POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE): A general algorithm for reducing motion-related artifacts
Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion‐related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion‐weighted imaging. Theory Images with reduced ar...
Saved in:
| Published in | Magnetic resonance in medicine Vol. 74; no. 5; pp. 1336 - 1348 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Blackwell Publishing Ltd
01.11.2015
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0740-3194 1522-2594 1522-2594 |
| DOI | 10.1002/mrm.25527 |
Cover
| Abstract | Purpose
A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion‐related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion‐weighted imaging.
Theory
Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k‐space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill‐conditioned matrices.
Methods
The POCSMUSE technique was applied to abdominal fast spin‐echo imaging data, and its effectiveness in respiratory‐triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot‐to‐shot phase variations in interleaved diffusion‐weighted imaging data corresponding to different k‐space trajectories and matrix condition numbers.
Results
Experimental results show that the POCSMUSE technique can effectively reduce motion‐related artifacts in data obtained with different pulse sequences, k‐space trajectories and contrasts.
Conclusion
POCSMUSE is a general post‐processing algorithm for reduction of motion‐related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. Magn Reson Med 74:1336–1348, 2015. © 2014 Wiley Periodicals, Inc. |
|---|---|
| AbstractList | A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging.
Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices.
The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers.
Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts.
POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging.PURPOSEA projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging.Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices.THEORYImages with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices.The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers.METHODSThe POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers.Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts.RESULTSExperimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts.POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods.CONCLUSIONPOCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging. Theory Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. Conclusion POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. Magn Reson Med 74:1336-1348, 2015. Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging. Theory Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. Conclusion POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. Magn Reson Med 74:1336-1348, 2015. © 2014 Wiley Periodicals, Inc. Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion‐related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion‐weighted imaging. Theory Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k‐space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill‐conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin‐echo imaging data, and its effectiveness in respiratory‐triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot‐to‐shot phase variations in interleaved diffusion‐weighted imaging data corresponding to different k‐space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion‐related artifacts in data obtained with different pulse sequences, k‐space trajectories and contrasts. Conclusion POCSMUSE is a general post‐processing algorithm for reduction of motion‐related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. Magn Reson Med 74:1336–1348, 2015. © 2014 Wiley Periodicals, Inc. |
| Author | Bashir, Mustafa R. Chang, Hing-Chiu Chen, Nan-kuei Truong, Trong-Kha Chu, Mei-Lan Chung, Hsiao-Wen |
| AuthorAffiliation | 2 Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, United States 1 Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan 3 Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States |
| AuthorAffiliation_xml | – name: 3 Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States – name: 1 Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan – name: 2 Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, United States |
| Author_xml | – sequence: 1 givenname: Mei-Lan surname: Chu fullname: Chu, Mei-Lan organization: Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan – sequence: 2 givenname: Hing-Chiu surname: Chang fullname: Chang, Hing-Chiu organization: Brain Imaging and Analysis Center, Duke University Medical Center, North Carolina, Durham, USA – sequence: 3 givenname: Hsiao-Wen surname: Chung fullname: Chung, Hsiao-Wen organization: Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan – sequence: 4 givenname: Trong-Kha surname: Truong fullname: Truong, Trong-Kha organization: Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA – sequence: 5 givenname: Mustafa R. surname: Bashir fullname: Bashir, Mustafa R. organization: Department of Radiology, Duke University Medical Center, North Carolina, Durham, USA – sequence: 6 givenname: Nan-kuei surname: Chen fullname: Chen, Nan-kuei email: nankuei.chen@duke.edu organization: Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25394325$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkd9OFDEUxicGIwt64QuYSbwBk4H-3c5wYUI2uJCwsAGJl02301mKnXZtO8C-gM9tx102StR41ZOe3_flnO_sZFvWWZVlbyE4gACgw9a3B4hSxF5kA0gRKhCtyFY2AIyAAsOKbGc7IdwBAKqKkVfZNqK4IhjRQfZ9ejm6LmYiqDr3Sjobou9k1M7mrsnbzkS9MOoxdYOyQUd9r-MyV1a6Ov1Nrs7yvd5hcnN9sn-UH-dzZZUXJhdm7ryOt23eOJ-c605qO89b11sXXhkRk174qBshY3idvWyECerN-t3Nbj6dfB6dFueX47PR8XkhKSSsEBQiymoyU2UJYFkpKhVrsBrKatiQmjZlCaVEAklaQjUEbFjjGU0VqgEFDOPd7MPKt7MLsXwQxvCF163wSw4B78PkKUz-M8wEf1zBi27WqloqG9NqG4ETmv_esfqWz909JwQDwkAy2FsbePetUyHyVgepjBFWuS5wyDAqYYkg_A8UMYJpiWlC3z9D71znbYqtpyimoKz64d_9Ovxm6qfTJ-BwBUjvQvCq4VJH0Z8n7aLNH_PYf6b4V3Zr9wdt1PLvIJ9cTZ4UxUqhQ1SPG4XwX_mQYUb5l4sxn1an1ZRNL_gY_wCdi-z4 |
| CODEN | MRMEEN |
| CitedBy_id | crossref_primary_10_1002_nbm_5063 crossref_primary_10_1016_j_mri_2016_04_017 crossref_primary_10_1002_mrm_26163 crossref_primary_10_1002_mrm_30069 crossref_primary_10_1007_s00723_015_0725_9 crossref_primary_10_1002_mrm_30301 crossref_primary_10_1002_mrm_28025 crossref_primary_10_1016_j_neuroimage_2016_05_079 crossref_primary_10_1109_TMI_2021_3104291 crossref_primary_10_1002_mrm_29393 crossref_primary_10_1002_mrm_30427 crossref_primary_10_1002_mrm_26249 crossref_primary_10_1002_mp_12674 crossref_primary_10_1002_mrm_27813 crossref_primary_10_1002_mrm_28748 crossref_primary_10_1016_j_media_2025_103546 crossref_primary_10_1002_mrm_29633 crossref_primary_10_1016_j_neuroimage_2021_118632 crossref_primary_10_1002_mrm_28092 crossref_primary_10_1002_jmri_25522 crossref_primary_10_1007_s00723_016_0761_0 crossref_primary_10_1016_j_neuroimage_2023_120168 crossref_primary_10_1002_mrm_28090 crossref_primary_10_1002_mp_16146 crossref_primary_10_1002_mrm_29422 crossref_primary_10_1002_mrm_26199 crossref_primary_10_1007_s00371_024_03309_2 crossref_primary_10_1002_mrm_30019 crossref_primary_10_1002_nbm_4321 crossref_primary_10_1002_mrm_25624 crossref_primary_10_1002_mrm_28813 crossref_primary_10_1002_mrm_27488 crossref_primary_10_1002_mrm_27565 crossref_primary_10_1002_mrm_27209 crossref_primary_10_1002_mrm_27924 crossref_primary_10_1002_mrm_29828 crossref_primary_10_1002_mrm_27190 crossref_primary_10_1109_TMI_2019_2946501 crossref_primary_10_1002_mrm_26382 crossref_primary_10_1016_j_jmr_2019_106602 crossref_primary_10_1002_mrm_29219 crossref_primary_10_1002_mrm_28446 crossref_primary_10_1002_mrm_29578 crossref_primary_10_1002_mrm_26949 crossref_primary_10_1016_j_mri_2018_04_002 crossref_primary_10_1016_j_neuroimage_2021_118099 crossref_primary_10_1016_j_spinee_2024_03_015 crossref_primary_10_1002_nbm_4185 crossref_primary_10_1002_mrm_26493 crossref_primary_10_1002_mrm_29047 crossref_primary_10_1002_mrm_28872 crossref_primary_10_1002_mrm_30357 crossref_primary_10_1002_mrm_29407 crossref_primary_10_1002_mrm_29848 crossref_primary_10_1002_mrm_26696 crossref_primary_10_1007_s10334_024_01162_x crossref_primary_10_1038_srep42602 crossref_primary_10_1109_TBME_2023_3288031 |
| Cites_doi | 10.1002/mrm.25318 10.1002/mrm.1910300109 10.1148/radiology.211.3.r99jn15799 10.1002/mrm.23033 10.1002/mrm.20288 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1002/mrm.20097 10.1002/mrm.1910350518 10.1002/1522-2594(200007)44:1<101::AID-MRM15>3.0.CO;2-S 10.1002/mrm.20706 10.1002/mrm.20285 10.1016/j.neuroimage.2009.09.010 10.1109/42.774166 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L 10.1002/mrm.22577 10.1002/mrm.20677 10.1109/42.97598 10.1016/j.neuroimage.2013.01.038 10.1002/mrm.10531 10.1002/mrm.24320 10.1002/mrm.10014 10.1002/mrm.24709 10.1016/0022-2364(91)90253-P 10.1002/mrm.22896 10.1016/0041-5553(67)90113-9 10.1002/mrm.21046 10.1002/mrm.1910380113 10.1002/mrm.22024 10.1109/TMI.1982.4307555 10.1002/mrm.1241 10.1002/mrm.20890 |
| ContentType | Journal Article |
| Copyright | 2014 Wiley Periodicals, Inc. 2015 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. – notice: 2015 Wiley Periodicals, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO 5PM ADTOC UNPAY |
| DOI | 10.1002/mrm.25527 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database Biochemistry Abstracts 1 |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 1348 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:4430470 PMC4430470 3844422431 25394325 10_1002_mrm_25527 MRM25527 ark_67375_WNG_P9H9P7PN_G |
| Genre | article Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIH funderid: R01 NS‐074045; R21 EB‐018419 – fundername: NIBIB NIH HHS grantid: R21 EB018419 – fundername: NINDS NIH HHS grantid: R01 NS-074045 – fundername: NIBIB NIH HHS grantid: R21 EB-018419 – fundername: NINDS NIH HHS grantid: R01 NS074045 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RGB RWI WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 7QO 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5147-a51257d4be880189e5ce7f3e6c96f4d5f881cc2a2c581e6076d3b51e62d050733 |
| IEDL.DBID | UNPAY |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Sun Oct 26 02:51:13 EDT 2025 Thu Aug 21 18:27:47 EDT 2025 Tue Oct 07 09:30:51 EDT 2025 Fri Jul 11 08:56:38 EDT 2025 Tue Oct 07 06:06:37 EDT 2025 Wed Feb 19 01:53:03 EST 2025 Wed Oct 01 02:05:13 EDT 2025 Thu Apr 24 23:05:05 EDT 2025 Wed Jan 22 16:26:14 EST 2025 Sun Sep 21 06:14:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | motion artifacts artifact correction multiplexed sensitivity encoding projection onto convex sets |
| Language | English |
| License | 2014 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5147-a51257d4be880189e5ce7f3e6c96f4d5f881cc2a2c581e6076d3b51e62d050733 |
| Notes | NIH - No. R01 NS-074045; No. R21 EB-018419 istex:8B73BC800051B60AD41D9751C975F2D060F7F3EB ArticleID:MRM25527 ark:/67375/WNG-P9H9P7PN-G ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1002/mrm.25527 |
| PMID | 25394325 |
| PQID | 1725350897 |
| PQPubID | 1016391 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1002_mrm_25527 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4430470 proquest_miscellaneous_1732818211 proquest_miscellaneous_1727435835 proquest_journals_1725350897 pubmed_primary_25394325 crossref_citationtrail_10_1002_mrm_25527 crossref_primary_10_1002_mrm_25527 wiley_primary_10_1002_mrm_25527_MRM25527 istex_primary_ark_67375_WNG_P9H9P7PN_G |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2015 |
| PublicationDateYYYYMMDD | 2015-11-01 |
| PublicationDate_xml | – month: 11 year: 2015 text: November 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn. Reson. Med |
| PublicationYear | 2015 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Rasche V, Proksa R, Sinkus R, Bo¨rnert P, Eggers H. Resampling of data between arbitrary grids using convolution interpolation. IEEE Trans Med Imaging 1999;18:385-392. Liang ZP, Boada FE, Constable RT, Haacke EM, Lauterbur PC, Smith MR. Constrained reconstruction methods in MR imaging. Rev Magn Reson Med 1992;4:67-185. Chang HC, Guhaniyogi S, Chen N-K. Interleaved diffusion-weighted EPI improved by adaptive partial-fourier and multiband multiplexed sensitivity-encoding reconstruction. Magn Reson Med 2015;73:1872-1884. Butts K, deCrespigny AJ, Pauly JM, Moseley ME. Diffusion-weighted interleaved echo-planar imaging with a pair of orthogonal navigator echoes. Magn Reson Med 1996;35:763-770. McGibney G, Smith MR, Nichols ST, Crawley A. Quantitative evalua- tion of several partial Fourier reconstruction algorithms used in MRI. Magn Reson Med 1993;30:51-59. Skare S, Newbould RD, Clayton DB, Bammer R. Propeller EPI in the other direction. Magn Reson Med 2006;55:1298-1307. Wang F-N, Huang T-Y, Lin F-H, Chuang T-C, Chen N-K, Chung H-W, Chen C-Y, Kwong KK. PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions. Magn Reson Med 2005;54:1232-1240. Jeong HK, Gore JC, Anderson AW. High-resolution human diffusion tensor imaging using 2-D navigated multishot SENSE EPI at 7 T. Magn Reson Med 2013;69:793-802. Gubin LG, Polyak BT, Raik EV. The method of projections for finding the common point in convex sets. USSR Comput Math Phys 1967;7:1-24. Chen N-K, Avram AV, Song AW. Two-dimensional phase cycled reconstruction for inherent correction of echo-planar imaging Nyquist artifacts. Magn Reson Med 2011;66:1057-1066. Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding. IEEE Trans Med Imaging 1991;MI-10:473-478. Li Z, Pipe JG, Lee CY, Debbins JP, Karis JP, Huo D. X-PROP: A fast and robust diffusion-weighted propeller technique. Magn Reson Med 2011;66:341-347. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962. Liu C, Bammer R, Kim DH, Moseley ME. Self-navigated interleaved spiral (SNAILS): Application to high-resolution diffusion tensor imaging. Magn Reson Med 2004;52:1388-1396. Chen N-K, Guidon A, Chang HC, Song AW. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE). NeuroImage 2013;72:41-47. Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651. Samsonov AA, Kholmovski EG, Parker DL, Johnson CR. POCSENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging. Magn Reson Med 2004;52:1397-1406. Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med 2009;62:468-475. Atkinson D, Porter DA, Hill DL, Calamante F, Connelly A. Sampling and reconstruction effects due to motion in diffusion-weighted interleaved echo planar imaging. Magn Reson Med 2000;44.1:101-109. Haacke EM, Lindskog ED, Lin W. A fast, iterative, partial-Fourier tech- nique capable of local phase recovery. J Magn Reson 1991;92:126-145. Xu D, King KF, Zur Y, Hinks RS. Robust 2D phase correction for echo planar imaging under a tight field-of-view. Magn Reson Med 2010;64:1800-1813. Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999;42:963-969. Bammer R, Stollberger R, Augustin M, Simbrunner J, Offenbacher H, Kooijman H, Ropele S, Kapeller P, Wach P, Ebner F, Fazekas F. Diffusion-weighted imaging with navigated interleaved echo-planar imaging and a conventional gradient system. Radiology 1999;211:799-806. Pipe JG, Farthing VG, Forbes KP. Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med 2002;47:42-52. Frank LR, Jung Y, Inati S, Tyszka JM, Wong EC. High efficiency, low distortion 3D diffusion tensor imaging with variable density spiral fast spin echoes (3D DW VDS RARE). Neuroimage 2010;49:1510-1523. Robson MD, Anderson AW, Gore JC. Diffusion-weighted multiple shot echo planar imaging of humans without navigation. Magn Reson Med 1997;38:82-88. Atkinson D, Counsell S, Hajnal JV, Batchelor PG, Hill DL, Larkman DJ. Nonlinear phase correction of navigated multi-coil diffusion images. Magn Reson Med 2006;56:1135-1139. Liu C, Moseley ME, Bammer R. Simultaneous phase correction and SENSE reconstruction for navigated multi-shot DWI with non-cartesian k-space sampling. Magn Reson Med 2005;54:1412-1422. Youla DC, Webb H. Image restoration by the method of convex projections: Part 1, Theory. IEEE Trans Med Imaging 1982;1:81-94. Chen N-K, Wyrwicz AM. Removal of EPI Nyquist ghost artifacts with two-dimensional phase correction. Magn Reson Med 2004;51:1247-1253. Miller KL, Pauly JM. Nonlinear phase correction for navigated diffusion imaging. Magn Reson Med 2003;50:343-353. Truong TK, Guidon A. High-resolution multishot spiral diffusion tensor imaging with inherent correction of motion-induced phase errors. Magn Reson Med 2014;71:790-796. 2013; 69 2009; 62 2006; 56 1991; 10 2015; 73 2006; 55 2000; 44 1999; 42 1996; 35 2003; 50 2001; 46 1967; 7 2002; 47 2004; 52 2010; 64 2010; 49 2004; 51 1982; 1 1999; 18 2013; 72 1993; 30 1991; 92 2011; 66 2005; 54 1997; 38 2014 1999; 211 2014; 71 1992; 4 Guhaniyogi S (e_1_2_6_34_1) 2014 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 Liang ZP (e_1_2_6_23_1) 1992; 4 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 11754441 - Magn Reson Med. 2002 Jan;47(1):42-52 16676335 - Magn Reson Med. 2006 Jun;55(6):1298-307 21661046 - Magn Reson Med. 2011 Aug;66(2):341-7 20806354 - Magn Reson Med. 2010 Dec;64(6):1800-13 24925000 - Magn Reson Med. 2015 May;73(5):1872-84 15562485 - Magn Reson Med. 2004 Dec;52(6):1397-406 16206142 - Magn Reson Med. 2005 Nov;54(5):1232-40 23450457 - Magn Reson Med. 2014 Feb;71(2):790-6 10893527 - Magn Reson Med. 2000 Jul;44(1):101-9 18222850 - IEEE Trans Med Imaging. 1991;10(3):473-8 16986111 - Magn Reson Med. 2006 Nov;56(5):1135-9 9211383 - Magn Reson Med. 1997 Jul;38(1):82-8 22592941 - Magn Reson Med. 2013 Mar 1;69(3):793-802 12876711 - Magn Reson Med. 2003 Aug;50(2):343-53 15170846 - Magn Reson Med. 2004 Jun;51(6):1247-53 19449372 - Magn Reson Med. 2009 Aug;62(2):468-75 10416800 - IEEE Trans Med Imaging. 1999 May;18(5):385-92 10542355 - Magn Reson Med. 1999 Nov;42(5):952-62 18238261 - IEEE Trans Med Imaging. 1982;1(2):81-94 8371675 - Magn Reson Med. 1993 Jul;30(1):51-9 19778618 - Neuroimage. 2010 Jan 15;49(2):1510-23 10352609 - Radiology. 1999 Jun;211(3):799-806 21446032 - Magn Reson Med. 2011 Oct;66(4):1057-66 11590639 - Magn Reson Med. 2001 Oct;46(4):638-51 8722828 - Magn Reson Med. 1996 May;35(5):763-70 16276497 - Magn Reson Med. 2005 Dec;54(6):1412-22 23370063 - Neuroimage. 2013 May 15;72:41-7 10542356 - Magn Reson Med. 1999 Nov;42(5):963-9 15562493 - Magn Reson Med. 2004 Dec;52(6):1388-96 |
| References_xml | – reference: Chen N-K, Guidon A, Chang HC, Song AW. A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE). NeuroImage 2013;72:41-47. – reference: Samsonov AA, Kholmovski EG, Parker DL, Johnson CR. POCSENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging. Magn Reson Med 2004;52:1397-1406. – reference: Frank LR, Jung Y, Inati S, Tyszka JM, Wong EC. High efficiency, low distortion 3D diffusion tensor imaging with variable density spiral fast spin echoes (3D DW VDS RARE). Neuroimage 2010;49:1510-1523. – reference: Liu C, Bammer R, Kim DH, Moseley ME. Self-navigated interleaved spiral (SNAILS): Application to high-resolution diffusion tensor imaging. Magn Reson Med 2004;52:1388-1396. – reference: Skare S, Newbould RD, Clayton DB, Bammer R. Propeller EPI in the other direction. Magn Reson Med 2006;55:1298-1307. – reference: Gubin LG, Polyak BT, Raik EV. The method of projections for finding the common point in convex sets. USSR Comput Math Phys 1967;7:1-24. – reference: Rasche V, Proksa R, Sinkus R, Bo¨rnert P, Eggers H. Resampling of data between arbitrary grids using convolution interpolation. IEEE Trans Med Imaging 1999;18:385-392. – reference: Truong TK, Guidon A. High-resolution multishot spiral diffusion tensor imaging with inherent correction of motion-induced phase errors. Magn Reson Med 2014;71:790-796. – reference: Li Z, Pipe JG, Lee CY, Debbins JP, Karis JP, Huo D. X-PROP: A fast and robust diffusion-weighted propeller technique. Magn Reson Med 2011;66:341-347. – reference: Wang F-N, Huang T-Y, Lin F-H, Chuang T-C, Chen N-K, Chung H-W, Chen C-Y, Kwong KK. PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions. Magn Reson Med 2005;54:1232-1240. – reference: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962. – reference: Atkinson D, Counsell S, Hajnal JV, Batchelor PG, Hill DL, Larkman DJ. Nonlinear phase correction of navigated multi-coil diffusion images. Magn Reson Med 2006;56:1135-1139. – reference: Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding. IEEE Trans Med Imaging 1991;MI-10:473-478. – reference: Atkinson D, Porter DA, Hill DL, Calamante F, Connelly A. Sampling and reconstruction effects due to motion in diffusion-weighted interleaved echo planar imaging. Magn Reson Med 2000;44.1:101-109. – reference: Liang ZP, Boada FE, Constable RT, Haacke EM, Lauterbur PC, Smith MR. Constrained reconstruction methods in MR imaging. Rev Magn Reson Med 1992;4:67-185. – reference: Xu D, King KF, Zur Y, Hinks RS. Robust 2D phase correction for echo planar imaging under a tight field-of-view. Magn Reson Med 2010;64:1800-1813. – reference: Jeong HK, Gore JC, Anderson AW. High-resolution human diffusion tensor imaging using 2-D navigated multishot SENSE EPI at 7 T. Magn Reson Med 2013;69:793-802. – reference: Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 1999;42:963-969. – reference: Robson MD, Anderson AW, Gore JC. Diffusion-weighted multiple shot echo planar imaging of humans without navigation. Magn Reson Med 1997;38:82-88. – reference: Chen N-K, Wyrwicz AM. Removal of EPI Nyquist ghost artifacts with two-dimensional phase correction. Magn Reson Med 2004;51:1247-1253. – reference: Liu C, Moseley ME, Bammer R. Simultaneous phase correction and SENSE reconstruction for navigated multi-shot DWI with non-cartesian k-space sampling. Magn Reson Med 2005;54:1412-1422. – reference: Miller KL, Pauly JM. Nonlinear phase correction for navigated diffusion imaging. Magn Reson Med 2003;50:343-353. – reference: Chen N-K, Avram AV, Song AW. Two-dimensional phase cycled reconstruction for inherent correction of echo-planar imaging Nyquist artifacts. Magn Reson Med 2011;66:1057-1066. – reference: McGibney G, Smith MR, Nichols ST, Crawley A. Quantitative evalua- tion of several partial Fourier reconstruction algorithms used in MRI. Magn Reson Med 1993;30:51-59. – reference: Butts K, deCrespigny AJ, Pauly JM, Moseley ME. Diffusion-weighted interleaved echo-planar imaging with a pair of orthogonal navigator echoes. Magn Reson Med 1996;35:763-770. – reference: Porter DA, Heidemann RM. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med 2009;62:468-475. – reference: Chang HC, Guhaniyogi S, Chen N-K. Interleaved diffusion-weighted EPI improved by adaptive partial-fourier and multiband multiplexed sensitivity-encoding reconstruction. Magn Reson Med 2015;73:1872-1884. – reference: Haacke EM, Lindskog ED, Lin W. A fast, iterative, partial-Fourier tech- nique capable of local phase recovery. J Magn Reson 1991;92:126-145. – reference: Pipe JG, Farthing VG, Forbes KP. Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med 2002;47:42-52. – reference: Pruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med 2001;46:638-651. – reference: Bammer R, Stollberger R, Augustin M, Simbrunner J, Offenbacher H, Kooijman H, Ropele S, Kapeller P, Wach P, Ebner F, Fazekas F. Diffusion-weighted imaging with navigated interleaved echo-planar imaging and a conventional gradient system. Radiology 1999;211:799-806. – reference: Youla DC, Webb H. Image restoration by the method of convex projections: Part 1, Theory. IEEE Trans Med Imaging 1982;1:81-94. – volume: 55 start-page: 1298 year: 2006 end-page: 1307 article-title: Propeller EPI in the other direction publication-title: Magn Reson Med – volume: 46 start-page: 638 year: 2001 end-page: 651 article-title: Advances in sensitivity encoding with arbitrary k‐space trajectories publication-title: Magn Reson Med – volume: 71 start-page: 790 year: 2014 end-page: 796 article-title: High‐resolution multishot spiral diffusion tensor imaging with inherent correction of motion‐induced phase errors publication-title: Magn Reson Med – volume: 54 start-page: 1412 year: 2005 end-page: 1422 article-title: Simultaneous phase correction and SENSE reconstruction for navigated multi‐shot DWI with non‐cartesian k‐space sampling publication-title: Magn Reson Med – volume: 44 start-page: 101 year: 2000 end-page: 109 article-title: Sampling and reconstruction effects due to motion in diffusion‐weighted interleaved echo planar imaging publication-title: Magn Reson Med – volume: 69 start-page: 793 year: 2013 end-page: 802 article-title: High‐resolution human diffusion tensor imaging using 2‐D navigated multishot SENSE EPI at 7 T publication-title: Magn Reson Med – volume: 47 start-page: 42 year: 2002 end-page: 52 article-title: Multishot diffusion‐weighted FSE using PROPELLER MRI publication-title: Magn Reson Med – volume: 1 start-page: 81 year: 1982 end-page: 94 article-title: Image restoration by the method of convex projections: Part 1, Theory publication-title: IEEE Trans Med Imaging – volume: 56 start-page: 1135 year: 2006 end-page: 1139 article-title: Nonlinear phase correction of navigated multi‐coil diffusion images publication-title: Magn Reson Med – volume: 64 start-page: 1800 year: 2010 end-page: 1813 article-title: Robust 2D phase correction for echo planar imaging under a tight field‐of‐view publication-title: Magn Reson Med – volume: 42 start-page: 963 year: 1999 end-page: 969 article-title: Motion correction with PROPELLER MRI: application to head motion and free‐breathing cardiac imaging publication-title: Magn Reson Med – volume: 35 start-page: 763 year: 1996 end-page: 770 article-title: Diffusion‐weighted interleaved echo‐planar imaging with a pair of orthogonal navigator echoes publication-title: Magn Reson Med – volume: 66 start-page: 1057 year: 2011 end-page: 1066 article-title: Two‐dimensional phase cycled reconstruction for inherent correction of echo‐planar imaging Nyquist artifacts publication-title: Magn Reson Med – volume: 72 start-page: 41 year: 2013 end-page: 47 article-title: A robust multi‐shot scan strategy for high‐resolution diffusion weighted MRI enabled by multiplexed sensitivity‐encoding (MUSE) publication-title: NeuroImage – volume: 54 start-page: 1232 year: 2005 end-page: 1240 article-title: PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions publication-title: Magn Reson Med – volume: 51 start-page: 1247 year: 2004 end-page: 1253 article-title: Removal of EPI Nyquist ghost artifacts with two‐dimensional phase correction publication-title: Magn Reson Med – volume: 92 start-page: 126 year: 1991 end-page: 145 article-title: A fast, iterative, partial‐Fourier tech‐ nique capable of local phase recovery publication-title: J Magn Reson – volume: 30 start-page: 51 year: 1993 end-page: 59 article-title: Quantitative evalua‐ tion of several partial Fourier reconstruction algorithms used in MRI publication-title: Magn Reson Med – volume: 42 start-page: 952 year: 1999 end-page: 962 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 52 start-page: 1397 year: 2004 end-page: 1406 article-title: POCSENSE: POCS‐based reconstruction for sensitivity encoded magnetic resonance imaging publication-title: Magn Reson Med – volume: 66 start-page: 341 year: 2011 end-page: 347 article-title: X‐PROP: A fast and robust diffusion‐weighted propeller technique publication-title: Magn Reson Med – volume: 18 start-page: 385 year: 1999 end-page: 392 article-title: Resampling of data between arbitrary grids using convolution interpolation publication-title: IEEE Trans Med Imaging – volume: 10 start-page: 473 year: 1991 end-page: 478 article-title: Selection of a convolution function for Fourier inversion using gridding publication-title: IEEE Trans Med Imaging – volume: 50 start-page: 343 year: 2003 end-page: 353 article-title: Nonlinear phase correction for navigated diffusion imaging publication-title: Magn Reson Med – volume: 52 start-page: 1388 year: 2004 end-page: 1396 article-title: Self‐navigated interleaved spiral (SNAILS): Application to high‐resolution diffusion tensor imaging publication-title: Magn Reson Med – volume: 38 start-page: 82 year: 1997 end-page: 88 article-title: Diffusion‐weighted multiple shot echo planar imaging of humans without navigation publication-title: Magn Reson Med – volume: 62 start-page: 468 year: 2009 end-page: 475 article-title: High resolution diffusion‐weighted imaging using readout‐segmented echo‐planar imaging, parallel imaging and a two‐dimensional navigator‐based reacquisition publication-title: Magn Reson Med – volume: 4 start-page: 67 year: 1992 end-page: 185 article-title: Constrained reconstruction methods in MR imaging publication-title: Rev Magn Reson Med – start-page: 4351 year: 2014 – volume: 49 start-page: 1510 year: 2010 end-page: 1523 article-title: High efficiency, low distortion 3D diffusion tensor imaging with variable density spiral fast spin echoes (3D DW VDS RARE) publication-title: Neuroimage – volume: 211 start-page: 799 year: 1999 end-page: 806 article-title: Diffusion‐weighted imaging with navigated interleaved echo‐planar imaging and a conventional gradient system publication-title: Radiology – volume: 7 start-page: 1 year: 1967 end-page: 24 article-title: The method of projections for finding the common point in convex sets publication-title: USSR Comput Math Phys – volume: 73 start-page: 1872 year: 2015 end-page: 1884 article-title: Interleaved diffusion‐weighted EPI improved by adaptive partial‐fourier and multiband multiplexed sensitivity‐encoding reconstruction publication-title: Magn Reson Med – ident: e_1_2_6_29_1 doi: 10.1002/mrm.25318 – ident: e_1_2_6_24_1 doi: 10.1002/mrm.1910300109 – ident: e_1_2_6_7_1 doi: 10.1148/radiology.211.3.r99jn15799 – ident: e_1_2_6_10_1 doi: 10.1002/mrm.23033 – volume: 4 start-page: 67 year: 1992 ident: e_1_2_6_23_1 article-title: Constrained reconstruction methods in MR imaging publication-title: Rev Magn Reson Med – start-page: 4351 volume-title: Proceedings of the 22th Annual Meeting of ISMRM year: 2014 ident: e_1_2_6_34_1 – ident: e_1_2_6_16_1 doi: 10.1002/mrm.20288 – ident: e_1_2_6_3_1 doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – ident: e_1_2_6_31_1 doi: 10.1002/mrm.20097 – ident: e_1_2_6_8_1 doi: 10.1002/mrm.1910350518 – ident: e_1_2_6_5_1 doi: 10.1002/1522-2594(200007)44:1<101::AID-MRM15>3.0.CO;2-S – ident: e_1_2_6_30_1 doi: 10.1002/mrm.20706 – ident: e_1_2_6_25_1 doi: 10.1002/mrm.20285 – ident: e_1_2_6_15_1 doi: 10.1016/j.neuroimage.2009.09.010 – ident: e_1_2_6_26_1 doi: 10.1109/42.774166 – ident: e_1_2_6_2_1 doi: 10.1002/(SICI)1522-2594(199911)42:5<963::AID-MRM17>3.0.CO;2-L – ident: e_1_2_6_32_1 doi: 10.1002/mrm.22577 – ident: e_1_2_6_14_1 doi: 10.1002/mrm.20677 – ident: e_1_2_6_27_1 doi: 10.1109/42.97598 – ident: e_1_2_6_19_1 doi: 10.1016/j.neuroimage.2013.01.038 – ident: e_1_2_6_17_1 doi: 10.1002/mrm.10531 – ident: e_1_2_6_9_1 doi: 10.1002/mrm.24320 – ident: e_1_2_6_11_1 doi: 10.1002/mrm.10014 – ident: e_1_2_6_33_1 doi: 10.1002/mrm.24709 – ident: e_1_2_6_22_1 doi: 10.1016/0022-2364(91)90253-P – ident: e_1_2_6_28_1 doi: 10.1002/mrm.22896 – ident: e_1_2_6_20_1 doi: 10.1016/0041-5553(67)90113-9 – ident: e_1_2_6_6_1 doi: 10.1002/mrm.21046 – ident: e_1_2_6_18_1 doi: 10.1002/mrm.1910380113 – ident: e_1_2_6_12_1 doi: 10.1002/mrm.22024 – ident: e_1_2_6_21_1 doi: 10.1109/TMI.1982.4307555 – ident: e_1_2_6_4_1 doi: 10.1002/mrm.1241 – ident: e_1_2_6_13_1 doi: 10.1002/mrm.20890 – reference: 21661046 - Magn Reson Med. 2011 Aug;66(2):341-7 – reference: 15562493 - Magn Reson Med. 2004 Dec;52(6):1388-96 – reference: 16986111 - Magn Reson Med. 2006 Nov;56(5):1135-9 – reference: 8722828 - Magn Reson Med. 1996 May;35(5):763-70 – reference: 10893527 - Magn Reson Med. 2000 Jul;44(1):101-9 – reference: 16676335 - Magn Reson Med. 2006 Jun;55(6):1298-307 – reference: 23370063 - Neuroimage. 2013 May 15;72:41-7 – reference: 18238261 - IEEE Trans Med Imaging. 1982;1(2):81-94 – reference: 22592941 - Magn Reson Med. 2013 Mar 1;69(3):793-802 – reference: 15170846 - Magn Reson Med. 2004 Jun;51(6):1247-53 – reference: 10416800 - IEEE Trans Med Imaging. 1999 May;18(5):385-92 – reference: 24925000 - Magn Reson Med. 2015 May;73(5):1872-84 – reference: 12876711 - Magn Reson Med. 2003 Aug;50(2):343-53 – reference: 15562485 - Magn Reson Med. 2004 Dec;52(6):1397-406 – reference: 8371675 - Magn Reson Med. 1993 Jul;30(1):51-9 – reference: 18222850 - IEEE Trans Med Imaging. 1991;10(3):473-8 – reference: 16276497 - Magn Reson Med. 2005 Dec;54(6):1412-22 – reference: 10542356 - Magn Reson Med. 1999 Nov;42(5):963-9 – reference: 20806354 - Magn Reson Med. 2010 Dec;64(6):1800-13 – reference: 10352609 - Radiology. 1999 Jun;211(3):799-806 – reference: 10542355 - Magn Reson Med. 1999 Nov;42(5):952-62 – reference: 16206142 - Magn Reson Med. 2005 Nov;54(5):1232-40 – reference: 19778618 - Neuroimage. 2010 Jan 15;49(2):1510-23 – reference: 11754441 - Magn Reson Med. 2002 Jan;47(1):42-52 – reference: 23450457 - Magn Reson Med. 2014 Feb;71(2):790-6 – reference: 21446032 - Magn Reson Med. 2011 Oct;66(4):1057-66 – reference: 11590639 - Magn Reson Med. 2001 Oct;46(4):638-51 – reference: 19449372 - Magn Reson Med. 2009 Aug;62(2):468-75 – reference: 9211383 - Magn Reson Med. 1997 Jul;38(1):82-8 |
| SSID | ssj0009974 |
| Score | 2.4531755 |
| Snippet | Purpose
A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion‐related artifacts,... A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including... Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts,... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1336 |
| SubjectTerms | Abdomen - anatomy & histology Algorithms artifact correction Diffusion Magnetic Resonance Imaging - methods Humans Image Processing, Computer-Assisted - methods motion artifacts Movement multiplexed sensitivity encoding projection onto convex sets Respiration |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIqAXHuXRQEHmIbQcsk3iOI7hVFVtF6Qsqy2r9oBkJY6zrbqbrfYhCifOnPiN_BLGdpJqoVSIW7Se2Il3ZvxNPP4GoZehypmKKHP9XDIIUGjkxgEp3MgLlCQsy_xCfxpIulFnEL4_okcr6G19FsbyQzQf3LRlGH-tDTzNZlsXpKHj6bgdaP4w8L8-iUw41b-gjuLcMjCzUPsZHtasQl6w1dy5tBZd09N6fhnQ_DNf8uaiPEu_fE5Ho2VMaxalvdvoU_06NhfltL2YZ2359Temx_983zvoVgVW8bbVrrtoRZXr6EZSbcevo-smf1TO7qHvvQ87Bz-__dCLYo5NlN0w0-JJgeu8xXNonemceVu0AmsazRx-S_rvcEv3kQwOdl-_wdt4aPmwcToaTqYn8-MxBngNPecLGHuIbfUhGNEcxoEetAnoUxqz-2iwt_txp-NWZR5cCWiNuSlgDsryMFPgS_yYKyoVK4iKJI-KMKdFHPtSBmkgaeyryGNRTjIKV0HuUV1z8gFaLSel2kDYixlhPFMFgVVXQrCkCETdaSgLXY6nyB3Uqv9wISsOdF2KYyQse3MgYJaFmWUHPW9Ezyzxx2VCr4zWNBLp9FRnyjEqDrv7osc7vMd6XbHvoM1arUTlJGYCsCMlAJA59POsaQbz1ns2aakmCyMDGI8CTr5KhmhOLwjlHfTQamrzQDACD0kAd7MlHW4ENL34ckt5cmxoxsNQb8l6DnrRaPtVM9Eyyvt3CZH0E3Px6N9FH6M1AKjUnv3cRKuguOoJgMB59tRY-y_HbFp2 priority: 102 providerName: Wiley-Blackwell |
| Title | POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE): A general algorithm for reducing motion-related artifacts |
| URI | https://api.istex.fr/ark:/67375/WNG-P9H9P7PN-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.25527 https://www.ncbi.nlm.nih.gov/pubmed/25394325 https://www.proquest.com/docview/1725350897 https://www.proquest.com/docview/1727435835 https://www.proquest.com/docview/1732818211 https://pubmed.ncbi.nlm.nih.gov/PMC4430470 http://doi.org/10.1002/mrm.25527 |
| UnpaywallVersion | submittedVersion |
| Volume | 74 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2594 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb5wwELbSXfVx6SN90aaR-1C1PbAFgzH0toqSbCuxRZuukp4Q2GYTZZeNll017annnvob-0s6Ng8V5aHeEB7GYMbMN3j8DUJvXCmY9CgzbcEZBCjUM33iZKZnEckdlqZ2pn4NhCNvOHE_HdGjDVSXrGsv35P38-W8TxRJ2A3U9Sig7Q7qTkbR4GvJrqk-IbrWIXghYgKSd2vyoH-vbbmcrhq988vw5MW0yNvr_Cz5_i2ZzdrQVfuevXtlDmShKQtVyslpf71K-_zHRULHKx_rPrpbAU88KC3lAdqQ-Sa6FVZL65vops4F5cVD9Cv6vHPw5-dv5eAE1hFzwzKLFxmucxDPobVQ-e9lAQqsKDEFnAvHH3FP6QgnB7vvPuABnpbc1jiZTRfLk9XxHANUBs1iDX1PcVlJCHrUG2tAgzJnteOieIQme7tfdoZmVbLB5IC8mJkAfqBMuKmE74LtB5JyyTJHejzwMlfQzPdtzklCOPVt6VnME05K4YgIi6r6kY9RJ1_k8inCls8cFqQyc8CDcgh8pAMRdOLyTJXWyYSBevVbjXnFZ67KaszikomZxDDKsR5lA71qRM9KEo_LhN5q02gkkuWpynpjND4c7cdRMAwiFo3ifQNt1bYTVxO-iAEHUgfAbgB6XjbNMFXV-kuSy8VaywBeo4B5r5NxFD8XhOUGelKaY3ND0EPgOgSuZi1DbQQUVXi7JT851pThrquWVy0DvW5M-rqR6Gljv1oiDsehPnj2XwqfozuAM2mZ5byFOmCz8gVguVW6DVHMmGxXk_ovILBG6g |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGJhgXPsZXYYD5ECqHdGlixwniMk3bOlhK1a1iF2QljtNNa9OpXcXgxJkTfyN_Ce_ZTabCmBC3KH6xE-c9-_fs598j5CXTmdABF04zUwIcFB44oefnTuB6WvkiTZs5Lg3E7aDVY-8O-MECeVuehbH8ENWCG1qGGa_RwHFBeu2cNXQ4HjY8JBC7QpZYAH4KQqLuOXlUFFkOZsFwpIlYySvkemvVo3Oz0RJ27NlFUPPPiMnlaXGSfPmcDAbzqNZMS1s3yafyg2w0ynFjepo21NffuB7_94tvkRszvErXrYLdJgu6WCHX4tmO_Aq5akJI1eQO-d75sLH389sPnBczahztipyWjnJahi6eQekEw-Zt3gqKTJoZ3Iu7O7SOdcS9vc3Xb-g67VtKbJoM-qPx0enhkALChpqzKbTdpzYBEbRozuNADWgFeFBjcpf0tjb3N1rOLNODowCwCScB2MFFxlINw0kzjDRXWuS-DlQU5CzjeRg2lfIST_GwqQNXBJmfcrjyMpdj2sl7ZLEYFfoBoW4ofBGlOvdh4lXgL2kfHO-EqRwz8uRZjdTLPy7VjAYds3EMpCVw9iT0sjS9XCPPK9ETy_1xkdArozaVRDI-xmA5weXH9rbsRK2oIzptuV0jq6Veydk4MZEAH7kPGDmCep5VxWDhuG2TFHo0NTIA8zhA5ctkfKT1Am--Ru5bVa1eCFqImO_B02JOiSsBZBifLymODg3TOGO4K-vWyItK3S_ribrR3r9LyLgbm4uH_y76lCy39uNdubvTfv-IXAe8yu1R0FWyCEqsHwMmPE2fGNP_BUW2Xpc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGJjYufAwGhQHmQ6gc0qWJHceIy7St64CUqqNiF2QljtNNa9OqH2Jw4syJv5G_hGe7yVQYE-IWxS924rxn_579_HsIPScqZSqgzKmnkoGDQgMn9PzMCVxPSZ8lST3TSwNRK2h2yZsjerSEXhdnYSw_RLngpi3DjNfawNUozbbOWUMH40HN0wRiV9AKoTzUAX27nXPyKM4tBzMjeqThpOAVcr2t8tGF2WhFd-zZRVDzz4jJtVk-ir98jvv9RVRrpqXGDfSp-CAbjXJam02Tmvz6G9fj_37xTXR9jlfxtlWwW2hJ5etoNZrvyK-jqyaEVE5uo-_t9zuHP7_90PNiio2jXZLT4mGGi9DFMyid6LB5m7cCaybNFO5FnQNc1XVE3cO9l6_wNu5ZSmwc93vD8cn0eIABYUPN6Qza7mGbgAhaNOdxoAZtBfqgxuQO6jb2Puw0nXmmB0cCYGNODLCDspQkCoaTesgVlYplvgokDzKS0iwM61J6sSdpWFeBy4LUTyhcealLddrJDbScD3N1D2E3ZD7jicp8mHgl-EvKB8c7JjLTGXmytIKqxR8Xck6DrrNx9IUlcPYE9LIwvVxBT0vRkeX-uEjohVGbUiIen-pgOUbFx9a-aPMmb7N2S-xX0GahV2I-TkwEwEfqA0bmUM-TshgsXG_bxLkazowMwDwKUPkyGV_TeoE3X0F3raqWLwQtcOJ78DRbUOJSQDOML5bkJ8eGaZwQvSvrVtCzUt0v64mq0d6_S4ioE5mL-_8u-hittncb4t1B6-0DdA3gKrUnQTfRMuiwegiQcJo8Mpb_C2_JXhs |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELaWVjwuPJZXYEHmIVQOKYkTxwm3arW7BSml2qViOVmJ43RX26arphULJ86c-I38EsZ2EhHtQ9yieDJOnHHmm3j8DUKvfZkxGVBmu5lgEKDQwA6Jl9uBQ6TwWJq6ufo1EI-C4cT_eEgPN1Bdsq69fE_ezZfzPlEkYddQN6CAtjuoOxmNB18Nu6b6hOhah-CFiA1I3q_Jg_69tuVyumr0zi7Ck-fTIm-ui9Pk-7dkNmtDV-17du-YHMhSUxaqlJOT_nqV9sWP84SOlz7WXXS7Ap54YCzlHtqQxSa6EVdL65vous4FFeV99Gv8afvgz8_fysFlWEfMDcssXuS4zkE8g9ZS5b-bAhRYUWJmcC7e_4B7Skc8Odh5-x4P8NRwW-NkNl0sj1dHcwxQGTRna-h7ik0lIehRb6wBDcqc1Y6L8gGa7O583h7aVckGWwDyYnYC-IGyzE8lfBfcMJJUSJZ7MhBRkPsZzcPQFYIkRNDQlYHDgsxLKRyRzKGqfuRD1CkWhXyMsBMyj0WpzD3woAICH-lBBJ34IleldfLMQr36rXJR8ZmrshozbpiYCYdR5nqULfSyET01JB4XCb3RptFIJMsTlfXGKP8y2uPjaBiN2XjE9yy0VdsOryZ8yQEHUg_AbgR6XjTNMFXV-ktSyMVaywBeo4B5r5LxFD8XhOUWemTMsbkh6CHyPQJXs5ahNgKKKrzdUhwfacpw31fLq46FXjUmfdVI9LSxXy7B4_1YHzz5L4VP0S3AmdRs4dxCHbBZ-Qyw3Cp9Xk3nv3yGRfw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=POCS-based+reconstruction+of+multiplexed+sensitivity+encoded+MRI+%28POCSMUSE%29%3A+A+general+algorithm+for+reducing+motion-related+artifacts&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Chu%2C+Mei-Lan&rft.au=Chang%2C+Hing-Chiu&rft.au=Chung%2C+Hsiao-Wen&rft.au=Truong%2C+Trong-Kha&rft.date=2015-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=74&rft.issue=5&rft.spage=1336&rft.epage=1348&rft_id=info:doi/10.1002%2Fmrm.25527&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_P9H9P7PN_G |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |