STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering

Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background. We developed an innovative spatial clustering...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 166; p. 107440
Main Authors Peng, Lihong, He, Xianzhi, Peng, Xinhuai, Li, Zejun, Zhang, Li
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2023
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2023.107440

Cover

Abstract Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background. We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots’ embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets. We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters. We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks. [Display omitted] •ZINB-based denoising autoencoder is used to reduce the feature dimensions of spots.•k-sums clustering algorithm is designed to accurately cluster ST data.•SC, DH, CH, and S_Dbw, are used to assess the performance of ST clustering methods.
AbstractList Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background. We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots' embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets. We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters. We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks.
Background:Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background.Methods:We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots’ embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets.Results:We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters.Conclusion:We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks.
Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background. We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots’ embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets. We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters. We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks. [Display omitted] •ZINB-based denoising autoencoder is used to reduce the feature dimensions of spots.•k-sums clustering algorithm is designed to accurately cluster ST data.•SC, DH, CH, and S_Dbw, are used to assess the performance of ST clustering methods.
AbstractBackground:Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background. Methods:We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots’ embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets. Results:We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters. Conclusion:We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks.
Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background.BACKGROUNDSpatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these data can greatly advance our understanding about cell biology in the morphological background.We developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots' embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets.METHODSWe developed an innovative spatial clustering method called STGNNks by combining graph neural network, denoising auto-encoder, and k-sums clustering. First, spatial resolved transcriptomics data are preprocessed and a hybrid adjacency matrix is constructed. Next, gene expressions and spatial context are integrated to learn spots' embedding features by a deep graph infomax-based graph convolutional network. Third, the learned features are mapped to a low-dimensional space through a zero-inflated negative binomial (ZINB)-based denoising auto-encoder. Fourth, a k-sums clustering algorithm is developed to identify spatial domains by combining k-means clustering and the ratio-cut clustering algorithms. Finally, it implements spatial trajectory inference, spatially variable gene identification, and differentially expressed gene detection based on the pseudo-space-time method on six 10x Genomics Visium datasets.We compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters.RESULTSWe compared our proposed STGNNks method with five other spatial clustering methods, CCST, Seurat, stLearn, Scanpy and SEDR. For the first time, four internal indicators in the area of machine learning, that is, silhouette coefficient, the Davies-Bouldin index, the Caliniski-Harabasz index, and the S_Dbw index, were used to measure the clustering performance of STGNNks with CCST, Seurat, stLearn, Scanpy and SEDR on five spatial transcriptomics datasets without labels (i.e., Adult Mouse Brain (FFPE), Adult Mouse Kidney (FFPE), Human Breast Cancer (Block A Section 2), Human Breast Cancer (FFPE), and Human Lymph Node). And two external indicators including adjusted Rand index (ARI) and normalized mutual information (NMI) were applied to evaluate the performance of the above six methods on Human Breast Cancer (Block A Section 1) with real labels. The comparison experiments elucidated that STGNNks obtained the smallest Davies-Bouldin and S_Dbw values and the largest Silhouette Coefficient, Caliniski-Harabasz, ARI and NMI, significantly outperforming the above five spatial transcriptomics analysis algorithms. Furthermore, we detected the top six spatially variable genes and the top five differentially expressed genes in each cluster on the above five unlabeled datasets. And the pseudo-space-time tree plot with hierarchical layout demonstrated a flow of Human Breast Cancer (Block A Section 1) progress in three clades branching from three invasive ductal carcinoma regions to multiple ductal carcinoma in situ sub-clusters.We anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks.CONCLUSIONWe anticipate that STGNNks can efficiently improve spatial transcriptomics data analysis and further boost the diagnosis and therapy of related diseases. The codes are publicly available at https://github.com/plhhnu/STGNNks.
ArticleNumber 107440
Author Peng, Xinhuai
Li, Zejun
He, Xianzhi
Peng, Lihong
Zhang, Li
Author_xml – sequence: 1
  givenname: Lihong
  orcidid: 0000-0002-2321-3901
  surname: Peng
  fullname: Peng, Lihong
  organization: School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
– sequence: 2
  givenname: Xianzhi
  surname: He
  fullname: He, Xianzhi
  organization: School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
– sequence: 3
  givenname: Xinhuai
  surname: Peng
  fullname: Peng, Xinhuai
  organization: School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, Hunan, China
– sequence: 4
  givenname: Zejun
  surname: Li
  fullname: Li, Zejun
  email: lzjfox@hnit.edu.cn
  organization: School of Computer Science, Hunan Institute of Technology, Hengyang, 421002, Hunan, China
– sequence: 5
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  email: tb20060015b4@cumt.edu.cn
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37738898$$D View this record in MEDLINE/PubMed
BookMark eNqNks9u1DAQxi1URLeFV0CWuHBoFv9JHIdDBVRQKlXl0L1bjjMp3s3awXZA-w48NI62BWklpD1ZGv3m88z3zRk6cd4BQpiSJSVUvFsvjd-OrfVb6JaMMJ7LdVmSZ2hBZd0UpOLlCVoQQklRSladorMY14SQknDyAp3yuuZSNnKBft-vru_uNvE9vunAJdvvrHvABoYBp90IEVuH46iT1bkQtIsm2DH5rTURdzpp3OoIHfYOPwQ9fscOppBRB-mXD5sLnEW9jbOmnpIvwBnfQbjA2nV4U8RpG7EZppggZOYlet7rIcKrx_ccrb58Xl19LW6_Xd9cfbwtTEXLVDDaUFHWpu4q2kJPJRecU2i6RvRlrXnJhRAALTQahM67skazVtSUmF5UwM_R273sGPyPCWJSWxvnlbUDP0XFpJCUybKiGX1zgK79FFweLlOSs0ZkLFOvH6mpzYmoMditDjv1ZHMGLveACT7GAL0yNmVTvcue2kFRouZc1Vr9y1XNuap9rllAHgg8_XFE66d9K2RHf1oIKhqbc4DOBjBJdd4eI3J5IGIG66zRwwZ2EP-aQlVkiqj7-fLmw2OckIZUswMf_i9w3Ax_AD4q7qQ
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_108110
crossref_primary_10_1038_s41598_024_78954_7
crossref_primary_10_1016_j_jgg_2024_09_015
crossref_primary_10_1093_bib_bbae411
crossref_primary_10_1093_bib_bbad466
crossref_primary_10_1093_bib_bbae091
crossref_primary_10_1111_jcmm_18372
crossref_primary_10_1109_JBHI_2023_3333828
crossref_primary_10_1111_jcmm_70046
crossref_primary_10_1093_bib_bbae082
crossref_primary_10_3389_fphar_2025_1565860
crossref_primary_10_1111_jcmm_18345
crossref_primary_10_34133_bmef_0110
crossref_primary_10_1109_JBHI_2024_3375025
crossref_primary_10_1007_s12539_024_00619_w
crossref_primary_10_1016_j_drudis_2024_103889
crossref_primary_10_1109_JBHI_2024_3476120
crossref_primary_10_1016_j_neucom_2024_128225
crossref_primary_10_1093_gigascience_giae103
crossref_primary_10_1016_j_inffus_2025_103108
crossref_primary_10_1093_bib_bbaf109
crossref_primary_10_1152_physiolgenomics_00032_2024
crossref_primary_10_3389_fgene_2024_1356205
crossref_primary_10_1016_j_eswa_2024_124152
Cites_doi 10.1016/j.compbiomed.2023.106733
10.1038/nmeth.2892
10.1016/j.compbiomed.2022.106464
10.1093/bib/bbac234
10.1038/s42003-020-01341-1
10.1093/bib/bbac615
10.1016/j.compbiomed.2023.107137
10.1038/s41467-023-36796-3
10.1038/s41592-021-01255-8
10.1093/bib/bbad005
10.1016/j.csbj.2021.06.052
10.1038/s41592-020-01037-8
10.1056/NEJMoa1113205
10.1038/nmeth.2069
10.1038/s43588-022-00266-5
10.1016/j.neuron.2016.10.001
10.1038/s41587-020-0739-1
10.1186/s13059-017-1382-0
10.1126/science.aau5324
10.1016/j.copbio.2017.02.004
10.2164/jandrol.109.008748
10.1038/s41592-019-0548-y
10.1109/TNB.2023.3278685
10.1038/s41592-020-01038-7
10.1038/nbt.4096
10.1038/s41467-017-02554-5
10.1093/bib/bbac266
10.1038/s41598-020-63495-6
10.1093/bib/bbac475
10.1016/j.tibtech.2020.05.006
10.1016/0377-0427(87)90125-7
10.1016/j.patcog.2009.04.001
10.1186/s13059-022-02653-7
10.1093/bioinformatics/btac575
10.1109/JBHI.2023.3292299
10.1038/s41586-019-1049-y
10.1126/science.1127647
10.1186/s13073-022-01075-1
10.1093/nar/gkac824
10.1002/ctm2.669
10.1038/s41576-019-0129-z
10.1038/nrg3832
10.1016/j.jseaes.2022.105246
10.1002/bies.201900221
10.1038/nmeth.4636
10.1002/ctm2.694
10.1109/LCOMM.2021.3091800
10.1126/science.aaa6090
10.1126/science.aaw1219
10.3390/genes12121947
10.1093/bib/bbad048
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier Ltd.
Copyright Elsevier Limited Nov 2023
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier Ltd.
– notice: Copyright Elsevier Limited Nov 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2023.107440
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Research Library (subscription)
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Research Library Prep


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 107440
ExternalDocumentID 37738898
10_1016_j_compbiomed_2023_107440
S0010482523009058
1_s2_0_S0010482523009058
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62172158
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61803151
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Hunan province
  grantid: 2023JJ50201
  funderid: http://dx.doi.org/10.13039/501100004735
– fundername: Excellent Youth Project of Hunan Provincial Education Department
  grantid: 21B0802
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
AFCTW
AGRNS
ALIPV
RIG
3V.
AACTN
AFKWA
AJOXV
AMFUW
M0N
77I
AAYXX
ACLOT
CITATION
EFLBG
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-2191647c7d51bef1836331e9d96f47a343666eebe9ae6a37729a2b6710cf65e3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Wed Oct 01 14:16:25 EDT 2025
Wed Aug 13 09:04:06 EDT 2025
Mon Jul 21 05:55:02 EDT 2025
Wed Oct 01 04:07:59 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Sat Jan 18 16:09:16 EST 2025
Wed Jun 18 06:48:28 EDT 2025
Tue Aug 26 20:14:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Dimension reduction
Spatial transcriptome
Deep graph infomax
Graph neural network
k-sums clustering
Language English
License Copyright © 2023. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-2191647c7d51bef1836331e9d96f47a343666eebe9ae6a37729a2b6710cf65e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2321-3901
PMID 37738898
PQID 2883296845
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2868128451
proquest_journals_2883296845
pubmed_primary_37738898
crossref_citationtrail_10_1016_j_compbiomed_2023_107440
crossref_primary_10_1016_j_compbiomed_2023_107440
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107440
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523009058
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107440
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Shah, Lubeck, Zhou, Cai (b29) 2016; 92
Dong, Zhang (b44) 2022; 13
Zhao, Lan, Chen, Ngo (b59) 2021
Svensson, Teichmann, Stegle (b61) 2018; 15
Zeng, Li, Li, Luo (b38) 2022; 23
Wang, Sun, Zhao (b16) 2023; 153
Vickovic, Eraslan, Salmén, Klughammer, Stenbeck, Schapiro, Äijö, Bonneau, Bergenstråhle, Navarro (b35) 2019; 16
Li, Chen, Pan, Yuan, Shen (b47) 2022; 2
Stickels, Murray, Kumar, Li, Marshall, Di Bella, Arlotta, Macosko, Chen (b34) 2021; 39
Waylen, Nim, Martelotto, Ramialison (b10) 2020; 3
Lee, Ozger, Challita, Sung (b53) 2021; 25
Xie, Zhang, Wang, Pang, Wu, Qian, Yu, Li, Shi, Huang (b62) 2011; 32
Crosetto, Bienko, Van Oudenaarden (b14) 2015; 16
Zhang, Wu, Zhou, Zhou, Zhang, Wu (b5) 2022; 38
Chen, Huang (b7) 2023; 24
Eng, Lawson, Zhu, Dries, Koulena, Takei, Yun, Cronin, Karp, Yuan (b30) 2019; 568
He, Yang, Su (b67) 2022; 233
Zeng, Yin, Luo, Chen, Pan, Lu, Yu, Yang (b46) 2023; 24
Ben-Chetrit, Niu, Swett, Sotelo, Jiao, Stewart, Potenski, Mielinis, Roelli, Stoeckius (b18) 2023
Halkidi, Vazirgiannis (b68) 2001
Lubeck, Coskun, Zhiyentayev, Ahmad, Cai (b28) 2014; 11
Moor, Itzkovitz (b15) 2017; 46
Peng, Yuan, Han, Han, Tan, Wang, Chen, Chen (b22) 2023
Zass, Shashua (b57) 2006; 19
Cheng, Hu, Li (b19) 2023; 24
Peng, Tan, Xiong, Zhang, Wang, Yuan, Li, Chen (b24) 2023; 163
Hu, Li, Coleman, Schroeder, Irwin, Lee, Shinohara, Li (b36) 2020
Liao, Lu, Shao, Zhu, Fan (b6) 2021; 39
Hu, Li, Coleman, Schroeder, Ma, Irwin, Lee, Shinohara, Li (b41) 2021; 18
Liu, Li, Xiong, Gao, Wu (b70) 2010
Jovic, Liang, Zeng, Lin, Xu, Luo (b9) 2022; 12
Risso, Perraudeau, Gribkova, Dudoit, Vert (b54) 2018; 9
He, Zhang, Ren, Sun (b50) 2015
Wang, Nie, Huang (b58) 2016
Das, Rai, Merchant, Cave, Rai (b63) 2021; 12
Wolf, Angerer, Theis (b64) 2018; 19
Burgess (b11) 2019; 20
Yamazaki, Hosokawa, Arikawa, Takahashi, Sakanashi, Yoda, Matsunaga, Takeyama (b8) 2020; 10
Sun, Sun, Zhao (b21) 2022; 23
Rendón, Abundez, Arizmendi, Quiroz (b69) 2011; 5
Williams, Lee, Asatsuma, Vento-Tormo, Haque (b17) 2022; 14
Rodriques, Stickels, Goeva, Martin, Murray, Vanderburg, Welch, Chen, Chen, Macosko (b33) 2019; 363
Petrovic (b66) 2006
Chen, Boettiger, Moffitt, Wang, Zhuang (b32) 2015; 348
Hinton, Salakhutdinov (b51) 2006; 313
Vincent, Larochelle, Bengio, Manzagol (b52) 2008
Moffitt, Bambah-Mukku, Eichhorn, Vaughn, Shekhar, Perez, Rubinstein, Hao, Regev, Dulac (b31) 2018; 362
Zhang, Wu (b23) 2023
Sanchez-Lengeling, Reif, Pearce, Wiltschko (b48) 2021; 6
Pei, Nie, Wang, Li (b55) 2020; 33
Peng, Wang, Wang, Tan, Huang, Tian, Liu, Zhou (b20) 2022; 23
Hu, Schroeder, Coleman, Chen, Auerbach, Li (b4) 2021; 19
Lubeck, Cai (b37) 2012; 9
Luo, Huang, Nie, Ding (b56) 2012; 25
Velickovic, Fedus, Hamilton, Liò, Bengio, Hjelm (b49) 2019; 2
Butler, Hoffman, Smibert, Papalexi, Satija (b39) 2018; 36
Larsson, Frisén, Lundeberg (b27) 2021; 18
Nie, Xiang, Jia, Zhang (b60) 2009; 42
Long, Ang, Li, Chong, Sethi, Zhong, Xu, Ong, Sachaphibulkij, Chen (b45) 2023; 14
Liu, Jiang, Song, Zhang, Xu, Hou, Zhang, Chen, Cheng, Liu (b25) 2022; 12
Rousseeuw (b65) 1987; 20
Hu, Feng, Lin, Cheng, Lyu, Zhang, Zhao, Xu, Lin, Zhao (b2) 2023; 157
Asp, Bergenstråhle, Lundeberg (b13) 2020; 42
Gerlinger, Rowan, Horswell, Larkin, Endesfelder, Gronroos, Martinez, Matthews, Stewart, Tarpey (b71) 2012; 366
Pham, Tan, Xu, Grice, Lam, Raghubar, Vukovic, Ruitenberg, Nguyen (b40) 2020
Zhang, Zhang, Wu (b12) 2022; 50
Zhuang (b26) 2021; 18
Li, Chen, Pan, Yuan, Shen (b42) 2021
Fu, Xu, Chong, Li, Ang, Lee, Ling, Chen, Shao, Liu (b43) 2021
Hu, Feng, Lin, Zhao, Zhang, Xu, Chen, Chen, Ma, Su (b3) 2023; 24
Xu, Xu, Meng, Lu, Cai, Zeng, Nussinov, Cheng (b1) 2023; 3
Hu (10.1016/j.compbiomed.2023.107440_b41) 2021; 18
Cheng (10.1016/j.compbiomed.2023.107440_b19) 2023; 24
Zhao (10.1016/j.compbiomed.2023.107440_b59) 2021
Eng (10.1016/j.compbiomed.2023.107440_b30) 2019; 568
Zhang (10.1016/j.compbiomed.2023.107440_b5) 2022; 38
Liao (10.1016/j.compbiomed.2023.107440_b6) 2021; 39
Rousseeuw (10.1016/j.compbiomed.2023.107440_b65) 1987; 20
Long (10.1016/j.compbiomed.2023.107440_b45) 2023; 14
Sun (10.1016/j.compbiomed.2023.107440_b21) 2022; 23
Zhang (10.1016/j.compbiomed.2023.107440_b23) 2023
Chen (10.1016/j.compbiomed.2023.107440_b7) 2023; 24
Fu (10.1016/j.compbiomed.2023.107440_b43) 2021
Waylen (10.1016/j.compbiomed.2023.107440_b10) 2020; 3
Pei (10.1016/j.compbiomed.2023.107440_b55) 2020; 33
Hu (10.1016/j.compbiomed.2023.107440_b2) 2023; 157
Zhuang (10.1016/j.compbiomed.2023.107440_b26) 2021; 18
Chen (10.1016/j.compbiomed.2023.107440_b32) 2015; 348
He (10.1016/j.compbiomed.2023.107440_b67) 2022; 233
Crosetto (10.1016/j.compbiomed.2023.107440_b14) 2015; 16
Zhang (10.1016/j.compbiomed.2023.107440_b12) 2022; 50
Liu (10.1016/j.compbiomed.2023.107440_b25) 2022; 12
Hu (10.1016/j.compbiomed.2023.107440_b36) 2020
Lubeck (10.1016/j.compbiomed.2023.107440_b28) 2014; 11
Xu (10.1016/j.compbiomed.2023.107440_b1) 2023; 3
He (10.1016/j.compbiomed.2023.107440_b50) 2015
Peng (10.1016/j.compbiomed.2023.107440_b22) 2023
Moor (10.1016/j.compbiomed.2023.107440_b15) 2017; 46
Peng (10.1016/j.compbiomed.2023.107440_b24) 2023; 163
Petrovic (10.1016/j.compbiomed.2023.107440_b66) 2006
Nie (10.1016/j.compbiomed.2023.107440_b60) 2009; 42
Li (10.1016/j.compbiomed.2023.107440_b42) 2021
Dong (10.1016/j.compbiomed.2023.107440_b44) 2022; 13
Risso (10.1016/j.compbiomed.2023.107440_b54) 2018; 9
Yamazaki (10.1016/j.compbiomed.2023.107440_b8) 2020; 10
Rodriques (10.1016/j.compbiomed.2023.107440_b33) 2019; 363
Velickovic (10.1016/j.compbiomed.2023.107440_b49) 2019; 2
Gerlinger (10.1016/j.compbiomed.2023.107440_b71) 2012; 366
Shah (10.1016/j.compbiomed.2023.107440_b29) 2016; 92
Peng (10.1016/j.compbiomed.2023.107440_b20) 2022; 23
Hinton (10.1016/j.compbiomed.2023.107440_b51) 2006; 313
Liu (10.1016/j.compbiomed.2023.107440_b70) 2010
Vickovic (10.1016/j.compbiomed.2023.107440_b35) 2019; 16
Pham (10.1016/j.compbiomed.2023.107440_b40) 2020
Ben-Chetrit (10.1016/j.compbiomed.2023.107440_b18) 2023
Butler (10.1016/j.compbiomed.2023.107440_b39) 2018; 36
Hu (10.1016/j.compbiomed.2023.107440_b4) 2021; 19
Wolf (10.1016/j.compbiomed.2023.107440_b64) 2018; 19
Rendón (10.1016/j.compbiomed.2023.107440_b69) 2011; 5
Zeng (10.1016/j.compbiomed.2023.107440_b38) 2022; 23
Xie (10.1016/j.compbiomed.2023.107440_b62) 2011; 32
Stickels (10.1016/j.compbiomed.2023.107440_b34) 2021; 39
Jovic (10.1016/j.compbiomed.2023.107440_b9) 2022; 12
Lubeck (10.1016/j.compbiomed.2023.107440_b37) 2012; 9
Halkidi (10.1016/j.compbiomed.2023.107440_b68) 2001
Lee (10.1016/j.compbiomed.2023.107440_b53) 2021; 25
Burgess (10.1016/j.compbiomed.2023.107440_b11) 2019; 20
Zass (10.1016/j.compbiomed.2023.107440_b57) 2006; 19
Wang (10.1016/j.compbiomed.2023.107440_b16) 2023; 153
Svensson (10.1016/j.compbiomed.2023.107440_b61) 2018; 15
Asp (10.1016/j.compbiomed.2023.107440_b13) 2020; 42
Das (10.1016/j.compbiomed.2023.107440_b63) 2021; 12
Moffitt (10.1016/j.compbiomed.2023.107440_b31) 2018; 362
Li (10.1016/j.compbiomed.2023.107440_b47) 2022; 2
Vincent (10.1016/j.compbiomed.2023.107440_b52) 2008
Wang (10.1016/j.compbiomed.2023.107440_b58) 2016
Williams (10.1016/j.compbiomed.2023.107440_b17) 2022; 14
Larsson (10.1016/j.compbiomed.2023.107440_b27) 2021; 18
Luo (10.1016/j.compbiomed.2023.107440_b56) 2012; 25
Sanchez-Lengeling (10.1016/j.compbiomed.2023.107440_b48) 2021; 6
Hu (10.1016/j.compbiomed.2023.107440_b3) 2023; 24
Zeng (10.1016/j.compbiomed.2023.107440_b46) 2023; 24
References_xml – volume: 39
  start-page: 313
  year: 2021
  end-page: 319
  ident: b34
  article-title: Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2
  publication-title: Nature Biotechnol.
– volume: 12
  start-page: 1947
  year: 2021
  ident: b63
  article-title: A comprehensive survey of statistical approaches for differential expression analysis in single-cell RNA sequencing studies
  publication-title: Genes
– start-page: 53
  year: 2006
  end-page: 64
  ident: b66
  article-title: A comparison between the silhouette index and the davies-bouldin index in labelling ids clusters
  publication-title: Proceedings of the 11th Nordic Workshop of Secure IT Systems, Vol. 2006
– volume: 2
  start-page: 4
  year: 2019
  ident: b49
  article-title: Deep graph infomax
  publication-title: ICLR (Poster)
– volume: 16
  start-page: 987
  year: 2019
  end-page: 990
  ident: b35
  article-title: High-definition spatial transcriptomics for in situ tissue profiling
  publication-title: Nat. Methods
– year: 2020
  ident: b40
  article-title: stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues
  publication-title: BioRxiv
– year: 2021
  ident: b42
  article-title: CCST: Cell clustering for spatial transcriptomics data with graph neural network
– volume: 568
  start-page: 235
  year: 2019
  end-page: 239
  ident: b30
  article-title: Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+
  publication-title: Nature
– volume: 20
  start-page: 317
  year: 2019
  ident: b11
  article-title: Spatial transcriptomics coming of age
  publication-title: Nature Rev. Genet.
– volume: 25
  start-page: 2983
  year: 2021
  end-page: 2987
  ident: b53
  article-title: Noise learning-based denoising autoencoder
  publication-title: IEEE Commun. Lett.
– start-page: 1
  year: 2023
  end-page: 6
  ident: b18
  article-title: Integration of whole transcriptome spatial profiling with protein markers
  publication-title: Nature Biotechnol.
– volume: 38
  start-page: 4497
  year: 2022
  end-page: 4504
  ident: b5
  article-title: CLNN-loop: a deep learning model to predict CTCF-mediated chromatin loops in the different cell lines and CTCF-binding sites (CBS) pair types
  publication-title: Bioinformatics
– volume: 16
  start-page: 57
  year: 2015
  end-page: 66
  ident: b14
  article-title: Spatially resolved transcriptomics and beyond
  publication-title: Nature Rev. Genet.
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: b50
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 14
  start-page: 1
  year: 2022
  end-page: 18
  ident: b17
  article-title: An introduction to spatial transcriptomics for biomedical research
  publication-title: Genome Med.
– volume: 9
  start-page: 743
  year: 2012
  end-page: 748
  ident: b37
  article-title: Single-cell systems biology by super-resolution imaging and combinatorial labeling
  publication-title: Nat. Methods
– volume: 18
  start-page: 1342
  year: 2021
  end-page: 1351
  ident: b41
  article-title: SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
  publication-title: Nat. Methods
– volume: 15
  start-page: 343
  year: 2018
  end-page: 346
  ident: b61
  article-title: SpatialDE: identification of spatially variable genes
  publication-title: Nat. Methods
– volume: 233
  year: 2022
  ident: b67
  article-title: Data-based analysis about the influence on erosion rates of the Tibetan Plateau
  publication-title: J. Asian Earth Sci.
– volume: 362
  start-page: eaau5324
  year: 2018
  ident: b31
  article-title: Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region
  publication-title: Science
– volume: 157
  year: 2023
  ident: b2
  article-title: Gene function and cell surface protein association analysis based on single-cell multiomics data
  publication-title: Comput. Biol. Med.
– volume: 6
  year: 2021
  ident: b48
  article-title: A gentle introduction to graph neural networks
  publication-title: Distill
– start-page: 2679
  year: 2021
  end-page: 2687
  ident: b59
  article-title: K-sums clustering: A stochastic optimization approach
  publication-title: Proceedings of the 30th ACM International Conference on Information & Knowledge Management
– volume: 2
  start-page: 399
  year: 2022
  end-page: 408
  ident: b47
  article-title: Cell clustering for spatial transcriptomics data with graph neural networks
  publication-title: Nat. Comput. Sci.
– volume: 92
  start-page: 342
  year: 2016
  end-page: 357
  ident: b29
  article-title: In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus
  publication-title: Neuron
– volume: 9
  start-page: 284
  year: 2018
  ident: b54
  article-title: A general and flexible method for signal extraction from single-cell RNA-seq data
  publication-title: Nat. Commun.
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: b52
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– volume: 24
  start-page: bbac475
  year: 2023
  ident: b19
  article-title: Benchmarking cell-type clustering methods for spatially resolved transcriptomics data
  publication-title: Brief. Bioinform.
– year: 2021
  ident: b43
  article-title: Unsupervised spatially embedded deep representation of spatial transcriptomics
  publication-title: Biorxiv
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: b65
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
– start-page: 187
  year: 2001
  end-page: 194
  ident: b68
  article-title: Clustering validity assessment: Finding the optimal partitioning of a data set
  publication-title: Proceedings 2001 IEEE International Conference on Data Mining
– volume: 366
  start-page: 883
  year: 2012
  end-page: 892
  ident: b71
  article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
  publication-title: N. Engl. J. Med.
– year: 2023
  ident: b23
  article-title: IChrom-Deep: An attention-based deep learning model for identifying chromatin interactions
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 14
  start-page: 1155
  year: 2023
  ident: b45
  article-title: Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST
  publication-title: Nature Commun.
– volume: 24
  start-page: bbad005
  year: 2023
  ident: b3
  article-title: Modeling and analyzing single-cell multimodal data with deep parametric inference
  publication-title: Brief. Bioinform.
– volume: 46
  start-page: 126
  year: 2017
  end-page: 133
  ident: b15
  article-title: Spatial transcriptomics: paving the way for tissue-level systems biology
  publication-title: Curr. Opin. Biotechnol.
– volume: 23
  start-page: bbac234
  year: 2022
  ident: b20
  article-title: Cell-cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies
  publication-title: Brief. Bioinform.
– volume: 24
  start-page: bbad048
  year: 2023
  ident: b46
  article-title: Identifying spatial domain by adapting transcriptomics with histology through contrastive learning
  publication-title: Brief. Bioinform.
– volume: 42
  start-page: 2615
  year: 2009
  end-page: 2627
  ident: b60
  article-title: Semi-supervised orthogonal discriminant analysis via label propagation
  publication-title: Pattern Recognit.
– volume: 23
  start-page: bbac266
  year: 2022
  ident: b21
  article-title: A deep learning method for predicting metabolite-disease associations via graph neural network
  publication-title: Brief. Bioinform.
– volume: 163
  year: 2023
  ident: b24
  article-title: Deciphering ligand-receptor-mediated intercellular communication based on ensemble deep learning and the joint scoring strategy from single-cell transcriptomic data
  publication-title: Comput. Biol. Med.
– volume: 36
  start-page: 411
  year: 2018
  end-page: 420
  ident: b39
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nature Biotechnol.
– volume: 18
  start-page: 18
  year: 2021
  end-page: 22
  ident: b26
  article-title: Spatially resolved single-cell genomics and transcriptomics by imaging
  publication-title: Nat. Methods
– volume: 363
  start-page: 1463
  year: 2019
  end-page: 1467
  ident: b33
  article-title: Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution
  publication-title: Science
– year: 2020
  ident: b36
  article-title: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
  publication-title: bioRxiv
– volume: 11
  start-page: 360
  year: 2014
  end-page: 361
  ident: b28
  article-title: Single-cell in situ RNA profiling by sequential hybridization
  publication-title: Nat. Methods
– volume: 12
  year: 2022
  ident: b25
  article-title: Clinical challenges of tissue preparation for spatial transcriptome
  publication-title: Clin. Transl. Med.
– volume: 42
  year: 2020
  ident: b13
  article-title: Spatially resolved transcriptomes-next generation tools for tissue exploration
  publication-title: BioEssays
– volume: 19
  year: 2006
  ident: b57
  article-title: Doubly stochastic normalization for spectral clustering
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 153
  year: 2023
  ident: b16
  article-title: Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism
  publication-title: Comput. Biol. Med.
– volume: 23
  start-page: 1
  year: 2022
  end-page: 23
  ident: b38
  article-title: Statistical and machine learning methods for spatially resolved transcriptomics data analysis
  publication-title: Genome Biol.
– volume: 348
  start-page: aaa6090
  year: 2015
  ident: b32
  article-title: Spatially resolved, highly multiplexed RNA profiling in single cells
  publication-title: Science
– volume: 33
  start-page: 14855
  year: 2020
  end-page: 14866
  ident: b55
  article-title: Efficient clustering based on a unified view of
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 25
  year: 2012
  ident: b56
  article-title: Forging the graphs: A low rank and positive semidefinite graph learning approach
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 12
  year: 2022
  ident: b9
  article-title: Single-cell RNA sequencing technologies and applications: A brief overview
  publication-title: Clin. Transl. Med.
– volume: 3
  start-page: 1
  year: 2020
  end-page: 11
  ident: b10
  article-title: From whole-mount to single-cell spatial assessment of gene expression in 3D
  publication-title: Commun. Biol.
– start-page: 911
  year: 2010
  end-page: 916
  ident: b70
  article-title: Understanding of internal clustering validation measures
  publication-title: 2010 IEEE International Conference on Data Mining
– volume: 19
  start-page: 3829
  year: 2021
  end-page: 3841
  ident: b4
  article-title: Statistical and machine learning methods for spatially resolved transcriptomics with histology
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 13
  start-page: 1
  year: 2022
  end-page: 12
  ident: b44
  article-title: Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 8
  ident: b8
  article-title: Effective microtissue RNA extraction coupled with Smart-seq2 for reproducible and robust spatial transcriptome analysis
  publication-title: Sci. Rep.
– volume: 39
  start-page: 43
  year: 2021
  end-page: 58
  ident: b6
  article-title: Uncovering an organ’s molecular architecture at single-cell resolution by spatially resolved transcriptomics
  publication-title: Trends Biotechnol.
– volume: 19
  start-page: 1
  year: 2018
  end-page: 5
  ident: b64
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b51
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 32
  start-page: 170
  year: 2011
  end-page: 182
  ident: b62
  article-title: Analysis of differentially expressed genes in LNCaP prostate cancer progression model
  publication-title: J. Androl.
– volume: 24
  start-page: bbac615
  year: 2023
  ident: b7
  article-title: Computational model for disease research
  publication-title: Brief. Bioinform.
– start-page: 1245
  year: 2016
  end-page: 1254
  ident: b58
  article-title: Structured doubly stochastic matrix for graph based clustering: Structured doubly stochastic matrix
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 3
  year: 2023
  ident: b1
  article-title: Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data
  publication-title: Cell Rep. Methods
– year: 2023
  ident: b22
  article-title: CellEnBoost: A boosting-based ligand-receptor interaction identification model for cell-to-cell communication inference
  publication-title: IEEE Trans. NanoBiosci.
– volume: 50
  start-page: 10278
  year: 2022
  end-page: 10289
  ident: b12
  article-title: iPro-WAEL: a comprehensive and robust framework for identifying promoters in multiple species
  publication-title: Nucleic Acids Res.
– volume: 18
  start-page: 15
  year: 2021
  end-page: 18
  ident: b27
  article-title: Spatially resolved transcriptomics adds a new dimension to genomics
  publication-title: Nat. Methods
– volume: 5
  start-page: 27
  year: 2011
  end-page: 34
  ident: b69
  article-title: Internal versus external cluster validation indexes
  publication-title: Int. J. Comput. Commun.
– start-page: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107440_b18
  article-title: Integration of whole transcriptome spatial profiling with protein markers
  publication-title: Nature Biotechnol.
– volume: 157
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107440_b2
  article-title: Gene function and cell surface protein association analysis based on single-cell multiomics data
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106733
– volume: 11
  start-page: 360
  issue: 4
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107440_b28
  article-title: Single-cell in situ RNA profiling by sequential hybridization
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2892
– volume: 33
  start-page: 14855
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107440_b55
  article-title: Efficient clustering based on a unified view of k-means and ratio-cut
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 153
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107440_b16
  article-title: Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106464
– volume: 23
  start-page: bbac234
  issue: 4
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107440_b20
  article-title: Cell-cell communication inference and analysis in the tumour microenvironments from single-cell transcriptomics: data resources and computational strategies
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac234
– volume: 3
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107440_b10
  article-title: From whole-mount to single-cell spatial assessment of gene expression in 3D
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-01341-1
– year: 2021
  ident: 10.1016/j.compbiomed.2023.107440_b42
– volume: 24
  start-page: bbac615
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107440_b7
  article-title: Computational model for disease research
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac615
– year: 2021
  ident: 10.1016/j.compbiomed.2023.107440_b43
  article-title: Unsupervised spatially embedded deep representation of spatial transcriptomics
  publication-title: Biorxiv
– volume: 163
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107440_b24
  article-title: Deciphering ligand-receptor-mediated intercellular communication based on ensemble deep learning and the joint scoring strategy from single-cell transcriptomic data
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.107137
– volume: 14
  start-page: 1155
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107440_b45
  article-title: Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST
  publication-title: Nature Commun.
  doi: 10.1038/s41467-023-36796-3
– volume: 18
  start-page: 1342
  issue: 11
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107440_b41
  article-title: SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01255-8
– volume: 24
  start-page: bbad005
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107440_b3
  article-title: Modeling and analyzing single-cell multimodal data with deep parametric inference
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbad005
– volume: 2
  start-page: 4
  issue: 3
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107440_b49
  article-title: Deep graph infomax
  publication-title: ICLR (Poster)
– volume: 19
  start-page: 3829
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107440_b4
  article-title: Statistical and machine learning methods for spatially resolved transcriptomics with histology
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2021.06.052
– volume: 18
  start-page: 18
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107440_b26
  article-title: Spatially resolved single-cell genomics and transcriptomics by imaging
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01037-8
– volume: 5
  start-page: 27
  issue: 1
  year: 2011
  ident: 10.1016/j.compbiomed.2023.107440_b69
  article-title: Internal versus external cluster validation indexes
  publication-title: Int. J. Comput. Commun.
– volume: 366
  start-page: 883
  year: 2012
  ident: 10.1016/j.compbiomed.2023.107440_b71
  article-title: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1113205
– volume: 9
  start-page: 743
  issue: 7
  year: 2012
  ident: 10.1016/j.compbiomed.2023.107440_b37
  article-title: Single-cell systems biology by super-resolution imaging and combinatorial labeling
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2069
– volume: 2
  start-page: 399
  issue: 6
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107440_b47
  article-title: Cell clustering for spatial transcriptomics data with graph neural networks
  publication-title: Nat. Comput. Sci.
  doi: 10.1038/s43588-022-00266-5
– volume: 92
  start-page: 342
  issue: 2
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107440_b29
  article-title: In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.10.001
– volume: 39
  start-page: 313
  issue: 3
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107440_b34
  article-title: Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2
  publication-title: Nature Biotechnol.
  doi: 10.1038/s41587-020-0739-1
– volume: 19
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107440_b64
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1382-0
– volume: 362
  start-page: eaau5324
  issue: 6416
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107440_b31
  article-title: Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region
  publication-title: Science
  doi: 10.1126/science.aau5324
– volume: 6
  issue: 9
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107440_b48
  article-title: A gentle introduction to graph neural networks
  publication-title: Distill
– volume: 46
  start-page: 126
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107440_b15
  article-title: Spatial transcriptomics: paving the way for tissue-level systems biology
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.02.004
– start-page: 911
  year: 2010
  ident: 10.1016/j.compbiomed.2023.107440_b70
  article-title: Understanding of internal clustering validation measures
– volume: 32
  start-page: 170
  issue: 2
  year: 2011
  ident: 10.1016/j.compbiomed.2023.107440_b62
  article-title: Analysis of differentially expressed genes in LNCaP prostate cancer progression model
  publication-title: J. Androl.
  doi: 10.2164/jandrol.109.008748
– volume: 16
  start-page: 987
  issue: 10
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107440_b35
  article-title: High-definition spatial transcriptomics for in situ tissue profiling
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0548-y
– year: 2023
  ident: 10.1016/j.compbiomed.2023.107440_b22
  article-title: CellEnBoost: A boosting-based ligand-receptor interaction identification model for cell-to-cell communication inference
  publication-title: IEEE Trans. NanoBiosci.
  doi: 10.1109/TNB.2023.3278685
– volume: 18
  start-page: 15
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107440_b27
  article-title: Spatially resolved transcriptomics adds a new dimension to genomics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01038-7
– volume: 36
  start-page: 411
  issue: 5
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107440_b39
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt.4096
– volume: 9
  start-page: 284
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107440_b54
  article-title: A general and flexible method for signal extraction from single-cell RNA-seq data
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02554-5
– volume: 23
  start-page: bbac266
  issue: 4
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107440_b21
  article-title: A deep learning method for predicting metabolite-disease associations via graph neural network
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac266
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107440_b8
  article-title: Effective microtissue RNA extraction coupled with Smart-seq2 for reproducible and robust spatial transcriptome analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-63495-6
– volume: 24
  start-page: bbac475
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107440_b19
  article-title: Benchmarking cell-type clustering methods for spatially resolved transcriptomics data
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbac475
– start-page: 1096
  year: 2008
  ident: 10.1016/j.compbiomed.2023.107440_b52
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 39
  start-page: 43
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107440_b6
  article-title: Uncovering an organ’s molecular architecture at single-cell resolution by spatially resolved transcriptomics
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2020.05.006
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.compbiomed.2023.107440_b65
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– start-page: 1245
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107440_b58
  article-title: Structured doubly stochastic matrix for graph based clustering: Structured doubly stochastic matrix
– volume: 42
  start-page: 2615
  issue: 11
  year: 2009
  ident: 10.1016/j.compbiomed.2023.107440_b60
  article-title: Semi-supervised orthogonal discriminant analysis via label propagation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.04.001
– volume: 23
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107440_b38
  article-title: Statistical and machine learning methods for spatially resolved transcriptomics data analysis
  publication-title: Genome Biol.
  doi: 10.1186/s13059-022-02653-7
– volume: 38
  start-page: 4497
  issue: 19
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107440_b5
  article-title: CLNN-loop: a deep learning model to predict CTCF-mediated chromatin loops in the different cell lines and CTCF-binding sites (CBS) pair types
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac575
– year: 2023
  ident: 10.1016/j.compbiomed.2023.107440_b23
  article-title: IChrom-Deep: An attention-based deep learning model for identifying chromatin interactions
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2023.3292299
– volume: 568
  start-page: 235
  issue: 7751
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107440_b30
  article-title: Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+
  publication-title: Nature
  doi: 10.1038/s41586-019-1049-y
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.compbiomed.2023.107440_b51
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 3
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107440_b1
  article-title: Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data
  publication-title: Cell Rep. Methods
– volume: 14
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107440_b17
  article-title: An introduction to spatial transcriptomics for biomedical research
  publication-title: Genome Med.
  doi: 10.1186/s13073-022-01075-1
– volume: 13
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107440_b44
  article-title: Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder
  publication-title: Nat. Commun.
– volume: 50
  start-page: 10278
  issue: 18
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107440_b12
  article-title: iPro-WAEL: a comprehensive and robust framework for identifying promoters in multiple species
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac824
– volume: 12
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107440_b25
  article-title: Clinical challenges of tissue preparation for spatial transcriptome
  publication-title: Clin. Transl. Med.
  doi: 10.1002/ctm2.669
– start-page: 187
  year: 2001
  ident: 10.1016/j.compbiomed.2023.107440_b68
  article-title: Clustering validity assessment: Finding the optimal partitioning of a data set
– volume: 20
  start-page: 317
  issue: 6
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107440_b11
  article-title: Spatial transcriptomics coming of age
  publication-title: Nature Rev. Genet.
  doi: 10.1038/s41576-019-0129-z
– volume: 16
  start-page: 57
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107440_b14
  article-title: Spatially resolved transcriptomics and beyond
  publication-title: Nature Rev. Genet.
  doi: 10.1038/nrg3832
– volume: 233
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107440_b67
  article-title: Data-based analysis about the influence on erosion rates of the Tibetan Plateau
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2022.105246
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107440_b36
  article-title: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
  publication-title: bioRxiv
– start-page: 53
  year: 2006
  ident: 10.1016/j.compbiomed.2023.107440_b66
  article-title: A comparison between the silhouette index and the davies-bouldin index in labelling ids clusters
– volume: 42
  issue: 10
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107440_b13
  article-title: Spatially resolved transcriptomes-next generation tools for tissue exploration
  publication-title: BioEssays
  doi: 10.1002/bies.201900221
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107440_b40
  article-title: stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues
  publication-title: BioRxiv
– volume: 19
  year: 2006
  ident: 10.1016/j.compbiomed.2023.107440_b57
  article-title: Doubly stochastic normalization for spectral clustering
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 2679
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107440_b59
  article-title: K-sums clustering: A stochastic optimization approach
– volume: 15
  start-page: 343
  issue: 5
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107440_b61
  article-title: SpatialDE: identification of spatially variable genes
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4636
– volume: 12
  issue: 3
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107440_b9
  article-title: Single-cell RNA sequencing technologies and applications: A brief overview
  publication-title: Clin. Transl. Med.
  doi: 10.1002/ctm2.694
– start-page: 1026
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107440_b50
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
– volume: 25
  start-page: 2983
  issue: 9
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107440_b53
  article-title: Noise learning-based denoising autoencoder
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2021.3091800
– volume: 348
  start-page: aaa6090
  issue: 6233
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107440_b32
  article-title: Spatially resolved, highly multiplexed RNA profiling in single cells
  publication-title: Science
  doi: 10.1126/science.aaa6090
– volume: 363
  start-page: 1463
  issue: 6434
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107440_b33
  article-title: Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 12
  start-page: 1947
  issue: 12
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107440_b63
  article-title: A comprehensive survey of statistical approaches for differential expression analysis in single-cell RNA sequencing studies
  publication-title: Genes
  doi: 10.3390/genes12121947
– volume: 24
  start-page: bbad048
  issue: 2
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107440_b46
  article-title: Identifying spatial domain by adapting transcriptomics with histology through contrastive learning
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbad048
– volume: 25
  year: 2012
  ident: 10.1016/j.compbiomed.2023.107440_b56
  article-title: Forging the graphs: A low rank and positive semidefinite graph learning approach
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0004030
Score 2.4842505
Snippet Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles. Integrating these...
AbstractBackground:Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional...
Background:Spatial transcriptomics technologies fully utilize spatial location information, tissue morphological features, and transcriptional profiles....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107440
SubjectTerms Algorithms
Artificial neural networks
Breast cancer
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Carcinoma
Cluster Analysis
Clustering
Coders
Data analysis
Data processing
Datasets
Deep graph infomax
Dimension reduction
Embedding
Gene Expression Profiling - methods
Genes
Genetic diversity
Graph neural network
Graph neural networks
Humans
Indicators
Information processing
Internal Medicine
k-sums clustering
Kidneys
Labels
Lymph nodes
Machine learning
Morphology
Neural networks
Neural Networks, Computer
Noise reduction
Other
Performance evaluation
Spacetime
Spatial data
Spatial transcriptome
Transcriptome - genetics
Transcriptomics
Vector quantization
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL4s2WgozEsS5xnDgxHBBCbCuk7qWL1Jvl2I7Uh5JSZ38G_7kzsZO9FLTXxONEnvHMePzNDCGfLHZ6a3nOuLUVK-pGMtMWjvFGuUyIRjZj57nTlTz5Xfw6L89TwC0kWOWkE0dF7XqLMfLP2BU3V7Iuym83fxh2jcLb1dRC4yF5xHOQJMwUXx5v8yIzEVNQQNcUcBRKSJ6I70LIdkxxP8IW4keITMQQyP3m6V_u52iGls_I0-Q_0u-R4c_JA9-9II9P0w35S_L3bH28Wl2FLzSm4I5pTBTD8xSjrYFedDQgihomGdBOjVoDU5MDRbQoRbPmaN_RsZQ1xXqXMLSLaPFDCpP2FxhfoGYz9AzLYDp_e0hN5-gVZbBQgdrrDZZfgEGvyHr5c_3jhKWWC8yC5zQw0F9YYMxWruSNb2G_SyG4V07JtqiMKAQcdzwwXhkvjUDX3OSNBDfFtrL04jXZ6_rOvyVUVob7xriqUqoQvlVt1QgDD2tftJnlC1JNC61tKkeOXTGu9YQ7u9RbFmlkkY4sWhA-U97Ekhw70KiJl3pKOQUlqcFu7EBb3UfrQ9rtQXMdcp3ps7HYEcgZHOsylZX1gnydKZNDEx2VHb97MAmdnj-13QYL8nF-DSoBBcl0vt_gGCwqB0Ngkd9EYZ0XClgm6lrV-_-f_B15gn8Sky4PyN5wu_Hvwfsamg_jFrsDaucvRA
  priority: 102
  providerName: ProQuest
Title STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523009058
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523009058
https://dx.doi.org/10.1016/j.compbiomed.2023.107440
https://www.ncbi.nlm.nih.gov/pubmed/37738898
https://www.proquest.com/docview/2883296845
https://www.proquest.com/docview/2868128451
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250803
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBelg7GXsf_L1hUN9lindiRL1vbUlabZRs3YMsibkGwZ0ha71M7rPkE_dO8s2WWsg8BebOzc2UZ3ujspv7sj5EOBnd6qZBYlRSEjnlkRmYqXUWJVGTNmhe07z53lYvGLf12lqx1yPOTCIKwy2H5v03trHe4chtE8vFqvMccXlhKwwIEgOlZxigm_WP0LdHr6-w7mwWPm01DA3iB1QPN4jBfCtn2a-xTbiE8RnYjbIPe7qH-FoL0rmj8hj0MMSY_8Zz4lO65-Rh6ehX_Jn5Obn8vTPL9oP1KfhtunMlHcoqe449rSdU1bRFLDQzr0Vb3lwPTkliJilKJrK2lT076cNcWal0Bae8T4AYWHNmvcY6Bm0zURlsIs3fUBNXVJLyJQ7ZYWlxuswAA0L8hyfrI8XkSh60JUQPDURWDCsMZYIcs0sa6CKS8YS5wqlai4NIwzWPE4kL0yThiG0bmZWQGRSlGJ1LGXZLduaveaUCFN4qwppVSKM1epSlpm4GbmeBUXyYTIYZx1ESqSY2OMSz1Az871nYQ0Skh7CU1IMnJe-aocW_CoQZR6yDoFO6nBdWzBK-_jdW2Y8K1OdDvTsf5LKSfk08j5h15v-d69Qef0-CrsDz1TIuPphLwffwargHpkatdskAbrygEJDPIrr6vjQIHIWJap7M1_fdpb8givfFrmHtntrjfuHcRnnd3vJyAc5UrCMZuf7pMHR1--LXI4fz7Jv_-4BSDMPyA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkYAL4p8tBYwEt7pNYseOQQghoGxpdy9dpL1ZjuNIpVXSNlkhHoJH4R2ZiZPdS0F76TXx2IlnPDO2Z74h5LXDSm9lnLDYOcVElktmS1GwONdFxHku867y3GQqx9_Ft3k63yB_hlwYDKscdGKnqIva4Rn5HlbFTbTMRPrh_IJh1Si8XR1KaASxOPS_fsKWrXl_8Bn4-yZJ9r_MPo1ZX1WAOXAOWgZLFDG0nCrSOPcliLTkPPa60LIUynLBwaP38G_aemk5ep82ySVYYlfK1HPo9ga5KXgkEKpfzdUqDTPiIeMFVJuAnVcfOBTCyTBCPGTU72LF8l0MhMQTl6ut4b-83c7q7d8jd3t3lX4M8nWfbPjqAbk16S_kH5Lfx7Ov0-lp85aGjN8ua4ribQDFw92GnlS0waBt6KRFs9gpKcyEbigGp1K0ogWtK9ohZ1OE14SmVQhO36HQaX2CxxnULtqaIepm4S93qK0KekoZ8KWh7myBaA_Q6BGZXQcvHpPNqq78U0KlsrHPbaGU1oL7Upcq5xYeZl6UkYtHRA0TbVyPfo5FOM7MEOb2w6xYZJBFJrBoROIl5XlAAFmDRg-8NEOGK-hkA2ZqDVp1Fa1veuXSmNg0iYnMcYetBHIGu8hIR2k2Iu-WlL3_FPyiNcfdHoTOLIdarboRebV8DRoIBclWvl5gG8SwgyYwyU-CsC4nCljGs0xnW__v_CW5PZ5NjszRwfTwGbmDXxXyPbfJZnu58M_B8WvzF91yo8Rc8_L-Cxx0aoY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkSouiPLXLQWMBLe6TeLEjkEVQpSlpXSF1EXam-U4jlRaJW2TFeIheKC-XWfiJHspaC-9Zj1O1vNr-5sZQt5a7PRWhBELrZUsTjPBTBHnLMxUHnCeiaztPHc8EQc_42-zZLZCrvtcGIRV9jaxNdR5ZfGMfBe74kZKpHGyW3SwiB_7448Xlww7SOFNa99Ow4vIkfvzG7Zv9d7hPvD6XRSNv0w_H7CuwwCzECg0DNQV62lZmSdh5goQb8F56FSuRBFLw2MO0b2D_6mME4ZjJGqiTIBXtoVIHIdp75H7EsYhmkzO5CIlM-A--wXMXAy7sA5E5KFliBb32fU72L18B0GRePpyu2f8V-TbesDxI_KwC13pJy9r62TFlY_J2nF3Of-E_D2Zfp1Mzur31Gf_thlUFG8GKB701vS0pDUCuGGSBl1ka7AwK7qmCFSl6FFzWpW0raJNsdQmDC09UH2bwqTVKR5tUDNvKoYVOHN3tU1NmdMzyoAvNbXnc6z8AIOekuld8OIZWS2r0m0QKqQJXWZyKZWKuStUITNu4GHq4iKw4YjIfqG17SqhY0OOc91D3n7pBYs0skh7Fo1IOFBe-GogS9Conpe6z3YF-6zBZS1BK2-jdXVnaGod6jrSgT5p6yyBnMGOMlBBko7Ih4Gyi6V8jLTke7d6odPDqxYaOCJvhp_BGqEgmdJVcxyD9exgCCzycy-sw0IBy3iaqnTz_5O_Jmug2Pr74eToBXmAH-VTP7fIanM1dy8hBmyyV622UaLvWLtvACB8bsE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=STGNNks%3A+Identifying+cell+types+in+spatial+transcriptomics+data+based+on+graph+neural+network%2C+denoising+auto-encoder%2C+and+k-sums+clustering&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Peng%2C+Lihong&rft.au=He%2C+Xianzhi&rft.au=Peng%2C+Xinhuai&rft.au=Li%2C+Zejun&rft.date=2023-11-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=166&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107440&rft.externalDocID=S0010482523009058
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482523X00134%2Fcov150h.gif