Chromoselective Photocatalysis: Controlled Bond Activation through Light-Color Regulation of Redox Potentials
Catalysts that can be regulated in terms of activity and selectivity by external stimuli may allow the efficient multistep synthesis of complex molecules and pharmaceuticals. Herein, we report the light‐color regulation of the redox potential of a photocatalyst to control the activation of chemical...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 55; no. 27; pp. 7676 - 7679 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
WEINHEIM
Blackwell Publishing Ltd
27.06.2016
Wiley Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 |
DOI | 10.1002/anie.201602349 |
Cover
Abstract | Catalysts that can be regulated in terms of activity and selectivity by external stimuli may allow the efficient multistep synthesis of complex molecules and pharmaceuticals. Herein, we report the light‐color regulation of the redox potential of a photocatalyst to control the activation of chemical bonds. Light‐color control of the redox power of a photocatalyst introduces a new selectivity parameter to photoredox catalysis: Instead of changing the catalyst or ligand, alteration of the color of the visible‐light irradiation adjusts the selectivity in catalytic transformations. By using this principle, the selective activation of aryl–halide bonds for C−H arylation and the sequential conversion of functional groups with different reduction potentials is possible by simply applying different colors of light for excitation of the photocatalyst.
I see your two colors, shining through: The xanthene dye rhodamine 6G is a moderately reducing photoredox catalyst if irradiated with green light, but provides an high reduction power of −2.4 V vs. SCE upon blue‐light irradiation. This allows control of the selectivity of photocatalytic C−H arylation reactions through changing the color of the light. |
---|---|
AbstractList | Catalysts that can be regulated in terms of activity and selectivity by external stimuli may allow the efficient multistep synthesis of complex molecules and pharmaceuticals. Herein, we report the light-color regulation of the redox potential of a photocatalyst to control the activation of chemical bonds. Light-color control of the redox power of a photocatalyst introduces a new selectivity parameter to photoredox catalysis: Instead of changing the catalyst or ligand, alteration of the color of the visible-light irradiation adjusts the selectivity in catalytic transformations. By using this principle, the selective activation of aryl-halide bonds for C-H arylation and the sequential conversion of functional groups with different reduction potentials is possible by simply applying different colors of light for excitation of the photocatalyst. Catalysts that can be regulated in terms of activity and selectivity by external stimuli may allow the efficient multistep synthesis of complex molecules and pharmaceuticals. Herein, we report the light‐color regulation of the redox potential of a photocatalyst to control the activation of chemical bonds. Light‐color control of the redox power of a photocatalyst introduces a new selectivity parameter to photoredox catalysis: Instead of changing the catalyst or ligand, alteration of the color of the visible‐light irradiation adjusts the selectivity in catalytic transformations. By using this principle, the selective activation of aryl–halide bonds for C−H arylation and the sequential conversion of functional groups with different reduction potentials is possible by simply applying different colors of light for excitation of the photocatalyst. Catalysts that can be regulated in terms of activity and selectivity by external stimuli may allow the efficient multistep synthesis of complex molecules and pharmaceuticals. Herein, we report the light‐color regulation of the redox potential of a photocatalyst to control the activation of chemical bonds. Light‐color control of the redox power of a photocatalyst introduces a new selectivity parameter to photoredox catalysis: Instead of changing the catalyst or ligand, alteration of the color of the visible‐light irradiation adjusts the selectivity in catalytic transformations. By using this principle, the selective activation of aryl–halide bonds for C−H arylation and the sequential conversion of functional groups with different reduction potentials is possible by simply applying different colors of light for excitation of the photocatalyst. I see your two colors, shining through: The xanthene dye rhodamine 6G is a moderately reducing photoredox catalyst if irradiated with green light, but provides an high reduction power of −2.4 V vs. SCE upon blue‐light irradiation. This allows control of the selectivity of photocatalytic C−H arylation reactions through changing the color of the light. |
Author | Ghosh, Indrajit König, Burkhard |
Author_xml | – sequence: 1 givenname: Indrajit surname: Ghosh fullname: Ghosh, Indrajit organization: Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040, Regensburg, Germany – sequence: 2 givenname: Burkhard surname: König fullname: König, Burkhard email: burkhard.koenig@ur.de organization: Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040, Regensburg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27198967$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt9v0zAQgCM0xH7AK48oEi9IKMV24sTmrYu2MVSVgUA8Wo5zaT1ce7MdWP_7ubSr0CQET3eWv-_udLrj7MA6C1n2EqMJRoi8k1bDhCBcI1JW_El2hCnBRdk05UHKq7IsGkbxYXYcwnXiGUP1s-yQNJgzXjdH2apderdyAQyoqH9CfrV00SkZpVkHHd7nrbPRO2Ogz0-d7fPpBpNRO5vHpI6LZT7Ti2UsWmecz7_AYjTbbzekV-_u8isXwUYtTXiePR1SgBe7eJJ9Oz_72n4oZp8uLtvprFAUV7yAASlSkp5wxQF4J2XVcS5ph4FQ1ilcc84axhEZ6rrDvZI16yuZEkQ5prI8yd5s6954dztCiGKlgwJjpAU3BoEbzillrKoT-voReu1Gb9N0G4o1Na8RTdSrHTV2K-jFjdcr6dfiYZEJYFvgF3RuCEqDVbDHEEIlKwklPGUYtzr-XlHrRhuT-vb_1URXW1p5F4KHQahdteilNgIjsTkMsTkMsT-MpE0eaQ8N_irw3VTawPoftJjOL8_-dIutq0OEu70r_Q-RVtVQ8X1-IfDn0_nHCs0FL-8B1FvY1Q |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1039_c8pp00512e crossref_primary_10_1002_anie_201910348 crossref_primary_10_1039_C7SC00243B crossref_primary_10_1039_C8QO00445E crossref_primary_10_1039_D2OB01524B crossref_primary_10_1002_adma_202404054 crossref_primary_10_1039_D3GC05196J crossref_primary_10_1021_acs_orglett_4c03707 crossref_primary_10_1039_C9GC04248B crossref_primary_10_1002_ange_201711296 crossref_primary_10_1021_acs_orglett_7b01518 crossref_primary_10_1002_ange_201800319 crossref_primary_10_1016_j_matt_2021_05_004 crossref_primary_10_1039_C6CC10305G crossref_primary_10_1038_s41467_024_49279_w crossref_primary_10_1021_acs_orglett_3c04265 crossref_primary_10_1002_ange_201704763 crossref_primary_10_1002_ange_202406845 crossref_primary_10_1002_cctc_202100359 crossref_primary_10_1016_j_tet_2022_133065 crossref_primary_10_1038_s41467_024_45015_6 crossref_primary_10_1055_a_2312_5896 crossref_primary_10_1002_ejoc_201700211 crossref_primary_10_1002_ange_201702347 crossref_primary_10_1002_anie_201610974 crossref_primary_10_1039_C7CP08011E crossref_primary_10_1002_anie_202016666 crossref_primary_10_1002_anie_202105043 crossref_primary_10_1038_d41586_020_00872_1 crossref_primary_10_6023_cjoc202207031 crossref_primary_10_1016_j_trechm_2021_02_006 crossref_primary_10_1016_j_tet_2024_134141 crossref_primary_10_1039_D2CC04530C crossref_primary_10_1021_acs_joc_9b01879 crossref_primary_10_1021_acs_joc_8b00797 crossref_primary_10_1002_ange_202001231 crossref_primary_10_1016_j_matt_2023_09_008 crossref_primary_10_1021_acs_chemrev_1c00384 crossref_primary_10_1016_j_progpolymsci_2020_101277 crossref_primary_10_1021_acscatal_6b02591 crossref_primary_10_1021_acs_joc_4c02328 crossref_primary_10_1016_j_tet_2017_10_074 crossref_primary_10_1039_d0pp00127a crossref_primary_10_1016_j_apcatb_2022_121791 crossref_primary_10_1021_acs_jpca_4c06564 crossref_primary_10_1039_C7QO00939A crossref_primary_10_1016_S1872_2067_20_63582_3 crossref_primary_10_1039_D0GC03081C crossref_primary_10_1021_acs_chemmater_7b01109 crossref_primary_10_1016_j_jcat_2019_09_036 crossref_primary_10_1021_acsomega_0c03941 crossref_primary_10_1039_D2SC05229F crossref_primary_10_1021_acs_inorgchem_1c03150 crossref_primary_10_1055_a_1946_0512 crossref_primary_10_1002_ejoc_202200026 crossref_primary_10_1002_anie_202006720 crossref_primary_10_1002_ejoc_202400579 crossref_primary_10_1002_anie_201801250 crossref_primary_10_1021_acscatal_2c00763 crossref_primary_10_1038_s41467_023_36679_7 crossref_primary_10_1016_j_trechm_2022_03_008 crossref_primary_10_1002_anie_202100164 crossref_primary_10_1021_acs_orglett_7b03001 crossref_primary_10_1002_chem_202404707 crossref_primary_10_1021_acs_joc_9b00406 crossref_primary_10_1002_aenm_202200352 crossref_primary_10_1039_C9SC04584H crossref_primary_10_1021_acs_joc_2c02241 crossref_primary_10_1002_ange_202110491 crossref_primary_10_1002_ejoc_201800833 crossref_primary_10_1021_acscatal_4c03442 crossref_primary_10_1039_C8OB01844H crossref_primary_10_1039_D0OB01652G crossref_primary_10_1039_D5CS00019J crossref_primary_10_3390_molecules29235558 crossref_primary_10_1002_chem_201904169 crossref_primary_10_1002_adsc_201801018 crossref_primary_10_1021_acs_orglett_1c01571 crossref_primary_10_1002_ejoc_201801079 crossref_primary_10_1021_acscatal_8b02595 crossref_primary_10_1021_jacs_1c05994 crossref_primary_10_1002_anie_201702347 crossref_primary_10_1002_anie_202420483 crossref_primary_10_1021_acscatal_1c05318 crossref_primary_10_1002_ange_201905814 crossref_primary_10_1002_ange_202216159 crossref_primary_10_1021_jacs_9b12328 crossref_primary_10_1021_acs_jpcb_8b08615 crossref_primary_10_1021_acscatal_2c00468 crossref_primary_10_1007_s41061_021_00355_5 crossref_primary_10_1039_C8FD00176F crossref_primary_10_1021_acs_chemrev_1c00831 crossref_primary_10_1002_anie_202110491 crossref_primary_10_1002_adsc_201800950 crossref_primary_10_1002_anie_201913767 crossref_primary_10_1002_anie_201711296 crossref_primary_10_1039_c7pp00311k crossref_primary_10_1002_ejoc_201900952 crossref_primary_10_1002_anie_202406845 crossref_primary_10_1002_anie_201704763 crossref_primary_10_1007_s11426_023_1733_0 crossref_primary_10_1002_chem_201705620 crossref_primary_10_1016_j_cej_2025_159767 crossref_primary_10_1021_acs_joc_1c00573 crossref_primary_10_1021_acs_joc_6b01034 crossref_primary_10_1038_s41570_019_0094_2 crossref_primary_10_1002_ange_202006720 crossref_primary_10_1002_ange_202217918 crossref_primary_10_1021_acs_accounts_6b00293 crossref_primary_10_1002_ange_202101689 crossref_primary_10_1149_2162_8777_ac93b2 crossref_primary_10_1002_chem_201604440 crossref_primary_10_1002_cjoc_202400508 crossref_primary_10_1002_ange_202405780 crossref_primary_10_1002_ange_202310246 crossref_primary_10_1039_C7SC03514D crossref_primary_10_1002_anie_201709766 crossref_primary_10_1002_adsc_202400001 crossref_primary_10_1021_jacs_0c11968 crossref_primary_10_1002_cctc_201901076 crossref_primary_10_1021_acs_joc_2c02172 crossref_primary_10_1002_anie_202101689 crossref_primary_10_1002_chem_202403264 crossref_primary_10_1002_anie_202001231 crossref_primary_10_1002_ajoc_202100518 crossref_primary_10_1039_C6RE00220J crossref_primary_10_1016_j_jcat_2019_06_040 crossref_primary_10_1515_psr_2017_0185 crossref_primary_10_1002_chem_201804603 crossref_primary_10_1002_ange_202420483 crossref_primary_10_1002_anie_202405780 crossref_primary_10_1002_ejoc_201601653 crossref_primary_10_1002_adsc_201900712 crossref_primary_10_1039_C9RA09227G crossref_primary_10_1021_acs_orglett_4c00106 crossref_primary_10_1002_ange_201709766 crossref_primary_10_1070_RCR4959 crossref_primary_10_1002_adsc_201800736 crossref_primary_10_1021_jacs_1c00399 crossref_primary_10_1002_anie_202209391 crossref_primary_10_1021_acs_joc_6b01050 crossref_primary_10_1021_acs_chemrev_4c00808 crossref_primary_10_1002_adfm_202422197 crossref_primary_10_1038_s41467_019_10441_4 crossref_primary_10_1021_acs_joc_0c00038 crossref_primary_10_1002_ange_201913767 crossref_primary_10_1002_anie_202409094 crossref_primary_10_1002_ange_201801250 crossref_primary_10_1039_D2DT01491B crossref_primary_10_1038_s41467_024_50795_y crossref_primary_10_3390_photochem4010004 crossref_primary_10_1039_C7GC00445A crossref_primary_10_1039_C9SC06184C crossref_primary_10_1002_ange_202100164 crossref_primary_10_1002_ajoc_202100191 crossref_primary_10_1039_D1SC03191K crossref_primary_10_1038_s41570_024_00664_5 crossref_primary_10_1021_acs_joc_9b03407 crossref_primary_10_1021_acs_jpcb_1c04536 crossref_primary_10_1002_cptc_202300090 crossref_primary_10_1038_s41467_022_29781_9 crossref_primary_10_1002_cptc_201900247 crossref_primary_10_1002_ange_202209391 crossref_primary_10_1002_anie_201915762 crossref_primary_10_1002_chem_202000381 crossref_primary_10_1021_acscatal_6b01452 crossref_primary_10_1039_D4SC04518A crossref_primary_10_1021_acscatal_8b00407 crossref_primary_10_1039_D2CS00581F crossref_primary_10_1016_j_tetlet_2018_12_064 crossref_primary_10_1039_C8QO00341F crossref_primary_10_1063_5_0084554 crossref_primary_10_1002_anie_202310246 crossref_primary_10_1002_chem_201804229 crossref_primary_10_1021_acscatal_2c05034 crossref_primary_10_1021_acs_joc_7b00088 crossref_primary_10_1038_s41929_019_0415_3 crossref_primary_10_1021_acscatal_4c04032 crossref_primary_10_1002_ange_202105043 crossref_primary_10_1021_jacs_0c03144 crossref_primary_10_1016_j_apcatb_2018_05_062 crossref_primary_10_1021_acscatal_2c04736 crossref_primary_10_1002_ejoc_201800213 crossref_primary_10_1039_D4MA00990H crossref_primary_10_3762_bjoc_15_201 crossref_primary_10_1021_acs_accounts_9b00097 crossref_primary_10_1021_acs_accounts_2c00075 crossref_primary_10_1021_jacs_6b08540 crossref_primary_10_1021_jacs_8b10270 crossref_primary_10_1039_D2OB01836E crossref_primary_10_1039_D1OB00050K crossref_primary_10_1039_D1GC04825B crossref_primary_10_1021_acscatal_3c03972 crossref_primary_10_1002_ange_201610974 crossref_primary_10_1016_j_isci_2021_102209 crossref_primary_10_1039_C8OB00238J crossref_primary_10_1021_jacsau_4c00974 crossref_primary_10_1002_chem_202100453 crossref_primary_10_1039_D2QO00362G crossref_primary_10_1021_jacs_8b12223 crossref_primary_10_1038_s41557_019_0353_3 crossref_primary_10_1002_anie_202217918 crossref_primary_10_1021_acscatal_8b02066 crossref_primary_10_1021_acs_joc_3c00320 crossref_primary_10_1021_acssuschemeng_1c06691 crossref_primary_10_3762_bjoc_19_81 crossref_primary_10_1016_j_tetlet_2017_01_013 crossref_primary_10_1002_chem_202400193 crossref_primary_10_1002_ange_201910348 crossref_primary_10_1021_jacsau_3c00077 crossref_primary_10_1038_s41467_020_16909_y crossref_primary_10_1002_chem_201905167 crossref_primary_10_1002_ange_201802472 crossref_primary_10_1016_j_apcatb_2018_01_072 crossref_primary_10_1021_acs_accounts_6b00229 crossref_primary_10_1002_nadc_20164050932 crossref_primary_10_1021_jacs_9b10678 crossref_primary_10_1021_acs_orglett_8b02420 crossref_primary_10_1002_ejoc_201900098 crossref_primary_10_1002_adsc_201901601 crossref_primary_10_1002_adsc_202100030 crossref_primary_10_1002_anie_201905814 crossref_primary_10_1039_D1CS00311A crossref_primary_10_1039_D2GC01966C crossref_primary_10_1002_anie_201800319 crossref_primary_10_1002_ejoc_201800556 crossref_primary_10_1002_anie_202216159 crossref_primary_10_1038_s41929_019_0369_5 crossref_primary_10_1002_anie_202009288 crossref_primary_10_1002_ejoc_201800319 crossref_primary_10_1021_acscatal_4c02199 crossref_primary_10_1016_j_jpap_2023_100205 crossref_primary_10_1002_ange_202016666 crossref_primary_10_1021_acs_inorgchem_4c01655 crossref_primary_10_1021_acs_orglett_0c02179 crossref_primary_10_1016_j_ccr_2024_215868 crossref_primary_10_1021_jacs_8b08933 crossref_primary_10_1039_D4NR00885E crossref_primary_10_1021_acs_chemrev_8b00077 crossref_primary_10_1039_C8SC03860K crossref_primary_10_1016_j_cclet_2023_109138 crossref_primary_10_1039_D2OB00807F crossref_primary_10_1016_j_cclet_2023_108832 crossref_primary_10_1039_C9RE00339H crossref_primary_10_1039_C6CC04366F crossref_primary_10_1002_ange_202105895 crossref_primary_10_1039_D0QO00466A crossref_primary_10_1002_ejoc_202000144 crossref_primary_10_1002_ejoc_201701461 crossref_primary_10_1002_ange_202009288 crossref_primary_10_1002_ejoc_202000143 crossref_primary_10_1021_acsami_9b13538 crossref_primary_10_1002_anie_202207829 crossref_primary_10_1002_asia_202100942 crossref_primary_10_1016_j_tetlet_2023_154366 crossref_primary_10_1002_ange_202409094 crossref_primary_10_1016_j_checat_2022_08_013 crossref_primary_10_2139_ssrn_4137490 crossref_primary_10_1021_acscatal_1c01000 crossref_primary_10_1021_jacs_9b07370 crossref_primary_10_1002_ejoc_201601352 crossref_primary_10_1016_j_pnmrs_2019_06_001 crossref_primary_10_1002_ange_202106183 crossref_primary_10_1021_jacs_9b07373 crossref_primary_10_1002_chem_201701665 crossref_primary_10_1021_acs_orglett_9b03877 crossref_primary_10_1002_chem_201701429 crossref_primary_10_1002_anie_201802472 crossref_primary_10_1021_acscatal_0c03794 crossref_primary_10_1002_ange_201915762 crossref_primary_10_1039_D1SC06684F crossref_primary_10_1002_ange_202207829 crossref_primary_10_1021_jacs_3c13380 crossref_primary_10_1002_anie_202106183 crossref_primary_10_1039_D0NA00992J crossref_primary_10_1002_chem_201703954 crossref_primary_10_1016_j_chempr_2021_04_016 crossref_primary_10_1002_ejoc_201700150 crossref_primary_10_1021_acs_jpcc_3c03082 crossref_primary_10_1039_C7QO00729A crossref_primary_10_1021_acs_orglett_7b03790 crossref_primary_10_1002_ange_202114482 crossref_primary_10_2139_ssrn_4197051 crossref_primary_10_1021_acsami_1c14497 crossref_primary_10_1039_D4NJ05160B crossref_primary_10_1002_ejoc_201601494 crossref_primary_10_1063_5_0111162 crossref_primary_10_1021_acs_orglett_9b01911 crossref_primary_10_1002_ejoc_201901421 crossref_primary_10_1016_j_cej_2021_133377 crossref_primary_10_1002_anie_202105895 crossref_primary_10_1002_cctc_201800971 crossref_primary_10_1002_chem_201705326 crossref_primary_10_1021_acscatal_0c02247 crossref_primary_10_1002_anie_202114482 crossref_primary_10_1021_acs_joc_8b01306 crossref_primary_10_1055_a_2377_0629 crossref_primary_10_1021_acs_orglett_2c02949 crossref_primary_10_1021_jacs_2c00422 |
Cites_doi | 10.1002/anie.201204567 10.1002/ange.201000146 10.1002/anie.201002992 10.1126/science.1199844 10.1021/cs4003673 10.1021/ja045989u 10.1021/cr300503r 10.1002/ange.200802050 10.1021/ja103050x 10.1039/C0PP00317D 10.1021/jo301984p 10.1002/ange.200802376 10.1126/science.1146598 10.1021/ar00161a002 10.1021/ar300014f 10.1002/ange.201002992 10.1038/nchem.2174 10.1038/nchem.687 10.1002/anie.201000146 10.1039/B913880N 10.1038/nprot.2011.336 10.1021/ja212099r 10.1002/anie.200802050 10.1002/ange.201204567 10.1021/ja044686x 10.1038/ncomms7652 10.1039/c3cc00008g 10.1126/science.1258232 10.1002/cphc.200900238 10.1002/anie.200802376 10.1021/cr020027w 10.1038/NCHEM.2174 10.1039/c0pp00317d 10.1039/b913880n 10.1038/NCHEM.687 |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 17B 1KM 1KN BLEPL DTL EGQ GYFQL NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201602349 |
DatabaseName | Istex CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Web of Science - Science Citation Index Expanded - 2016 PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef Web of Science PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Web of Science MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 7679 |
ExternalDocumentID | 4096468711 27198967 000383252900011 10_1002_anie_201602349 ANIE201602349 ark_67375_WNG_1QBNJ40N_9 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: GRK 1626 – fundername: Deutsche Forschungsgemeinschaft; German Research Foundation (DFG) grantid: GRK 1626 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI VQA WRC AAYXX CITATION 17B 1KM 1KN BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE NPM YIN 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c5149-ef0c232d29c9ee9baa4b99a5b1e258bc1699878902f66b1dca68d4a1dc05915a3 |
IEDL.DBID | DR2 |
ISICitedReferencesCount | 295 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000383252900011 |
ISSN | 1433-7851 |
IngestDate | Fri Jul 11 09:20:06 EDT 2025 Sun Jul 13 03:30:42 EDT 2025 Wed Feb 19 02:43:00 EST 2025 Wed Jul 09 15:01:14 EDT 2025 Fri Sep 26 20:18:53 EDT 2025 Tue Jul 01 03:27:15 EDT 2025 Thu Apr 24 23:09:15 EDT 2025 Wed Jan 22 17:03:54 EST 2025 Sun Sep 21 06:18:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | CATALYSIS ELECTRON-TRANSFER radicals ARYL DIAZONIUM SALTS radical anions ARYLATION FLUORESCENT-PROBES DYNAMIC CONTROL C-H arylation dyes photocatalysis C−H arylation |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c5149-ef0c232d29c9ee9baa4b99a5b1e258bc1699878902f66b1dca68d4a1dc05915a3 |
Notes | ark:/67375/WNG-1QBNJ40N-9 ArticleID:ANIE201602349 istex:8CA0A1E0BA1895CB766BB44390CC1876717EC0BC Deutsche Forschungsgemeinschaft - No. GRK 1626 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6131-4850 0000-0002-5127-2271 |
PMID | 27198967 |
PQID | 1798769605 |
PQPubID | 946352 |
PageCount | 4 |
ParticipantIDs | pubmed_primary_27198967 wiley_primary_10_1002_anie_201602349_ANIE201602349 crossref_primary_10_1002_anie_201602349 istex_primary_ark_67375_WNG_1QBNJ40N_9 proquest_journals_1798769605 proquest_miscellaneous_1799558846 webofscience_primary_000383252900011CitationCount crossref_citationtrail_10_1002_anie_201602349 webofscience_primary_000383252900011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 27, 2016 |
PublicationDateYYYYMMDD | 2016-06-27 |
PublicationDate_xml | – month: 06 year: 2016 text: June 27, 2016 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | WEINHEIM |
PublicationPlace_xml | – name: WEINHEIM – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAbbrev | ANGEW CHEM INT EDIT |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: Wiley Subscription Services, Inc |
References | V. Ralevic, G. Burnstock, Pharmacol. Rev. 1998, 50, 413-492. M. Bates, B. Huang, G. T. Dempsey, X. W. Zhuang, Science 2007, 317, 1749-1753. O. Valdes-Aguilera, D. C. Neckers, Acc. Chem. Res. 1989, 22, 171-177. W. Liu, H. Cao, H. Zhang, H. Zhang, K. H. Chung, C. He, H. Wang, F. Y. Kwong, A. Lei, J. Am. Chem. Soc. 2010, 132, 16737-16740. U. Lüning, Angew. Chem. Int. Ed. 2012, 51, 8163-8165 B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921-2943. I. Ghosh, T. Ghosh, J. I. Bardagi, B. Koenig, Science 2014, 346, 725-728. M. V. Peters, R. S. Stoll, A. Kuehn, S. Hecht, Angew. Chem. Int. Ed. 2008, 47, 5968-5972 C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322-5363. C. Costentin, M. Robert, J. M. Saveant, J. Am. Chem. Soc. 2004, 126, 16051-16057. A. Nojiri, N. Kumagai, M. Shibasaki, Chem. Commun. 2013, 49, 4628-4630. S. Suzuki, Y. Segawa, K. Itami, J. Yamaguchi, Nat. Chem. 2015, 7, 227-233. S. Doose, H. Neuweiler, M. Sauer, ChemPhysChem 2009, 10, 1389-1398. S. van de Linde, I. Krstić, T. Prisner, S. Doose, M. Heilemann, M. Sauer, Photochem. Photobiol. Sci. 2011, 10, 499-506. J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011, 40, 102-113. M. Neumann, S. Fuldner, B. Koenig, K. Zeitler, Angew. Chem. Int. Ed. 2011, 50, 951-954 D. P. Hari, P. Schroll, B. Koenig, J. Am. Chem. Soc. 2012, 134, 2958-2961. S. R. Neufeldt, M. S. Sanford, Acc. Chem. Res. 2012, 45, 936-946. D. P. Zhao, T. M. Neubauer, B. L. Feringa, Nat. Commun. 2015, 6,6652. M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, Angew. Chem. Int. Ed. 2008, 47, 6172-6176 Angew. Chem. 2012, 124, 8285-8287. T. Hering, D. P. Hari, B. Koenig, J. Org. Chem. 2012, 77, 10347-10352. Angew. Chem. 2008, 120, 6056-6060. J. B. Wang, B. L. Feringa, Science 2011, 331, 1429-1432. R. S. Stoll, S. Hecht, Angew. Chem. Int. Ed. 2010, 49, 5054-5075 Angew. Chem. 2008, 120, 6266-6271. Angew. Chem. 2011, 123, 981-985. T. P. Yoon, M. A. Ischay, N. J. Du, Nat. Chem. 2010, 2, 527-532. B. M. Neilson, C. W. Bielawski, ACS Catal. 2013, 3, 1874-1885. S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, M. Sauer, Nat. Protoc. 2011, 6, 991-1009. Angew. Chem. 2010, 122, 5176-5200. M. Heilemann, E. Margeat, R. Kasper, M. Sauer, P. Tinnefeld, J. Am. Chem. Soc. 2005, 127, 3801-3806. 2015; 6 2013; 3 1989; 22 2004; 126 2013; 49 2011; 40 2011; 10 2010 2010; 49 122 2008 2008; 47 120 2011; 6 2015; 7 2012; 77 2011; 331 2007; 317 2009; 10 2012; 134 2012 2012; 51 124 2005; 127 2010; 132 2013; 113 2011 2011; 50 123 1998; 50 2003; 103 2010; 2 2012; 45 2014; 346 e_1_2_2_4_1 e_1_2_2_24_2 e_1_2_2_25_1 e_1_2_2_5_1 e_1_2_2_24_1 e_1_2_2_6_1 e_1_2_2_6_2 e_1_2_2_7_1 e_1_2_2_22_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_1 e_1_2_2_3_1 e_1_2_2_7_2 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_27_1 e_1_2_2_26_1 Ralevic V. (e_1_2_2_23_1) 1998; 50 e_1_2_2_14_1 e_1_2_2_13_1 e_1_2_2_12_1 e_1_2_2_10_2 e_1_2_2_11_1 e_1_2_2_10_1 e_1_2_2_19_1 e_1_2_2_18_1 e_1_2_2_16_2 e_1_2_2_17_1 e_1_2_2_16_1 e_1_2_2_15_1 Heilemann, M. (000383252900011.6) 2008; 120 Prier, CK (WOS:000321810600018) 2013; 113 Heilemann, M (WOS:000227738700046) 2005; 127 Trost, BM (WOS:000184821500008) 2003; 103 Doose, S (WOS:000267928100005) 2009; 10 Ghosh, I (WOS:000344690100034) 2014; 346 Neumann, M (WOS:000287157600031) 2011; 50 Neufeldt, SR (WOS:000305321100015) 2012; 45 Hari, DP (WOS:000301161500030) 2012; 134 Liu, W (WOS:000284972400005) 2010; 132 Luning, U. (000383252900011.12) 2012; 124 Stoll, RS (WOS:000280432100005) 2010; 49 Suzuki, S (WOS:000350115700012) 2015; 7 van de Linde, S (WOS:000288964800007) 2011; 10 Bates, M (WOS:000249585900048) 2007; 317 Peters, M. V. (000383252900011.19) 2008; 120 Heilemann, M (WOS:000258355200005) 2008; 47 Ralevic, V (WOS:000076232000004) 1998; 50 Peters, MV (WOS:000258165400006) 2008; 47 Luning, U (WOS:000307215900005) 2012; 51 VALDESAGUILERA, O (WOS:A1989U738200002) 1989; 22 van de Linde, S (WOS:000292244800006) 2011; 6 Yoon, TP (WOS:000280078200012) 2010; 2 Nojiri, A (WOS:000318028500012) 2013; 49 Costentin, C (WOS:000225697000038) 2004; 126 Hering, T (WOS:000311073000041) 2012; 77 Stoll, R. S. (000383252900011.23) 2010; 122 Wang, JB (WOS:000288504000039) 2011; 331 Narayanam, JMR (WOS:000285390900008) 2011; 40 Neilson, BM (WOS:000322852900024) 2013; 3 Zhao, DP (WOS:000353041200005) 2015; 6 |
References_xml | – reference: D. P. Zhao, T. M. Neubauer, B. L. Feringa, Nat. Commun. 2015, 6,6652. – reference: O. Valdes-Aguilera, D. C. Neckers, Acc. Chem. Res. 1989, 22, 171-177. – reference: S. van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, M. Sauer, Nat. Protoc. 2011, 6, 991-1009. – reference: T. P. Yoon, M. A. Ischay, N. J. Du, Nat. Chem. 2010, 2, 527-532. – reference: U. Lüning, Angew. Chem. Int. Ed. 2012, 51, 8163-8165; – reference: Angew. Chem. 2012, 124, 8285-8287. – reference: J. B. Wang, B. L. Feringa, Science 2011, 331, 1429-1432. – reference: M. Neumann, S. Fuldner, B. Koenig, K. Zeitler, Angew. Chem. Int. Ed. 2011, 50, 951-954; – reference: B. M. Neilson, C. W. Bielawski, ACS Catal. 2013, 3, 1874-1885. – reference: V. Ralevic, G. Burnstock, Pharmacol. Rev. 1998, 50, 413-492. – reference: Angew. Chem. 2008, 120, 6266-6271. – reference: Angew. Chem. 2011, 123, 981-985. – reference: S. van de Linde, I. Krstić, T. Prisner, S. Doose, M. Heilemann, M. Sauer, Photochem. Photobiol. Sci. 2011, 10, 499-506. – reference: M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, Angew. Chem. Int. Ed. 2008, 47, 6172-6176; – reference: Angew. Chem. 2008, 120, 6056-6060. – reference: S. Doose, H. Neuweiler, M. Sauer, ChemPhysChem 2009, 10, 1389-1398. – reference: M. Heilemann, E. Margeat, R. Kasper, M. Sauer, P. Tinnefeld, J. Am. Chem. Soc. 2005, 127, 3801-3806. – reference: C. Costentin, M. Robert, J. M. Saveant, J. Am. Chem. Soc. 2004, 126, 16051-16057. – reference: T. Hering, D. P. Hari, B. Koenig, J. Org. Chem. 2012, 77, 10347-10352. – reference: M. V. Peters, R. S. Stoll, A. Kuehn, S. Hecht, Angew. Chem. Int. Ed. 2008, 47, 5968-5972; – reference: I. Ghosh, T. Ghosh, J. I. Bardagi, B. Koenig, Science 2014, 346, 725-728. – reference: Angew. Chem. 2010, 122, 5176-5200. – reference: A. Nojiri, N. Kumagai, M. Shibasaki, Chem. Commun. 2013, 49, 4628-4630. – reference: B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921-2943. – reference: C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322-5363. – reference: W. Liu, H. Cao, H. Zhang, H. Zhang, K. H. Chung, C. He, H. Wang, F. Y. Kwong, A. Lei, J. Am. Chem. Soc. 2010, 132, 16737-16740. – reference: J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011, 40, 102-113. – reference: R. S. Stoll, S. Hecht, Angew. Chem. Int. Ed. 2010, 49, 5054-5075; – reference: M. Bates, B. Huang, G. T. Dempsey, X. W. Zhuang, Science 2007, 317, 1749-1753. – reference: D. P. Hari, P. Schroll, B. Koenig, J. Am. Chem. Soc. 2012, 134, 2958-2961. – reference: S. R. Neufeldt, M. S. Sanford, Acc. Chem. Res. 2012, 45, 936-946. – reference: S. Suzuki, Y. Segawa, K. Itami, J. Yamaguchi, Nat. Chem. 2015, 7, 227-233. – volume: 6 start-page: 991 year: 2011 end-page: 1009 publication-title: Nat. Protoc. – volume: 50 start-page: 413 year: 1998 end-page: 492 publication-title: Pharmacol. Rev. – volume: 134 start-page: 2958 year: 2012 end-page: 2961 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 6652 year: 2015 publication-title: Nat. Commun. – volume: 49 122 start-page: 5054 5176 year: 2010 2010 end-page: 5075 5200 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 127 start-page: 3801 year: 2005 end-page: 3806 publication-title: J. Am. Chem. Soc. – volume: 126 start-page: 16051 year: 2004 end-page: 16057 publication-title: J. Am. Chem. Soc. – volume: 113 start-page: 5322 year: 2013 end-page: 5363 publication-title: Chem. Rev. – volume: 317 start-page: 1749 year: 2007 end-page: 1753 publication-title: Science – volume: 132 start-page: 16737 year: 2010 end-page: 16740 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 171 year: 1989 end-page: 177 publication-title: Acc. Chem. Res. – volume: 40 start-page: 102 year: 2011 end-page: 113 publication-title: Chem. Soc. Rev. – volume: 331 start-page: 1429 year: 2011 end-page: 1432 publication-title: Science – volume: 3 start-page: 1874 year: 2013 end-page: 1885 publication-title: ACS Catal. – volume: 2 start-page: 527 year: 2010 end-page: 532 publication-title: Nat. Chem. – volume: 51 124 start-page: 8163 8285 year: 2012 2012 end-page: 8165 8287 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 120 start-page: 5968 6056 year: 2008 2008 end-page: 5972 6060 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 103 start-page: 2921 year: 2003 end-page: 2943 publication-title: Chem. Rev. – volume: 45 start-page: 936 year: 2012 end-page: 946 publication-title: Acc. Chem. Res. – volume: 7 start-page: 227 year: 2015 end-page: 233 publication-title: Nat. Chem. – volume: 10 start-page: 1389 year: 2009 end-page: 1398 publication-title: ChemPhysChem – volume: 47 120 start-page: 6172 6266 year: 2008 2008 end-page: 6176 6271 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 4628 year: 2013 end-page: 4630 publication-title: Chem. Commun. – volume: 50 123 start-page: 951 981 year: 2011 2011 end-page: 954 985 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 499 year: 2011 end-page: 506 publication-title: Photochem. Photobiol. Sci. – volume: 77 start-page: 10347 year: 2012 end-page: 10352 publication-title: J. Org. Chem. – volume: 346 start-page: 725 year: 2014 end-page: 728 publication-title: Science – ident: e_1_2_2_10_1 doi: 10.1002/anie.201204567 – ident: e_1_2_2_7_2 doi: 10.1002/ange.201000146 – ident: e_1_2_2_24_1 doi: 10.1002/anie.201002992 – ident: e_1_2_2_4_1 doi: 10.1126/science.1199844 – ident: e_1_2_2_8_1 doi: 10.1021/cs4003673 – ident: e_1_2_2_21_1 doi: 10.1021/ja045989u – ident: e_1_2_2_27_1 – ident: e_1_2_2_18_1 doi: 10.1021/cr300503r – ident: e_1_2_2_6_2 doi: 10.1002/ange.200802050 – ident: e_1_2_2_28_1 doi: 10.1021/ja103050x – ident: e_1_2_2_13_1 doi: 10.1039/C0PP00317D – ident: e_1_2_2_26_1 doi: 10.1021/jo301984p – ident: e_1_2_2_16_2 doi: 10.1002/ange.200802376 – ident: e_1_2_2_17_1 doi: 10.1126/science.1146598 – ident: e_1_2_2_11_1 doi: 10.1021/ar00161a002 – ident: e_1_2_2_1_1 doi: 10.1021/ar300014f – ident: e_1_2_2_24_2 doi: 10.1002/ange.201002992 – ident: e_1_2_2_3_1 doi: 10.1038/nchem.2174 – ident: e_1_2_2_29_1 – ident: e_1_2_2_19_1 doi: 10.1038/nchem.687 – ident: e_1_2_2_7_1 doi: 10.1002/anie.201000146 – ident: e_1_2_2_20_1 doi: 10.1039/B913880N – ident: e_1_2_2_12_1 doi: 10.1038/nprot.2011.336 – volume: 50 start-page: 413 year: 1998 ident: e_1_2_2_23_1 publication-title: Pharmacol. Rev. – ident: e_1_2_2_25_1 doi: 10.1021/ja212099r – ident: e_1_2_2_6_1 doi: 10.1002/anie.200802050 – ident: e_1_2_2_10_2 doi: 10.1002/ange.201204567 – ident: e_1_2_2_15_1 doi: 10.1021/ja044686x – ident: e_1_2_2_5_1 doi: 10.1038/ncomms7652 – ident: e_1_2_2_9_1 doi: 10.1039/c3cc00008g – ident: e_1_2_2_22_1 doi: 10.1126/science.1258232 – ident: e_1_2_2_14_1 doi: 10.1002/cphc.200900238 – ident: e_1_2_2_16_1 doi: 10.1002/anie.200802376 – ident: e_1_2_2_2_1 doi: 10.1021/cr020027w – volume: 51 start-page: 8163 year: 2012 ident: WOS:000307215900005 article-title: Switchable Catalysis publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201204567 – volume: 7 start-page: 227 year: 2015 ident: WOS:000350115700012 article-title: Synthesis and characterization of hexaarylbenzenes with five or six different substituents enabled by programmed synthesis publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.2174 – volume: 47 start-page: 6172 year: 2008 ident: WOS:000258355200005 article-title: Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200802376 – volume: 317 start-page: 1749 year: 2007 ident: WOS:000249585900048 article-title: Multicolor super-resolution imaging with photo-switchable fluorescent probes publication-title: SCIENCE doi: 10.1126/science.1146598 – volume: 50 start-page: 413 year: 1998 ident: WOS:000076232000004 article-title: Receptors for purines and pyrimidines publication-title: PHARMACOLOGICAL REVIEWS – volume: 22 start-page: 171 year: 1989 ident: WOS:A1989U738200002 article-title: AGGREGATION PHENOMENA IN XANTHENE DYES publication-title: ACCOUNTS OF CHEMICAL RESEARCH – volume: 113 start-page: 5322 year: 2013 ident: WOS:000321810600018 article-title: Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis publication-title: CHEMICAL REVIEWS doi: 10.1021/cr300503r – volume: 346 start-page: 725 year: 2014 ident: WOS:000344690100034 article-title: Reduction of aryl halides by consecutive visible light-induced electron transfer processes publication-title: SCIENCE doi: 10.1126/science.1258232 – volume: 10 start-page: 499 year: 2011 ident: WOS:000288964800007 article-title: Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging publication-title: PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES doi: 10.1039/c0pp00317d – volume: 120 start-page: 6266 year: 2008 ident: 000383252900011.6 publication-title: Angew. Chem. – volume: 126 start-page: 16051 year: 2004 ident: WOS:000225697000038 article-title: Fragmentation of aryl halide pi anion radicals. Bending of the cleaving bond and activation vs driving force relationships publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja045989u – volume: 49 start-page: 5054 year: 2010 ident: WOS:000280432100005 article-title: Artificial Light-Gated Catalyst Systems publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201000146 – volume: 40 start-page: 102 year: 2011 ident: WOS:000285390900008 article-title: Visible light photoredox catalysis: applications in organic synthesis publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b913880n – volume: 50 start-page: 951 year: 2011 ident: WOS:000287157600031 article-title: Metal-Free, Cooperative Asymmetric Organophotoredox Catalysis with Visible Light publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201002992 – volume: 103 start-page: 2921 year: 2003 ident: WOS:000184821500008 article-title: Asymmetric transition-metal-catalyzed allylic alkylations: Applications in total synthesis publication-title: CHEMICAL REVIEWS doi: 10.1021/cr020027w – volume: 6 start-page: 991 year: 2011 ident: WOS:000292244800006 article-title: Direct stochastic optical reconstruction microscopy with standard fluorescent probes publication-title: NATURE PROTOCOLS doi: 10.1038/nprot.2011.336 – volume: 120 start-page: 6056 year: 2008 ident: 000383252900011.19 publication-title: Angew. Chem. – volume: 10 start-page: 1389 year: 2009 ident: WOS:000267928100005 article-title: Fluorescence Quenching by Photoinduced Electron Transfer: A Reporter for Conformational Dynamics of Macromolecules publication-title: CHEMPHYSCHEM doi: 10.1002/cphc.200900238 – volume: 47 start-page: 5968 year: 2008 ident: WOS:000258165400006 article-title: Photoswitching of basicity publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200802050 – volume: 132 start-page: 16737 year: 2010 ident: WOS:000284972400005 article-title: Organocatalysis in Cross-Coupling: DMEDA-Catalyzed Direct C-H Arylation of Unactivated Benzene publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja103050x – volume: 2 start-page: 527 year: 2010 ident: WOS:000280078200012 article-title: Visible light photocatalysis as a greener approach to photochemical synthesis publication-title: NATURE CHEMISTRY doi: 10.1038/NCHEM.687 – volume: 331 start-page: 1429 year: 2011 ident: WOS:000288504000039 article-title: Dynamic Control of Chiral Space in a Catalytic Asymmetric Reaction Using a Molecular Motor publication-title: SCIENCE doi: 10.1126/science.1199844 – volume: 127 start-page: 3801 year: 2005 ident: WOS:000227738700046 article-title: Carbocyanine dyes as efficient reversible single-molecule optical switch publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja044686x – volume: 3 start-page: 1874 year: 2013 ident: WOS:000322852900024 article-title: Illuminating Photoswitchable Catalysis publication-title: ACS CATALYSIS doi: 10.1021/cs4003673 – volume: 122 start-page: 5176 year: 2010 ident: 000383252900011.23 publication-title: Angew. Chem. – volume: 124 start-page: 8285 year: 2012 ident: 000383252900011.12 publication-title: Angew. Chem. – volume: 6 start-page: ARTN 6652 year: 2015 ident: WOS:000353041200005 article-title: Dynamic control of chirality in phosphine ligands for enantioselective catalysis publication-title: NATURE COMMUNICATIONS doi: 10.1038/ncomms7652 – volume: 77 start-page: 10347 year: 2012 ident: WOS:000311073000041 article-title: Visible-Light-Mediated alpha-Arylation of Enol Acetates Using Aryl Diazonium Salts publication-title: JOURNAL OF ORGANIC CHEMISTRY doi: 10.1021/jo301984p – volume: 49 start-page: 4628 year: 2013 ident: WOS:000318028500012 article-title: In situ manipulation of catalyst performance via the photocontrolled aggregation/dissociation state of the catalyst publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c3cc00008g – volume: 45 start-page: 936 year: 2012 ident: WOS:000305321100015 article-title: Controlling Site Selectivity in Palladium-Catalyzed C-H Bond Functionalization publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar300014f – volume: 134 start-page: 2958 year: 2012 ident: WOS:000301161500030 article-title: Metal-Free, Visible-Light-Mediated Direct C-H Arylation of Heteroarenes with Aryl Diazonium Salts publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja212099r |
SSID | ssj0028806 |
Score | 2.6247914 |
Snippet | Catalysts that can be regulated in terms of activity and selectivity by external stimuli may allow the efficient multistep synthesis of complex molecules and... |
Source | Web of Science |
SourceID | proquest pubmed webofscience crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7676 |
SubjectTerms | Catalysis Chemistry Chemistry, Multidisciplinary Color C−H arylation dyes Irradiation Light photocatalysis Physical Sciences radical anions radicals Redox potential Science & Technology |
Title | Chromoselective Photocatalysis: Controlled Bond Activation through Light-Color Regulation of Redox Potentials |
URI | https://api.istex.fr/ark:/67375/WNG-1QBNJ40N-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201602349 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000383252900011 https://www.ncbi.nlm.nih.gov/pubmed/27198967 https://www.proquest.com/docview/1798769605 https://www.proquest.com/docview/1799558846 |
Volume | 55 |
WOS | 000383252900011 |
WOSCitedRecordID | wos000383252900011 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6hcoAL_9BAQUaq4JQ2cWJnw20JLaWCqFRU9GbZjgNSywbtZqWKE4_AM_IkzDg_dCsQCG6xPFaUyXhm4sx8H8Cmw6iVSGtDoTUPUx1FoeGJDnXEtRWyjo0_031Tyr2jdP9YHJ_r4u_wIcYDN9oZ3l_TBtdmsf0TNJQ6sKk0S2LUSamDL04kgee_OBzxozgaZ9delCQhsdAPqI0R315dvhKVLpOCz36Vcl6ITqsJrY9Iu9dBD8_SFaKcbC1bs2W_XIB5_J-HvQHX-nSVTTv7ugmX3OwWXCkGlrjb0BC67qdm4el00HOyg49N2_hDIcI6ecaKrhb-1FWMKIzZ1A6EaqznCGKv6YDg-9dvBTriOTt0H3pKMdbUOKqaM3bQtFTVhFvlDhzt7rwr9sKexCG0mIvloasji1lbxXObO5cbrVOT51qY2HExMTaW-MFH3bi8ltLEldVyUqUaLzDxi4VO7sLarJm5dWBygs7Colc03KW0UFRRzWM9SXNjMPMJIBxeorI9wjkRbZyqDpuZK1KjGtUYwNNR_nOH7fFbySfeJkYxPT-hirhMqPflSxW_fV7up1GpUHBjMBrVO4OFIky4TOKnogjg8TiN74n-zeiZa5ZeJhfUNCwDuNcZ23gznlFhm8wC2DxvfeO8_72bcMFzn-EHEP-NWNFriLAP2gC4N78_6EFNy1c74-j-vyx6AFfpmqrteLYBa-186R5iXteaR37v_gDRakPK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygX3pRAASNVcEqbOLGz5rZELduyjUrVCm6W7TggtWzQNitVnPgJ_EZ-CR7nAVuBQHDLY6wok_H4y3jmG4BN61athBsTMqVomKooCjVNVKgiqgzjVax9TPeg4JOTdP8d67MJsRam5YcYAm44M7y_xgmOAentH6yhWIKNuVncLTupuAqrfpMOcdHRwCBFnXm2BUZJEmIf-p63MaLby-OX1qVVVPHFr0DnpfVpGdL6NWn3Buj-bdpUlNOtRaO3zOdLRI__9bo34XqHWMm4NbFbcMXObsNa3jeKuwM1Eux-rM99Rx3nPMnhh7qpfVwI6U5ekLxNhz-zJcEuxmRs-p5qpGsTRKYYI_j25WvufPGcHNn3XVcxUlfurKwvyGHdYGKTmy134WR35zifhF0fh9A4OCZCW0XGAbeSCiOsFVqpVAuhmI4tZSNtYu7--bAgl1ac67g0io_KVLkDh_1ippJ7sDKrZ_Y-ED5y_sI4x6ipTXEgK6OKxmqUCq0d-Akg7L-iNB3JOfbaOJMtPTOVqEY5qDGA54P8p5be47eSz7xRDGJqfopJcRmTb4tXMn7zsthPo0I6wY3eamTnD84l0sJl3P0tsgCeDrfdd8LtGTWz9cLLCIZ1wzyA9dbahofRDHPbeBbA5s_mN9z3O7wJZVR4kB9A_DdieachpD9oAqDe_v6gBzku9naGswf_MugJrE2OD6Zyule8fgjX8Dom39FsA1aa-cI-cjCv0Y_9RP4O_LBH6A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEX3o9AASNVcEqbOLGz5rZsu7SlREtFRW-W7Tit1LKptlmp4sRP4DfyS_A4D7oVCAS3PMaKMhnPjJ2Z7wNYtS5qJdyYkClFw1RFUahpokIVUWUYL2Pt93Tf53xrP905YAcXuvgbfIh-ww1nhvfXOMFPi3L9J2godmBjaRZ3UScVV2E5dUdY1LWx1wNIUWedTX9RkoRIQ9_BNkZ0fXH8QlhaRg2f_yrnvBSeFjNaH5LGt0B1L9NUohyvzWu9Zr5cwnn8n7e9DTfbfJUMGwO7A1fs9C5cH3U0cfegQnjdz9WZ59NxrpNMjqq68rtCCHbymoyaYvgTWxDkMCZD0zGqkZYkiOziDsH3r99GzhPPyJ49bDnFSFW6s6I6J5OqxrImN1fuw_548-NoK2xZHELjkjER2jIyLm0rqDDCWqGVSrUQiunYUjbQJuZuxYftuLTkXMeFUXxQpModuMwvZip5AEvTamofAeED5y2Mc4ua2hQHsiIqaawGqdDapT4BhN1HlKaFOEemjRPZgDNTiWqUvRoDeNXLnzbgHr-VfOltohdTs2MsicuY_JS_lfGHN_lOGuXSCa50RiNbb3AmERQu426tyAJ40d923wl_zqipreZeRjDsGuYBPGyMrX8YzbCyjWcBrF60vv6-_7-bUEaFT_EDiP9GbNRqCMEP6gCoN78_6EEO8-3N_uzxvwx6DtcmG2O5u52_ewI38DJW3tFsBZbq2dw-dTlerZ_5afwD47NGlw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chromoselective+Photocatalysis%3A+Controlled+Bond+Activation+through+Light-Color+Regulation+of+Redox+Potentials&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Ghosh%2C+Indrajit&rft.au=K%C3%B6nig%2C+Burkhard&rft.date=2016-06-27&rft.eissn=1521-3773&rft.volume=55&rft.issue=27&rft.spage=7676&rft.epage=7679&rft_id=info:doi/10.1002%2Fanie.201602349&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |