An investigation to study the effects of Tai Chi on human gait dynamics using classical machine learning

Tai Chi has been proven effective in preventing falls in older adults, improving the joint function of knee osteoarthritis patients, and improving the balance of stroke survivors. However, the effect of Tai Chi on human gait dynamics is still less understood. Studies conducted in this domain only re...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 142; p. 105184
Main Authors Faisal, Md. Ahasan Atick, Chowdhury, Muhammad E.H., Khandakar, Amith, Hossain, Md Shafayet, Alhatou, Mohammed, Mahmud, Sakib, Ara, Iffat, Sheikh, Shah Imran, Ahmed, Mosabber Uddin
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2022
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2021.105184

Cover

Abstract Tai Chi has been proven effective in preventing falls in older adults, improving the joint function of knee osteoarthritis patients, and improving the balance of stroke survivors. However, the effect of Tai Chi on human gait dynamics is still less understood. Studies conducted in this domain only relied on statistical and clinical measurements on the time-series gait data. In recent years machine learning has proven its ability in recognizing complex patterns from time-series data. In this research work, we have evaluated the performance of several machine learning algorithms in classifying the walking gait of Tai Chi masters (people expert on Tai Chi) from the normal subjects. The study is designed in a longitudinal manner where the Tai Chi naive subjects received 6 months of Tai Chi training and the data was recorded during the initial and follow-up sessions. A total of 57 subjects participated in the experiment among which 27 were Tai Chi masters. We have introduced a gender, BMI-based scaling of the features to mitigate their effects from the gait parameters. A hybrid feature ranking technique has also been proposed for selecting the best features for classification. The research reports 88.17% accuracy and 93.10% ROC AUC values from subject-wise 5-fold cross-validation for the Tai Chi masters' vs normal subjects’ walking gait classification for the “Single-task” walking scenarios. We have also got fairly good accuracy for the “Dual-task” walking scenarios (82.62% accuracy and 84.11% ROC AUC values). The results indicate that Tai Chi clearly has an effect on the walking gait dynamics. The findings and methodology of this study could provide preliminary guidance for applying machine learning-based approaches to similar gait kinematics analyses. [Display omitted] •Tai Chi has an effect on walking gait.•Machine learning algorithms can classify the gait pattern of Tai Chi experts.•BMI and gender-based scaling are required for better classification.•A hybrid feature ranking technique can boost up the performance.
AbstractList Tai Chi has been proven effective in preventing falls in older adults, improving the joint function of knee osteoarthritis patients, and improving the balance of stroke survivors. However, the effect of Tai Chi on human gait dynamics is still less understood. Studies conducted in this domain only relied on statistical and clinical measurements on the time-series gait data. In recent years machine learning has proven its ability in recognizing complex patterns from time-series data. In this research work, we have evaluated the performance of several machine learning algorithms in classifying the walking gait of Tai Chi masters (people expert on Tai Chi) from the normal subjects. The study is designed in a longitudinal manner where the Tai Chi naive subjects received 6 months of Tai Chi training and the data was recorded during the initial and follow-up sessions. A total of 57 subjects participated in the experiment among which 27 were Tai Chi masters. We have introduced a gender, BMI-based scaling of the features to mitigate their effects from the gait parameters. A hybrid feature ranking technique has also been proposed for selecting the best features for classification. The research reports 88.17% accuracy and 93.10% ROC AUC values from subject-wise 5-fold cross-validation for the Tai Chi masters' vs normal subjects' walking gait classification for the "Single-task" walking scenarios. We have also got fairly good accuracy for the "Dual-task" walking scenarios (82.62% accuracy and 84.11% ROC AUC values). The results indicate that Tai Chi clearly has an effect on the walking gait dynamics. The findings and methodology of this study could provide preliminary guidance for applying machine learning-based approaches to similar gait kinematics analyses.
AbstractTai Chi has been proven effective in preventing falls in older adults, improving the joint function of knee osteoarthritis patients, and improving the balance of stroke survivors. However, the effect of Tai Chi on human gait dynamics is still less understood. Studies conducted in this domain only relied on statistical and clinical measurements on the time-series gait data. In recent years machine learning has proven its ability in recognizing complex patterns from time-series data. In this research work, we have evaluated the performance of several machine learning algorithms in classifying the walking gait of Tai Chi masters (people expert on Tai Chi) from the normal subjects. The study is designed in a longitudinal manner where the Tai Chi naive subjects received 6 months of Tai Chi training and the data was recorded during the initial and follow-up sessions. A total of 57 subjects participated in the experiment among which 27 were Tai Chi masters. We have introduced a gender, BMI-based scaling of the features to mitigate their effects from the gait parameters. A hybrid feature ranking technique has also been proposed for selecting the best features for classification. The research reports 88.17% accuracy and 93.10% ROC AUC values from subject-wise 5-fold cross-validation for the Tai Chi masters' vs normal subjects’ walking gait classification for the “Single-task” walking scenarios. We have also got fairly good accuracy for the “Dual-task” walking scenarios (82.62% accuracy and 84.11% ROC AUC values). The results indicate that Tai Chi clearly has an effect on the walking gait dynamics. The findings and methodology of this study could provide preliminary guidance for applying machine learning-based approaches to similar gait kinematics analyses.
Tai Chi has been proven effective in preventing falls in older adults, improving the joint function of knee osteoarthritis patients, and improving the balance of stroke survivors. However, the effect of Tai Chi on human gait dynamics is still less understood. Studies conducted in this domain only relied on statistical and clinical measurements on the time-series gait data. In recent years machine learning has proven its ability in recognizing complex patterns from time-series data. In this research work, we have evaluated the performance of several machine learning algorithms in classifying the walking gait of Tai Chi masters (people expert on Tai Chi) from the normal subjects. The study is designed in a longitudinal manner where the Tai Chi naive subjects received 6 months of Tai Chi training and the data was recorded during the initial and follow-up sessions. A total of 57 subjects participated in the experiment among which 27 were Tai Chi masters. We have introduced a gender, BMI-based scaling of the features to mitigate their effects from the gait parameters. A hybrid feature ranking technique has also been proposed for selecting the best features for classification. The research reports 88.17% accuracy and 93.10% ROC AUC values from subject-wise 5-fold cross-validation for the Tai Chi masters' vs normal subjects’ walking gait classification for the “Single-task” walking scenarios. We have also got fairly good accuracy for the “Dual-task” walking scenarios (82.62% accuracy and 84.11% ROC AUC values). The results indicate that Tai Chi clearly has an effect on the walking gait dynamics. The findings and methodology of this study could provide preliminary guidance for applying machine learning-based approaches to similar gait kinematics analyses. [Display omitted] •Tai Chi has an effect on walking gait.•Machine learning algorithms can classify the gait pattern of Tai Chi experts.•BMI and gender-based scaling are required for better classification.•A hybrid feature ranking technique can boost up the performance.
Tai Chi has been proven effective in preventing falls in older adults, improving the joint function of knee osteoarthritis patients, and improving the balance of stroke survivors. However, the effect of Tai Chi on human gait dynamics is still less understood. Studies conducted in this domain only relied on statistical and clinical measurements on the time-series gait data. In recent years machine learning has proven its ability in recognizing complex patterns from time-series data. In this research work, we have evaluated the performance of several machine learning algorithms in classifying the walking gait of Tai Chi masters (people expert on Tai Chi) from the normal subjects. The study is designed in a longitudinal manner where the Tai Chi naive subjects received 6 months of Tai Chi training and the data was recorded during the initial and follow-up sessions. A total of 57 subjects participated in the experiment among which 27 were Tai Chi masters. We have introduced a gender, BMI-based scaling of the features to mitigate their effects from the gait parameters. A hybrid feature ranking technique has also been proposed for selecting the best features for classification. The research reports 88.17% accuracy and 93.10% ROC AUC values from subject-wise 5-fold cross-validation for the Tai Chi masters' vs normal subjects' walking gait classification for the "Single-task" walking scenarios. We have also got fairly good accuracy for the "Dual-task" walking scenarios (82.62% accuracy and 84.11% ROC AUC values). The results indicate that Tai Chi clearly has an effect on the walking gait dynamics. The findings and methodology of this study could provide preliminary guidance for applying machine learning-based approaches to similar gait kinematics analyses.Tai Chi has been proven effective in preventing falls in older adults, improving the joint function of knee osteoarthritis patients, and improving the balance of stroke survivors. However, the effect of Tai Chi on human gait dynamics is still less understood. Studies conducted in this domain only relied on statistical and clinical measurements on the time-series gait data. In recent years machine learning has proven its ability in recognizing complex patterns from time-series data. In this research work, we have evaluated the performance of several machine learning algorithms in classifying the walking gait of Tai Chi masters (people expert on Tai Chi) from the normal subjects. The study is designed in a longitudinal manner where the Tai Chi naive subjects received 6 months of Tai Chi training and the data was recorded during the initial and follow-up sessions. A total of 57 subjects participated in the experiment among which 27 were Tai Chi masters. We have introduced a gender, BMI-based scaling of the features to mitigate their effects from the gait parameters. A hybrid feature ranking technique has also been proposed for selecting the best features for classification. The research reports 88.17% accuracy and 93.10% ROC AUC values from subject-wise 5-fold cross-validation for the Tai Chi masters' vs normal subjects' walking gait classification for the "Single-task" walking scenarios. We have also got fairly good accuracy for the "Dual-task" walking scenarios (82.62% accuracy and 84.11% ROC AUC values). The results indicate that Tai Chi clearly has an effect on the walking gait dynamics. The findings and methodology of this study could provide preliminary guidance for applying machine learning-based approaches to similar gait kinematics analyses.
ArticleNumber 105184
Author Sheikh, Shah Imran
Khandakar, Amith
Alhatou, Mohammed
Faisal, Md. Ahasan Atick
Mahmud, Sakib
Chowdhury, Muhammad E.H.
Ahmed, Mosabber Uddin
Ara, Iffat
Hossain, Md Shafayet
Author_xml – sequence: 1
  givenname: Md. Ahasan Atick
  orcidid: 0000-0003-3322-2913
  surname: Faisal
  fullname: Faisal, Md. Ahasan Atick
  organization: Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
– sequence: 2
  givenname: Muhammad E.H.
  orcidid: 0000-0003-0744-8206
  surname: Chowdhury
  fullname: Chowdhury, Muhammad E.H.
  email: mchowdhury@qu.edu.qa
  organization: Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar
– sequence: 3
  givenname: Amith
  surname: Khandakar
  fullname: Khandakar, Amith
  organization: Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar
– sequence: 4
  givenname: Md Shafayet
  surname: Hossain
  fullname: Hossain, Md Shafayet
  organization: Department of Electrical, Electronics and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
– sequence: 5
  givenname: Mohammed
  surname: Alhatou
  fullname: Alhatou, Mohammed
  organization: Neuromuscular Division, Hamad General Hospital and Department of Neurology, Alkhor Hospital, Doha, 3050, Qatar
– sequence: 6
  givenname: Sakib
  orcidid: 0000-0002-4599-2192
  surname: Mahmud
  fullname: Mahmud, Sakib
  organization: Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar
– sequence: 7
  givenname: Iffat
  surname: Ara
  fullname: Ara, Iffat
  organization: Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar
– sequence: 8
  givenname: Shah Imran
  surname: Sheikh
  fullname: Sheikh, Shah Imran
  organization: Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar
– sequence: 9
  givenname: Mosabber Uddin
  orcidid: 0000-0002-4419-8632
  surname: Ahmed
  fullname: Ahmed, Mosabber Uddin
  email: mosabber.ahmed@du.ac.bd
  organization: Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35016098$$D View this record in MEDLINE/PubMed
BookMark eNqVkl1rFDEUhoNU7Lb6FyTgjTezJpmPZG7EutgqFLywXoezmTO7WWeSNckU9t-bcesKBaFeBZInDyfvmwty5rxDQihnS8548263NH7cr60fsVsKJnjerrmqnpEFV7ItWF1WZ2TBGGdFpUR9Ti5i3DHGKlayF-S8rLOFtWpBtleOWnePMdkNJOsdTZ7GNHUHmrZIse_RpEh9T-_A0tXW0oxspxEc3YBNtDs4GK2JdIrWbagZIEZrYKAjmK11SAeE4PLRS_K8hyHiq4f1kny__nS3-lzcfr35srq6LUzNq1QIkKigbZsWUKgGDUjgDdTrRvRK9msoZSlQ5FPVmZqVChkI6GuJCL2sqvKSvD1698H_nPK79GijwWEAh36KWjS8FUzVss3om0fozk_B5ekyJSQXgrNZ-PqBmtY5br0PdoRw0H8yzIA6Aib4GAP2J4QzPdeld_pvXXquSx_rylffP7pqbPpdQwpgh6cIPh4FmCO9txh0NBadwc6GXJzuvP2PKU4SM1g3t_gDDxhPoXAdhWb62_yt5l-V42GtVDwLPvxb8LQZfgF3teIi
CitedBy_id crossref_primary_10_1016_j_bspc_2022_104448
crossref_primary_10_1089_jicm_2024_0957
crossref_primary_10_1177_17543371241273827
crossref_primary_10_3390_biomedinformatics3010014
crossref_primary_10_3390_diagnostics14192214
crossref_primary_10_1007_s00500_023_09565_z
crossref_primary_10_1109_ACCESS_2024_3353463
crossref_primary_10_1007_s10489_023_04557_w
crossref_primary_10_1016_j_sna_2022_114092
crossref_primary_10_1109_ACCESS_2023_3316032
crossref_primary_10_1111_exsy_13254
crossref_primary_10_3390_app13106169
Cites_doi 10.1142/S0192415X08005734
10.1016/j.parkreldis.2013.06.007
10.1016/j.jbiomech.2020.109769
10.1136/bjsm.35.3.148
10.1186/1745-6215-14-375
10.3390/sports5030052
10.1016/S0966-6362(03)00099-7
10.3390/s21030813
10.11613/BM.2013.018
10.1111/j.1532-5415.1987.tb01313.x
10.1109/ACCESS.2021.3092840
10.1590/S1809-98232014000200014
10.1016/j.ctcp.2010.10.002
10.1093/ptj/79.12.1177
10.3390/s20113127
10.1016/j.compbiomed.2021.104838
10.1016/j.cct.2012.09.006
10.1111/j.1751-7141.2008.07565.x
10.1007/s11036-019-01445-x
10.1142/S0192415X81000032
10.3389/fnhum.2015.00332
10.2522/ptj.20040408
10.1016/j.ocarto.2021.100158
10.1016/j.gaitpost.2004.06.005
10.1016/S0003-9993(96)90305-6
10.1002/widm.8
10.1109/ACCESS.2020.3032202
10.1001/archinte.1989.00390070138022
10.12659/MSMBR.911951
10.1109/TNSRE.2013.2291907
10.1161/01.CIR.101.23.e215
10.1023/A:1010933404324
10.1109/5254.708428
10.1177/2164956118775385
10.1371/journal.pone.0186212
10.1109/ACCESS.2021.3095380
10.1111/j.1532-5415.1995.tb07397.x
10.1016/j.apmr.2004.01.020
10.1016/j.jelekin.2003.09.002
10.1097/00005768-199803000-00003
10.1016/j.apmr.2007.08.147
10.1155/2021/3110416
10.1371/journal.pone.0242963
10.1097/MRR.0000000000000103
10.3390/s20040957
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
2022. Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: 2022. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2021.105184
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database (ProQuest)
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


Research Library Prep

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 105184
ExternalDocumentID 35016098
10_1016_j_compbiomed_2021_105184
S0010482521009781
1_s2_0_S0010482521009781
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
77I
AAYXX
ACLOT
CITATION
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-2a7e8a9969ae286eca7a16a5b62f87fba3732e29ae8dc5038e0a2af57eeaf7443
IEDL.DBID 8FG
ISSN 0010-4825
1879-0534
IngestDate Wed Oct 01 13:42:55 EDT 2025
Wed Aug 13 03:44:36 EDT 2025
Wed Feb 19 02:25:44 EST 2025
Thu Apr 24 23:03:32 EDT 2025
Wed Oct 01 05:20:41 EDT 2025
Fri Feb 23 02:41:19 EST 2024
Tue Feb 25 20:08:40 EST 2025
Tue Aug 26 20:14:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Footswitch
Tai Chi
Walking Gait
Feature selection
Pattern recognition
Machine learning
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-2a7e8a9969ae286eca7a16a5b62f87fba3732e29ae8dc5038e0a2af57eeaf7443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4599-2192
0000-0003-3322-2913
0000-0003-0744-8206
0000-0002-4419-8632
PMID 35016098
PQID 2627122104
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2619208579
proquest_journals_2627122104
pubmed_primary_35016098
crossref_primary_10_1016_j_compbiomed_2021_105184
crossref_citationtrail_10_1016_j_compbiomed_2021_105184
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_105184
elsevier_clinicalkeyesjournals_1_s2_0_S0010482521009781
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_105184
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib13) 2000; 101
Rahman, Chowdhury, Khandakar, Kiranyaz, Zaman, Reaz, Islam, Ezeddin, Kadir (bib33) 2021; 9
Li, Hong, Chan (bib26) 2001; 35
Kim, Kim, Lee (bib19) 2015; 38
Lan, Lai, Chen, Wong (bib24) 1998; 30
Khandakar, Chowdhury, Reaz, Ali, Hasan, Kiranyaz, Rahman, Alfkey, Bakar, Malik (bib18) 2021; 137
Koh (bib20) 1981; 9
Wayne, Gow, Hausdorff, Peng, Lipsitz Lewis, Andrew, Vera Manor, Chi (bib47)
Kraskov, Stögbauer, Grassberger (bib22) 2004; 69
Robbins, Rubenstein, Josephson, Schulman, Osterweil, Fine (bib34) 1989; 149
Hearst, Dumais, Osuna, Platt, Scholkopf (bib17) 1998; 13
Wu (bib49) 2008; 89
Wu, Chen, Wang, Jiang, Wang, Wen (bib53) 2018; 24
Gow, Hausdorff, Manor, Lipsitz, Macklin, Bonato, Novak, Peng, Ahn, Wayne (bib15) 2017; 12
Zou, Wang, Tian, Wang, Shu (bib58) 2017; 5
Shen, James, Chyu, Bixby, Brismée, Zumwalt, Poklikuha (bib36) 2008; 36
De Stefano, Burridge, Yule, Allen (bib10) 2004; 20
Loh (bib29) 2011; 1
Breiman (bib4) 2001; 45
Wan, Qi, Xu, Tong, Gu (bib42) 2020; 25
Wu, Kuruvithadam, Schaer, Stoneham, Chatzipirpiridis, Awai, Barry, Martin, Pané, Nelson (bib52) 2021
Zhang (bib57) 2004; 1
Vergara-Diaz, Osypiuk, Hausdorff, Bonato, Gow, Miranda, Sudarsky, Tarsy, Fox, Gardiner (bib41) 2018; 7
Chowdhury, Khandakar, Qiblawey, Reaz, Islam, Touati (bib7) 2020
Lai, Lan, Wong, Teng (bib23) 1995; 43
McHugh (bib31) 2013; 23
Goldberger, Hinton, Roweis, Salakhutdinov (bib14) 2004; 17
Konig, Galarza, Goulart, Lanferdini, Tiggeman, Dias (bib21) 2014; 17
Wu, Hitt (bib50) 2005; 22
Chowdhury, Shuzan, Chowdhury, Mahbub, Uddin, Khandakar, Reaz (bib8) 2020; 20
Wayne, Manor, Novak, Costa, Hausdorff, Goldberger, Ahn, Yeh, Peng, Lough, Davis, Quilty, Lipsitz (bib46) 2013; 34
Tang, Alelyani, Liu (bib40) 2014
Whipple, Wolfson, Amerman (bib48) 1987; 35
Tahir, Chowdhury, Khandakar, Al-Hamouz, Abdalla, Awadallah, Reaz, Al-Emadi (bib39) 2020; 20
Wu, Liu, Hitt, Millon (bib51) 2004; 14
Amano, Nocera, Vallabhajosula, Juncos, Gregor, Waddell, Wolf, Hass (bib3) 2013; 19
Lan, Lai, Wong, Yu (bib25) 1996; 77
Yang, Liu (bib54) 2020; 105
Wang, Huang, Liu, Li, Wu, Li, Wang (bib43) 2013; 14
Roos, Mituniewicz, Liu (bib35) 2021; 3
Wayne, Gow, Hou, Ma, Hausdorff, Lo, Rist, Peng, Lipsitz, Novak (bib44) 2021; 16
Alsaggaf, Mehmood, Khairullah, Alhuraiji, Sabir, Alghamdi, El-Latif, Ahmed (bib2) 2021
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib32) 2011; 12
Siraj, Faisal, Shahid, Abir, Hossain, Inoue, Ahad (bib38) 2020
Agostini, Balestra, Knaflitz (bib1) 2013; 22
Daubney, Culham (bib9) 1999; 79
Yeh, Wang, Wayne, Phillips (bib55) 2008; 11
Chen (bib5) 2019
Wayne, Hausdorff, Lough, Gow, Lipsitz, Novak, Macklin, Peng, Manor (bib45) 2015; 9
Hass, Gregor, Waddell, Oliver, Smith, Fleming, Wolf (bib16) 2004; 85
Field (bib12) 2011; 17
Liu, Frank (bib28) 2010; 33
Lin, Hwang, Wang, Chang, Wolf (bib27) 2006; 86
Dentamaro, Impedovo, Pirlo (bib11) 2020; 8
Chen, Guestrin (bib6) 2016
Shuzan, Chowdhury, Hossain, Chowdhury, Reaz, Uddin, Khandakar, Mahbub, Ali (bib37) 2021; 9
Mc Ardle, Del Din, Donaghy, Galna, Thomas, Rochester (bib30) 2021; 21
Yu, Liu (bib56) 2003
Siraj (10.1016/j.compbiomed.2021.105184_bib38) 2020
Alsaggaf (10.1016/j.compbiomed.2021.105184_bib2) 2021
Wayne (10.1016/j.compbiomed.2021.105184_bib45) 2015; 9
McHugh (10.1016/j.compbiomed.2021.105184_bib31) 2013; 23
Wu (10.1016/j.compbiomed.2021.105184_bib49) 2008; 89
Agostini (10.1016/j.compbiomed.2021.105184_bib1) 2013; 22
Khandakar (10.1016/j.compbiomed.2021.105184_bib18) 2021; 137
Yeh (10.1016/j.compbiomed.2021.105184_bib55) 2008; 11
Dentamaro (10.1016/j.compbiomed.2021.105184_bib11) 2020; 8
Lin (10.1016/j.compbiomed.2021.105184_bib27) 2006; 86
Kraskov (10.1016/j.compbiomed.2021.105184_bib22) 2004; 69
Rahman (10.1016/j.compbiomed.2021.105184_bib33) 2021; 9
Konig (10.1016/j.compbiomed.2021.105184_bib21) 2014; 17
Vergara-Diaz (10.1016/j.compbiomed.2021.105184_bib41) 2018; 7
Amano (10.1016/j.compbiomed.2021.105184_bib3) 2013; 19
Robbins (10.1016/j.compbiomed.2021.105184_bib34) 1989; 149
Wayne (10.1016/j.compbiomed.2021.105184_bib47)
Wu (10.1016/j.compbiomed.2021.105184_bib52) 2021
Chowdhury (10.1016/j.compbiomed.2021.105184_bib7) 2020
Wu (10.1016/j.compbiomed.2021.105184_bib50) 2005; 22
Li (10.1016/j.compbiomed.2021.105184_bib26) 2001; 35
Lan (10.1016/j.compbiomed.2021.105184_bib25) 1996; 77
Kim (10.1016/j.compbiomed.2021.105184_bib19) 2015; 38
Chen (10.1016/j.compbiomed.2021.105184_bib5) 2019
Lan (10.1016/j.compbiomed.2021.105184_bib24) 1998; 30
Koh (10.1016/j.compbiomed.2021.105184_bib20) 1981; 9
Wu (10.1016/j.compbiomed.2021.105184_bib53) 2018; 24
Shen (10.1016/j.compbiomed.2021.105184_bib36) 2008; 36
Loh (10.1016/j.compbiomed.2021.105184_bib29) 2011; 1
Chen (10.1016/j.compbiomed.2021.105184_bib6) 2016
Field (10.1016/j.compbiomed.2021.105184_bib12) 2011; 17
Tahir (10.1016/j.compbiomed.2021.105184_bib39) 2020; 20
Lai (10.1016/j.compbiomed.2021.105184_bib23) 1995; 43
Wayne (10.1016/j.compbiomed.2021.105184_bib46) 2013; 34
Chowdhury (10.1016/j.compbiomed.2021.105184_bib8) 2020; 20
Wu (10.1016/j.compbiomed.2021.105184_bib51) 2004; 14
Gow (10.1016/j.compbiomed.2021.105184_bib15) 2017; 12
Wan (10.1016/j.compbiomed.2021.105184_bib42) 2020; 25
Wayne (10.1016/j.compbiomed.2021.105184_bib44) 2021; 16
Whipple (10.1016/j.compbiomed.2021.105184_bib48) 1987; 35
Tang (10.1016/j.compbiomed.2021.105184_bib40) 2014
Shuzan (10.1016/j.compbiomed.2021.105184_bib37) 2021; 9
Goldberger (10.1016/j.compbiomed.2021.105184_bib14) 2004; 17
Yu (10.1016/j.compbiomed.2021.105184_bib56) 2003
Goldberger (10.1016/j.compbiomed.2021.105184_bib13) 2000; 101
Liu (10.1016/j.compbiomed.2021.105184_bib28) 2010; 33
Breiman (10.1016/j.compbiomed.2021.105184_bib4) 2001; 45
Daubney (10.1016/j.compbiomed.2021.105184_bib9) 1999; 79
Pedregosa (10.1016/j.compbiomed.2021.105184_bib32) 2011; 12
Roos (10.1016/j.compbiomed.2021.105184_bib35) 2021; 3
Zhang (10.1016/j.compbiomed.2021.105184_bib57) 2004; 1
Hass (10.1016/j.compbiomed.2021.105184_bib16) 2004; 85
Yang (10.1016/j.compbiomed.2021.105184_bib54) 2020; 105
Hearst (10.1016/j.compbiomed.2021.105184_bib17) 1998; 13
De Stefano (10.1016/j.compbiomed.2021.105184_bib10) 2004; 20
Wang (10.1016/j.compbiomed.2021.105184_bib43) 2013; 14
Mc Ardle (10.1016/j.compbiomed.2021.105184_bib30) 2021; 21
Zou (10.1016/j.compbiomed.2021.105184_bib58) 2017; 5
References_xml – volume: 16
  year: 2021
  ident: bib44
  article-title: Tai chi training's effect on lower extremity muscle co-contraction during singleand dual-task gait: cross-sectional and randomized trial studies
  publication-title: PLoS One
– volume: 20
  start-page: 3127
  year: 2020
  ident: bib8
  article-title: Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques
  publication-title: Sensors
– volume: 24
  start-page: 210
  year: 2018
  ident: bib53
  article-title: Effect of tai chi exercise on balance function of stroke patients: a metaanalysis
  publication-title: Med. Sci. Monitor Basic Res.
– volume: 86
  start-page: 1189
  year: 2006
  end-page: 1201
  ident: bib27
  article-title: Community-based tai chi and its effect on injurious falls, balance, gait, and fear of falling in older people
  publication-title: Phys. Ther.
– volume: 1
  start-page: 14
  year: 2011
  end-page: 23
  ident: bib29
  article-title: Classification and regression trees
  publication-title: Wiley Interdiscipl. Rev. Data Min. Knowl. Discov.
– volume: 17
  start-page: 141
  year: 2011
  end-page: 146
  ident: bib12
  article-title: Tai chi research review
  publication-title: Compl. Ther. Clin. Pract.
– volume: 5
  start-page: 52
  year: 2017
  ident: bib58
  article-title: Effect of yang-style tai chi on gait parameters and musculoskeletal flexibility in healthy Chinese older women
  publication-title: Sports
– volume: 3
  start-page: 100158
  year: 2021
  ident: bib35
  article-title: Biomechanical joint loading mechanism of tai chi gait in individuals with knee osteoarthritis:A pilot simulation study
  publication-title: Osteoarthritis Cartilage Open
– volume: 7
  year: 2018
  ident: bib41
  article-title: Tai chi for reducing dual-task gait variability, a potential mediator of fall risk in Parkinson's disease: a pilot randomized controlled trial
  publication-title: Glob. Adv. Health Med.
– volume: 14
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib43
  article-title: Effects of tai chi program on neuromuscular function for patients with knee osteoarthritis: study protocol for a randomized controlled trial
  publication-title: Trials
– volume: 9
  start-page: 96775
  year: 2021
  end-page: 96790
  ident: bib37
  article-title: A novel non-invasive estimation of respiration rate from motion corrupted photoplethysmograph signal using machine learning model
  publication-title: IEEE Access
– volume: 17
  start-page: 373
  year: 2014
  end-page: 381
  ident: bib21
  article-title: Effects of tai chi chuan on the elderly balance: a semi-experimental study
  publication-title: Revista brasileira de geriatria e gerontologia
– volume: 21
  start-page: 813
  year: 2021
  ident: bib30
  article-title: The impact of environment on gait assessment: considerations from real-world gait analysis in dementia subtypes
  publication-title: Sensors
– volume: 89
  start-page: 351
  year: 2008
  end-page: 357
  ident: bib49
  article-title: Age-related differences in tai chi gait kinematics and leg muscle electromyography: a pilot study
  publication-title: Archiv. Phys. Med. Rehab.
– year: 2021
  ident: bib52
  article-title: An intelligent in-shoe system for real-time gait monitoring and analysis
– volume: 22
  start-page: 32
  year: 2005
  end-page: 39
  ident: bib50
  article-title: Ground contact characteristics of tai chi gait
  publication-title: Gait Posture
– volume: 9
  start-page: 15
  year: 1981
  end-page: 22
  ident: bib20
  article-title: Tai chi chuan
  publication-title: Am. J. Chin. Med.
– volume: 69
  year: 2004
  ident: bib22
  article-title: Estimating mutual information
  publication-title: Phys. Rev.
– volume: 20
  start-page: 92
  year: 2004
  end-page: 101
  ident: bib10
  article-title: Effect of gait cycle selection on emg analysis during walking in adults and children with gait pathology
  publication-title: Gait Posture
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib6
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining
– volume: 13
  start-page: 18
  year: 1998
  end-page: 28
  ident: bib17
  article-title: Support vector machines
  publication-title: IEEE Intell. Syst. Their Appl.
– volume: 149
  start-page: 1628
  year: 1989
  end-page: 1633
  ident: bib34
  article-title: Predictors of falls among elderly people: results of two population-based studies
  publication-title: Arch. Intern. Med.
– volume: 17
  year: 2004
  ident: bib14
  article-title: Neighbourhood components analysis
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 340
  year: 2020
  end-page: 345
  ident: bib38
  article-title: Upic: user and position independent classical approach for locomotion and transportation modes recognition
  publication-title: Adjunct Proceedings of the 2020 ACMInternational Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers
– year: 2019
  ident: bib5
  article-title: Effect of tai chi exercises on the balance, functional gait, and flexibility of elderly Filipino males
  publication-title: Proceedings of the 2nd Symposium on Health and Education
– volume: 9
  start-page: 332
  year: 2015
  ident: bib45
  article-title: Tai chi training may reduce dual task gait variability, a potential mediator of fall risk, in healthy older adults: cross-sectional and randomized trial studies
  publication-title: Front. Hum. Neurosci.
– volume: 11
  start-page: 82
  year: 2008
  end-page: 89
  ident: bib55
  article-title: The effect of tai chi exercise on blood pressure: a systematic review
  publication-title: Prev. Cardiol.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib32
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib4
  article-title: Random forests
  publication-title: Mach. Learn.
– ident: bib47
  article-title: Physiological Complexity, and Healthy Aging: Gait and EMG data
– volume: 1
  start-page: 3
  year: 2004
  ident: bib57
  article-title: The optimality of naive bayes
  publication-title: AA
– volume: 22
  start-page: 946
  year: 2013
  end-page: 952
  ident: bib1
  article-title: Segmentation and classification of gait cycles
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 79
  start-page: 1177
  year: 1999
  end-page: 1185
  ident: bib9
  article-title: Lower-extremity muscle force and balance performance in adults aged 65 years and older
  publication-title: Phys. Ther.
– volume: 20
  start-page: 957
  year: 2020
  ident: bib39
  article-title: Asystematic approach to the design and characterization of a smart insole for detecting vertical ground reaction force (vgrf) in gait analysis
  publication-title: Sensors
– start-page: 856
  year: 2003
  end-page: 863
  ident: bib56
  article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution
  publication-title: Proceedings of the 20
– volume: 34
  start-page: 21
  year: 2013
  end-page: 34
  ident: bib46
  article-title: A systems biology approach to studying Tai Chi, physiological complexity and healthy aging: design and rationale of a pragmatic randomized controlled trial
  publication-title: Contemp. Clin. Trials
– year: 2020
  ident: bib7
  article-title: Machine learning in wearable biomedical systems
  publication-title: Sports Science and Human Health-Different Approaches
– volume: 14
  start-page: 343
  year: 2004
  end-page: 354
  ident: bib51
  article-title: Spatial, temporal and muscle action patterns of tai chi gait
  publication-title: J. Electromyogr. Kinesiol.
– volume: 38
  start-page: 156
  year: 2015
  end-page: 161
  ident: bib19
  article-title: Effects of therapeutic tai chi on balance, gait, and quality of life in chronic stroke patients
  publication-title: Int. J. Rehabil. Res.
– year: 2021
  ident: bib2
  article-title: A smart surveillance system for uncooperative gait recognition using cycle consistent generative adversarial networks (Ccgans)
  publication-title: Comput. Intell. Neurosci.
– volume: 35
  start-page: 148
  year: 2001
  end-page: 156
  ident: bib26
  article-title: Tai chi: physiological characteristics and beneficial effects on health
  publication-title: Br. J. Sports Med.
– volume: 137
  start-page: 104838
  year: 2021
  ident: bib18
  article-title: A machine learning model for early detection of diabetic foot using thermogram images
  publication-title: Comput. Biol. Med.
– start-page: 37
  year: 2014
  ident: bib40
  article-title: Feature Selection for Classification: A Review. Data Classification: Algorithms and applications
– volume: 105
  start-page: 109769
  year: 2020
  ident: bib54
  article-title: Biomechanical mechanism of tai-chi gait for preventing falls: a pilot study
  publication-title: J. Biomech.
– volume: 8
  start-page: 193966
  year: 2020
  end-page: 193980
  ident: bib11
  article-title: Gait analysis for early neurodegenerative diseases classification through the kinematic theory of rapid human movements
  publication-title: IEEE Access
– volume: 101
  year: 2000
  ident: bib13
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 43
  start-page: 1222
  year: 1995
  end-page: 1227
  ident: bib23
  article-title: Two-year trends in cardiorespiratory function among older tai chi chuan practitioners and sedentary subjects
  publication-title: J. Am. Geriatr. Soc.
– volume: 9
  start-page: 94625
  year: 2021
  end-page: 94643
  ident: bib33
  article-title: Multimodal eeg and keystroke dynamics based biometric system using machine learning algorithms
  publication-title: IEEE Access
– volume: 30
  start-page: 345
  year: 1998
  end-page: 351
  ident: bib24
  article-title: 12-month tai chi training in the elderly: its effect on health fitness
  publication-title: Med. Sci. Sports Exerc.
– volume: 85
  start-page: 1593
  year: 2004
  end-page: 1598
  ident: bib16
  article-title: The influence of tai chi training on the center of pressure trajectory during gait initiation in older adults
  publication-title: Archiv. Phys. Med. Rehab.
– volume: 33
  start-page: 103
  year: 2010
  end-page: 109
  ident: bib28
  article-title: Tai chi as a balance improvement exercise for older adults: a systematic review
  publication-title: J. Geriatr. Phys. Ther.
– volume: 23
  start-page: 143
  year: 2013
  end-page: 149
  ident: bib31
  article-title: The chi-square test of independence
  publication-title: Biochem. Med.
– volume: 36
  start-page: 219
  year: 2008
  end-page: 232
  ident: bib36
  article-title: Effects of tai chi on gait kinematics, physical function, and pain in elderly with knee osteoarthritis— a pilot study
  publication-title: Am. J. Chin. Med.
– volume: 19
  start-page: 955
  year: 2013
  end-page: 960
  ident: bib3
  article-title: The effect of tai chi exercise on gait initiation and gait performance in persons with Parkinson's disease
  publication-title: Park. Relat. Disord.
– volume: 35
  start-page: 13
  year: 1987
  end-page: 20
  ident: bib48
  article-title: The relationship of knee and ankle weakness to falls in nursing home residents: an isokinetic study
  publication-title: J. Am. Geriatr. Soc.
– volume: 25
  start-page: 743
  year: 2020
  end-page: 755
  ident: bib42
  article-title: Deep learning models for real-time human activity recognition with smartphones
  publication-title: Mobile Network. Appl.
– volume: 77
  start-page: 612
  year: 1996
  end-page: 616
  ident: bib25
  article-title: Cardiorespiratory function, flexibility, and body composition among geriatric tai chi chuan practitioners
  publication-title: Archiv. Phys. Med. Rehab.
– volume: 12
  year: 2017
  ident: bib15
  article-title: Can tai chi training impact fractal stride time dynamics, an index of gait health, in older adults? cross-sectional and randomized trial studies
  publication-title: PLoS One
– volume: 36
  start-page: 219
  year: 2008
  ident: 10.1016/j.compbiomed.2021.105184_bib36
  article-title: Effects of tai chi on gait kinematics, physical function, and pain in elderly with knee osteoarthritis— a pilot study
  publication-title: Am. J. Chin. Med.
  doi: 10.1142/S0192415X08005734
– volume: 33
  start-page: 103
  year: 2010
  ident: 10.1016/j.compbiomed.2021.105184_bib28
  article-title: Tai chi as a balance improvement exercise for older adults: a systematic review
  publication-title: J. Geriatr. Phys. Ther.
– volume: 19
  start-page: 955
  year: 2013
  ident: 10.1016/j.compbiomed.2021.105184_bib3
  article-title: The effect of tai chi exercise on gait initiation and gait performance in persons with Parkinson's disease
  publication-title: Park. Relat. Disord.
  doi: 10.1016/j.parkreldis.2013.06.007
– volume: 105
  start-page: 109769
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105184_bib54
  article-title: Biomechanical mechanism of tai-chi gait for preventing falls: a pilot study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.109769
– volume: 35
  start-page: 148
  year: 2001
  ident: 10.1016/j.compbiomed.2021.105184_bib26
  article-title: Tai chi: physiological characteristics and beneficial effects on health
  publication-title: Br. J. Sports Med.
  doi: 10.1136/bjsm.35.3.148
– volume: 14
  start-page: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2021.105184_bib43
  article-title: Effects of tai chi program on neuromuscular function for patients with knee osteoarthritis: study protocol for a randomized controlled trial
  publication-title: Trials
  doi: 10.1186/1745-6215-14-375
– volume: 5
  start-page: 52
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105184_bib58
  article-title: Effect of yang-style tai chi on gait parameters and musculoskeletal flexibility in healthy Chinese older women
  publication-title: Sports
  doi: 10.3390/sports5030052
– volume: 20
  start-page: 92
  year: 2004
  ident: 10.1016/j.compbiomed.2021.105184_bib10
  article-title: Effect of gait cycle selection on emg analysis during walking in adults and children with gait pathology
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(03)00099-7
– volume: 21
  start-page: 813
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105184_bib30
  article-title: The impact of environment on gait assessment: considerations from real-world gait analysis in dementia subtypes
  publication-title: Sensors
  doi: 10.3390/s21030813
– volume: 23
  start-page: 143
  year: 2013
  ident: 10.1016/j.compbiomed.2021.105184_bib31
  article-title: The chi-square test of independence
  publication-title: Biochem. Med.
  doi: 10.11613/BM.2013.018
– start-page: 37
  year: 2014
  ident: 10.1016/j.compbiomed.2021.105184_bib40
– volume: 35
  start-page: 13
  year: 1987
  ident: 10.1016/j.compbiomed.2021.105184_bib48
  article-title: The relationship of knee and ankle weakness to falls in nursing home residents: an isokinetic study
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.1987.tb01313.x
– volume: 9
  start-page: 94625
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105184_bib33
  article-title: Multimodal eeg and keystroke dynamics based biometric system using machine learning algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3092840
– volume: 17
  start-page: 373
  year: 2014
  ident: 10.1016/j.compbiomed.2021.105184_bib21
  article-title: Effects of tai chi chuan on the elderly balance: a semi-experimental study
  publication-title: Revista brasileira de geriatria e gerontologia
  doi: 10.1590/S1809-98232014000200014
– volume: 17
  start-page: 141
  year: 2011
  ident: 10.1016/j.compbiomed.2021.105184_bib12
  article-title: Tai chi research review
  publication-title: Compl. Ther. Clin. Pract.
  doi: 10.1016/j.ctcp.2010.10.002
– volume: 79
  start-page: 1177
  year: 1999
  ident: 10.1016/j.compbiomed.2021.105184_bib9
  article-title: Lower-extremity muscle force and balance performance in adults aged 65 years and older
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/79.12.1177
– volume: 20
  start-page: 3127
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105184_bib8
  article-title: Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques
  publication-title: Sensors
  doi: 10.3390/s20113127
– volume: 137
  start-page: 104838
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105184_bib18
  article-title: A machine learning model for early detection of diabetic foot using thermogram images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104838
– volume: 34
  start-page: 21
  year: 2013
  ident: 10.1016/j.compbiomed.2021.105184_bib46
  article-title: A systems biology approach to studying Tai Chi, physiological complexity and healthy aging: design and rationale of a pragmatic randomized controlled trial
  publication-title: Contemp. Clin. Trials
  doi: 10.1016/j.cct.2012.09.006
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.compbiomed.2021.105184_bib32
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 82
  year: 2008
  ident: 10.1016/j.compbiomed.2021.105184_bib55
  article-title: The effect of tai chi exercise on blood pressure: a systematic review
  publication-title: Prev. Cardiol.
  doi: 10.1111/j.1751-7141.2008.07565.x
– start-page: 785
  year: 2016
  ident: 10.1016/j.compbiomed.2021.105184_bib6
  article-title: Xgboost: a scalable tree boosting system
– volume: 25
  start-page: 743
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105184_bib42
  article-title: Deep learning models for real-time human activity recognition with smartphones
  publication-title: Mobile Network. Appl.
  doi: 10.1007/s11036-019-01445-x
– ident: 10.1016/j.compbiomed.2021.105184_bib47
– volume: 9
  start-page: 15
  year: 1981
  ident: 10.1016/j.compbiomed.2021.105184_bib20
  article-title: Tai chi chuan
  publication-title: Am. J. Chin. Med.
  doi: 10.1142/S0192415X81000032
– volume: 9
  start-page: 332
  year: 2015
  ident: 10.1016/j.compbiomed.2021.105184_bib45
  article-title: Tai chi training may reduce dual task gait variability, a potential mediator of fall risk, in healthy older adults: cross-sectional and randomized trial studies
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00332
– volume: 86
  start-page: 1189
  year: 2006
  ident: 10.1016/j.compbiomed.2021.105184_bib27
  article-title: Community-based tai chi and its effect on injurious falls, balance, gait, and fear of falling in older people
  publication-title: Phys. Ther.
  doi: 10.2522/ptj.20040408
– volume: 17
  year: 2004
  ident: 10.1016/j.compbiomed.2021.105184_bib14
  article-title: Neighbourhood components analysis
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 3
  start-page: 100158
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105184_bib35
  article-title: Biomechanical joint loading mechanism of tai chi gait in individuals with knee osteoarthritis:A pilot simulation study
  publication-title: Osteoarthritis Cartilage Open
  doi: 10.1016/j.ocarto.2021.100158
– volume: 22
  start-page: 32
  year: 2005
  ident: 10.1016/j.compbiomed.2021.105184_bib50
  article-title: Ground contact characteristics of tai chi gait
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2004.06.005
– year: 2020
  ident: 10.1016/j.compbiomed.2021.105184_bib7
  article-title: Machine learning in wearable biomedical systems
– volume: 77
  start-page: 612
  year: 1996
  ident: 10.1016/j.compbiomed.2021.105184_bib25
  article-title: Cardiorespiratory function, flexibility, and body composition among geriatric tai chi chuan practitioners
  publication-title: Archiv. Phys. Med. Rehab.
  doi: 10.1016/S0003-9993(96)90305-6
– start-page: 340
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105184_bib38
  article-title: Upic: user and position independent classical approach for locomotion and transportation modes recognition
– year: 2021
  ident: 10.1016/j.compbiomed.2021.105184_bib52
– volume: 1
  start-page: 14
  year: 2011
  ident: 10.1016/j.compbiomed.2021.105184_bib29
  article-title: Classification and regression trees
  publication-title: Wiley Interdiscipl. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.8
– volume: 8
  start-page: 193966
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105184_bib11
  article-title: Gait analysis for early neurodegenerative diseases classification through the kinematic theory of rapid human movements
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3032202
– volume: 149
  start-page: 1628
  year: 1989
  ident: 10.1016/j.compbiomed.2021.105184_bib34
  article-title: Predictors of falls among elderly people: results of two population-based studies
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinte.1989.00390070138022
– year: 2019
  ident: 10.1016/j.compbiomed.2021.105184_bib5
  article-title: Effect of tai chi exercises on the balance, functional gait, and flexibility of elderly Filipino males
– volume: 1
  start-page: 3
  year: 2004
  ident: 10.1016/j.compbiomed.2021.105184_bib57
  article-title: The optimality of naive bayes
  publication-title: AA
– volume: 24
  start-page: 210
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105184_bib53
  article-title: Effect of tai chi exercise on balance function of stroke patients: a metaanalysis
  publication-title: Med. Sci. Monitor Basic Res.
  doi: 10.12659/MSMBR.911951
– volume: 22
  start-page: 946
  year: 2013
  ident: 10.1016/j.compbiomed.2021.105184_bib1
  article-title: Segmentation and classification of gait cycles
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2291907
– volume: 69
  year: 2004
  ident: 10.1016/j.compbiomed.2021.105184_bib22
  article-title: Estimating mutual information
  publication-title: Phys. Rev.
– volume: 101
  year: 2000
  ident: 10.1016/j.compbiomed.2021.105184_bib13
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.compbiomed.2021.105184_bib4
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 13
  start-page: 18
  year: 1998
  ident: 10.1016/j.compbiomed.2021.105184_bib17
  article-title: Support vector machines
  publication-title: IEEE Intell. Syst. Their Appl.
  doi: 10.1109/5254.708428
– volume: 7
  year: 2018
  ident: 10.1016/j.compbiomed.2021.105184_bib41
  article-title: Tai chi for reducing dual-task gait variability, a potential mediator of fall risk in Parkinson's disease: a pilot randomized controlled trial
  publication-title: Glob. Adv. Health Med.
  doi: 10.1177/2164956118775385
– volume: 12
  year: 2017
  ident: 10.1016/j.compbiomed.2021.105184_bib15
  article-title: Can tai chi training impact fractal stride time dynamics, an index of gait health, in older adults? cross-sectional and randomized trial studies
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0186212
– start-page: 856
  year: 2003
  ident: 10.1016/j.compbiomed.2021.105184_bib56
  article-title: Feature selection for high-dimensional data: a fast correlation-based filter solution
– volume: 9
  start-page: 96775
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105184_bib37
  article-title: A novel non-invasive estimation of respiration rate from motion corrupted photoplethysmograph signal using machine learning model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3095380
– volume: 43
  start-page: 1222
  year: 1995
  ident: 10.1016/j.compbiomed.2021.105184_bib23
  article-title: Two-year trends in cardiorespiratory function among older tai chi chuan practitioners and sedentary subjects
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.1995.tb07397.x
– volume: 85
  start-page: 1593
  year: 2004
  ident: 10.1016/j.compbiomed.2021.105184_bib16
  article-title: The influence of tai chi training on the center of pressure trajectory during gait initiation in older adults
  publication-title: Archiv. Phys. Med. Rehab.
  doi: 10.1016/j.apmr.2004.01.020
– volume: 14
  start-page: 343
  year: 2004
  ident: 10.1016/j.compbiomed.2021.105184_bib51
  article-title: Spatial, temporal and muscle action patterns of tai chi gait
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2003.09.002
– volume: 30
  start-page: 345
  year: 1998
  ident: 10.1016/j.compbiomed.2021.105184_bib24
  article-title: 12-month tai chi training in the elderly: its effect on health fitness
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1097/00005768-199803000-00003
– volume: 89
  start-page: 351
  year: 2008
  ident: 10.1016/j.compbiomed.2021.105184_bib49
  article-title: Age-related differences in tai chi gait kinematics and leg muscle electromyography: a pilot study
  publication-title: Archiv. Phys. Med. Rehab.
  doi: 10.1016/j.apmr.2007.08.147
– year: 2021
  ident: 10.1016/j.compbiomed.2021.105184_bib2
  article-title: A smart surveillance system for uncooperative gait recognition using cycle consistent generative adversarial networks (Ccgans)
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/3110416
– volume: 16
  year: 2021
  ident: 10.1016/j.compbiomed.2021.105184_bib44
  article-title: Tai chi training's effect on lower extremity muscle co-contraction during singleand dual-task gait: cross-sectional and randomized trial studies
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0242963
– volume: 38
  start-page: 156
  year: 2015
  ident: 10.1016/j.compbiomed.2021.105184_bib19
  article-title: Effects of therapeutic tai chi on balance, gait, and quality of life in chronic stroke patients
  publication-title: Int. J. Rehabil. Res.
  doi: 10.1097/MRR.0000000000000103
– volume: 20
  start-page: 957
  year: 2020
  ident: 10.1016/j.compbiomed.2021.105184_bib39
  article-title: Asystematic approach to the design and characterization of a smart insole for detecting vertical ground reaction force (vgrf) in gait analysis
  publication-title: Sensors
  doi: 10.3390/s20040957
SSID ssj0004030
Score 2.385833
Snippet Tai Chi has been proven effective in preventing falls in older adults, improving the joint function of knee osteoarthritis patients, and improving the balance...
AbstractTai Chi has been proven effective in preventing falls in older adults, improving the joint function of knee osteoarthritis patients, and improving the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105184
SubjectTerms Aged
Algorithms
Alzheimer's disease
Arthritis
Balance
Biomechanical Phenomena
Biomechanics
Biomedical materials
Blood pressure
Classification
Datasets
Deep learning
Electromyography
Feature selection
Flexibility
Foot diseases
Footswitch
Gait
Gait recognition
Humans
Internal Medicine
Kinematics
Laboratories
Learning algorithms
Machine Learning
Martial arts
Older people
Osteoarthritis
Other
Pattern recognition
Stroke
Surveillance
Tai Chi
Tai Ji - methods
Walking
Walking Gait
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhh9JLafrcJi1T6NWNJT-kpaewNIRCekogNzHWyhuX1g5d59rf3hlJ9lLawEKvlgaZ0TzRNzNCfEDT1g05uiyvnM9Ks64yQ14qa8gb1cpTShHaF19-rS-uyy831c2BWE21MAyrTLY_2vRgrdOX08TN07uu4xpfSiUowaGkhYsRQgV7WTOs7-OvHcyjzItYhkL2hncnNE_EeDFsO5a5U6aoJA-9laZ8yEU9FIIGV3T-VDxJMSScxd88Ege-fyYeXaZX8ufi9qyHbtc_Y-hhHCD0kQUK9yBBOGBo4Qo7WN12QFvCsD7YYDfCOk6p3wKD4jfgOMDmu4QfAXnpIY2a2LwQ1-efr1YXWZqokDkKjMZMofYGKcVZolem9g41yhqrplat0W2DhS6UV7Rq1o4bxfgcFbaV9h5bXZbFS3HYD71_LQBz5JEda89N15xskfLsqsTWycKhM3Ih9MRE61K7cZ568d1OuLJvdsd-y-y3kf0LIWfKu9hyYw-a5XRPdiopJSNoyS_sQav_Reu3SZu3Vtqtsrn9S-IW4tNM-YfQ7nnuySRQdj6KFERLRQfQ8vt5mVSe33Gw98M976GwnCcTLBfiVRTEmVH8TlznS_Pmv37tWDxWXOYRsHYn4nD8ee_fUvA1Nu-Cdv0GvB0s0A
  priority: 102
  providerName: Elsevier
Title An investigation to study the effects of Tai Chi on human gait dynamics using classical machine learning
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482521009781
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482521009781
https://dx.doi.org/10.1016/j.compbiomed.2021.105184
https://www.ncbi.nlm.nih.gov/pubmed/35016098
https://www.proquest.com/docview/2627122104
https://www.proquest.com/docview/2619208579
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJvGG-KYwKiPxGoidD7viAZVppYBWIdikvlkXx-k6QTJI9srfzl3spC8M9SV9SC5Rz2ff7-y7-zH2GnSVF-joojizLkp1mUUavVRUoDfKpcOQom9ffLbKlxfp53W2DhtubUirHNbEfqEuG0t75G9RUgmJAUr6_vpXRKxRdLoaKDQO2JGQaElUKb74uKuLjBNfgoJrTYqhUMjk8fldlLLtS9wxSpSCCG-FTm9zT7fBz94NLe6zewE_8rkf8Afsjqsfsrtn4YT8Ebuc13y7653R1LxreN9DliPU4yF9gzcVP4ctP7nccnykJ-rjG9h2vPQM9S2nhPgNtwSuaRz5zz7r0vFAM7F5zC4Wp-cnyyiwKUQWQVEXSVBOA4Y3M3BS586CApFDVuSy0qoqIFGJdBLv6tJSkxgXg4QqU85BpdI0ecIO66Z2zxiHGIiuo3TUcM2KCjDGzlKorEgsWC0mTA1KNDa0GifGix9myCm7Mjv1G1K_8eqfMDFKXvt2G3vIzIZxMkM5KS6ABn3CHrLqX7KuDTO5NcK00sTme9_ICG0ILZBKX_A_vhslA1jxIGTP7x4PBmXGT-1MfMJejbdxutMZDtSuuaFnEJITK8Fswp56QxwVRWfEeTzTz___8he0N0GbSJR-dMwOu9837iUiq66YsoM3fwRe1VpN-6k0ZUfzT1-WK_z9cLr6-u0vAqcmlw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4s1CASPBMSJ2nNgrhFBVqLa02wtbaW9m4jjbIJoUkgr1T_EbmclrLxTtpedkEmU8nvkmnpmPsTdg8iTFQBeEsfOBMlkcGIxSQYrRKJEeU4p2fPH8OJmdqC_LeLnF_gy9MFRWOfjE1lFnlaN_5O9QUguJCYr6eP4zINYoOl0dKDQ6szj0l78xZas_HHzC9X0r5f7nxd4s6FkFAofgoAkkaG8AYf4UvDSJd6BBJBCnicyNzlOIdCS9xKsmczQsxYcgIY-195BrpSJ87g12U0Wholn9eqnXfZhh1LW8oG9TmHr1lUNdPRmViHct9ZiVSkEEu8Koq8LhVXC3DXv799jdHq_y3c7A7rMtXz5gt-b9ifxDdrpb8mI9q6MqeVPxdmYtR2jJ-3IRXuV8AQXfOy043tISA_IVFA3PLks4K1zNqQB_xR2BebIbftZWeXre01qsHrGTa9HzY7ZdVqV_yjiEQPQgmacBb07kgDl9rCB3InLgjJgwPSjRun60OTFs_LBDDdt3u1a_JfXbTv0TJkbJ8268xwYy02Gd7NC-ig7XYgzaQFb_S9bXveeorbC1tKH92g5OQhtCi6dWG_zG96NkD4460LPhe3cGg7Ljq9ZbasJej5fRvdCZEZS-uqB7MAUgFoTphD3pDHFUFJ1JJ-HUPPv_w1-x27PF_MgeHRwfPmd3JPWPtEV8O2y7-XXhXyCqa9KX7Vbi7Nt1792_0kNfzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDdbChgJjlFj52GvEEJVy6qltEKilfZmJo6zDaJJS1Kh_jV-HTOJk71QtJeek0mU8Xjmm_ibGcbegi7SDANdECbWBbHOk0BjlAoyjEapdJhSdO2Lj47T_dP48zyZr7E_Qy0M0SoHn9g56ry29I98GyWVkJigxNuFp0V83Zt9vLgMaIIUnbQO4zR6Ezl0178xfWs-HOzhWr-TcvbpZHc_8BMGAotAoQ0kKKcBIf8UnNSps6BApJBkqSy0KjKIVCSdxKs6t9Q4xYUgoUiUc1CoOI7wuXfYXRXFEdHJ1FwtazLDqC9_QT8XYxrmWUQ9t4zo4n15PWaoUtCwXaHjm0LjTdC3C4GzB-y-x658pze2h2zNVY_YxpE_nX_MznYqXi77dtQVb2ve9a_lCDO5p47wuuAnUPLds5LjLd2QQL6AsuX5dQXnpW04kfEX3BKwJxvi5x3j03E_4mLxhJ3eip6fsvWqrtxzxiEEGhWSO2r2ZkUBmN8nMRRWRBasFhOmBiUa69uc07SNn2bgs_0wS_UbUr_p1T9hYpS86Ft9rCAzHdbJDKWs6HwNxqMVZNW_ZF3jvUhjhGmkCc23rokS2hBaP5Xd4De-HyU9UOoB0Irv3RoMyoyvWm6vCXszXkZXQ-dHULn6iu7BdIAmIkwn7FlviKOi6Hw6Dad68_8Pf802cNeaLwfHhy_YPUmlJB2fb4utt7-u3EsEeG32qttJnH2_7a37Fz0-ZAk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+to+study+the+effects+of+Tai+Chi+on+human+gait+dynamics+using+classical+machine+learning&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Faisal%2C+Md+Ahasan+Atick&rft.au=Chowdhury%2C+Muhammad+E+H&rft.au=Khandakar%2C+Amith&rft.au=Hossain%2C+Md+Shafayet&rft.date=2022-03-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=142&rft.spage=105184&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.105184&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482521X00042%2Fcov150h.gif