Computer aided diagnosis for suspect keratoconus detection
To develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use. The CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was a...
Saved in:
| Published in | Computers in biology and medicine Vol. 109; pp. 33 - 42 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.06.2019
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2019.04.024 |
Cover
| Abstract | To develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use.
The CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was applied to retrospective data of 851 subjects for whom corneal elevation and thickness data was available. These data were divided into four groups: a control group (312 eyes) with bilateral normal tomography, keratoconus suspect (77 eyes) with a clinically diagnosed keratoconus in one eye and a normal fellow eye, mild keratoconus (220 eyes), and moderate keratoconus (229 eyes). The proposed framework is validated using 10-cross-validation, holdout validation and ROC curves.
The CAD detects suspect keratoconus with an accuracy of 96.56% (sensitivity 97.78%, specificity 95.56%) versus an accuracy of 89.00% (sensitivity 83.00%, specificity 95.00%) for Belin/Ambrosio Deviation (BADD), and an accuracy of 79.00% (sensitivity 58.00%, specificity 99.70%) for Topographical Keratoconus Classification (TKC). For the detection of mild to moderate keratoconus CAD shows nearly similar accuracies as previously described methods, with an average accuracy of 99.50% for CAD, versus 99.46% for BADD and 96.50% for TKC. The proposed algorithm also provides a 70% reduction in computation time, while increasing stability and convergence with respect to traditional machine learning techniques.
The proposed algorithm is highly accurate and provides a stable screening platform to assist ophthalmologists with the early detection of keratoconus. This framework could potentially be set up for any Scheimpflug tomography system.
•A computer aided diagnosis (CAD) for keratoconus detection is presented.•The capabilities of the CAD in reducing time computation is demonstrated.•An iterative method is proposed to improve the feedforward neural network.•Grossberg-Runge Kutta2 is suggested to improve the stability of the feedforward neural network.•The developed approach is platform independent and reproducible. |
|---|---|
| AbstractList | To develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use.
The CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was applied to retrospective data of 851 subjects for whom corneal elevation and thickness data was available. These data were divided into four groups: a control group (312 eyes) with bilateral normal tomography, keratoconus suspect (77 eyes) with a clinically diagnosed keratoconus in one eye and a normal fellow eye, mild keratoconus (220 eyes), and moderate keratoconus (229 eyes). The proposed framework is validated using 10-cross-validation, holdout validation and ROC curves.
The CAD detects suspect keratoconus with an accuracy of 96.56% (sensitivity 97.78%, specificity 95.56%) versus an accuracy of 89.00% (sensitivity 83.00%, specificity 95.00%) for Belin/Ambrosio Deviation (BADD), and an accuracy of 79.00% (sensitivity 58.00%, specificity 99.70%) for Topographical Keratoconus Classification (TKC). For the detection of mild to moderate keratoconus CAD shows nearly similar accuracies as previously described methods, with an average accuracy of 99.50% for CAD, versus 99.46% for BADD and 96.50% for TKC. The proposed algorithm also provides a 70% reduction in computation time, while increasing stability and convergence with respect to traditional machine learning techniques.
The proposed algorithm is highly accurate and provides a stable screening platform to assist ophthalmologists with the early detection of keratoconus. This framework could potentially be set up for any Scheimpflug tomography system.
•A computer aided diagnosis (CAD) for keratoconus detection is presented.•The capabilities of the CAD in reducing time computation is demonstrated.•An iterative method is proposed to improve the feedforward neural network.•Grossberg-Runge Kutta2 is suggested to improve the stability of the feedforward neural network.•The developed approach is platform independent and reproducible. To develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use. The CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was applied to retrospective data of 851 subjects for whom corneal elevation and thickness data was available. These data were divided into four groups: a control group (312 eyes) with bilateral normal tomography, keratoconus suspect (77 eyes) with a clinically diagnosed keratoconus in one eye and a normal fellow eye, mild keratoconus (220 eyes), and moderate keratoconus (229 eyes). The proposed framework is validated using 10-cross-validation, holdout validation and ROC curves. The CAD detects suspect keratoconus with an accuracy of 96.56% (sensitivity 97.78%, specificity 95.56%) versus an accuracy of 89.00% (sensitivity 83.00%, specificity 95.00%) for Belin/Ambrosio Deviation (BADD), and an accuracy of 79.00% (sensitivity 58.00%, specificity 99.70%) for Topographical Keratoconus Classification (TKC). For the detection of mild to moderate keratoconus CAD shows nearly similar accuracies as previously described methods, with an average accuracy of 99.50% for CAD, versus 99.46% for BADD and 96.50% for TKC. The proposed algorithm also provides a 70% reduction in computation time, while increasing stability and convergence with respect to traditional machine learning techniques. The proposed algorithm is highly accurate and provides a stable screening platform to assist ophthalmologists with the early detection of keratoconus. This framework could potentially be set up for any Scheimpflug tomography system. AbstractPurposeTo develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use. MethodsThe CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was applied to retrospective data of 851 subjects for whom corneal elevation and thickness data was available. These data were divided into four groups: a control group ( 312 eyes) with bilateral normal tomography, keratoconus suspect ( 77 eyes) with a clinically diagnosed keratoconus in one eye and a normal fellow eye, mild keratoconus ( 220 eyes), and moderate keratoconus ( 229 eyes). The proposed framework is validated using 10-cross-validation, holdout validation and ROC curves. ResultsThe CAD detects suspect keratoconus with an accuracy of 96.56% (sensitivity 97.78%, specificity 95.56%) versus an accuracy of 89.00% (sensitivity 83.00%, specificity 95.00%) for Belin/Ambrosio Deviation (BADD), and an accuracy of 79.00% (sensitivity 58.00%, specificity 99.70%) for Topographical Keratoconus Classification (TKC). For the detection of mild to moderate keratoconus CAD shows nearly similar accuracies as previously described methods, with an average accuracy of 99.50% for CAD, versus 99.46% for BADD and 96.50% for TKC. The proposed algorithm also provides a 70% reduction in computation time, while increasing stability and convergence with respect to traditional machine learning techniques. ConclusionThe proposed algorithm is highly accurate and provides a stable screening platform to assist ophthalmologists with the early detection of keratoconus. This framework could potentially be set up for any Scheimpflug tomography system. PurposeTo develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use.MethodsThe CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was applied to retrospective data of 851 subjects for whom corneal elevation and thickness data was available. These data were divided into four groups: a control group (312 eyes) with bilateral normal tomography, keratoconus suspect (77 eyes) with a clinically diagnosed keratoconus in one eye and a normal fellow eye, mild keratoconus (220 eyes), and moderate keratoconus (229 eyes). The proposed framework is validated using 10-cross-validation, holdout validation and ROC curves.ResultsThe CAD detects suspect keratoconus with an accuracy of 96.56% (sensitivity 97.78%, specificity 95.56%) versus an accuracy of 89.00% (sensitivity 83.00%, specificity 95.00%) for Belin/Ambrosio Deviation (BADD), and an accuracy of 79.00% (sensitivity 58.00%, specificity 99.70%) for Topographical Keratoconus Classification (TKC). For the detection of mild to moderate keratoconus CAD shows nearly similar accuracies as previously described methods, with an average accuracy of 99.50% for CAD, versus 99.46% for BADD and 96.50% for TKC. The proposed algorithm also provides a 70% reduction in computation time, while increasing stability and convergence with respect to traditional machine learning techniques.ConclusionThe proposed algorithm is highly accurate and provides a stable screening platform to assist ophthalmologists with the early detection of keratoconus. This framework could potentially be set up for any Scheimpflug tomography system. To develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use.PURPOSETo develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use.The CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was applied to retrospective data of 851 subjects for whom corneal elevation and thickness data was available. These data were divided into four groups: a control group (312 eyes) with bilateral normal tomography, keratoconus suspect (77 eyes) with a clinically diagnosed keratoconus in one eye and a normal fellow eye, mild keratoconus (220 eyes), and moderate keratoconus (229 eyes). The proposed framework is validated using 10-cross-validation, holdout validation and ROC curves.METHODSThe CAD combines a custom-made mathematical model, a feedforward neural network (FFN) and a Grossberg-Runge Kutta architecture to detect clinical and suspect keratoconus. It was applied to retrospective data of 851 subjects for whom corneal elevation and thickness data was available. These data were divided into four groups: a control group (312 eyes) with bilateral normal tomography, keratoconus suspect (77 eyes) with a clinically diagnosed keratoconus in one eye and a normal fellow eye, mild keratoconus (220 eyes), and moderate keratoconus (229 eyes). The proposed framework is validated using 10-cross-validation, holdout validation and ROC curves.The CAD detects suspect keratoconus with an accuracy of 96.56% (sensitivity 97.78%, specificity 95.56%) versus an accuracy of 89.00% (sensitivity 83.00%, specificity 95.00%) for Belin/Ambrosio Deviation (BADD), and an accuracy of 79.00% (sensitivity 58.00%, specificity 99.70%) for Topographical Keratoconus Classification (TKC). For the detection of mild to moderate keratoconus CAD shows nearly similar accuracies as previously described methods, with an average accuracy of 99.50% for CAD, versus 99.46% for BADD and 96.50% for TKC. The proposed algorithm also provides a 70% reduction in computation time, while increasing stability and convergence with respect to traditional machine learning techniques.RESULTSThe CAD detects suspect keratoconus with an accuracy of 96.56% (sensitivity 97.78%, specificity 95.56%) versus an accuracy of 89.00% (sensitivity 83.00%, specificity 95.00%) for Belin/Ambrosio Deviation (BADD), and an accuracy of 79.00% (sensitivity 58.00%, specificity 99.70%) for Topographical Keratoconus Classification (TKC). For the detection of mild to moderate keratoconus CAD shows nearly similar accuracies as previously described methods, with an average accuracy of 99.50% for CAD, versus 99.46% for BADD and 96.50% for TKC. The proposed algorithm also provides a 70% reduction in computation time, while increasing stability and convergence with respect to traditional machine learning techniques.The proposed algorithm is highly accurate and provides a stable screening platform to assist ophthalmologists with the early detection of keratoconus. This framework could potentially be set up for any Scheimpflug tomography system.CONCLUSIONThe proposed algorithm is highly accurate and provides a stable screening platform to assist ophthalmologists with the early detection of keratoconus. This framework could potentially be set up for any Scheimpflug tomography system. |
| Author | Hershko, Sarah Jiménez-García, Marta Consejo, Alejandra Koppen, Carina Issarti, Ikram Rozema, Jos J. |
| Author_xml | – sequence: 1 givenname: Ikram surname: Issarti fullname: Issarti, Ikram email: isarti.ikram@gmail.com organization: Department of Ophthalmology, Antwerp University Hospital (UZA), Edegem, Belgium – sequence: 2 givenname: Alejandra surname: Consejo fullname: Consejo, Alejandra organization: Department of Ophthalmology, Antwerp University Hospital (UZA), Edegem, Belgium – sequence: 3 givenname: Marta surname: Jiménez-García fullname: Jiménez-García, Marta organization: Department of Ophthalmology, Antwerp University Hospital (UZA), Edegem, Belgium – sequence: 4 givenname: Sarah surname: Hershko fullname: Hershko, Sarah organization: Department of Ophthalmology, Antwerp University Hospital (UZA), Edegem, Belgium – sequence: 5 givenname: Carina surname: Koppen fullname: Koppen, Carina organization: Department of Ophthalmology, Antwerp University Hospital (UZA), Edegem, Belgium – sequence: 6 givenname: Jos J. surname: Rozema fullname: Rozema, Jos J. organization: Department of Ophthalmology, Antwerp University Hospital (UZA), Edegem, Belgium |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31035069$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1rFDEUhoNU7Lb6F2TAG29mPPmazXhRrIutQsEL9TpkkhPJdnayJjNC_70ZtlVYEPYqEJ7z5OQ954KcjXFEQioKDQXavts2Nu72fYg7dA0D2jUgGmDiGVlRte5qkFyckRUAhVooJs_JRc5bABDA4QU55xS4hLZbkfebIponTJUJDl3lgvk5xhxy5WOq8pz3aKfqHpOZoo3jnCuHU7kKcXxJnnszZHz1eF6SHzefvm8-13dfb79sru9qK6mYatEigpF93_YIVjrmvfSKt0oZ5y1bg-taKgVy7q3H1iolBFUSOwfIWvT8krw9ePcp_poxT3oXssVhMCPGOWvG6Fp0rFvTgr45QrdxTmPprlBcSrkGtVCvH6m5LwHqfQo7kx70UyoFuDoANsWcE3ptw2SWP0_JhEFT0MsY9Fb_G4NexqBB6DKGIlBHgqc3Tij9eCjFEunvgElnG3C06EIquWsXwymSqyOJHcIYrBnu8QHz31CozkyD_rYsyrIntONAOZNF8OH_gtN6-ANDZ9LD |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2020_103809 crossref_primary_10_1038_s41598_024_79363_6 crossref_primary_10_1088_2057_1976_adabea crossref_primary_10_1016_j_compbiomed_2024_108428 crossref_primary_10_3389_fnins_2021_804273 crossref_primary_10_3390_diagnostics13162715 crossref_primary_10_1002_14651858_CD014911_pub2 crossref_primary_10_4103_sjopt_sjopt_52_23 crossref_primary_10_1136_bmjophth_2023_001589 crossref_primary_10_3389_fmed_2023_1212314 crossref_primary_10_1186_s40662_024_00376_3 crossref_primary_10_1097_APO_0000000000000394 crossref_primary_10_1142_S0219467821500169 crossref_primary_10_3390_s22207977 crossref_primary_10_1097_APO_0000000000000396 crossref_primary_10_4103_joco_joco_18_24 crossref_primary_10_1007_s00417_023_06049_6 crossref_primary_10_1007_s11042_023_17551_8 crossref_primary_10_1016_j_survophthal_2021_08_004 crossref_primary_10_1136_bmjophth_2021_000824 crossref_primary_10_1136_bmjopen_2019_031313 crossref_primary_10_1155_2021_9979560 crossref_primary_10_1016_j_clae_2019_12_006 crossref_primary_10_2196_27363 crossref_primary_10_1167_tvst_10_7_21 crossref_primary_10_1093_bioinformatics_btz763 crossref_primary_10_1167_tvst_9_13_30 crossref_primary_10_1016_j_imu_2023_101208 crossref_primary_10_3389_fcell_2023_1133680 crossref_primary_10_1038_s41598_023_46903_5 crossref_primary_10_1111_ceo_14126 crossref_primary_10_1136_bjophthalmol_2019_315651 crossref_primary_10_1007_s00417_023_06154_6 crossref_primary_10_1177_25158414241232258 crossref_primary_10_3390_s24154834 crossref_primary_10_1155_2021_5528927 crossref_primary_10_3390_jcm10153238 crossref_primary_10_1097_ICO_0000000000003669 crossref_primary_10_3389_fopht_2024_1380701 crossref_primary_10_3390_jcm11030478 crossref_primary_10_55708_js0307004 crossref_primary_10_1167_tvst_10_9_32 crossref_primary_10_3390_jcm13082378 crossref_primary_10_1016_j_ijmedinf_2021_104583 crossref_primary_10_1109_JBHI_2021_3079430 crossref_primary_10_1167_tvst_9_2_24 crossref_primary_10_1007_s12559_021_09880_3 crossref_primary_10_1167_tvst_9_7_36 crossref_primary_10_3390_electronics12041028 crossref_primary_10_3390_biology12071036 crossref_primary_10_3390_jcm10184281 crossref_primary_10_1186_s40662_024_00394_1 crossref_primary_10_1088_1757_899X_1055_1_012112 crossref_primary_10_1167_tvst_11_9_32 crossref_primary_10_1016_j_jtumed_2023_12_007 crossref_primary_10_1016_j_xcrm_2023_101095 crossref_primary_10_17816_DD624022 crossref_primary_10_3389_fdata_2023_1017420 crossref_primary_10_1097_ICO_0000000000003038 crossref_primary_10_1167_tvst_14_3_17 crossref_primary_10_1016_j_compbiomed_2021_104884 crossref_primary_10_1186_s40662_020_00213_3 |
| Cites_doi | 10.3928/1081-597X-19891101-10 10.1016/j.ajo.2019.01.023 10.1016/j.artmed.2015.07.003 10.1016/j.jcrs.2005.05.025 10.4304/jcp.7.1.161-168 10.1097/ICO.0B013E31823D1EE0 10.1016/j.ajo.2013.03.034 10.1016/j.compbiomed.2016.06.008 10.1016/j.ajo.2018.08.005 10.1016/j.ophtha.2018.06.020 10.1097/00003226-199207000-00014 10.1016/j.artmed.2004.07.006 10.1371/journal.pone.0110249 10.3928/1081597X-20180206-03 10.1016/j.jcrs.2009.03.050 10.3928/1081-597X-19950901-14 10.1097/01.ico.0000226359.26678.d1 10.1016/j.jcrs.2009.01.020 10.1016/0168-9274(95)00108-5 10.1016/S0886-3350(99)00195-9 10.1109/TBME.2008.2006019 10.1016/j.compbiomed.2016.08.011 10.1364/JOSAA.23.000219 10.1097/OPX.0b013e3182279ff8 10.1055/s-0042-100626 10.1016/j.survophthal.2017.06.009 10.1109/TITB.2006.879591 10.1016/j.ajo.2013.08.014 10.1111/j.1600-0420.2007.00981.x 10.1016/j.jcrs.2017.07.021 10.1016/S0886-3350(98)80284-8 10.1097/ICO.0000000000000834 10.1016/S1532-0464(02)00513-0 10.1097/OPX.0b013e3182928bc6 10.1167/iovs.10-6774 10.1016/j.joco.2016.01.009 10.2147/OPTO.S63486 10.1371/journal.pone.0184569 10.1161/CIRCULATIONAHA.115.001593 10.1097/01.opx.0000192350.01045.6f 10.1097/ICO.0000000000001194 10.1090/S0025-5718-1964-0159424-9 10.1167/iovs.10-5369 10.1590/S1807-59322010001200002 10.1097/OPX.0b013e3182843f2a 10.1016/j.jcrs.2017.10.042 10.5005/jp-journals-10025-1019 10.1016/0933-3657(94)90005-1 10.1016/j.jcrs.2014.04.013 10.1016/j.compbiomed.2017.10.008 10.1016/j.jcrs.2012.10.022 10.1097/ICL.0000000000000582 10.1016/0893-6080(88)90015-9 10.1016/0893-6080(90)90047-O 10.1016/j.ophtha.2012.06.005 10.3928/1081597X-20180124-01 10.1016/j.clae.2010.04.006 10.1007/BF01931672 10.1177/1120672118760146 10.3928/1081597X-20140120-02 10.1016/S0039-6257(97)00119-7 10.3928/1081-597X-20060601-05 10.3928/1081597X-20140711-07 10.1097/ICO.0000000000001639 |
| ContentType | Journal Article |
| Copyright | 2019 Copyright © 2019. Published by Elsevier Ltd. Copyright Elsevier Limited Jun 2019 |
| Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier Ltd. – notice: Copyright Elsevier Limited Jun 2019 |
| DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2019.04.024 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) Medical Database ProQuest Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Research Library Prep MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 42 |
| ExternalDocumentID | 31035069 10_1016_j_compbiomed_2019_04_024 S0010482519301325 1_s2_0_S0010482519301325 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c514t-46ee0a5bb6be0c5d2ff5f83688adfc270d96154e33fcfe6c8844185e9d0e26ef3 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sat Sep 27 19:46:27 EDT 2025 Tue Oct 07 06:30:08 EDT 2025 Thu Apr 03 07:02:52 EDT 2025 Thu Apr 24 22:51:24 EDT 2025 Wed Oct 01 04:07:28 EDT 2025 Fri Feb 23 02:24:56 EST 2024 Sun Feb 23 10:19:16 EST 2025 Tue Oct 14 19:33:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Keratoconus suspect Cornea Mathematical modelling Computer aided diagnosis Unstructured data Machine learning |
| Language | English |
| License | Copyright © 2019. Published by Elsevier Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c514t-46ee0a5bb6be0c5d2ff5f83688adfc270d96154e33fcfe6c8844185e9d0e26ef3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| PMID | 31035069 |
| PQID | 2235557081 |
| PQPubID | 1226355 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2217492971 proquest_journals_2235557081 pubmed_primary_31035069 crossref_citationtrail_10_1016_j_compbiomed_2019_04_024 crossref_primary_10_1016_j_compbiomed_2019_04_024 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2019_04_024 elsevier_clinicalkeyesjournals_1_s2_0_S0010482519301325 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2019_04_024 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Rabinowitz, Rasheed (bib10) 1999; 25 Liu, Gu, Wu (bib45) 2017; 91 Alió, Shabayek (bib16) 2006; 22 Schneider, Iskander, Collins (bib55) 2009; 56 Nielsen, Hjortdal, Aagaard Nohr, Ehlers (bib5) 2007; 85 Read, Collins, Iskander, Davis (bib28) 2009; 35 CASSETTE NB Studio, Saad, Gatinel (bib12) 2012; 1 Saad, Gatinel (bib24) 2010; 51 Arbelaez, Versaci, Vestri, Barboni, Savini (bib74) 2012; 119 Rabinowitz, Li, Canedo, Ambrósio, Bykhovskaya (bib81) 1995; 30 Hafezi, Hafezi (bib6) 2017; 10 McMahon, Szczotka-Flynn, Barr, Anderson, Slaughter, Lass (bib11) 2006; 25 Navarro, González, Hernández (bib53) 2006; 23 Romero-Jiménez, Santodomingo-Rubido, Wolffsohn (bib4) 2010; 33 Hecht-Nielsen (bib59) 1988; 1 Goldberger, Hinton, Roweis, Salakhutdinov (bib57) 2005; vol. 17 Kohavi (bib66) 1995; vol. 2 Mannis, Lightman, Plotnik (bib65) 1992; 11 Yang, Wang, Zuo (bib58) 2012; 7 Ramos-López, Martínez-Finkelshtein, Castro-Luna, Burguera-Gimenez, Vega-Estrada, Piñero (bib31) 2013; 90 Saad, Gatinel (bib78) 2012; 37 Navarro, Rozema, Tassignon (bib49) 2013; 90 Krumeich, Daniel, Knülle (bib15) 1998; 24 Kosekahya, Koc, Caglayan, Kiziltoprak, Atilgan, Yilmazbas (bib72) 2018; 44 Rabinowitz, McDonnell (bib20) 1989; 5 Li, Yang, Rabinowitz (bib17) 2009; 35 Rabinowitz (bib8) 1995; 11 Issarti, Rozema, Consejo (bib42) 2018; 5 Tan, Steinbach, Kumar (bib67) 2005 Saad, Guilbert, Gatinel (bib75) 2014; 30 Souza, Medeiros, Souza, Garcia, Alves (bib38) 2010; 65 Deo (bib34) 2015; 132 Hwang, Perez-Straziota, Kim, Santhiago, Randleman (bib70) 2018 Golan, Piccinini, Hwang, De Oca Gonzalez, Krauthammer, Khandelwal (bib32) 2019 Lopes, Ramos, Salomão, Guerra, Schallhorn, Schallhorn (bib77) 2018; 195 Twa, Parthasarathy, Roberts, Mahmoud, Raasch, Bullimore (bib39) 2005; 82 Kosekahya, Caglayan, Koc, Kiziltoprak, Tekin, Atilgan (bib29) 2019 Martínez-Abad, Piñero (bib80) 2017; 43 Ruiz Hidalgo, Rozema, Saad, Gatinel, Rodriguez, Zakaria (bib23) 2017; 36 Dorffner, Porenta (bib36) 1994; 6 Griffiths, Płociniczak, Schiesser (bib52) 2016; 77 Gupta, Trindade, Hooshmand, Chan (bib19) 2018; 34 Accardo, Pensiero (bib44) 2002; 35 Butcher (bib64) 1975; 15 Martínez-Finkelshtein, López, Castro, Alió (bib54) 2011; 52 Issarti, Consejo, Rozema (bib43) 2018; 59 Butcher (bib61) 2016 Belin, Duncan (bib18) 2016; 233 Goldberger, Hinton, Roweis, Salakhutdinov (bib46) 2005; vol. 17 Sedaghat, Momeni-Moghaddam, Ambrósio, Heidari, Maddah, Danesh (bib71) 2018; 37 Bae, Kim, Kim, Lim, Chung, Chung (bib82) 2014; 157 Butcher (bib63) 1996; 20 Butcher (bib62) 1964; 18 Belin, Kim, Zloty, Ambrósio, Barbara (bib50) 2012 Roberts, Dupps (bib41) 2014; 40 Cavas-Martínez, Bataille, Fernández-Pacheco, Cañavate, Alió (bib47) 2017; 12 Ishii, Kamiya, Igarashi, Shimizu, Utsumi, Kumanomido (bib21) 2012; 31 Griffiths, Płociniczak, Schiesser (bib51) 2016; 77 Piñero, Nieto, Lopez-Miguel (bib1) 2012; 38 CASSETTE NB Studio (bib76) Marsolo, Twa, Bullimore, Parthasarathy (bib40) 2007; 11 Huseynli, Salgado-Borges, Alio (bib69) 2018; 28 Smadja, Touboul, Cohen, Doveh, Santhiago, Mello (bib73) 2013; 156 Cavas-Martínez, Fernández-Pacheco, Cruz-Sánchez, Martínez, Cañavate, Vega-Estrada (bib48) 2014; 9 Shi (bib79) 2016 Lopes, Ramos, Salomão, Guerra, Schallhorn, Schallhorn (bib25) 2018; 195 Maeda, Klyce, Smolek, Thompson (bib7) 1994; 35 Muckenhirn (bib14) 1984; 5 Clark, Ravishankar (bib60) 1990; 3 Rabinowitz (bib2) 1998; 42 Mas Tur, MacGregor, Jayaswal, O'Brart, Maycock (bib3) 2017; 62 Augusto (bib37) 2005; 33 Ruiz Hidalgo, Rodriguez, Rozema, Ní Dhubhghaill, Zakaria, Tassignon (bib22) 2016; 35 Hashemi, Beiranvand, Yekta, Maleki, Yazdani, Khabazkhoob (bib33) 2016; 28 Smolek, Klyce (bib9) 1997; 38 Issarti, Rozema, Consejo (bib27) 2018; 5 Issarti, Consejo, Rozema (bib26) 2018; 59 Smolek, Klyce (bib56) 2005; 31 Ramos-López, Martínez-Finkelshtein, Castro-Luna, Piñero, Alió (bib30) 2011; 88 Shajari, Jaffary, Herrmann, Grunwald, Steinwender, Mayer (bib68) 2018; 34 Belin, Khachikian (bib13) 2008 Peek, Combi, Marin, Bellazzi (bib35) 2015; 65 Rabinowitz (10.1016/j.compbiomed.2019.04.024_bib2) 1998; 42 Bae (10.1016/j.compbiomed.2019.04.024_bib82) 2014; 157 Lopes (10.1016/j.compbiomed.2019.04.024_bib25) 2018; 195 Cavas-Martínez (10.1016/j.compbiomed.2019.04.024_bib47) 2017; 12 Griffiths (10.1016/j.compbiomed.2019.04.024_bib52) 2016; 77 Rabinowitz (10.1016/j.compbiomed.2019.04.024_bib20) 1989; 5 Huseynli (10.1016/j.compbiomed.2019.04.024_bib69) 2018; 28 Ishii (10.1016/j.compbiomed.2019.04.024_bib21) 2012; 31 Issarti (10.1016/j.compbiomed.2019.04.024_bib43) 2018; 59 Roberts (10.1016/j.compbiomed.2019.04.024_bib41) 2014; 40 Ruiz Hidalgo (10.1016/j.compbiomed.2019.04.024_bib23) 2017; 36 Rabinowitz (10.1016/j.compbiomed.2019.04.024_bib8) 1995; 11 Marsolo (10.1016/j.compbiomed.2019.04.024_bib40) 2007; 11 Butcher (10.1016/j.compbiomed.2019.04.024_bib62) 1964; 18 Smolek (10.1016/j.compbiomed.2019.04.024_bib9) 1997; 38 Smadja (10.1016/j.compbiomed.2019.04.024_bib73) 2013; 156 Deo (10.1016/j.compbiomed.2019.04.024_bib34) 2015; 132 Mannis (10.1016/j.compbiomed.2019.04.024_bib65) 1992; 11 Ramos-López (10.1016/j.compbiomed.2019.04.024_bib30) 2011; 88 Li (10.1016/j.compbiomed.2019.04.024_bib17) 2009; 35 Maeda (10.1016/j.compbiomed.2019.04.024_bib7) 1994; 35 Smolek (10.1016/j.compbiomed.2019.04.024_bib56) 2005; 31 Alió (10.1016/j.compbiomed.2019.04.024_bib16) 2006; 22 Navarro (10.1016/j.compbiomed.2019.04.024_bib49) 2013; 90 Mas Tur (10.1016/j.compbiomed.2019.04.024_bib3) 2017; 62 Cavas-Martínez (10.1016/j.compbiomed.2019.04.024_bib48) 2014; 9 CASSETTE NB Studio (10.1016/j.compbiomed.2019.04.024_bib76) Accardo (10.1016/j.compbiomed.2019.04.024_bib44) 2002; 35 Hafezi (10.1016/j.compbiomed.2019.04.024_bib6) 2017; 10 Saad (10.1016/j.compbiomed.2019.04.024_bib24) 2010; 51 Butcher (10.1016/j.compbiomed.2019.04.024_bib63) 1996; 20 Schneider (10.1016/j.compbiomed.2019.04.024_bib55) 2009; 56 Liu (10.1016/j.compbiomed.2019.04.024_bib45) 2017; 91 Romero-Jiménez (10.1016/j.compbiomed.2019.04.024_bib4) 2010; 33 Tan (10.1016/j.compbiomed.2019.04.024_bib67) 2005 Goldberger (10.1016/j.compbiomed.2019.04.024_bib46) 2005; vol. 17 Piñero (10.1016/j.compbiomed.2019.04.024_bib1) 2012; 38 Butcher (10.1016/j.compbiomed.2019.04.024_bib61) 2016 Shajari (10.1016/j.compbiomed.2019.04.024_bib68) 2018; 34 Hwang (10.1016/j.compbiomed.2019.04.024_bib70) 2018 Kohavi (10.1016/j.compbiomed.2019.04.024_bib66) 1995; vol. 2 CASSETTE NB Studio (10.1016/j.compbiomed.2019.04.024_bib12) 2012; 1 Issarti (10.1016/j.compbiomed.2019.04.024_bib42) 2018; 5 Navarro (10.1016/j.compbiomed.2019.04.024_bib53) 2006; 23 Hecht-Nielsen (10.1016/j.compbiomed.2019.04.024_bib59) 1988; 1 Issarti (10.1016/j.compbiomed.2019.04.024_bib26) 2018; 59 Ramos-López (10.1016/j.compbiomed.2019.04.024_bib31) 2013; 90 Martínez-Finkelshtein (10.1016/j.compbiomed.2019.04.024_bib54) 2011; 52 McMahon (10.1016/j.compbiomed.2019.04.024_bib11) 2006; 25 Arbelaez (10.1016/j.compbiomed.2019.04.024_bib74) 2012; 119 Twa (10.1016/j.compbiomed.2019.04.024_bib39) 2005; 82 Read (10.1016/j.compbiomed.2019.04.024_bib28) 2009; 35 Lopes (10.1016/j.compbiomed.2019.04.024_bib77) 2018; 195 Sedaghat (10.1016/j.compbiomed.2019.04.024_bib71) 2018; 37 Issarti (10.1016/j.compbiomed.2019.04.024_bib27) 2018; 5 Goldberger (10.1016/j.compbiomed.2019.04.024_bib57) 2005; vol. 17 Kosekahya (10.1016/j.compbiomed.2019.04.024_bib29) 2019 Shi (10.1016/j.compbiomed.2019.04.024_bib79) 2016 Muckenhirn (10.1016/j.compbiomed.2019.04.024_bib14) 1984; 5 Ruiz Hidalgo (10.1016/j.compbiomed.2019.04.024_bib22) 2016; 35 Saad (10.1016/j.compbiomed.2019.04.024_bib75) 2014; 30 Krumeich (10.1016/j.compbiomed.2019.04.024_bib15) 1998; 24 Yang (10.1016/j.compbiomed.2019.04.024_bib58) 2012; 7 Saad (10.1016/j.compbiomed.2019.04.024_bib78) 2012; 37 Belin (10.1016/j.compbiomed.2019.04.024_bib50) 2012 Dorffner (10.1016/j.compbiomed.2019.04.024_bib36) 1994; 6 Golan (10.1016/j.compbiomed.2019.04.024_bib32) 2019 Clark (10.1016/j.compbiomed.2019.04.024_bib60) 1990; 3 Belin (10.1016/j.compbiomed.2019.04.024_bib13) 2008 Griffiths (10.1016/j.compbiomed.2019.04.024_bib51) 2016; 77 Augusto (10.1016/j.compbiomed.2019.04.024_bib37) 2005; 33 Belin (10.1016/j.compbiomed.2019.04.024_bib18) 2016; 233 Martínez-Abad (10.1016/j.compbiomed.2019.04.024_bib80) 2017; 43 Souza (10.1016/j.compbiomed.2019.04.024_bib38) 2010; 65 Rabinowitz (10.1016/j.compbiomed.2019.04.024_bib10) 1999; 25 Kosekahya (10.1016/j.compbiomed.2019.04.024_bib72) 2018; 44 Nielsen (10.1016/j.compbiomed.2019.04.024_bib5) 2007; 85 Peek (10.1016/j.compbiomed.2019.04.024_bib35) 2015; 65 Gupta (10.1016/j.compbiomed.2019.04.024_bib19) 2018; 34 Hashemi (10.1016/j.compbiomed.2019.04.024_bib33) 2016; 28 Rabinowitz (10.1016/j.compbiomed.2019.04.024_bib81) 1995; 30 Butcher (10.1016/j.compbiomed.2019.04.024_bib64) 1975; 15 |
| References_xml | – volume: 82 start-page: 1038 year: 2005 end-page: 1046 ident: bib39 article-title: Automated decision tree classification of corneal shape publication-title: Optom Vis Sci Off Publ Am Acad Optom – volume: 34 start-page: 254 year: 2018 end-page: 259 ident: bib68 article-title: Early tomographic changes in the eyes of patients with keratoconus publication-title: J. Refract. Surg. – volume: 5 year: 2018 ident: bib27 article-title: Corneal modeling and Keratoconus identification publication-title: Biomath Commun Suppl – year: 2018 ident: bib70 article-title: Distinguishing highly asymmetric keratoconus eyes using combined Scheimpflug and spectral domain OCT analysis publication-title: Ophthalmology – volume: 35 start-page: 2749 year: 1994 end-page: 2757 ident: bib7 article-title: Automated keratoconus screening with corneal topography analysis publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 5 start-page: 87 year: 1984 end-page: 94 ident: bib14 article-title: Die Anpassung von asphärischen Kontaktlinsen bei Keratokonus unter Berücksichtigung der geometrisch-optischen Verhältnisse der Hornhaut publication-title: Neues Opt J – volume: vol. 17 start-page: 513 year: 2005 end-page: 520 ident: bib57 article-title: Neighbourhood components analysis publication-title: Adv. Neural Inf. Process. Syst. – volume: 25 start-page: 1327 year: 1999 end-page: 1335 ident: bib10 article-title: KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus publication-title: J. Cataract Refract. Surg. – year: 2012 ident: bib50 article-title: Simplified Nomenclature for Describing Keratoconus – volume: 37 start-page: 1025 year: 2018 end-page: 1034 ident: bib71 article-title: Diagnostic ability of corneal shape and biomechanical parameters for detecting frank keratoconus publication-title: Cornea – volume: 44 start-page: 63 year: 2018 end-page: 70 ident: bib72 article-title: Repeatability and reliability of ectasia display and topometric indices with the Scheimpflug system in normal and keratoconic eyes publication-title: J. Cataract Refract. Surg. – volume: 157 year: 2014 ident: bib82 article-title: Corneal topographic and tomographic analysis of fellow eyes in unilateral keratoconus patients using Pentacam publication-title: Am. J. Ophthalmol. – volume: 31 start-page: 2350 year: 2005 end-page: 2355 ident: bib56 article-title: Goodness-of-prediction of Zernike polynomial fitting to corneal surfaces publication-title: J. Cataract Refract. Surg. – volume: 132 start-page: 1920 year: 2015 end-page: 1930 ident: bib34 article-title: Machine learning in medicine publication-title: Circulation – volume: 36 start-page: 689 year: 2017 ident: bib23 article-title: Validation of an objective keratoconus detection system implemented in a Scheimpflug tomographer and comparison with other methods publication-title: Cornea – volume: 38 start-page: 2167 year: 2012 end-page: 2183 ident: bib1 article-title: Characterization of corneal structure in keratoconus publication-title: J. Cataract Refract. Surg. – volume: vol. 17 start-page: 513 year: 2005 end-page: 520 ident: bib46 article-title: Neighbourhood components analysis publication-title: Adv. Neural Inf. Process. Syst. – volume: 11 start-page: 203 year: 2007 end-page: 212 ident: bib40 article-title: Spatial modeling and classification of corneal shape publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 23 start-page: 219 year: 2006 end-page: 232 ident: bib53 article-title: Optics of the average normal cornea from general and canonical representations of its surface topography publication-title: J Opt Soc Am A Opt Image Sci Vis – volume: 40 start-page: 991 year: 2014 end-page: 998 ident: bib41 article-title: Biomechanics of corneal ectasia and biomechanical treatments publication-title: J. Cataract Refract. Surg. – volume: 42 start-page: 297 year: 1998 end-page: 319 ident: bib2 publication-title: Keratoconus. Surv Ophthalmol – volume: 85 start-page: 890 year: 2007 end-page: 892 ident: bib5 article-title: Incidence and prevalence of keratoconus in Denmark publication-title: Acta Ophthalmol. Scand. – volume: 35 start-page: 1072 year: 2009 end-page: 1081 ident: bib28 article-title: Corneal topography with Scheimpflug imaging and videokeratography: comparative study of normal eyes publication-title: J. Cataract Refract. Surg. – volume: 35 start-page: 151 year: 2002 end-page: 159 ident: bib44 article-title: Neural network-based system for early keratoconus detection from corneal topography publication-title: J. Biomed. Inform. – volume: 3 start-page: 87 year: 1990 end-page: 92 ident: bib60 article-title: A convergence theorem for Grossberg learning publication-title: Neural Network. – volume: 33 start-page: 157 year: 2010 end-page: 166 ident: bib4 article-title: Keratoconus: a review publication-title: Contact Lens Anterior Eye – year: 2019 ident: bib29 article-title: Longitudinal evaluation of the progression of keratoconus using a novel progression display publication-title: Eye Contact Lens – volume: 6 start-page: 417 year: 1994 end-page: 435 ident: bib36 article-title: On using feedforward neural networks for clinical diagnostic tasks publication-title: Artif. Intell. Med. – volume: 11 start-page: 371 year: 1995 end-page: 379 ident: bib8 article-title: Videokeratographic indices to aid in screening for keratoconus publication-title: J Refract Surg Thorofare NJ – volume: 119 start-page: 2231 year: 2012 end-page: 2238 ident: bib74 article-title: Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data publication-title: Ophthalmology – volume: 62 start-page: 770 year: 2017 end-page: 783 ident: bib3 article-title: A review of keratoconus: diagnosis, pathophysiology, and genetics publication-title: Surv. Ophthalmol. – volume: 43 start-page: 1213 year: 2017 end-page: 1227 ident: bib80 article-title: New perspectives on the detection and progression of keratoconus publication-title: J. Cataract Refract. Surg. – volume: 24 start-page: 456 year: 1998 end-page: 463 ident: bib15 article-title: Live-epikeratophakia for keratoconus publication-title: J. Cataract Refract. Surg. – volume: 10 start-page: 91 year: 2017 end-page: 92 ident: bib6 article-title: Is keratoconus really rare? publication-title: Keratoconus Really Rare – volume: 91 start-page: 103 year: 2017 end-page: 111 ident: bib45 article-title: Feature selection method based on support vector machine and shape analysis for high-throughput medical data publication-title: Comput. Biol. Med. – volume: 195 start-page: 223 year: 2018 end-page: 232 ident: bib77 article-title: Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence publication-title: Am. J. Ophthalmol. – volume: 88 start-page: 1220 year: 2011 end-page: 1231 ident: bib30 article-title: Placido-based indices of corneal irregularity publication-title: Optom Vis Sci Off Publ Am Acad Optom – volume: 77 start-page: 285 year: 2016 end-page: 296 ident: bib51 article-title: Analysis of cornea curvature using radial basis functions – Part II: fitting to data-set publication-title: Comput. Biol. Med. – volume: 34 start-page: 260 year: 2018 end-page: 263 ident: bib19 article-title: Variation in the best fit sphere radius of curvature as a test to detect keratoconus progression on a scheimpflug-based corneal tomographer publication-title: J Refract Surg Thorofare NJ – volume: 22 start-page: 539 year: 2006 end-page: 545 ident: bib16 article-title: Corneal higher order aberrations: a method to grade keratoconus publication-title: J. Refract. Surg. – volume: 9 year: 2014 ident: bib48 article-title: Geometrical custom modeling of human cornea in vivo and its use for the diagnosis of corneal ectasia publication-title: PLoS One – volume: 28 start-page: 521 year: 2018 end-page: 534 ident: bib69 article-title: Comparative evaluation of Scheimpflug tomography parameters between thin non-keratoconic, subclinical keratoconic, and mild keratoconic corneas publication-title: Eur. J. Ophthalmol. – volume: 35 start-page: 1597 year: 2009 end-page: 1603 ident: bib17 article-title: Keratoconus: classification scheme based on videokeratography and clinical signs publication-title: J. Cataract Refract. Surg. – volume: 65 start-page: 61 year: 2015 end-page: 73 ident: bib35 article-title: Thirty years of artificial intelligence in medicine (AIME) conferences: a review of research themes publication-title: Artif. Intell. Med. – volume: 35 start-page: 827 year: 2016 ident: bib22 article-title: Evaluation of a machine-learning classifier for keratoconus detection based on Scheimpflug tomography publication-title: Cornea – volume: 195 start-page: 223 year: 2018 end-page: 232 ident: bib25 article-title: Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence publication-title: Am. J. Ophthalmol. – volume: 28 start-page: 21 year: 2016 end-page: 26 ident: bib33 article-title: Pentacam top indices for diagnosing subclinical and definite keratoconus publication-title: J Curr Ophthalmol – volume: 7 year: 2012 ident: bib58 article-title: Neighborhood component feature selection for high-dimensional data publication-title: J. Comput. – volume: 31 start-page: 253 year: 2012 end-page: 258 ident: bib21 article-title: Correlation of corneal elevation with severity of keratoconus by means of anterior and posterior topographic analysis publication-title: Cornea – volume: 59 year: 2018 ident: bib43 article-title: Elevation-based detection of keratoconus publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 15 start-page: 358 year: 1975 end-page: 361 ident: bib64 article-title: A stability property of implicit Runge-Kutta methods publication-title: BIT Numer Math – volume: 30 start-page: 80 year: 1995 end-page: 87 ident: bib81 article-title: Optical coherence tomography combined with videokeratography to differentiate mild keratoconus subtypes publication-title: J Refract Surg Thorofare NJ – volume: 25 start-page: 794 year: 2006 end-page: 800 ident: bib11 article-title: A new method for grading the severity of keratoconus: the Keratoconus Severity Score (KSS) publication-title: Cornea – volume: 12 year: 2017 ident: bib47 article-title: A new approach to keratoconus detection based on corneal morphogeometric analysis publication-title: PLoS One – volume: 20 start-page: 247 year: 1996 end-page: 260 ident: bib63 article-title: A history of Runge-Kutta methods publication-title: Appl. Numer. Math. – volume: 51 start-page: 5546 year: 2010 end-page: 5555 ident: bib24 article-title: Topographic and tomographic properties of forme fruste keratoconus corneas publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 156 start-page: 237 year: 2013 end-page: 246 ident: bib73 article-title: Detection of subclinical keratoconus using an automated decision tree classification publication-title: Am. J. Ophthalmol. – volume: 5 start-page: 400 year: 1989 end-page: 408 ident: bib20 article-title: Computer-assisted corneal topography in keratoconus publication-title: J. Refract. Surg. – volume: 1 start-page: 100 year: 2012 end-page: 108 ident: bib12 article-title: Validation of a new scoring system for the detection of early forme of keratoconus publication-title: Int. J. Keratoconus Ectatic Corneal Dis. – volume: 56 start-page: 493 year: 2009 end-page: 499 ident: bib55 article-title: Modeling corneal surfaces with rational functions for high-speed videokeratoscopy data compression publication-title: IEEE Trans. Biomed. Eng. – volume: 90 start-page: 587 year: 2013 end-page: 598 ident: bib49 article-title: Optical changes of the human cornea as a function of age publication-title: Optom Vis Sci Off Publ Am Acad Optom – volume: 18 start-page: 50 year: 1964 end-page: 64 ident: bib62 article-title: Implicit Runge-Kutta processes publication-title: Math. Comput. – year: 2019 ident: bib32 article-title: Distinguishing highly asymmetric keratoconus eyes using dual scheimpflug/placido analysis publication-title: Am. J. Ophthalmol. – volume: 1 start-page: 131 year: 1988 end-page: 139 ident: bib59 article-title: Applications of counterpropagation networks publication-title: Neural Network. – volume: 65 start-page: 1223 year: 2010 end-page: 1228 ident: bib38 article-title: Evaluation of machine learning classifiers in keratoconus detection from orbscan II examinations publication-title: Clinics – ident: bib76 article-title: Screening subclinical keratoconus with SCORE Analyzer – volume: 77 start-page: 274 year: 2016 end-page: 284 ident: bib52 article-title: Analysis of cornea curvature using radial basis functions – Part I: Methodology publication-title: Comput. Biol. Med. – volume: 38 start-page: 2290 year: 1997 end-page: 2299 ident: bib9 article-title: Current keratoconus detection methods compared with a neural network approach publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 90 start-page: 335 year: 2013 end-page: 343 ident: bib31 article-title: Screening subclinical keratoconus with placido-based corneal indices publication-title: Optom Vis Sci Off Publ Am Acad Optom – year: 2008 ident: bib13 article-title: Keratoconus/Ectasia Detection with the Oculus Pentacam : Belin/Ambrósio Enhanced Ectasia Display – year: 2016 ident: bib61 article-title: Numerical Methods for Ordinary Differential Equations – volume: vol. 2 start-page: 1137 year: 1995 end-page: 1143 ident: bib66 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection publication-title: Proc. 14th Int. Jt. Conf. Artif. Intell. – volume: 33 start-page: 1 year: 2005 end-page: 24 ident: bib37 article-title: Temporal reasoning for decision support in medicine publication-title: Artif. Intell. Med. – year: 2016 ident: bib79 article-title: Strategies for improving the early diagnosis of keratoconus publication-title: Clin. Optom. – volume: 233 start-page: 701 year: 2016 end-page: 707 ident: bib18 article-title: Keratoconus: the ABCD grading system publication-title: Klin. Monatsbl. Augenheilkd. – volume: 52 start-page: 4963 year: 2011 end-page: 4970 ident: bib54 article-title: Adaptive cornea modeling from keratometric data publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 5 year: 2018 ident: bib42 article-title: Corneal modeling and Keratoconus identification publication-title: Biomath Commun Suppl – volume: 59 year: 2018 ident: bib26 article-title: Elevation-based detection of keratoconus publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 37 start-page: 37 year: 2012 end-page: 38 ident: bib78 article-title: Validation of a new scoring system for the detection of early forme of keratoconus publication-title: Age – volume: 30 start-page: 542 year: 2014 end-page: 547 ident: bib75 article-title: Corneal enantiomorphism in normal and keratoconic eyes publication-title: J. Refract. Surg. – volume: 11 start-page: 351 year: 1992 end-page: 354 ident: bib65 article-title: Corneal topography of posterior keratoconus publication-title: Cornea – year: 2005 ident: bib67 article-title: Introduction to Data Mining – volume: 5 start-page: 400 year: 1989 ident: 10.1016/j.compbiomed.2019.04.024_bib20 article-title: Computer-assisted corneal topography in keratoconus publication-title: J. Refract. Surg. doi: 10.3928/1081-597X-19891101-10 – volume: vol. 17 start-page: 513 year: 2005 ident: 10.1016/j.compbiomed.2019.04.024_bib57 article-title: Neighbourhood components analysis – year: 2019 ident: 10.1016/j.compbiomed.2019.04.024_bib32 article-title: Distinguishing highly asymmetric keratoconus eyes using dual scheimpflug/placido analysis publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2019.01.023 – volume: 65 start-page: 61 year: 2015 ident: 10.1016/j.compbiomed.2019.04.024_bib35 article-title: Thirty years of artificial intelligence in medicine (AIME) conferences: a review of research themes publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2015.07.003 – year: 2012 ident: 10.1016/j.compbiomed.2019.04.024_bib50 – volume: 31 start-page: 2350 year: 2005 ident: 10.1016/j.compbiomed.2019.04.024_bib56 article-title: Goodness-of-prediction of Zernike polynomial fitting to corneal surfaces publication-title: J. Cataract Refract. Surg. doi: 10.1016/j.jcrs.2005.05.025 – volume: 7 year: 2012 ident: 10.1016/j.compbiomed.2019.04.024_bib58 article-title: Neighborhood component feature selection for high-dimensional data publication-title: J. Comput. doi: 10.4304/jcp.7.1.161-168 – volume: 31 start-page: 253 year: 2012 ident: 10.1016/j.compbiomed.2019.04.024_bib21 article-title: Correlation of corneal elevation with severity of keratoconus by means of anterior and posterior topographic analysis publication-title: Cornea doi: 10.1097/ICO.0B013E31823D1EE0 – volume: 156 start-page: 237 year: 2013 ident: 10.1016/j.compbiomed.2019.04.024_bib73 article-title: Detection of subclinical keratoconus using an automated decision tree classification publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2013.03.034 – volume: 77 start-page: 285 year: 2016 ident: 10.1016/j.compbiomed.2019.04.024_bib51 article-title: Analysis of cornea curvature using radial basis functions – Part II: fitting to data-set publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.06.008 – volume: 5 year: 2018 ident: 10.1016/j.compbiomed.2019.04.024_bib42 article-title: Corneal modeling and Keratoconus identification publication-title: Biomath Commun Suppl – volume: 195 start-page: 223 year: 2018 ident: 10.1016/j.compbiomed.2019.04.024_bib77 article-title: Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2018.08.005 – year: 2018 ident: 10.1016/j.compbiomed.2019.04.024_bib70 article-title: Distinguishing highly asymmetric keratoconus eyes using combined Scheimpflug and spectral domain OCT analysis publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.06.020 – volume: 11 start-page: 351 year: 1992 ident: 10.1016/j.compbiomed.2019.04.024_bib65 article-title: Corneal topography of posterior keratoconus publication-title: Cornea doi: 10.1097/00003226-199207000-00014 – volume: 33 start-page: 1 year: 2005 ident: 10.1016/j.compbiomed.2019.04.024_bib37 article-title: Temporal reasoning for decision support in medicine publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2004.07.006 – volume: 9 year: 2014 ident: 10.1016/j.compbiomed.2019.04.024_bib48 article-title: Geometrical custom modeling of human cornea in vivo and its use for the diagnosis of corneal ectasia publication-title: PLoS One doi: 10.1371/journal.pone.0110249 – volume: 34 start-page: 260 year: 2018 ident: 10.1016/j.compbiomed.2019.04.024_bib19 article-title: Variation in the best fit sphere radius of curvature as a test to detect keratoconus progression on a scheimpflug-based corneal tomographer publication-title: J Refract Surg Thorofare NJ doi: 10.3928/1081597X-20180206-03 – volume: 59 year: 2018 ident: 10.1016/j.compbiomed.2019.04.024_bib26 article-title: Elevation-based detection of keratoconus publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 35 start-page: 1597 year: 2009 ident: 10.1016/j.compbiomed.2019.04.024_bib17 article-title: Keratoconus: classification scheme based on videokeratography and clinical signs publication-title: J. Cataract Refract. Surg. doi: 10.1016/j.jcrs.2009.03.050 – volume: 11 start-page: 371 year: 1995 ident: 10.1016/j.compbiomed.2019.04.024_bib8 article-title: Videokeratographic indices to aid in screening for keratoconus publication-title: J Refract Surg Thorofare NJ doi: 10.3928/1081-597X-19950901-14 – volume: 25 start-page: 794 year: 2006 ident: 10.1016/j.compbiomed.2019.04.024_bib11 article-title: A new method for grading the severity of keratoconus: the Keratoconus Severity Score (KSS) publication-title: Cornea doi: 10.1097/01.ico.0000226359.26678.d1 – volume: 35 start-page: 1072 year: 2009 ident: 10.1016/j.compbiomed.2019.04.024_bib28 article-title: Corneal topography with Scheimpflug imaging and videokeratography: comparative study of normal eyes publication-title: J. Cataract Refract. Surg. doi: 10.1016/j.jcrs.2009.01.020 – ident: 10.1016/j.compbiomed.2019.04.024_bib76 – volume: 20 start-page: 247 year: 1996 ident: 10.1016/j.compbiomed.2019.04.024_bib63 article-title: A history of Runge-Kutta methods publication-title: Appl. Numer. Math. doi: 10.1016/0168-9274(95)00108-5 – volume: 25 start-page: 1327 year: 1999 ident: 10.1016/j.compbiomed.2019.04.024_bib10 article-title: KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus publication-title: J. Cataract Refract. Surg. doi: 10.1016/S0886-3350(99)00195-9 – volume: 56 start-page: 493 year: 2009 ident: 10.1016/j.compbiomed.2019.04.024_bib55 article-title: Modeling corneal surfaces with rational functions for high-speed videokeratoscopy data compression publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2006019 – year: 2016 ident: 10.1016/j.compbiomed.2019.04.024_bib61 – volume: 77 start-page: 274 year: 2016 ident: 10.1016/j.compbiomed.2019.04.024_bib52 article-title: Analysis of cornea curvature using radial basis functions – Part I: Methodology publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.08.011 – volume: 23 start-page: 219 year: 2006 ident: 10.1016/j.compbiomed.2019.04.024_bib53 article-title: Optics of the average normal cornea from general and canonical representations of its surface topography publication-title: J Opt Soc Am A Opt Image Sci Vis doi: 10.1364/JOSAA.23.000219 – volume: 88 start-page: 1220 year: 2011 ident: 10.1016/j.compbiomed.2019.04.024_bib30 article-title: Placido-based indices of corneal irregularity publication-title: Optom Vis Sci Off Publ Am Acad Optom doi: 10.1097/OPX.0b013e3182279ff8 – volume: 233 start-page: 701 year: 2016 ident: 10.1016/j.compbiomed.2019.04.024_bib18 article-title: Keratoconus: the ABCD grading system publication-title: Klin. Monatsbl. Augenheilkd. doi: 10.1055/s-0042-100626 – volume: 62 start-page: 770 year: 2017 ident: 10.1016/j.compbiomed.2019.04.024_bib3 article-title: A review of keratoconus: diagnosis, pathophysiology, and genetics publication-title: Surv. Ophthalmol. doi: 10.1016/j.survophthal.2017.06.009 – volume: 11 start-page: 203 year: 2007 ident: 10.1016/j.compbiomed.2019.04.024_bib40 article-title: Spatial modeling and classification of corneal shape publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2006.879591 – volume: 157 year: 2014 ident: 10.1016/j.compbiomed.2019.04.024_bib82 article-title: Corneal topographic and tomographic analysis of fellow eyes in unilateral keratoconus patients using Pentacam publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2013.08.014 – volume: 85 start-page: 890 year: 2007 ident: 10.1016/j.compbiomed.2019.04.024_bib5 article-title: Incidence and prevalence of keratoconus in Denmark publication-title: Acta Ophthalmol. Scand. doi: 10.1111/j.1600-0420.2007.00981.x – volume: 43 start-page: 1213 year: 2017 ident: 10.1016/j.compbiomed.2019.04.024_bib80 article-title: New perspectives on the detection and progression of keratoconus publication-title: J. Cataract Refract. Surg. doi: 10.1016/j.jcrs.2017.07.021 – volume: 24 start-page: 456 year: 1998 ident: 10.1016/j.compbiomed.2019.04.024_bib15 article-title: Live-epikeratophakia for keratoconus publication-title: J. Cataract Refract. Surg. doi: 10.1016/S0886-3350(98)80284-8 – volume: 35 start-page: 827 year: 2016 ident: 10.1016/j.compbiomed.2019.04.024_bib22 article-title: Evaluation of a machine-learning classifier for keratoconus detection based on Scheimpflug tomography publication-title: Cornea doi: 10.1097/ICO.0000000000000834 – volume: 35 start-page: 151 year: 2002 ident: 10.1016/j.compbiomed.2019.04.024_bib44 article-title: Neural network-based system for early keratoconus detection from corneal topography publication-title: J. Biomed. Inform. doi: 10.1016/S1532-0464(02)00513-0 – year: 2005 ident: 10.1016/j.compbiomed.2019.04.024_bib67 – volume: 59 year: 2018 ident: 10.1016/j.compbiomed.2019.04.024_bib43 article-title: Elevation-based detection of keratoconus publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 90 start-page: 587 year: 2013 ident: 10.1016/j.compbiomed.2019.04.024_bib49 article-title: Optical changes of the human cornea as a function of age publication-title: Optom Vis Sci Off Publ Am Acad Optom doi: 10.1097/OPX.0b013e3182928bc6 – volume: 52 start-page: 4963 year: 2011 ident: 10.1016/j.compbiomed.2019.04.024_bib54 article-title: Adaptive cornea modeling from keratometric data publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.10-6774 – volume: 28 start-page: 21 year: 2016 ident: 10.1016/j.compbiomed.2019.04.024_bib33 article-title: Pentacam top indices for diagnosing subclinical and definite keratoconus publication-title: J Curr Ophthalmol doi: 10.1016/j.joco.2016.01.009 – volume: 195 start-page: 223 year: 2018 ident: 10.1016/j.compbiomed.2019.04.024_bib25 article-title: Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2018.08.005 – year: 2016 ident: 10.1016/j.compbiomed.2019.04.024_bib79 article-title: Strategies for improving the early diagnosis of keratoconus publication-title: Clin. Optom. doi: 10.2147/OPTO.S63486 – volume: vol. 17 start-page: 513 year: 2005 ident: 10.1016/j.compbiomed.2019.04.024_bib46 article-title: Neighbourhood components analysis – volume: 12 year: 2017 ident: 10.1016/j.compbiomed.2019.04.024_bib47 article-title: A new approach to keratoconus detection based on corneal morphogeometric analysis publication-title: PLoS One doi: 10.1371/journal.pone.0184569 – volume: 132 start-page: 1920 year: 2015 ident: 10.1016/j.compbiomed.2019.04.024_bib34 article-title: Machine learning in medicine publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.001593 – volume: 82 start-page: 1038 year: 2005 ident: 10.1016/j.compbiomed.2019.04.024_bib39 article-title: Automated decision tree classification of corneal shape publication-title: Optom Vis Sci Off Publ Am Acad Optom doi: 10.1097/01.opx.0000192350.01045.6f – volume: 36 start-page: 689 year: 2017 ident: 10.1016/j.compbiomed.2019.04.024_bib23 article-title: Validation of an objective keratoconus detection system implemented in a Scheimpflug tomographer and comparison with other methods publication-title: Cornea doi: 10.1097/ICO.0000000000001194 – volume: 18 start-page: 50 year: 1964 ident: 10.1016/j.compbiomed.2019.04.024_bib62 article-title: Implicit Runge-Kutta processes publication-title: Math. Comput. doi: 10.1090/S0025-5718-1964-0159424-9 – volume: 51 start-page: 5546 year: 2010 ident: 10.1016/j.compbiomed.2019.04.024_bib24 article-title: Topographic and tomographic properties of forme fruste keratoconus corneas publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.10-5369 – volume: 65 start-page: 1223 year: 2010 ident: 10.1016/j.compbiomed.2019.04.024_bib38 article-title: Evaluation of machine learning classifiers in keratoconus detection from orbscan II examinations publication-title: Clinics doi: 10.1590/S1807-59322010001200002 – volume: 37 start-page: 37 year: 2012 ident: 10.1016/j.compbiomed.2019.04.024_bib78 article-title: Validation of a new scoring system for the detection of early forme of keratoconus publication-title: Age – volume: 90 start-page: 335 year: 2013 ident: 10.1016/j.compbiomed.2019.04.024_bib31 article-title: Screening subclinical keratoconus with placido-based corneal indices publication-title: Optom Vis Sci Off Publ Am Acad Optom doi: 10.1097/OPX.0b013e3182843f2a – volume: 44 start-page: 63 year: 2018 ident: 10.1016/j.compbiomed.2019.04.024_bib72 article-title: Repeatability and reliability of ectasia display and topometric indices with the Scheimpflug system in normal and keratoconic eyes publication-title: J. Cataract Refract. Surg. doi: 10.1016/j.jcrs.2017.10.042 – volume: 5 start-page: 87 year: 1984 ident: 10.1016/j.compbiomed.2019.04.024_bib14 article-title: Die Anpassung von asphärischen Kontaktlinsen bei Keratokonus unter Berücksichtigung der geometrisch-optischen Verhältnisse der Hornhaut publication-title: Neues Opt J – volume: 10 start-page: 91 issue: 2 year: 2017 ident: 10.1016/j.compbiomed.2019.04.024_bib6 article-title: Is keratoconus really rare? publication-title: Keratoconus Really Rare – volume: 1 start-page: 100 issue: 2 year: 2012 ident: 10.1016/j.compbiomed.2019.04.024_bib12 article-title: Validation of a new scoring system for the detection of early forme of keratoconus publication-title: Int. J. Keratoconus Ectatic Corneal Dis. doi: 10.5005/jp-journals-10025-1019 – volume: 6 start-page: 417 year: 1994 ident: 10.1016/j.compbiomed.2019.04.024_bib36 article-title: On using feedforward neural networks for clinical diagnostic tasks publication-title: Artif. Intell. Med. doi: 10.1016/0933-3657(94)90005-1 – volume: 38 start-page: 2290 year: 1997 ident: 10.1016/j.compbiomed.2019.04.024_bib9 article-title: Current keratoconus detection methods compared with a neural network approach publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 40 start-page: 991 year: 2014 ident: 10.1016/j.compbiomed.2019.04.024_bib41 article-title: Biomechanics of corneal ectasia and biomechanical treatments publication-title: J. Cataract Refract. Surg. doi: 10.1016/j.jcrs.2014.04.013 – volume: 91 start-page: 103 year: 2017 ident: 10.1016/j.compbiomed.2019.04.024_bib45 article-title: Feature selection method based on support vector machine and shape analysis for high-throughput medical data publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.10.008 – volume: 38 start-page: 2167 year: 2012 ident: 10.1016/j.compbiomed.2019.04.024_bib1 article-title: Characterization of corneal structure in keratoconus publication-title: J. Cataract Refract. Surg. doi: 10.1016/j.jcrs.2012.10.022 – year: 2008 ident: 10.1016/j.compbiomed.2019.04.024_bib13 – year: 2019 ident: 10.1016/j.compbiomed.2019.04.024_bib29 article-title: Longitudinal evaluation of the progression of keratoconus using a novel progression display publication-title: Eye Contact Lens doi: 10.1097/ICL.0000000000000582 – volume: 1 start-page: 131 year: 1988 ident: 10.1016/j.compbiomed.2019.04.024_bib59 article-title: Applications of counterpropagation networks publication-title: Neural Network. doi: 10.1016/0893-6080(88)90015-9 – volume: 3 start-page: 87 year: 1990 ident: 10.1016/j.compbiomed.2019.04.024_bib60 article-title: A convergence theorem for Grossberg learning publication-title: Neural Network. doi: 10.1016/0893-6080(90)90047-O – volume: vol. 2 start-page: 1137 year: 1995 ident: 10.1016/j.compbiomed.2019.04.024_bib66 article-title: A study of cross-validation and bootstrap for accuracy estimation and model selection – volume: 35 start-page: 2749 year: 1994 ident: 10.1016/j.compbiomed.2019.04.024_bib7 article-title: Automated keratoconus screening with corneal topography analysis publication-title: Investig. Ophthalmol. Vis. Sci. – volume: 119 start-page: 2231 year: 2012 ident: 10.1016/j.compbiomed.2019.04.024_bib74 article-title: Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data publication-title: Ophthalmology doi: 10.1016/j.ophtha.2012.06.005 – volume: 34 start-page: 254 year: 2018 ident: 10.1016/j.compbiomed.2019.04.024_bib68 article-title: Early tomographic changes in the eyes of patients with keratoconus publication-title: J. Refract. Surg. doi: 10.3928/1081597X-20180124-01 – volume: 33 start-page: 157 year: 2010 ident: 10.1016/j.compbiomed.2019.04.024_bib4 article-title: Keratoconus: a review publication-title: Contact Lens Anterior Eye doi: 10.1016/j.clae.2010.04.006 – volume: 5 year: 2018 ident: 10.1016/j.compbiomed.2019.04.024_bib27 article-title: Corneal modeling and Keratoconus identification publication-title: Biomath Commun Suppl – volume: 15 start-page: 358 year: 1975 ident: 10.1016/j.compbiomed.2019.04.024_bib64 article-title: A stability property of implicit Runge-Kutta methods publication-title: BIT Numer Math doi: 10.1007/BF01931672 – volume: 28 start-page: 521 year: 2018 ident: 10.1016/j.compbiomed.2019.04.024_bib69 article-title: Comparative evaluation of Scheimpflug tomography parameters between thin non-keratoconic, subclinical keratoconic, and mild keratoconic corneas publication-title: Eur. J. Ophthalmol. doi: 10.1177/1120672118760146 – volume: 30 start-page: 80 year: 1995 ident: 10.1016/j.compbiomed.2019.04.024_bib81 article-title: Optical coherence tomography combined with videokeratography to differentiate mild keratoconus subtypes publication-title: J Refract Surg Thorofare NJ doi: 10.3928/1081597X-20140120-02 – volume: 42 start-page: 297 year: 1998 ident: 10.1016/j.compbiomed.2019.04.024_bib2 publication-title: Keratoconus. Surv Ophthalmol doi: 10.1016/S0039-6257(97)00119-7 – volume: 22 start-page: 539 year: 2006 ident: 10.1016/j.compbiomed.2019.04.024_bib16 article-title: Corneal higher order aberrations: a method to grade keratoconus publication-title: J. Refract. Surg. doi: 10.3928/1081-597X-20060601-05 – volume: 30 start-page: 542 year: 2014 ident: 10.1016/j.compbiomed.2019.04.024_bib75 article-title: Corneal enantiomorphism in normal and keratoconic eyes publication-title: J. Refract. Surg. doi: 10.3928/1081597X-20140711-07 – volume: 37 start-page: 1025 year: 2018 ident: 10.1016/j.compbiomed.2019.04.024_bib71 article-title: Diagnostic ability of corneal shape and biomechanical parameters for detecting frank keratoconus publication-title: Cornea doi: 10.1097/ICO.0000000000001639 |
| SSID | ssj0004030 |
| Score | 2.4920332 |
| Snippet | To develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use.
The CAD combines a custom-made... AbstractPurposeTo develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use. MethodsThe CAD combines... PurposeTo develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use.MethodsThe CAD combines a... To develop a stable and low-cost computer aided diagnosis (CAD) system for early keratoconus detection for clinical use.PURPOSETo develop a stable and low-cost... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 33 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Artificial neural networks Computer aided diagnosis Cornea Datasets Diagnosis Disease Epidemiology Internal Medicine Keratoconus Keratoconus suspect Learning algorithms Machine learning Mathematical modelling Mathematical models Medical diagnosis Neural networks Other Runge-Kutta method Sensitivity Tomography Unstructured data |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zi9RAEC7WWRBfFm9HV4nga7BzdKejiKjssgg7iLqwb036Ag8y62bm_1vVR-bFlXlOKglFddXX6a--AnjlMGZqLWRpPO9LrNBD2YuuKmXtnTOM28pRN_L5SpxdtJ8v-eUBrHIvDNEqc04MidquDf0jf41ljJNclKzeX_0paWoUna7mERpDGq1g3wWJsVtwWJMy1gIOP56svnzddUqyJjalYPZpcXOUuD2R8UUk7tj0TpSvPkig1u1NBesmQBoK0-ldOEqIsvgQQ-AeHLjxPtw-T2fmD-BNHtxQkBqkLWwk1_2YCsSrxbQNvZbFLxJXXuPmeDsV1m0CQWt8CBenJ98_nZVpYkJpEPhsylY4xwautdCOGW5r77mXjZBysN7UHbM9IpjWNY033gkjZUviNa63zNXC-eYRLMb16J5AMeDexHhttNRY5PtqsEEZqMXHMm2aZglddosySU6cplr8Vpk39lPtHKrIoYq1Ch26hGq2vIqSGnvY9NnzKreMYpJTmPf3sO3-ZeumtFonVampVkx9C2JFoZe3oSMovoS3s2UCJBFo7Pne4xwian7VLoyX8HK-jEuazmmG0a23dA9uExG2dnjP4xhas6NoLBxnon_6_4c_gzv0JZHTdgyLzfXWPUf0tNEv0pL4C46xGVM priority: 102 providerName: ProQuest |
| Title | Computer aided diagnosis for suspect keratoconus detection |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482519301325 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482519301325 https://dx.doi.org/10.1016/j.compbiomed.2019.04.024 https://www.ncbi.nlm.nih.gov/pubmed/31035069 https://www.proquest.com/docview/2235557081 https://www.proquest.com/docview/2217492971 |
| Volume | 109 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9RAEF5KBfFFtFY9rSWCr2k3yWaz0adaep5Kj1Is3NuS3Z2F05Irzd2rv92Z7CZFtHDQl4QkO9llmJ2dZb9vhrEPgDaTG6lS68s6xRW6SWtZZanKPYDlpcuA2Mjnczm7Et8W5WKHnQ5cGIJVRt8ffHrvreOb46jN45vlkji-uJXomZcFHRgQ0VyIiqoYHP2-g3kIXgQaCvobah3RPAHjRbDtQHMnkFfdJz3NxX1L1H0haL8UTZ-xpzGGTE7CMJ-zHWj32OPzeEr-gn0cSjUklP_RJS7A6ZZdghFq0m16dmXyi9Ipr3A7vOkSB-sektXus6vp2Y_TWRprJKQWQ511KiQAb0pjpAFuS5d7X3pVSKUa521ecVdjzCKgKLz1IK1SgtLVQO045BJ88ZLttqsWXrOkwd2I9cYaZXBZr7PG9bmABP6WG1sUE1YNatE2JhCnOhbXekCK_dR3CtWkUM2FRoVOWDZK3oQkGlvI1IPm9UASRbem0dNvIVv9Txa6OD87neku11z_Y0MT9mmU_MsMt-z3YDARPXaF8VdJec5UNmHvx884ielkpmlhtaE2uDHEQLXCNq-CaY2KokJwJZf1mwcN7S17Qk8B5HbAdte3G3iH4dTaHPbzBa_VosKrmn45ZI9Ovn6fzfH--Wx-cfkHnQwjEA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VVgIuiG-2LRAkOEY4seMkRRXio9WWdlcIWqk3k9hjqQVlW7IrxJ_jtzGOneyFor30vBlnNWvPvFnPewPwEmnPpLUsYm2zMqYMXcWlzJO4SC2iZplJ0LGRJ1M5PhGfTrPTNfjTc2FcW2UfE7tAbWba_Uf-mtJY5uSiiuTtxWXspka529V-hEYVRiuY3U5iLBA7DvH3Lyrh2t2Dj_R7v0rT_b3jD-M4TBmINYGFeSwkIquyupY1Mp2Z1NrMFlwWRWWsTnNmSsr6Ajm32qLURSGc4AuWhmEq0XJa9wZsCC5KKv423u9NP39ZMjMZ9yQYinaCirHQS-Q7zFzTuCfZuxazspNcTcVVCfIqANwlwv27cCcg2Oid33L3YA2b-3BzEu7oH8BOPygicuqTJjK-me-sjQgfR-2i43ZG352Y84yK8UUbGZx3DWHNQzi5Ft89gvVm1uATiCqqhbStdV3UBCrKpDKdEpGgZVmtOR9B3rtF6SBf7qZo_FB9n9q5WjpUOYcqJhQ5dATJYHnhJTxWsCl7z6ueokpBVVGeWcE2_5cttiE6tCpRbaqY-tqJI3XcYe6uvLIRvBksAwDywGbF9273W0QNr1oemxG8GD6mEOLuhaoGZwv3DJWlBJNzeuax31qDo9wYuozJcvP_iz-HW-PjyZE6OpgebsFt9618P902rM9_LvApIbd5_Swcjwi-XfeJ_AuLnFe9 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8uFAgSHKM6cZ5FVYUoq5bSCgkq7c3E9ljioWwhu6r4a_w6ZuI4e6FoLz0n40ST8Tzib74BeIlkM6kuqti4vI4pQjdxXZRJXKUO0YjcJsjdyKdnxdF59n6WzzbgT-iFYVhl8Im9o7Zzw__IdymM5UwXVSW7boBFfDycHlz8jHmCFJ-0hnEa3kRO8PcllW_d_vEhfetXaTp99_ntUTxMGIgNJQqLOCsQRZNrXWgUJrepc7mrZFFVjXUmLYWtKeJnKKUzDgtTVRmTvWBtBaYFOknr3oCbpZQ1wwnLWbnqyRTSt7-Qn8uoDBtQRB5bxnBx317P4LK6J1tNs6tC41Wpbx8Cp3fg9pC7Rm-8sd2FDWzvwdbpcDp_H_bCiIiIeSdtZD2M72sXUWYcdcu-qzP6zjTOcyrDl11kcdFDwdoHcH4tmnsIm-28xW2IGqqCjNNGV5rSiTppbM9BlNGyQhspJ1AGtSgzEJfz_IwfKiDUvqmVQhUrVIlMkUInkIySF568Yw2ZOmheheZUcqeKIswasuW_ZLEb_EKnEtWlSqhPPS1S3zUs-bArn8DrUXJIfXxKs-Zzd4KJqPFRqw0zgRfjZXIefCLUtDhf8j1UkFKCXNI9j7xpjYriAXS5KOrH_1_8OWzRPlQfjs9OnsAtfikPpNuBzcWvJT6llG2hn_V7I4Iv170Z_wIqKFVX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer+aided+diagnosis+for+suspect+keratoconus+detection&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Issarti%2C+Ikram&rft.au=Consejo%2C+Alejandra&rft.au=Jim%C3%A9nez-Garc%C3%ADa%2C+Marta&rft.au=Hershko%2C+Sarah&rft.date=2019-06-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=109&rft.spage=33&rft.epage=42&rft_id=info:doi/10.1016%2Fj.compbiomed.2019.04.024&rft.externalDocID=S0010482519301325 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482519X00050%2Fcov150h.gif |