Ultrasensitive, Biocompatible, Self-Calibrating, Multiparametric Temperature Sensors

Core–shell quantum dots serve as self‐calibrating, ultrasensitive, multiparametric, near‐infrared, and biocompatible temperature sensors. They allow temperature measurement with nanometer accuracy in the range 150–373 K, the broadest ever recorded for a nanothermometer, with sensitivities among the...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 11; no. 43; pp. 5741 - 5746
Main Authors Zhao, Haiguang, Vomiero, Alberto, Rosei, Federico
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 18.11.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.201502249

Cover

Abstract Core–shell quantum dots serve as self‐calibrating, ultrasensitive, multiparametric, near‐infrared, and biocompatible temperature sensors. They allow temperature measurement with nanometer accuracy in the range 150–373 K, the broadest ever recorded for a nanothermometer, with sensitivities among the highest ever reported, which makes them essentially unique in the panorama of biocompatible nanothermometers with potential for in vivo biological thermal imaging and/or thermoablative therapy.
AbstractList Core–shell quantum dots serve as self-calibrating, ultrasensitive, multiparametric, near-infrared, and biocompatible temperature sensors. They allow temperature measurement with nanometer accuracy in the range 150–373 K, the broadest ever recorded for a nanothermometer, with sensitivities among the highest ever reported, which makes them essentially unique in the panorama of biocompatible nanothermometers with potential for in vivo biological thermal imaging and/or thermoablative therapy.
Author Rosei, Federico
Vomiero, Alberto
Zhao, Haiguang
Author_xml – sequence: 1
  givenname: Haiguang
  surname: Zhao
  fullname: Zhao, Haiguang
  email: haiguang.zhao@emt.inrs.ca
  organization: CNR INO SENSOR Lab, Via Branze 45, 25123, Brescia, Italy
– sequence: 2
  givenname: Alberto
  surname: Vomiero
  fullname: Vomiero, Alberto
  email: haiguang.zhao@emt.inrs.ca
  organization: CNR INO SENSOR Lab, Via Branze 45, 25123, Brescia, Italy
– sequence: 3
  givenname: Federico
  surname: Rosei
  fullname: Rosei, Federico
  email: haiguang.zhao@emt.inrs.ca
  organization: Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, J3X 1S2, Varennes, Québec, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26467511$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-13037$$DView record from Swedish Publication Index
BookMark eNqFkUtv1DAURi1URF9sWaKR2E4GP-NkWQZaEFOoNFNYWonnunJx4tR2KP33uEo7qiohVn6d88n67iHa630PCL0heEEwpu9j59yCYiIwpbx-gQ5ISVhRVrTe2-0J3keHMV5jzAjl8hXapyUvpSDkAG0uXQpNhD7aZH_DfPbBeu27oUm2dfm4BmeKZeNsG_JVfzWfnY8u2aEJTQcpWD3bQDdAfhwDZLqPPsRj9NI0LsLrh_UIXZ5-2iw_F6vvZ1-WJ6tCC8LrgunSkFpz4BQYBQ6GGQZmy6tWcr1tiaSyFCCwaStZ85ozLXGLaWWwJLQt2RGaT7nxFoaxVUOwXRPulG-s-mh_nCgfrpRLoyIMM5nxdxM-BH8zQkzq2o-hzz9URApZVkJUIlNvH6ix7WC7C33sLAN8AnTwMQYwStuUy_F9btI6RbC6H426H43ajSZri2faY_I_hXoSbq2Du__Qan2-Wj11i8m1McGfnduEX6qUTAr189uZIhtB6tP1hfrK_gKrkLDD
CitedBy_id crossref_primary_10_1039_C5NR08881J
crossref_primary_10_1016_j_powtec_2024_119755
crossref_primary_10_1021_acs_accounts_7b00467
crossref_primary_10_1021_acsnano_5b05329
crossref_primary_10_1002_smll_202202452
crossref_primary_10_1021_acsnano_9b06021
crossref_primary_10_1039_D4QI00970C
crossref_primary_10_1002_aisy_201900040
crossref_primary_10_1021_acsphotonics_9b00763
crossref_primary_10_1002_smll_201601565
crossref_primary_10_1021_acsami_8b15607
crossref_primary_10_1039_C8TC03457E
crossref_primary_10_1016_j_nanoen_2017_05_030
crossref_primary_10_1002_adfm_201603201
crossref_primary_10_3390_molecules25122939
crossref_primary_10_1002_smll_202306203
crossref_primary_10_1021_acsami_4c14541
crossref_primary_10_1088_0957_4484_27_49_495405
crossref_primary_10_1021_acs_accounts_5b00554
crossref_primary_10_1021_acsami_7b19144
crossref_primary_10_3390_app10082767
crossref_primary_10_1016_j_micpath_2024_106571
crossref_primary_10_1039_C7NR04950A
crossref_primary_10_1021_acsanm_9b01488
crossref_primary_10_1021_acsnano_6b02635
crossref_primary_10_1002_smll_202103425
crossref_primary_10_1016_j_nanoen_2016_07_010
crossref_primary_10_1039_C8NR02286K
crossref_primary_10_3390_s22228993
crossref_primary_10_1016_j_chempr_2017_07_007
crossref_primary_10_1002_smll_202000804
crossref_primary_10_59761_RCR5114
crossref_primary_10_1088_2050_6120_aaf6f8
crossref_primary_10_1016_j_apsusc_2020_147252
crossref_primary_10_1103_PhysRevB_96_155303
crossref_primary_10_1002_admi_201901704
crossref_primary_10_1002_adfm_201605533
crossref_primary_10_3390_nano12224019
crossref_primary_10_1016_j_jlumin_2020_117739
crossref_primary_10_1007_s10853_019_04035_0
crossref_primary_10_1039_C7CS00701A
crossref_primary_10_1002_adfm_201908762
crossref_primary_10_1007_s11051_019_4695_y
crossref_primary_10_1039_D0TB01430C
crossref_primary_10_1002_adfm_201701468
Cites_doi 10.1021/cm304034s
10.1039/C2CC37553B
10.1016/j.jlumin.2009.04.039
10.1038/nmat3539
10.1007/978-3-642-04258-4_10
10.1039/C3NR03691J
10.1103/PhysRevLett.81.3539
10.1021/ja407219k
10.1021/nn700319z
10.1039/c1jm11205h
10.1088/0957-4484/23/27/275701
10.1021/nn204452e
10.1021/nl3045316
10.1021/nn505793y
10.1002/smll.201201060
10.1021/cm9503137
10.1103/PhysRevB.51.9806
10.1021/jp0713561
10.1146/annurev.physchem.58.032806.104537
10.1038/nmat1390
10.1039/c2nr30663h
10.1021/nl300638t
10.1063/1.1148174
10.1103/PhysRevB.49.4710
10.1021/nn305423p
10.1021/jp971091y
10.1021/ja710437r
10.1038/nrc3180
10.1039/b924151e
10.1021/nn2033117
10.1021/nn2025622
10.1002/smll.201102736
10.1007/s00216-010-3643-6
10.1021/jp2046382
10.1063/1.2711529
10.1021/ac051990f
10.1039/c2nr30764b
10.1039/c0cc00067a
10.1021/ja0437297
10.1021/nn800336b
10.1021/nl2007032
10.1021/jz100144w
10.1021/nn100244a
10.1021/ja711379k
10.1021/nl102135k
10.1021/ja2087689
10.1038/nature12373
10.1021/nl071606p
10.1021/jp991469n
10.1021/nl302453x
10.1021/ja102716p
10.1021/jp806621q
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
ADTPV
AOWAS
DOI 10.1002/smll.201502249
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
SwePub
SwePub Articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage 5746
ExternalDocumentID oai_DiVA_org_ltu_13037
3924062781
26467511
10_1002_smll_201502249
SMLL201502249
ark_67375_WNG_1T519FSP_K
Genre article
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Applied Surface Science
– fundername: MCIOF
  funderid: 295216
– fundername: FQRNT
– fundername: MDEIE
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
A00
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
P4E
RWI
WYJ
AAYOK
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
ADTPV
AOWAS
ID FETCH-LOGICAL-c5149-3c6f19c4e42e32e4ef3f3efd48b74cdb172765e50fb8794943c70b028f0712b63
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Tue Sep 09 23:43:50 EDT 2025
Fri Jul 25 12:12:43 EDT 2025
Wed Feb 19 02:17:28 EST 2025
Tue Jul 01 02:10:20 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Wed Jan 22 16:24:56 EST 2025
Tue Sep 09 05:32:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Keywords quantum dots
temperature sensors
fluorescence
self-calibrating
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5149-3c6f19c4e42e32e4ef3f3efd48b74cdb172765e50fb8794943c70b028f0712b63
Notes MDEIE
MCIOF - No. 295216
ArticleID:SMLL201502249
FQRNT
Applied Surface Science
ark:/67375/WNG-1T519FSP-K
istex:61138C625E368D8A23B186F9E12C8450FFE5EE2D
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PMID 26467511
PQID 1757685585
PQPubID 1046358
PageCount 6
ParticipantIDs swepub_primary_oai_DiVA_org_ltu_13037
proquest_journals_1757685585
pubmed_primary_26467511
crossref_citationtrail_10_1002_smll_201502249
crossref_primary_10_1002_smll_201502249
wiley_primary_10_1002_smll_201502249_SMLL201502249
istex_primary_ark_67375_WNG_1T519FSP_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 18, 2015
PublicationDateYYYYMMDD 2015-11-18
PublicationDate_xml – month: 11
  year: 2015
  text: November 18, 2015
  day: 18
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References H. L. Chou, C. H. Tseng, K. C. Pillai, B. J. Hwang, L. Y. Chen, J. Phys. Chem. C 2011, 115, 20856.
G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, M. D. Lukin, Nature 2013, 500, 54.
L. Turyanska, A. Patane, M. Henini, B. Hennequin, N. R. Thomas, Appl. Phys. Lett. 2007, 90, 101913.
I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435.
V. A. Vlaskin, N. Janssen, J. van Rijssel, R. Beaulac, D. R. Gamelin, Nano Lett. 2010, 10, 3670.
E. A. Dias, A. F. Grimes, D. S. English, P. Kambhampati, J. Phys. Chem. C 2008, 112, 14229.
H. G. Zhao, M. Chaker, N. Q. Wu, D. L. Ma, J. Mater. Chem. 2011, 21, 8898.
D. F. Wang, H. G. Zhao, N. Q. Wu, M. A. El Khakani, D. L. Ma, J. Phys. Chem. Lett. 2010, 1, 1030.
M. Murayama, T. Nakayama, Phys. Rev. B 1994, 49, 4710.
H. G. Zhao, D. F. Wang, T. Zhang, M. Chaker, D. L. Ma, Chem. Commun. 2010, 46, 5301.
F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martin Rodriguez, D. Jaque, J. Garcia Sole, J. A. Capobianco, ACS Nano 2010, 4, 3254.
R. G. Aswathy, Y. Yoshida, T. Maekawa, D. S. Kumar, Anal. Bioanal. Chem. 2010, 397, 1417.
H. Y. Chen, S. Maiti, D. H. Son, ACS Nano 2012, 6, 583.
M. N. Nordin, J. R. Li, S. K. Clowes, R. J. Curry, Nanotechnology 2012, 23, 275701.
D. C. Lee, I. Robel, J. M. Pietryga, V. I. Klimov, J. Am. Chem. Soc. 2010, 132, 9960.
C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, L. D. Carlos, Nanoscale 2012, 4, 4799.
S. W. Clark, J. M. Harbold, F. W. Wise, J. Phys. Chem. C 2007, 111, 7302.
V. I. Klimov, Annu. Rev. Phys. Chem. 2007, 58, 635.
C. Gosse, C. Bergaud, P. Loew, in Thermal Nanosystems and Nanomaterials (Ed: S. Volz), Vol. 118, Springer, Berlin 2009, pp. 301-341.
D. Zhou, H. Zhang, Small 2013, 9, 3195.
E. M. Graham, K. Iwai, S. Uchiyama, A. P. de Silva, S. W. Magennis, A. C. Jones, Lab Chip 2010, 10, 1267.
A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, J. A. Hollingsworth, Nano Lett. 2012, 12, 5545.
X. T. Rao, T. Song, J. K. Gao, Y. J. Cui, Y. Yang, C. D. Wu, B. L. Chen, G. D. Qian, J. Am. Chem. Soc. 2013, 135, 15559.
C. L. Choi, H. Li, A. C. K. Olson, P. K. Jain, S. Sivasankar, A. P. Alivisatos, Nano Lett. 2011, 11, 2358.
M. Danek, K. F. Jensen, C. B. Murray, M. G. Bawendi, Chem. Mater. 1996, 8, 173.
R. Z. Liang, R. Tian, W. Y. Shi, Z. H. Liu, D. P. Yan, M. Wei, D. G. Evans, X. Duan, Chem. Commun. 2013, 49, 969.
R. Ihly, J. Tolentino, Y. Liu, M. Gibbs, M. Law, ACS Nano 2011, 5, 8175.
S. W. Allison, G. T. Gillies, Rev. Sci. Instrum. 1997, 68, 2615.
J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, J. A. Hollingsworth, J. Am. Chem. Soc. 2008, 130, 4879.
B. O. Dabbousi, J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B 1997, 101, 9463.
B. R. Hyun, Y. W. Zhong, A. C. Bartnik, L. F. Sun, H. D. Abruna, F. W. Wise, J. D. Goodreau, J. R. Matthews, T. M. Leslie, N. F. Borrelli, ACS Nano 2008, 2, 2206.
C. Galland, S. Brovelli, W. K. Bae, L. A. Padilha, F. Meinardi, V. I. Klimov, Nano Lett. 2013, 13, 321.
D. Battaglia, B. Blackman, X. G. Peng, J. Am. Chem. Soc. 2005, 127, 10889.
Z. Deutsch, O. Schwartz, R. Tenne, R. Popovitz-Biro, D. Oron, Nano Lett. 2012, 12, 2948.
A. Schroeder, D. A. Heller, M. M. Winslow, J. E. Dahlman, G. W. Pratt, R. Langer, T. Jacks, D. G. Anderson, Nat. Rev. Cancer 2012, 12, 39.
H. G. Zhao, H. Y. Liang, B. A. Gonfa, M. Chaker, T. Ozaki, P. Tijssen, F. Vidal, D. Ma, Nanoscale 2014, 6, 215.
D. Zhou, M. Lin, X. Liu, J. Li, Z. L. Chen, D. Yao, H. Z. Sun, H. Zhang, B. Yang, ACS Nano 2013, 7, 2273.
O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H. S. Han, D. Fukumura, R. K. Jain, M. G. Bawendi, Nat. Mater. 2013, 12, 445.
J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, C. J. Murphy, J. Phys. Chem. B 1999, 103, 7613.
P. Haro-Gonzalez, L. Martinez-Maestro, I. R. Martin, J. Garcia-Sole, D. Jaque, Small 2012, 8, 2652.
Z. Z. Bandic, Z. Ikonic, Phys. Rev. B 1995, 51, 9806.
C. H. Hsia, A. Wuttig, H. Yang, ACS Nano 2011, 5, 9511.
S. Li, K. Zhang, J. M. Yang, L. Lin, H. Yang, Nano Lett. 2007, 7, 3102.
A. Olkhovets, R. C. Hsu, A. Lipovskii, F. W. Wise, Phys. Rev. Lett. 1998, 81, 3539.
E. J. McLaurin, L. R. Bradshaw, D. R. Gamelin, Chem. Mater. 2013, 25, 1283.
R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, A. J. deMello, Anal. Chem. 2006, 78, 2272.
M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, D. V. Talapin, J. Am. Chem. Soc. 2012, 134, 2457.
D. Jaque, F. Vetrone, Nanoscale 2012, 4, 4301.
Z. P. Cai, L. Xiao, H. Y. Xu, M. Mortier, J. Lumin. 2009, 129, 1994.
F. Erogbogbo, K. T. Yong, I. Roy, G. Xu, P. N. Prasad, M. T. Swihart, ACS Nano 2008, 2, 873.
Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, J. A. Hollingsworth, J. Am. Chem. Soc. 2008, 130, 5026.
Q. Lin, N. S. Makarov, W. K. Koh, K. A. Velizhanin, C. M. Cirloganu, H. Luo, V. I. Klimov, J. M. Pietryga, ACS Nano 2015, 9, 539.
2011; 115
2010; 10
1995; 51
2013; 25
2013; 49
2006; 78
2013; 500
1997; 68
2007; 90
2011; 11
1994; 49
1998; 81
1999; 103
2013; 7
2009; 118
2008; 2
2015; 9
2012; 12
2011; 5
2007; 58
2013; 9
2010; 1
2012; 134
2010; 46
2013; 13
2013; 12
2007; 111
2005; 127
1997; 101
2010; 132
2005; 4
2010; 397
2007; 7
2011; 21
2013; 135
2012; 6
2008; 112
2009; 129
2012; 4
2012; 23
2010; 4
2014; 6
2008; 130
1996; 8
2012; 8
e_1_2_4_40_1
e_1_2_4_21_1
e_1_2_4_44_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_25_1
e_1_2_4_48_1
e_1_2_4_27_1
e_1_2_4_46_1
e_1_2_4_29_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_5_1
e_1_2_4_7_1
e_1_2_4_9_1
e_1_2_4_52_1
e_1_2_4_50_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_16_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_39_1
e_1_2_4_41_1
e_1_2_4_20_1
e_1_2_4_45_1
e_1_2_4_22_1
e_1_2_4_43_1
e_1_2_4_24_1
e_1_2_4_49_1
e_1_2_4_26_1
e_1_2_4_47_1
e_1_2_4_28_1
e_1_2_4_2_1
e_1_2_4_4_1
e_1_2_4_6_1
e_1_2_4_8_1
e_1_2_4_51_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_53_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_15_1
e_1_2_4_38_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – reference: H. L. Chou, C. H. Tseng, K. C. Pillai, B. J. Hwang, L. Y. Chen, J. Phys. Chem. C 2011, 115, 20856.
– reference: R. Ihly, J. Tolentino, Y. Liu, M. Gibbs, M. Law, ACS Nano 2011, 5, 8175.
– reference: O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H. S. Han, D. Fukumura, R. K. Jain, M. G. Bawendi, Nat. Mater. 2013, 12, 445.
– reference: P. Haro-Gonzalez, L. Martinez-Maestro, I. R. Martin, J. Garcia-Sole, D. Jaque, Small 2012, 8, 2652.
– reference: A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, J. A. Hollingsworth, Nano Lett. 2012, 12, 5545.
– reference: M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, D. V. Talapin, J. Am. Chem. Soc. 2012, 134, 2457.
– reference: F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martin Rodriguez, D. Jaque, J. Garcia Sole, J. A. Capobianco, ACS Nano 2010, 4, 3254.
– reference: E. J. McLaurin, L. R. Bradshaw, D. R. Gamelin, Chem. Mater. 2013, 25, 1283.
– reference: V. I. Klimov, Annu. Rev. Phys. Chem. 2007, 58, 635.
– reference: Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, J. A. Hollingsworth, J. Am. Chem. Soc. 2008, 130, 5026.
– reference: Q. Lin, N. S. Makarov, W. K. Koh, K. A. Velizhanin, C. M. Cirloganu, H. Luo, V. I. Klimov, J. M. Pietryga, ACS Nano 2015, 9, 539.
– reference: V. A. Vlaskin, N. Janssen, J. van Rijssel, R. Beaulac, D. R. Gamelin, Nano Lett. 2010, 10, 3670.
– reference: H. Y. Chen, S. Maiti, D. H. Son, ACS Nano 2012, 6, 583.
– reference: I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435.
– reference: J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, J. A. Hollingsworth, J. Am. Chem. Soc. 2008, 130, 4879.
– reference: H. G. Zhao, D. F. Wang, T. Zhang, M. Chaker, D. L. Ma, Chem. Commun. 2010, 46, 5301.
– reference: C. L. Choi, H. Li, A. C. K. Olson, P. K. Jain, S. Sivasankar, A. P. Alivisatos, Nano Lett. 2011, 11, 2358.
– reference: Z. P. Cai, L. Xiao, H. Y. Xu, M. Mortier, J. Lumin. 2009, 129, 1994.
– reference: Z. Deutsch, O. Schwartz, R. Tenne, R. Popovitz-Biro, D. Oron, Nano Lett. 2012, 12, 2948.
– reference: M. Murayama, T. Nakayama, Phys. Rev. B 1994, 49, 4710.
– reference: R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, A. J. deMello, Anal. Chem. 2006, 78, 2272.
– reference: X. T. Rao, T. Song, J. K. Gao, Y. J. Cui, Y. Yang, C. D. Wu, B. L. Chen, G. D. Qian, J. Am. Chem. Soc. 2013, 135, 15559.
– reference: C. Gosse, C. Bergaud, P. Loew, in Thermal Nanosystems and Nanomaterials (Ed: S. Volz), Vol. 118, Springer, Berlin 2009, pp. 301-341.
– reference: E. A. Dias, A. F. Grimes, D. S. English, P. Kambhampati, J. Phys. Chem. C 2008, 112, 14229.
– reference: E. M. Graham, K. Iwai, S. Uchiyama, A. P. de Silva, S. W. Magennis, A. C. Jones, Lab Chip 2010, 10, 1267.
– reference: H. G. Zhao, M. Chaker, N. Q. Wu, D. L. Ma, J. Mater. Chem. 2011, 21, 8898.
– reference: C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, L. D. Carlos, Nanoscale 2012, 4, 4799.
– reference: B. O. Dabbousi, J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B 1997, 101, 9463.
– reference: S. W. Clark, J. M. Harbold, F. W. Wise, J. Phys. Chem. C 2007, 111, 7302.
– reference: C. H. Hsia, A. Wuttig, H. Yang, ACS Nano 2011, 5, 9511.
– reference: D. C. Lee, I. Robel, J. M. Pietryga, V. I. Klimov, J. Am. Chem. Soc. 2010, 132, 9960.
– reference: A. Schroeder, D. A. Heller, M. M. Winslow, J. E. Dahlman, G. W. Pratt, R. Langer, T. Jacks, D. G. Anderson, Nat. Rev. Cancer 2012, 12, 39.
– reference: H. G. Zhao, H. Y. Liang, B. A. Gonfa, M. Chaker, T. Ozaki, P. Tijssen, F. Vidal, D. Ma, Nanoscale 2014, 6, 215.
– reference: Z. Z. Bandic, Z. Ikonic, Phys. Rev. B 1995, 51, 9806.
– reference: G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, M. D. Lukin, Nature 2013, 500, 54.
– reference: F. Erogbogbo, K. T. Yong, I. Roy, G. Xu, P. N. Prasad, M. T. Swihart, ACS Nano 2008, 2, 873.
– reference: S. W. Allison, G. T. Gillies, Rev. Sci. Instrum. 1997, 68, 2615.
– reference: L. Turyanska, A. Patane, M. Henini, B. Hennequin, N. R. Thomas, Appl. Phys. Lett. 2007, 90, 101913.
– reference: A. Olkhovets, R. C. Hsu, A. Lipovskii, F. W. Wise, Phys. Rev. Lett. 1998, 81, 3539.
– reference: B. R. Hyun, Y. W. Zhong, A. C. Bartnik, L. F. Sun, H. D. Abruna, F. W. Wise, J. D. Goodreau, J. R. Matthews, T. M. Leslie, N. F. Borrelli, ACS Nano 2008, 2, 2206.
– reference: D. F. Wang, H. G. Zhao, N. Q. Wu, M. A. El Khakani, D. L. Ma, J. Phys. Chem. Lett. 2010, 1, 1030.
– reference: D. Zhou, M. Lin, X. Liu, J. Li, Z. L. Chen, D. Yao, H. Z. Sun, H. Zhang, B. Yang, ACS Nano 2013, 7, 2273.
– reference: M. N. Nordin, J. R. Li, S. K. Clowes, R. J. Curry, Nanotechnology 2012, 23, 275701.
– reference: R. Z. Liang, R. Tian, W. Y. Shi, Z. H. Liu, D. P. Yan, M. Wei, D. G. Evans, X. Duan, Chem. Commun. 2013, 49, 969.
– reference: D. Battaglia, B. Blackman, X. G. Peng, J. Am. Chem. Soc. 2005, 127, 10889.
– reference: C. Galland, S. Brovelli, W. K. Bae, L. A. Padilha, F. Meinardi, V. I. Klimov, Nano Lett. 2013, 13, 321.
– reference: S. Li, K. Zhang, J. M. Yang, L. Lin, H. Yang, Nano Lett. 2007, 7, 3102.
– reference: R. G. Aswathy, Y. Yoshida, T. Maekawa, D. S. Kumar, Anal. Bioanal. Chem. 2010, 397, 1417.
– reference: M. Danek, K. F. Jensen, C. B. Murray, M. G. Bawendi, Chem. Mater. 1996, 8, 173.
– reference: D. Zhou, H. Zhang, Small 2013, 9, 3195.
– reference: D. Jaque, F. Vetrone, Nanoscale 2012, 4, 4301.
– reference: J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, C. J. Murphy, J. Phys. Chem. B 1999, 103, 7613.
– volume: 4
  start-page: 435
  year: 2005
  publication-title: Nat. Mater.
– volume: 132
  start-page: 9960
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 39
  year: 2012
  publication-title: Nat. Rev. Cancer
– volume: 13
  start-page: 321
  year: 2013
  publication-title: Nano Lett.
– volume: 49
  start-page: 4710
  year: 1994
  publication-title: Phys. Rev. B
– volume: 101
  start-page: 9463
  year: 1997
  publication-title: J. Phys. Chem. B
– volume: 130
  start-page: 5026
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 5301
  year: 2010
  publication-title: Chem. Commun.
– volume: 9
  start-page: 3195
  year: 2013
  publication-title: Small
– volume: 81
  start-page: 3539
  year: 1998
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 9511
  year: 2011
  publication-title: ACS Nano
– volume: 10
  start-page: 3670
  year: 2010
  publication-title: Nano Lett.
– volume: 25
  start-page: 1283
  year: 2013
  publication-title: Chem. Mater.
– volume: 127
  start-page: 10889
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 68
  start-page: 2615
  year: 1997
  publication-title: Rev. Sci. Instrum.
– volume: 58
  start-page: 635
  year: 2007
  publication-title: Annu. Rev. Phys. Chem.
– volume: 500
  start-page: 54
  year: 2013
  publication-title: Nature
– volume: 78
  start-page: 2272
  year: 2006
  publication-title: Anal. Chem.
– volume: 118
  start-page: 301
  year: 2009
  end-page: 341
– volume: 111
  start-page: 7302
  year: 2007
  publication-title: J. Phys. Chem. C
– volume: 12
  start-page: 445
  year: 2013
  publication-title: Nat. Mater.
– volume: 5
  start-page: 8175
  year: 2011
  publication-title: ACS Nano
– volume: 4
  start-page: 4301
  year: 2012
  publication-title: Nanoscale
– volume: 51
  start-page: 9806
  year: 1995
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 2273
  year: 2013
  publication-title: ACS Nano
– volume: 1
  start-page: 1030
  year: 2010
  publication-title: J. Phys. Chem. Lett.
– volume: 23
  start-page: 275701
  year: 2012
  publication-title: Nanotechnology
– volume: 49
  start-page: 969
  year: 2013
  publication-title: Chem. Commun.
– volume: 9
  start-page: 539
  year: 2015
  publication-title: ACS Nano
– volume: 6
  start-page: 583
  year: 2012
  publication-title: ACS Nano
– volume: 135
  start-page: 15559
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 103
  start-page: 7613
  year: 1999
  publication-title: J. Phys. Chem. B
– volume: 7
  start-page: 3102
  year: 2007
  publication-title: Nano Lett.
– volume: 8
  start-page: 173
  year: 1996
  publication-title: Chem. Mater.
– volume: 21
  start-page: 8898
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 3254
  year: 2010
  publication-title: ACS Nano
– volume: 112
  start-page: 14229
  year: 2008
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 1267
  year: 2010
  publication-title: Lab Chip
– volume: 129
  start-page: 1994
  year: 2009
  publication-title: J. Lumin.
– volume: 134
  start-page: 2457
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 2652
  year: 2012
  publication-title: Small
– volume: 130
  start-page: 4879
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 873
  year: 2008
  publication-title: ACS Nano
– volume: 2
  start-page: 2206
  year: 2008
  publication-title: ACS Nano
– volume: 4
  start-page: 4799
  year: 2012
  publication-title: Nanoscale
– volume: 11
  start-page: 2358
  year: 2011
  publication-title: Nano Lett.
– volume: 397
  start-page: 1417
  year: 2010
  publication-title: Anal. Bioanal. Chem.
– volume: 115
  start-page: 20856
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 215
  year: 2014
  publication-title: Nanoscale
– volume: 12
  start-page: 2948
  year: 2012
  publication-title: Nano Lett.
– volume: 90
  start-page: 101913
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 5545
  year: 2012
  publication-title: Nano Lett.
– ident: e_1_2_4_4_1
  doi: 10.1021/cm304034s
– ident: e_1_2_4_12_1
  doi: 10.1039/C2CC37553B
– ident: e_1_2_4_43_1
  doi: 10.1016/j.jlumin.2009.04.039
– ident: e_1_2_4_17_1
  doi: 10.1038/nmat3539
– ident: e_1_2_4_31_1
– ident: e_1_2_4_15_1
  doi: 10.1007/978-3-642-04258-4_10
– ident: e_1_2_4_20_1
  doi: 10.1039/C3NR03691J
– ident: e_1_2_4_47_1
  doi: 10.1103/PhysRevLett.81.3539
– ident: e_1_2_4_49_1
  doi: 10.1021/ja407219k
– ident: e_1_2_4_51_1
  doi: 10.1021/nn700319z
– ident: e_1_2_4_21_1
  doi: 10.1039/c1jm11205h
– ident: e_1_2_4_41_1
  doi: 10.1088/0957-4484/23/27/275701
– ident: e_1_2_4_8_1
  doi: 10.1021/nn204452e
– ident: e_1_2_4_28_1
  doi: 10.1021/nl3045316
– ident: e_1_2_4_39_1
  doi: 10.1021/nn505793y
– ident: e_1_2_4_13_1
  doi: 10.1002/smll.201201060
– ident: e_1_2_4_32_1
  doi: 10.1021/cm9503137
– ident: e_1_2_4_30_1
  doi: 10.1103/PhysRevB.51.9806
– ident: e_1_2_4_25_1
  doi: 10.1021/jp0713561
– ident: e_1_2_4_33_1
  doi: 10.1146/annurev.physchem.58.032806.104537
– ident: e_1_2_4_14_1
  doi: 10.1038/nmat1390
– ident: e_1_2_4_2_1
  doi: 10.1039/c2nr30663h
– ident: e_1_2_4_36_1
  doi: 10.1021/nl300638t
– ident: e_1_2_4_3_1
  doi: 10.1063/1.1148174
– ident: e_1_2_4_29_1
  doi: 10.1103/PhysRevB.49.4710
– ident: e_1_2_4_10_1
  doi: 10.1021/nn305423p
– ident: e_1_2_4_7_1
  doi: 10.1021/jp971091y
– ident: e_1_2_4_6_1
  doi: 10.1021/ja710437r
– ident: e_1_2_4_53_1
  doi: 10.1038/nrc3180
– ident: e_1_2_4_45_1
  doi: 10.1039/b924151e
– ident: e_1_2_4_40_1
  doi: 10.1021/nn2033117
– ident: e_1_2_4_9_1
  doi: 10.1021/nn2025622
– ident: e_1_2_4_46_1
  doi: 10.1002/smll.201102736
– ident: e_1_2_4_50_1
  doi: 10.1007/s00216-010-3643-6
– ident: e_1_2_4_26_1
  doi: 10.1021/jp2046382
– ident: e_1_2_4_42_1
  doi: 10.1063/1.2711529
– ident: e_1_2_4_44_1
  doi: 10.1021/ac051990f
– ident: e_1_2_4_1_1
  doi: 10.1039/c2nr30764b
– ident: e_1_2_4_23_1
  doi: 10.1039/c0cc00067a
– ident: e_1_2_4_35_1
  doi: 10.1021/ja0437297
– ident: e_1_2_4_22_1
  doi: 10.1021/nn800336b
– ident: e_1_2_4_37_1
  doi: 10.1021/nl2007032
– ident: e_1_2_4_24_1
  doi: 10.1021/jz100144w
– ident: e_1_2_4_11_1
  doi: 10.1021/nn100244a
– ident: e_1_2_4_18_1
  doi: 10.1021/ja711379k
– ident: e_1_2_4_16_1
  doi: 10.1021/nl102135k
– ident: e_1_2_4_48_1
  doi: 10.1021/ja2087689
– ident: e_1_2_4_52_1
  doi: 10.1038/nature12373
– ident: e_1_2_4_5_1
  doi: 10.1021/nl071606p
– ident: e_1_2_4_27_1
  doi: 10.1021/jp991469n
– ident: e_1_2_4_19_1
  doi: 10.1021/nl302453x
– ident: e_1_2_4_34_1
  doi: 10.1021/ja102716p
– ident: e_1_2_4_38_1
  doi: 10.1021/jp806621q
SSID ssj0031247
Score 2.3779223
Snippet Core–shell quantum dots serve as self‐calibrating, ultrasensitive, multiparametric, near‐infrared, and biocompatible temperature sensors. They allow...
Core-shell quantum dots serve as self-calibrating, ultrasensitive, multiparametric, near-infrared, and biocompatible temperature sensors. They allow...
Core–shell quantum dots serve as self-calibrating, ultrasensitive, multiparametric, near-infrared, and biocompatible temperature sensors. They allow...
SourceID swepub
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5741
SubjectTerms Biocompatible Materials - chemical synthesis
Biocompatible Materials - standards
Calibration
Equipment Design
Equipment Failure Analysis
Experimental physics
Experimentell fysik
fluorescence
Luminescent Measurements - instrumentation
Luminescent Measurements - standards
Materials Testing
Nanotechnology
Quantum Dots
Reproducibility of Results
self-calibrating
Sensitivity and Specificity
Temperature
temperature sensors
Thermography - instrumentation
Thermography - standards
Transducers
Title Ultrasensitive, Biocompatible, Self-Calibrating, Multiparametric Temperature Sensors
URI https://api.istex.fr/ark:/67375/WNG-1T519FSP-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201502249
https://www.ncbi.nlm.nih.gov/pubmed/26467511
https://www.proquest.com/docview/1757685585
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-13037
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQucCBNzRQUA48LnWbxHYex0JZKmgrxO6W3izbsatV0yxKshLixE_gN_JLmHF2QxeBkOAWK-Motmcy38Qznwl5muSlUC7KaZlFivJCO6pSYahQuc0S7uLSJ48fHacHU_72VJxequLv-SGGH25oGf57jQaudLv7kzS0vahw6wAADXghrOCLWYrk-fsfBv4oBs7Ln64CPosi8daKtTFKdte7r3mlqzjBn38HOQc-0XUo633R6CZRq1H0KSjnO4tO75gvvxA8_s8wb5EbS6Aa7vWadZtcsfUdcv0SfeFdcjKtuga8YN36BKTt8OVs7nPau5muoDm2lfv-9RuWf2lUtPpsO_QFv8g3foFHeZlwYgG397zOIF-386a9R6aj15NXB3R5TgM1ALcKykzq4sJwyxPLEsutY45ZV_JcZ9yUGjFSKqyInM7B_AvOTBZpADYO8E2iU3afbNTz2m6S0Ii8jMqCcVWUHF2lhvAIQBqAtkLxnAeErtZJmiWJOZ6lUcmefjmROF9ymK-AvBjkP_X0HX-UfO6XfRBTzTkmvWVCfjx-I-MJQN3R-L18F5CtlV7Ipb23EkAYxG0CYq-APOh1ZXgQQE6IyuI4IM965RnuILX3_uxkT86bM1l1C9xbZFlAEq8Qf3lhOT46PBxaD_-l0yNyDa-xtDLOt8hG1yzsY8BYnX7i7egHGJsdyQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BewAO5Q2BAjnwuDRtHs7rWB7LQndXiN0t3KzYsatV02yVZCXEiZ_Ab-SXMONsAotASHB0YkexPeP5xh5_A_DYT_Iw027i5LGbOSwV2smiUDphlqjYZ9rLTfD4eBIN5-ztx7CLJqS7MC0_RL_hRpph1mtScNqQPvjBGlqfFXR2gIgGzVB6EbbNIR3hovc9g1SA5svkV0Gr5RD1Vsfb6PoHm-037NI2DfGn34HOnlF0E8waazS4CqLrRxuEcrq_asS-_PwLxeN_dfQa7Kyxqn3YCtd1uKDKG3DlJwbDm3A8L5oKDWFZmxikPfv5YmnC2puFKLA4VYX-9uUr3QATJGvlyZ5t7vwS5fgZZfOS9kwhdG-pnbF-WS-r-hbMB69mL4bOOlWDIxFxpU4gI-2lkinmq8BXTOlAB0rnLBExk7kgmBSFKnS1SHAFSFkgY1cgttEIcXwRBbdhq1yW6i7YMkxyN08DlqU5I2sp0ENCnIa4Lc1Ywixwuonics1jTuk0Ct4yMPucxov342XBs77-ecvg8ceaT82899Wy6pTi3uKQf5i85t4M0e5g-o4fWbDbCQZfq3zNEYeh6xai-2XBnVZY-g8h6kTHzPMseNJKT_-G2L1fLo4P-bI64UWzouPFILbANxLxlx_m0_Fo1Jfu_UujR3BpOBuP-OjN5Og-XKbndNPSS3Zhq6lW6gFCrkY8NEr1HfGtIec
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyE4UN6EFsiBx6Vp83Bex0JZCt2uKna37c2KHbtaNc1WSVZCnPgJ_Mb-ks44u6GLQEhwdDKOYnsm80088xnglZ_kYabdxMljN3NYKrSTRaF0wixRsc-0l5vk8YNBtDdmn0_Ck2tV_C0_RPfDjSzDfK_JwC9yvf2TNLQ-L2jrAAENeqH0JqyyCH0lwaIvHYFUgN7LHK-CTssh5q0FbaPrby_3X3JLqzTDX3-HOTtC0WUsa5xRbw2yxTDaHJSzrVkjtuS3Xxge_2ec9-DuHKnaO61q3YcbqnwAd67xFz6Eo3HRVOgGy9pkIG3a7yZTk9TeTESBzaEq9OX3H1T_JUjTytNN21T8EuH4OZ3lJe2RQuDeEjujfFlPq_oRjHsfRu_3nPlBDY5EvJU6gYy0l0qmmK8CXzGlAx0onbNExEzmgkBSFKrQ1SJB-09ZIGNX4GppBDi-iILHsFJOS_UUbBkmuZunAcvSnJGvFBgfIUpD1JZmLGEWOIt14nLOYk6HaRS85V_2Oc0X7-bLgred_EXL3_FHyTdm2TuxrDqjrLc45MeDj9wbIdbtDQ_5vgUbC73gc4OvOaIwDNxCDL4seNLqSvcgxJwYlnmeBa9b5enuELf37uRoh0-rU140M9pcDGILfKMQf3lhPjzo97vWs3_p9BJuHe72eP_TYH8dbtNlKrP0kg1YaaqZeo54qxEvjEldAWzDIJY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasensitive%2C+Biocompatible%2C+Self%E2%80%90Calibrating%2C+Multiparametric+Temperature+Sensors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhao%2C+Haiguang&rft.au=Vomiero%2C+Alberto&rft.au=Rosei%2C+Federico&rft.date=2015-11-18&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=11&rft.issue=43&rft.spage=5741&rft.epage=5746&rft_id=info:doi/10.1002%2Fsmll.201502249&rft.externalDBID=10.1002%252Fsmll.201502249&rft.externalDocID=SMLL201502249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon