Ultrasensitive, Biocompatible, Self-Calibrating, Multiparametric Temperature Sensors
Core–shell quantum dots serve as self‐calibrating, ultrasensitive, multiparametric, near‐infrared, and biocompatible temperature sensors. They allow temperature measurement with nanometer accuracy in the range 150–373 K, the broadest ever recorded for a nanothermometer, with sensitivities among the...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 11; no. 43; pp. 5741 - 5746 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
18.11.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.201502249 |
Cover
Abstract | Core–shell quantum dots serve as self‐calibrating, ultrasensitive, multiparametric, near‐infrared, and biocompatible temperature sensors. They allow temperature measurement with nanometer accuracy in the range 150–373 K, the broadest ever recorded for a nanothermometer, with sensitivities among the highest ever reported, which makes them essentially unique in the panorama of biocompatible nanothermometers with potential for in vivo biological thermal imaging and/or thermoablative therapy. |
---|---|
AbstractList | Core–shell quantum dots serve as self-calibrating, ultrasensitive, multiparametric, near-infrared, and biocompatible temperature sensors. They allow temperature measurement with nanometer accuracy in the range 150–373 K, the broadest ever recorded for a nanothermometer, with sensitivities among the highest ever reported, which makes them essentially unique in the panorama of biocompatible nanothermometers with potential for in vivo biological thermal imaging and/or thermoablative therapy. |
Author | Rosei, Federico Vomiero, Alberto Zhao, Haiguang |
Author_xml | – sequence: 1 givenname: Haiguang surname: Zhao fullname: Zhao, Haiguang email: haiguang.zhao@emt.inrs.ca organization: CNR INO SENSOR Lab, Via Branze 45, 25123, Brescia, Italy – sequence: 2 givenname: Alberto surname: Vomiero fullname: Vomiero, Alberto email: haiguang.zhao@emt.inrs.ca organization: CNR INO SENSOR Lab, Via Branze 45, 25123, Brescia, Italy – sequence: 3 givenname: Federico surname: Rosei fullname: Rosei, Federico email: haiguang.zhao@emt.inrs.ca organization: Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, J3X 1S2, Varennes, Québec, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26467511$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-13037$$DView record from Swedish Publication Index |
BookMark | eNqFkUtv1DAURi1URF9sWaKR2E4GP-NkWQZaEFOoNFNYWonnunJx4tR2KP33uEo7qiohVn6d88n67iHa630PCL0heEEwpu9j59yCYiIwpbx-gQ5ISVhRVrTe2-0J3keHMV5jzAjl8hXapyUvpSDkAG0uXQpNhD7aZH_DfPbBeu27oUm2dfm4BmeKZeNsG_JVfzWfnY8u2aEJTQcpWD3bQDdAfhwDZLqPPsRj9NI0LsLrh_UIXZ5-2iw_F6vvZ1-WJ6tCC8LrgunSkFpz4BQYBQ6GGQZmy6tWcr1tiaSyFCCwaStZ85ozLXGLaWWwJLQt2RGaT7nxFoaxVUOwXRPulG-s-mh_nCgfrpRLoyIMM5nxdxM-BH8zQkzq2o-hzz9URApZVkJUIlNvH6ix7WC7C33sLAN8AnTwMQYwStuUy_F9btI6RbC6H426H43ajSZri2faY_I_hXoSbq2Du__Qan2-Wj11i8m1McGfnduEX6qUTAr189uZIhtB6tP1hfrK_gKrkLDD |
CitedBy_id | crossref_primary_10_1039_C5NR08881J crossref_primary_10_1016_j_powtec_2024_119755 crossref_primary_10_1021_acs_accounts_7b00467 crossref_primary_10_1021_acsnano_5b05329 crossref_primary_10_1002_smll_202202452 crossref_primary_10_1021_acsnano_9b06021 crossref_primary_10_1039_D4QI00970C crossref_primary_10_1002_aisy_201900040 crossref_primary_10_1021_acsphotonics_9b00763 crossref_primary_10_1002_smll_201601565 crossref_primary_10_1021_acsami_8b15607 crossref_primary_10_1039_C8TC03457E crossref_primary_10_1016_j_nanoen_2017_05_030 crossref_primary_10_1002_adfm_201603201 crossref_primary_10_3390_molecules25122939 crossref_primary_10_1002_smll_202306203 crossref_primary_10_1021_acsami_4c14541 crossref_primary_10_1088_0957_4484_27_49_495405 crossref_primary_10_1021_acs_accounts_5b00554 crossref_primary_10_1021_acsami_7b19144 crossref_primary_10_3390_app10082767 crossref_primary_10_1016_j_micpath_2024_106571 crossref_primary_10_1039_C7NR04950A crossref_primary_10_1021_acsanm_9b01488 crossref_primary_10_1021_acsnano_6b02635 crossref_primary_10_1002_smll_202103425 crossref_primary_10_1016_j_nanoen_2016_07_010 crossref_primary_10_1039_C8NR02286K crossref_primary_10_3390_s22228993 crossref_primary_10_1016_j_chempr_2017_07_007 crossref_primary_10_1002_smll_202000804 crossref_primary_10_59761_RCR5114 crossref_primary_10_1088_2050_6120_aaf6f8 crossref_primary_10_1016_j_apsusc_2020_147252 crossref_primary_10_1103_PhysRevB_96_155303 crossref_primary_10_1002_admi_201901704 crossref_primary_10_1002_adfm_201605533 crossref_primary_10_3390_nano12224019 crossref_primary_10_1016_j_jlumin_2020_117739 crossref_primary_10_1007_s10853_019_04035_0 crossref_primary_10_1039_C7CS00701A crossref_primary_10_1002_adfm_201908762 crossref_primary_10_1007_s11051_019_4695_y crossref_primary_10_1039_D0TB01430C crossref_primary_10_1002_adfm_201701468 |
Cites_doi | 10.1021/cm304034s 10.1039/C2CC37553B 10.1016/j.jlumin.2009.04.039 10.1038/nmat3539 10.1007/978-3-642-04258-4_10 10.1039/C3NR03691J 10.1103/PhysRevLett.81.3539 10.1021/ja407219k 10.1021/nn700319z 10.1039/c1jm11205h 10.1088/0957-4484/23/27/275701 10.1021/nn204452e 10.1021/nl3045316 10.1021/nn505793y 10.1002/smll.201201060 10.1021/cm9503137 10.1103/PhysRevB.51.9806 10.1021/jp0713561 10.1146/annurev.physchem.58.032806.104537 10.1038/nmat1390 10.1039/c2nr30663h 10.1021/nl300638t 10.1063/1.1148174 10.1103/PhysRevB.49.4710 10.1021/nn305423p 10.1021/jp971091y 10.1021/ja710437r 10.1038/nrc3180 10.1039/b924151e 10.1021/nn2033117 10.1021/nn2025622 10.1002/smll.201102736 10.1007/s00216-010-3643-6 10.1021/jp2046382 10.1063/1.2711529 10.1021/ac051990f 10.1039/c2nr30764b 10.1039/c0cc00067a 10.1021/ja0437297 10.1021/nn800336b 10.1021/nl2007032 10.1021/jz100144w 10.1021/nn100244a 10.1021/ja711379k 10.1021/nl102135k 10.1021/ja2087689 10.1038/nature12373 10.1021/nl071606p 10.1021/jp991469n 10.1021/nl302453x 10.1021/ja102716p 10.1021/jp806621q |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M ADTPV AOWAS |
DOI | 10.1002/smll.201502249 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace SwePub SwePub Articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | 5746 |
ExternalDocumentID | oai_DiVA_org_ltu_13037 3924062781 26467511 10_1002_smll_201502249 SMLL201502249 ark_67375_WNG_1T519FSP_K |
Genre | article Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Applied Surface Science – fundername: MCIOF funderid: 295216 – fundername: FQRNT – fundername: MDEIE |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- A00 AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE P4E RWI WYJ AAYOK AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M ADTPV AOWAS |
ID | FETCH-LOGICAL-c5149-3c6f19c4e42e32e4ef3f3efd48b74cdb172765e50fb8794943c70b028f0712b63 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Tue Sep 09 23:43:50 EDT 2025 Fri Jul 25 12:12:43 EDT 2025 Wed Feb 19 02:17:28 EST 2025 Tue Jul 01 02:10:20 EDT 2025 Thu Apr 24 22:58:48 EDT 2025 Wed Jan 22 16:24:56 EST 2025 Tue Sep 09 05:32:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Keywords | quantum dots temperature sensors fluorescence self-calibrating |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5149-3c6f19c4e42e32e4ef3f3efd48b74cdb172765e50fb8794943c70b028f0712b63 |
Notes | MDEIE MCIOF - No. 295216 ArticleID:SMLL201502249 FQRNT Applied Surface Science ark:/67375/WNG-1T519FSP-K istex:61138C625E368D8A23B186F9E12C8450FFE5EE2D ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PMID | 26467511 |
PQID | 1757685585 |
PQPubID | 1046358 |
PageCount | 6 |
ParticipantIDs | swepub_primary_oai_DiVA_org_ltu_13037 proquest_journals_1757685585 pubmed_primary_26467511 crossref_citationtrail_10_1002_smll_201502249 crossref_primary_10_1002_smll_201502249 wiley_primary_10_1002_smll_201502249_SMLL201502249 istex_primary_ark_67375_WNG_1T519FSP_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 18, 2015 |
PublicationDateYYYYMMDD | 2015-11-18 |
PublicationDate_xml | – month: 11 year: 2015 text: November 18, 2015 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | H. L. Chou, C. H. Tseng, K. C. Pillai, B. J. Hwang, L. Y. Chen, J. Phys. Chem. C 2011, 115, 20856. G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, M. D. Lukin, Nature 2013, 500, 54. L. Turyanska, A. Patane, M. Henini, B. Hennequin, N. R. Thomas, Appl. Phys. Lett. 2007, 90, 101913. I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435. V. A. Vlaskin, N. Janssen, J. van Rijssel, R. Beaulac, D. R. Gamelin, Nano Lett. 2010, 10, 3670. E. A. Dias, A. F. Grimes, D. S. English, P. Kambhampati, J. Phys. Chem. C 2008, 112, 14229. H. G. Zhao, M. Chaker, N. Q. Wu, D. L. Ma, J. Mater. Chem. 2011, 21, 8898. D. F. Wang, H. G. Zhao, N. Q. Wu, M. A. El Khakani, D. L. Ma, J. Phys. Chem. Lett. 2010, 1, 1030. M. Murayama, T. Nakayama, Phys. Rev. B 1994, 49, 4710. H. G. Zhao, D. F. Wang, T. Zhang, M. Chaker, D. L. Ma, Chem. Commun. 2010, 46, 5301. F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martin Rodriguez, D. Jaque, J. Garcia Sole, J. A. Capobianco, ACS Nano 2010, 4, 3254. R. G. Aswathy, Y. Yoshida, T. Maekawa, D. S. Kumar, Anal. Bioanal. Chem. 2010, 397, 1417. H. Y. Chen, S. Maiti, D. H. Son, ACS Nano 2012, 6, 583. M. N. Nordin, J. R. Li, S. K. Clowes, R. J. Curry, Nanotechnology 2012, 23, 275701. D. C. Lee, I. Robel, J. M. Pietryga, V. I. Klimov, J. Am. Chem. Soc. 2010, 132, 9960. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, L. D. Carlos, Nanoscale 2012, 4, 4799. S. W. Clark, J. M. Harbold, F. W. Wise, J. Phys. Chem. C 2007, 111, 7302. V. I. Klimov, Annu. Rev. Phys. Chem. 2007, 58, 635. C. Gosse, C. Bergaud, P. Loew, in Thermal Nanosystems and Nanomaterials (Ed: S. Volz), Vol. 118, Springer, Berlin 2009, pp. 301-341. D. Zhou, H. Zhang, Small 2013, 9, 3195. E. M. Graham, K. Iwai, S. Uchiyama, A. P. de Silva, S. W. Magennis, A. C. Jones, Lab Chip 2010, 10, 1267. A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, J. A. Hollingsworth, Nano Lett. 2012, 12, 5545. X. T. Rao, T. Song, J. K. Gao, Y. J. Cui, Y. Yang, C. D. Wu, B. L. Chen, G. D. Qian, J. Am. Chem. Soc. 2013, 135, 15559. C. L. Choi, H. Li, A. C. K. Olson, P. K. Jain, S. Sivasankar, A. P. Alivisatos, Nano Lett. 2011, 11, 2358. M. Danek, K. F. Jensen, C. B. Murray, M. G. Bawendi, Chem. Mater. 1996, 8, 173. R. Z. Liang, R. Tian, W. Y. Shi, Z. H. Liu, D. P. Yan, M. Wei, D. G. Evans, X. Duan, Chem. Commun. 2013, 49, 969. R. Ihly, J. Tolentino, Y. Liu, M. Gibbs, M. Law, ACS Nano 2011, 5, 8175. S. W. Allison, G. T. Gillies, Rev. Sci. Instrum. 1997, 68, 2615. J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, J. A. Hollingsworth, J. Am. Chem. Soc. 2008, 130, 4879. B. O. Dabbousi, J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B 1997, 101, 9463. B. R. Hyun, Y. W. Zhong, A. C. Bartnik, L. F. Sun, H. D. Abruna, F. W. Wise, J. D. Goodreau, J. R. Matthews, T. M. Leslie, N. F. Borrelli, ACS Nano 2008, 2, 2206. C. Galland, S. Brovelli, W. K. Bae, L. A. Padilha, F. Meinardi, V. I. Klimov, Nano Lett. 2013, 13, 321. D. Battaglia, B. Blackman, X. G. Peng, J. Am. Chem. Soc. 2005, 127, 10889. Z. Deutsch, O. Schwartz, R. Tenne, R. Popovitz-Biro, D. Oron, Nano Lett. 2012, 12, 2948. A. Schroeder, D. A. Heller, M. M. Winslow, J. E. Dahlman, G. W. Pratt, R. Langer, T. Jacks, D. G. Anderson, Nat. Rev. Cancer 2012, 12, 39. H. G. Zhao, H. Y. Liang, B. A. Gonfa, M. Chaker, T. Ozaki, P. Tijssen, F. Vidal, D. Ma, Nanoscale 2014, 6, 215. D. Zhou, M. Lin, X. Liu, J. Li, Z. L. Chen, D. Yao, H. Z. Sun, H. Zhang, B. Yang, ACS Nano 2013, 7, 2273. O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H. S. Han, D. Fukumura, R. K. Jain, M. G. Bawendi, Nat. Mater. 2013, 12, 445. J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, C. J. Murphy, J. Phys. Chem. B 1999, 103, 7613. P. Haro-Gonzalez, L. Martinez-Maestro, I. R. Martin, J. Garcia-Sole, D. Jaque, Small 2012, 8, 2652. Z. Z. Bandic, Z. Ikonic, Phys. Rev. B 1995, 51, 9806. C. H. Hsia, A. Wuttig, H. Yang, ACS Nano 2011, 5, 9511. S. Li, K. Zhang, J. M. Yang, L. Lin, H. Yang, Nano Lett. 2007, 7, 3102. A. Olkhovets, R. C. Hsu, A. Lipovskii, F. W. Wise, Phys. Rev. Lett. 1998, 81, 3539. E. J. McLaurin, L. R. Bradshaw, D. R. Gamelin, Chem. Mater. 2013, 25, 1283. R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, A. J. deMello, Anal. Chem. 2006, 78, 2272. M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, D. V. Talapin, J. Am. Chem. Soc. 2012, 134, 2457. D. Jaque, F. Vetrone, Nanoscale 2012, 4, 4301. Z. P. Cai, L. Xiao, H. Y. Xu, M. Mortier, J. Lumin. 2009, 129, 1994. F. Erogbogbo, K. T. Yong, I. Roy, G. Xu, P. N. Prasad, M. T. Swihart, ACS Nano 2008, 2, 873. Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, J. A. Hollingsworth, J. Am. Chem. Soc. 2008, 130, 5026. Q. Lin, N. S. Makarov, W. K. Koh, K. A. Velizhanin, C. M. Cirloganu, H. Luo, V. I. Klimov, J. M. Pietryga, ACS Nano 2015, 9, 539. 2011; 115 2010; 10 1995; 51 2013; 25 2013; 49 2006; 78 2013; 500 1997; 68 2007; 90 2011; 11 1994; 49 1998; 81 1999; 103 2013; 7 2009; 118 2008; 2 2015; 9 2012; 12 2011; 5 2007; 58 2013; 9 2010; 1 2012; 134 2010; 46 2013; 13 2013; 12 2007; 111 2005; 127 1997; 101 2010; 132 2005; 4 2010; 397 2007; 7 2011; 21 2013; 135 2012; 6 2008; 112 2009; 129 2012; 4 2012; 23 2010; 4 2014; 6 2008; 130 1996; 8 2012; 8 e_1_2_4_40_1 e_1_2_4_21_1 e_1_2_4_44_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_25_1 e_1_2_4_48_1 e_1_2_4_27_1 e_1_2_4_46_1 e_1_2_4_29_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_5_1 e_1_2_4_7_1 e_1_2_4_9_1 e_1_2_4_52_1 e_1_2_4_50_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_16_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_39_1 e_1_2_4_41_1 e_1_2_4_20_1 e_1_2_4_45_1 e_1_2_4_22_1 e_1_2_4_43_1 e_1_2_4_24_1 e_1_2_4_49_1 e_1_2_4_26_1 e_1_2_4_47_1 e_1_2_4_28_1 e_1_2_4_2_1 e_1_2_4_4_1 e_1_2_4_6_1 e_1_2_4_8_1 e_1_2_4_51_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_53_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_15_1 e_1_2_4_38_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – reference: H. L. Chou, C. H. Tseng, K. C. Pillai, B. J. Hwang, L. Y. Chen, J. Phys. Chem. C 2011, 115, 20856. – reference: R. Ihly, J. Tolentino, Y. Liu, M. Gibbs, M. Law, ACS Nano 2011, 5, 8175. – reference: O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H. S. Han, D. Fukumura, R. K. Jain, M. G. Bawendi, Nat. Mater. 2013, 12, 445. – reference: P. Haro-Gonzalez, L. Martinez-Maestro, I. R. Martin, J. Garcia-Sole, D. Jaque, Small 2012, 8, 2652. – reference: A. M. Dennis, B. D. Mangum, A. Piryatinski, Y. S. Park, D. C. Hannah, J. L. Casson, D. J. Williams, R. D. Schaller, H. Htoon, J. A. Hollingsworth, Nano Lett. 2012, 12, 5545. – reference: M. V. Kovalenko, R. D. Schaller, D. Jarzab, M. A. Loi, D. V. Talapin, J. Am. Chem. Soc. 2012, 134, 2457. – reference: F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martin Rodriguez, D. Jaque, J. Garcia Sole, J. A. Capobianco, ACS Nano 2010, 4, 3254. – reference: E. J. McLaurin, L. R. Bradshaw, D. R. Gamelin, Chem. Mater. 2013, 25, 1283. – reference: V. I. Klimov, Annu. Rev. Phys. Chem. 2007, 58, 635. – reference: Y. Chen, J. Vela, H. Htoon, J. L. Casson, D. J. Werder, D. A. Bussian, V. I. Klimov, J. A. Hollingsworth, J. Am. Chem. Soc. 2008, 130, 5026. – reference: Q. Lin, N. S. Makarov, W. K. Koh, K. A. Velizhanin, C. M. Cirloganu, H. Luo, V. I. Klimov, J. M. Pietryga, ACS Nano 2015, 9, 539. – reference: V. A. Vlaskin, N. Janssen, J. van Rijssel, R. Beaulac, D. R. Gamelin, Nano Lett. 2010, 10, 3670. – reference: H. Y. Chen, S. Maiti, D. H. Son, ACS Nano 2012, 6, 583. – reference: I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 2005, 4, 435. – reference: J. M. Pietryga, D. J. Werder, D. J. Williams, J. L. Casson, R. D. Schaller, V. I. Klimov, J. A. Hollingsworth, J. Am. Chem. Soc. 2008, 130, 4879. – reference: H. G. Zhao, D. F. Wang, T. Zhang, M. Chaker, D. L. Ma, Chem. Commun. 2010, 46, 5301. – reference: C. L. Choi, H. Li, A. C. K. Olson, P. K. Jain, S. Sivasankar, A. P. Alivisatos, Nano Lett. 2011, 11, 2358. – reference: Z. P. Cai, L. Xiao, H. Y. Xu, M. Mortier, J. Lumin. 2009, 129, 1994. – reference: Z. Deutsch, O. Schwartz, R. Tenne, R. Popovitz-Biro, D. Oron, Nano Lett. 2012, 12, 2948. – reference: M. Murayama, T. Nakayama, Phys. Rev. B 1994, 49, 4710. – reference: R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, A. J. deMello, Anal. Chem. 2006, 78, 2272. – reference: X. T. Rao, T. Song, J. K. Gao, Y. J. Cui, Y. Yang, C. D. Wu, B. L. Chen, G. D. Qian, J. Am. Chem. Soc. 2013, 135, 15559. – reference: C. Gosse, C. Bergaud, P. Loew, in Thermal Nanosystems and Nanomaterials (Ed: S. Volz), Vol. 118, Springer, Berlin 2009, pp. 301-341. – reference: E. A. Dias, A. F. Grimes, D. S. English, P. Kambhampati, J. Phys. Chem. C 2008, 112, 14229. – reference: E. M. Graham, K. Iwai, S. Uchiyama, A. P. de Silva, S. W. Magennis, A. C. Jones, Lab Chip 2010, 10, 1267. – reference: H. G. Zhao, M. Chaker, N. Q. Wu, D. L. Ma, J. Mater. Chem. 2011, 21, 8898. – reference: C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, L. D. Carlos, Nanoscale 2012, 4, 4799. – reference: B. O. Dabbousi, J. RodriguezViejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, M. G. Bawendi, J. Phys. Chem. B 1997, 101, 9463. – reference: S. W. Clark, J. M. Harbold, F. W. Wise, J. Phys. Chem. C 2007, 111, 7302. – reference: C. H. Hsia, A. Wuttig, H. Yang, ACS Nano 2011, 5, 9511. – reference: D. C. Lee, I. Robel, J. M. Pietryga, V. I. Klimov, J. Am. Chem. Soc. 2010, 132, 9960. – reference: A. Schroeder, D. A. Heller, M. M. Winslow, J. E. Dahlman, G. W. Pratt, R. Langer, T. Jacks, D. G. Anderson, Nat. Rev. Cancer 2012, 12, 39. – reference: H. G. Zhao, H. Y. Liang, B. A. Gonfa, M. Chaker, T. Ozaki, P. Tijssen, F. Vidal, D. Ma, Nanoscale 2014, 6, 215. – reference: Z. Z. Bandic, Z. Ikonic, Phys. Rev. B 1995, 51, 9806. – reference: G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, M. D. Lukin, Nature 2013, 500, 54. – reference: F. Erogbogbo, K. T. Yong, I. Roy, G. Xu, P. N. Prasad, M. T. Swihart, ACS Nano 2008, 2, 873. – reference: S. W. Allison, G. T. Gillies, Rev. Sci. Instrum. 1997, 68, 2615. – reference: L. Turyanska, A. Patane, M. Henini, B. Hennequin, N. R. Thomas, Appl. Phys. Lett. 2007, 90, 101913. – reference: A. Olkhovets, R. C. Hsu, A. Lipovskii, F. W. Wise, Phys. Rev. Lett. 1998, 81, 3539. – reference: B. R. Hyun, Y. W. Zhong, A. C. Bartnik, L. F. Sun, H. D. Abruna, F. W. Wise, J. D. Goodreau, J. R. Matthews, T. M. Leslie, N. F. Borrelli, ACS Nano 2008, 2, 2206. – reference: D. F. Wang, H. G. Zhao, N. Q. Wu, M. A. El Khakani, D. L. Ma, J. Phys. Chem. Lett. 2010, 1, 1030. – reference: D. Zhou, M. Lin, X. Liu, J. Li, Z. L. Chen, D. Yao, H. Z. Sun, H. Zhang, B. Yang, ACS Nano 2013, 7, 2273. – reference: M. N. Nordin, J. R. Li, S. K. Clowes, R. J. Curry, Nanotechnology 2012, 23, 275701. – reference: R. Z. Liang, R. Tian, W. Y. Shi, Z. H. Liu, D. P. Yan, M. Wei, D. G. Evans, X. Duan, Chem. Commun. 2013, 49, 969. – reference: D. Battaglia, B. Blackman, X. G. Peng, J. Am. Chem. Soc. 2005, 127, 10889. – reference: C. Galland, S. Brovelli, W. K. Bae, L. A. Padilha, F. Meinardi, V. I. Klimov, Nano Lett. 2013, 13, 321. – reference: S. Li, K. Zhang, J. M. Yang, L. Lin, H. Yang, Nano Lett. 2007, 7, 3102. – reference: R. G. Aswathy, Y. Yoshida, T. Maekawa, D. S. Kumar, Anal. Bioanal. Chem. 2010, 397, 1417. – reference: M. Danek, K. F. Jensen, C. B. Murray, M. G. Bawendi, Chem. Mater. 1996, 8, 173. – reference: D. Zhou, H. Zhang, Small 2013, 9, 3195. – reference: D. Jaque, F. Vetrone, Nanoscale 2012, 4, 4301. – reference: J. R. Lakowicz, I. Gryczynski, Z. Gryczynski, C. J. Murphy, J. Phys. Chem. B 1999, 103, 7613. – volume: 4 start-page: 435 year: 2005 publication-title: Nat. Mater. – volume: 132 start-page: 9960 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 39 year: 2012 publication-title: Nat. Rev. Cancer – volume: 13 start-page: 321 year: 2013 publication-title: Nano Lett. – volume: 49 start-page: 4710 year: 1994 publication-title: Phys. Rev. B – volume: 101 start-page: 9463 year: 1997 publication-title: J. Phys. Chem. B – volume: 130 start-page: 5026 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 5301 year: 2010 publication-title: Chem. Commun. – volume: 9 start-page: 3195 year: 2013 publication-title: Small – volume: 81 start-page: 3539 year: 1998 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 9511 year: 2011 publication-title: ACS Nano – volume: 10 start-page: 3670 year: 2010 publication-title: Nano Lett. – volume: 25 start-page: 1283 year: 2013 publication-title: Chem. Mater. – volume: 127 start-page: 10889 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 68 start-page: 2615 year: 1997 publication-title: Rev. Sci. Instrum. – volume: 58 start-page: 635 year: 2007 publication-title: Annu. Rev. Phys. Chem. – volume: 500 start-page: 54 year: 2013 publication-title: Nature – volume: 78 start-page: 2272 year: 2006 publication-title: Anal. Chem. – volume: 118 start-page: 301 year: 2009 end-page: 341 – volume: 111 start-page: 7302 year: 2007 publication-title: J. Phys. Chem. C – volume: 12 start-page: 445 year: 2013 publication-title: Nat. Mater. – volume: 5 start-page: 8175 year: 2011 publication-title: ACS Nano – volume: 4 start-page: 4301 year: 2012 publication-title: Nanoscale – volume: 51 start-page: 9806 year: 1995 publication-title: Phys. Rev. B – volume: 7 start-page: 2273 year: 2013 publication-title: ACS Nano – volume: 1 start-page: 1030 year: 2010 publication-title: J. Phys. Chem. Lett. – volume: 23 start-page: 275701 year: 2012 publication-title: Nanotechnology – volume: 49 start-page: 969 year: 2013 publication-title: Chem. Commun. – volume: 9 start-page: 539 year: 2015 publication-title: ACS Nano – volume: 6 start-page: 583 year: 2012 publication-title: ACS Nano – volume: 135 start-page: 15559 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 103 start-page: 7613 year: 1999 publication-title: J. Phys. Chem. B – volume: 7 start-page: 3102 year: 2007 publication-title: Nano Lett. – volume: 8 start-page: 173 year: 1996 publication-title: Chem. Mater. – volume: 21 start-page: 8898 year: 2011 publication-title: J. Mater. Chem. – volume: 4 start-page: 3254 year: 2010 publication-title: ACS Nano – volume: 112 start-page: 14229 year: 2008 publication-title: J. Phys. Chem. C – volume: 10 start-page: 1267 year: 2010 publication-title: Lab Chip – volume: 129 start-page: 1994 year: 2009 publication-title: J. Lumin. – volume: 134 start-page: 2457 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 2652 year: 2012 publication-title: Small – volume: 130 start-page: 4879 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 873 year: 2008 publication-title: ACS Nano – volume: 2 start-page: 2206 year: 2008 publication-title: ACS Nano – volume: 4 start-page: 4799 year: 2012 publication-title: Nanoscale – volume: 11 start-page: 2358 year: 2011 publication-title: Nano Lett. – volume: 397 start-page: 1417 year: 2010 publication-title: Anal. Bioanal. Chem. – volume: 115 start-page: 20856 year: 2011 publication-title: J. Phys. Chem. C – volume: 6 start-page: 215 year: 2014 publication-title: Nanoscale – volume: 12 start-page: 2948 year: 2012 publication-title: Nano Lett. – volume: 90 start-page: 101913 year: 2007 publication-title: Appl. Phys. Lett. – volume: 12 start-page: 5545 year: 2012 publication-title: Nano Lett. – ident: e_1_2_4_4_1 doi: 10.1021/cm304034s – ident: e_1_2_4_12_1 doi: 10.1039/C2CC37553B – ident: e_1_2_4_43_1 doi: 10.1016/j.jlumin.2009.04.039 – ident: e_1_2_4_17_1 doi: 10.1038/nmat3539 – ident: e_1_2_4_31_1 – ident: e_1_2_4_15_1 doi: 10.1007/978-3-642-04258-4_10 – ident: e_1_2_4_20_1 doi: 10.1039/C3NR03691J – ident: e_1_2_4_47_1 doi: 10.1103/PhysRevLett.81.3539 – ident: e_1_2_4_49_1 doi: 10.1021/ja407219k – ident: e_1_2_4_51_1 doi: 10.1021/nn700319z – ident: e_1_2_4_21_1 doi: 10.1039/c1jm11205h – ident: e_1_2_4_41_1 doi: 10.1088/0957-4484/23/27/275701 – ident: e_1_2_4_8_1 doi: 10.1021/nn204452e – ident: e_1_2_4_28_1 doi: 10.1021/nl3045316 – ident: e_1_2_4_39_1 doi: 10.1021/nn505793y – ident: e_1_2_4_13_1 doi: 10.1002/smll.201201060 – ident: e_1_2_4_32_1 doi: 10.1021/cm9503137 – ident: e_1_2_4_30_1 doi: 10.1103/PhysRevB.51.9806 – ident: e_1_2_4_25_1 doi: 10.1021/jp0713561 – ident: e_1_2_4_33_1 doi: 10.1146/annurev.physchem.58.032806.104537 – ident: e_1_2_4_14_1 doi: 10.1038/nmat1390 – ident: e_1_2_4_2_1 doi: 10.1039/c2nr30663h – ident: e_1_2_4_36_1 doi: 10.1021/nl300638t – ident: e_1_2_4_3_1 doi: 10.1063/1.1148174 – ident: e_1_2_4_29_1 doi: 10.1103/PhysRevB.49.4710 – ident: e_1_2_4_10_1 doi: 10.1021/nn305423p – ident: e_1_2_4_7_1 doi: 10.1021/jp971091y – ident: e_1_2_4_6_1 doi: 10.1021/ja710437r – ident: e_1_2_4_53_1 doi: 10.1038/nrc3180 – ident: e_1_2_4_45_1 doi: 10.1039/b924151e – ident: e_1_2_4_40_1 doi: 10.1021/nn2033117 – ident: e_1_2_4_9_1 doi: 10.1021/nn2025622 – ident: e_1_2_4_46_1 doi: 10.1002/smll.201102736 – ident: e_1_2_4_50_1 doi: 10.1007/s00216-010-3643-6 – ident: e_1_2_4_26_1 doi: 10.1021/jp2046382 – ident: e_1_2_4_42_1 doi: 10.1063/1.2711529 – ident: e_1_2_4_44_1 doi: 10.1021/ac051990f – ident: e_1_2_4_1_1 doi: 10.1039/c2nr30764b – ident: e_1_2_4_23_1 doi: 10.1039/c0cc00067a – ident: e_1_2_4_35_1 doi: 10.1021/ja0437297 – ident: e_1_2_4_22_1 doi: 10.1021/nn800336b – ident: e_1_2_4_37_1 doi: 10.1021/nl2007032 – ident: e_1_2_4_24_1 doi: 10.1021/jz100144w – ident: e_1_2_4_11_1 doi: 10.1021/nn100244a – ident: e_1_2_4_18_1 doi: 10.1021/ja711379k – ident: e_1_2_4_16_1 doi: 10.1021/nl102135k – ident: e_1_2_4_48_1 doi: 10.1021/ja2087689 – ident: e_1_2_4_52_1 doi: 10.1038/nature12373 – ident: e_1_2_4_5_1 doi: 10.1021/nl071606p – ident: e_1_2_4_27_1 doi: 10.1021/jp991469n – ident: e_1_2_4_19_1 doi: 10.1021/nl302453x – ident: e_1_2_4_34_1 doi: 10.1021/ja102716p – ident: e_1_2_4_38_1 doi: 10.1021/jp806621q |
SSID | ssj0031247 |
Score | 2.3779223 |
Snippet | Core–shell quantum dots serve as self‐calibrating, ultrasensitive, multiparametric, near‐infrared, and biocompatible temperature sensors. They allow... Core-shell quantum dots serve as self-calibrating, ultrasensitive, multiparametric, near-infrared, and biocompatible temperature sensors. They allow... Core–shell quantum dots serve as self-calibrating, ultrasensitive, multiparametric, near-infrared, and biocompatible temperature sensors. They allow... |
SourceID | swepub proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5741 |
SubjectTerms | Biocompatible Materials - chemical synthesis Biocompatible Materials - standards Calibration Equipment Design Equipment Failure Analysis Experimental physics Experimentell fysik fluorescence Luminescent Measurements - instrumentation Luminescent Measurements - standards Materials Testing Nanotechnology Quantum Dots Reproducibility of Results self-calibrating Sensitivity and Specificity Temperature temperature sensors Thermography - instrumentation Thermography - standards Transducers |
Title | Ultrasensitive, Biocompatible, Self-Calibrating, Multiparametric Temperature Sensors |
URI | https://api.istex.fr/ark:/67375/WNG-1T519FSP-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201502249 https://www.ncbi.nlm.nih.gov/pubmed/26467511 https://www.proquest.com/docview/1757685585 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-13037 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQucCBNzRQUA48LnWbxHYex0JZKmgrxO6W3izbsatV0yxKshLixE_gN_JLmHF2QxeBkOAWK-Motmcy38Qznwl5muSlUC7KaZlFivJCO6pSYahQuc0S7uLSJ48fHacHU_72VJxequLv-SGGH25oGf57jQaudLv7kzS0vahw6wAADXghrOCLWYrk-fsfBv4oBs7Ln64CPosi8daKtTFKdte7r3mlqzjBn38HOQc-0XUo633R6CZRq1H0KSjnO4tO75gvvxA8_s8wb5EbS6Aa7vWadZtcsfUdcv0SfeFdcjKtuga8YN36BKTt8OVs7nPau5muoDm2lfv-9RuWf2lUtPpsO_QFv8g3foFHeZlwYgG397zOIF-386a9R6aj15NXB3R5TgM1ALcKykzq4sJwyxPLEsutY45ZV_JcZ9yUGjFSKqyInM7B_AvOTBZpADYO8E2iU3afbNTz2m6S0Ii8jMqCcVWUHF2lhvAIQBqAtkLxnAeErtZJmiWJOZ6lUcmefjmROF9ymK-AvBjkP_X0HX-UfO6XfRBTzTkmvWVCfjx-I-MJQN3R-L18F5CtlV7Ipb23EkAYxG0CYq-APOh1ZXgQQE6IyuI4IM965RnuILX3_uxkT86bM1l1C9xbZFlAEq8Qf3lhOT46PBxaD_-l0yNyDa-xtDLOt8hG1yzsY8BYnX7i7egHGJsdyQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BewAO5Q2BAjnwuDRtHs7rWB7LQndXiN0t3KzYsatV02yVZCXEiZ_Ab-SXMONsAotASHB0YkexPeP5xh5_A_DYT_Iw027i5LGbOSwV2smiUDphlqjYZ9rLTfD4eBIN5-ztx7CLJqS7MC0_RL_hRpph1mtScNqQPvjBGlqfFXR2gIgGzVB6EbbNIR3hovc9g1SA5svkV0Gr5RD1Vsfb6PoHm-037NI2DfGn34HOnlF0E8waazS4CqLrRxuEcrq_asS-_PwLxeN_dfQa7Kyxqn3YCtd1uKDKG3DlJwbDm3A8L5oKDWFZmxikPfv5YmnC2puFKLA4VYX-9uUr3QATJGvlyZ5t7vwS5fgZZfOS9kwhdG-pnbF-WS-r-hbMB69mL4bOOlWDIxFxpU4gI-2lkinmq8BXTOlAB0rnLBExk7kgmBSFKnS1SHAFSFkgY1cgttEIcXwRBbdhq1yW6i7YMkxyN08DlqU5I2sp0ENCnIa4Lc1Ywixwuonics1jTuk0Ct4yMPucxov342XBs77-ecvg8ceaT82899Wy6pTi3uKQf5i85t4M0e5g-o4fWbDbCQZfq3zNEYeh6xai-2XBnVZY-g8h6kTHzPMseNJKT_-G2L1fLo4P-bI64UWzouPFILbANxLxlx_m0_Fo1Jfu_UujR3BpOBuP-OjN5Og-XKbndNPSS3Zhq6lW6gFCrkY8NEr1HfGtIec |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyE4UN6EFsiBx6Vp83Bex0JZCt2uKna37c2KHbtaNc1WSVZCnPgJ_Mb-ks44u6GLQEhwdDKOYnsm80088xnglZ_kYabdxMljN3NYKrSTRaF0wixRsc-0l5vk8YNBtDdmn0_Ck2tV_C0_RPfDjSzDfK_JwC9yvf2TNLQ-L2jrAAENeqH0JqyyCH0lwaIvHYFUgN7LHK-CTssh5q0FbaPrby_3X3JLqzTDX3-HOTtC0WUsa5xRbw2yxTDaHJSzrVkjtuS3Xxge_2ec9-DuHKnaO61q3YcbqnwAd67xFz6Eo3HRVOgGy9pkIG3a7yZTk9TeTESBzaEq9OX3H1T_JUjTytNN21T8EuH4OZ3lJe2RQuDeEjujfFlPq_oRjHsfRu_3nPlBDY5EvJU6gYy0l0qmmK8CXzGlAx0onbNExEzmgkBSFKrQ1SJB-09ZIGNX4GppBDi-iILHsFJOS_UUbBkmuZunAcvSnJGvFBgfIUpD1JZmLGEWOIt14nLOYk6HaRS85V_2Oc0X7-bLgred_EXL3_FHyTdm2TuxrDqjrLc45MeDj9wbIdbtDQ_5vgUbC73gc4OvOaIwDNxCDL4seNLqSvcgxJwYlnmeBa9b5enuELf37uRoh0-rU140M9pcDGILfKMQf3lhPjzo97vWs3_p9BJuHe72eP_TYH8dbtNlKrP0kg1YaaqZeo54qxEvjEldAWzDIJY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasensitive%2C+Biocompatible%2C+Self%E2%80%90Calibrating%2C+Multiparametric+Temperature+Sensors&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zhao%2C+Haiguang&rft.au=Vomiero%2C+Alberto&rft.au=Rosei%2C+Federico&rft.date=2015-11-18&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=11&rft.issue=43&rft.spage=5741&rft.epage=5746&rft_id=info:doi/10.1002%2Fsmll.201502249&rft.externalDBID=10.1002%252Fsmll.201502249&rft.externalDocID=SMLL201502249 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |