POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE): A general algorithm for reducing motion-related artifacts

Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion‐related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion‐weighted imaging. Theory Images with reduced ar...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 74; no. 5; pp. 1336 - 1348
Main Authors Chu, Mei-Lan, Chang, Hing-Chiu, Chung, Hsiao-Wen, Truong, Trong-Kha, Bashir, Mustafa R., Chen, Nan-kuei
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.11.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.25527

Cover

Abstract Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion‐related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion‐weighted imaging. Theory Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k‐space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill‐conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin‐echo imaging data, and its effectiveness in respiratory‐triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot‐to‐shot phase variations in interleaved diffusion‐weighted imaging data corresponding to different k‐space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion‐related artifacts in data obtained with different pulse sequences, k‐space trajectories and contrasts. Conclusion POCSMUSE is a general post‐processing algorithm for reduction of motion‐related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. Magn Reson Med 74:1336–1348, 2015. © 2014 Wiley Periodicals, Inc.
AbstractList A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging. Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers. Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods.
A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging.PURPOSEA projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging.Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices.THEORYImages with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices.The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers.METHODSThe POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers.Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts.RESULTSExperimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts.POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods.CONCLUSIONPOCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods.
Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging. Theory Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. Conclusion POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. Magn Reson Med 74:1336-1348, 2015.
Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging. Theory Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. Conclusion POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. Magn Reson Med 74:1336-1348, 2015. © 2014 Wiley Periodicals, Inc.
Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion‐related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion‐weighted imaging. Theory Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k‐space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill‐conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin‐echo imaging data, and its effectiveness in respiratory‐triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot‐to‐shot phase variations in interleaved diffusion‐weighted imaging data corresponding to different k‐space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion‐related artifacts in data obtained with different pulse sequences, k‐space trajectories and contrasts. Conclusion POCSMUSE is a general post‐processing algorithm for reduction of motion‐related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. Magn Reson Med 74:1336–1348, 2015. © 2014 Wiley Periodicals, Inc.
Author Bashir, Mustafa R.
Chang, Hing-Chiu
Chen, Nan-kuei
Truong, Trong-Kha
Chu, Mei-Lan
Chung, Hsiao-Wen
AuthorAffiliation 2 Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, United States
1 Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
3 Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States
AuthorAffiliation_xml – name: 3 Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States
– name: 1 Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
– name: 2 Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, United States
Author_xml – sequence: 1
  givenname: Mei-Lan
  surname: Chu
  fullname: Chu, Mei-Lan
  organization: Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
– sequence: 2
  givenname: Hing-Chiu
  surname: Chang
  fullname: Chang, Hing-Chiu
  organization: Brain Imaging and Analysis Center, Duke University Medical Center, North Carolina, Durham, USA
– sequence: 3
  givenname: Hsiao-Wen
  surname: Chung
  fullname: Chung, Hsiao-Wen
  organization: Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
– sequence: 4
  givenname: Trong-Kha
  surname: Truong
  fullname: Truong, Trong-Kha
  organization: Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
– sequence: 5
  givenname: Mustafa R.
  surname: Bashir
  fullname: Bashir, Mustafa R.
  organization: Department of Radiology, Duke University Medical Center, North Carolina, Durham, USA
– sequence: 6
  givenname: Nan-kuei
  surname: Chen
  fullname: Chen, Nan-kuei
  email: nankuei.chen@duke.edu
  organization: Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25394325$$D View this record in MEDLINE/PubMed
BookMark eNqNkd9OFDEUxicGIwt64QuYSbwBk4H-3c5wYUI2uJCwsAGJl02301mKnXZtO8C-gM9tx102StR41ZOe3_flnO_sZFvWWZVlbyE4gACgw9a3B4hSxF5kA0gRKhCtyFY2AIyAAsOKbGc7IdwBAKqKkVfZNqK4IhjRQfZ9ejm6LmYiqDr3Sjobou9k1M7mrsnbzkS9MOoxdYOyQUd9r-MyV1a6Ov1Nrs7yvd5hcnN9sn-UH-dzZZUXJhdm7ryOt23eOJ-c605qO89b11sXXhkRk174qBshY3idvWyECerN-t3Nbj6dfB6dFueX47PR8XkhKSSsEBQiymoyU2UJYFkpKhVrsBrKatiQmjZlCaVEAklaQjUEbFjjGU0VqgEFDOPd7MPKt7MLsXwQxvCF163wSw4B78PkKUz-M8wEf1zBi27WqloqG9NqG4ETmv_esfqWz909JwQDwkAy2FsbePetUyHyVgepjBFWuS5wyDAqYYkg_A8UMYJpiWlC3z9D71znbYqtpyimoKz64d_9Ovxm6qfTJ-BwBUjvQvCq4VJH0Z8n7aLNH_PYf6b4V3Zr9wdt1PLvIJ9cTZ4UxUqhQ1SPG4XwX_mQYUb5l4sxn1an1ZRNL_gY_wCdi-z4
CODEN MRMEEN
CitedBy_id crossref_primary_10_1002_nbm_5063
crossref_primary_10_1016_j_mri_2016_04_017
crossref_primary_10_1002_mrm_26163
crossref_primary_10_1002_mrm_30069
crossref_primary_10_1007_s00723_015_0725_9
crossref_primary_10_1002_mrm_30301
crossref_primary_10_1002_mrm_28025
crossref_primary_10_1016_j_neuroimage_2016_05_079
crossref_primary_10_1109_TMI_2021_3104291
crossref_primary_10_1002_mrm_29393
crossref_primary_10_1002_mrm_30427
crossref_primary_10_1002_mrm_26249
crossref_primary_10_1002_mp_12674
crossref_primary_10_1002_mrm_27813
crossref_primary_10_1002_mrm_28748
crossref_primary_10_1016_j_media_2025_103546
crossref_primary_10_1002_mrm_29633
crossref_primary_10_1016_j_neuroimage_2021_118632
crossref_primary_10_1002_mrm_28092
crossref_primary_10_1002_jmri_25522
crossref_primary_10_1007_s00723_016_0761_0
crossref_primary_10_1016_j_neuroimage_2023_120168
crossref_primary_10_1002_mrm_28090
crossref_primary_10_1002_mp_16146
crossref_primary_10_1002_mrm_29422
crossref_primary_10_1002_mrm_26199
crossref_primary_10_1007_s00371_024_03309_2
crossref_primary_10_1002_mrm_30019
crossref_primary_10_1002_nbm_4321
crossref_primary_10_1002_mrm_25624
crossref_primary_10_1002_mrm_28813
crossref_primary_10_1002_mrm_27488
crossref_primary_10_1002_mrm_27565
crossref_primary_10_1002_mrm_27209
crossref_primary_10_1002_mrm_27924
crossref_primary_10_1002_mrm_29828
crossref_primary_10_1002_mrm_27190
crossref_primary_10_1109_TMI_2019_2946501
crossref_primary_10_1002_mrm_26382
crossref_primary_10_1016_j_jmr_2019_106602
crossref_primary_10_1002_mrm_29219
crossref_primary_10_1002_mrm_28446
crossref_primary_10_1002_mrm_29578
crossref_primary_10_1002_mrm_26949
crossref_primary_10_1016_j_mri_2018_04_002
crossref_primary_10_1016_j_neuroimage_2021_118099
crossref_primary_10_1016_j_spinee_2024_03_015
crossref_primary_10_1002_nbm_4185
crossref_primary_10_1002_mrm_26493
crossref_primary_10_1002_mrm_29047
crossref_primary_10_1002_mrm_28872
crossref_primary_10_1002_mrm_30357
crossref_primary_10_1002_mrm_29407
crossref_primary_10_1002_mrm_29848
crossref_primary_10_1002_mrm_26696
crossref_primary_10_1007_s10334_024_01162_x
crossref_primary_10_1038_srep42602
crossref_primary_10_1109_TBME_2023_3288031
Cites_doi 10.1002/mrm.25318
10.1002/mrm.1910300109
10.1148/radiology.211.3.r99jn15799
10.1002/mrm.23033
10.1002/mrm.20288
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.20097
10.1002/mrm.1910350518
10.1002/1522-2594(200007)44:1<101::AID-MRM15>3.0.CO;2-S
10.1002/mrm.20706
10.1002/mrm.20285
10.1016/j.neuroimage.2009.09.010
10.1109/42.774166
10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
10.1002/mrm.22577
10.1002/mrm.20677
10.1109/42.97598
10.1016/j.neuroimage.2013.01.038
10.1002/mrm.10531
10.1002/mrm.24320
10.1002/mrm.10014
10.1002/mrm.24709
10.1016/0022-2364(91)90253-P
10.1002/mrm.22896
10.1016/0041-5553(67)90113-9
10.1002/mrm.21046
10.1002/mrm.1910380113
10.1002/mrm.22024
10.1109/TMI.1982.4307555
10.1002/mrm.1241
10.1002/mrm.20890
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
5PM
ADTOC
UNPAY
DOI 10.1002/mrm.25527
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic
Engineering Research Database
Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1348
ExternalDocumentID oai:pubmedcentral.nih.gov:4430470
PMC4430470
3844422431
25394325
10_1002_mrm_25527
MRM25527
ark_67375_WNG_P9H9P7PN_G
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: R01 NS‐074045; R21 EB‐018419
– fundername: NIBIB NIH HHS
  grantid: R21 EB018419
– fundername: NINDS NIH HHS
  grantid: R01 NS-074045
– fundername: NIBIB NIH HHS
  grantid: R21 EB-018419
– fundername: NINDS NIH HHS
  grantid: R01 NS074045
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
7QO
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5147-a51257d4be880189e5ce7f3e6c96f4d5f881cc2a2c581e6076d3b51e62d050733
IEDL.DBID UNPAY
ISSN 0740-3194
1522-2594
IngestDate Sun Oct 26 02:51:13 EDT 2025
Thu Aug 21 18:27:47 EDT 2025
Tue Oct 07 09:30:51 EDT 2025
Fri Jul 11 08:56:38 EDT 2025
Tue Oct 07 06:06:37 EDT 2025
Wed Feb 19 01:53:03 EST 2025
Wed Oct 01 02:05:13 EDT 2025
Thu Apr 24 23:05:05 EDT 2025
Wed Jan 22 16:26:14 EST 2025
Sun Sep 21 06:14:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords motion artifacts
artifact correction
multiplexed sensitivity encoding
projection onto convex sets
Language English
License 2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5147-a51257d4be880189e5ce7f3e6c96f4d5f881cc2a2c581e6076d3b51e62d050733
Notes NIH - No. R01 NS-074045; No. R21 EB-018419
istex:8B73BC800051B60AD41D9751C975F2D060F7F3EB
ArticleID:MRM25527
ark:/67375/WNG-P9H9P7PN-G
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1002/mrm.25527
PMID 25394325
PQID 1725350897
PQPubID 1016391
PageCount 13
ParticipantIDs unpaywall_primary_10_1002_mrm_25527
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4430470
proquest_miscellaneous_1732818211
proquest_miscellaneous_1727435835
proquest_journals_1725350897
pubmed_primary_25394325
crossref_citationtrail_10_1002_mrm_25527
crossref_primary_10_1002_mrm_25527
wiley_primary_10_1002_mrm_25527_MRM25527
istex_primary_ark_67375_WNG_P9H9P7PN_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2015
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Rasche V, Proksa R, Sinkus R, Bo¨rnert P, Eggers H. Resampling of data between arbitrary grids using convolution interpolation. IEEE Trans Med Imaging 1999;18:385-392.
Liang ZP, Boada FE, Constable RT, Haacke EM, Lauterbur PC, Smith MR. Constrained reconstruction methods in MR imaging. Rev Magn Reson Med 1992;4:67-185.
Chang HC, Guhaniyogi S, Chen N-K. Interleaved diffusion-weighted EPI improved by adaptive partial-fourier and multiband multiplexed sensitivity-encoding reconstruction. Magn Reson Med 2015;73:1872-1884.
Butts K, deCrespigny AJ, Pauly JM, Moseley ME. Diffusion-weighted interleaved echo-planar imaging with a pair of orthogonal navigator echoes. Magn Reson Med 1996;35:763-770.
McGibney G, Smith MR, Nichols ST, Crawley A. Quantitative evalua- tion of several partial Fourier reconstruction algorithms used in MRI. Magn Reson Med 1993;30:51-59.
Skare S, Newbould RD, Clayton DB, Bammer R. Propeller EPI in the other direction. Magn Reson Med 2006;55:1298-1307.
Wang F-N, Huang T-Y, Lin F-H, Chuang T-C, Chen N-K, Chung H-W, Chen C-Y, Kwong KK. PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions. Magn Reson Med 2005;54:1232-1240.
Jeong HK, Gore JC, Anderson AW. High-resolution human diffusion tensor imaging using 2-D navigated multishot SENSE EPI at 7 T. Magn Reson Med 2013;69:793-802.
Gubin LG, Polyak BT, Raik EV. The method of projections for finding the common point in convex sets. USSR Comput Math Phys 1967;7:1-24.
Chen N-K, Avram AV, Song AW. Two-dimensional phase cycled reconstruction for inherent correction of echo-planar imaging Nyquist artifacts. Magn Reson Med 2011;66:1057-1066.
Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding. IEEE Trans Med Imaging 1991;MI-10:473-478.
Li Z, Pipe JG, Lee CY, Debbins JP, Karis JP, Huo D. X-PROP: A fast and robust diffusion-weighted propeller technique. Magn Reson Med 2011;66:341-347.
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962.
Liu C, Bammer R, Kim DH, Moseley ME. Self-navigated interleaved spiral (SNAILS): Application to high-resolution diffusion tensor imaging. Magn Reson Med 2004;52:1388-1396.
Chen N-K, Guidon A, Chang HC, Song AW. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE). NeuroImage 2013;72:41-47.
Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651.
Samsonov AA, Kholmovski EG, Parker DL, Johnson CR. POCSENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging. Magn Reson Med 2004;52:1397-1406.
Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med 2009;62:468-475.
Atkinson D, Porter DA, Hill DL, Calamante F, Connelly A. Sampling and reconstruction effects due to motion in diffusion-weighted interleaved echo planar imaging. Magn Reson Med 2000;44.1:101-109.
Haacke EM, Lindskog ED, Lin W. A fast, iterative, partial-Fourier tech- nique capable of local phase recovery. J Magn Reson 1991;92:126-145.
Xu D, King KF, Zur Y, Hinks RS. Robust 2D phase correction for echo planar imaging under a tight field-of-view. Magn Reson Med 2010;64:1800-1813.
Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999;42:963-969.
Bammer R, Stollberger R, Augustin M, Simbrunner J, Offenbacher H, Kooijman H, Ropele S, Kapeller P, Wach P, Ebner F, Fazekas F. Diffusion-weighted imaging with navigated interleaved echo-planar imaging and a conventional gradient system. Radiology 1999;211:799-806.
Pipe JG, Farthing VG, Forbes KP. Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med 2002;47:42-52.
Frank LR, Jung Y, Inati S, Tyszka JM, Wong EC. High efficiency, low distortion 3D diffusion tensor imaging with variable density spiral fast spin echoes (3D DW VDS RARE). Neuroimage 2010;49:1510-1523.
Robson MD, Anderson AW, Gore JC. Diffusion-weighted multiple shot echo planar imaging of humans without navigation. Magn Reson Med 1997;38:82-88.
Atkinson D, Counsell S, Hajnal JV, Batchelor PG, Hill DL, Larkman DJ. Nonlinear phase correction of navigated multi-coil diffusion images. Magn Reson Med 2006;56:1135-1139.
Liu C, Moseley ME, Bammer R. Simultaneous phase correction and SENSE reconstruction for navigated multi-shot DWI with non-cartesian k-space sampling. Magn Reson Med 2005;54:1412-1422.
Youla DC, Webb H. Image restoration by the method of convex projections: Part 1, Theory. IEEE Trans Med Imaging 1982;1:81-94.
Chen N-K, Wyrwicz AM. Removal of EPI Nyquist ghost artifacts with two-dimensional phase correction. Magn Reson Med 2004;51:1247-1253.
Miller KL, Pauly JM. Nonlinear phase correction for navigated diffusion imaging. Magn Reson Med 2003;50:343-353.
Truong TK, Guidon A. High-resolution multishot spiral diffusion tensor imaging with inherent correction of motion-induced phase errors. Magn Reson Med 2014;71:790-796.
2013; 69
2009; 62
2006; 56
1991; 10
2015; 73
2006; 55
2000; 44
1999; 42
1996; 35
2003; 50
2001; 46
1967; 7
2002; 47
2004; 52
2010; 64
2010; 49
2004; 51
1982; 1
1999; 18
2013; 72
1993; 30
1991; 92
2011; 66
2005; 54
1997; 38
2014
1999; 211
2014; 71
1992; 4
Guhaniyogi S (e_1_2_6_34_1) 2014
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
Liang ZP (e_1_2_6_23_1) 1992; 4
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
11754441 - Magn Reson Med. 2002 Jan;47(1):42-52
16676335 - Magn Reson Med. 2006 Jun;55(6):1298-307
21661046 - Magn Reson Med. 2011 Aug;66(2):341-7
20806354 - Magn Reson Med. 2010 Dec;64(6):1800-13
24925000 - Magn Reson Med. 2015 May;73(5):1872-84
15562485 - Magn Reson Med. 2004 Dec;52(6):1397-406
16206142 - Magn Reson Med. 2005 Nov;54(5):1232-40
23450457 - Magn Reson Med. 2014 Feb;71(2):790-6
10893527 - Magn Reson Med. 2000 Jul;44(1):101-9
18222850 - IEEE Trans Med Imaging. 1991;10(3):473-8
16986111 - Magn Reson Med. 2006 Nov;56(5):1135-9
9211383 - Magn Reson Med. 1997 Jul;38(1):82-8
22592941 - Magn Reson Med. 2013 Mar 1;69(3):793-802
12876711 - Magn Reson Med. 2003 Aug;50(2):343-53
15170846 - Magn Reson Med. 2004 Jun;51(6):1247-53
19449372 - Magn Reson Med. 2009 Aug;62(2):468-75
10416800 - IEEE Trans Med Imaging. 1999 May;18(5):385-92
10542355 - Magn Reson Med. 1999 Nov;42(5):952-62
18238261 - IEEE Trans Med Imaging. 1982;1(2):81-94
8371675 - Magn Reson Med. 1993 Jul;30(1):51-9
19778618 - Neuroimage. 2010 Jan 15;49(2):1510-23
10352609 - Radiology. 1999 Jun;211(3):799-806
21446032 - Magn Reson Med. 2011 Oct;66(4):1057-66
11590639 - Magn Reson Med. 2001 Oct;46(4):638-51
8722828 - Magn Reson Med. 1996 May;35(5):763-70
16276497 - Magn Reson Med. 2005 Dec;54(6):1412-22
23370063 - Neuroimage. 2013 May 15;72:41-7
10542356 - Magn Reson Med. 1999 Nov;42(5):963-9
15562493 - Magn Reson Med. 2004 Dec;52(6):1388-96
References_xml – reference: Chen N-K, Guidon A, Chang HC, Song AW. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE). NeuroImage 2013;72:41-47.
– reference: Samsonov AA, Kholmovski EG, Parker DL, Johnson CR. POCSENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging. Magn Reson Med 2004;52:1397-1406.
– reference: Frank LR, Jung Y, Inati S, Tyszka JM, Wong EC. High efficiency, low distortion 3D diffusion tensor imaging with variable density spiral fast spin echoes (3D DW VDS RARE). Neuroimage 2010;49:1510-1523.
– reference: Liu C, Bammer R, Kim DH, Moseley ME. Self-navigated interleaved spiral (SNAILS): Application to high-resolution diffusion tensor imaging. Magn Reson Med 2004;52:1388-1396.
– reference: Skare S, Newbould RD, Clayton DB, Bammer R. Propeller EPI in the other direction. Magn Reson Med 2006;55:1298-1307.
– reference: Gubin LG, Polyak BT, Raik EV. The method of projections for finding the common point in convex sets. USSR Comput Math Phys 1967;7:1-24.
– reference: Rasche V, Proksa R, Sinkus R, Bo¨rnert P, Eggers H. Resampling of data between arbitrary grids using convolution interpolation. IEEE Trans Med Imaging 1999;18:385-392.
– reference: Truong TK, Guidon A. High-resolution multishot spiral diffusion tensor imaging with inherent correction of motion-induced phase errors. Magn Reson Med 2014;71:790-796.
– reference: Li Z, Pipe JG, Lee CY, Debbins JP, Karis JP, Huo D. X-PROP: A fast and robust diffusion-weighted propeller technique. Magn Reson Med 2011;66:341-347.
– reference: Wang F-N, Huang T-Y, Lin F-H, Chuang T-C, Chen N-K, Chung H-W, Chen C-Y, Kwong KK. PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions. Magn Reson Med 2005;54:1232-1240.
– reference: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962.
– reference: Atkinson D, Counsell S, Hajnal JV, Batchelor PG, Hill DL, Larkman DJ. Nonlinear phase correction of navigated multi-coil diffusion images. Magn Reson Med 2006;56:1135-1139.
– reference: Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding. IEEE Trans Med Imaging 1991;MI-10:473-478.
– reference: Atkinson D, Porter DA, Hill DL, Calamante F, Connelly A. Sampling and reconstruction effects due to motion in diffusion-weighted interleaved echo planar imaging. Magn Reson Med 2000;44.1:101-109.
– reference: Liang ZP, Boada FE, Constable RT, Haacke EM, Lauterbur PC, Smith MR. Constrained reconstruction methods in MR imaging. Rev Magn Reson Med 1992;4:67-185.
– reference: Xu D, King KF, Zur Y, Hinks RS. Robust 2D phase correction for echo planar imaging under a tight field-of-view. Magn Reson Med 2010;64:1800-1813.
– reference: Jeong HK, Gore JC, Anderson AW. High-resolution human diffusion tensor imaging using 2-D navigated multishot SENSE EPI at 7 T. Magn Reson Med 2013;69:793-802.
– reference: Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999;42:963-969.
– reference: Robson MD, Anderson AW, Gore JC. Diffusion-weighted multiple shot echo planar imaging of humans without navigation. Magn Reson Med 1997;38:82-88.
– reference: Chen N-K, Wyrwicz AM. Removal of EPI Nyquist ghost artifacts with two-dimensional phase correction. Magn Reson Med 2004;51:1247-1253.
– reference: Liu C, Moseley ME, Bammer R. Simultaneous phase correction and SENSE reconstruction for navigated multi-shot DWI with non-cartesian k-space sampling. Magn Reson Med 2005;54:1412-1422.
– reference: Miller KL, Pauly JM. Nonlinear phase correction for navigated diffusion imaging. Magn Reson Med 2003;50:343-353.
– reference: Chen N-K, Avram AV, Song AW. Two-dimensional phase cycled reconstruction for inherent correction of echo-planar imaging Nyquist artifacts. Magn Reson Med 2011;66:1057-1066.
– reference: McGibney G, Smith MR, Nichols ST, Crawley A. Quantitative evalua- tion of several partial Fourier reconstruction algorithms used in MRI. Magn Reson Med 1993;30:51-59.
– reference: Butts K, deCrespigny AJ, Pauly JM, Moseley ME. Diffusion-weighted interleaved echo-planar imaging with a pair of orthogonal navigator echoes. Magn Reson Med 1996;35:763-770.
– reference: Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med 2009;62:468-475.
– reference: Chang HC, Guhaniyogi S, Chen N-K. Interleaved diffusion-weighted EPI improved by adaptive partial-fourier and multiband multiplexed sensitivity-encoding reconstruction. Magn Reson Med 2015;73:1872-1884.
– reference: Haacke EM, Lindskog ED, Lin W. A fast, iterative, partial-Fourier tech- nique capable of local phase recovery. J Magn Reson 1991;92:126-145.
– reference: Pipe JG, Farthing VG, Forbes KP. Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med 2002;47:42-52.
– reference: Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651.
– reference: Bammer R, Stollberger R, Augustin M, Simbrunner J, Offenbacher H, Kooijman H, Ropele S, Kapeller P, Wach P, Ebner F, Fazekas F. Diffusion-weighted imaging with navigated interleaved echo-planar imaging and a conventional gradient system. Radiology 1999;211:799-806.
– reference: Youla DC, Webb H. Image restoration by the method of convex projections: Part 1, Theory. IEEE Trans Med Imaging 1982;1:81-94.
– volume: 55
  start-page: 1298
  year: 2006
  end-page: 1307
  article-title: Propeller EPI in the other direction
  publication-title: Magn Reson Med
– volume: 46
  start-page: 638
  year: 2001
  end-page: 651
  article-title: Advances in sensitivity encoding with arbitrary k‐space trajectories
  publication-title: Magn Reson Med
– volume: 71
  start-page: 790
  year: 2014
  end-page: 796
  article-title: High‐resolution multishot spiral diffusion tensor imaging with inherent correction of motion‐induced phase errors
  publication-title: Magn Reson Med
– volume: 54
  start-page: 1412
  year: 2005
  end-page: 1422
  article-title: Simultaneous phase correction and SENSE reconstruction for navigated multi‐shot DWI with non‐cartesian k‐space sampling
  publication-title: Magn Reson Med
– volume: 44
  start-page: 101
  year: 2000
  end-page: 109
  article-title: Sampling and reconstruction effects due to motion in diffusion‐weighted interleaved echo planar imaging
  publication-title: Magn Reson Med
– volume: 69
  start-page: 793
  year: 2013
  end-page: 802
  article-title: High‐resolution human diffusion tensor imaging using 2‐D navigated multishot SENSE EPI at 7 T
  publication-title: Magn Reson Med
– volume: 47
  start-page: 42
  year: 2002
  end-page: 52
  article-title: Multishot diffusion‐weighted FSE using PROPELLER MRI
  publication-title: Magn Reson Med
– volume: 1
  start-page: 81
  year: 1982
  end-page: 94
  article-title: Image restoration by the method of convex projections: Part 1, Theory
  publication-title: IEEE Trans Med Imaging
– volume: 56
  start-page: 1135
  year: 2006
  end-page: 1139
  article-title: Nonlinear phase correction of navigated multi‐coil diffusion images
  publication-title: Magn Reson Med
– volume: 64
  start-page: 1800
  year: 2010
  end-page: 1813
  article-title: Robust 2D phase correction for echo planar imaging under a tight field‐of‐view
  publication-title: Magn Reson Med
– volume: 42
  start-page: 963
  year: 1999
  end-page: 969
  article-title: Motion correction with PROPELLER MRI: application to head motion and free‐breathing cardiac imaging
  publication-title: Magn Reson Med
– volume: 35
  start-page: 763
  year: 1996
  end-page: 770
  article-title: Diffusion‐weighted interleaved echo‐planar imaging with a pair of orthogonal navigator echoes
  publication-title: Magn Reson Med
– volume: 66
  start-page: 1057
  year: 2011
  end-page: 1066
  article-title: Two‐dimensional phase cycled reconstruction for inherent correction of echo‐planar imaging Nyquist artifacts
  publication-title: Magn Reson Med
– volume: 72
  start-page: 41
  year: 2013
  end-page: 47
  article-title: A robust multi‐shot scan strategy for high‐resolution diffusion weighted MRI enabled by multiplexed sensitivity‐encoding (MUSE)
  publication-title: NeuroImage
– volume: 54
  start-page: 1232
  year: 2005
  end-page: 1240
  article-title: PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions
  publication-title: Magn Reson Med
– volume: 51
  start-page: 1247
  year: 2004
  end-page: 1253
  article-title: Removal of EPI Nyquist ghost artifacts with two‐dimensional phase correction
  publication-title: Magn Reson Med
– volume: 92
  start-page: 126
  year: 1991
  end-page: 145
  article-title: A fast, iterative, partial‐Fourier tech‐ nique capable of local phase recovery
  publication-title: J Magn Reson
– volume: 30
  start-page: 51
  year: 1993
  end-page: 59
  article-title: Quantitative evalua‐ tion of several partial Fourier reconstruction algorithms used in MRI
  publication-title: Magn Reson Med
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 52
  start-page: 1397
  year: 2004
  end-page: 1406
  article-title: POCSENSE: POCS‐based reconstruction for sensitivity encoded magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 66
  start-page: 341
  year: 2011
  end-page: 347
  article-title: X‐PROP: A fast and robust diffusion‐weighted propeller technique
  publication-title: Magn Reson Med
– volume: 18
  start-page: 385
  year: 1999
  end-page: 392
  article-title: Resampling of data between arbitrary grids using convolution interpolation
  publication-title: IEEE Trans Med Imaging
– volume: 10
  start-page: 473
  year: 1991
  end-page: 478
  article-title: Selection of a convolution function for Fourier inversion using gridding
  publication-title: IEEE Trans Med Imaging
– volume: 50
  start-page: 343
  year: 2003
  end-page: 353
  article-title: Nonlinear phase correction for navigated diffusion imaging
  publication-title: Magn Reson Med
– volume: 52
  start-page: 1388
  year: 2004
  end-page: 1396
  article-title: Self‐navigated interleaved spiral (SNAILS): Application to high‐resolution diffusion tensor imaging
  publication-title: Magn Reson Med
– volume: 38
  start-page: 82
  year: 1997
  end-page: 88
  article-title: Diffusion‐weighted multiple shot echo planar imaging of humans without navigation
  publication-title: Magn Reson Med
– volume: 62
  start-page: 468
  year: 2009
  end-page: 475
  article-title: High resolution diffusion‐weighted imaging using readout‐segmented echo‐planar imaging, parallel imaging and a two‐dimensional navigator‐based reacquisition
  publication-title: Magn Reson Med
– volume: 4
  start-page: 67
  year: 1992
  end-page: 185
  article-title: Constrained reconstruction methods in MR imaging
  publication-title: Rev Magn Reson Med
– start-page: 4351
  year: 2014
– volume: 49
  start-page: 1510
  year: 2010
  end-page: 1523
  article-title: High efficiency, low distortion 3D diffusion tensor imaging with variable density spiral fast spin echoes (3D DW VDS RARE)
  publication-title: Neuroimage
– volume: 211
  start-page: 799
  year: 1999
  end-page: 806
  article-title: Diffusion‐weighted imaging with navigated interleaved echo‐planar imaging and a conventional gradient system
  publication-title: Radiology
– volume: 7
  start-page: 1
  year: 1967
  end-page: 24
  article-title: The method of projections for finding the common point in convex sets
  publication-title: USSR Comput Math Phys
– volume: 73
  start-page: 1872
  year: 2015
  end-page: 1884
  article-title: Interleaved diffusion‐weighted EPI improved by adaptive partial‐fourier and multiband multiplexed sensitivity‐encoding reconstruction
  publication-title: Magn Reson Med
– ident: e_1_2_6_29_1
  doi: 10.1002/mrm.25318
– ident: e_1_2_6_24_1
  doi: 10.1002/mrm.1910300109
– ident: e_1_2_6_7_1
  doi: 10.1148/radiology.211.3.r99jn15799
– ident: e_1_2_6_10_1
  doi: 10.1002/mrm.23033
– volume: 4
  start-page: 67
  year: 1992
  ident: e_1_2_6_23_1
  article-title: Constrained reconstruction methods in MR imaging
  publication-title: Rev Magn Reson Med
– start-page: 4351
  volume-title: Proceedings of the 22th Annual Meeting of ISMRM
  year: 2014
  ident: e_1_2_6_34_1
– ident: e_1_2_6_16_1
  doi: 10.1002/mrm.20288
– ident: e_1_2_6_3_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_6_31_1
  doi: 10.1002/mrm.20097
– ident: e_1_2_6_8_1
  doi: 10.1002/mrm.1910350518
– ident: e_1_2_6_5_1
  doi: 10.1002/1522-2594(200007)44:1<101::AID-MRM15>3.0.CO;2-S
– ident: e_1_2_6_30_1
  doi: 10.1002/mrm.20706
– ident: e_1_2_6_25_1
  doi: 10.1002/mrm.20285
– ident: e_1_2_6_15_1
  doi: 10.1016/j.neuroimage.2009.09.010
– ident: e_1_2_6_26_1
  doi: 10.1109/42.774166
– ident: e_1_2_6_2_1
  doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L
– ident: e_1_2_6_32_1
  doi: 10.1002/mrm.22577
– ident: e_1_2_6_14_1
  doi: 10.1002/mrm.20677
– ident: e_1_2_6_27_1
  doi: 10.1109/42.97598
– ident: e_1_2_6_19_1
  doi: 10.1016/j.neuroimage.2013.01.038
– ident: e_1_2_6_17_1
  doi: 10.1002/mrm.10531
– ident: e_1_2_6_9_1
  doi: 10.1002/mrm.24320
– ident: e_1_2_6_11_1
  doi: 10.1002/mrm.10014
– ident: e_1_2_6_33_1
  doi: 10.1002/mrm.24709
– ident: e_1_2_6_22_1
  doi: 10.1016/0022-2364(91)90253-P
– ident: e_1_2_6_28_1
  doi: 10.1002/mrm.22896
– ident: e_1_2_6_20_1
  doi: 10.1016/0041-5553(67)90113-9
– ident: e_1_2_6_6_1
  doi: 10.1002/mrm.21046
– ident: e_1_2_6_18_1
  doi: 10.1002/mrm.1910380113
– ident: e_1_2_6_12_1
  doi: 10.1002/mrm.22024
– ident: e_1_2_6_21_1
  doi: 10.1109/TMI.1982.4307555
– ident: e_1_2_6_4_1
  doi: 10.1002/mrm.1241
– ident: e_1_2_6_13_1
  doi: 10.1002/mrm.20890
– reference: 21661046 - Magn Reson Med. 2011 Aug;66(2):341-7
– reference: 15562493 - Magn Reson Med. 2004 Dec;52(6):1388-96
– reference: 16986111 - Magn Reson Med. 2006 Nov;56(5):1135-9
– reference: 8722828 - Magn Reson Med. 1996 May;35(5):763-70
– reference: 10893527 - Magn Reson Med. 2000 Jul;44(1):101-9
– reference: 16676335 - Magn Reson Med. 2006 Jun;55(6):1298-307
– reference: 23370063 - Neuroimage. 2013 May 15;72:41-7
– reference: 18238261 - IEEE Trans Med Imaging. 1982;1(2):81-94
– reference: 22592941 - Magn Reson Med. 2013 Mar 1;69(3):793-802
– reference: 15170846 - Magn Reson Med. 2004 Jun;51(6):1247-53
– reference: 10416800 - IEEE Trans Med Imaging. 1999 May;18(5):385-92
– reference: 24925000 - Magn Reson Med. 2015 May;73(5):1872-84
– reference: 12876711 - Magn Reson Med. 2003 Aug;50(2):343-53
– reference: 15562485 - Magn Reson Med. 2004 Dec;52(6):1397-406
– reference: 8371675 - Magn Reson Med. 1993 Jul;30(1):51-9
– reference: 18222850 - IEEE Trans Med Imaging. 1991;10(3):473-8
– reference: 16276497 - Magn Reson Med. 2005 Dec;54(6):1412-22
– reference: 10542356 - Magn Reson Med. 1999 Nov;42(5):963-9
– reference: 20806354 - Magn Reson Med. 2010 Dec;64(6):1800-13
– reference: 10352609 - Radiology. 1999 Jun;211(3):799-806
– reference: 10542355 - Magn Reson Med. 1999 Nov;42(5):952-62
– reference: 16206142 - Magn Reson Med. 2005 Nov;54(5):1232-40
– reference: 19778618 - Neuroimage. 2010 Jan 15;49(2):1510-23
– reference: 11754441 - Magn Reson Med. 2002 Jan;47(1):42-52
– reference: 23450457 - Magn Reson Med. 2014 Feb;71(2):790-6
– reference: 21446032 - Magn Reson Med. 2011 Oct;66(4):1057-66
– reference: 11590639 - Magn Reson Med. 2001 Oct;46(4):638-51
– reference: 19449372 - Magn Reson Med. 2009 Aug;62(2):468-75
– reference: 9211383 - Magn Reson Med. 1997 Jul;38(1):82-8
SSID ssj0009974
Score 2.4531755
Snippet Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion‐related artifacts,...
A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including...
Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts,...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1336
SubjectTerms Abdomen - anatomy & histology
Algorithms
artifact correction
Diffusion Magnetic Resonance Imaging - methods
Humans
Image Processing, Computer-Assisted - methods
motion artifacts
Movement
multiplexed sensitivity encoding
projection onto convex sets
Respiration
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIqAXHuXRQEHmIbQcsk3iOI7hVFVtF6Qsqy2r9oBkJY6zrbqbrfYhCifOnPiN_BLGdpJqoVSIW7Se2Il3ZvxNPP4GoZehypmKKHP9XDIIUGjkxgEp3MgLlCQsy_xCfxpIulFnEL4_okcr6G19FsbyQzQf3LRlGH-tDTzNZlsXpKHj6bgdaP4w8L8-iUw41b-gjuLcMjCzUPsZHtasQl6w1dy5tBZd09N6fhnQ_DNf8uaiPEu_fE5Ho2VMaxalvdvoU_06NhfltL2YZ2359Temx_983zvoVgVW8bbVrrtoRZXr6EZSbcevo-smf1TO7qHvvQ87Bz-__dCLYo5NlN0w0-JJgeu8xXNonemceVu0AmsazRx-S_rvcEv3kQwOdl-_wdt4aPmwcToaTqYn8-MxBngNPecLGHuIbfUhGNEcxoEetAnoUxqz-2iwt_txp-NWZR5cCWiNuSlgDsryMFPgS_yYKyoVK4iKJI-KMKdFHPtSBmkgaeyryGNRTjIKV0HuUV1z8gFaLSel2kDYixlhPFMFgVVXQrCkCETdaSgLXY6nyB3Uqv9wISsOdF2KYyQse3MgYJaFmWUHPW9Ezyzxx2VCr4zWNBLp9FRnyjEqDrv7osc7vMd6XbHvoM1arUTlJGYCsCMlAJA59POsaQbz1ns2aakmCyMDGI8CTr5KhmhOLwjlHfTQamrzQDACD0kAd7MlHW4ENL34ckt5cmxoxsNQb8l6DnrRaPtVM9Eyyvt3CZH0E3Px6N9FH6M1AKjUnv3cRKuguOoJgMB59tRY-y_HbFp2
  priority: 102
  providerName: Wiley-Blackwell
Title POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE): A general algorithm for reducing motion-related artifacts
URI https://api.istex.fr/ark:/67375/WNG-P9H9P7PN-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25527
https://www.ncbi.nlm.nih.gov/pubmed/25394325
https://www.proquest.com/docview/1725350897
https://www.proquest.com/docview/1727435835
https://www.proquest.com/docview/1732818211
https://pubmed.ncbi.nlm.nih.gov/PMC4430470
http://doi.org/10.1002/mrm.25527
UnpaywallVersion submittedVersion
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb5wwELbSXfVx6SN90aaR-1C1PbAFgzH0toqSbCuxRZuukp4Q2GYTZZeNll017annnvob-0s6Ng8V5aHeEB7GYMbMN3j8DUJvXCmY9CgzbcEZBCjUM33iZKZnEckdlqZ2pn4NhCNvOHE_HdGjDVSXrGsv35P38-W8TxRJ2A3U9Sig7Q7qTkbR4GvJrqk-IbrWIXghYgKSd2vyoH-vbbmcrhq988vw5MW0yNvr_Cz5_i2ZzdrQVfuevXtlDmShKQtVyslpf71K-_zHRULHKx_rPrpbAU88KC3lAdqQ-Sa6FVZL65vops4F5cVD9Cv6vHPw5-dv5eAE1hFzwzKLFxmucxDPobVQ-e9lAQqsKDEFnAvHH3FP6QgnB7vvPuABnpbc1jiZTRfLk9XxHANUBs1iDX1PcVlJCHrUG2tAgzJnteOieIQme7tfdoZmVbLB5IC8mJkAfqBMuKmE74LtB5JyyTJHejzwMlfQzPdtzklCOPVt6VnME05K4YgIi6r6kY9RJ1_k8inCls8cFqQyc8CDcgh8pAMRdOLyTJXWyYSBevVbjXnFZ67KaszikomZxDDKsR5lA71qRM9KEo_LhN5q02gkkuWpynpjND4c7cdRMAwiFo3ifQNt1bYTVxO-iAEHUgfAbgB6XjbNMFXV-kuSy8VaywBeo4B5r5NxFD8XhOUGelKaY3ND0EPgOgSuZi1DbQQUVXi7JT851pThrquWVy0DvW5M-rqR6Gljv1oiDsehPnj2XwqfozuAM2mZ5byFOmCz8gVguVW6DVHMmGxXk_ovILBG6g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGJhgXPsZXYYD5ECqHdGlixwniMk3bOlhK1a1iF2QljtNNa9OpXcXgxJkTfyN_Ce_ZTabCmBC3KH6xE-c9-_fs598j5CXTmdABF04zUwIcFB44oefnTuB6WvkiTZs5Lg3E7aDVY-8O-MECeVuehbH8ENWCG1qGGa_RwHFBeu2cNXQ4HjY8JBC7QpZYAH4KQqLuOXlUFFkOZsFwpIlYySvkemvVo3Oz0RJ27NlFUPPPiMnlaXGSfPmcDAbzqNZMS1s3yafyg2w0ynFjepo21NffuB7_94tvkRszvErXrYLdJgu6WCHX4tmO_Aq5akJI1eQO-d75sLH389sPnBczahztipyWjnJahi6eQekEw-Zt3gqKTJoZ3Iu7O7SOdcS9vc3Xb-g67VtKbJoM-qPx0enhkALChpqzKbTdpzYBEbRozuNADWgFeFBjcpf0tjb3N1rOLNODowCwCScB2MFFxlINw0kzjDRXWuS-DlQU5CzjeRg2lfIST_GwqQNXBJmfcrjyMpdj2sl7ZLEYFfoBoW4ofBGlOvdh4lXgL2kfHO-EqRwz8uRZjdTLPy7VjAYds3EMpCVw9iT0sjS9XCPPK9ETy_1xkdArozaVRDI-xmA5weXH9rbsRK2oIzptuV0jq6Veydk4MZEAH7kPGDmCep5VxWDhuG2TFHo0NTIA8zhA5ctkfKT1Am--Ru5bVa1eCFqImO_B02JOiSsBZBifLymODg3TOGO4K-vWyItK3S_ribrR3r9LyLgbm4uH_y76lCy39uNdubvTfv-IXAe8yu1R0FWyCEqsHwMmPE2fGNP_BUW2Xpc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGJjYufAwGhQHmQ6gc0qWJHceIy7St64CUqqNiF2QljtNNa9OqH2Jw4syJv5G_hGe7yVQYE-IWxS924rxn_579_HsIPScqZSqgzKmnkoGDQgMn9PzMCVxPSZ8lST3TSwNRK2h2yZsjerSEXhdnYSw_RLngpi3DjNfawNUozbbOWUMH40HN0wRiV9AKoTzUAX27nXPyKM4tBzMjeqThpOAVcr2t8tGF2WhFd-zZRVDzz4jJtVk-ir98jvv9RVRrpqXGDfSp-CAbjXJam02Tmvz6G9fj_37xTXR9jlfxtlWwW2hJ5etoNZrvyK-jqyaEVE5uo-_t9zuHP7_90PNiio2jXZLT4mGGi9DFMyid6LB5m7cCaybNFO5FnQNc1XVE3cO9l6_wNu5ZSmwc93vD8cn0eIABYUPN6Qza7mGbgAhaNOdxoAZtBfqgxuQO6jb2Puw0nXmmB0cCYGNODLCDspQkCoaTesgVlYplvgokDzKS0iwM61J6sSdpWFeBy4LUTyhcealLddrJDbScD3N1D2E3ZD7jicp8mHgl-EvKB8c7JjLTGXmytIKqxR8Xck6DrrNx9IUlcPYE9LIwvVxBT0vRkeX-uEjohVGbUiIen-pgOUbFx9a-aPMmb7N2S-xX0GahV2I-TkwEwEfqA0bmUM-TshgsXG_bxLkazowMwDwKUPkyGV_TeoE3X0F3raqWLwQtcOJ78DRbUOJSQDOML5bkJ8eGaZwQvSvrVtCzUt0v64mq0d6_S4ioE5mL-_8u-hittncb4t1B6-0DdA3gKrUnQTfRMuiwegiQcJo8Mpb_C2_JXhs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELaWVjwuPJZXYEHmIVQOKYkTxwm3arW7BSml2qViOVmJ43RX26arphULJ86c-I38EsZ2EhHtQ9yieDJOnHHmm3j8DUKvfZkxGVBmu5lgEKDQwA6Jl9uBQ6TwWJq6ufo1EI-C4cT_eEgPN1Bdsq69fE_ezZfzPlEkYddQN6CAtjuoOxmNB18Nu6b6hOhah-CFiA1I3q_Jg_69tuVyumr0zi7Ck-fTIm-ui9Pk-7dkNmtDV-17du-YHMhSUxaqlJOT_nqV9sWP84SOlz7WXXS7Ap54YCzlHtqQxSa6EVdL65vous4FFeV99Gv8afvgz8_fysFlWEfMDcssXuS4zkE8g9ZS5b-bAhRYUWJmcC7e_4B7Skc8Odh5-x4P8NRwW-NkNl0sj1dHcwxQGTRna-h7ik0lIehRb6wBDcqc1Y6L8gGa7O583h7aVckGWwDyYnYC-IGyzE8lfBfcMJJUSJZ7MhBRkPsZzcPQFYIkRNDQlYHDgsxLKRyRzKGqfuRD1CkWhXyMsBMyj0WpzD3woAICH-lBBJ34IleldfLMQr36rXJR8ZmrshozbpiYCYdR5nqULfSyET01JB4XCb3RptFIJMsTlfXGKP8y2uPjaBiN2XjE9yy0VdsOryZ8yQEHUg_AbgR6XjTNMFXV-ktSyMVaywBeo4B5r5LxFD8XhOUWemTMsbkh6CHyPQJXs5ahNgKKKrzdUhwfacpw31fLq46FXjUmfdVI9LSxXy7B4_1YHzz5L4VP0S3AmdRs4dxCHbBZ-Qyw3Cp9Xk3nv3yGRfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=POCS-based+reconstruction+of+multiplexed+sensitivity+encoded+MRI+%28POCSMUSE%29%3A+A+general+algorithm+for+reducing+motion-related+artifacts&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Chu%2C+Mei-Lan&rft.au=Chang%2C+Hing-Chiu&rft.au=Chung%2C+Hsiao-Wen&rft.au=Truong%2C+Trong-Kha&rft.date=2015-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=74&rft.issue=5&rft.spage=1336&rft.epage=1348&rft_id=info:doi/10.1002%2Fmrm.25527&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_P9H9P7PN_G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon