STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering
Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background. We developed an innovative spatial clustering...
Saved in:
Published in | Computers in biology and medicine Vol. 166; p. 107440 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.11.2023
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0010-4825 1879-0534 1879-0534 |
DOI | 10.1016/j.compbiomed.2023.107440 |
Cover
Abstract | Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background.
We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots’ embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets.
We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters.
We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks.
[Display omitted]
•ZINB-based denoising autoencoder is used to reduce the feature dimensions of spots.•k-sums clustering algorithm is designed to accurately cluster ST data.•SC, DH, CH, and S_Dbw, are used to assess the performance of ST clustering methods. |
---|---|
AbstractList | Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background.
We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots' embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets.
We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters.
We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks. Background:Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background.Methods:We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots’ embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets.Results:We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters.Conclusion:We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks. Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background. We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots’ embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets. We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters. We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks. [Display omitted] •ZINB-based denoising autoencoder is used to reduce the feature dimensions of spots.•k-sums clustering algorithm is designed to accurately cluster ST data.•SC, DH, CH, and S_Dbw, are used to assess the performance of ST clustering methods. AbstractBackground:Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background. Methods:We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots’ embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets. Results:We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters. Conclusion:We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks. Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background.BACKGROUNDSpatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background.We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots' embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets.METHODSWe developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots' embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets.We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters.RESULTSWe compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters.We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks.CONCLUSIONWe anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks. |
ArticleNumber | 107440 |
Author | Peng, Xinhuai Li, Zejun He, Xianzhi Peng, Lihong Zhang, Li |
Author_xml | – sequence: 1 givenname: Lihong orcidid: 0000-0002-2321-3901 surname: Peng fullname: Peng, Lihong organization: School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, Hunan, China – sequence: 2 givenname: Xianzhi surname: He fullname: He, Xianzhi organization: School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, Hunan, China – sequence: 3 givenname: Xinhuai surname: Peng fullname: Peng, Xinhuai organization: School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, Hunan, China – sequence: 4 givenname: Zejun surname: Li fullname: Li, Zejun email: lzjfox@hnit.edu.cn organization: School of Computer Science, Hunan Institute of Technology, Hengyang, 421002, Hunan, China – sequence: 5 givenname: Li surname: Zhang fullname: Zhang, Li email: tb20060015b4@cumt.edu.cn organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37738898$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks9u1DAQxi1URLeFV0CWuHBoFv9JHIdDBVRQKlXl0L1bjjMp3s3awXZA-w48NI62BWklpD1ZGv3m88z3zRk6cd4BQpiSJSVUvFsvjd-OrfVb6JaMMJ7LdVmSZ2hBZd0UpOLlCVoQQklRSladorMY14SQknDyAp3yuuZSNnKBft-vru_uNvE9vunAJdvvrHvABoYBp90IEVuH46iT1bkQtIsm2DH5rTURdzpp3OoIHfYOPwQ9fscOppBRB-mXD5sLnEW9jbOmnpIvwBnfQbjA2nV4U8RpG7EZppggZOYlet7rIcKrx_ccrb58Xl19LW6_Xd9cfbwtTEXLVDDaUFHWpu4q2kJPJRecU2i6RvRlrXnJhRAALTQahM67skazVtSUmF5UwM_R273sGPyPCWJSWxvnlbUDP0XFpJCUybKiGX1zgK79FFweLlOSs0ZkLFOvH6mpzYmoMditDjv1ZHMGLveACT7GAL0yNmVTvcue2kFRouZc1Vr9y1XNuap9rllAHgg8_XFE66d9K2RHf1oIKhqbc4DOBjBJdd4eI3J5IGIG66zRwwZ2EP-aQlVkiqj7-fLmw2OckIZUswMf_i9w3Ax_AD4q7qQ |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_108110 crossref_primary_10_1038_s41598_024_78954_7 crossref_primary_10_1016_j_jgg_2024_09_015 crossref_primary_10_1093_bib_bbae411 crossref_primary_10_1093_bib_bbad466 crossref_primary_10_1093_bib_bbae091 crossref_primary_10_1111_jcmm_18372 crossref_primary_10_1109_JBHI_2023_3333828 crossref_primary_10_1111_jcmm_70046 crossref_primary_10_1093_bib_bbae082 crossref_primary_10_3389_fphar_2025_1565860 crossref_primary_10_1111_jcmm_18345 crossref_primary_10_34133_bmef_0110 crossref_primary_10_1109_JBHI_2024_3375025 crossref_primary_10_1007_s12539_024_00619_w crossref_primary_10_1016_j_drudis_2024_103889 crossref_primary_10_1109_JBHI_2024_3476120 crossref_primary_10_1016_j_neucom_2024_128225 crossref_primary_10_1093_gigascience_giae103 crossref_primary_10_1016_j_inffus_2025_103108 crossref_primary_10_1093_bib_bbaf109 crossref_primary_10_1152_physiolgenomics_00032_2024 crossref_primary_10_3389_fgene_2024_1356205 crossref_primary_10_1016_j_eswa_2024_124152 |
Cites_doi | 10.1016/j.compbiomed.2023.106733 10.1038/nmeth.2892 10.1016/j.compbiomed.2022.106464 10.1093/bib/bbac234 10.1038/s42003-020-01341-1 10.1093/bib/bbac615 10.1016/j.compbiomed.2023.107137 10.1038/s41467-023-36796-3 10.1038/s41592-021-01255-8 10.1093/bib/bbad005 10.1016/j.csbj.2021.06.052 10.1038/s41592-020-01037-8 10.1056/NEJMoa1113205 10.1038/nmeth.2069 10.1038/s43588-022-00266-5 10.1016/j.neuron.2016.10.001 10.1038/s41587-020-0739-1 10.1186/s13059-017-1382-0 10.1126/science.aau5324 10.1016/j.copbio.2017.02.004 10.2164/jandrol.109.008748 10.1038/s41592-019-0548-y 10.1109/TNB.2023.3278685 10.1038/s41592-020-01038-7 10.1038/nbt.4096 10.1038/s41467-017-02554-5 10.1093/bib/bbac266 10.1038/s41598-020-63495-6 10.1093/bib/bbac475 10.1016/j.tibtech.2020.05.006 10.1016/0377-0427(87)90125-7 10.1016/j.patcog.2009.04.001 10.1186/s13059-022-02653-7 10.1093/bioinformatics/btac575 10.1109/JBHI.2023.3292299 10.1038/s41586-019-1049-y 10.1126/science.1127647 10.1186/s13073-022-01075-1 10.1093/nar/gkac824 10.1002/ctm2.669 10.1038/s41576-019-0129-z 10.1038/nrg3832 10.1016/j.jseaes.2022.105246 10.1002/bies.201900221 10.1038/nmeth.4636 10.1002/ctm2.694 10.1109/LCOMM.2021.3091800 10.1126/science.aaa6090 10.1126/science.aaw1219 10.3390/genes12121947 10.1093/bib/bbad048 |
ContentType | Journal Article |
Copyright | 2023 Copyright © 2023. Published by Elsevier Ltd. Copyright Elsevier Limited Nov 2023 |
Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier Ltd. – notice: Copyright Elsevier Limited Nov 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.compbiomed.2023.107440 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni) Medical Database Research Library (subscription) Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 107440 |
ExternalDocumentID | 37738898 10_1016_j_compbiomed_2023_107440 S0010482523009058 1_s2_0_S0010482523009058 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62172158 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61803151 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Hunan province grantid: 2023JJ50201 funderid: http://dx.doi.org/10.13039/501100004735 – fundername: Excellent Youth Project of Hunan Provincial Education Department grantid: 21B0802 |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- AFCTW AGRNS ALIPV RIG 3V. AACTN AFKWA AJOXV AMFUW M0N 77I AAYXX ACLOT CITATION EFLBG ~HD CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c514t-2191647c7d51bef1836331e9d96f47a343666eebe9ae6a37729a2b6710cf65e3 |
IEDL.DBID | .~1 |
ISSN | 0010-4825 1879-0534 |
IngestDate | Wed Oct 01 14:16:25 EDT 2025 Wed Aug 13 09:04:06 EDT 2025 Mon Jul 21 05:55:02 EDT 2025 Wed Oct 01 04:07:59 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Sat Jan 18 16:09:16 EST 2025 Wed Jun 18 06:48:28 EDT 2025 Tue Aug 26 20:14:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dimension reduction Spatial transcriptome Deep graph infomax Graph neural network k-sums clustering |
Language | English |
License | Copyright © 2023. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-2191647c7d51bef1836331e9d96f47a343666eebe9ae6a37729a2b6710cf65e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2321-3901 |
PMID | 37738898 |
PQID | 2883296845 |
PQPubID | 1226355 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2868128451 proquest_journals_2883296845 pubmed_primary_37738898 crossref_citationtrail_10_1016_j_compbiomed_2023_107440 crossref_primary_10_1016_j_compbiomed_2023_107440 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107440 elsevier_clinicalkeyesjournals_1_s2_0_S0010482523009058 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107440 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Shah, Lubeck, Zhou, Cai (b29) 2016; 92 Dong, Zhang (b44) 2022; 13 Zhao, Lan, Chen, Ngo (b59) 2021 Svensson, Teichmann, Stegle (b61) 2018; 15 Zeng, Li, Li, Luo (b38) 2022; 23 Wang, Sun, Zhao (b16) 2023; 153 Vickovic, Eraslan, Salmén, Klughammer, Stenbeck, Schapiro, Äijö, Bonneau, Bergenstråhle, Navarro (b35) 2019; 16 Li, Chen, Pan, Yuan, Shen (b47) 2022; 2 Stickels, Murray, Kumar, Li, Marshall, Di Bella, Arlotta, Macosko, Chen (b34) 2021; 39 Waylen, Nim, Martelotto, Ramialison (b10) 2020; 3 Lee, Ozger, Challita, Sung (b53) 2021; 25 Xie, Zhang, Wang, Pang, Wu, Qian, Yu, Li, Shi, Huang (b62) 2011; 32 Crosetto, Bienko, Van Oudenaarden (b14) 2015; 16 Zhang, Wu, Zhou, Zhou, Zhang, Wu (b5) 2022; 38 Chen, Huang (b7) 2023; 24 Eng, Lawson, Zhu, Dries, Koulena, Takei, Yun, Cronin, Karp, Yuan (b30) 2019; 568 He, Yang, Su (b67) 2022; 233 Zeng, Yin, Luo, Chen, Pan, Lu, Yu, Yang (b46) 2023; 24 Ben-Chetrit, Niu, Swett, Sotelo, Jiao, Stewart, Potenski, Mielinis, Roelli, Stoeckius (b18) 2023 Halkidi, Vazirgiannis (b68) 2001 Lubeck, Coskun, Zhiyentayev, Ahmad, Cai (b28) 2014; 11 Moor, Itzkovitz (b15) 2017; 46 Peng, Yuan, Han, Han, Tan, Wang, Chen, Chen (b22) 2023 Zass, Shashua (b57) 2006; 19 Cheng, Hu, Li (b19) 2023; 24 Peng, Tan, Xiong, Zhang, Wang, Yuan, Li, Chen (b24) 2023; 163 Hu, Li, Coleman, Schroeder, Irwin, Lee, Shinohara, Li (b36) 2020 Liao, Lu, Shao, Zhu, Fan (b6) 2021; 39 Hu, Li, Coleman, Schroeder, Ma, Irwin, Lee, Shinohara, Li (b41) 2021; 18 Liu, Li, Xiong, Gao, Wu (b70) 2010 Jovic, Liang, Zeng, Lin, Xu, Luo (b9) 2022; 12 Risso, Perraudeau, Gribkova, Dudoit, Vert (b54) 2018; 9 He, Zhang, Ren, Sun (b50) 2015 Wang, Nie, Huang (b58) 2016 Das, Rai, Merchant, Cave, Rai (b63) 2021; 12 Wolf, Angerer, Theis (b64) 2018; 19 Burgess (b11) 2019; 20 Yamazaki, Hosokawa, Arikawa, Takahashi, Sakanashi, Yoda, Matsunaga, Takeyama (b8) 2020; 10 Sun, Sun, Zhao (b21) 2022; 23 Rendón, Abundez, Arizmendi, Quiroz (b69) 2011; 5 Williams, Lee, Asatsuma, Vento-Tormo, Haque (b17) 2022; 14 Rodriques, Stickels, Goeva, Martin, Murray, Vanderburg, Welch, Chen, Chen, Macosko (b33) 2019; 363 Petrovic (b66) 2006 Chen, Boettiger, Moffitt, Wang, Zhuang (b32) 2015; 348 Hinton, Salakhutdinov (b51) 2006; 313 Vincent, Larochelle, Bengio, Manzagol (b52) 2008 Moffitt, Bambah-Mukku, Eichhorn, Vaughn, Shekhar, Perez, Rubinstein, Hao, Regev, Dulac (b31) 2018; 362 Zhang, Wu (b23) 2023 Sanchez-Lengeling, Reif, Pearce, Wiltschko (b48) 2021; 6 Pei, Nie, Wang, Li (b55) 2020; 33 Peng, Wang, Wang, Tan, Huang, Tian, Liu, Zhou (b20) 2022; 23 Hu, Schroeder, Coleman, Chen, Auerbach, Li (b4) 2021; 19 Lubeck, Cai (b37) 2012; 9 Luo, Huang, Nie, Ding (b56) 2012; 25 Velickovic, Fedus, Hamilton, Liò, Bengio, Hjelm (b49) 2019; 2 Butler, Hoffman, Smibert, Papalexi, Satija (b39) 2018; 36 Larsson, Frisén, Lundeberg (b27) 2021; 18 Nie, Xiang, Jia, Zhang (b60) 2009; 42 Long, Ang, Li, Chong, Sethi, Zhong, Xu, Ong, Sachaphibulkij, Chen (b45) 2023; 14 Liu, Jiang, Song, Zhang, Xu, Hou, Zhang, Chen, Cheng, Liu (b25) 2022; 12 Rousseeuw (b65) 1987; 20 Hu, Feng, Lin, Cheng, Lyu, Zhang, Zhao, Xu, Lin, Zhao (b2) 2023; 157 Asp, Bergenstråhle, Lundeberg (b13) 2020; 42 Gerlinger, Rowan, Horswell, Larkin, Endesfelder, Gronroos, Martinez, Matthews, Stewart, Tarpey (b71) 2012; 366 Pham, Tan, Xu, Grice, Lam, Raghubar, Vukovic, Ruitenberg, Nguyen (b40) 2020 Zhang, Zhang, Wu (b12) 2022; 50 Zhuang (b26) 2021; 18 Li, Chen, Pan, Yuan, Shen (b42) 2021 Fu, Xu, Chong, Li, Ang, Lee, Ling, Chen, Shao, Liu (b43) 2021 Hu, Feng, Lin, Zhao, Zhang, Xu, Chen, Chen, Ma, Su (b3) 2023; 24 Xu, Xu, Meng, Lu, Cai, Zeng, Nussinov, Cheng (b1) 2023; 3 Hu (10.1016/j.compbiomed.2023.107440_b41) 2021; 18 Cheng (10.1016/j.compbiomed.2023.107440_b19) 2023; 24 Zhao (10.1016/j.compbiomed.2023.107440_b59) 2021 Eng (10.1016/j.compbiomed.2023.107440_b30) 2019; 568 Zhang (10.1016/j.compbiomed.2023.107440_b5) 2022; 38 Liao (10.1016/j.compbiomed.2023.107440_b6) 2021; 39 Rousseeuw (10.1016/j.compbiomed.2023.107440_b65) 1987; 20 Long (10.1016/j.compbiomed.2023.107440_b45) 2023; 14 Sun (10.1016/j.compbiomed.2023.107440_b21) 2022; 23 Zhang (10.1016/j.compbiomed.2023.107440_b23) 2023 Chen (10.1016/j.compbiomed.2023.107440_b7) 2023; 24 Fu (10.1016/j.compbiomed.2023.107440_b43) 2021 Waylen (10.1016/j.compbiomed.2023.107440_b10) 2020; 3 Pei (10.1016/j.compbiomed.2023.107440_b55) 2020; 33 Hu (10.1016/j.compbiomed.2023.107440_b2) 2023; 157 Zhuang (10.1016/j.compbiomed.2023.107440_b26) 2021; 18 Chen (10.1016/j.compbiomed.2023.107440_b32) 2015; 348 He (10.1016/j.compbiomed.2023.107440_b67) 2022; 233 Crosetto (10.1016/j.compbiomed.2023.107440_b14) 2015; 16 Zhang (10.1016/j.compbiomed.2023.107440_b12) 2022; 50 Liu (10.1016/j.compbiomed.2023.107440_b25) 2022; 12 Hu (10.1016/j.compbiomed.2023.107440_b36) 2020 Lubeck (10.1016/j.compbiomed.2023.107440_b28) 2014; 11 Xu (10.1016/j.compbiomed.2023.107440_b1) 2023; 3 He (10.1016/j.compbiomed.2023.107440_b50) 2015 Peng (10.1016/j.compbiomed.2023.107440_b22) 2023 Moor (10.1016/j.compbiomed.2023.107440_b15) 2017; 46 Peng (10.1016/j.compbiomed.2023.107440_b24) 2023; 163 Petrovic (10.1016/j.compbiomed.2023.107440_b66) 2006 Nie (10.1016/j.compbiomed.2023.107440_b60) 2009; 42 Li (10.1016/j.compbiomed.2023.107440_b42) 2021 Dong (10.1016/j.compbiomed.2023.107440_b44) 2022; 13 Risso (10.1016/j.compbiomed.2023.107440_b54) 2018; 9 Yamazaki (10.1016/j.compbiomed.2023.107440_b8) 2020; 10 Rodriques (10.1016/j.compbiomed.2023.107440_b33) 2019; 363 Velickovic (10.1016/j.compbiomed.2023.107440_b49) 2019; 2 Gerlinger (10.1016/j.compbiomed.2023.107440_b71) 2012; 366 Shah (10.1016/j.compbiomed.2023.107440_b29) 2016; 92 Peng (10.1016/j.compbiomed.2023.107440_b20) 2022; 23 Hinton (10.1016/j.compbiomed.2023.107440_b51) 2006; 313 Liu (10.1016/j.compbiomed.2023.107440_b70) 2010 Vickovic (10.1016/j.compbiomed.2023.107440_b35) 2019; 16 Pham (10.1016/j.compbiomed.2023.107440_b40) 2020 Ben-Chetrit (10.1016/j.compbiomed.2023.107440_b18) 2023 Butler (10.1016/j.compbiomed.2023.107440_b39) 2018; 36 Hu (10.1016/j.compbiomed.2023.107440_b4) 2021; 19 Wolf (10.1016/j.compbiomed.2023.107440_b64) 2018; 19 Rendón (10.1016/j.compbiomed.2023.107440_b69) 2011; 5 Zeng (10.1016/j.compbiomed.2023.107440_b38) 2022; 23 Xie (10.1016/j.compbiomed.2023.107440_b62) 2011; 32 Stickels (10.1016/j.compbiomed.2023.107440_b34) 2021; 39 Jovic (10.1016/j.compbiomed.2023.107440_b9) 2022; 12 Lubeck (10.1016/j.compbiomed.2023.107440_b37) 2012; 9 Halkidi (10.1016/j.compbiomed.2023.107440_b68) 2001 Lee (10.1016/j.compbiomed.2023.107440_b53) 2021; 25 Burgess (10.1016/j.compbiomed.2023.107440_b11) 2019; 20 Zass (10.1016/j.compbiomed.2023.107440_b57) 2006; 19 Wang (10.1016/j.compbiomed.2023.107440_b16) 2023; 153 Svensson (10.1016/j.compbiomed.2023.107440_b61) 2018; 15 Asp (10.1016/j.compbiomed.2023.107440_b13) 2020; 42 Das (10.1016/j.compbiomed.2023.107440_b63) 2021; 12 Moffitt (10.1016/j.compbiomed.2023.107440_b31) 2018; 362 Li (10.1016/j.compbiomed.2023.107440_b47) 2022; 2 Vincent (10.1016/j.compbiomed.2023.107440_b52) 2008 Wang (10.1016/j.compbiomed.2023.107440_b58) 2016 Williams (10.1016/j.compbiomed.2023.107440_b17) 2022; 14 Larsson (10.1016/j.compbiomed.2023.107440_b27) 2021; 18 Luo (10.1016/j.compbiomed.2023.107440_b56) 2012; 25 Sanchez-Lengeling (10.1016/j.compbiomed.2023.107440_b48) 2021; 6 Hu (10.1016/j.compbiomed.2023.107440_b3) 2023; 24 Zeng (10.1016/j.compbiomed.2023.107440_b46) 2023; 24 |
References_xml | – volume: 39 start-page: 313 year: 2021 end-page: 319 ident: b34 article-title: Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2 publication-title: Nature Biotechnol. – volume: 12 start-page: 1947 year: 2021 ident: b63 article-title: A comprehensive survey of statistical approaches for differential expression analysis in single-cell RNA sequencing studies publication-title: Genes – start-page: 53 year: 2006 end-page: 64 ident: b66 article-title: A comparison between the silhouette index and the davies-bouldin index in labelling ids clusters publication-title: Proceedings of the 11th Nordic Workshop of Secure IT Systems, Vol. 2006 – volume: 2 start-page: 4 year: 2019 ident: b49 article-title: Deep graph infomax publication-title: ICLR (Poster) – volume: 16 start-page: 987 year: 2019 end-page: 990 ident: b35 article-title: High-definition spatial transcriptomics for in situ tissue profiling publication-title: Nat. Methods – year: 2020 ident: b40 article-title: stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues publication-title: BioRxiv – year: 2021 ident: b42 article-title: CCST: Cell clustering for spatial transcriptomics data with graph neural network – volume: 568 start-page: 235 year: 2019 end-page: 239 ident: b30 article-title: Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ publication-title: Nature – volume: 20 start-page: 317 year: 2019 ident: b11 article-title: Spatial transcriptomics coming of age publication-title: Nature Rev. Genet. – volume: 25 start-page: 2983 year: 2021 end-page: 2987 ident: b53 article-title: Noise learning-based denoising autoencoder publication-title: IEEE Commun. Lett. – start-page: 1 year: 2023 end-page: 6 ident: b18 article-title: Integration of whole transcriptome spatial profiling with protein markers publication-title: Nature Biotechnol. – volume: 38 start-page: 4497 year: 2022 end-page: 4504 ident: b5 article-title: CLNN-loop: a deep learning model to predict CTCF-mediated chromatin loops in the different cell lines and CTCF-binding sites (CBS) pair types publication-title: Bioinformatics – volume: 16 start-page: 57 year: 2015 end-page: 66 ident: b14 article-title: Spatially resolved transcriptomics and beyond publication-title: Nature Rev. Genet. – start-page: 1026 year: 2015 end-page: 1034 ident: b50 article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 14 start-page: 1 year: 2022 end-page: 18 ident: b17 article-title: An introduction to spatial transcriptomics for biomedical research publication-title: Genome Med. – volume: 9 start-page: 743 year: 2012 end-page: 748 ident: b37 article-title: Single-cell systems biology by super-resolution imaging and combinatorial labeling publication-title: Nat. Methods – volume: 18 start-page: 1342 year: 2021 end-page: 1351 ident: b41 article-title: SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network publication-title: Nat. Methods – volume: 15 start-page: 343 year: 2018 end-page: 346 ident: b61 article-title: SpatialDE: identification of spatially variable genes publication-title: Nat. Methods – volume: 233 year: 2022 ident: b67 article-title: Data-based analysis about the influence on erosion rates of the Tibetan Plateau publication-title: J. Asian Earth Sci. – volume: 362 start-page: eaau5324 year: 2018 ident: b31 article-title: Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region publication-title: Science – volume: 157 year: 2023 ident: b2 article-title: Gene function and cell surface protein association analysis based on single-cell multiomics data publication-title: Comput. Biol. Med. – volume: 6 year: 2021 ident: b48 article-title: A gentle introduction to graph neural networks publication-title: Distill – start-page: 2679 year: 2021 end-page: 2687 ident: b59 article-title: K-sums clustering: A stochastic optimization approach publication-title: Proceedings of the 30th ACM International Conference on Information & Knowledge Management – volume: 2 start-page: 399 year: 2022 end-page: 408 ident: b47 article-title: Cell clustering for spatial transcriptomics data with graph neural networks publication-title: Nat. Comput. Sci. – volume: 92 start-page: 342 year: 2016 end-page: 357 ident: b29 article-title: In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus publication-title: Neuron – volume: 9 start-page: 284 year: 2018 ident: b54 article-title: A general and flexible method for signal extraction from single-cell RNA-seq data publication-title: Nat. Commun. – start-page: 1096 year: 2008 end-page: 1103 ident: b52 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proceedings of the 25th International Conference on Machine Learning – volume: 24 start-page: bbac475 year: 2023 ident: b19 article-title: Benchmarking cell-type clustering methods for spatially resolved transcriptomics data publication-title: Brief. Bioinform. – year: 2021 ident: b43 article-title: Unsupervised spatially embedded deep representation of spatial transcriptomics publication-title: Biorxiv – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: b65 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. – start-page: 187 year: 2001 end-page: 194 ident: b68 article-title: Clustering validity assessment: Finding the optimal partitioning of a data set publication-title: Proceedings 2001 IEEE International Conference on Data Mining – volume: 366 start-page: 883 year: 2012 end-page: 892 ident: b71 article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing publication-title: N. Engl. J. Med. – year: 2023 ident: b23 article-title: IChrom-Deep: An attention-based deep learning model for identifying chromatin interactions publication-title: IEEE J. Biomed. Health Inf. – volume: 14 start-page: 1155 year: 2023 ident: b45 article-title: Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST publication-title: Nature Commun. – volume: 24 start-page: bbad005 year: 2023 ident: b3 article-title: Modeling and analyzing single-cell multimodal data with deep parametric inference publication-title: Brief. Bioinform. – volume: 46 start-page: 126 year: 2017 end-page: 133 ident: b15 article-title: Spatial transcriptomics: paving the way for tissue-level systems biology publication-title: Curr. Opin. Biotechnol. – volume: 23 start-page: bbac234 year: 2022 ident: b20 article-title: Cell-cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies publication-title: Brief. Bioinform. – volume: 24 start-page: bbad048 year: 2023 ident: b46 article-title: Identifying spatial domain by adapting transcriptomics with histology through contrastive learning publication-title: Brief. Bioinform. – volume: 42 start-page: 2615 year: 2009 end-page: 2627 ident: b60 article-title: Semi-supervised orthogonal discriminant analysis via label propagation publication-title: Pattern Recognit. – volume: 23 start-page: bbac266 year: 2022 ident: b21 article-title: A deep learning method for predicting metabolite-disease associations via graph neural network publication-title: Brief. Bioinform. – volume: 163 year: 2023 ident: b24 article-title: Deciphering ligand-receptor-mediated intercellular communication based on ensemble deep learning and the joint scoring strategy from single-cell transcriptomic data publication-title: Comput. Biol. Med. – volume: 36 start-page: 411 year: 2018 end-page: 420 ident: b39 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nature Biotechnol. – volume: 18 start-page: 18 year: 2021 end-page: 22 ident: b26 article-title: Spatially resolved single-cell genomics and transcriptomics by imaging publication-title: Nat. Methods – volume: 363 start-page: 1463 year: 2019 end-page: 1467 ident: b33 article-title: Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution publication-title: Science – year: 2020 ident: b36 article-title: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network publication-title: bioRxiv – volume: 11 start-page: 360 year: 2014 end-page: 361 ident: b28 article-title: Single-cell in situ RNA profiling by sequential hybridization publication-title: Nat. Methods – volume: 12 year: 2022 ident: b25 article-title: Clinical challenges of tissue preparation for spatial transcriptome publication-title: Clin. Transl. Med. – volume: 42 year: 2020 ident: b13 article-title: Spatially resolved transcriptomes-next generation tools for tissue exploration publication-title: BioEssays – volume: 19 year: 2006 ident: b57 article-title: Doubly stochastic normalization for spectral clustering publication-title: Adv. Neural Inf. Process. Syst. – volume: 153 year: 2023 ident: b16 article-title: Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism publication-title: Comput. Biol. Med. – volume: 23 start-page: 1 year: 2022 end-page: 23 ident: b38 article-title: Statistical and machine learning methods for spatially resolved transcriptomics data analysis publication-title: Genome Biol. – volume: 348 start-page: aaa6090 year: 2015 ident: b32 article-title: Spatially resolved, highly multiplexed RNA profiling in single cells publication-title: Science – volume: 33 start-page: 14855 year: 2020 end-page: 14866 ident: b55 article-title: Efficient clustering based on a unified view of publication-title: Adv. Neural Inf. Process. Syst. – volume: 25 year: 2012 ident: b56 article-title: Forging the graphs: A low rank and positive semidefinite graph learning approach publication-title: Adv. Neural Inf. Process. Syst. – volume: 12 year: 2022 ident: b9 article-title: Single-cell RNA sequencing technologies and applications: A brief overview publication-title: Clin. Transl. Med. – volume: 3 start-page: 1 year: 2020 end-page: 11 ident: b10 article-title: From whole-mount to single-cell spatial assessment of gene expression in 3D publication-title: Commun. Biol. – start-page: 911 year: 2010 end-page: 916 ident: b70 article-title: Understanding of internal clustering validation measures publication-title: 2010 IEEE International Conference on Data Mining – volume: 19 start-page: 3829 year: 2021 end-page: 3841 ident: b4 article-title: Statistical and machine learning methods for spatially resolved transcriptomics with histology publication-title: Comput. Struct. Biotechnol. J. – volume: 13 start-page: 1 year: 2022 end-page: 12 ident: b44 article-title: Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder publication-title: Nat. Commun. – volume: 10 start-page: 1 year: 2020 end-page: 8 ident: b8 article-title: Effective microtissue RNA extraction coupled with Smart-seq2 for reproducible and robust spatial transcriptome analysis publication-title: Sci. Rep. – volume: 39 start-page: 43 year: 2021 end-page: 58 ident: b6 article-title: Uncovering an organ’s molecular architecture at single-cell resolution by spatially resolved transcriptomics publication-title: Trends Biotechnol. – volume: 19 start-page: 1 year: 2018 end-page: 5 ident: b64 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b51 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 32 start-page: 170 year: 2011 end-page: 182 ident: b62 article-title: Analysis of differentially expressed genes in LNCaP prostate cancer progression model publication-title: J. Androl. – volume: 24 start-page: bbac615 year: 2023 ident: b7 article-title: Computational model for disease research publication-title: Brief. Bioinform. – start-page: 1245 year: 2016 end-page: 1254 ident: b58 article-title: Structured doubly stochastic matrix for graph based clustering: Structured doubly stochastic matrix publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 3 year: 2023 ident: b1 article-title: Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data publication-title: Cell Rep. Methods – year: 2023 ident: b22 article-title: CellEnBoost: A boosting-based ligand-receptor interaction identification model for cell-to-cell communication inference publication-title: IEEE Trans. NanoBiosci. – volume: 50 start-page: 10278 year: 2022 end-page: 10289 ident: b12 article-title: iPro-WAEL: a comprehensive and robust framework for identifying promoters in multiple species publication-title: Nucleic Acids Res. – volume: 18 start-page: 15 year: 2021 end-page: 18 ident: b27 article-title: Spatially resolved transcriptomics adds a new dimension to genomics publication-title: Nat. Methods – volume: 5 start-page: 27 year: 2011 end-page: 34 ident: b69 article-title: Internal versus external cluster validation indexes publication-title: Int. J. Comput. Commun. – start-page: 1 year: 2023 ident: 10.1016/j.compbiomed.2023.107440_b18 article-title: Integration of whole transcriptome spatial profiling with protein markers publication-title: Nature Biotechnol. – volume: 157 year: 2023 ident: 10.1016/j.compbiomed.2023.107440_b2 article-title: Gene function and cell surface protein association analysis based on single-cell multiomics data publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.106733 – volume: 11 start-page: 360 issue: 4 year: 2014 ident: 10.1016/j.compbiomed.2023.107440_b28 article-title: Single-cell in situ RNA profiling by sequential hybridization publication-title: Nat. Methods doi: 10.1038/nmeth.2892 – volume: 33 start-page: 14855 year: 2020 ident: 10.1016/j.compbiomed.2023.107440_b55 article-title: Efficient clustering based on a unified view of k-means and ratio-cut publication-title: Adv. Neural Inf. Process. Syst. – volume: 153 year: 2023 ident: 10.1016/j.compbiomed.2023.107440_b16 article-title: Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106464 – volume: 23 start-page: bbac234 issue: 4 year: 2022 ident: 10.1016/j.compbiomed.2023.107440_b20 article-title: Cell-cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies publication-title: Brief. Bioinform. doi: 10.1093/bib/bbac234 – volume: 3 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2023.107440_b10 article-title: From whole-mount to single-cell spatial assessment of gene expression in 3D publication-title: Commun. Biol. doi: 10.1038/s42003-020-01341-1 – year: 2021 ident: 10.1016/j.compbiomed.2023.107440_b42 – volume: 24 start-page: bbac615 issue: 1 year: 2023 ident: 10.1016/j.compbiomed.2023.107440_b7 article-title: Computational model for disease research publication-title: Brief. Bioinform. doi: 10.1093/bib/bbac615 – year: 2021 ident: 10.1016/j.compbiomed.2023.107440_b43 article-title: Unsupervised spatially embedded deep representation of spatial transcriptomics publication-title: Biorxiv – volume: 163 year: 2023 ident: 10.1016/j.compbiomed.2023.107440_b24 article-title: Deciphering ligand-receptor-mediated intercellular communication based on ensemble deep learning and the joint scoring strategy from single-cell transcriptomic data publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.107137 – volume: 14 start-page: 1155 issue: 1 year: 2023 ident: 10.1016/j.compbiomed.2023.107440_b45 article-title: Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST publication-title: Nature Commun. doi: 10.1038/s41467-023-36796-3 – volume: 18 start-page: 1342 issue: 11 year: 2021 ident: 10.1016/j.compbiomed.2023.107440_b41 article-title: SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network publication-title: Nat. Methods doi: 10.1038/s41592-021-01255-8 – volume: 24 start-page: bbad005 issue: 1 year: 2023 ident: 10.1016/j.compbiomed.2023.107440_b3 article-title: Modeling and analyzing single-cell multimodal data with deep parametric inference publication-title: Brief. Bioinform. doi: 10.1093/bib/bbad005 – volume: 2 start-page: 4 issue: 3 year: 2019 ident: 10.1016/j.compbiomed.2023.107440_b49 article-title: Deep graph infomax publication-title: ICLR (Poster) – volume: 19 start-page: 3829 year: 2021 ident: 10.1016/j.compbiomed.2023.107440_b4 article-title: Statistical and machine learning methods for spatially resolved transcriptomics with histology publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2021.06.052 – volume: 18 start-page: 18 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.107440_b26 article-title: Spatially resolved single-cell genomics and transcriptomics by imaging publication-title: Nat. Methods doi: 10.1038/s41592-020-01037-8 – volume: 5 start-page: 27 issue: 1 year: 2011 ident: 10.1016/j.compbiomed.2023.107440_b69 article-title: Internal versus external cluster validation indexes publication-title: Int. J. Comput. Commun. – volume: 366 start-page: 883 year: 2012 ident: 10.1016/j.compbiomed.2023.107440_b71 article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1113205 – volume: 9 start-page: 743 issue: 7 year: 2012 ident: 10.1016/j.compbiomed.2023.107440_b37 article-title: Single-cell systems biology by super-resolution imaging and combinatorial labeling publication-title: Nat. Methods doi: 10.1038/nmeth.2069 – volume: 2 start-page: 399 issue: 6 year: 2022 ident: 10.1016/j.compbiomed.2023.107440_b47 article-title: Cell clustering for spatial transcriptomics data with graph neural networks publication-title: Nat. Comput. Sci. doi: 10.1038/s43588-022-00266-5 – volume: 92 start-page: 342 issue: 2 year: 2016 ident: 10.1016/j.compbiomed.2023.107440_b29 article-title: In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus publication-title: Neuron doi: 10.1016/j.neuron.2016.10.001 – volume: 39 start-page: 313 issue: 3 year: 2021 ident: 10.1016/j.compbiomed.2023.107440_b34 article-title: Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2 publication-title: Nature Biotechnol. doi: 10.1038/s41587-020-0739-1 – volume: 19 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2023.107440_b64 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 – volume: 362 start-page: eaau5324 issue: 6416 year: 2018 ident: 10.1016/j.compbiomed.2023.107440_b31 article-title: Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region publication-title: Science doi: 10.1126/science.aau5324 – volume: 6 issue: 9 year: 2021 ident: 10.1016/j.compbiomed.2023.107440_b48 article-title: A gentle introduction to graph neural networks publication-title: Distill – volume: 46 start-page: 126 year: 2017 ident: 10.1016/j.compbiomed.2023.107440_b15 article-title: Spatial transcriptomics: paving the way for tissue-level systems biology publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2017.02.004 – start-page: 911 year: 2010 ident: 10.1016/j.compbiomed.2023.107440_b70 article-title: Understanding of internal clustering validation measures – volume: 32 start-page: 170 issue: 2 year: 2011 ident: 10.1016/j.compbiomed.2023.107440_b62 article-title: Analysis of differentially expressed genes in LNCaP prostate cancer progression model publication-title: J. Androl. doi: 10.2164/jandrol.109.008748 – volume: 16 start-page: 987 issue: 10 year: 2019 ident: 10.1016/j.compbiomed.2023.107440_b35 article-title: High-definition spatial transcriptomics for in situ tissue profiling publication-title: Nat. Methods doi: 10.1038/s41592-019-0548-y – year: 2023 ident: 10.1016/j.compbiomed.2023.107440_b22 article-title: CellEnBoost: A boosting-based ligand-receptor interaction identification model for cell-to-cell communication inference publication-title: IEEE Trans. NanoBiosci. doi: 10.1109/TNB.2023.3278685 – volume: 18 start-page: 15 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.107440_b27 article-title: Spatially resolved transcriptomics adds a new dimension to genomics publication-title: Nat. Methods doi: 10.1038/s41592-020-01038-7 – volume: 36 start-page: 411 issue: 5 year: 2018 ident: 10.1016/j.compbiomed.2023.107440_b39 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nature Biotechnol. doi: 10.1038/nbt.4096 – volume: 9 start-page: 284 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2023.107440_b54 article-title: A general and flexible method for signal extraction from single-cell RNA-seq data publication-title: Nat. Commun. doi: 10.1038/s41467-017-02554-5 – volume: 23 start-page: bbac266 issue: 4 year: 2022 ident: 10.1016/j.compbiomed.2023.107440_b21 article-title: A deep learning method for predicting metabolite-disease associations via graph neural network publication-title: Brief. Bioinform. doi: 10.1093/bib/bbac266 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2023.107440_b8 article-title: Effective microtissue RNA extraction coupled with Smart-seq2 for reproducible and robust spatial transcriptome analysis publication-title: Sci. Rep. doi: 10.1038/s41598-020-63495-6 – volume: 24 start-page: bbac475 issue: 1 year: 2023 ident: 10.1016/j.compbiomed.2023.107440_b19 article-title: Benchmarking cell-type clustering methods for spatially resolved transcriptomics data publication-title: Brief. Bioinform. doi: 10.1093/bib/bbac475 – start-page: 1096 year: 2008 ident: 10.1016/j.compbiomed.2023.107440_b52 article-title: Extracting and composing robust features with denoising autoencoders – volume: 39 start-page: 43 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2023.107440_b6 article-title: Uncovering an organ’s molecular architecture at single-cell resolution by spatially resolved transcriptomics publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2020.05.006 – volume: 20 start-page: 53 year: 1987 ident: 10.1016/j.compbiomed.2023.107440_b65 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – start-page: 1245 year: 2016 ident: 10.1016/j.compbiomed.2023.107440_b58 article-title: Structured doubly stochastic matrix for graph based clustering: Structured doubly stochastic matrix – volume: 42 start-page: 2615 issue: 11 year: 2009 ident: 10.1016/j.compbiomed.2023.107440_b60 article-title: Semi-supervised orthogonal discriminant analysis via label propagation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.04.001 – volume: 23 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107440_b38 article-title: Statistical and machine learning methods for spatially resolved transcriptomics data analysis publication-title: Genome Biol. doi: 10.1186/s13059-022-02653-7 – volume: 38 start-page: 4497 issue: 19 year: 2022 ident: 10.1016/j.compbiomed.2023.107440_b5 article-title: CLNN-loop: a deep learning model to predict CTCF-mediated chromatin loops in the different cell lines and CTCF-binding sites (CBS) pair types publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac575 – year: 2023 ident: 10.1016/j.compbiomed.2023.107440_b23 article-title: IChrom-Deep: An attention-based deep learning model for identifying chromatin interactions publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2023.3292299 – volume: 568 start-page: 235 issue: 7751 year: 2019 ident: 10.1016/j.compbiomed.2023.107440_b30 article-title: Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ publication-title: Nature doi: 10.1038/s41586-019-1049-y – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.compbiomed.2023.107440_b51 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 3 issue: 1 year: 2023 ident: 10.1016/j.compbiomed.2023.107440_b1 article-title: Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data publication-title: Cell Rep. Methods – volume: 14 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107440_b17 article-title: An introduction to spatial transcriptomics for biomedical research publication-title: Genome Med. doi: 10.1186/s13073-022-01075-1 – volume: 13 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107440_b44 article-title: Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder publication-title: Nat. Commun. – volume: 50 start-page: 10278 issue: 18 year: 2022 ident: 10.1016/j.compbiomed.2023.107440_b12 article-title: iPro-WAEL: a comprehensive and robust framework for identifying promoters in multiple species publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac824 – volume: 12 issue: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107440_b25 article-title: Clinical challenges of tissue preparation for spatial transcriptome publication-title: Clin. Transl. Med. doi: 10.1002/ctm2.669 – start-page: 187 year: 2001 ident: 10.1016/j.compbiomed.2023.107440_b68 article-title: Clustering validity assessment: Finding the optimal partitioning of a data set – volume: 20 start-page: 317 issue: 6 year: 2019 ident: 10.1016/j.compbiomed.2023.107440_b11 article-title: Spatial transcriptomics coming of age publication-title: Nature Rev. Genet. doi: 10.1038/s41576-019-0129-z – volume: 16 start-page: 57 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2023.107440_b14 article-title: Spatially resolved transcriptomics and beyond publication-title: Nature Rev. Genet. doi: 10.1038/nrg3832 – volume: 233 year: 2022 ident: 10.1016/j.compbiomed.2023.107440_b67 article-title: Data-based analysis about the influence on erosion rates of the Tibetan Plateau publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2022.105246 – year: 2020 ident: 10.1016/j.compbiomed.2023.107440_b36 article-title: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network publication-title: bioRxiv – start-page: 53 year: 2006 ident: 10.1016/j.compbiomed.2023.107440_b66 article-title: A comparison between the silhouette index and the davies-bouldin index in labelling ids clusters – volume: 42 issue: 10 year: 2020 ident: 10.1016/j.compbiomed.2023.107440_b13 article-title: Spatially resolved transcriptomes-next generation tools for tissue exploration publication-title: BioEssays doi: 10.1002/bies.201900221 – year: 2020 ident: 10.1016/j.compbiomed.2023.107440_b40 article-title: stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues publication-title: BioRxiv – volume: 19 year: 2006 ident: 10.1016/j.compbiomed.2023.107440_b57 article-title: Doubly stochastic normalization for spectral clustering publication-title: Adv. Neural Inf. Process. Syst. – start-page: 2679 year: 2021 ident: 10.1016/j.compbiomed.2023.107440_b59 article-title: K-sums clustering: A stochastic optimization approach – volume: 15 start-page: 343 issue: 5 year: 2018 ident: 10.1016/j.compbiomed.2023.107440_b61 article-title: SpatialDE: identification of spatially variable genes publication-title: Nat. Methods doi: 10.1038/nmeth.4636 – volume: 12 issue: 3 year: 2022 ident: 10.1016/j.compbiomed.2023.107440_b9 article-title: Single-cell RNA sequencing technologies and applications: A brief overview publication-title: Clin. Transl. Med. doi: 10.1002/ctm2.694 – start-page: 1026 year: 2015 ident: 10.1016/j.compbiomed.2023.107440_b50 article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification – volume: 25 start-page: 2983 issue: 9 year: 2021 ident: 10.1016/j.compbiomed.2023.107440_b53 article-title: Noise learning-based denoising autoencoder publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2021.3091800 – volume: 348 start-page: aaa6090 issue: 6233 year: 2015 ident: 10.1016/j.compbiomed.2023.107440_b32 article-title: Spatially resolved, highly multiplexed RNA profiling in single cells publication-title: Science doi: 10.1126/science.aaa6090 – volume: 363 start-page: 1463 issue: 6434 year: 2019 ident: 10.1016/j.compbiomed.2023.107440_b33 article-title: Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution publication-title: Science doi: 10.1126/science.aaw1219 – volume: 12 start-page: 1947 issue: 12 year: 2021 ident: 10.1016/j.compbiomed.2023.107440_b63 article-title: A comprehensive survey of statistical approaches for differential expression analysis in single-cell RNA sequencing studies publication-title: Genes doi: 10.3390/genes12121947 – volume: 24 start-page: bbad048 issue: 2 year: 2023 ident: 10.1016/j.compbiomed.2023.107440_b46 article-title: Identifying spatial domain by adapting transcriptomics with histology through contrastive learning publication-title: Brief. Bioinform. doi: 10.1093/bib/bbad048 – volume: 25 year: 2012 ident: 10.1016/j.compbiomed.2023.107440_b56 article-title: Forging the graphs: A low rank and positive semidefinite graph learning approach publication-title: Adv. Neural Inf. Process. Syst. |
SSID | ssj0004030 |
Score | 2.4842505 |
Snippet | Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these... AbstractBackground:Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional... Background:Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107440 |
SubjectTerms | Algorithms Artificial neural networks Breast cancer Breast Neoplasms - genetics Breast Neoplasms - metabolism Breast Neoplasms - pathology Carcinoma Cluster Analysis Clustering Coders Data analysis Data processing Datasets Deep graph infomax Dimension reduction Embedding Gene Expression Profiling - methods Genes Genetic diversity Graph neural network Graph neural networks Humans Indicators Information processing Internal Medicine k-sums clustering Kidneys Labels Lymph nodes Machine learning Morphology Neural networks Neural Networks, Computer Noise reduction Other Performance evaluation Spacetime Spatial data Spatial transcriptome Transcriptome - genetics Transcriptomics Vector quantization |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL4s2WgozEsS5xnDgxHBBCbCuk7qWL1Jvl2I7Uh5JSZ38G_7kzsZO9FLTXxONEnvHMePzNDCGfLHZ6a3nOuLUVK-pGMtMWjvFGuUyIRjZj57nTlTz5Xfw6L89TwC0kWOWkE0dF7XqLMfLP2BU3V7Iuym83fxh2jcLb1dRC4yF5xHOQJMwUXx5v8yIzEVNQQNcUcBRKSJ6I70LIdkxxP8IW4keITMQQyP3m6V_u52iGls_I0-Q_0u-R4c_JA9-9II9P0w35S_L3bH28Wl2FLzSm4I5pTBTD8xSjrYFedDQgihomGdBOjVoDU5MDRbQoRbPmaN_RsZQ1xXqXMLSLaPFDCpP2FxhfoGYz9AzLYDp_e0hN5-gVZbBQgdrrDZZfgEGvyHr5c_3jhKWWC8yC5zQw0F9YYMxWruSNb2G_SyG4V07JtqiMKAQcdzwwXhkvjUDX3OSNBDfFtrL04jXZ6_rOvyVUVob7xriqUqoQvlVt1QgDD2tftJnlC1JNC61tKkeOXTGu9YQ7u9RbFmlkkY4sWhA-U97Ekhw70KiJl3pKOQUlqcFu7EBb3UfrQ9rtQXMdcp3ps7HYEcgZHOsylZX1gnydKZNDEx2VHb97MAmdnj-13QYL8nF-DSoBBcl0vt_gGCwqB0Ngkd9EYZ0XClgm6lrV-_-f_B15gn8Sky4PyN5wu_Hvwfsamg_jFrsDaucvRA priority: 102 providerName: ProQuest |
Title | STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523009058 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523009058 https://dx.doi.org/10.1016/j.compbiomed.2023.107440 https://www.ncbi.nlm.nih.gov/pubmed/37738898 https://www.proquest.com/docview/2883296845 https://www.proquest.com/docview/2868128451 |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250803 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBelg7GXsf_L1hUN9lindiRL1vbUlabZRs3YMsibkGwZ0ha71M7rPkE_dO8s2WWsg8BebOzc2UZ3ujspv7sj5EOBnd6qZBYlRSEjnlkRmYqXUWJVGTNmhe07z53lYvGLf12lqx1yPOTCIKwy2H5v03trHe4chtE8vFqvMccXlhKwwIEgOlZxigm_WP0LdHr6-w7mwWPm01DA3iB1QPN4jBfCtn2a-xTbiE8RnYjbIPe7qH-FoL0rmj8hj0MMSY_8Zz4lO65-Rh6ehX_Jn5Obn8vTPL9oP1KfhtunMlHcoqe449rSdU1bRFLDQzr0Vb3lwPTkliJilKJrK2lT076cNcWal0Bae8T4AYWHNmvcY6Bm0zURlsIs3fUBNXVJLyJQ7ZYWlxuswAA0L8hyfrI8XkSh60JUQPDURWDCsMZYIcs0sa6CKS8YS5wqlai4NIwzWPE4kL0yThiG0bmZWQGRSlGJ1LGXZLduaveaUCFN4qwppVSKM1epSlpm4GbmeBUXyYTIYZx1ESqSY2OMSz1Az871nYQ0Skh7CU1IMnJe-aocW_CoQZR6yDoFO6nBdWzBK-_jdW2Y8K1OdDvTsf5LKSfk08j5h15v-d69Qef0-CrsDz1TIuPphLwffwargHpkatdskAbrygEJDPIrr6vjQIHIWJap7M1_fdpb8givfFrmHtntrjfuHcRnnd3vJyAc5UrCMZuf7pMHR1--LXI4fz7Jv_-4BSDMPyA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkYAL4p8tBYwEt7pNYseOQQghoGxpdy9dpL1ZjuNIpVXSNlkhHoJH4R2ZiZPdS0F76TXx2IlnPDO2Z74h5LXDSm9lnLDYOcVElktmS1GwONdFxHku867y3GQqx9_Ft3k63yB_hlwYDKscdGKnqIva4Rn5HlbFTbTMRPrh_IJh1Si8XR1KaASxOPS_fsKWrXl_8Bn4-yZJ9r_MPo1ZX1WAOXAOWgZLFDG0nCrSOPcliLTkPPa60LIUynLBwaP38G_aemk5ep82ySVYYlfK1HPo9ga5KXgkEKpfzdUqDTPiIeMFVJuAnVcfOBTCyTBCPGTU72LF8l0MhMQTl6ut4b-83c7q7d8jd3t3lX4M8nWfbPjqAbk16S_kH5Lfx7Ov0-lp85aGjN8ua4ribQDFw92GnlS0waBt6KRFs9gpKcyEbigGp1K0ogWtK9ohZ1OE14SmVQhO36HQaX2CxxnULtqaIepm4S93qK0KekoZ8KWh7myBaA_Q6BGZXQcvHpPNqq78U0KlsrHPbaGU1oL7Upcq5xYeZl6UkYtHRA0TbVyPfo5FOM7MEOb2w6xYZJBFJrBoROIl5XlAAFmDRg-8NEOGK-hkA2ZqDVp1Fa1veuXSmNg0iYnMcYetBHIGu8hIR2k2Iu-WlL3_FPyiNcfdHoTOLIdarboRebV8DRoIBclWvl5gG8SwgyYwyU-CsC4nCljGs0xnW__v_CW5PZ5NjszRwfTwGbmDXxXyPbfJZnu58M_B8WvzF91yo8Rc8_L-Cxx0aoY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkSouiPLXLQWMBLe6TeLEjkEVQpSlpXSF1EXam-U4jlRaJW2TFeIheKC-XWfiJHspaC-9Zj1O1vNr-5sZQt5a7PRWhBELrZUsTjPBTBHnLMxUHnCeiaztPHc8EQc_42-zZLZCrvtcGIRV9jaxNdR5ZfGMfBe74kZKpHGyW3SwiB_7448Xlww7SOFNa99Ow4vIkfvzG7Zv9d7hPvD6XRSNv0w_H7CuwwCzECg0DNQV62lZmSdh5goQb8F56FSuRBFLw2MO0b2D_6mME4ZjJGqiTIBXtoVIHIdp75H7EsYhmkzO5CIlM-A--wXMXAy7sA5E5KFliBb32fU72L18B0GRePpyu2f8V-TbesDxI_KwC13pJy9r62TFlY_J2nF3Of-E_D2Zfp1Mzur31Gf_thlUFG8GKB701vS0pDUCuGGSBl1ka7AwK7qmCFSl6FFzWpW0raJNsdQmDC09UH2bwqTVKR5tUDNvKoYVOHN3tU1NmdMzyoAvNbXnc6z8AIOekuld8OIZWS2r0m0QKqQJXWZyKZWKuStUITNu4GHq4iKw4YjIfqG17SqhY0OOc91D3n7pBYs0skh7Fo1IOFBe-GogS9Conpe6z3YF-6zBZS1BK2-jdXVnaGod6jrSgT5p6yyBnMGOMlBBko7Ih4Gyi6V8jLTke7d6odPDqxYaOCJvhp_BGqEgmdJVcxyD9exgCCzycy-sw0IBy3iaqnTz_5O_Jmug2Pr74eToBXmAH-VTP7fIanM1dy8hBmyyV622UaLvWLtvACB8bsE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STGNNks%3A+Identifying+cell+types+in+spatial+transcriptomics+data+based+on+graph+neural+network%2C+denoising+auto-encoder%2C+and+k-sums+clustering&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Peng%2C+Lihong&rft.au=He%2C+Xianzhi&rft.au=Peng%2C+Xinhuai&rft.au=Li%2C+Zejun&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=166&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107440&rft.externalDocID=S0010482523009058 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482523X00134%2Fcov150h.gif |