Biomechanical Comparison of Locking Compression Plate versus Positive Profile Pins and Polymethylmethacrylate for Stabilization of the Canine Lumbar Vertebrae

OBJECTIVE: To compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and polymethylmethacrylate (Pin‐PMMA) or with a unilateral (left) locking compression plate (LCP) with monocortical screws. STUDY DESIGN: Ex vivo biomech...

Full description

Saved in:
Bibliographic Details
Published inVeterinary surgery Vol. 45; no. 3; pp. 309 - 318
Main Authors Sturges, Beverly K., Kapatkin, Amy S., Garcia, Tanya C., Anwer, Cona, Fukuda, Shimpei, Hitchens, Peta L., Wisner, Tristan, Hayashi, Kei, Stover, Susan M.
Format Journal Article
LanguageEnglish
Published United States Blackwell [etc.] 01.04.2016
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0161-3499
1532-950X
DOI10.1111/vsu.12459

Cover

Abstract OBJECTIVE: To compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and polymethylmethacrylate (Pin‐PMMA) or with a unilateral (left) locking compression plate (LCP) with monocortical screws. STUDY DESIGN: Ex vivo biomechanical, non‐randomized. Samples: Cadaveric canine thoracolumbar specimens (n=16). METHODS: Thoracolumbar (T13‐L3) vertebral specimens had the L1‐L2 vertebral motion unit stabilized with either Pin‐PMMA or LCP. Stiffness in flexion, extension, and right and left lateral bending after nondestructive testing were compared between intact (pretreated) specimens and Pin‐PMMA, and LCP constructs. The Pin‐PMMA and LCP constructs were then tested to failure in flexion and left lateral bending. RESULTS: Both the Pin‐PMMA and LCP constructs had reduced range of motion at the stabilized L1‐L2 vertebral motion unit compared to intact specimens. The Pin‐PMMA constructs had less range of motion for the flexion elastic zone than LCP constructs. The Pin‐PMMA constructs were stiffer than intact specimens in flexion, extension, and lateral bending, and stiffer than LCP constructs in flexion and left lateral bending. The Pin‐PMMA constructs had less angular deformation at construct yield and lower residual deformation at L1‐L2 than LCP constructs after destructive testing to failure in flexion. The Pin‐PMMA constructs were stiffer, stronger, and had less deformation at yield than LCP constructs after destructive testing to failure in lateral bending. Most constructs failed distant to the implant and fixation site. CONCLUSIONS: Pin‐PMMA constructs had greater lumbar vertebral stiffness and reduced ROM than LCP constructs; however, both Pin‐PMMA and LCP constructs were stronger than intact specimens.
AbstractList Objective To compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and polymethylmethacrylate (Pin-PMMA) or with a unilateral (left) locking compression plate (LCP) with monocortical screws. Study Design Ex vivo biomechanical, non-randomized. Samples: Cadaveric canine thoracolumbar specimens (n=16). Methods Thoracolumbar (T13-L3) vertebral specimens had the L1-L2 vertebral motion unit stabilized with either Pin-PMMA or LCP. Stiffness in flexion, extension, and right and left lateral bending after nondestructive testing were compared between intact (pretreated) specimens and Pin-PMMA, and LCP constructs. The Pin-PMMA and LCP constructs were then tested to failure in flexion and left lateral bending. Results Both the Pin-PMMA and LCP constructs had reduced range of motion at the stabilized L1-L2 vertebral motion unit compared to intact specimens. The Pin-PMMA constructs had less range of motion for the flexion elastic zone than LCP constructs. The Pin-PMMA constructs were stiffer than intact specimens in flexion, extension, and lateral bending, and stiffer than LCP constructs in flexion and left lateral bending. The Pin-PMMA constructs had less angular deformation at construct yield and lower residual deformation at L1-L2 than LCP constructs after destructive testing to failure in flexion. The Pin-PMMA constructs were stiffer, stronger, and had less deformation at yield than LCP constructs after destructive testing to failure in lateral bending. Most constructs failed distant to the implant and fixation site. Conclusions Pin-PMMA constructs had greater lumbar vertebral stiffness and reduced ROM than LCP constructs; however, both Pin-PMMA and LCP constructs were stronger than intact specimens.
Objective To compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and polymethylmethacrylate (Pin‐PMMA) or with a unilateral (left) locking compression plate (LCP) with monocortical screws. Study Design Ex vivo biomechanical, non‐randomized. Samples: Cadaveric canine thoracolumbar specimens (n=16). Methods Thoracolumbar (T13‐L3) vertebral specimens had the L1‐L2 vertebral motion unit stabilized with either Pin‐PMMA or LCP. Stiffness in flexion, extension, and right and left lateral bending after nondestructive testing were compared between intact (pretreated) specimens and Pin‐PMMA, and LCP constructs. The Pin‐PMMA and LCP constructs were then tested to failure in flexion and left lateral bending. Results Both the Pin‐PMMA and LCP constructs had reduced range of motion at the stabilized L1‐L2 vertebral motion unit compared to intact specimens. The Pin‐PMMA constructs had less range of motion for the flexion elastic zone than LCP constructs. The Pin‐PMMA constructs were stiffer than intact specimens in flexion, extension, and lateral bending, and stiffer than LCP constructs in flexion and left lateral bending. The Pin‐PMMA constructs had less angular deformation at construct yield and lower residual deformation at L1‐L2 than LCP constructs after destructive testing to failure in flexion. The Pin‐PMMA constructs were stiffer, stronger, and had less deformation at yield than LCP constructs after destructive testing to failure in lateral bending. Most constructs failed distant to the implant and fixation site. Conclusions Pin‐PMMA constructs had greater lumbar vertebral stiffness and reduced ROM than LCP constructs; however, both Pin‐PMMA and LCP constructs were stronger than intact specimens.
OBJECTIVETo compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and polymethylmethacrylate (Pin-PMMA) or with a unilateral (left) locking compression plate (LCP) with monocortical screws.STUDY DESIGNEx vivo biomechanical, non-randomized.SAMPLESCadaveric canine thoracolumbar specimens (n=16).METHODSThoracolumbar (T13-L3) vertebral specimens had the L1-L2 vertebral motion unit stabilized with either Pin-PMMA or LCP. Stiffness in flexion, extension, and right and left lateral bending after nondestructive testing were compared between intact (pretreated) specimens and Pin-PMMA, and LCP constructs. The Pin-PMMA and LCP constructs were then tested to failure in flexion and left lateral bending.RESULTSBoth the Pin-PMMA and LCP constructs had reduced range of motion at the stabilized L1-L2 vertebral motion unit compared to intact specimens. The Pin-PMMA constructs had less range of motion for the flexion elastic zone than LCP constructs. The Pin-PMMA constructs were stiffer than intact specimens in flexion, extension, and lateral bending, and stiffer than LCP constructs in flexion and left lateral bending. The Pin-PMMA constructs had less angular deformation at construct yield and lower residual deformation at L1-L2 than LCP constructs after destructive testing to failure in flexion. The Pin-PMMA constructs were stiffer, stronger, and had less deformation at yield than LCP constructs after destructive testing to failure in lateral bending. Most constructs failed distant to the implant and fixation site.CONCLUSIONSPin-PMMA constructs had greater lumbar vertebral stiffness and reduced ROM than LCP constructs; however, both Pin-PMMA and LCP constructs were stronger than intact specimens.
To compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and polymethylmethacrylate (Pin-PMMA) or with a unilateral (left) locking compression plate (LCP) with monocortical screws. Ex vivo biomechanical, non-randomized. Cadaveric canine thoracolumbar specimens (n=16). Thoracolumbar (T13-L3) vertebral specimens had the L1-L2 vertebral motion unit stabilized with either Pin-PMMA or LCP. Stiffness in flexion, extension, and right and left lateral bending after nondestructive testing were compared between intact (pretreated) specimens and Pin-PMMA, and LCP constructs. The Pin-PMMA and LCP constructs were then tested to failure in flexion and left lateral bending. Both the Pin-PMMA and LCP constructs had reduced range of motion at the stabilized L1-L2 vertebral motion unit compared to intact specimens. The Pin-PMMA constructs had less range of motion for the flexion elastic zone than LCP constructs. The Pin-PMMA constructs were stiffer than intact specimens in flexion, extension, and lateral bending, and stiffer than LCP constructs in flexion and left lateral bending. The Pin-PMMA constructs had less angular deformation at construct yield and lower residual deformation at L1-L2 than LCP constructs after destructive testing to failure in flexion. The Pin-PMMA constructs were stiffer, stronger, and had less deformation at yield than LCP constructs after destructive testing to failure in lateral bending. Most constructs failed distant to the implant and fixation site. Pin-PMMA constructs had greater lumbar vertebral stiffness and reduced ROM than LCP constructs; however, both Pin-PMMA and LCP constructs were stronger than intact specimens.
Author Sturges, Beverly K.
Kapatkin, Amy S.
Hayashi, Kei
Hitchens, Peta L.
Wisner, Tristan
Garcia, Tanya C.
Fukuda, Shimpei
Anwer, Cona
Stover, Susan M.
Author_xml – sequence: 1
  givenname: Beverly K.
  surname: Sturges
  fullname: Sturges, Beverly K.
  email: bksturges@ucdavis.edu
  organization: Department of Surgical and Radiological Sciences
– sequence: 2
  givenname: Amy S.
  surname: Kapatkin
  fullname: Kapatkin, Amy S.
  organization: Department of Surgical and Radiological Sciences
– sequence: 3
  givenname: Tanya C.
  surname: Garcia
  fullname: Garcia, Tanya C.
  organization: JD Wheat Veterinary Orthopedic Research Laboratory
– sequence: 4
  givenname: Cona
  surname: Anwer
  fullname: Anwer, Cona
  organization: William R. Pritchard Veterinary Teaching Hospital, School of Veterinary Medicine, University of California-Davis, California, Davis
– sequence: 5
  givenname: Shimpei
  surname: Fukuda
  fullname: Fukuda, Shimpei
  organization: JD Wheat Veterinary Orthopedic Research Laboratory
– sequence: 6
  givenname: Peta L.
  surname: Hitchens
  fullname: Hitchens, Peta L.
  organization: JD Wheat Veterinary Orthopedic Research Laboratory
– sequence: 7
  givenname: Tristan
  surname: Wisner
  fullname: Wisner, Tristan
  organization: JD Wheat Veterinary Orthopedic Research Laboratory
– sequence: 8
  givenname: Kei
  surname: Hayashi
  fullname: Hayashi, Kei
  organization: Department of Surgical and Radiological Sciences
– sequence: 9
  givenname: Susan M.
  surname: Stover
  fullname: Stover, Susan M.
  organization: JD Wheat Veterinary Orthopedic Research Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27007649$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhi1URNPAgheAkdjAYlp7fMssS0QLUoCIkBaxsTyeM43bmXGwZwLhYXhWnBuLCoQXPtbx9x9fzn-CjlrXAkJPCT4lcZytQn9KMsbzB2hAOM3SnOMvR2iAiSApZXl-jE5CuMUY54zRR-g4kxhLwfIB-vXaugbMQrfW6DoZu2apvQ2uTVyVTJy5s-3NNushBBvT01p3kKzAhz4kUxdsZ1eQTL2rbB2jbUOi2zLu1OsGusW63sza-PVWVzmfzDpd2Nr-1J3dHdMtIBnHC7SQTPqm0D65At9B4TU8Rg8rXQd4so9DNL9483n8Np18vHw3Pp-khhOWp6bQJRmVlABkIquoyAqQYiQANK1IqSkwzonISsGJ5gXPTFnkUFWjjBSVYZIO0ctd3aV333oInWpsMFDXugXXB0VGBGOaC87_j0o5YpiwTET0xT301vW-jQ_ZUFIKjhmJ1LM91RcNlGrpbaP9Wh2aFIGzHWC8C8FDpYzttr_XeW1rRbDa2EBFG6itDaLi1T3Foejf2H3177GB63-D6mo2PyjSncKGDn78UWh_p4SkkqvrD5fqmn59fzEWn-JiiJ7v-Eo7pW-ivdR8lkVzYkwkFpjR36bW3O4
CitedBy_id crossref_primary_10_12968_coan_2020_0027b
crossref_primary_10_1055_s_0043_1776784
crossref_primary_10_3390_ani12020193
crossref_primary_10_1177_1098612X18757592
crossref_primary_10_1111_vsu_13558
crossref_primary_10_3389_fvets_2021_755572
crossref_primary_10_1111_vsu_13516
crossref_primary_10_1186_s12917_024_04365_5
crossref_primary_10_1055_s_0044_1789252
crossref_primary_10_1111_vsu_13958
crossref_primary_10_2460_ajvr_81_12_915
crossref_primary_10_1055_s_0044_1787077
crossref_primary_10_1055_s_0041_1731808
crossref_primary_10_1136_vetreccr_2019_001033
crossref_primary_10_1055_s_0042_1750056
crossref_primary_10_5433_1679_0359_2020v41n5supl1p2453
crossref_primary_10_1111_jsap_13400
crossref_primary_10_1155_2022_5112274
crossref_primary_10_1055_s_0044_1787707
crossref_primary_10_1111_vsu_13140
crossref_primary_10_1590_1678_4162_11533
Cites_doi 10.1097/00005131-200409000-00003
10.1111/j.1532-950X.2008.00465.x
10.2460/ajvr.70.1.23
10.1016/j.cvsm.2010.05.004
10.3415/VCOT-14-03-0040
10.2460/javma.1971.158.10.1683
10.2460/ajvr.1988.49.02.266
10.3415/VCOT-08-09-0092
10.1016/j.jhsa.2014.06.141
10.1007/s005860050045
10.1111/j.1532-950X.2011.00912.x
10.1111/j.1532-950X.1984.tb00790.x
10.1080/000164701317268978
10.1111/j.1532-950X.2014.12267.x
10.1016/j.jhsa.2011.12.013
10.1016/j.clinbiomech.2007.08.004
10.2460/ajvr.1996.57.08.1228
10.1111/j.1532-950X.1990.tb01171.x
10.1055/s-0038-1632655
10.1038/boneres.2014.14
10.1111/j.1532-950X.2010.00755.x
10.1371/journal.pone.0109808
10.1111/j.1532-950X.2007.00289.x
10.2460/javma.1973.162.12.1041
ContentType Journal Article
Copyright Copyright 2016 by The American College of Veterinary Surgeons
Copyright 2016 by The American College of Veterinary Surgeons.
Copyright_xml – notice: Copyright 2016 by The American College of Veterinary Surgeons
– notice: Copyright 2016 by The American College of Veterinary Surgeons.
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
M7Z
P64
7X8
7S9
L.6
DOI 10.1111/vsu.12459
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Biochemistry Abstracts 1

AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1532-950X
EndPage 318
ExternalDocumentID 4007744611
27007649
10_1111_vsu_12459
VSU12459
ark_67375_WNG_W3ZMFC6R_W
US201600170604
Genre article
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: AO Foundation Grant AOVET‐12‐02K and the Center for Companion Animal Health, University of California‐Davis
  funderid: 2012‐29‐F
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29Q
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
EYRJQ
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HVLQZ
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WOIKV
WPGGZ
WQJ
WRC
WXSBR
XG1
ZZTAW
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
M7Z
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c5149-cbad18d31ee262f362be7686eea3f1da3e455162d651a5b52cdb9eff821bfc473
IEDL.DBID DR2
ISSN 0161-3499
IngestDate Fri Jul 11 18:40:24 EDT 2025
Fri Jul 11 09:13:46 EDT 2025
Mon Sep 08 08:13:08 EDT 2025
Wed Feb 19 01:56:05 EST 2025
Thu Apr 24 23:12:33 EDT 2025
Thu Jul 03 08:35:06 EDT 2025
Thu Sep 25 07:37:00 EDT 2025
Sun Sep 21 06:15:40 EDT 2025
Wed Dec 27 19:23:42 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright 2016 by The American College of Veterinary Surgeons.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5149-cbad18d31ee262f362be7686eea3f1da3e455162d651a5b52cdb9eff821bfc473
Notes http://dx.doi.org/10.1111/vsu.12459
AO Foundation Grant AOVET-12-02K and the Center for Companion Animal Health, University of California-Davis - No. 2012-29-F
ark:/67375/WNG-W3ZMFC6R-W
ArticleID:VSU12459
istex:138A0C536F202DB0E4689363C0A276643996CF0A
Presented, in part, at the One AO Conference, Las Vegas, NV, February 2015.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 27007649
PQID 1777765041
PQPubID 47807
PageCount 10
ParticipantIDs proquest_miscellaneous_1810039655
proquest_miscellaneous_1778401426
proquest_journals_1777765041
pubmed_primary_27007649
crossref_citationtrail_10_1111_vsu_12459
crossref_primary_10_1111_vsu_12459
wiley_primary_10_1111_vsu_12459_VSU12459
istex_primary_ark_67375_WNG_W3ZMFC6R_W
fao_agris_US201600170604
PublicationCentury 2000
PublicationDate April 2016
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Germantown
PublicationTitle Veterinary surgery
PublicationTitleAlternate Veterinary Surgery
PublicationYear 2016
Publisher Blackwell [etc.]
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell [etc.]
– name: Blackwell Publishing Ltd
References Sharp NJH, Wheeler SJ: Small animal spinal disorders: diagnosis and surgery (ed 2). Philadephia, PA, Elsevier Mosby, 2005
Johnson AL, Houlton JEF, Vannini R: AO Principles of fracture management in the dog and cat. New York, NY, Thieme, 2005
Shires PK, Waldron DR, Hedlund CS: A biomechanical study of rotational instability in unaltered and surgically altered canine thoracolumbar vertebral motion units. Prog Vet Neur 1991;2:6-14
Egol KA, Kubiak EN, Fulkerson E, et al: Biomechanics of locked plates and screws. J Orthop Trauma 2004;18:488-493
Aikawa T, Kanazono S, Yoshigae Y, et al: Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate, with or without laminectomy, for spinal canal stenosis and vertebral instability caused by congenital thoracic vertebral anomalies. Vet Surg 2007;36:432-441
Smith GK, Walter MC: Spinal decompressive procedures and dorsal compartment injuries: comparative biomechanical study in canine cadavers. Am J Vet Res1998;49:266-273
Wilke HJ, Wenger K, Claes L: Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 1998;7:148-154
Hofstetter M, Gedet P, Doherr M, et al: Biomechanical analysis of the three-dimensional motion pattern of the canine cervical spine segment C4-C5. Vet Surg 2009;38:49-58
Pater T, Grindel S, Schmeling G, et al: Stability of unicortical locked fixation versus bicortical non-locked fixation for forearm fractures. Bone Res 2014;2:1-5
Arthurs G: Spinal instability resulting from bilateral mini-hemilaminectomy and pediculectomy. Vet Comp Orthop Traumatol 2009;22:422-426
Wall L, Brodt M, Silva M, et al: The effects of screw length on stability of simulated osteoporotic distal radius fractures fixed with volar locking plates. J Hand Surg Am 2012;37A:446-453
Bruecker KA, Seim HB: Principles of spinal fracture management. Semin Vet Med Surg 1992;7:71-84
Demner D, Garcia TC, Serdy MG, et al: Biomechanical comparison of mono- and bicortical screws in an experimentally induced gap fracture. Vet Comp Orthop Traumatol 2014;27:422-429
Agnello KA, Kapatkin AS, Garcia TC, et al: Intervertebral biomechanics of locking compression plate monocortical fixation of the canine cervical spine. Vet Surg 2010;39:991-1000
Tobias KM, Johnston SA: Veterinary surgery: small animal. St. Louis, MO, Elsevier, 2012
Turk R, Singh A, Weese JS: Prospective surgical site infection surveillance in dogs. Vet Surg 2015;44:2-8
Roush JK, Wilson JW: Effects of plate luting on cortical vascularity and development of cortical porosity in canine femurs. Vet Surg 1990;19:208-214
Goh CS, Santoni BG, Puttlitz CM, et al: Comparison of the mechanical behaviors of semicontoured, locking plate-rod fixation and anatomically contoured, conventional plate-rod fixation applied to experimentally induced gap fractures in canine femora. Am J Vet Res 2009;70:23-29
Revés NV, Bürki A, Ferguson S, et al: Influence of partial lateral corpectomy with and without hemilaminectomy on canine thoracolumbar stability: a biomechanical study. Vet Surg 2012;41:228-234
Miller DL, Goswami T: A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. Clin Biomech (Bristol, Avon) 2007;22:1049-1062
Blass C, Seim H: Spinal fixation in dogs using Steinman pins and methylmethacrylate. Vet Surg 1984;13:203-210
van de Belt H, Neut D, Schenk W, et al: Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review. Acta Orthop Scand 2001;72:557-571
Overturf S, Morris R, Gugala Z, et al: Biomechanical comparison of bicortical locking versus unicortical far-cortex-abutting locking screw-plate fixation for comminuted radial shaft fractures. J Hand Surg Am 2014;39:1907-1913
Liu X, Wu W, Fang Y, et al: Biomechanical comparison of osteoporotic distal radius fractures fixed by distal locking screws with different length. Plos One 2014;9:1-9
Swaim SF: Vertebral body plating for spinal immobilization. J Am Vet Med Assoc 1971;158:1683-1695
Hill TP, Lubbe AM, Guthrie AJ: Lumbar spine stability following hemilaminectomy, pediculectomy, and fenestration. Vet Comp Orthop Traumatol 2000;13:165-171
Jeffery ND: Vertebral fracture and luxation in small animals. Vet Clin North Am Small Anim Pract 2010;40:809-828
Parker AJ: Clinical significance of traumatic occlusion of segmental spinal arteries. J Am Vet Med Assoc1973;162:1041-1042
Schulz KS, Waldron DR, Grant JW, et al: Biomechanics of the thoracolumbar vertebral column of dogs during lateral bending. Am J Vet Res 1996;57:1228-1232
1998; 49
2009; 22
1991; 2
2001; 72
2012
2010; 39
1973; 162
1990; 19
2014; 27
2005
2002
1996; 57
2010; 40
2007; 36
1992; 7
2014; 2
2004; 18
2009; 70
2000; 13
2015; 44
1984; 13
2012; 37A
1971; 158
2014; 39
1998; 7
2014; 9
2007; 22
2009; 38
2012; 41
e_1_2_7_4_1
Sturges BK (e_1_2_7_13_1) 2002
Schulz KS (e_1_2_7_25_1) 1996; 57
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Smith GK (e_1_2_7_20_1) 1998; 49
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Parker AJ (e_1_2_7_9_1) 1973; 162
Swaim SF (e_1_2_7_26_1) 1971; 158
Bruecker KA (e_1_2_7_5_1) 1992; 7
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
Tobias KM (e_1_2_7_2_1) 2012
Sharp NJH (e_1_2_7_3_1) 2005
Shires PK (e_1_2_7_21_1) 1991; 2
Johnson AL (e_1_2_7_6_1) 2005
References_xml – reference: Wall L, Brodt M, Silva M, et al: The effects of screw length on stability of simulated osteoporotic distal radius fractures fixed with volar locking plates. J Hand Surg Am 2012;37A:446-453
– reference: Swaim SF: Vertebral body plating for spinal immobilization. J Am Vet Med Assoc 1971;158:1683-1695
– reference: Agnello KA, Kapatkin AS, Garcia TC, et al: Intervertebral biomechanics of locking compression plate monocortical fixation of the canine cervical spine. Vet Surg 2010;39:991-1000
– reference: Smith GK, Walter MC: Spinal decompressive procedures and dorsal compartment injuries: comparative biomechanical study in canine cadavers. Am J Vet Res1998;49:266-273
– reference: Wilke HJ, Wenger K, Claes L: Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 1998;7:148-154
– reference: Turk R, Singh A, Weese JS: Prospective surgical site infection surveillance in dogs. Vet Surg 2015;44:2-8
– reference: van de Belt H, Neut D, Schenk W, et al: Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review. Acta Orthop Scand 2001;72:557-571
– reference: Parker AJ: Clinical significance of traumatic occlusion of segmental spinal arteries. J Am Vet Med Assoc1973;162:1041-1042
– reference: Roush JK, Wilson JW: Effects of plate luting on cortical vascularity and development of cortical porosity in canine femurs. Vet Surg 1990;19:208-214
– reference: Pater T, Grindel S, Schmeling G, et al: Stability of unicortical locked fixation versus bicortical non-locked fixation for forearm fractures. Bone Res 2014;2:1-5
– reference: Aikawa T, Kanazono S, Yoshigae Y, et al: Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate, with or without laminectomy, for spinal canal stenosis and vertebral instability caused by congenital thoracic vertebral anomalies. Vet Surg 2007;36:432-441
– reference: Overturf S, Morris R, Gugala Z, et al: Biomechanical comparison of bicortical locking versus unicortical far-cortex-abutting locking screw-plate fixation for comminuted radial shaft fractures. J Hand Surg Am 2014;39:1907-1913
– reference: Demner D, Garcia TC, Serdy MG, et al: Biomechanical comparison of mono- and bicortical screws in an experimentally induced gap fracture. Vet Comp Orthop Traumatol 2014;27:422-429
– reference: Miller DL, Goswami T: A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing. Clin Biomech (Bristol, Avon) 2007;22:1049-1062
– reference: Hill TP, Lubbe AM, Guthrie AJ: Lumbar spine stability following hemilaminectomy, pediculectomy, and fenestration. Vet Comp Orthop Traumatol 2000;13:165-171
– reference: Sharp NJH, Wheeler SJ: Small animal spinal disorders: diagnosis and surgery (ed 2). Philadephia, PA, Elsevier Mosby, 2005
– reference: Tobias KM, Johnston SA: Veterinary surgery: small animal. St. Louis, MO, Elsevier, 2012
– reference: Jeffery ND: Vertebral fracture and luxation in small animals. Vet Clin North Am Small Anim Pract 2010;40:809-828
– reference: Egol KA, Kubiak EN, Fulkerson E, et al: Biomechanics of locked plates and screws. J Orthop Trauma 2004;18:488-493
– reference: Arthurs G: Spinal instability resulting from bilateral mini-hemilaminectomy and pediculectomy. Vet Comp Orthop Traumatol 2009;22:422-426
– reference: Blass C, Seim H: Spinal fixation in dogs using Steinman pins and methylmethacrylate. Vet Surg 1984;13:203-210
– reference: Hofstetter M, Gedet P, Doherr M, et al: Biomechanical analysis of the three-dimensional motion pattern of the canine cervical spine segment C4-C5. Vet Surg 2009;38:49-58
– reference: Revés NV, Bürki A, Ferguson S, et al: Influence of partial lateral corpectomy with and without hemilaminectomy on canine thoracolumbar stability: a biomechanical study. Vet Surg 2012;41:228-234
– reference: Goh CS, Santoni BG, Puttlitz CM, et al: Comparison of the mechanical behaviors of semicontoured, locking plate-rod fixation and anatomically contoured, conventional plate-rod fixation applied to experimentally induced gap fractures in canine femora. Am J Vet Res 2009;70:23-29
– reference: Johnson AL, Houlton JEF, Vannini R: AO Principles of fracture management in the dog and cat. New York, NY, Thieme, 2005
– reference: Bruecker KA, Seim HB: Principles of spinal fracture management. Semin Vet Med Surg 1992;7:71-84
– reference: Schulz KS, Waldron DR, Grant JW, et al: Biomechanics of the thoracolumbar vertebral column of dogs during lateral bending. Am J Vet Res 1996;57:1228-1232
– reference: Shires PK, Waldron DR, Hedlund CS: A biomechanical study of rotational instability in unaltered and surgically altered canine thoracolumbar vertebral motion units. Prog Vet Neur 1991;2:6-14
– reference: Liu X, Wu W, Fang Y, et al: Biomechanical comparison of osteoporotic distal radius fractures fixed by distal locking screws with different length. Plos One 2014;9:1-9
– volume: 2
  start-page: 6
  year: 1991
  end-page: 14
  article-title: A biomechanical study of rotational instability in unaltered and surgically altered canine thoracolumbar vertebral motion units
  publication-title: Prog Vet Neur
– volume: 37A
  start-page: 446
  year: 2012
  end-page: 453
  article-title: The effects of screw length on stability of simulated osteoporotic distal radius fractures fixed with volar locking plates
  publication-title: J Hand Surg Am
– volume: 2
  start-page: 1
  year: 2014
  end-page: 5
  article-title: Stability of unicortical locked fixation versus bicortical non‐locked fixation for forearm fractures
  publication-title: Bone Res
– volume: 41
  start-page: 228
  year: 2012
  end-page: 234
  article-title: Influence of partial lateral corpectomy with and without hemilaminectomy on canine thoracolumbar stability: a biomechanical study
  publication-title: Vet Surg
– year: 2005
– volume: 19
  start-page: 208
  year: 1990
  end-page: 214
  article-title: Effects of plate luting on cortical vascularity and development of cortical porosity in canine femurs
  publication-title: Vet Surg
– volume: 7
  start-page: 148
  year: 1998
  end-page: 154
  article-title: Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants
  publication-title: Eur Spine J
– volume: 158
  start-page: 1683
  year: 1971
  end-page: 1695
  article-title: Vertebral body plating for spinal immobilization
  publication-title: J Am Vet Med Assoc
– volume: 57
  start-page: 1228
  year: 1996
  end-page: 1232
  article-title: Biomechanics of the thoracolumbar vertebral column of dogs during lateral bending
  publication-title: Am J Vet Res
– volume: 13
  start-page: 203
  year: 1984
  end-page: 210
  article-title: Spinal fixation in dogs using Steinman pins and methylmethacrylate
  publication-title: Vet Surg
– volume: 7
  start-page: 71
  year: 1992
  end-page: 84
  article-title: Principles of spinal fracture management
  publication-title: Semin Vet Med Surg
– volume: 13
  start-page: 165
  year: 2000
  end-page: 171
  article-title: Lumbar spine stability following hemilaminectomy, pediculectomy, and fenestration
  publication-title: Vet Comp Orthop Traumatol
– volume: 44
  start-page: 2
  year: 2015
  end-page: 8
  article-title: Prospective surgical site infection surveillance in dogs
  publication-title: Vet Surg
– volume: 36
  start-page: 432
  year: 2007
  end-page: 441
  article-title: Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate, with or without laminectomy, for spinal canal stenosis and vertebral instability caused by congenital thoracic vertebral anomalies
  publication-title: Vet Surg
– volume: 9
  start-page: 1
  year: 2014
  end-page: 9
  article-title: Biomechanical comparison of osteoporotic distal radius fractures fixed by distal locking screws with different length
  publication-title: Plos One
– volume: 39
  start-page: 1907
  year: 2014
  end-page: 1913
  article-title: Biomechanical comparison of bicortical locking versus unicortical far‐cortex–abutting locking screw‐plate fixation for comminuted radial shaft fractures
  publication-title: J Hand Surg Am
– year: 2012
– volume: 40
  start-page: 809
  year: 2010
  end-page: 828
  article-title: Vertebral fracture and luxation in small animals
  publication-title: Vet Clin North Am Small Anim Pract
– volume: 72
  start-page: 557
  year: 2001
  end-page: 571
  article-title: Infection of orthopedic implants and the use of antibiotic‐loaded bone cements. A review
  publication-title: Acta Orthop Scand
– volume: 18
  start-page: 488
  year: 2004
  end-page: 493
  article-title: Biomechanics of locked plates and screws
  publication-title: J Orthop Trauma
– volume: 38
  start-page: 49
  year: 2009
  end-page: 58
  article-title: Biomechanical analysis of the three‐dimensional motion pattern of the canine cervical spine segment C4‐C5
  publication-title: Vet Surg
– volume: 70
  start-page: 23
  year: 2009
  end-page: 29
  article-title: Comparison of the mechanical behaviors of semicontoured, locking plate‐rod fixation and anatomically contoured, conventional plate‐rod fixation applied to experimentally induced gap fractures in canine femora
  publication-title: Am J Vet Res
– volume: 22
  start-page: 1049
  year: 2007
  end-page: 1062
  article-title: A review of locking compression plate biomechanics and their advantages as internal fixators in fracture healing
  publication-title: Clin Biomech (Bristol, Avon)
– year: 2002
– volume: 39
  start-page: 991
  year: 2010
  end-page: 1000
  article-title: Intervertebral biomechanics of locking compression plate monocortical fixation of the canine cervical spine
  publication-title: Vet Surg
– volume: 27
  start-page: 422
  year: 2014
  end-page: 429
  article-title: Biomechanical comparison of mono‐ and bicortical screws in an experimentally induced gap fracture
  publication-title: Vet Comp Orthop Traumatol
– volume: 162
  start-page: 1041
  year: 1973
  end-page: 1042
  article-title: Clinical significance of traumatic occlusion of segmental spinal arteries
  publication-title: J Am Vet Med Assoc
– volume: 22
  start-page: 422
  year: 2009
  end-page: 426
  article-title: Spinal instability resulting from bilateral mini‐hemilaminectomy and pediculectomy
  publication-title: Vet Comp Orthop Traumatol
– volume: 49
  start-page: 266
  year: 1998
  end-page: 273
  article-title: Spinal decompressive procedures and dorsal compartment injuries: comparative biomechanical study in canine cadavers
  publication-title: Am J Vet Res
– ident: e_1_2_7_15_1
  doi: 10.1097/00005131-200409000-00003
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1532-950X.2008.00465.x
– volume: 2
  start-page: 6
  year: 1991
  ident: e_1_2_7_21_1
  article-title: A biomechanical study of rotational instability in unaltered and surgically altered canine thoracolumbar vertebral motion units
  publication-title: Prog Vet Neur
– ident: e_1_2_7_17_1
  doi: 10.2460/ajvr.70.1.23
– ident: e_1_2_7_4_1
  doi: 10.1016/j.cvsm.2010.05.004
– ident: e_1_2_7_16_1
  doi: 10.3415/VCOT-14-03-0040
– volume: 158
  start-page: 1683
  year: 1971
  ident: e_1_2_7_26_1
  article-title: Vertebral body plating for spinal immobilization
  publication-title: J Am Vet Med Assoc
  doi: 10.2460/javma.1971.158.10.1683
– volume: 49
  start-page: 266
  year: 1998
  ident: e_1_2_7_20_1
  article-title: Spinal decompressive procedures and dorsal compartment injuries: comparative biomechanical study in canine cadavers
  publication-title: Am J Vet Res
  doi: 10.2460/ajvr.1988.49.02.266
– ident: e_1_2_7_24_1
  doi: 10.3415/VCOT-08-09-0092
– ident: e_1_2_7_30_1
  doi: 10.1016/j.jhsa.2014.06.141
– ident: e_1_2_7_19_1
  doi: 10.1007/s005860050045
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1532-950X.2011.00912.x
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1532-950X.1984.tb00790.x
– volume-title: Textbook of small animal surgery
  year: 2002
  ident: e_1_2_7_13_1
– ident: e_1_2_7_11_1
  doi: 10.1080/000164701317268978
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1532-950X.2014.12267.x
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jhsa.2011.12.013
– ident: e_1_2_7_14_1
  doi: 10.1016/j.clinbiomech.2007.08.004
– volume: 57
  start-page: 1228
  year: 1996
  ident: e_1_2_7_25_1
  article-title: Biomechanics of the thoracolumbar vertebral column of dogs during lateral bending
  publication-title: Am J Vet Res
  doi: 10.2460/ajvr.1996.57.08.1228
– volume-title: Veterinary surgery: small animal
  year: 2012
  ident: e_1_2_7_2_1
– volume: 7
  start-page: 71
  year: 1992
  ident: e_1_2_7_5_1
  article-title: Principles of spinal fracture management
  publication-title: Semin Vet Med Surg
– ident: e_1_2_7_12_1
  doi: 10.1111/j.1532-950X.1990.tb01171.x
– ident: e_1_2_7_22_1
  doi: 10.1055/s-0038-1632655
– volume-title: Small animal spinal disorders: diagnosis and surgery
  year: 2005
  ident: e_1_2_7_3_1
– ident: e_1_2_7_31_1
  doi: 10.1038/boneres.2014.14
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1532-950X.2010.00755.x
– ident: e_1_2_7_28_1
  doi: 10.1371/journal.pone.0109808
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1532-950X.2007.00289.x
– volume-title: AO Principles of fracture management in the dog and cat
  year: 2005
  ident: e_1_2_7_6_1
– volume: 162
  start-page: 1041
  year: 1973
  ident: e_1_2_7_9_1
  article-title: Clinical significance of traumatic occlusion of segmental spinal arteries
  publication-title: J Am Vet Med Assoc
  doi: 10.2460/javma.1973.162.12.1041
SSID ssj0009443
Score 2.2433052
Snippet OBJECTIVE: To compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and...
Objective To compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and...
To compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and...
Objective To compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and...
OBJECTIVETo compare the stiffness, angular deformation, and mode of failure of lumbar vertebral column constructs stabilized with bilateral pins and...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 309
SubjectTerms Animals
Biomechanical Phenomena
Biomechanics
Bone Nails - veterinary
Bone Plates - veterinary
deformation
Dogs
Dogs - injuries
Dogs - surgery
Ligaments
Lumbar Vertebrae - injuries
Lumbar Vertebrae - surgery
nondestructive methods
Polymethyl Methacrylate
polymethylmethacrylate
Range of Motion, Articular
Spinal Fractures - surgery
Spinal Fractures - veterinary
surgery
Surgical techniques
vertebrae
Veterinary medicine
Title Biomechanical Comparison of Locking Compression Plate versus Positive Profile Pins and Polymethylmethacrylate for Stabilization of the Canine Lumbar Vertebrae
URI https://api.istex.fr/ark:/67375/WNG-W3ZMFC6R-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fvsu.12459
https://www.ncbi.nlm.nih.gov/pubmed/27007649
https://www.proquest.com/docview/1777765041
https://www.proquest.com/docview/1778401426
https://www.proquest.com/docview/1810039655
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGnnjhMi4LDGQQQnvJhHNxEvEEhTKhbao22k4IybKdkwmtpChtEeXH8Fs5x04CQwMhWqmqGlu1T47tz_F3vsPYE5GVCcQZhJK2q0mcyDAv4yKURjzTOpel9gTZI7k_Tt6epqcb7HkXC-P1IfoHbjQy3HxNA1ybxS-DnHQdcXFKKXhPxJJ0818d_5SOKhLPmBP0fAVhfasqRCyevuaFtehKpeeIUMm4Xy-DmxfRq1t-htfZh67hnnVyvrdamj377TdNx__s2Q12rYWl_IX3o5tsA-ottjUhrowL2OWH7Rn8Lfb9JUXsU8Aw3V8-6BMZ8nnFD3B6xcXQ_eoZtjUfzRDPcqJ_rBZ85EhiX4CPfLJwPvpYL7iuS7wyW1M-6_WMPrVt1q4egmqOiJg4vD5ilP4GUSsfYANq4AerT0Y3fALNks7A4TYbD1-_G-yHbZaH0CJYK0JrdCnQPwRAJKMKF1QDuAeSADquRKljSOgwLyplKnRq0siWpoCqyiNhKptk8R22Wc9r2GYcdBUXGt-VBdz2GxMh4Mq1BAskeWUDttvdb2VbCXTKxDFT3VYITa-c6QP2uC_62et-XFZoG51G6TO0shqfRKTW1-oRBeyp86S-sm7OiUOXpWp69EZN4_eHw4E8VtOA7XSuptrpY6FEhi_EzokI2KP-Mg58Os3RNcxXrgxuzgUirL-UyQUFX8s0Ddhd78Z9g4hxkMkEO7HrnPHP3VSTk7H7cu_fi95nV8kcnuO0wzaXzQoeIHxbmodunP4AU8xCgg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELa28QG-8DJeFhhgEEL7kgnnxWkkvkBFKdBW1ba20yRk2cllmlZS1DaI8mP4rdzZaWBoIEQjVVViq_blbD_2PXfH2DOR5BGECfiStqtRGEm_lYepL414oXVL5toRZAeyO4reH8fHG-zl2hfGxYdoDtxoZNj5mgY4HUj_MsopsCOuTnG6ya5Y-xxBooOfwaPSyHHmBJ2wILCv4woRj6epemE12iz0DDEqiffrZYDzIn61C1DnBvu4brrjnZzvV0uzn337Larj__btJrteI1P-yqnSLbYB5TbbHhNdxvrs8n5thr_Nvr8mp33yGaZXzNtNLkM-K3gPZ1hcD-1dR7It-XCKkJYTA6Ra8KHliX0BPnT5wvnwrFxwXeb4ZLqilNarKX3rbL6y9RBXcwTFRON1TqP0NwhceRsbUALvVZ-MnvMxzJdkBoc7bNR5c9Tu-nWiBz9DvJb6mdG5QBURAIEMClxTDeA2SALosBC5DiEie16Qy1jo2MRBlpsUiqIVCFNkURLeZVvlrIQdxkEXYarxKjLAnb8xAWKulpaQAUW9yjy2t37hKqujoFMyjqla74ZQ9MqK3mNPm6KfXeiPywrtoNYofYpSVqPDgAL21SGJPPbcqlJTWc_PiUaXxGoyeKsm4Um_05YHauKx3bWuqXoGWSiR4AfhcyQ89qR5jGOfDDq6hFlly-D-XCDI-kuZliD_axnHHrvn9LhpEJEOEhlhJ_asNv65m2p8OLI_7v970cfsaveo31O9d4MPD9g1Eo2jPO2yreW8goeI5pbmkR20PwBT9kag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwED5tQ0J8GTBeFhhgEEL7kgnnxWnEJyiUAV1VbbSdEJJlJ86EVtIpbRHlx_BbubOTwNBAiFaqqsZW7cvZ91z83B3AY57kkQkT4wtyV6MwEn4nD1NfaP5UqY7IlSPIDsT-KHp7HB-vwbMmFsblh2gfuNHKsPs1LfCzvPhlkVNeRzROcboOlyKBZpIQ0eHP3FFp5ChznB6wIK6v0woRjaftes4YrRdqhhCVpPv1Irx5Hr5a-9O7Ch-bkTvayenecqH3sm-_JXX8z6ldg80al7LnTpGuw5opt2BrTGQZG7HLDupD-Bvw_QWF7FPEMN1g1m0rGbJZwfq4v6I1tL86im3JhlMEtIz4H8s5G1qW2BfDhq5aOBt-KudMlTlema6ooPVqSp8qq1a2H6JqhpCYSLwuZJT-BmEr6-IASsP6y89aVWxsqgUdgpubMOq9et_d9-syD36GaC31M61yjgrCjQlEUKBF1QadIGGMCgueq9BEdJoX5CLmKtZxkOU6NUXRCbgusigJb8FGOSvNNjCjijBV-C4yg36_1gEiro4SJjOU8yrzYLe53zKrc6BTKY6pbHwhFL20ovfgUdv0zCX-uKjRNiqNVCcoZTk6CihdX52QyIMnVpPazqo6JRJdEsvJ4LWchB8Oel1xKCce7DSqJuv9Yy55gi8EzxH34GF7GVc-Heeo0syWtg165xwh1l_adDhFX4s49uC2U-N2QEQ5SESEk9i1yvjnacrx0ch-ufPvTR_A5eHLnuy_Gby7C1dIMo7vtAMbi2pp7iGUW-j7dsn-AFIMRU8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biomechanical+Comparison+of+Locking+Compression+Plate+versus+Positive+Profile+Pins+and+Polymethylmethacrylate+for+Stabilization+of+the+Canine+Lumbar+Vertebrae&rft.jtitle=Veterinary+surgery&rft.au=Sturges%2C+Beverly+K&rft.au=Kapatkin%2C+Amy+S&rft.au=Garcia%2C+Tanya+C&rft.au=Anwer%2C+Cona&rft.date=2016-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0161-3499&rft.eissn=1532-950X&rft.volume=45&rft.issue=3&rft.spage=309&rft_id=info:doi/10.1111%2Fvsu.12459&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4007744611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-3499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-3499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-3499&client=summon