% for BADD and 96.50% for TKC. The proposed algorithm also provides a 70% reduction in computation time, while increasing stability and convergence with respect to traditional machine learning techniques.ConclusionThe proposed algorithm is highly accurate and provides a stable screening platform to assist ophthalmologists with the early detection of keratoconus. This framework could potentially be set up for any Scheimpflug tomography system.
To develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use.PURPOSETo develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use.The CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was applied to retrospective data of 851 subjects for whom corneal elevation and thickness data was available. These data were divided into four groups: a control group (312 eyes) with bilateral normal tomography, keratoconus suspect (77 eyes) with a clinically diagnosed keratoconus in one eye and a normal fellow eye, mild keratoconus (220 eyes), and moderate keratoconus (229 eyes). The proposed framework is validated using 10-cross-validation, holdout validation and ROC curves.METHODSThe CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was applied to retrospective data of 851 subjects for whom corneal elevation and thickness data was available. These data were divided into four groups: a control group (312 eyes) with bilateral normal tomography, keratoconus suspect (77 eyes) with a clinically diagnosed keratoconus in one eye and a normal fellow eye, mild keratoconus (220 eyes), and moderate keratoconus (229 eyes). The proposed framework is validated using 10-cross-validation, holdout validation and ROC curves.The CAD detects suspect keratoconus with an accuracy of 96.56% (sensitivity 97.78%, specificity 95.56%) versus an accuracy of 89.00% (sensitivity 83.00%, specificity 95.00%) for Belin/Ambrosio Deviation (BADD), and an accuracy of 79.00% (sensitivity 58.00%, specificity 99.70%) for Topographical Keratoconus Classification (TKC). For the detection of mild to moderate keratoconus CAD shows nearly similar accuracies as previously described methods, with an average accuracy of 99.50% for CAD, versus 99.46% for BADD and 96.50% for TKC. The proposed algorithm also provides a 70% reduction in computation time, while increasing stability and convergence with respect to traditional machine learning techniques.RESULTSThe CAD detects suspect keratoconus with an accuracy of 96.56% (sensitivity 97.78%, specificity 95.56%) versus an accuracy of 89.00% (sensitivity 83.00%, specificity 95.00%) for Belin/Ambrosio Deviation (BADD), and an accuracy of 79.00% (sensitivity 58.00%, specificity 99.70%) for Topographical Keratoconus Classification (TKC). For the detection of mild to moderate keratoconus CAD shows nearly similar accuracies as previously described methods, with an average accuracy of 99.50% for CAD, versus 99.46% for BADD and 96.50% for TKC. The proposed algorithm also provides a 70% reduction in computation time, while increasing stability and convergence with respect to traditional machine learning techniques.The proposed algorithm is highly accurate and provides a stable screening platform to assist ophthalmologists with the early detection of keratoconus. This framework could potentially be set up for any Scheimpflug tomography system.CONCLUSIONThe proposed algorithm is highly accurate and provides a stable screening platform to assist ophthalmologists with the early detection of keratoconus. This framework could potentially be set up for any Scheimpflug tomography system.
Author Hershko, Sarah
Jiménez-García, Marta
Consejo, Alejandra
Koppen, Carina
Issarti, Ikram
Rozema, Jos J.
Author_xml – sequence: 1
  givenname: Ikram
  surname: Issarti
  fullname: Issarti, Ikram
  email: isarti.ikram@gmail.com
  organization: Department of Ophthalmology, Antwerp University Hospital (UZA), Edegem, Belgium
– sequence: 2
  givenname: Alejandra
  surname: Consejo
  fullname: Consejo, Alejandra
  organization: Department of Ophthalmology, Antwerp University Hospital (UZA), Edegem, Belgium
– sequence: 3
  givenname: Marta
  surname: Jiménez-García
  fullname: Jiménez-García, Marta
  organization: Department of Ophthalmology, Antwerp University Hospital (UZA), Edegem, Belgium
– sequence: 4
  givenname: Sarah
  surname: Hershko
  fullname: Hershko, Sarah
  organization: Department of Ophthalmology, Antwerp University Hospital (UZA), Edegem, Belgium
– sequence: 5
  givenname: Carina
  surname: Koppen
  fullname: Koppen, Carina
  organization: Department of Ophthalmology, Antwerp University Hospital (UZA), Edegem, Belgium
– sequence: 6
  givenname: Jos J.
  surname: Rozema
  fullname: Rozema, Jos J.
  organization: Department of Ophthalmology, Antwerp University Hospital (UZA), Edegem, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31035069$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1rFDEUhoNU7Lb6F2TAG29mPPmazXhRrIutQsEL9TpkkhPJdnayJjNC_70ZtlVYEPYqEJ7z5OQ954KcjXFEQioKDQXavts2Nu72fYg7dA0D2jUgGmDiGVlRte5qkFyckRUAhVooJs_JRc5bABDA4QU55xS4hLZbkfebIponTJUJDl3lgvk5xhxy5WOq8pz3aKfqHpOZoo3jnCuHU7kKcXxJnnszZHz1eF6SHzefvm8-13dfb79sru9qK6mYatEigpF93_YIVjrmvfSKt0oZ5y1bg-taKgVy7q3H1iolBFUSOwfIWvT8krw9ePcp_poxT3oXssVhMCPGOWvG6Fp0rFvTgr45QrdxTmPprlBcSrkGtVCvH6m5LwHqfQo7kx70UyoFuDoANsWcE3ptw2SWP0_JhEFT0MsY9Fb_G4NexqBB6DKGIlBHgqc3Tij9eCjFEunvgElnG3C06EIquWsXwymSqyOJHcIYrBnu8QHz31CozkyD_rYsyrIntONAOZNF8OH_gtN6-ANDZ9LD
CitedBy_id crossref_primary_10_1016_j_compbiomed_2020_103809
crossref_primary_10_1038_s41598_024_79363_6
crossref_primary_10_1088_2057_1976_adabea
crossref_primary_10_1016_j_compbiomed_2024_108428
crossref_primary_10_3389_fnins_2021_804273
crossref_primary_10_3390_diagnostics13162715
crossref_primary_10_1002_14651858_CD014911_pub2
crossref_primary_10_4103_sjopt_sjopt_52_23
crossref_primary_10_1136_bmjophth_2023_001589
crossref_primary_10_3389_fmed_2023_1212314
crossref_primary_10_1186_s40662_024_00376_3
crossref_primary_10_1097_APO_0000000000000394
crossref_primary_10_1142_S0219467821500169
crossref_primary_10_3390_s22207977
crossref_primary_10_1097_APO_0000000000000396
crossref_primary_10_4103_joco_joco_18_24
crossref_primary_10_1007_s00417_023_06049_6
crossref_primary_10_1007_s11042_023_17551_8
crossref_primary_10_1016_j_survophthal_2021_08_004
crossref_primary_10_1136_bmjophth_2021_000824
crossref_primary_10_1136_bmjopen_2019_031313
crossref_primary_10_1155_2021_9979560
crossref_primary_10_1016_j_clae_2019_12_006
crossref_primary_10_2196_27363
crossref_primary_10_1167_tvst_10_7_21
crossref_primary_10_1093_bioinformatics_btz763
crossref_primary_10_1167_tvst_9_13_30
crossref_primary_10_1016_j_imu_2023_101208
crossref_primary_10_3389_fcell_2023_1133680
crossref_primary_10_1038_s41598_023_46903_5
crossref_primary_10_1111_ceo_14126
crossref_primary_10_1136_bjophthalmol_2019_315651
crossref_primary_10_1007_s00417_023_06154_6
crossref_primary_10_1177_25158414241232258
crossref_primary_10_3390_s24154834
crossref_primary_10_1155_2021_5528927
crossref_primary_10_3390_jcm10153238
crossref_primary_10_1097_ICO_0000000000003669
crossref_primary_10_3389_fopht_2024_1380701
crossref_primary_10_3390_jcm11030478
crossref_primary_10_55708_js0307004
crossref_primary_10_1167_tvst_10_9_32
crossref_primary_10_3390_jcm13082378
crossref_primary_10_1016_j_ijmedinf_2021_104583
crossref_primary_10_1109_JBHI_2021_3079430
crossref_primary_10_1167_tvst_9_2_24
crossref_primary_10_1007_s12559_021_09880_3
crossref_primary_10_1167_tvst_9_7_36
crossref_primary_10_3390_electronics12041028
crossref_primary_10_3390_biology12071036
crossref_primary_10_3390_jcm10184281
crossref_primary_10_1186_s40662_024_00394_1
crossref_primary_10_1088_1757_899X_1055_1_012112
crossref_primary_10_1167_tvst_11_9_32
crossref_primary_10_1016_j_jtumed_2023_12_007
crossref_primary_10_1016_j_xcrm_2023_101095
crossref_primary_10_17816_DD624022
crossref_primary_10_3389_fdata_2023_1017420
crossref_primary_10_1097_ICO_0000000000003038
crossref_primary_10_1167_tvst_14_3_17
crossref_primary_10_1016_j_compbiomed_2021_104884
crossref_primary_10_1186_s40662_020_00213_3
Cites_doi 10.3928/1081-597X-19891101-10
10.1016/j.ajo.2019.01.023
10.1016/j.artmed.2015.07.003
10.1016/j.jcrs.2005.05.025
10.4304/jcp.7.1.161-168
10.1097/ICO.0B013E31823D1EE0
10.1016/j.ajo.2013.03.034
10.1016/j.compbiomed.2016.06.008
10.1016/j.ajo.2018.08.005
10.1016/j.ophtha.2018.06.020
10.1097/00003226-199207000-00014
10.1016/j.artmed.2004.07.006
10.1371/journal.pone.0110249
10.3928/1081597X-20180206-03
10.1016/j.jcrs.2009.03.050
10.3928/1081-597X-19950901-14
10.1097/01.ico.0000226359.26678.d1
10.1016/j.jcrs.2009.01.020
10.1016/0168-9274(95)00108-5
10.1016/S0886-3350(99)00195-9
10.1109/TBME.2008.2006019
10.1016/j.compbiomed.2016.08.011
10.1364/JOSAA.23.000219
10.1097/OPX.0b013e3182279ff8
10.1055/s-0042-100626
10.1016/j.survophthal.2017.06.009
10.1109/TITB.2006.879591
10.1016/j.ajo.2013.08.014
10.1111/j.1600-0420.2007.00981.x
10.1016/j.jcrs.2017.07.021
10.1016/S0886-3350(98)80284-8
10.1097/ICO.0000000000000834
10.1016/S1532-0464(02)00513-0
10.1097/OPX.0b013e3182928bc6
10.1167/iovs.10-6774
10.1016/j.joco.2016.01.009
10.2147/OPTO.S63486
10.1371/journal.pone.0184569
10.1161/CIRCULATIONAHA.115.001593
10.1097/01.opx.0000192350.01045.6f
10.1097/ICO.0000000000001194
10.1090/S0025-5718-1964-0159424-9
10.1167/iovs.10-5369
10.1590/S1807-59322010001200002
10.1097/OPX.0b013e3182843f2a
10.1016/j.jcrs.2017.10.042
10.5005/jp-journals-10025-1019
10.1016/0933-3657(94)90005-1
10.1016/j.jcrs.2014.04.013
10.1016/j.compbiomed.2017.10.008
10.1016/j.jcrs.2012.10.022
10.1097/ICL.0000000000000582
10.1016/0893-6080(88)90015-9
10.1016/0893-6080(90)90047-O
10.1016/j.ophtha.2012.06.005
10.3928/1081597X-20180124-01
10.1016/j.clae.2010.04.006
10.1007/BF01931672
10.1177/1120672118760146
10.3928/1081597X-20140120-02
10.1016/S0039-6257(97)00119-7
10.3928/1081-597X-20060601-05
10.3928/1081597X-20140711-07
10.1097/ICO.0000000000001639
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier Ltd.
Copyright Elsevier Limited Jun 2019
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier Ltd.
– notice: Copyright Elsevier Limited Jun 2019
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2019.04.024
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed


Research Library Prep
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 42
ExternalDocumentID 31035069
10_1016_j_compbiomed_2019_04_024
S0010482519301325
1_s2_0_S0010482519301325
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-46ee0a5bb6be0c5d2ff5f83688adfc270d96154e33fcfe6c8844185e9d0e26ef3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sat Sep 27 19:46:27 EDT 2025
Tue Oct 07 06:30:08 EDT 2025
Thu Apr 03 07:02:52 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Wed Oct 01 04:07:28 EDT 2025
Fri Feb 23 02:24:56 EST 2024
Sun Feb 23 10:19:16 EST 2025
Tue Oct 14 19:33:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Keratoconus suspect
Cornea
Mathematical modelling
Computer aided diagnosis
Unstructured data
Machine learning
Language English
License Copyright © 2019. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-46ee0a5bb6be0c5d2ff5f83688adfc270d96154e33fcfe6c8844185e9d0e26ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
PMID 31035069
PQID 2235557081
PQPubID 1226355
PageCount 10
ParticipantIDs proquest_miscellaneous_2217492971
proquest_journals_2235557081
pubmed_primary_31035069
crossref_citationtrail_10_1016_j_compbiomed_2019_04_024
crossref_primary_10_1016_j_compbiomed_2019_04_024
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_04_024
elsevier_clinicalkeyesjournals_1_s2_0_S0010482519301325
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_04_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Rabinowitz, Rasheed (bib10) 1999; 25
Liu, Gu, Wu (bib45) 2017; 91
Alió, Shabayek (bib16) 2006; 22
Schneider, Iskander, Collins (bib55) 2009; 56
Nielsen, Hjortdal, Aagaard Nohr, Ehlers (bib5) 2007; 85
Read, Collins, Iskander, Davis (bib28) 2009; 35
CASSETTE NB Studio, Saad, Gatinel (bib12) 2012; 1
Saad, Gatinel (bib24) 2010; 51
Arbelaez, Versaci, Vestri, Barboni, Savini (bib74) 2012; 119
Rabinowitz, Li, Canedo, Ambrósio, Bykhovskaya (bib81) 1995; 30
Hafezi, Hafezi (bib6) 2017; 10
McMahon, Szczotka-Flynn, Barr, Anderson, Slaughter, Lass (bib11) 2006; 25
Navarro, González, Hernández (bib53) 2006; 23
Romero-Jiménez, Santodomingo-Rubido, Wolffsohn (bib4) 2010; 33
Hecht-Nielsen (bib59) 1988; 1
Goldberger, Hinton, Roweis, Salakhutdinov (bib57) 2005; vol. 17
Kohavi (bib66) 1995; vol. 2
Mannis, Lightman, Plotnik (bib65) 1992; 11
Yang, Wang, Zuo (bib58) 2012; 7
Ramos-López, Martínez-Finkelshtein, Castro-Luna, Burguera-Gimenez, Vega-Estrada, Piñero (bib31) 2013; 90
Saad, Gatinel (bib78) 2012; 37
Navarro, Rozema, Tassignon (bib49) 2013; 90
Krumeich, Daniel, Knülle (bib15) 1998; 24
Kosekahya, Koc, Caglayan, Kiziltoprak, Atilgan, Yilmazbas (bib72) 2018; 44
Rabinowitz, McDonnell (bib20) 1989; 5
Li, Yang, Rabinowitz (bib17) 2009; 35
Rabinowitz (bib8) 1995; 11
Issarti, Rozema, Consejo (bib42) 2018; 5
Tan, Steinbach, Kumar (bib67) 2005
Saad, Guilbert, Gatinel (bib75) 2014; 30
Souza, Medeiros, Souza, Garcia, Alves (bib38) 2010; 65
Deo (bib34) 2015; 132
Hwang, Perez-Straziota, Kim, Santhiago, Randleman (bib70) 2018
Golan, Piccinini, Hwang, De Oca Gonzalez, Krauthammer, Khandelwal (bib32) 2019
Lopes, Ramos, Salomão, Guerra, Schallhorn, Schallhorn (bib77) 2018; 195
Twa, Parthasarathy, Roberts, Mahmoud, Raasch, Bullimore (bib39) 2005; 82
Kosekahya, Caglayan, Koc, Kiziltoprak, Tekin, Atilgan (bib29) 2019
Martínez-Abad, Piñero (bib80) 2017; 43
Ruiz Hidalgo, Rozema, Saad, Gatinel, Rodriguez, Zakaria (bib23) 2017; 36
Dorffner, Porenta (bib36) 1994; 6
Griffiths, Płociniczak, Schiesser (bib52) 2016; 77
Gupta, Trindade, Hooshmand, Chan (bib19) 2018; 34
Accardo, Pensiero (bib44) 2002; 35
Butcher (bib64) 1975; 15
Martínez-Finkelshtein, López, Castro, Alió (bib54) 2011; 52
Issarti, Consejo, Rozema (bib43) 2018; 59
Butcher (bib61) 2016
Belin, Duncan (bib18) 2016; 233
Goldberger, Hinton, Roweis, Salakhutdinov (bib46) 2005; vol. 17
Sedaghat, Momeni-Moghaddam, Ambrósio, Heidari, Maddah, Danesh (bib71) 2018; 37
Bae, Kim, Kim, Lim, Chung, Chung (bib82) 2014; 157
Butcher (bib63) 1996; 20
Butcher (bib62) 1964; 18
Belin, Kim, Zloty, Ambrósio, Barbara (bib50) 2012
Roberts, Dupps (bib41) 2014; 40
Cavas-Martínez, Bataille, Fernández-Pacheco, Cañavate, Alió (bib47) 2017; 12
Ishii, Kamiya, Igarashi, Shimizu, Utsumi, Kumanomido (bib21) 2012; 31
Griffiths, Płociniczak, Schiesser (bib51) 2016; 77
Piñero, Nieto, Lopez-Miguel (bib1) 2012; 38
CASSETTE NB Studio (bib76)
Marsolo, Twa, Bullimore, Parthasarathy (bib40) 2007; 11
Huseynli, Salgado-Borges, Alio (bib69) 2018; 28
Smadja, Touboul, Cohen, Doveh, Santhiago, Mello (bib73) 2013; 156
Cavas-Martínez, Fernández-Pacheco, Cruz-Sánchez, Martínez, Cañavate, Vega-Estrada (bib48) 2014; 9
Shi (bib79) 2016
Lopes, Ramos, Salomão, Guerra, Schallhorn, Schallhorn (bib25) 2018; 195
Maeda, Klyce, Smolek, Thompson (bib7) 1994; 35
Muckenhirn (bib14) 1984; 5
Clark, Ravishankar (bib60) 1990; 3
Rabinowitz (bib2) 1998; 42
Mas Tur, MacGregor, Jayaswal, O'Brart, Maycock (bib3) 2017; 62
Augusto (bib37) 2005; 33
Ruiz Hidalgo, Rodriguez, Rozema, Ní Dhubhghaill, Zakaria, Tassignon (bib22) 2016; 35
Hashemi, Beiranvand, Yekta, Maleki, Yazdani, Khabazkhoob (bib33) 2016; 28
Smolek, Klyce (bib9) 1997; 38
Issarti, Rozema, Consejo (bib27) 2018; 5
Issarti, Consejo, Rozema (bib26) 2018; 59
Smolek, Klyce (bib56) 2005; 31
Ramos-López, Martínez-Finkelshtein, Castro-Luna, Piñero, Alió (bib30) 2011; 88
Shajari, Jaffary, Herrmann, Grunwald, Steinwender, Mayer (bib68) 2018; 34
Belin, Khachikian (bib13) 2008
Peek, Combi, Marin, Bellazzi (bib35) 2015; 65
Rabinowitz (10.1016/j.compbiomed.2019.04.024_bib2) 1998; 42
Bae (10.1016/j.compbiomed.2019.04.024_bib82) 2014; 157
Lopes (10.1016/j.compbiomed.2019.04.024_bib25) 2018; 195
Cavas-Martínez (10.1016/j.compbiomed.2019.04.024_bib47) 2017; 12
Griffiths (10.1016/j.compbiomed.2019.04.024_bib52) 2016; 77
Rabinowitz (10.1016/j.compbiomed.2019.04.024_bib20) 1989; 5
Huseynli (10.1016/j.compbiomed.2019.04.024_bib69) 2018; 28
Ishii (10.1016/j.compbiomed.2019.04.024_bib21) 2012; 31
Issarti (10.1016/j.compbiomed.2019.04.024_bib43) 2018; 59
Roberts (10.1016/j.compbiomed.2019.04.024_bib41) 2014; 40
Ruiz Hidalgo (10.1016/j.compbiomed.2019.04.024_bib23) 2017; 36
Rabinowitz (10.1016/j.compbiomed.2019.04.024_bib8) 1995; 11
Marsolo (10.1016/j.compbiomed.2019.04.024_bib40) 2007; 11
Butcher (10.1016/j.compbiomed.2019.04.024_bib62) 1964; 18
Smolek (10.1016/j.compbiomed.2019.04.024_bib9) 1997; 38
Smadja (10.1016/j.compbiomed.2019.04.024_bib73) 2013; 156
Deo (10.1016/j.compbiomed.2019.04.024_bib34) 2015; 132
Mannis (10.1016/j.compbiomed.2019.04.024_bib65) 1992; 11
Ramos-López (10.1016/j.compbiomed.2019.04.024_bib30) 2011; 88
Li (10.1016/j.compbiomed.2019.04.024_bib17) 2009; 35
Maeda (10.1016/j.compbiomed.2019.04.024_bib7) 1994; 35
Smolek (10.1016/j.compbiomed.2019.04.024_bib56) 2005; 31
Alió (10.1016/j.compbiomed.2019.04.024_bib16) 2006; 22
Navarro (10.1016/j.compbiomed.2019.04.024_bib49) 2013; 90
Mas Tur (10.1016/j.compbiomed.2019.04.024_bib3) 2017; 62
Cavas-Martínez (10.1016/j.compbiomed.2019.04.024_bib48) 2014; 9
CASSETTE NB Studio (10.1016/j.compbiomed.2019.04.024_bib76)
Accardo (10.1016/j.compbiomed.2019.04.024_bib44) 2002; 35
Hafezi (10.1016/j.compbiomed.2019.04.024_bib6) 2017; 10
Saad (10.1016/j.compbiomed.2019.04.024_bib24) 2010; 51
Butcher (10.1016/j.compbiomed.2019.04.024_bib63) 1996; 20
Schneider (10.1016/j.compbiomed.2019.04.024_bib55) 2009; 56
Liu (10.1016/j.compbiomed.2019.04.024_bib45) 2017; 91
Romero-Jiménez (10.1016/j.compbiomed.2019.04.024_bib4) 2010; 33
Tan (10.1016/j.compbiomed.2019.04.024_bib67) 2005
Goldberger (10.1016/j.compbiomed.2019.04.024_bib46) 2005; vol. 17
Piñero (10.1016/j.compbiomed.2019.04.024_bib1) 2012; 38
Butcher (10.1016/j.compbiomed.2019.04.024_bib61) 2016
Shajari (10.1016/j.compbiomed.2019.04.024_bib68) 2018; 34
Hwang (10.1016/j.compbiomed.2019.04.024_bib70) 2018
Kohavi (10.1016/j.compbiomed.2019.04.024_bib66) 1995; vol. 2
CASSETTE NB Studio (10.1016/j.compbiomed.2019.04.024_bib12) 2012; 1
Issarti (10.1016/j.compbiomed.2019.04.024_bib42) 2018; 5
Navarro (10.1016/j.compbiomed.2019.04.024_bib53) 2006; 23
Hecht-Nielsen (10.1016/j.compbiomed.2019.04.024_bib59) 1988; 1
Issarti (10.1016/j.compbiomed.2019.04.024_bib26) 2018; 59
Ramos-López (10.1016/j.compbiomed.2019.04.024_bib31) 2013; 90
Martínez-Finkelshtein (10.1016/j.compbiomed.2019.04.024_bib54) 2011; 52
McMahon (10.1016/j.compbiomed.2019.04.024_bib11) 2006; 25
Arbelaez (10.1016/j.compbiomed.2019.04.024_bib74) 2012; 119
Twa (10.1016/j.compbiomed.2019.04.024_bib39) 2005; 82
Read (10.1016/j.compbiomed.2019.04.024_bib28) 2009; 35
Lopes (10.1016/j.compbiomed.2019.04.024_bib77) 2018; 195
Sedaghat (10.1016/j.compbiomed.2019.04.024_bib71) 2018; 37
Issarti (10.1016/j.compbiomed.2019.04.024_bib27) 2018; 5
Goldberger (10.1016/j.compbiomed.2019.04.024_bib57) 2005; vol. 17
Kosekahya (10.1016/j.compbiomed.2019.04.024_bib29) 2019
Shi (10.1016/j.compbiomed.2019.04.024_bib79) 2016
Muckenhirn (10.1016/j.compbiomed.2019.04.024_bib14) 1984; 5
Ruiz Hidalgo (10.1016/j.compbiomed.2019.04.024_bib22) 2016; 35
Saad (10.1016/j.compbiomed.2019.04.024_bib75) 2014; 30
Krumeich (10.1016/j.compbiomed.2019.04.024_bib15) 1998; 24
Yang (10.1016/j.compbiomed.2019.04.024_bib58) 2012; 7
Saad (10.1016/j.compbiomed.2019.04.024_bib78) 2012; 37
Belin (10.1016/j.compbiomed.2019.04.024_bib50) 2012
Dorffner (10.1016/j.compbiomed.2019.04.024_bib36) 1994; 6
Golan (10.1016/j.compbiomed.2019.04.024_bib32) 2019
Clark (10.1016/j.compbiomed.2019.04.024_bib60) 1990; 3
Belin (10.1016/j.compbiomed.2019.04.024_bib13) 2008
Griffiths (10.1016/j.compbiomed.2019.04.024_bib51) 2016; 77
Augusto (10.1016/j.compbiomed.2019.04.024_bib37) 2005; 33
Belin (10.1016/j.compbiomed.2019.04.024_bib18) 2016; 233
Martínez-Abad (10.1016/j.compbiomed.2019.04.024_bib80) 2017; 43
Souza (10.1016/j.compbiomed.2019.04.024_bib38) 2010; 65
Rabinowitz (10.1016/j.compbiomed.2019.04.024_bib10) 1999; 25
Kosekahya (10.1016/j.compbiomed.2019.04.024_bib72) 2018; 44
Nielsen (10.1016/j.compbiomed.2019.04.024_bib5) 2007; 85
Peek (10.1016/j.compbiomed.2019.04.024_bib35) 2015; 65
Gupta (10.1016/j.compbiomed.2019.04.024_bib19) 2018; 34
Hashemi (10.1016/j.compbiomed.2019.04.024_bib33) 2016; 28
Rabinowitz (10.1016/j.compbiomed.2019.04.024_bib81) 1995; 30
Butcher (10.1016/j.compbiomed.2019.04.024_bib64) 1975; 15
References_xml – volume: 82
  start-page: 1038
  year: 2005
  end-page: 1046
  ident: bib39
  article-title: Automated decision tree classification of corneal shape
  publication-title: Optom Vis Sci Off Publ Am Acad Optom
– volume: 34
  start-page: 254
  year: 2018
  end-page: 259
  ident: bib68
  article-title: Early tomographic changes in the eyes of patients with keratoconus
  publication-title: J. Refract. Surg.
– volume: 5
  year: 2018
  ident: bib27
  article-title: Corneal modeling and Keratoconus identification
  publication-title: Biomath Commun Suppl
– year: 2018
  ident: bib70
  article-title: Distinguishing highly asymmetric keratoconus eyes using combined Scheimpflug and spectral domain OCT analysis
  publication-title: Ophthalmology
– volume: 35
  start-page: 2749
  year: 1994
  end-page: 2757
  ident: bib7
  article-title: Automated keratoconus screening with corneal topography analysis
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 5
  start-page: 87
  year: 1984
  end-page: 94
  ident: bib14
  article-title: Die Anpassung von asphärischen Kontaktlinsen bei Keratokonus unter Berücksichtigung der geometrisch-optischen Verhältnisse der Hornhaut
  publication-title: Neues Opt J
– volume: vol. 17
  start-page: 513
  year: 2005
  end-page: 520
  ident: bib57
  article-title: Neighbourhood components analysis
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 25
  start-page: 1327
  year: 1999
  end-page: 1335
  ident: bib10
  article-title: KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus
  publication-title: J. Cataract Refract. Surg.
– year: 2012
  ident: bib50
  article-title: Simplified Nomenclature for Describing Keratoconus
– volume: 37
  start-page: 1025
  year: 2018
  end-page: 1034
  ident: bib71
  article-title: Diagnostic ability of corneal shape and biomechanical parameters for detecting frank keratoconus
  publication-title: Cornea
– volume: 44
  start-page: 63
  year: 2018
  end-page: 70
  ident: bib72
  article-title: Repeatability and reliability of ectasia display and topometric indices with the Scheimpflug system in normal and keratoconic eyes
  publication-title: J. Cataract Refract. Surg.
– volume: 157
  year: 2014
  ident: bib82
  article-title: Corneal topographic and tomographic analysis of fellow eyes in unilateral keratoconus patients using Pentacam
  publication-title: Am. J. Ophthalmol.
– volume: 31
  start-page: 2350
  year: 2005
  end-page: 2355
  ident: bib56
  article-title: Goodness-of-prediction of Zernike polynomial fitting to corneal surfaces
  publication-title: J. Cataract Refract. Surg.
– volume: 132
  start-page: 1920
  year: 2015
  end-page: 1930
  ident: bib34
  article-title: Machine learning in medicine
  publication-title: Circulation
– volume: 36
  start-page: 689
  year: 2017
  ident: bib23
  article-title: Validation of an objective keratoconus detection system implemented in a Scheimpflug tomographer and comparison with other methods
  publication-title: Cornea
– volume: 38
  start-page: 2167
  year: 2012
  end-page: 2183
  ident: bib1
  article-title: Characterization of corneal structure in keratoconus
  publication-title: J. Cataract Refract. Surg.
– volume: vol. 17
  start-page: 513
  year: 2005
  end-page: 520
  ident: bib46
  article-title: Neighbourhood components analysis
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 11
  start-page: 203
  year: 2007
  end-page: 212
  ident: bib40
  article-title: Spatial modeling and classification of corneal shape
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 23
  start-page: 219
  year: 2006
  end-page: 232
  ident: bib53
  article-title: Optics of the average normal cornea from general and canonical representations of its surface topography
  publication-title: J Opt Soc Am A Opt Image Sci Vis
– volume: 40
  start-page: 991
  year: 2014
  end-page: 998
  ident: bib41
  article-title: Biomechanics of corneal ectasia and biomechanical treatments
  publication-title: J. Cataract Refract. Surg.
– volume: 42
  start-page: 297
  year: 1998
  end-page: 319
  ident: bib2
  publication-title: Keratoconus. Surv Ophthalmol
– volume: 85
  start-page: 890
  year: 2007
  end-page: 892
  ident: bib5
  article-title: Incidence and prevalence of keratoconus in Denmark
  publication-title: Acta Ophthalmol. Scand.
– volume: 35
  start-page: 1072
  year: 2009
  end-page: 1081
  ident: bib28
  article-title: Corneal topography with Scheimpflug imaging and videokeratography: comparative study of normal eyes
  publication-title: J. Cataract Refract. Surg.
– volume: 35
  start-page: 151
  year: 2002
  end-page: 159
  ident: bib44
  article-title: Neural network-based system for early keratoconus detection from corneal topography
  publication-title: J. Biomed. Inform.
– volume: 3
  start-page: 87
  year: 1990
  end-page: 92
  ident: bib60
  article-title: A convergence theorem for Grossberg learning
  publication-title: Neural Network.
– volume: 33
  start-page: 157
  year: 2010
  end-page: 166
  ident: bib4
  article-title: Keratoconus: a review
  publication-title: Contact Lens Anterior Eye
– year: 2019
  ident: bib29
  article-title: Longitudinal evaluation of the progression of keratoconus using a novel progression display
  publication-title: Eye Contact Lens
– volume: 6
  start-page: 417
  year: 1994
  end-page: 435
  ident: bib36
  article-title: On using feedforward neural networks for clinical diagnostic tasks
  publication-title: Artif. Intell. Med.
– volume: 11
  start-page: 371
  year: 1995
  end-page: 379
  ident: bib8
  article-title: Videokeratographic indices to aid in screening for keratoconus
  publication-title: J Refract Surg Thorofare NJ
– volume: 119
  start-page: 2231
  year: 2012
  end-page: 2238
  ident: bib74
  article-title: Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data
  publication-title: Ophthalmology
– volume: 62
  start-page: 770
  year: 2017
  end-page: 783
  ident: bib3
  article-title: A review of keratoconus: diagnosis, pathophysiology, and genetics
  publication-title: Surv. Ophthalmol.
– volume: 43
  start-page: 1213
  year: 2017
  end-page: 1227
  ident: bib80
  article-title: New perspectives on the detection and progression of keratoconus
  publication-title: J. Cataract Refract. Surg.
– volume: 24
  start-page: 456
  year: 1998
  end-page: 463
  ident: bib15
  article-title: Live-epikeratophakia for keratoconus
  publication-title: J. Cataract Refract. Surg.
– volume: 10
  start-page: 91
  year: 2017
  end-page: 92
  ident: bib6
  article-title: Is keratoconus really rare?
  publication-title: Keratoconus Really Rare
– volume: 91
  start-page: 103
  year: 2017
  end-page: 111
  ident: bib45
  article-title: Feature selection method based on support vector machine and shape analysis for high-throughput medical data
  publication-title: Comput. Biol. Med.
– volume: 195
  start-page: 223
  year: 2018
  end-page: 232
  ident: bib77
  article-title: Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence
  publication-title: Am. J. Ophthalmol.
– volume: 88
  start-page: 1220
  year: 2011
  end-page: 1231
  ident: bib30
  article-title: Placido-based indices of corneal irregularity
  publication-title: Optom Vis Sci Off Publ Am Acad Optom
– volume: 77
  start-page: 285
  year: 2016
  end-page: 296
  ident: bib51
  article-title: Analysis of cornea curvature using radial basis functions – Part II: fitting to data-set
  publication-title: Comput. Biol. Med.
– volume: 34
  start-page: 260
  year: 2018
  end-page: 263
  ident: bib19
  article-title: Variation in the best fit sphere radius of curvature as a test to detect keratoconus progression on a scheimpflug-based corneal tomographer
  publication-title: J Refract Surg Thorofare NJ
– volume: 22
  start-page: 539
  year: 2006
  end-page: 545
  ident: bib16
  article-title: Corneal higher order aberrations: a method to grade keratoconus
  publication-title: J. Refract. Surg.
– volume: 9
  year: 2014
  ident: bib48
  article-title: Geometrical custom modeling of human cornea in vivo and its use for the diagnosis of corneal ectasia
  publication-title: PLoS One
– volume: 28
  start-page: 521
  year: 2018
  end-page: 534
  ident: bib69
  article-title: Comparative evaluation of Scheimpflug tomography parameters between thin non-keratoconic, subclinical keratoconic, and mild keratoconic corneas
  publication-title: Eur. J. Ophthalmol.
– volume: 35
  start-page: 1597
  year: 2009
  end-page: 1603
  ident: bib17
  article-title: Keratoconus: classification scheme based on videokeratography and clinical signs
  publication-title: J. Cataract Refract. Surg.
– volume: 65
  start-page: 61
  year: 2015
  end-page: 73
  ident: bib35
  article-title: Thirty years of artificial intelligence in medicine (AIME) conferences: a review of research themes
  publication-title: Artif. Intell. Med.
– volume: 35
  start-page: 827
  year: 2016
  ident: bib22
  article-title: Evaluation of a machine-learning classifier for keratoconus detection based on Scheimpflug tomography
  publication-title: Cornea
– volume: 195
  start-page: 223
  year: 2018
  end-page: 232
  ident: bib25
  article-title: Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence
  publication-title: Am. J. Ophthalmol.
– volume: 28
  start-page: 21
  year: 2016
  end-page: 26
  ident: bib33
  article-title: Pentacam top indices for diagnosing subclinical and definite keratoconus
  publication-title: J Curr Ophthalmol
– volume: 7
  year: 2012
  ident: bib58
  article-title: Neighborhood component feature selection for high-dimensional data
  publication-title: J. Comput.
– volume: 31
  start-page: 253
  year: 2012
  end-page: 258
  ident: bib21
  article-title: Correlation of corneal elevation with severity of keratoconus by means of anterior and posterior topographic analysis
  publication-title: Cornea
– volume: 59
  year: 2018
  ident: bib43
  article-title: Elevation-based detection of keratoconus
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 15
  start-page: 358
  year: 1975
  end-page: 361
  ident: bib64
  article-title: A stability property of implicit Runge-Kutta methods
  publication-title: BIT Numer Math
– volume: 30
  start-page: 80
  year: 1995
  end-page: 87
  ident: bib81
  article-title: Optical coherence tomography combined with videokeratography to differentiate mild keratoconus subtypes
  publication-title: J Refract Surg Thorofare NJ
– volume: 25
  start-page: 794
  year: 2006
  end-page: 800
  ident: bib11
  article-title: A new method for grading the severity of keratoconus: the Keratoconus Severity Score (KSS)
  publication-title: Cornea
– volume: 12
  year: 2017
  ident: bib47
  article-title: A new approach to keratoconus detection based on corneal morphogeometric analysis
  publication-title: PLoS One
– volume: 20
  start-page: 247
  year: 1996
  end-page: 260
  ident: bib63
  article-title: A history of Runge-Kutta methods
  publication-title: Appl. Numer. Math.
– volume: 51
  start-page: 5546
  year: 2010
  end-page: 5555
  ident: bib24
  article-title: Topographic and tomographic properties of forme fruste keratoconus corneas
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 156
  start-page: 237
  year: 2013
  end-page: 246
  ident: bib73
  article-title: Detection of subclinical keratoconus using an automated decision tree classification
  publication-title: Am. J. Ophthalmol.
– volume: 5
  start-page: 400
  year: 1989
  end-page: 408
  ident: bib20
  article-title: Computer-assisted corneal topography in keratoconus
  publication-title: J. Refract. Surg.
– volume: 1
  start-page: 100
  year: 2012
  end-page: 108
  ident: bib12
  article-title: Validation of a new scoring system for the detection of early forme of keratoconus
  publication-title: Int. J. Keratoconus Ectatic Corneal Dis.
– volume: 56
  start-page: 493
  year: 2009
  end-page: 499
  ident: bib55
  article-title: Modeling corneal surfaces with rational functions for high-speed videokeratoscopy data compression
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 90
  start-page: 587
  year: 2013
  end-page: 598
  ident: bib49
  article-title: Optical changes of the human cornea as a function of age
  publication-title: Optom Vis Sci Off Publ Am Acad Optom
– volume: 18
  start-page: 50
  year: 1964
  end-page: 64
  ident: bib62
  article-title: Implicit Runge-Kutta processes
  publication-title: Math. Comput.
– year: 2019
  ident: bib32
  article-title: Distinguishing highly asymmetric keratoconus eyes using dual scheimpflug/placido analysis
  publication-title: Am. J. Ophthalmol.
– volume: 1
  start-page: 131
  year: 1988
  end-page: 139
  ident: bib59
  article-title: Applications of counterpropagation networks
  publication-title: Neural Network.
– volume: 65
  start-page: 1223
  year: 2010
  end-page: 1228
  ident: bib38
  article-title: Evaluation of machine learning classifiers in keratoconus detection from orbscan II examinations
  publication-title: Clinics
– ident: bib76
  article-title: Screening subclinical keratoconus with SCORE Analyzer
– volume: 77
  start-page: 274
  year: 2016
  end-page: 284
  ident: bib52
  article-title: Analysis of cornea curvature using radial basis functions – Part I: Methodology
  publication-title: Comput. Biol. Med.
– volume: 38
  start-page: 2290
  year: 1997
  end-page: 2299
  ident: bib9
  article-title: Current keratoconus detection methods compared with a neural network approach
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 90
  start-page: 335
  year: 2013
  end-page: 343
  ident: bib31
  article-title: Screening subclinical keratoconus with placido-based corneal indices
  publication-title: Optom Vis Sci Off Publ Am Acad Optom
– year: 2008
  ident: bib13
  article-title: Keratoconus/Ectasia Detection with the Oculus Pentacam : Belin/Ambrósio Enhanced Ectasia Display
– year: 2016
  ident: bib61
  article-title: Numerical Methods for Ordinary Differential Equations
– volume: vol. 2
  start-page: 1137
  year: 1995
  end-page: 1143
  ident: bib66
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
  publication-title: Proc. 14th Int. Jt. Conf. Artif. Intell.
– volume: 33
  start-page: 1
  year: 2005
  end-page: 24
  ident: bib37
  article-title: Temporal reasoning for decision support in medicine
  publication-title: Artif. Intell. Med.
– year: 2016
  ident: bib79
  article-title: Strategies for improving the early diagnosis of keratoconus
  publication-title: Clin. Optom.
– volume: 233
  start-page: 701
  year: 2016
  end-page: 707
  ident: bib18
  article-title: Keratoconus: the ABCD grading system
  publication-title: Klin. Monatsbl. Augenheilkd.
– volume: 52
  start-page: 4963
  year: 2011
  end-page: 4970
  ident: bib54
  article-title: Adaptive cornea modeling from keratometric data
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 5
  year: 2018
  ident: bib42
  article-title: Corneal modeling and Keratoconus identification
  publication-title: Biomath Commun Suppl
– volume: 59
  year: 2018
  ident: bib26
  article-title: Elevation-based detection of keratoconus
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 37
  start-page: 37
  year: 2012
  end-page: 38
  ident: bib78
  article-title: Validation of a new scoring system for the detection of early forme of keratoconus
  publication-title: Age
– volume: 30
  start-page: 542
  year: 2014
  end-page: 547
  ident: bib75
  article-title: Corneal enantiomorphism in normal and keratoconic eyes
  publication-title: J. Refract. Surg.
– volume: 11
  start-page: 351
  year: 1992
  end-page: 354
  ident: bib65
  article-title: Corneal topography of posterior keratoconus
  publication-title: Cornea
– year: 2005
  ident: bib67
  article-title: Introduction to Data Mining
– volume: 5
  start-page: 400
  year: 1989
  ident: 10.1016/j.compbiomed.2019.04.024_bib20
  article-title: Computer-assisted corneal topography in keratoconus
  publication-title: J. Refract. Surg.
  doi: 10.3928/1081-597X-19891101-10
– volume: vol. 17
  start-page: 513
  year: 2005
  ident: 10.1016/j.compbiomed.2019.04.024_bib57
  article-title: Neighbourhood components analysis
– year: 2019
  ident: 10.1016/j.compbiomed.2019.04.024_bib32
  article-title: Distinguishing highly asymmetric keratoconus eyes using dual scheimpflug/placido analysis
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2019.01.023
– volume: 65
  start-page: 61
  year: 2015
  ident: 10.1016/j.compbiomed.2019.04.024_bib35
  article-title: Thirty years of artificial intelligence in medicine (AIME) conferences: a review of research themes
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2015.07.003
– year: 2012
  ident: 10.1016/j.compbiomed.2019.04.024_bib50
– volume: 31
  start-page: 2350
  year: 2005
  ident: 10.1016/j.compbiomed.2019.04.024_bib56
  article-title: Goodness-of-prediction of Zernike polynomial fitting to corneal surfaces
  publication-title: J. Cataract Refract. Surg.
  doi: 10.1016/j.jcrs.2005.05.025
– volume: 7
  year: 2012
  ident: 10.1016/j.compbiomed.2019.04.024_bib58
  article-title: Neighborhood component feature selection for high-dimensional data
  publication-title: J. Comput.
  doi: 10.4304/jcp.7.1.161-168
– volume: 31
  start-page: 253
  year: 2012
  ident: 10.1016/j.compbiomed.2019.04.024_bib21
  article-title: Correlation of corneal elevation with severity of keratoconus by means of anterior and posterior topographic analysis
  publication-title: Cornea
  doi: 10.1097/ICO.0B013E31823D1EE0
– volume: 156
  start-page: 237
  year: 2013
  ident: 10.1016/j.compbiomed.2019.04.024_bib73
  article-title: Detection of subclinical keratoconus using an automated decision tree classification
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2013.03.034
– volume: 77
  start-page: 285
  year: 2016
  ident: 10.1016/j.compbiomed.2019.04.024_bib51
  article-title: Analysis of cornea curvature using radial basis functions – Part II: fitting to data-set
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.06.008
– volume: 5
  year: 2018
  ident: 10.1016/j.compbiomed.2019.04.024_bib42
  article-title: Corneal modeling and Keratoconus identification
  publication-title: Biomath Commun Suppl
– volume: 195
  start-page: 223
  year: 2018
  ident: 10.1016/j.compbiomed.2019.04.024_bib77
  article-title: Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2018.08.005
– year: 2018
  ident: 10.1016/j.compbiomed.2019.04.024_bib70
  article-title: Distinguishing highly asymmetric keratoconus eyes using combined Scheimpflug and spectral domain OCT analysis
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.06.020
– volume: 11
  start-page: 351
  year: 1992
  ident: 10.1016/j.compbiomed.2019.04.024_bib65
  article-title: Corneal topography of posterior keratoconus
  publication-title: Cornea
  doi: 10.1097/00003226-199207000-00014
– volume: 33
  start-page: 1
  year: 2005
  ident: 10.1016/j.compbiomed.2019.04.024_bib37
  article-title: Temporal reasoning for decision support in medicine
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2004.07.006
– volume: 9
  year: 2014
  ident: 10.1016/j.compbiomed.2019.04.024_bib48
  article-title: Geometrical custom modeling of human cornea in vivo and its use for the diagnosis of corneal ectasia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0110249
– volume: 34
  start-page: 260
  year: 2018
  ident: 10.1016/j.compbiomed.2019.04.024_bib19
  article-title: Variation in the best fit sphere radius of curvature as a test to detect keratoconus progression on a scheimpflug-based corneal tomographer
  publication-title: J Refract Surg Thorofare NJ
  doi: 10.3928/1081597X-20180206-03
– volume: 59
  year: 2018
  ident: 10.1016/j.compbiomed.2019.04.024_bib26
  article-title: Elevation-based detection of keratoconus
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 35
  start-page: 1597
  year: 2009
  ident: 10.1016/j.compbiomed.2019.04.024_bib17
  article-title: Keratoconus: classification scheme based on videokeratography and clinical signs
  publication-title: J. Cataract Refract. Surg.
  doi: 10.1016/j.jcrs.2009.03.050
– volume: 11
  start-page: 371
  year: 1995
  ident: 10.1016/j.compbiomed.2019.04.024_bib8
  article-title: Videokeratographic indices to aid in screening for keratoconus
  publication-title: J Refract Surg Thorofare NJ
  doi: 10.3928/1081-597X-19950901-14
– volume: 25
  start-page: 794
  year: 2006
  ident: 10.1016/j.compbiomed.2019.04.024_bib11
  article-title: A new method for grading the severity of keratoconus: the Keratoconus Severity Score (KSS)
  publication-title: Cornea
  doi: 10.1097/01.ico.0000226359.26678.d1
– volume: 35
  start-page: 1072
  year: 2009
  ident: 10.1016/j.compbiomed.2019.04.024_bib28
  article-title: Corneal topography with Scheimpflug imaging and videokeratography: comparative study of normal eyes
  publication-title: J. Cataract Refract. Surg.
  doi: 10.1016/j.jcrs.2009.01.020
– ident: 10.1016/j.compbiomed.2019.04.024_bib76
– volume: 20
  start-page: 247
  year: 1996
  ident: 10.1016/j.compbiomed.2019.04.024_bib63
  article-title: A history of Runge-Kutta methods
  publication-title: Appl. Numer. Math.
  doi: 10.1016/0168-9274(95)00108-5
– volume: 25
  start-page: 1327
  year: 1999
  ident: 10.1016/j.compbiomed.2019.04.024_bib10
  article-title: KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus
  publication-title: J. Cataract Refract. Surg.
  doi: 10.1016/S0886-3350(99)00195-9
– volume: 56
  start-page: 493
  year: 2009
  ident: 10.1016/j.compbiomed.2019.04.024_bib55
  article-title: Modeling corneal surfaces with rational functions for high-speed videokeratoscopy data compression
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2006019
– year: 2016
  ident: 10.1016/j.compbiomed.2019.04.024_bib61
– volume: 77
  start-page: 274
  year: 2016
  ident: 10.1016/j.compbiomed.2019.04.024_bib52
  article-title: Analysis of cornea curvature using radial basis functions – Part I: Methodology
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.08.011
– volume: 23
  start-page: 219
  year: 2006
  ident: 10.1016/j.compbiomed.2019.04.024_bib53
  article-title: Optics of the average normal cornea from general and canonical representations of its surface topography
  publication-title: J Opt Soc Am A Opt Image Sci Vis
  doi: 10.1364/JOSAA.23.000219
– volume: 88
  start-page: 1220
  year: 2011
  ident: 10.1016/j.compbiomed.2019.04.024_bib30
  article-title: Placido-based indices of corneal irregularity
  publication-title: Optom Vis Sci Off Publ Am Acad Optom
  doi: 10.1097/OPX.0b013e3182279ff8
– volume: 233
  start-page: 701
  year: 2016
  ident: 10.1016/j.compbiomed.2019.04.024_bib18
  article-title: Keratoconus: the ABCD grading system
  publication-title: Klin. Monatsbl. Augenheilkd.
  doi: 10.1055/s-0042-100626
– volume: 62
  start-page: 770
  year: 2017
  ident: 10.1016/j.compbiomed.2019.04.024_bib3
  article-title: A review of keratoconus: diagnosis, pathophysiology, and genetics
  publication-title: Surv. Ophthalmol.
  doi: 10.1016/j.survophthal.2017.06.009
– volume: 11
  start-page: 203
  year: 2007
  ident: 10.1016/j.compbiomed.2019.04.024_bib40
  article-title: Spatial modeling and classification of corneal shape
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2006.879591
– volume: 157
  year: 2014
  ident: 10.1016/j.compbiomed.2019.04.024_bib82
  article-title: Corneal topographic and tomographic analysis of fellow eyes in unilateral keratoconus patients using Pentacam
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2013.08.014
– volume: 85
  start-page: 890
  year: 2007
  ident: 10.1016/j.compbiomed.2019.04.024_bib5
  article-title: Incidence and prevalence of keratoconus in Denmark
  publication-title: Acta Ophthalmol. Scand.
  doi: 10.1111/j.1600-0420.2007.00981.x
– volume: 43
  start-page: 1213
  year: 2017
  ident: 10.1016/j.compbiomed.2019.04.024_bib80
  article-title: New perspectives on the detection and progression of keratoconus
  publication-title: J. Cataract Refract. Surg.
  doi: 10.1016/j.jcrs.2017.07.021
– volume: 24
  start-page: 456
  year: 1998
  ident: 10.1016/j.compbiomed.2019.04.024_bib15
  article-title: Live-epikeratophakia for keratoconus
  publication-title: J. Cataract Refract. Surg.
  doi: 10.1016/S0886-3350(98)80284-8
– volume: 35
  start-page: 827
  year: 2016
  ident: 10.1016/j.compbiomed.2019.04.024_bib22
  article-title: Evaluation of a machine-learning classifier for keratoconus detection based on Scheimpflug tomography
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000000834
– volume: 35
  start-page: 151
  year: 2002
  ident: 10.1016/j.compbiomed.2019.04.024_bib44
  article-title: Neural network-based system for early keratoconus detection from corneal topography
  publication-title: J. Biomed. Inform.
  doi: 10.1016/S1532-0464(02)00513-0
– year: 2005
  ident: 10.1016/j.compbiomed.2019.04.024_bib67
– volume: 59
  year: 2018
  ident: 10.1016/j.compbiomed.2019.04.024_bib43
  article-title: Elevation-based detection of keratoconus
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 90
  start-page: 587
  year: 2013
  ident: 10.1016/j.compbiomed.2019.04.024_bib49
  article-title: Optical changes of the human cornea as a function of age
  publication-title: Optom Vis Sci Off Publ Am Acad Optom
  doi: 10.1097/OPX.0b013e3182928bc6
– volume: 52
  start-page: 4963
  year: 2011
  ident: 10.1016/j.compbiomed.2019.04.024_bib54
  article-title: Adaptive cornea modeling from keratometric data
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.10-6774
– volume: 28
  start-page: 21
  year: 2016
  ident: 10.1016/j.compbiomed.2019.04.024_bib33
  article-title: Pentacam top indices for diagnosing subclinical and definite keratoconus
  publication-title: J Curr Ophthalmol
  doi: 10.1016/j.joco.2016.01.009
– volume: 195
  start-page: 223
  year: 2018
  ident: 10.1016/j.compbiomed.2019.04.024_bib25
  article-title: Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2018.08.005
– year: 2016
  ident: 10.1016/j.compbiomed.2019.04.024_bib79
  article-title: Strategies for improving the early diagnosis of keratoconus
  publication-title: Clin. Optom.
  doi: 10.2147/OPTO.S63486
– volume: vol. 17
  start-page: 513
  year: 2005
  ident: 10.1016/j.compbiomed.2019.04.024_bib46
  article-title: Neighbourhood components analysis
– volume: 12
  year: 2017
  ident: 10.1016/j.compbiomed.2019.04.024_bib47
  article-title: A new approach to keratoconus detection based on corneal morphogeometric analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0184569
– volume: 132
  start-page: 1920
  year: 2015
  ident: 10.1016/j.compbiomed.2019.04.024_bib34
  article-title: Machine learning in medicine
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.001593
– volume: 82
  start-page: 1038
  year: 2005
  ident: 10.1016/j.compbiomed.2019.04.024_bib39
  article-title: Automated decision tree classification of corneal shape
  publication-title: Optom Vis Sci Off Publ Am Acad Optom
  doi: 10.1097/01.opx.0000192350.01045.6f
– volume: 36
  start-page: 689
  year: 2017
  ident: 10.1016/j.compbiomed.2019.04.024_bib23
  article-title: Validation of an objective keratoconus detection system implemented in a Scheimpflug tomographer and comparison with other methods
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000001194
– volume: 18
  start-page: 50
  year: 1964
  ident: 10.1016/j.compbiomed.2019.04.024_bib62
  article-title: Implicit Runge-Kutta processes
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1964-0159424-9
– volume: 51
  start-page: 5546
  year: 2010
  ident: 10.1016/j.compbiomed.2019.04.024_bib24
  article-title: Topographic and tomographic properties of forme fruste keratoconus corneas
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.10-5369
– volume: 65
  start-page: 1223
  year: 2010
  ident: 10.1016/j.compbiomed.2019.04.024_bib38
  article-title: Evaluation of machine learning classifiers in keratoconus detection from orbscan II examinations
  publication-title: Clinics
  doi: 10.1590/S1807-59322010001200002
– volume: 37
  start-page: 37
  year: 2012
  ident: 10.1016/j.compbiomed.2019.04.024_bib78
  article-title: Validation of a new scoring system for the detection of early forme of keratoconus
  publication-title: Age
– volume: 90
  start-page: 335
  year: 2013
  ident: 10.1016/j.compbiomed.2019.04.024_bib31
  article-title: Screening subclinical keratoconus with placido-based corneal indices
  publication-title: Optom Vis Sci Off Publ Am Acad Optom
  doi: 10.1097/OPX.0b013e3182843f2a
– volume: 44
  start-page: 63
  year: 2018
  ident: 10.1016/j.compbiomed.2019.04.024_bib72
  article-title: Repeatability and reliability of ectasia display and topometric indices with the Scheimpflug system in normal and keratoconic eyes
  publication-title: J. Cataract Refract. Surg.
  doi: 10.1016/j.jcrs.2017.10.042
– volume: 5
  start-page: 87
  year: 1984
  ident: 10.1016/j.compbiomed.2019.04.024_bib14
  article-title: Die Anpassung von asphärischen Kontaktlinsen bei Keratokonus unter Berücksichtigung der geometrisch-optischen Verhältnisse der Hornhaut
  publication-title: Neues Opt J
– volume: 10
  start-page: 91
  issue: 2
  year: 2017
  ident: 10.1016/j.compbiomed.2019.04.024_bib6
  article-title: Is keratoconus really rare?
  publication-title: Keratoconus Really Rare
– volume: 1
  start-page: 100
  issue: 2
  year: 2012
  ident: 10.1016/j.compbiomed.2019.04.024_bib12
  article-title: Validation of a new scoring system for the detection of early forme of keratoconus
  publication-title: Int. J. Keratoconus Ectatic Corneal Dis.
  doi: 10.5005/jp-journals-10025-1019
– volume: 6
  start-page: 417
  year: 1994
  ident: 10.1016/j.compbiomed.2019.04.024_bib36
  article-title: On using feedforward neural networks for clinical diagnostic tasks
  publication-title: Artif. Intell. Med.
  doi: 10.1016/0933-3657(94)90005-1
– volume: 38
  start-page: 2290
  year: 1997
  ident: 10.1016/j.compbiomed.2019.04.024_bib9
  article-title: Current keratoconus detection methods compared with a neural network approach
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 40
  start-page: 991
  year: 2014
  ident: 10.1016/j.compbiomed.2019.04.024_bib41
  article-title: Biomechanics of corneal ectasia and biomechanical treatments
  publication-title: J. Cataract Refract. Surg.
  doi: 10.1016/j.jcrs.2014.04.013
– volume: 91
  start-page: 103
  year: 2017
  ident: 10.1016/j.compbiomed.2019.04.024_bib45
  article-title: Feature selection method based on support vector machine and shape analysis for high-throughput medical data
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.10.008
– volume: 38
  start-page: 2167
  year: 2012
  ident: 10.1016/j.compbiomed.2019.04.024_bib1
  article-title: Characterization of corneal structure in keratoconus
  publication-title: J. Cataract Refract. Surg.
  doi: 10.1016/j.jcrs.2012.10.022
– year: 2008
  ident: 10.1016/j.compbiomed.2019.04.024_bib13
– year: 2019
  ident: 10.1016/j.compbiomed.2019.04.024_bib29
  article-title: Longitudinal evaluation of the progression of keratoconus using a novel progression display
  publication-title: Eye Contact Lens
  doi: 10.1097/ICL.0000000000000582
– volume: 1
  start-page: 131
  year: 1988
  ident: 10.1016/j.compbiomed.2019.04.024_bib59
  article-title: Applications of counterpropagation networks
  publication-title: Neural Network.
  doi: 10.1016/0893-6080(88)90015-9
– volume: 3
  start-page: 87
  year: 1990
  ident: 10.1016/j.compbiomed.2019.04.024_bib60
  article-title: A convergence theorem for Grossberg learning
  publication-title: Neural Network.
  doi: 10.1016/0893-6080(90)90047-O
– volume: vol. 2
  start-page: 1137
  year: 1995
  ident: 10.1016/j.compbiomed.2019.04.024_bib66
  article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection
– volume: 35
  start-page: 2749
  year: 1994
  ident: 10.1016/j.compbiomed.2019.04.024_bib7
  article-title: Automated keratoconus screening with corneal topography analysis
  publication-title: Investig. Ophthalmol. Vis. Sci.
– volume: 119
  start-page: 2231
  year: 2012
  ident: 10.1016/j.compbiomed.2019.04.024_bib74
  article-title: Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2012.06.005
– volume: 34
  start-page: 254
  year: 2018
  ident: 10.1016/j.compbiomed.2019.04.024_bib68
  article-title: Early tomographic changes in the eyes of patients with keratoconus
  publication-title: J. Refract. Surg.
  doi: 10.3928/1081597X-20180124-01
– volume: 33
  start-page: 157
  year: 2010
  ident: 10.1016/j.compbiomed.2019.04.024_bib4
  article-title: Keratoconus: a review
  publication-title: Contact Lens Anterior Eye
  doi: 10.1016/j.clae.2010.04.006
– volume: 5
  year: 2018
  ident: 10.1016/j.compbiomed.2019.04.024_bib27
  article-title: Corneal modeling and Keratoconus identification
  publication-title: Biomath Commun Suppl
– volume: 15
  start-page: 358
  year: 1975
  ident: 10.1016/j.compbiomed.2019.04.024_bib64
  article-title: A stability property of implicit Runge-Kutta methods
  publication-title: BIT Numer Math
  doi: 10.1007/BF01931672
– volume: 28
  start-page: 521
  year: 2018
  ident: 10.1016/j.compbiomed.2019.04.024_bib69
  article-title: Comparative evaluation of Scheimpflug tomography parameters between thin non-keratoconic, subclinical keratoconic, and mild keratoconic corneas
  publication-title: Eur. J. Ophthalmol.
  doi: 10.1177/1120672118760146
– volume: 30
  start-page: 80
  year: 1995
  ident: 10.1016/j.compbiomed.2019.04.024_bib81
  article-title: Optical coherence tomography combined with videokeratography to differentiate mild keratoconus subtypes
  publication-title: J Refract Surg Thorofare NJ
  doi: 10.3928/1081597X-20140120-02
– volume: 42
  start-page: 297
  year: 1998
  ident: 10.1016/j.compbiomed.2019.04.024_bib2
  publication-title: Keratoconus. Surv Ophthalmol
  doi: 10.1016/S0039-6257(97)00119-7
– volume: 22
  start-page: 539
  year: 2006
  ident: 10.1016/j.compbiomed.2019.04.024_bib16
  article-title: Corneal higher order aberrations: a method to grade keratoconus
  publication-title: J. Refract. Surg.
  doi: 10.3928/1081-597X-20060601-05
– volume: 30
  start-page: 542
  year: 2014
  ident: 10.1016/j.compbiomed.2019.04.024_bib75
  article-title: Corneal enantiomorphism in normal and keratoconic eyes
  publication-title: J. Refract. Surg.
  doi: 10.3928/1081597X-20140711-07
– volume: 37
  start-page: 1025
  year: 2018
  ident: 10.1016/j.compbiomed.2019.04.024_bib71
  article-title: Diagnostic ability of corneal shape and biomechanical parameters for detecting frank keratoconus
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000001639
SSID ssj0004030
Score 2.4920332
Snippet To develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use. The CAD combines a custom-made...
AbstractPurposeTo develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use. MethodsThe CAD combines...
PurposeTo develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use.MethodsThe CAD combines a...
To develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use.PURPOSETo develop a stable and low-cost...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 33
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Computer aided diagnosis
Cornea
Datasets
Diagnosis
Disease
Epidemiology
Internal Medicine
Keratoconus
Keratoconus suspect
Learning algorithms
Machine learning
Mathematical modelling
Mathematical models
Medical diagnosis
Neural networks
Other
Runge-Kutta method
Sensitivity
Tomography
Unstructured data
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zi9RAEC7WWRBfFm9HV4nga7BzdKejiKjssgg7iLqwb036Ag8y62bm_1vVR-bFlXlOKglFddXX6a--AnjlMGZqLWRpPO9LrNBD2YuuKmXtnTOM28pRN_L5SpxdtJ8v-eUBrHIvDNEqc04MidquDf0jf41ljJNclKzeX_0paWoUna7mERpDGq1g3wWJsVtwWJMy1gIOP56svnzddUqyJjalYPZpcXOUuD2R8UUk7tj0TpSvPkig1u1NBesmQBoK0-ldOEqIsvgQQ-AeHLjxPtw-T2fmD-BNHtxQkBqkLWwk1_2YCsSrxbQNvZbFLxJXXuPmeDsV1m0CQWt8CBenJ98_nZVpYkJpEPhsylY4xwautdCOGW5r77mXjZBysN7UHbM9IpjWNY033gkjZUviNa63zNXC-eYRLMb16J5AMeDexHhttNRY5PtqsEEZqMXHMm2aZglddosySU6cplr8Vpk39lPtHKrIoYq1Ch26hGq2vIqSGnvY9NnzKreMYpJTmPf3sO3-ZeumtFonVampVkx9C2JFoZe3oSMovoS3s2UCJBFo7Pne4xwian7VLoyX8HK-jEuazmmG0a23dA9uExG2dnjP4xhas6NoLBxnon_6_4c_gzv0JZHTdgyLzfXWPUf0tNEv0pL4C46xGVM
  priority: 102
  providerName: ProQuest
Title Computer aided diagnosis for suspect keratoconus detection
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519301325
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482519301325
https://dx.doi.org/10.1016/j.compbiomed.2019.04.024
https://www.ncbi.nlm.nih.gov/pubmed/31035069
https://www.proquest.com/docview/2235557081
https://www.proquest.com/docview/2217492971
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9RAEF5KBfFFtFY9rSWCr2k3yWaz0adaep5Kj1Is3NuS3Z2F05Irzd2rv92Z7CZFtHDQl4QkO9llmJ2dZb9vhrEPgDaTG6lS68s6xRW6SWtZZanKPYDlpcuA2Mjnczm7Et8W5WKHnQ5cGIJVRt8ffHrvreOb46jN45vlkji-uJXomZcFHRgQ0VyIiqoYHP2-g3kIXgQaCvobah3RPAHjRbDtQHMnkFfdJz3NxX1L1H0haL8UTZ-xpzGGTE7CMJ-zHWj32OPzeEr-gn0cSjUklP_RJS7A6ZZdghFq0m16dmXyi9Ipr3A7vOkSB-sektXus6vp2Y_TWRprJKQWQ511KiQAb0pjpAFuS5d7X3pVSKUa521ecVdjzCKgKLz1IK1SgtLVQO045BJ88ZLttqsWXrOkwd2I9cYaZXBZr7PG9bmABP6WG1sUE1YNatE2JhCnOhbXekCK_dR3CtWkUM2FRoVOWDZK3oQkGlvI1IPm9UASRbem0dNvIVv9Txa6OD87neku11z_Y0MT9mmU_MsMt-z3YDARPXaF8VdJec5UNmHvx884ielkpmlhtaE2uDHEQLXCNq-CaY2KokJwJZf1mwcN7S17Qk8B5HbAdte3G3iH4dTaHPbzBa_VosKrmn45ZI9Ovn6fzfH--Wx-cfkHnQwjEA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VVgIuiG-2LRAkOEY4seMkRRXio9WWdlcIWqk3k9hjqQVlW7IrxJ_jtzGOneyFor30vBlnNWvPvFnPewPwEmnPpLUsYm2zMqYMXcWlzJO4SC2iZplJ0LGRJ1M5PhGfTrPTNfjTc2FcW2UfE7tAbWba_Uf-mtJY5uSiiuTtxWXspka529V-hEYVRiuY3U5iLBA7DvH3Lyrh2t2Dj_R7v0rT_b3jD-M4TBmINYGFeSwkIquyupY1Mp2Z1NrMFlwWRWWsTnNmSsr6Ajm32qLURSGc4AuWhmEq0XJa9wZsCC5KKv423u9NP39ZMjMZ9yQYinaCirHQS-Q7zFzTuCfZuxazspNcTcVVCfIqANwlwv27cCcg2Oid33L3YA2b-3BzEu7oH8BOPygicuqTJjK-me-sjQgfR-2i43ZG352Y84yK8UUbGZx3DWHNQzi5Ft89gvVm1uATiCqqhbStdV3UBCrKpDKdEpGgZVmtOR9B3rtF6SBf7qZo_FB9n9q5WjpUOYcqJhQ5dATJYHnhJTxWsCl7z6ueokpBVVGeWcE2_5cttiE6tCpRbaqY-tqJI3XcYe6uvLIRvBksAwDywGbF9273W0QNr1oemxG8GD6mEOLuhaoGZwv3DJWlBJNzeuax31qDo9wYuozJcvP_iz-HW-PjyZE6OpgebsFt9618P902rM9_LvApIbd5_Swcjwi-XfeJ_AuLnFe9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8uFAgSHKM6cZ5FVYUoq5bSCgkq7c3E9ljioWwhu6r4a_w6ZuI4e6FoLz0n40ST8Tzib74BeIlkM6kuqti4vI4pQjdxXZRJXKUO0YjcJsjdyKdnxdF59n6WzzbgT-iFYVhl8Im9o7Zzw__IdymM5UwXVSW7boBFfDycHlz8jHmCFJ-0hnEa3kRO8PcllW_d_vEhfetXaTp99_ntUTxMGIgNJQqLOCsQRZNrXWgUJrepc7mrZFFVjXUmLYWtKeJnKKUzDgtTVRmTvWBtBaYFOknr3oCbpZQ1wwnLWbnqyRTSt7-Qn8uoDBtQRB5bxnBx317P4LK6J1tNs6tC41Wpbx8Cp3fg9pC7Rm-8sd2FDWzvwdbpcDp_H_bCiIiIeSdtZD2M72sXUWYcdcu-qzP6zjTOcyrDl11kcdFDwdoHcH4tmnsIm-28xW2IGqqCjNNGV5rSiTppbM9BlNGyQhspJ1AGtSgzEJfz_IwfKiDUvqmVQhUrVIlMkUInkIySF568Yw2ZOmheheZUcqeKIswasuW_ZLEb_EKnEtWlSqhPPS1S3zUs-bArn8DrUXJIfXxKs-Zzd4KJqPFRqw0zgRfjZXIefCLUtDhf8j1UkFKCXNI9j7xpjYriAXS5KOrH_1_8OWzRPlQfjs9OnsAtfikPpNuBzcWvJT6llG2hn_V7I4Iv170Z_wIqKFVX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer+aided+diagnosis+for+suspect+keratoconus+detection&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Issarti%2C+Ikram&rft.au=Consejo%2C+Alejandra&rft.au=Jim%C3%A9nez-Garc%C3%ADa%2C+Marta&rft.au=Hershko%2C+Sarah&rft.date=2019-06-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=109&rft.spage=33&rft.epage=42&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.04.024&rft.externalDocID=S0010482519301325
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482519X00050%2Fcov150h.gif