Electrically conductive carbon‐based (bio)‐nanomaterials for cardiac tissue engineering
A proper self‐regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tis...
Saved in:
| Published in | Bioengineering & translational medicine Vol. 8; no. 1; pp. e10347 - n/a |
|---|---|
| Main Authors | , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2023
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2380-6761 2380-6761 |
| DOI | 10.1002/btm2.10347 |
Cover
| Abstract | A proper self‐regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon‐based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon‐based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon‐based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied. |
|---|---|
| AbstractList | A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon-based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon-based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon-based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon-based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied. A proper self‐regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon‐based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon‐based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon‐based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied. Abstract A proper self‐regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon‐based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon‐based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon‐based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied. |
| Author | Rabiee, Navid Akhavan, Omid Ghahremanzadeh, Ramin Baheiraei, Nafiseh Zare, Ehsan Nazarzadeh Rabiee, Mohammad Yousefiasl, Satar Hejna, Aleksander Zarrabi, Ali Zarrintaj, Payam Saeb, Mohammad Reza Sharifi, Esmaeel Salarian, Reza Jalilinejad, Negin |
| AuthorAffiliation | 2 Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran 4 Biomedical Engineering Department Maziar University Royan Mazandaran Iran 5 Department of Physics Sharif University of Technology Tehran Iran 12 School of Dentistry Hamadan University of Medical Sciences Hamadan Iran 3 Nanobiotechnology Research Center Avicenna Research Institute, ACECR Tehran Iran 13 School of Chemistry Damghan University Damghan Iran 1 Biomaterial Group, Department of Biomedical Engineering Amirkabir University of Technology Tehran Iran 9 Department of Polymer Technology, Faculty of Chemistry Gdańsk University of Technology Gdańsk Poland 10 Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences Istinye University Istanbul Turkey 7 Department of Materials Science and Engineering Pohang University of Science and Technology (POSTECH), 77 Cheongam‐ro, Nam‐gu Pohang Gyeongbuk South Korea 11 Depart |
| AuthorAffiliation_xml | – name: 1 Biomaterial Group, Department of Biomedical Engineering Amirkabir University of Technology Tehran Iran – name: 7 Department of Materials Science and Engineering Pohang University of Science and Technology (POSTECH), 77 Cheongam‐ro, Nam‐gu Pohang Gyeongbuk South Korea – name: 6 School of Engineering Macquarie University Sydney New South Wales Australia – name: 2 Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran – name: 9 Department of Polymer Technology, Faculty of Chemistry Gdańsk University of Technology Gdańsk Poland – name: 10 Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences Istinye University Istanbul Turkey – name: 11 Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies Hamadan University of Medical Sciences Hamadan Iran – name: 13 School of Chemistry Damghan University Damghan Iran – name: 8 School of Chemical Engineering Oklahoma State University Stillwater Oklahoma USA – name: 3 Nanobiotechnology Research Center Avicenna Research Institute, ACECR Tehran Iran – name: 5 Department of Physics Sharif University of Technology Tehran Iran – name: 12 School of Dentistry Hamadan University of Medical Sciences Hamadan Iran – name: 4 Biomedical Engineering Department Maziar University Royan Mazandaran Iran |
| Author_xml | – sequence: 1 givenname: Negin surname: Jalilinejad fullname: Jalilinejad, Negin organization: Amirkabir University of Technology – sequence: 2 givenname: Mohammad surname: Rabiee fullname: Rabiee, Mohammad email: mrabiee@aut.ac.ir organization: Amirkabir University of Technology – sequence: 3 givenname: Nafiseh surname: Baheiraei fullname: Baheiraei, Nafiseh organization: Tarbiat Modares University – sequence: 4 givenname: Ramin surname: Ghahremanzadeh fullname: Ghahremanzadeh, Ramin organization: Avicenna Research Institute, ACECR – sequence: 5 givenname: Reza surname: Salarian fullname: Salarian, Reza email: r.salarian@maziar.ac.ir organization: Maziar University – sequence: 6 givenname: Navid orcidid: 0000-0002-6945-8541 surname: Rabiee fullname: Rabiee, Navid email: nrabiee94@gmail.com, navid.rabiee@mq.edu.au, navid.rabiee@mq.edu.au organization: Pohang University of Science and Technology (POSTECH), 77 Cheongam‐ro, Nam‐gu – sequence: 7 givenname: Omid surname: Akhavan fullname: Akhavan, Omid organization: Sharif University of Technology – sequence: 8 givenname: Payam surname: Zarrintaj fullname: Zarrintaj, Payam organization: Oklahoma State University – sequence: 9 givenname: Aleksander surname: Hejna fullname: Hejna, Aleksander organization: Gdańsk University of Technology – sequence: 10 givenname: Mohammad Reza surname: Saeb fullname: Saeb, Mohammad Reza organization: Gdańsk University of Technology – sequence: 11 givenname: Ali orcidid: 0000-0003-0391-1769 surname: Zarrabi fullname: Zarrabi, Ali organization: Istinye University – sequence: 12 givenname: Esmaeel orcidid: 0000-0003-3400-3106 surname: Sharifi fullname: Sharifi, Esmaeel organization: Hamadan University of Medical Sciences – sequence: 13 givenname: Satar orcidid: 0000-0001-9876-6220 surname: Yousefiasl fullname: Yousefiasl, Satar organization: Hamadan University of Medical Sciences – sequence: 14 givenname: Ehsan Nazarzadeh orcidid: 0000-0002-0446-4385 surname: Zare fullname: Zare, Ehsan Nazarzadeh email: ehsan.nazarzadehzare@gmail.com organization: Damghan University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36684103$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhSNUREvphgdAkdgU0IB_Y2eDBFWBSkVsyoqF5TjXg0cZe2o7rWbHI_CMPAlOU6q2QpUXvvb97tHx8dNqxwcPVfUco7cYIfKuy2tSKsrEo2qPUIkWjWjwzq16tzpIaYUQwg2mVLIn1S5tGsnK0F7143gAk6Mzehi2tQm-H012F1AbHbvg__z63ekEfX3YufCqnLz2Ya0zRKeHVNsQJ7B32tTZpTRCDX7pPJS-Xz6rHttCwcH1vl99_3R8dvRlcfrt88nRh9OF4ZiJBWNgO4l4LzUyhgvdNsYyjgUnhLK-oRxJ1mMCQrQWS95p4JRqVDoWaCn3q5NZtw96pTbRrXXcqqCduroIcal0zM4MoCwRRAorOIBkrOVldbZHGiMsO0Ft0Xoza41-o7eXJZUbQYzUlLiaEldXiRf6_Uxvxm4NvQGfox7uWLjb8e6nWoYL1UpGUNMWgcNrgRjOR0hZrV0yMAzaQxiTIqKREmMmZUFf3kNXYYy-BDtRXBDEeVOoF7cd3Vj59-MFQDNgYkgpglXGZZ1dmAy64f-vfH1v5MFI8AxfugG2D5Dq49lXMs_8BZ3l3S8 |
| CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2025_142050 crossref_primary_10_1016_j_smaim_2024_12_003 crossref_primary_10_1002_jbm_a_37871 crossref_primary_10_1016_j_nanoms_2024_11_004 crossref_primary_10_1002_smll_202406206 crossref_primary_10_2147_IJN_S419957 crossref_primary_10_1021_acsami_4c12245 crossref_primary_10_1021_acsnano_3c09699 crossref_primary_10_1002_mco2_425 crossref_primary_10_1007_s00339_022_06342_x crossref_primary_10_1177_20412479241266953 crossref_primary_10_1016_j_cej_2024_156888 crossref_primary_10_1016_j_envres_2023_116933 crossref_primary_10_1002_smm2_1311 crossref_primary_10_1021_acsanm_4c04441 crossref_primary_10_1016_j_jconrel_2023_11_056 crossref_primary_10_1021_acsami_3c00216 crossref_primary_10_1002_pen_26057 crossref_primary_10_4103_mgmj_mgmj_76_24 crossref_primary_10_1088_2053_1591_ad9549 crossref_primary_10_1016_j_tibtech_2023_11_017 crossref_primary_10_1021_acspolymersau_3c00031 crossref_primary_10_1088_1361_6528_ad857d crossref_primary_10_1186_s12951_024_02805_w crossref_primary_10_1007_s00339_024_07436_4 crossref_primary_10_1080_09205063_2024_2399909 crossref_primary_10_1080_25740881_2025_2467264 crossref_primary_10_3390_nano13081417 crossref_primary_10_1016_j_mattod_2023_09_005 crossref_primary_10_3390_gels10110693 crossref_primary_10_1007_s00339_023_06801_z crossref_primary_10_3390_gels10090568 crossref_primary_10_1063_5_0181222 crossref_primary_10_1016_j_clnesp_2024_03_031 crossref_primary_10_1016_j_mtbio_2023_100710 crossref_primary_10_1039_D4BM01109K crossref_primary_10_3390_biomimetics8060473 crossref_primary_10_37349_ebmx_2025_101331 crossref_primary_10_3390_membranes13040403 crossref_primary_10_1134_S002689332470064X crossref_primary_10_3390_pharmaceutics15030982 crossref_primary_10_3389_fbioe_2024_1385124 crossref_primary_10_1016_j_jcis_2024_02_139 crossref_primary_10_1016_j_matt_2023_03_018 crossref_primary_10_1016_j_ijbiomac_2025_141177 crossref_primary_10_1021_acsomega_3c02474 crossref_primary_10_3390_pharmaceutics16040473 crossref_primary_10_1016_j_matdes_2023_111885 crossref_primary_10_1016_j_colsurfa_2023_131763 crossref_primary_10_1002_mba2_76 crossref_primary_10_3389_fcell_2024_1472103 crossref_primary_10_1016_j_cej_2025_160852 crossref_primary_10_1063_5_0160168 crossref_primary_10_1016_j_cej_2023_148189 |
| Cites_doi | 10.1007/s00774-010-0257-1 10.1016/j.actbio.2018.11.032 10.1016/j.matpr.2018.05.084 10.1021/bm100470q 10.1039/d1ra06030a 10.1021/acsnano.9b03050 10.1016/j.addr.2004.05.001 10.1016/j.jddst.2020.101879 10.1038/am.2013.79 10.1002/adhm.201200307 10.1016/j.carbon.2010.01.058 10.1089/ten.tea.2020.0341 10.1016/j.carbon.2018.05.068 10.1021/acsabm.8b00440 10.1016/j.msec.2019.109921 10.1016/j.actbio.2016.09.019 10.1016/j.biomaterials.2010.08.090 10.1007/s10527-015-9476-z 10.1557/opl.2011.663 10.1002/jbm.b.34564 10.1016/j.carbpol.2020.116678 10.1088/2053-2571/aafb0cch4 10.1038/nrcardio.2016.207 10.1016/j.transproceed.2003.10.041 10.1016/j.msec.2018.12.100 10.1021/acsami.0c05732 10.1038/s41598-020-65786-4 10.1021/ja200297j 10.1021/acs.nanolett.9b00472 10.2217/nnm-2017-0173 10.1038/nature17623 10.1002/jbm.a.32905 10.1039/C5RA01851J 10.3390/cells9030682 10.1016/j.ijbiomac.2021.05.003 10.1021/nl201514a 10.1016/j.msec.2014.06.004 10.1002/mame.201900187 10.1533/9780857096715.1.17 10.1016/j.jacc.2006.06.005 10.1016/j.compositesb.2018.01.028 10.1038/nnano.2011.160 10.1139/cjpp-2018-0225 10.1021/acsnano.7b01062 10.1016/j.carbpol.2019.115161 10.1016/j.molliq.2019.112021 10.1016/j.biomaterials.2008.12.031 10.1039/c2tx20035j 10.1016/j.micromeso.2020.110115 10.1101/cshperspect.a015636 10.1146/annurev-med-102715-092331 10.1038/s41577-018-0098-z 10.1038/nprot.2012.027 10.1161/CIR.0b013e3182009701 10.1016/j.biomaterials.2010.08.098 10.2217/nnm‐2020‐0353 10.1152/physrev.00012.2007 10.1016/j.biomaterials.2012.10.065 10.1002/mabi.200800005 10.1002/smll.200901934 10.1016/j.actbio.2018.09.035 10.1007/s10856-012-4654-y 10.3390/bioengineering6010017 10.1002/adma.201704235 10.1016/j.polymer.2016.11.012 10.1002/9783527689934.ch13 10.1002/pat.5054 10.1039/d0cc03061a 10.1021/nl060162e 10.1039/c3tx50060h 10.1002/jbm.a.36481 10.1021/nn103521g 10.1016/j.bbrc.2014.08.062 10.1016/B978-0-12-387738-3.00030-5 10.1002/adfm.201102373 10.1161/CIRCEP.118.006920 10.3390/biom9090448 10.1038/s41598-020-62122-8 10.1016/j.ijbiomac.2020.06.259 10.1002/adma.201500411 10.1557/mrs2010.528 10.2147/IJN.S245936 10.1088/1361-6528/aba142 10.1016/j.actbio.2011.04.028 10.1161/CIRCRESAHA.116.309115 10.1002/adfm.201500365 10.1155/2013/751913 10.1002/jmr.2927 10.1177/0885328219839037 10.1021/am404696u 10.1016/S0960-894X(00)00159-1 10.1002/jbm.a.35080 10.1039/D0GC02719G 10.1016/j.drudis.2020.02.005 10.1016/j.jconrel.2020.07.028 10.1021/acsami.1c01460 10.1016/j.carbpol.2019.115112 10.2147/IJN.S128030 10.1016/S1369-7021(11)70058-X 10.1152/ajpheart.00610.2003 10.1021/acssuschemeng.1c00781 10.1002/jbm.a.37031 10.1007/s40204-019-00121-3 10.1016/j.jconrel.2006.03.017 10.1016/j.jhazmat.2021.127130 10.1016/j.biomaterials.2018.01.021 10.1016/j.scitotenv.2022.153902 10.1039/C8TB01116H 10.1016/j.cardiores.2003.12.022 10.1016/j.physe.2018.01.025 10.1007/978-981-16-2271-7_5 10.1016/j.msec.2020.111344 10.1016/j.matdes.2009.11.058 10.1016/j.biomaterials.2016.09.003 10.1002/jbm.a.35447 10.1039/C5NR00520E 10.1007/s10544-017-0184-1 10.1007/s12010-019-03135-6 10.1002/jbm.a.34400 10.1016/S0142-9612(00)00102-2 10.1021/acsbiomaterials.0c00266 10.1002/pat.4579 10.1161/CIRCRESAHA.113.300219 10.1016/j.actbio.2014.02.023 10.1016/j.carbon.2013.09.015 10.1002/jbm.a.37048 10.1021/jp801379g 10.3389/fbioe.2020.529244 10.1117/12.2084165 10.1016/j.carbon.2013.03.010 10.1007/s40097‐022‐00491‐4 10.1016/j.apmt.2020.100784 10.1016/j.addr.2019.06.001 10.1021/acsami.6b15271 10.3390/polym13071105 10.1161/CIR.0000000000000558 10.1038/s41598-017-17486-9 10.1557/opl.2012.763 10.1016/j.msec.2020.111614 10.1016/B978-0-12-802734-9.00029-9 10.1021/nn305559j 10.1038/s41427-018-0092-8 10.1002/smll.201600178 10.1007/978-981-10-2723-9_2 10.4172/2161-0525.1000384 10.1002/adfm.201401300 10.1021/am100293r 10.1016/j.carbon.2015.08.017 10.3390/polym8030102 10.1002/jbm.a.36555 10.1093/eurheartj/ehy462 10.1126/science.aam5894 10.1021/acsami.7b10583 10.1021/acsnano.7b00221 10.1016/j.jcis.2017.12.062 10.1016/j.biomaterials.2015.03.030 10.1016/j.bbagen.2015.01.020 10.1007/s40820-021-00697-1 10.1016/j.jcis.2018.01.044 10.1063/1.4775582 10.1088/0957-4484/17/2/008 10.1016/j.biomaterials.2016.02.010 10.1142/S0256767907002199 10.1021/acsami.8b18844 10.1016/j.msec.2014.07.061 10.1016/j.carbpol.2020.116277 10.1021/bm4018963 10.2147/nano.2006.1.1.15 10.1039/d0py00787k 10.1002/jbm.a.30386 10.1016/j.biologicals.2017.01.007 10.1038/s41467-020-19756-z 10.1016/B978-0-12-818791-3.00013-9 10.1021/bm401679q 10.1039/C4TB00668B 10.1186/s13287-016-0341-0 10.1038/nmat3404 10.1002/adfm.201908612 10.1016/j.jare.2019.03.011 10.1016/j.ijbiomac.2021.03.001 10.1016/j.biomaterials.2006.12.007 10.1039/C7RA03780E 10.1126/sciadv.1601007 10.1016/B978-0-12-813355-2.00005-3 10.1098/rsif.2011.0301 10.1007/978-1-62703-511-8_1 10.1016/j.carbon.2011.02.004 10.1021/acsami.5b08376 10.1016/j.actbio.2016.10.025 10.1021/bm060220q 10.1016/j.biotechadv.2019.02.009 10.1021/nn507149w 10.1038/s41467-019-10555-9 10.1002/jbm.a.35408 10.1016/j.msec.2016.02.056 10.1016/j.cej.2019.02.072 10.1161/CIR.0000000000000350 10.1038/s41467-019-09851-1 10.1016/j.diamond.2013.10.012 10.1021/cr500304f 10.1002/mabi.201600250 10.1039/C7CC01988B 10.1039/C6TB00152A 10.1039/c2jm34690g 10.1016/B978-0-08-102985-5.00009-7 10.1016/j.apmt.2020.100656 10.1002/smll.201203106 10.1016/j.carbon.2015.06.079 10.1016/j.actbio.2020.12.033 10.1016/j.actbio.2017.06.036 10.1002/marc.201600498 10.1021/acsbiomaterials.8b00658 10.1016/j.eurpolymj.2019.05.024 10.1016/j.actbio.2015.11.047 10.1016/j.molliq.2020.113447 10.1002/bem.20000 10.1016/j.nantod.2020.100914 10.3390/polym10101078 10.1111/jocd.12730 10.1038/nmat2316 10.1007/978-981-16-2271-7_7 10.1016/j.actbio.2008.07.005 10.1016/j.trac.2021.116279 10.1021/acs.biomac.8b00276 10.1016/j.biomaterials.2009.06.045 10.1016/j.ijpharm.2017.11.065 10.1007/s10856-011-4259-x 10.1021/jp906325q 10.7150/thno.25504 10.1016/j.biomaterials.2014.05.014 10.1021/acs.nanolett.6b02175 10.1039/d1ra06437a 10.1016/S0003-4975(01)02820-X 10.1089/ten.tea.2008.0689 10.1016/j.trac.2021.116455 10.1007/s12010-019-02967-6 10.1093/cvr/cvn335 10.2217/nnm.15.196 10.1039/c4ra01550a 10.1016/j.actbio.2015.09.025 10.1016/j.mser.2007.08.001 10.1038/nnano.2011.209 10.1016/j.msec.2018.12.122 10.1016/j.actbio.2016.12.009 10.1002/adma.201301082 10.1016/j.actbio.2016.05.027 10.1021/acsami.6b04911 10.1016/j.jphotobiol.2019.111680 10.1002/jmr.2928 10.1016/S0140-6736(14)61682-2 10.1016/B978-0-12-802002-9.00002-9 10.1039/B917103G 10.1016/j.ijbiomac.2019.08.046 10.1016/j.biomaterials.2012.07.040 10.1002/9783527689934 10.1002/term.383 10.1039/C9BM00434C 10.1007/s10856-019-6319-6 10.1063/1.4827811 10.1016/j.carbon.2017.09.071 10.1515/bmc-2020-0017 10.1016/j.actbio.2018.09.013 10.1002/adhm.201300177 10.1021/acsabm.1c00932 10.1038/s41586-018-0765-z 10.1016/j.carbon.2016.10.042 10.1016/j.colsurfb.2019.110712 10.14814/phy2.13860 10.1016/j.biomaterials.2019.119707 10.1016/B978-0-12-800180-6.00003-7 10.1002/term.348 10.1016/j.carbon.2009.09.069 10.1021/acsami.7b08777 10.1002/mabi.201100227 10.1016/j.colsurfb.2014.12.027 10.1016/j.biocel.2003.12.003 10.1001/jama.285.5.573 10.1002/jbm.a.35612 10.1016/j.carbon.2005.11.009 10.1021/nl502673m 10.1163/156856206774879180 10.1016/j.hrthm.2009.02.023 10.1016/j.addr.2009.07.010 10.1002/jemt.23282 10.1039/c0jm01852j 10.1016/j.microc.2021.106610 10.1016/j.msec.2018.08.054 10.1080/09205063.2017.1340044 10.1016/j.mtchem.2022.100780 10.1016/j.carbon.2012.11.058 10.1016/S0140-6736(99)90247-7 10.1016/j.cap.2003.11.044 10.3390/polym3020740 10.1002/jbm.a.36282 10.1517/14712598.2010.534079 10.2147/ijn.s353062 10.1007/978-3-031-02584-6 10.1021/jp200686k 10.1002/pat.4765 10.1021/nn401196a 10.1098/rstb.2007.2121 10.1016/j.biomaterials.2017.01.012 10.1021/acsami.7b02072 10.1002/pola.28430 10.1039/C8BM00553B 10.1016/B978-0-08-102985-5.00024-3 10.2147/IJN.S114357 10.1016/j.tibtech.2019.07.002 10.1016/j.biomaterials.2005.11.037 10.1016/j.actbio.2018.03.042 10.1002/adma.201702713 10.1039/C5NR07059G 10.1007/s10059-013-0277-5 10.1002/jbm.a.30315 10.1021/nl802859a 10.1039/c4ra01047g 10.1038/nrcardio.2017.57 10.1002/adfm.201800618 10.1038/s41598-019-42633-9 10.1039/c3nr02161k 10.1016/B978-0-12-381361-9.00010-X 10.1016/j.mtchem.2020.100250 10.1021/acsabm.1c01311 10.1016/j.carbpol.2018.01.060 10.1089/ten.tec.2014.0338 10.1039/c3tb21085e |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers. 2022 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers. – notice: 2022 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1002/btm2.10347 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection (Proquest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Jalilinejad et al |
| EISSN | 2380-6761 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_f27287f75ee84495959bfd0a1018b73f 10.1002/btm2.10347 PMC9842069 36684103 10_1002_btm2_10347 BTM210347 |
| Genre | reviewArticle Journal Article Review |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 8FE 8FG AAHHS AAZKR ABDBF ABJCF ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BCNDV BENPR BGLVJ CCPQU DIK EBS EJD ESX GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V M7S M~E OK1 PIMPY PROAC PTHSS RPM TUS WIN AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION PHGZM PHGZT PQGLB NPM ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5147-44efb805d8a0cc57a96cf451752234d635084d12e779f185bae533a0d63fe3533 |
| IEDL.DBID | UNPAY |
| ISSN | 2380-6761 |
| IngestDate | Tue Oct 14 19:09:14 EDT 2025 Sun Oct 26 03:35:13 EDT 2025 Tue Sep 30 17:15:59 EDT 2025 Thu Sep 04 19:45:37 EDT 2025 Wed Aug 13 06:08:10 EDT 2025 Wed Feb 19 02:26:19 EST 2025 Thu Oct 16 04:44:07 EDT 2025 Thu Apr 24 22:52:30 EDT 2025 Wed Jan 22 16:18:56 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | graphene oxide stem cells cardiac tissue engineering scaffolds carbon‐based biomaterials graphene |
| Language | English |
| License | Attribution 2022 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5147-44efb805d8a0cc57a96cf451752234d635084d12e779f185bae533a0d63fe3533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-9876-6220 0000-0002-6945-8541 0000-0003-0391-1769 0000-0003-3400-3106 0000-0002-0446-4385 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/btm2.10347 |
| PMID | 36684103 |
| PQID | 2765720556 |
| PQPubID | 4368370 |
| PageCount | 39 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f27287f75ee84495959bfd0a1018b73f unpaywall_primary_10_1002_btm2_10347 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9842069 proquest_miscellaneous_2768811488 proquest_journals_2765720556 pubmed_primary_36684103 crossref_citationtrail_10_1002_btm2_10347 crossref_primary_10_1002_btm2_10347 wiley_primary_10_1002_btm2_10347_BTM210347 |
| PublicationCentury | 2000 |
| PublicationDate | January 2023 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken |
| PublicationTitle | Bioengineering & translational medicine |
| PublicationTitleAlternate | Bioeng Transl Med |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2011; 115 2009; 81 2020; 20 2020; 163 2019; 10 2018; 564 2004; 25 2019; 13 2019; 12 2015; 385 2004; 4 2020; 16 2016; 31 2020; 15 2019; 19 2019; 18 2020; 12 2020; 11 2020; 10 2012; 12 2012; 11 2016; 37 2013; 59 2013; 54 2004; 36 2000; 10 2005; 74 2016; 41 2013; 113 2020; 299 2020; 298 2008; 112 2010; 2 2012; 23 2012; 22 2011; 123 2016; 46 2010; 6 2001; 285 2015; 126 2020; 42 2018; 106 2019; 30 2021; 423 2009; 61 2019; 34 2017; 68 2013; 101 2008; 59 2020; 38 2015; 1850 2013; 103 2013; 102 2020; 34 2011; 3 2011; 6 2016; 16 2011; 5 2012; 33 2019; 188 2011; 7 2011; 133 2014; 310 2016; 12 2016; 11 2006; 113 2016; 4 2017; 53 2016; 6 2016; 7 2017; 52 1920; 119 2019; 40 2016; 2 2017; 59 2020; 31 2015; 115 2020; 30 2022; 5 2017; 55 2004; 56 2020; 25 2018; 96 1999; 354 2018; 93 2018; 99 2016; 8 2004; 62 2013; 25 2017; 48 2020; 242 2016; 107 2017; 46 2020; 247 2018; 80 2020; 59 2008; 7 2008; 8 2016; 106 2020; 56 2008; 3 2016; 104 2008; 4 2017; 111 2017; 356 2014; 66 2020; 8 2007; 28 2017; 31 2020; 6 2014; 4 2014; 3 2014; 2 2016; 118 2018; 536 2020; 9 2016; 110 2017; 120 2018; 72 2014; 9 2017; 122 2014; 6 2017; 125 2007; 25 2021; 9 2021; 4 2015; 5 2012 2011 2010 2017; 28 2015; 95 2013; 40 2006; 17 2007; 362 2009 2017; 29 2019; 304 2015; 9 2015; 7 2020; 108 2020; 109 2019; 82 2013; 36 2019; 84 2022 2017; 14 2021 2005; 288 2017; 17 2020 2013; 34 2017; 11 2017; 12 2019 2018 2016; 133 2020; 117 2009; 9 2017 2016 2017; 19 2020; 232 2009; 6 2015 2014 2010; 95 2010; 11 2010; 10 2013; 3 2018; 160 2013; 1 2013; 2 2021; 169 2019; 98 2022; 24 2020; 326 2009; 113 2014; 24 2020; 202 2013; 7 2013; 5 2013; 9 2018; 6 2010; 20 2018; 8 2018; 5 2018; 4 2012; 1417 2013; 2013 2018; 1 2006; 27 2014; 15 2014; 14 2018; 30 2011; 1316 2014; 17 2009; 15 2014; 10 2019; 8 2019; 7 2019; 9 2018; 187 2018; 28 2010; 31 2019; 6 2010; 35 2019; 5 2021; 145 2010; 39 2015; 55 2019; 104 2003; 35 2016; 97 2021; 140 2019; 224 2019; 107 2014; 45 2014; 44 2018; 19 2018; 17 2010; 48 2018; 514 2006; 44 2006; 48 2022; 12 2014; 35 2018; 516 2020; 312 2007; 87 2018; 10 2005; 17 2022; 17 2018; 13 2021; 27 2017; 7 2017; 2 2021; 23 2017; 4 2015; 103 2011; 11 2019; 366 2011; 14 2014; 452 2022; 139 2017; 9 2015; 48 2021; 34 2018; 138 2018; 137 2016; 87 2011; 22 2019; 117 2011; 29 2001; 72 2018; 143 2020; 186 2013; 1036 2000; 21 2006; 7 2021; 183 2011; 32 2006; 6 2006; 1 2019; 140 2019; 144 2021; 180 2021; 13 2021; 16 2015; 25 2020; 190 2009; 30 2015; 28 2015; 27 2021; 12 2021; 11 2012; 1 2015; 21 2016; 63 2022; 825 2016; 532 2012; 7 2011; 49 2012; 4 2012; 9 2014; 102 e_1_2_10_271_1 e_1_2_10_339_1 e_1_2_10_40_1 e_1_2_10_109_1 Sacks D (e_1_2_10_118_1) 2018; 13 e_1_2_10_210_1 e_1_2_10_233_1 e_1_2_10_256_1 e_1_2_10_279_1 e_1_2_10_294_1 Spencer AR (e_1_2_10_220_1) 2018; 4 e_1_2_10_207_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_327_1 e_1_2_10_342_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_112_1 e_1_2_10_196_1 Biga LM (e_1_2_10_149_1) 2020 e_1_2_10_13_1 Rabiee N (e_1_2_10_29_1) 2021 e_1_2_10_260_1 e_1_2_10_51_1 Vijayavenkataraman S (e_1_2_10_163_1) 2019; 5 e_1_2_10_222_1 e_1_2_10_245_1 e_1_2_10_268_1 e_1_2_10_283_1 Stout DA (e_1_2_10_158_1) 2012; 7 e_1_2_10_147_1 e_1_2_10_219_1 e_1_2_10_330_1 Antoniadou EV (e_1_2_10_123_1) 2010 Li N (e_1_2_10_186_1) 2013; 3 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_338_1 e_1_2_10_353_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_315_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_272_1 e_1_2_10_41_1 Shahini A (e_1_2_10_132_1) 2014; 9 e_1_2_10_211_1 e_1_2_10_257_1 e_1_2_10_295_1 Zhu D (e_1_2_10_110_1) 2021; 12 e_1_2_10_234_1 e_1_2_10_341_1 e_1_2_10_159_1 e_1_2_10_90_1 Eftekhari BS (e_1_2_10_141_1) 2020 e_1_2_10_208_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_174_1 e_1_2_10_197_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_326_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_303_1 e_1_2_10_261_1 e_1_2_10_269_1 e_1_2_10_200_1 e_1_2_10_246_1 e_1_2_10_284_1 e_1_2_10_223_1 e_1_2_10_352_1 e_1_2_10_148_1 e_1_2_10_337_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_314_1 e_1_2_10_26_1 e_1_2_10_250_1 e_1_2_10_273_1 e_1_2_10_42_1 e_1_2_10_190_1 e_1_2_10_258_1 e_1_2_10_212_1 e_1_2_10_235_1 e_1_2_10_296_1 e_1_2_10_340_1 e_1_2_10_91_1 e_1_2_10_209_1 e_1_2_10_4_1 e_1_2_10_348_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_198_1 e_1_2_10_302_1 e_1_2_10_325_1 e_1_2_10_175_1 e_1_2_10_262_1 e_1_2_10_30_1 e_1_2_10_247_1 e_1_2_10_201_1 e_1_2_10_224_1 e_1_2_10_285_1 e_1_2_10_80_1 Carlier A (e_1_2_10_31_1) 2014; 17 e_1_2_10_336_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_313_1 e_1_2_10_274_1 e_1_2_10_43_1 e_1_2_10_251_1 e_1_2_10_20_1 e_1_2_10_236_1 e_1_2_10_259_1 e_1_2_10_213_1 e_1_2_10_297_1 e_1_2_10_130_1 e_1_2_10_199_1 e_1_2_10_92_1 e_1_2_10_301_1 e_1_2_10_347_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_191_1 Ameri SK (e_1_2_10_304_1) 2016 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_324_1 e_1_2_10_263_1 e_1_2_10_309_1 e_1_2_10_240_1 e_1_2_10_225_1 e_1_2_10_248_1 e_1_2_10_202_1 e_1_2_10_286_1 e_1_2_10_188_1 Zhou P (e_1_2_10_60_1) 2016; 118 e_1_2_10_81_1 e_1_2_10_312_1 e_1_2_10_335_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_252_1 e_1_2_10_275_1 e_1_2_10_298_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_214_1 e_1_2_10_237_1 e_1_2_10_290_1 Drake R (e_1_2_10_57_1) 2009 e_1_2_10_131_1 e_1_2_10_177_1 Asiri AM (e_1_2_10_351_1) 2014; 9 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_300_1 e_1_2_10_323_1 e_1_2_10_346_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_116_1 e_1_2_10_192_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 Ercan B (e_1_2_10_133_1) 2008; 3 e_1_2_10_241_1 e_1_2_10_264_1 e_1_2_10_287_1 e_1_2_10_308_1 e_1_2_10_32_1 e_1_2_10_203_1 e_1_2_10_226_1 e_1_2_10_249_1 e_1_2_10_120_1 Azevedo PS (e_1_2_10_67_1) 2016; 106 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_334_1 e_1_2_10_128_1 e_1_2_10_311_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_143_1 Hall JE (e_1_2_10_151_1) 2020 e_1_2_10_45_1 e_1_2_10_253_1 e_1_2_10_299_1 e_1_2_10_319_1 e_1_2_10_22_1 e_1_2_10_230_1 e_1_2_10_215_1 e_1_2_10_291_1 e_1_2_10_238_1 e_1_2_10_276_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_193_1 e_1_2_10_94_1 e_1_2_10_322_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_345_1 e_1_2_10_242_1 e_1_2_10_288_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_307_1 e_1_2_10_204_1 e_1_2_10_280_1 e_1_2_10_227_1 e_1_2_10_265_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_333_1 e_1_2_10_310_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_231_1 e_1_2_10_318_1 e_1_2_10_239_1 e_1_2_10_292_1 e_1_2_10_216_1 e_1_2_10_254_1 e_1_2_10_277_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_194_1 e_1_2_10_321_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_344_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_289_1 e_1_2_10_306_1 e_1_2_10_329_1 e_1_2_10_11_1 Maldonado MA (e_1_2_10_104_1) 2017; 31 e_1_2_10_119_1 e_1_2_10_205_1 e_1_2_10_228_1 e_1_2_10_281_1 Stout DA (e_1_2_10_349_1) 2012; 1417 e_1_2_10_243_1 e_1_2_10_266_1 e_1_2_10_145_1 e_1_2_10_168_1 Stout DA (e_1_2_10_350_1) 2014; 24 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_332_1 e_1_2_10_160_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_317_1 e_1_2_10_270_1 e_1_2_10_108_1 e_1_2_10_217_1 e_1_2_10_293_1 e_1_2_10_232_1 e_1_2_10_278_1 e_1_2_10_255_1 e_1_2_10_157_1 e_1_2_10_229_1 Zarrintaj P (e_1_2_10_166_1) 2017; 4 Zhao L (e_1_2_10_316_1) 2019; 9 e_1_2_10_73_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_320_1 e_1_2_10_305_1 e_1_2_10_343_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_195_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_328_1 e_1_2_10_50_1 e_1_2_10_206_1 e_1_2_10_282_1 e_1_2_10_221_1 e_1_2_10_267_1 e_1_2_10_244_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_218_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_331_1 e_1_2_10_354_1 e_1_2_10_100_1 e_1_2_10_184_1 e_1_2_10_47_1 |
| References_xml | – volume: 102 start-page: 4169 issue: 11 year: 2014 end-page: 4181 article-title: Conducting scaffolds for liver tissue engineering publication-title: J Biomed Mater Res A – volume: 29 issue: 44 year: 2017 article-title: Superaligned carbon nanotubes guide oriented cell growth and promote electrophysiological homogeneity for synthetic cardiac tissues publication-title: Adv Mater – volume: 4 issue: 2 year: 2017 article-title: Bio‐conductive scaffold based on agarose‐polyaniline for tissue engineering publication-title: J Skin Stem Cell – volume: 7 start-page: 2891 issue: 4 year: 2013 end-page: 2897 article-title: Carbon‐based nanomaterials: multifunctional materials for biomedical engineering publication-title: ACS Nano – volume: 15 start-page: 1115 issue: 4 year: 2014 end-page: 1123 article-title: In vitro study of electroactive tetraaniline‐containing thermosensitive hydrogels for cardiac tissue engineering publication-title: Biomacromolecules – volume: 106 start-page: 62 issue: 1 year: 2016 end-page: 69 article-title: Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment publication-title: Arq Bras Cardiol – volume: 34 start-page: 74 issue: 1 year: 2019 end-page: 85 article-title: Threedimensional graphene foam as a conductive scaffold for cardiac tissue engineering publication-title: J Biomater Appl – volume: 7 start-page: 1692 issue: 6 year: 2006 end-page: 1695 article-title: Carboxylic acid‐functionalized conductive polypyrrole as a bioactive platform for cell adhesion publication-title: Biomacromolecules – volume: 144 start-page: 162 year: 2019 end-page: 179 article-title: Electrically conductive nanomaterials for cardiac tissue engineering publication-title: Adv Drug Deliv Rev – volume: 7 start-page: 3906 issue: 9 year: 2019 end-page: 3917 article-title: Carbon nanotube doped pericardial matrix derived electroconductive biohybrid hydrogel for cardiac tissue engineering publication-title: Biomater Sci – volume: 59 start-page: 68 year: 2017 end-page: 81 article-title: Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators publication-title: Acta Biomater – volume: 80 start-page: 258 year: 2018 end-page: 268 article-title: Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights publication-title: Acta Biomater – volume: 4 start-page: 343 issue: 2 year: 2004 end-page: 346 article-title: Evaluation of antioxidant activity of aniline and polyaniline publication-title: Curr Appl Phys – volume: 14 start-page: 88 issue: 3 year: 2011 end-page: 95 article-title: Biomaterials & scaffolds for tissue engineering publication-title: Mater Today – volume: 38 start-page: 24 issue: 1 year: 2020 end-page: 49 article-title: Electric phenomenon: a disregarded tool in tissue engineering and regenerative medicine publication-title: Trends Biotechnol – volume: 40 start-page: 107 year: 2013 end-page: 114 article-title: Nanodiamonds for surface engineering of orthopedic implants: enhanced biocompatibility in human osteosarcoma cell culture publication-title: Diamond Relat Mater – volume: 7 issue: 1 year: 2019 article-title: Conduction in cardiac tissue. Historical reflections publication-title: Physiol Rep – volume: 6 start-page: 587 issue: 5 year: 2009 end-page: 591 article-title: Fractionated atrial electrograms during sinus rhythm: relationship to age, voltage, and conduction velocity publication-title: Heart Rhythm – volume: 16 start-page: 237 issue: 3 year: 2021 end-page: 258 article-title: Nanotechnology‐assisted microfluidic systems: from bench to bedside publication-title: Nanomedicine – volume: 36 start-page: 1031 issue: 6 year: 2004 end-page: 1037 article-title: Tissue repair and the dynamics of the extracellular matrix publication-title: Int J Biochem Cell Biol – volume: 15 start-page: 3605 issue: 11 year: 2009 end-page: 3619 article-title: Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering publication-title: Tissue Eng Part A – volume: 72 start-page: 16 year: 2018 end-page: 34 article-title: Oligoaniline‐based conductive biomaterials for tissue engineering publication-title: Acta Biomater – volume: 20 year: 2020 article-title: Conductive biomaterials as nerve conduits: recent advances and future challenges publication-title: Appl Mater Today – volume: 109 start-page: 488 year: 2020 end-page: 499 article-title: Aligned graphene/silk fibroin conductive fibrous scaffolds for guiding neurite outgrowth in rat spinal cord neurons publication-title: J Biomed Mater Res A – volume: 14 start-page: 224 issue: 4 year: 2017 end-page: 237 article-title: Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors publication-title: Nat Rev Cardiol – volume: 49 start-page: 2370 issue: 7 year: 2011 end-page: 2379 article-title: Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites publication-title: Carbon – volume: 5 start-page: 2248 issue: 3 year: 2011 end-page: 2256 article-title: Fullerenol‐based electroactive artificial muscles utilizing biocompatible polyetherimide publication-title: ACS Nano – volume: 8 start-page: 8 year: 2020 article-title: Biomaterials in Valvular Heart Diseases publication-title: Front Bioeng Biotechnol – volume: 117 start-page: 402 year: 2019 end-page: 423 article-title: Thermo‐sensitive polymers in medicine: A review publication-title: Eur Polym J – volume: 5 start-page: 229 issue: 2.1 year: 2019 article-title: Conductive collagen/polypyrrole‐b‐polycaprolactone hydrogel for bioprinting of neural tissue constructs publication-title: Int J Bioprint – volume: 20 year: 2020 article-title: Fabrication, applications and challenges of natural biomaterials in tissue engineering publication-title: Appl Mater Today – volume: 17 start-page: 693 year: 2018 end-page: 702 article-title: Skin care and rejuvenation by cosmeceutical facial mask publication-title: J Cosmet Dermatol – volume: 36 start-page: 577 issue: 6 year: 2013 end-page: 582 article-title: Graphene films show stable cell attachment and biocompatibility with electrogenic primary cardiac cells publication-title: Mol Cells – volume: 9 start-page: 401 issue: 11 year: 2019 article-title: A novel graphene oxide polymer gel platform for cardiac tissue engineering application publication-title: Biotechniques – volume: 48 start-page: 2127 issue: 8 year: 2010 end-page: 2150 article-title: Production, properties and potential of graphene publication-title: Carbon – volume: 52 start-page: 81 year: 2017 end-page: 91 article-title: Moldable elastomeric polyester‐carbon nanotube scaffolds for cardiac tissue engineering publication-title: Acta Biomater – volume: 9 start-page: 29595 issue: 35 year: 2017 end-page: 29611 article-title: Dopamine‐incorporated dual bioactive electroactive shape memory polyurethane elastomers with physiological shape recovery temperature, high stretchability, and enhanced C2C12 myogenic differentiation publication-title: ACS Appl Mater Interfaces – volume: 11 start-page: 34688 issue: 55 year: 2021 end-page: 34698 article-title: Anti‐bacterial activity of gold nanocomposites as a new nanomaterial weapon to combat photogenic agents: recent advances and challenges publication-title: RSC Adv – volume: 25 start-page: 6385 issue: 44 year: 2013 end-page: 6391 article-title: Cell‐laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide publication-title: Adv Mater – volume: 8 start-page: 627 issue: 7 year: 2008 end-page: 637 article-title: Development of electroactive and elastic nanofibers that contain polyaniline and poly(L‐lactide‐co‐epsilon‐caprolactone) for the control of cell adhesion publication-title: Macromol Biosci – volume: 102 issue: 2 year: 2013 article-title: The effect of degree of reduction on the electrical properties of functionalized graphene sheets publication-title: Appl Phys Lett – volume: 9 start-page: 25929 issue: 31 year: 2017 end-page: 25940 article-title: Graphene sheet‐induced global maturation of Cardiomyocytes derived from human induced pluripotent stem cells publication-title: ACS Appl Mater Interfaces – volume: 298 year: 2020 article-title: Electro‐conductive carbon nanofibers as the promising interfacial biomaterials for bone tissue engineering publication-title: J Mol Liq – volume: 6 start-page: 7185 year: 2018 end-page: 7196 article-title: Conductive silk‐polypyrrole composite scaffolds with bioinspired nanotopographic cues for cardiac tissue engineering publication-title: J Mater Chem B – volume: 84 start-page: 98 year: 2019 end-page: 113 article-title: In vitro and in vivo studies of electroactive reduced graphene oxide‐modified nanofiber scaffolds for peripheral nerve regeneration publication-title: Acta Biomater – volume: 17 start-page: 391 issue: 2 year: 2005 end-page: 397 article-title: Carbon nanotube biocompatibility with cardiac muscle cells publication-title: Nanotechnology – year: 2019 – volume: 103 issue: 18 year: 2013 article-title: DNA‐decorated graphene nanomesh for detection of chemical vapors publication-title: Appl Phys Lett – volume: 61 start-page: 1097 issue: 12 year: 2009 end-page: 1114 article-title: Carbon nanofibers and carbon nanotubes in regenerative medicine publication-title: Adv Drug Deliv Rev – volume: 19 start-page: 2198 issue: 4 year: 2019 end-page: 2206 article-title: Gold nanoparticle‐integrated scaffolds for tissue engineering and regenerative medicine publication-title: Nano Lett – volume: 59 start-page: 1 issue: 1–6 year: 2008 end-page: 37 article-title: Biomaterials in cardiac tissue engineering: ten years of research survey publication-title: Mater Sci Eng R Rep – volume: 9 start-page: 273 issue: 1 year: 2009 end-page: 278 article-title: Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein publication-title: Nano Lett – volume: 188 start-page: 952 issue: 4 year: 2019 end-page: 964 article-title: Preparation of an electrically conductive graphene oxide/chitosan scaffold for cardiac tissue engineering publication-title: Appl Biochem Biotechnol – volume: 39 start-page: 228 issue: 1 year: 2010 end-page: 240 article-title: The chemistry of graphene oxide publication-title: Chem Soc Rev – volume: 140 start-page: 278 year: 2019 end-page: 287 article-title: Chitosan‐PVA‐CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering publication-title: Int J Biol Macromol – volume: 11 start-page: 4355 issue: 27 year: 2020 end-page: 4381 article-title: Radical polymerization as a versatile tool for surface grafting of thin hydrogel films publication-title: Polym Chem – volume: 108 start-page: 2276 issue: 5 year: 2020 end-page: 2293 article-title: Fabrication, characterization, and in vitro evaluation of electrospun polyurethane‐gelatin‐carbon nanotube scaffolds for cardiovascular tissue engineering applications publication-title: J Biomed Mater Res B Appl Biomater – volume: 118 start-page: 368 year: 2016 end-page: 370 article-title: Recounting cardiac cellular composition publication-title: Am Heart Assoc – volume: 202 year: 2020 article-title: Photoluminescent functionalized carbon quantum dots loaded electroactive silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering publication-title: J Photochem Photobiol B Biol – volume: 532 start-page: 195 issue: 7598 year: 2016 end-page: 200 article-title: Astrocyte scar formation aids central nervous system axon regeneration publication-title: Nature – volume: 2013 year: 2013 article-title: Fullerenols as a new therapeutic approach in nanomedicine publication-title: Biomed Res Int – volume: 10 start-page: 44668 issue: 51 year: 2018 end-page: 44677 article-title: Nanoengineered Electroconductive collagen‐based cardiac patch for infarcted myocardium repair publication-title: ACS Appl Mater Interfaces – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 12 article-title: Recombinant spider silk protein eADF4 (C16)‐RGD coatings are suitable for cardiac tissue engineering publication-title: Sci Rep – volume: 8 start-page: 3317 issue: 12 year: 2018 end-page: 3330 article-title: Injectable OPF/graphene oxide hydrogels provide mechanical support and enhance cell electrical signaling after implantation into myocardial infarct publication-title: Theranostics – volume: 13 start-page: 1 issue: 1 year: 2021 end-page: 24 article-title: Prevascularized micro‐/nano‐sized spheroid/bead aggregates for vascular tissue engineering publication-title: Nano‐Micro Lett – volume: 299 year: 2020 article-title: Smart drug delivery: capping strategies for mesoporous silica nanoparticles publication-title: Microporous Mesoporous Mater – volume: 3 start-page: 477 issue: 4 year: 2008 end-page: 485 article-title: Greater osteoblast proliferation on anodized nanotubular titanium upon electrical stimulation publication-title: Int J Nanomedicine – volume: 17 start-page: 199 issue: 1–2 year: 2006 end-page: 212 article-title: Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts publication-title: J Biomater Sci Polym Ed – volume: 103 start-page: 3179 issue: 10 year: 2015 end-page: 3187 article-title: Preparation of a porous conductive scaffold from aniline pentamer‐modified polyurethane/PCL blend for cardiac tissue engineering publication-title: J Biomed Mater Res A – volume: 1 start-page: 1530 issue: 5 year: 2018 end-page: 1537 article-title: 3D carbon‐nanotube‐based composites for cardiac tissue engineering publication-title: ACS Appl Bio Mater – volume: 825 year: 2022 article-title: Bioactive hybrid metal‐organic framework (MOF)‐based nanosensors for optical detection of recombinant SARS‐CoV‐2 spike antigen publication-title: Sci Total Environ – volume: 106 start-page: 718 issue: 3 year: 2018 end-page: 724 article-title: Hydrogel/fiber conductive scaffold for bone tissue engineering publication-title: J Biomed Mater Res A – start-page: 4201 year: 2016 end-page: 4203 – volume: 13 start-page: 10796 issue: 9 year: 2021 end-page: 10811 article-title: Polymer‐coated NH ‐UiO‐66 for the codelivery of DOX/pCRISPR publication-title: ACS Appl Mater Interfaces – volume: 4 start-page: 1 issue: 1 year: 2012 end-page: 200 article-title: Cardiac tissue engineering: principles, materials, and applications publication-title: Synth Lect Tissue Eng – volume: 7 start-page: 850 issue: 5 year: 2012 end-page: 858 article-title: Fabrication of functional three‐dimensional tissues by stacking cell sheets in vitro publication-title: Nat Protoc – volume: 7 start-page: 11 issue: 1 year: 2012 end-page: 23 article-title: The properties and applications of nanodiamonds publication-title: Nat Nanotechnol – volume: 224 year: 2019 article-title: Conductive hydrogels based on agarose/alginate/chitosan for neural disorder therapy publication-title: Carbohydr Polym – volume: 107 start-page: 177 year: 2016 end-page: 190 article-title: Novel nanofibrous electrically conductive scaffolds based on poly (ethylene glycol) s‐modified polythiophene and poly (ε‐caprolactone) for tissue engineering applications publication-title: Polymer – volume: 1 start-page: 201 issue: 3 year: 2012 end-page: 205 article-title: Cellular responses of aniline oligomers: a preliminary study publication-title: Toxicol Res – volume: 95 start-page: 309 year: 2015 end-page: 317 article-title: Dose‐dependent effects of nanoscale graphene oxide on reproduction capability of mammals publication-title: Carbon – start-page: 25 year: 2016 end-page: 51 – volume: 17 start-page: 735 issue: 3 year: 2014 article-title: Bringing regenerating tissues to life: the importance of angiogenesis in tissue engineering publication-title: Angiogenesis – volume: 5 start-page: 560 issue: 7 year: 2011 end-page: 568 article-title: Characterization of electrospun poly (L‐lactide) and gold nanoparticle composite scaffolds for skeletal muscle tissue engineering publication-title: J Tissue Eng Regen Med – volume: 42 year: 2020 article-title: Biomaterializing the promise of cardiac tissue engineering publication-title: Biotechnol Adv – year: 2020 article-title: Synergistic effects of conductivity and cell‐imprinted topography of chitosan‐polyaniline based scaffolds for neural differentiation of adipose‐derived stem cells publication-title: bioRxiv – volume: 74 start-page: 208 issue: 2 year: 2005 end-page: 214 article-title: Improving the blood compatibility of polyurethane using carbon nanotubes as fillers and its implications to cardiovascular surgery publication-title: J Biomed Mater Res A – volume: 15 start-page: 635 issue: 2 year: 2014 end-page: 643 article-title: Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering publication-title: Biomacromolecules – volume: 19 start-page: 63 issue: 1 year: 2019 end-page: 64 article-title: Cardioimmunology of arrhythmias: the role of autoimmune and inflammatory cardiac channelopathies publication-title: Nat Rev Immunol – volume: 30 start-page: 1473 issue: 6 year: 2019 end-page: 1483 article-title: Electrospun electroactive nanofibers of gelatin‐oligoaniline/poly (vinyl alcohol) templates for architecting of cardiac tissue with on‐demand drug release publication-title: Polym Adv Technol – volume: 4 start-page: 1583 issue: 6 year: 2008 end-page: 1592 article-title: Carbon nanotubes increase the electrical conductivity of fibroblast‐seeded collagen hydrogels publication-title: Acta Biomater – volume: 423 year: 2021 article-title: Green porous benzamide‐like nanomembranes for hazardous cations detection, separation, and concentration adjustment publication-title: J Hazard Mater – volume: 30 issue: 23 year: 2018 article-title: Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches publication-title: Adv Mater – volume: 7 start-page: 31980 issue: 51 year: 2017 end-page: 31988 article-title: Injectable and thermoresponsive pericardial matrix derived conductive scaffold for cardiac tissue engineering publication-title: RSC Adv – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 10 article-title: Symbiotic cardiac pacemaker publication-title: Nat Commun – volume: 6 start-page: 711 issue: 6 year: 2010 end-page: 723 article-title: Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon‐based materials publication-title: Small – start-page: 153 year: 2021 end-page: 186 – volume: 6 start-page: 525 issue: 4 year: 2016 end-page: 2161 article-title: Gold and silver nanoparticles: synthesis methods, characterization routes and applications towards drugs publication-title: J Environ Anal Toxicol – year: 2009 – volume: 59 year: 2020 article-title: Carbosilane dendrimers: drug and gene delivery applications publication-title: J Drug Deliv Sci Technol – volume: 11 start-page: 3643 issue: 9 year: 2011 end-page: 3648 article-title: Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression publication-title: Nano Lett – volume: 46 start-page: 234 year: 2016 end-page: 244 article-title: Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation publication-title: Acta Biomater – volume: 111 start-page: 752 year: 2017 end-page: 763 article-title: Tough and conductive hybrid graphene‐PVA: alginate fibrous scaffolds for engineering neural construct publication-title: Carbon – volume: 35 start-page: 597 issue: 8 year: 2010 end-page: 606 article-title: Wound healing versus regeneration: role of the tissue environment in regenerative medicine publication-title: MRS Bull Mater Res Soc – volume: 25 start-page: 642 issue: 4 year: 2020 end-page: 656 article-title: Zeolites in drug delivery: progress, challenges and opportunities publication-title: Drug Discov Today – start-page: 1 year: 2021 end-page: 14 article-title: Calcium‐based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery publication-title: J Nanostruct Chem – volume: 24 start-page: 2101 issue: 6 year: 2014 end-page: 2107 article-title: Growth characteristics of different heart cells on novel nanopatch substrate during electrical stimulation publication-title: Biomed Mater Eng – volume: 24 year: 2022 article-title: Elucidating the impact of enzymatic modifications on the structure, properties, and applications of cellulose, chitosan, starch and their derivatives: a review publication-title: Mater Today Chem – volume: 123 start-page: e18 issue: 4 year: 2011 end-page: e209 article-title: Heart disease and stroke statistics—2011 update: a report from the American Heart Association publication-title: Circulation – volume: 2 start-page: 244 issue: 2 year: 2013 end-page: 260 article-title: Carbon‐based nanomaterials for tissue engineering publication-title: Adv Healthc Mater – start-page: 17 year: 2014 end-page: 48 – volume: 3 start-page: 1 issue: 1 year: 2013 end-page: 6 article-title: Three‐dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells publication-title: Sci Rep – volume: 11 start-page: 2345 issue: 9 year: 2010 end-page: 2351 article-title: Fabrication, mechanical properties, and biocompatibility of graphene‐reinforced chitosan composites publication-title: Biomacromolecules – volume: 13 start-page: 12525 issue: 11 year: 2019 end-page: 12539 article-title: Nanoparticle‐based hybrid scaffolds for deciphering the role of multimodal cues in cardiac tissue engineering publication-title: ACS Nano – volume: 59 start-page: 200 year: 2013 end-page: 211 article-title: Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells publication-title: Carbon – volume: 2 issue: 11 year: 2016 article-title: A conducting polymer with enhanced electronic stability applied in cardiac models publication-title: Sci Adv – volume: 285 start-page: 573 issue: 5 year: 2001 end-page: 576 article-title: Prospects for organ and tissue replacement publication-title: JAMA – volume: 27 start-page: 2705 issue: 13 year: 2006 end-page: 2715 article-title: Electrospinning polyaniline‐contained gelatin nanofibers for tissue engineering applications publication-title: Biomaterials – volume: 31 start-page: 2406 issue: 5 year: 2010 end-page: 2413 article-title: Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites publication-title: Mater Design – volume: 2 start-page: 2521 issue: 9 year: 2010 end-page: 2529 article-title: Fabrication of free‐standing, electrochemically active, and biocompatible graphene oxide–polyaniline and graphene–polyaniline hybrid papers publication-title: ACS Appl Mater Interfaces – volume: 109 start-page: 637 year: 2020 end-page: 648 article-title: Carbon quantum dots‐embedded electrospun antimicrobial and fluorescent scaffold for reepithelialization in albino wistar rats publication-title: J Biomed Mater Res A – volume: 10 start-page: 1043 issue: 10 year: 2000 end-page: 1045 article-title: Antimycobacterial activity of ionic fullerene derivatives publication-title: Bioorg Med Chem Lett – volume: 82 start-page: 1316 issue: 8 year: 2019 end-page: 1325 article-title: Development of electrically conductive hybrid nanofibers based on CNT‐polyurethane nanocomposite for cardiac tissue engineering publication-title: Microsc Res Tech – volume: 8 start-page: 7075 issue: 13 year: 2016 end-page: 7084 article-title: Graphene induces spontaneous cardiac differentiation in embryoid bodies publication-title: Nanoscale – volume: 103 start-page: 2635 issue: 8 year: 2015 end-page: 2644 article-title: An electrically conductive 3D scaffold based on a nonwoven web of poly (l‐lactic acid) and conductive poly (3, 4‐ethylenedioxythiophene) publication-title: J Biomed Mater Res A – volume: 45 start-page: 671 year: 2014 end-page: 681 article-title: The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine publication-title: Mater Sci Eng C – volume: 6 start-page: 2375 issue: 9 year: 2018 end-page: 2385 article-title: Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds publication-title: Biomater Sci – volume: 19 start-page: 1764 issue: 6 year: 2018 end-page: 1782 article-title: Conducting polymers for tissue engineering publication-title: Biomacromolecules – volume: 326 start-page: 523 year: 2020 end-page: 546 article-title: Agarose‐based biomaterials for advanced drug delivery publication-title: J Control Release – start-page: 181 year: 2020 end-page: 200 – volume: 6 start-page: 17 issue: 1 year: 2019 article-title: Application of metal nanoparticle–hydrogel composites in tissue regeneration publication-title: Bioengineering – volume: 18 start-page: 185 year: 2019 end-page: 201 article-title: Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review publication-title: J Adv Res – volume: 11 start-page: 182 issue: 1 year: 2020 end-page: 200 article-title: Graphene oxide: a promising material for regenerative medicine and tissue engineering publication-title: Biomol Concepts – volume: 17 start-page: 1600250 issue: 4 year: 2017 article-title: 3D printed polycaprolactone carbon nanotube composite scaffolds for cardiac tissue engineering publication-title: Macromol Biosci – volume: 9 start-page: 3593 issue: 21 year: 2013 end-page: 3601 article-title: Graphene nanomesh promises extremely efficient in vivo photothermal therapy publication-title: Small – volume: 104 year: 2019 article-title: Electroactive cardiac patch containing reduced graphene oxide with potential antibacterial properties publication-title: Mater Sci Eng C – volume: 10 start-page: 8789 issue: 1 year: 2020 article-title: Recombinant spider silk protein eADF4(C16)‐RGD coatings are suitable for cardiac tissue engineering publication-title: Sci Rep – start-page: 121 year: 2021 end-page: 133 – volume: 117 year: 2020 article-title: Reduced graphene oxide foam templated by nickel foam for organ‐on‐a‐chip engineering of cardiac constructs publication-title: Mater Sci Eng C – volume: 28 issue: 21 year: 2018 article-title: Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction publication-title: Adv Funct Mater – volume: 98 start-page: 266 year: 2019 end-page: 278 article-title: Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration publication-title: Mater Sci Eng C Mater Biol Appl – volume: 5 start-page: e17 issue: 4 year: 2011 end-page: e35 article-title: Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering publication-title: J Tissue Eng Regen Med – volume: 31 issue: 42 year: 2020 article-title: Green synthesis of CuO‐and Cu O‐NPs in assistance with high‐gravity: the flowering of nanobiotechnology publication-title: Nanotechnology – volume: 120 start-page: 366 issue: 2 year: 2017 end-page: 380 article-title: Decline in cardiovascular mortality: possible causes and implications publication-title: Circ Res – volume: 11 start-page: 1 issue: 1 year: 2020 end-page: 18 article-title: In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix publication-title: Nat Commun – volume: 288 start-page: H1620 issue: 4 year: 2005 end-page: H1626 article-title: Engineering skeletal myoblasts: roles of three‐dimensional culture and electrical stimulation publication-title: Am J Physiol Heart Circ Physiol – year: 2015 – volume: 137 start-page: e67 issue: 12 year: 2018 end-page: e492 article-title: Heart disease and stroke Statistics‐2018 update: a report from the American Heart Association publication-title: Circulation – volume: 536 start-page: 241 issue: 1 year: 2018 end-page: 250 article-title: Conductive vancomycin‐loaded mesoporous silica polypyrrole‐based scaffolds for bone regeneration publication-title: Int J Pharm – volume: 3 start-page: 740 issue: 2 year: 2011 end-page: 761 article-title: Hydrogels for cardiac tissue engineering publication-title: Polymers – volume: 54 start-page: 419 year: 2013 end-page: 431 article-title: Genotoxicity of graphene nanoribbons in human mesenchymal stem cells publication-title: Carbon – volume: 362 start-page: 1357 issue: 1484 year: 2007 end-page: 1368 article-title: Biomimetic approach to cardiac tissue engineering publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 46 start-page: 99 year: 2017 end-page: 107 article-title: Electrical stimulation of somatic human stem cells mediated by composite containing conductive nanofibers for ligament regeneration publication-title: Biologicals – volume: 96 start-page: 869 issue: 9 year: 2018 end-page: 878 article-title: Graphene‐based drug delivery systems in tissue engineering and nanomedicine publication-title: Can J Physiol Pharmacol – volume: 93 start-page: 890 year: 2018 end-page: 901 article-title: 3D culture of neural stem cells within conductive PEDOT layer‐assembled chitosan/gelatin scaffolds for neural tissue engineering publication-title: Mater Sci Eng C – volume: 48 start-page: 88 year: 2017 end-page: 99 article-title: Carbon nanotube‐composite hydrogels promote intercalated disc assembly in engineered cardiac tissues through β1‐integrin mediated FAK and RhoA pathway publication-title: Acta Biomater – volume: 55 start-page: 485 issue: 3 year: 2017 end-page: 494 article-title: Metathesis cyclopolymerization of substituted 1, 6‐heptadiyne and dual conductivity of doped polyacetylene bearing branched triazole pendants publication-title: J Polym Sci A Polym Chem – volume: 312 year: 2020 article-title: Conductive polymers in water treatment: a review publication-title: J Mol Liq – volume: 16 year: 2020 article-title: Mechanisms of graphene influence on cell differentiation publication-title: Mater Today Chem – volume: 122 start-page: 63 year: 2017 end-page: 71 article-title: A π‐π conjugation‐containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction publication-title: Biomaterials – volume: 138 start-page: 8 year: 2018 end-page: 17 article-title: Graphene oxide in generation of nanobubbles using controllable microvortices of jet flows publication-title: Carbon – volume: 160 start-page: 69 year: 2018 end-page: 81 article-title: An injectable conductive hydrogel encapsulating plasmid DNA‐eNOs and ADSCs for treating myocardial infarction publication-title: Biomaterials – volume: 12 start-page: 3109 year: 2017 end-page: 3120 article-title: Carbon nanotube‐incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs publication-title: Int J Nanomedicine – volume: 87 start-page: 1285 issue: 4 year: 2007 end-page: 1342 article-title: Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function publication-title: Physiol Rev – volume: 113 start-page: 810 issue: 6 year: 2013 end-page: 834 article-title: Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions publication-title: Circ Res – volume: 6 issue: 2 year: 2014 article-title: Therapeutic applications of low‐toxicity spherical nanocarbon materials publication-title: NPG Asia Materials – volume: 11 start-page: 5474 issue: 6 year: 2017 end-page: 5488 article-title: Injectable fullerenol/alginate hydrogel for suppression of oxidative stress damage in brown adipose‐derived stem cells and cardiac repair publication-title: ACS Nano – volume: 30 start-page: 5409 issue: 29 year: 2009 end-page: 5416 article-title: Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering publication-title: Biomaterials – volume: 143 start-page: 19 year: 2018 end-page: 27 article-title: A critical review of nanodiamond based nanocomposites: synthesis, properties and applications publication-title: Compos Part B Eng – volume: 34 start-page: 1063 issue: 4 year: 2013 end-page: 1072 article-title: Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating publication-title: Biomaterials – volume: 452 start-page: 174 issue: 1 year: 2014 end-page: 180 article-title: Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells publication-title: Biochem Biophys Res Commun – start-page: 93 year: 2021 end-page: 103 – volume: 13 start-page: 612 issue: 6 year: 2018 end-page: 632 article-title: Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke publication-title: Int J Stroke – volume: 22 start-page: 24230 issue: 46 year: 2012 end-page: 24253 article-title: Carbon nanodots: synthesis, properties and applications publication-title: J Mater Chem – volume: 48 start-page: 907 issue: 5 year: 2006 end-page: 913 article-title: Biomaterials for the treatment of myocardial infarction publication-title: J Am Coll Cardiol – volume: 180 start-page: 590 year: 2021 end-page: 598 article-title: Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering publication-title: Int J Biol Macromol – volume: 63 start-page: 131 year: 2016 end-page: 141 article-title: Electrically conductive gold nanoparticle‐chitosan thermosensitive hydrogels for cardiac tissue engineering publication-title: Mater Sci Eng C – volume: 133 start-page: 5206 issue: 14 year: 2011 end-page: 5209 article-title: Electrical switching between vesicles and micelles via redox‐responsive self‐assembly of amphiphilic rod‐coils publication-title: J Am Chem Soc – volume: 68 start-page: 29 year: 2017 end-page: 40 article-title: Tissue engineering: toward a new era of medicine publication-title: Annu Rev Med – volume: 186 year: 2020 article-title: Graphene aerogel nanoparticles for in‐situ loading/pH sensitive releasing anticancer drugs publication-title: Colloids Surf B Biointerfaces – year: 2020 – volume: 1316 year: 2011 article-title: Poly lactic‐co‐glycolic acid carbon nanofiber composite for enhancing Cardiomyocyte function publication-title: MRS Proc – volume: 366 start-page: 208 year: 2019 end-page: 222 article-title: Micropatterned, electroactive, and biodegradable poly(glycerol sebacate)‐aniline trimer elastomer for cardiac tissue engineering publication-title: Chem Eng J – volume: 106 start-page: 2923 issue: 11 year: 2018 end-page: 2933 article-title: Electroactive graphene composite scaffolds for cardiac tissue engineering publication-title: J Biomed Mater Res A – volume: 15 start-page: 4205 year: 2020 end-page: 4224 article-title: Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine publication-title: Int J Nanomedicine – year: 2022 article-title: Biodegradable antibacterial and antioxidant nanocomposite films based on dextrin for bioactive food packaging publication-title: J Nanostruct Chem – volume: 107 start-page: 204 issue: 1 year: 2019 end-page: 219 article-title: Electroactive graphene oxide‐incorporated collagen assisting vascularization for cardiac tissue engineering publication-title: J Biomed Mater Res A – volume: 190 start-page: 931 issue: 3 year: 2020 end-page: 948 article-title: Development of a novel electroactive cardiac patch based on carbon nanofibers and gelatin encouraging vascularization publication-title: Appl Biochem Biotechnol – start-page: 17 year: 2018 end-page: 51 – start-page: 135 year: 2012 end-page: 153 – volume: 4 start-page: 20441 issue: 39 year: 2014 end-page: 20448 article-title: Synthesis of graphene from natural and industrial carbonaceous wastes publication-title: RSC Adv – volume: 31 issue: 1_supplement year: 2017 article-title: Conductive gel polymers as an extracellular matrix mimic and cell vehicle for cardiac tissue engineering publication-title: FASEB J – volume: 5 start-page: 193 issue: 1 year: 2018 end-page: 214 article-title: Three‐dimensional graphene foams: synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering publication-title: ACS Biomater Sci Eng – year: 2011 – start-page: 581 year: 2020 end-page: 601 – volume: 20 start-page: 9032 issue: 41 year: 2010 end-page: 9036 article-title: Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films publication-title: J Mater Chem – volume: 87 start-page: 18 year: 2016 end-page: 31 article-title: Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering publication-title: Biomaterials – volume: 41 start-page: 133 year: 2016 end-page: 146 article-title: Gold nanorod‐incorporated gelatin‐based conductive hydrogels for engineering cardiac tissue constructs publication-title: Acta Biomater – volume: 48 start-page: 310 issue: 6 year: 2015 end-page: 314 article-title: Biomedical applications of promising nanomaterials with carbon nanotubes publication-title: Biomed Eng – volume: 98 start-page: 324 year: 2019 end-page: 332 article-title: Preparation and characterization of electrospun rGO‐poly (ester amide) conductive scaffolds publication-title: Mater Sci Eng C – volume: 356 start-page: 1035 issue: 6342 year: 2017 end-page: 1039 article-title: Cardiac regeneration strategies: staying young at heart publication-title: Science – volume: 6 start-page: 4214 year: 2020 end-page: 4224 article-title: Electroconductive graphene containing polymeric patch: a promising platform for cardiac repair publication-title: ACS Biomater Sci Eng – volume: 1417 year: 2012 article-title: Improved cardiomyocyte functions of carbon nanofiber cardiac patches publication-title: MRS Online Proc Lib Arch – volume: 27 start-page: 7563 issue: 46 year: 2015 end-page: 7582 article-title: Graphite oxide to graphene publication-title: Biomaterials to Bionics Adv Mater – volume: 28 start-page: 1741 issue: 10 year: 2007 end-page: 1751 article-title: Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer publication-title: Biomaterials – volume: 10 start-page: 2434 issue: 6 year: 2014 end-page: 2445 article-title: Development and characterization of novel electrically conductive PANI–PGS composites for cardiac tissue engineering applications publication-title: Acta Biomater – volume: 30 start-page: 1 issue: 10 year: 2019 end-page: 15 article-title: A review of accelerated wound healing approaches: biomaterial‐assisted tissue remodeling publication-title: J Mater Sci Mater Med – volume: 34 issue: 11 year: 2021 article-title: Trifluralin recognition using touch‐based fingertip: application of wearable glove‐based sensor toward environmental pollution and human health control publication-title: J Mol Recogn – volume: 55 start-page: 84 year: 2015 end-page: 95 article-title: Carbon nanotubes enhance intercalated disc assembly in cardiac myocytes via the β1‐integrin‐mediated signaling pathway publication-title: Biomaterials – volume: 564 start-page: 430 issue: 7736 year: 2018 end-page: 433 article-title: Consistent success in life‐supporting porcine cardiac xenotransplantation publication-title: Nature – volume: 25 start-page: 2590 issue: 17 year: 2015 end-page: 2600 article-title: Graphene potentiates the myocardial repair efficacy of mesenchymal stem cells by stimulating the expression of angiogenic growth factors and gap junction protein publication-title: Adv Funct Mater – start-page: 815 year: 2010 end-page: 818 – volume: 9 start-page: 4987 issue: 5 year: 2015 end-page: 4999 article-title: Graphene oxide flakes as a cellular adhesive: prevention of reactive oxygen species mediated death of implanted cells for cardiac repair publication-title: ACS Nano – volume: 10 start-page: 982 issue: 10 year: 2018 end-page: 994 article-title: Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues publication-title: NPG Asia Materials – volume: 25 start-page: 369 issue: 5 year: 2004 end-page: 373 article-title: A portable meter for measuring low frequency currents in the human body publication-title: Bioelectromagnetics – volume: 27 start-page: 821 issue: 11–12 year: 2021 end-page: 843 article-title: Injectable cell‐laden hydrogels for tissue engineering: recent advances and future opportunities publication-title: Tissue Eng Part A – volume: 242 year: 2020 article-title: Polycyclodextrins: synthesis, functionalization, and applications publication-title: Carbohydr Polym – volume: 125 start-page: 557 year: 2017 end-page: 570 article-title: Mussel‐inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self‐healing and recovery behavior for tissue engineering publication-title: Carbon – volume: 12 issue: 3 year: 2019 article-title: Three‐dimensional printed biopatches with conductive ink facilitate cardiac conduction when applied to disrupted myocardium publication-title: Circ Arrhythm Electrophysiol – volume: 2 start-page: 427 issue: 6 year: 2013 end-page: 433 article-title: Biocompatibility evaluation of aniline oligomers with different end‐functional groups publication-title: Toxicol Res – volume: 5 start-page: 1305 issue: 3 year: 2022 end-page: 1318 article-title: Folic acid‐adorned curcumin‐loaded iron oxide nanoparticles for cervical cancer publication-title: ACS Appl Bio Mater – volume: 4 issue: 5 year: 2014 article-title: Heart transplantation: challenges facing the field publication-title: Cold Spring Harb Perspect Med – volume: 9 start-page: 8706 issue: 26 year: 2021 end-page: 8720 article-title: Multifunctional 3D hierarchical bioactive green carbon‐based nanocomposites publication-title: ACS Sustain Chem Eng – volume: 12 start-page: 35813 issue: 32 year: 2020 end-page: 35825 article-title: Graphene/CuO Nanoshuttles with controllable release of oxygen Nanobubbles promoting interruption of bacterial respiration publication-title: ACS Appl Mater Interfaces – volume: 126 start-page: 313 year: 2015 end-page: 321 article-title: Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors publication-title: Colloids Surf B Biointerfaces – volume: 14 start-page: 484 issue: 8 year: 2017 end-page: 491 article-title: Redefining the identity of cardiac fibroblasts publication-title: Nat Rev Cardiol – volume: 28 start-page: 1617 issue: 15 year: 2017 end-page: 1638 article-title: A novel bio electro active alginate‐aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study publication-title: J Biomater Sci Polym Ed – volume: 2 start-page: 413 year: 2017 end-page: 443 – volume: 4 start-page: 8110 issue: 12 year: 2021 end-page: 8128 article-title: Emerging phospholipid nanobiomaterials for biomedical applications to lab‐on‐a‐chip, drug delivery, and cellular engineering publication-title: ACS Appl Bio Mater – volume: 7 start-page: 8978 issue: 19 year: 2015 end-page: 8994 article-title: Personalized disease‐specific protein corona influences the therapeutic impact of graphene oxide publication-title: Nanoscale – volume: 12 start-page: 2403 issue: 19 year: 2017 end-page: 2422 article-title: Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing publication-title: Nanomedicine – volume: 110 start-page: 45 year: 2016 end-page: 59 article-title: Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart‐on‐a‐chip publication-title: Biomaterials – volume: 9 start-page: 1 issue: 1 year: 2019 end-page: 15 article-title: Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling publication-title: Sci Rep – volume: 32 start-page: 579 issue: 2 year: 2011 end-page: 586 article-title: Infarct stabilization and cardiac repair with a VEGF‐conjugated, injectable hydrogel publication-title: Biomaterials – volume: 7 start-page: 3101 issue: 8 year: 2011 end-page: 3112 article-title: Poly (lactic–co‐glycolic acid): carbon nanofiber composites for myocardial tissue engineering applications publication-title: Acta Biomater – volume: 40 start-page: 237 issue: 3 year: 2019 end-page: 269 article-title: Fourth universal definition of myocardial infarction (2018) publication-title: Eur Heart J – volume: 11 start-page: 5646 issue: 6 year: 2017 end-page: 5659 article-title: Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy publication-title: ACS Nano – volume: 29 start-page: 535 issue: 5 year: 2011 end-page: 544 article-title: Accelerated osteoblast mineralization on a conductive substrate by multiple electrical stimulation publication-title: J Bone Miner Metab – volume: 5 start-page: 10316 issue: 21 year: 2013 end-page: 10326 article-title: Flash photo stimulation of human neural stem cells on graphene/TiO heterojunction for differentiation into neurons publication-title: Nanoscale – volume: 37 start-page: 2017 issue: 24 year: 2016 end-page: 2022 article-title: Branched 1,2,3‐Triazolium‐functionalized polyacetylene with enhanced conductivity publication-title: Macromol Rapid Commun – start-page: 535 year: 2012 end-page: 546 – volume: 66 start-page: 395 year: 2014 end-page: 406 article-title: Accelerated differentiation of neural stem cells into neurons on ginseng‐reduced graphene oxide sheets publication-title: Carbon – volume: 56 start-page: 1635 issue: 11 year: 2004 end-page: 1647 article-title: Three‐dimensional tissue fabrication publication-title: Adv Drug Deliv Rev – volume: 30 start-page: 1908612 issue: 7 year: 2020 article-title: Nanofibrous composite with tailorable electrical and mechanical properties for cardiac tissue engineering publication-title: Adv Funct Mater – volume: 34 year: 2020 article-title: Stimulus‐responsive sequential release systems for drug and gene delivery publication-title: Nano Today – volume: 169 year: 2021 article-title: An innovative flexible and portable DNA based biodevice towards sensitive identification of Haemophilus influenzae bacterial genome: a new platform for the rapid and low cost recognition of pathogenic bacteria using point of care (POC) analysis publication-title: Microchem J – volume: 1036 start-page: 1 year: 2013 end-page: 17 article-title: Cellular cardiomyoplasty: its past, present, and future publication-title: Methods Mol Biol – volume: 514 start-page: 517 year: 2018 end-page: 527 article-title: Conductive nanofibrous composite scaffolds based on in‐situ formed polyaniline nanoparticle and polylactide for bone regeneration publication-title: J Colloid Interface Sci – volume: 104 start-page: 775 issue: 3 year: 2016 end-page: 787 article-title: Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part I: synthesis, characterization, and myoblast proliferation and differentiation publication-title: J Biomed Mater Res A – volume: 34 start-page: 74 issue: 1 year: 2019 end-page: 85 article-title: Three‐dimensional graphene foam as a conductive scaffold for cardiac tissue engineering publication-title: J Biomater Appl – volume: 9 start-page: 682 issue: 3 year: 2020 article-title: 3D printed conductive Nanocellulose scaffolds for the differentiation of human Neuroblastoma cells publication-title: Cell – volume: 95 start-page: 1270 issue: 4 year: 2010 end-page: 1279 article-title: Bone bioelectricity: what have we learned in the past 160 years? publication-title: J Biomed Mater Res A – volume: 56 start-page: 11931 issue: 80 year: 2020 end-page: 11940 article-title: Fighting corrosion with stimuli‐responsive polymer conjugates publication-title: Chem Commun – volume: 31 start-page: 248 issue: 2 year: 2020 end-page: 259 article-title: Incorporation of two‐dimensional nanomaterials into silk fibroin nanofibers for cardiac tissue engineering publication-title: Polym Adv Technol – volume: 304 start-page: 1900187 issue: 8 year: 2019 article-title: Studying the potential application of electrospun polyethylene terephthalate/graphene oxide nanofibers as electroconductive cardiac patch publication-title: Macromol Mater Eng – volume: 232 year: 2020 article-title: Recent advances in porphyrin‐based nanocomposites for effective targeted imaging and therapy publication-title: Biomaterials – volume: 22 start-page: 2692 issue: 13 year: 2012 end-page: 2699 article-title: A single component conducting polymer hydrogel as a scaffold for tissue engineering publication-title: Adv Funct Mater – volume: 101 start-page: 1095 issue: 4 year: 2013 end-page: 1102 article-title: Novel injectable biomimetic hydrogels with carbon nanofibers and self assembled rosette nanotubes for myocardial applications publication-title: J Biomed Mater Res A – volume: 8 start-page: 17138 issue: 27 year: 2016 end-page: 17150 article-title: Self‐healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy publication-title: ACS Appl Mater Interfaces – volume: 140 year: 2021 article-title: Poly (amino acids) towards sensing: recent progress and challenges publication-title: Trends Anal Chem – volume: 112 start-page: 8922 issue: 24 year: 2008 end-page: 8927 article-title: Carbon nanotubes as free‐radical scavengers publication-title: J Phys Chem C – start-page: 95 year: 2019 end-page: 124 – volume: 28 start-page: 109 year: 2015 end-page: 120 article-title: Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological development of cardiac cells publication-title: Acta Biomater – volume: 9 start-page: 6849 issue: 8 year: 2017 end-page: 6864 article-title: Enhanced cardiac differentiation of human cardiovascular disease patient‐specific induced pluripotent stem cells by applying unidirectional electrical pulses using aligned electroactive nanofibrous scaffolds publication-title: ACS Appl Mater Interfaces – volume: 7 start-page: 5653 year: 2012 article-title: Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application publication-title: Int J Nanomedicine – volume: 3 start-page: 176 issue: 2 year: 2014 end-page: 181 article-title: Graphene–regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules publication-title: Adv Healthc Mater – volume: 115 start-page: 4744 issue: 11 year: 2015 end-page: 4822 article-title: Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures publication-title: Chem Rev – volume: 32 start-page: 87 issue: 1 year: 2011 end-page: 94 article-title: Fluorescent PLLA‐nanodiamond composites for bone tissue engineering publication-title: Biomaterials – volume: 31 start-page: 3302 issue: 12 year: 2020 end-page: 3315 article-title: Electrospun captopril‐loaded PCL‐carbon quantum dots nanocomposite scaffold: fabrication, characterization, and in vitro studies publication-title: Polym Adv Technol – volume: 247 start-page: 116678 year: 2020 article-title: Antibacterial tragacanth gum‐based nanocomposite films carrying ascorbic acid antioxidant for bioactive food packaging publication-title: Carbohydr Polym – volume: 354 start-page: S32 year: 1999 end-page: S34 article-title: Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation publication-title: Lancet – volume: 4 start-page: 27213 issue: 52 year: 2014 end-page: 27223 article-title: Cyto and genotoxicities of graphene oxide and reduced graphene oxide sheets on spermatozoa publication-title: RSC Adv – volume: 4 start-page: 1558 issue: 5 year: 2018 end-page: 1567 article-title: Electroconductive gelatin Methacryloyl‐PEDOT:PSS composite hydrogels: design, synthesis, and properties publication-title: ACS Biomater Sci Eng – volume: 1 start-page: 6291 issue: 45 year: 2013 end-page: 6301 article-title: Differentiation of human neural stem cells into neural networks on graphene nanogrids publication-title: J Mater Chem B – volume: 16 start-page: 5619 issue: 9 year: 2016 end-page: 5630 article-title: Graphene jet nanomotors in remote controllable self‐propulsion swimmers in pure water publication-title: Nano Lett – volume: 24 start-page: 6136 issue: 39 year: 2014 end-page: 6144 article-title: Layer‐by‐layer assembly of 3D tissue constructs with functionalized graphene publication-title: Adv Funct Mater – volume: 19 start-page: 57 issue: 3 year: 2017 article-title: Carbon nanotubes embedded in embryoid bodies direct cardiac differentiation publication-title: Biomed Microdevices – volume: 14 start-page: 5792 issue: 10 year: 2014 end-page: 5796 article-title: Gold nanoparticle‐decellularized matrix hybrids for cardiac tissue engineering publication-title: Nano Lett – volume: 74 start-page: 489 issue: 3 year: 2005 end-page: 496 article-title: Collagen–carbon nanotube composite materials as scaffolds in tissue engineering publication-title: J Biomed Mater Res A – volume: 81 start-page: 457 issue: 3 year: 2009 end-page: 464 article-title: Oxidative stress and left ventricular remodelling after myocardial infarction publication-title: Cardiovasc Res – volume: 31 start-page: 134 year: 2016 end-page: 143 article-title: Hybrid hydrogel‐aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies publication-title: Acta Biomater – volume: 9 start-page: 1 issue: 66 year: 2012 end-page: 19 article-title: Biomaterial strategies for alleviation of myocardial infarction publication-title: J R Soc Interface – volume: 4 start-page: 3169 issue: 19 year: 2016 end-page: 3190 article-title: Graphene scaffolds in progressive nanotechnology/stem cell‐based tissue engineering of the nervous system publication-title: J Mater Chem B – start-page: 459 year: 2017 end-page: 478 – volume: 34 start-page: Portico issue: 11 year: 2021 article-title: Enzymatic recognition of hydrogen peroxide (H O ) in human plasma samples using HRP immobilized on the surface of poly(arginine‐toluidine blue)‐Fe O nanoparticles modified polydopamine; A novel biosensor publication-title: J Mol Recogn – volume: 12 start-page: 1 issue: 1 year: 2021 end-page: 10 article-title: Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair publication-title: Nat Commun – volume: 23 start-page: 1797 issue: 7 year: 2012 end-page: 1809 article-title: Axially aligned electrically conducting biodegradable nanofibers for neural regeneration publication-title: J Mater Sci Mater Med – volume: 2 start-page: 5602 issue: 34 year: 2014 end-page: 5611 article-title: The use of graphene in the self‐organized differentiation of human neural stem cells into neurons under pulsed laser stimulation publication-title: J Mater Chem B – volume: 44 start-page: 24 year: 2014 end-page: 37 article-title: Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application publication-title: Mater Sci Eng C – volume: 6 start-page: 1470 issue: 3 year: 2014 end-page: 1480 article-title: New strategy for controlled release of drugs. Potential pinpoint targeting with multiresponsive Tetraaniline Diblock polymer vesicles: site‐directed burst release with voltage publication-title: ACS Appl Mater Interfaces – volume: 145 year: 2021 article-title: Smartphone based immunosensors as next generation of healthcare tools: technical and analytical overview towards improvement of personalized medicine publication-title: Trends Anal Chem – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 10 article-title: β‐Cardiac myosin hypertrophic cardiomyopathy mutations release sequestered heads and increase enzymatic activity publication-title: Nat Commun – volume: 5 start-page: 37553 issue: 47 year: 2015 end-page: 37567 article-title: Electrically conductive polymers and composites for biomedical applications publication-title: RSC Adv – volume: 23 start-page: 1312 issue: 3 year: 2021 end-page: 1329 article-title: An environmentally friendly wound dressing based on a self‐healing, extensible and compressible antibacterial hydrogel publication-title: Green Chem – volume: 6 start-page: 4214 issue: 7 year: 2020 end-page: 4224 article-title: Electroconductive graphene‐containing polymeric patch: a promising platform for future cardiac repair publication-title: ACS Biomater Sci Eng – volume: 385 start-page: 117 issue: 9963 year: 2015 end-page: 171 article-title: Global, regional, and national age‐sex specific all‐cause and cause‐specific mortality for 240 causes of death, 1990‐2013: a systematic analysis for the global burden of disease study 2013 publication-title: Lancet – volume: 1 start-page: 15 issue: 1 year: 2006 end-page: 30 article-title: Nanofibers and their applications in tissue engineering publication-title: Int J Nanomedicine – volume: 12 start-page: 3677 issue: 27 year: 2016 end-page: 3689 article-title: Reduced graphene oxide‐gelMA hybrid hydrogels as scaffolds for cardiac tissue engineering publication-title: Small – volume: 11 start-page: 4381 year: 2016 end-page: 4395 article-title: Carbon nanotube‐based substrates promote cardiogenesis in brown adipose‐derived stem cells via β1‐integrin‐dependent TGF‐β1 signaling pathway publication-title: Int J Nanomedicine – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 14 article-title: A new nanocomposite copolymer based on functionalised graphene oxide for development of heart valves publication-title: Sci Rep – volume: 183 start-page: 1818 year: 2021 end-page: 1850 article-title: Chitosan‐based blends for biomedical applications publication-title: Int J Biol Macromol – volume: 44 start-page: 1100 issue: 6 year: 2006 end-page: 1105 article-title: Effects of fullerenes and single‐wall carbon nanotubes on murine and human macrophages publication-title: Carbon – volume: 10 start-page: 1078 issue: 10 year: 2018 article-title: Incorporation of conductive materials into hydrogels for tissue engineering applications publication-title: Polymers – volume: 1850 start-page: 1158 issue: 6 year: 2015 end-page: 1168 article-title: Neural stem cell differentiation by electrical stimulation using a cross‐linked PEDOT substrate: expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering publication-title: Biochim Biophys Acta (BBA) Gen Subj – volume: 139 start-page: 179 year: 2022 end-page: 189 article-title: Electrically conductive 3D printed Ti3C2Tx MXene‐PEG composite constructs for cardiac tissue engineering publication-title: Acta Biomater – volume: 8 start-page: 102 issue: 3 year: 2016 article-title: Mussel‐inspired anisotropic nanocellulose and silver nanoparticle composite with improved mechanical properties, electrical conductivity and antibacterial activity publication-title: Polymers – volume: 21 start-page: 385 issue: 4 year: 2015 end-page: 393 article-title: Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering publication-title: Tissue Eng Part C Methods – volume: 13 start-page: 1005 issue: 7 year: 2021 article-title: A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds publication-title: Polymers (Basel) – volume: 11 start-page: 986 issue: 11 year: 2012 end-page: 994 article-title: Macroporous nanowire nanoelectronic scaffolds for synthetic tissues publication-title: Nat Mater – volume: 9 start-page: 448 issue: 9 year: 2019 article-title: Electrically conductive materials: opportunities and challenges in tissue engineering publication-title: Biomolecules – volume: 113 start-page: 164 issue: 2 year: 2006 end-page: 172 article-title: PLGA:poloxamer and PLGA:poloxamine blend nanostructures as carriers for nasal gene delivery publication-title: J Control Release – volume: 7 start-page: 82 issue: 1 year: 2016 article-title: Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015) publication-title: Stem Cell Res Ther – volume: 163 start-page: 1136 year: 2020 end-page: 1146 article-title: Conductive carbon nanofibers incorporated into collagen bio‐scaffold assists myocardial injury repair publication-title: Int J Biol Macromol – volume: 72 start-page: 577 issue: 2 year: 2001 end-page: 591 article-title: Tissue engineering: a 21st century solution to surgical reconstruction publication-title: Ann Thorac Surg – volume: 7 start-page: 17187 issue: 1 year: 2017 article-title: A novel electroactive agarose‐aniline Pentamer platform as a potential candidate for neural tissue engineering publication-title: Sci Rep – volume: 10 start-page: 1717 issue: 12 year: 2010 end-page: 1728 article-title: Decellularized matrices for tissue engineering publication-title: Expert Opin Biol Ther – volume: 11 start-page: 269 year: 2016 article-title: Fullerene mediates proliferation and cardiomyogenic differentiation of adipose‐derived stem cells via modulation of MAPK pathway and cardiac protein expression publication-title: Int J Nanomedicine – volume: 35 start-page: 3069 year: 2003 end-page: 3071 article-title: Challenges in heart transplantation: now and the future publication-title: Transplant Proc – volume: 115 start-page: 6279 issue: 19 year: 2011 end-page: 6288 article-title: Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near‐infrared irradiation publication-title: J Phys Chem B – volume: 30 start-page: 1725 issue: 9 year: 2009 end-page: 1731 article-title: Tubular micro‐scale multiwalled carbon nanotube‐based scaffolds for tissue engineering publication-title: Biomaterials – volume: 99 start-page: 82 year: 2018 end-page: 90 article-title: Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite publication-title: Phys E – volume: 187 start-page: 66 year: 2018 end-page: 84 article-title: Agarose‐based biomaterials for tissue engineering publication-title: Carbohydr Polym – volume: 9 start-page: 14677 issue: 17 year: 2017 end-page: 14690 article-title: Functionalized carbon nanotube and graphene oxide embedded electrically conductive hydrogel synergistically stimulates nerve cell differentiation publication-title: ACS Appl Mater Interfaces – volume: 97 start-page: 71 year: 2016 end-page: 77 article-title: Rolled graphene oxide foams as three‐dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells publication-title: Carbon – volume: 7 start-page: 1003 issue: 12 year: 2008 end-page: 1010 article-title: Accordion‐like honeycombs for tissue engineering of cardiac anisotropy publication-title: Nat Mater – volume: 113 start-page: 20214 issue: 47 year: 2009 end-page: 20220 article-title: Photocatalytic reduction of graphene oxide nanosheets on TiO thin film for photoinactivation of bacteria in solar light irradiation publication-title: J Phys Chem C – volume: 53 start-page: 7412 issue: 53 year: 2017 end-page: 7415 article-title: Micro‐and nano‐patterned conductive graphene–PEG hybrid scaffolds for cardiac tissue engineering publication-title: Chem Commun – volume: 8 start-page: 239 issue: 4 year: 2019 end-page: 248 article-title: A novel polycaprolactone/carbon nanofiber composite as a conductive neural guidance channel: An in vitro and in vivo study publication-title: Prog Biomater – volume: 25 start-page: 331 issue: 04 year: 2007 end-page: 339 article-title: Electroactive and nanostructured polymers as scaffold materials for neuronal and cardiac tissue engineering publication-title: Chin J Polym Sci – volume: 9 start-page: 5533 year: 2014 article-title: Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites publication-title: Int J Nanomedicine – volume: 80 start-page: 154 year: 2018 end-page: 168 article-title: Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post‐myocardial infarction in rats publication-title: Acta Biomater – volume: 310 start-page: 89 year: 2014 end-page: 128 article-title: New insights into the roles of Xin repeat‐containing proteins in cardiac development, function, and disease publication-title: Int Rev Cell Mol Biol – volume: 21 start-page: 2347 issue: 23 year: 2000 end-page: 2359 article-title: Biomaterial developments for bone tissue engineering publication-title: Biomaterials – volume: 62 start-page: 34 issue: 1 year: 2004 end-page: 42 article-title: Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro publication-title: Cardiovasc Res – volume: 22 start-page: 1053 issue: 4 year: 2011 end-page: 1062 article-title: Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle publication-title: J Mater Sci Mater Med – volume: 12 start-page: 241 issue: 2 year: 2012 end-page: 250 article-title: Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin publication-title: Macromol Biosci – volume: 119 year: 1920 article-title: Graphene‐based materials enhance cardiomyogenic and angiogenic differentiation capacity of human mesenchymal stem cells in vitro–focus on cardiac tissue regeneration publication-title: Mater Sci Eng C – volume: 12 start-page: 4346 issue: 7 year: 2022 end-page: 4357 article-title: Sensitive immunosensing of α‐synuclein protein in human plasma samples using gold nanoparticles conjugated with graphene: an innovative immuno‐platform towards early stage identification of Parkinson's disease using point of care (POC) analysis publication-title: RSC Adv – volume: 6 start-page: 1121 issue: 6 year: 2006 end-page: 1125 article-title: Cellular toxicity of carbon‐based nanomaterials publication-title: Nano Lett – volume: 35 start-page: 7346 issue: 26 year: 2014 end-page: 7354 article-title: Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs publication-title: Biomaterials – volume: 7 start-page: 24296 issue: 43 year: 2015 end-page: 24311 article-title: Stimulation of wound healing by electroactive, antibacterial, and antioxidant polyurethane/siloxane dressing membranes: in vitro and in vivo evaluations publication-title: ACS Appl Mater Interfaces – volume: 224 year: 2019 article-title: An electroactive alginate hydrogel nanocomposite reinforced by functionalized graphite nanofilaments for neural tissue engineering publication-title: Carbohydr Polym – volume: 48 start-page: 509 issue: 2 year: 2010 end-page: 519 article-title: The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets publication-title: Carbon – volume: 133 start-page: e38 issue: 4 year: 2016 end-page: e360 article-title: Heart disease and stroke Statistics‐2016 update: a report from the American Heart Association publication-title: Circulation – year: 2017 – volume: 9 start-page: 167 year: 2014 article-title: 3D conductive nanocomposite scaffold for bone tissue engineering publication-title: Int J Nanomedicine – volume: 5 start-page: 15852 issue: 7, Part 3 year: 2018 end-page: 15860 article-title: Polyaniline in retrospect and prospect publication-title: Mater Today Proc – volume: 17 start-page: 1035 year: 2022 end-page: 1068 article-title: Cell‐seeded biomaterial scaffolds: the urgent need for unanswered accelerated angiogenesis publication-title: Int J Nanomedicine – volume: 7 start-page: 2369 issue: 3 year: 2013 end-page: 2380 article-title: Carbon‐nanotube‐embedded hydrogel sheets for engineering cardiac constructs and bioactuators publication-title: ACS Nano – volume: 6 start-page: 720 issue: 11 year: 2011 end-page: 725 article-title: Nanowired three‐dimensional cardiac patches publication-title: Nat Nanotechnol – volume: 516 start-page: 57 year: 2018 end-page: 66 article-title: A facile route to the synthesis of anilinic electroactive colloidal hydrogels for neural tissue engineering applications publication-title: J Colloid Interface Sci – volume: 33 start-page: 8017 issue: 32 year: 2012 end-page: 8025 article-title: Size‐dependent genotoxicity of graphene nanoplatelets in human stem cells publication-title: Biomaterials – ident: e_1_2_10_134_1 doi: 10.1007/s00774-010-0257-1 – ident: e_1_2_10_191_1 doi: 10.1016/j.actbio.2018.11.032 – ident: e_1_2_10_221_1 doi: 10.1016/j.matpr.2018.05.084 – ident: e_1_2_10_285_1 doi: 10.1021/bm100470q – ident: e_1_2_10_89_1 doi: 10.1039/d1ra06030a – ident: e_1_2_10_343_1 doi: 10.1021/acsnano.9b03050 – ident: e_1_2_10_32_1 doi: 10.1016/j.addr.2004.05.001 – ident: e_1_2_10_10_1 doi: 10.1016/j.jddst.2020.101879 – ident: e_1_2_10_261_1 doi: 10.1038/am.2013.79 – ident: e_1_2_10_266_1 doi: 10.1002/adhm.201200307 – ident: e_1_2_10_267_1 doi: 10.1016/j.carbon.2010.01.058 – ident: e_1_2_10_40_1 doi: 10.1089/ten.tea.2020.0341 – ident: e_1_2_10_277_1 doi: 10.1016/j.carbon.2018.05.068 – ident: e_1_2_10_324_1 doi: 10.1021/acsabm.8b00440 – ident: e_1_2_10_8_1 doi: 10.1016/j.msec.2019.109921 – ident: e_1_2_10_230_1 doi: 10.1016/j.actbio.2016.09.019 – ident: e_1_2_10_204_1 doi: 10.1016/j.biomaterials.2010.08.090 – ident: e_1_2_10_288_1 doi: 10.1007/s10527-015-9476-z – ident: e_1_2_10_348_1 doi: 10.1557/opl.2011.663 – ident: e_1_2_10_340_1 doi: 10.1002/jbm.b.34564 – ident: e_1_2_10_47_1 doi: 10.1016/j.carbpol.2020.116678 – ident: e_1_2_10_93_1 doi: 10.1088/2053-2571/aafb0cch4 – ident: e_1_2_10_113_1 doi: 10.1038/nrcardio.2016.207 – ident: e_1_2_10_72_1 doi: 10.1016/j.transproceed.2003.10.041 – ident: e_1_2_10_215_1 doi: 10.1016/j.msec.2018.12.100 – ident: e_1_2_10_176_1 doi: 10.1021/acsami.0c05732 – ident: e_1_2_10_319_1 doi: 10.1038/s41598-020-65786-4 – ident: e_1_2_10_235_1 doi: 10.1021/ja200297j – ident: e_1_2_10_174_1 doi: 10.1021/acs.nanolett.9b00472 – ident: e_1_2_10_224_1 doi: 10.2217/nnm-2017-0173 – ident: e_1_2_10_13_1 doi: 10.1038/nature17623 – ident: e_1_2_10_160_1 doi: 10.1002/jbm.a.32905 – ident: e_1_2_10_161_1 doi: 10.1039/C5RA01851J – ident: e_1_2_10_140_1 doi: 10.3390/cells9030682 – ident: e_1_2_10_41_1 doi: 10.1016/j.ijbiomac.2021.05.003 – ident: e_1_2_10_175_1 doi: 10.1021/nl201514a – ident: e_1_2_10_126_1 doi: 10.1016/j.msec.2014.06.004 – ident: e_1_2_10_310_1 doi: 10.1002/mame.201900187 – ident: e_1_2_10_79_1 doi: 10.1533/9780857096715.1.17 – ident: e_1_2_10_85_1 doi: 10.1016/j.jacc.2006.06.005 – ident: e_1_2_10_205_1 doi: 10.1016/j.compositesb.2018.01.028 – ident: e_1_2_10_117_1 doi: 10.1038/nnano.2011.160 – ident: e_1_2_10_269_1 doi: 10.1139/cjpp-2018-0225 – ident: e_1_2_10_114_1 doi: 10.1021/acsnano.7b01062 – ident: e_1_2_10_135_1 doi: 10.1016/j.carbpol.2019.115161 – ident: e_1_2_10_194_1 doi: 10.1016/j.molliq.2019.112021 – ident: e_1_2_10_284_1 doi: 10.1016/j.biomaterials.2008.12.031 – ident: e_1_2_10_234_1 doi: 10.1039/c2tx20035j – ident: e_1_2_10_95_1 doi: 10.1016/j.micromeso.2020.110115 – ident: e_1_2_10_75_1 doi: 10.1101/cshperspect.a015636 – ident: e_1_2_10_4_1 doi: 10.1146/annurev-med-102715-092331 – ident: e_1_2_10_106_1 doi: 10.1038/s41577-018-0098-z – ident: e_1_2_10_86_1 doi: 10.1038/nprot.2012.027 – ident: e_1_2_10_55_1 doi: 10.1161/CIR.0b013e3182009701 – ident: e_1_2_10_81_1 doi: 10.1016/j.biomaterials.2010.08.098 – ident: e_1_2_10_44_1 doi: 10.2217/nnm‐2020‐0353 – ident: e_1_2_10_66_1 doi: 10.1152/physrev.00012.2007 – ident: e_1_2_10_226_1 doi: 10.1016/j.biomaterials.2012.10.065 – ident: e_1_2_10_246_1 doi: 10.1002/mabi.200800005 – volume: 9 start-page: 401 issue: 11 year: 2019 ident: e_1_2_10_316_1 article-title: A novel graphene oxide polymer gel platform for cardiac tissue engineering application publication-title: Biotechniques – ident: e_1_2_10_268_1 doi: 10.1002/smll.200901934 – volume-title: Gray's Anatomy for Students year: 2009 ident: e_1_2_10_57_1 – ident: e_1_2_10_210_1 doi: 10.1016/j.actbio.2018.09.035 – ident: e_1_2_10_170_1 doi: 10.1007/s10856-012-4654-y – ident: e_1_2_10_181_1 doi: 10.3390/bioengineering6010017 – ident: e_1_2_10_218_1 doi: 10.1002/adma.201704235 – ident: e_1_2_10_167_1 doi: 10.1016/j.polymer.2016.11.012 – ident: e_1_2_10_83_1 doi: 10.1002/9783527689934.ch13 – ident: e_1_2_10_200_1 doi: 10.1002/pat.5054 – ident: e_1_2_10_271_1 doi: 10.1039/d0cc03061a – ident: e_1_2_10_289_1 doi: 10.1021/nl060162e – ident: e_1_2_10_233_1 doi: 10.1039/c3tx50060h – ident: e_1_2_10_306_1 doi: 10.1002/jbm.a.36481 – ident: e_1_2_10_321_1 doi: 10.1038/s41598-020-65786-4 – volume: 13 start-page: 612 issue: 6 year: 2018 ident: e_1_2_10_118_1 article-title: Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke publication-title: Int J Stroke – ident: e_1_2_10_199_1 doi: 10.1021/nn103521g – ident: e_1_2_10_302_1 doi: 10.1016/j.bbrc.2014.08.062 – ident: e_1_2_10_150_1 doi: 10.1016/B978-0-12-387738-3.00030-5 – ident: e_1_2_10_168_1 doi: 10.1002/adfm.201102373 – ident: e_1_2_10_341_1 doi: 10.1161/CIRCEP.118.006920 – ident: e_1_2_10_130_1 doi: 10.3390/biom9090448 – volume: 12 start-page: 1 issue: 1 year: 2021 ident: e_1_2_10_110_1 article-title: Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair publication-title: Nat Commun – ident: e_1_2_10_311_1 doi: 10.1038/s41598-020-62122-8 – ident: e_1_2_10_354_1 doi: 10.1016/j.ijbiomac.2020.06.259 – ident: e_1_2_10_129_1 doi: 10.1002/adma.201500411 – ident: e_1_2_10_63_1 doi: 10.1557/mrs2010.528 – ident: e_1_2_10_91_1 doi: 10.2147/IJN.S245936 – ident: e_1_2_10_177_1 doi: 10.1088/1361-6528/aba142 – ident: e_1_2_10_195_1 doi: 10.1016/j.actbio.2011.04.028 – ident: e_1_2_10_53_1 doi: 10.1161/CIRCRESAHA.116.309115 – volume-title: Anatomy & Physiology year: 2020 ident: e_1_2_10_149_1 – volume: 7 start-page: 5653 year: 2012 ident: e_1_2_10_158_1 article-title: Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application publication-title: Int J Nanomedicine – ident: e_1_2_10_317_1 doi: 10.1002/adfm.201500365 – ident: e_1_2_10_294_1 doi: 10.1155/2013/751913 – year: 2020 ident: e_1_2_10_141_1 article-title: Synergistic effects of conductivity and cell‐imprinted topography of chitosan‐polyaniline based scaffolds for neural differentiation of adipose‐derived stem cells publication-title: bioRxiv – ident: e_1_2_10_50_1 doi: 10.1002/jmr.2927 – ident: e_1_2_10_92_1 doi: 10.1177/0885328219839037 – ident: e_1_2_10_223_1 doi: 10.1021/am404696u – ident: e_1_2_10_290_1 doi: 10.1016/S0960-894X(00)00159-1 – ident: e_1_2_10_128_1 doi: 10.1002/jbm.a.35080 – ident: e_1_2_10_15_1 doi: 10.1039/D0GC02719G – ident: e_1_2_10_69_1 doi: 10.1016/j.drudis.2020.02.005 – volume: 9 start-page: 5533 year: 2014 ident: e_1_2_10_351_1 article-title: Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites publication-title: Int J Nanomedicine – ident: e_1_2_10_68_1 doi: 10.1016/j.jconrel.2020.07.028 – ident: e_1_2_10_28_1 doi: 10.1021/acsami.1c01460 – ident: e_1_2_10_183_1 doi: 10.1016/j.carbpol.2019.115112 – ident: e_1_2_10_336_1 doi: 10.2147/IJN.S128030 – ident: e_1_2_10_30_1 doi: 10.1016/S1369-7021(11)70058-X – ident: e_1_2_10_213_1 doi: 10.1152/ajpheart.00610.2003 – ident: e_1_2_10_96_1 doi: 10.1021/acssuschemeng.1c00781 – ident: e_1_2_10_142_1 doi: 10.1002/jbm.a.37031 – ident: e_1_2_10_193_1 doi: 10.1007/s40204-019-00121-3 – ident: e_1_2_10_222_1 doi: 10.1016/j.jconrel.2006.03.017 – ident: e_1_2_10_23_1 doi: 10.1016/j.jhazmat.2021.127130 – ident: e_1_2_10_228_1 doi: 10.1016/j.biomaterials.2018.01.021 – ident: e_1_2_10_52_1 doi: 10.1016/j.scitotenv.2022.153902 – ident: e_1_2_10_100_1 doi: 10.1039/C8TB01116H – ident: e_1_2_10_146_1 doi: 10.1016/j.cardiores.2003.12.022 – ident: e_1_2_10_281_1 doi: 10.1016/j.physe.2018.01.025 – ident: e_1_2_10_6_1 doi: 10.1007/978-981-16-2271-7_5 – ident: e_1_2_10_159_1 doi: 10.1016/j.msec.2020.111344 – ident: e_1_2_10_287_1 doi: 10.1016/j.matdes.2009.11.058 – ident: e_1_2_10_90_1 doi: 10.1016/j.biomaterials.2016.09.003 – ident: e_1_2_10_105_1 doi: 10.1002/jbm.a.35447 – ident: e_1_2_10_260_1 doi: 10.1039/C5NR00520E – ident: e_1_2_10_338_1 doi: 10.1007/s10544-017-0184-1 – ident: e_1_2_10_353_1 doi: 10.1007/s12010-019-03135-6 – ident: e_1_2_10_352_1 doi: 10.1002/jbm.a.34400 – ident: e_1_2_10_18_1 doi: 10.1016/S0142-9612(00)00102-2 – ident: e_1_2_10_308_1 doi: 10.1021/acsbiomaterials.0c00266 – ident: e_1_2_10_7_1 doi: 10.1002/pat.4579 – ident: e_1_2_10_88_1 doi: 10.1161/CIRCRESAHA.113.300219 – ident: e_1_2_10_148_1 doi: 10.1016/j.actbio.2014.02.023 – ident: e_1_2_10_24_1 doi: 10.1016/j.carbon.2013.09.015 – ident: e_1_2_10_201_1 doi: 10.1002/jbm.a.37048 – ident: e_1_2_10_293_1 doi: 10.1021/jp801379g – ident: e_1_2_10_17_1 doi: 10.3389/fbioe.2020.529244 – ident: e_1_2_10_251_1 doi: 10.1117/12.2084165 – ident: e_1_2_10_22_1 doi: 10.1016/j.carbon.2013.03.010 – volume: 106 start-page: 62 issue: 1 year: 2016 ident: e_1_2_10_67_1 article-title: Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment publication-title: Arq Bras Cardiol – ident: e_1_2_10_46_1 doi: 10.1007/s40097‐022‐00491‐4 – ident: e_1_2_10_122_1 doi: 10.1016/j.apmt.2020.100784 – ident: e_1_2_10_145_1 doi: 10.1016/j.addr.2019.06.001 – ident: e_1_2_10_225_1 doi: 10.1021/acsami.6b15271 – ident: e_1_2_10_45_1 doi: 10.3390/polym13071105 – ident: e_1_2_10_54_1 doi: 10.1161/CIR.0000000000000558 – ident: e_1_2_10_139_1 doi: 10.1038/s41598-017-17486-9 – volume: 1417 year: 2012 ident: e_1_2_10_349_1 article-title: Improved cardiomyocyte functions of carbon nanofiber cardiac patches publication-title: MRS Online Proc Lib Arch doi: 10.1557/opl.2012.763 – ident: e_1_2_10_262_1 – ident: e_1_2_10_279_1 doi: 10.1016/j.msec.2020.111614 – ident: e_1_2_10_82_1 doi: 10.1016/B978-0-12-802734-9.00029-9 – ident: e_1_2_10_157_1 doi: 10.1021/nn305559j – ident: e_1_2_10_318_1 doi: 10.1038/s41427-018-0092-8 – ident: e_1_2_10_190_1 doi: 10.1002/smll.201600178 – ident: e_1_2_10_34_1 doi: 10.1007/978-981-10-2723-9_2 – ident: e_1_2_10_178_1 doi: 10.4172/2161-0525.1000384 – ident: e_1_2_10_307_1 doi: 10.1021/acsbiomaterials.0c00266 – ident: e_1_2_10_314_1 doi: 10.1002/adfm.201401300 – ident: e_1_2_10_187_1 doi: 10.1021/am100293r – ident: e_1_2_10_259_1 doi: 10.1016/j.carbon.2015.08.017 – ident: e_1_2_10_180_1 doi: 10.3390/polym8030102 – ident: e_1_2_10_189_1 doi: 10.1002/jbm.a.36555 – ident: e_1_2_10_59_1 doi: 10.1093/eurheartj/ehy462 – ident: e_1_2_10_62_1 doi: 10.1126/science.aam5894 – ident: e_1_2_10_231_1 doi: 10.1021/acsami.7b10583 – ident: e_1_2_10_295_1 doi: 10.1021/acsnano.7b00221 – ident: e_1_2_10_136_1 doi: 10.1016/j.jcis.2017.12.062 – ident: e_1_2_10_333_1 doi: 10.1016/j.biomaterials.2015.03.030 – ident: e_1_2_10_143_1 doi: 10.1016/j.bbagen.2015.01.020 – ident: e_1_2_10_20_1 doi: 10.1007/s40820-021-00697-1 – volume: 17 start-page: 735 issue: 3 year: 2014 ident: e_1_2_10_31_1 article-title: Bringing regenerating tissues to life: the importance of angiogenesis in tissue engineering publication-title: Angiogenesis – ident: e_1_2_10_121_1 doi: 10.1016/j.jcis.2018.01.044 – ident: e_1_2_10_280_1 doi: 10.1063/1.4775582 – ident: e_1_2_10_323_1 doi: 10.1088/0957-4484/17/2/008 – ident: e_1_2_10_248_1 doi: 10.1016/j.biomaterials.2016.02.010 – volume: 4 issue: 2 year: 2017 ident: e_1_2_10_166_1 article-title: Bio‐conductive scaffold based on agarose‐polyaniline for tissue engineering publication-title: J Skin Stem Cell – ident: e_1_2_10_242_1 doi: 10.1142/S0256767907002199 – ident: e_1_2_10_217_1 doi: 10.1021/acsami.8b18844 – ident: e_1_2_10_164_1 doi: 10.1016/j.msec.2014.07.061 – ident: e_1_2_10_209_1 doi: 10.1016/j.carbpol.2020.116277 – ident: e_1_2_10_232_1 doi: 10.1021/bm4018963 – ident: e_1_2_10_346_1 doi: 10.2147/nano.2006.1.1.15 – ident: e_1_2_10_347_1 doi: 10.1039/d0py00787k – ident: e_1_2_10_331_1 doi: 10.1002/jbm.a.30386 – ident: e_1_2_10_249_1 doi: 10.1016/j.biologicals.2017.01.007 – ident: e_1_2_10_111_1 doi: 10.1038/s41467-020-19756-z – ident: e_1_2_10_12_1 doi: 10.1016/B978-0-12-818791-3.00013-9 – ident: e_1_2_10_61_1 doi: 10.1021/bm401679q – ident: e_1_2_10_19_1 doi: 10.1039/C4TB00668B – ident: e_1_2_10_84_1 doi: 10.1186/s13287-016-0341-0 – volume: 118 start-page: 368 year: 2016 ident: e_1_2_10_60_1 article-title: Recounting cardiac cellular composition publication-title: Am Heart Assoc – ident: e_1_2_10_120_1 doi: 10.1038/nmat3404 – ident: e_1_2_10_238_1 doi: 10.1002/adfm.201908612 – ident: e_1_2_10_274_1 doi: 10.1016/j.jare.2019.03.011 – ident: e_1_2_10_328_1 doi: 10.1016/j.ijbiomac.2021.03.001 – ident: e_1_2_10_208_1 doi: 10.1016/j.biomaterials.2006.12.007 – ident: e_1_2_10_103_1 doi: 10.1039/C7RA03780E – ident: e_1_2_10_237_1 doi: 10.1126/sciadv.1601007 – ident: e_1_2_10_283_1 doi: 10.1016/B978-0-12-813355-2.00005-3 – ident: e_1_2_10_33_1 doi: 10.1098/rsif.2011.0301 – ident: e_1_2_10_78_1 doi: 10.1007/978-1-62703-511-8_1 – ident: e_1_2_10_179_1 doi: 10.1016/j.carbon.2011.02.004 – ident: e_1_2_10_216_1 doi: 10.1021/acsami.5b08376 – ident: e_1_2_10_335_1 doi: 10.1016/j.actbio.2016.10.025 – ident: e_1_2_10_162_1 doi: 10.1021/bm060220q – ident: e_1_2_10_116_1 doi: 10.1016/j.biotechadv.2019.02.009 – ident: e_1_2_10_80_1 doi: 10.1021/nn507149w – ident: e_1_2_10_112_1 doi: 10.1038/s41467-019-10555-9 – ident: e_1_2_10_169_1 doi: 10.1002/jbm.a.35408 – ident: e_1_2_10_171_1 doi: 10.1016/j.msec.2016.02.056 – ident: e_1_2_10_243_1 doi: 10.1016/j.cej.2019.02.072 – volume-title: Guyton and Hall Textbook of Medical Physiology (e‐Book) year: 2020 ident: e_1_2_10_151_1 – ident: e_1_2_10_58_1 doi: 10.1161/CIR.0000000000000350 – ident: e_1_2_10_108_1 doi: 10.1038/s41467-019-09851-1 – ident: e_1_2_10_203_1 doi: 10.1016/j.diamond.2013.10.012 – ident: e_1_2_10_291_1 doi: 10.1021/cr500304f – ident: e_1_2_10_325_1 doi: 10.1002/mabi.201600250 – ident: e_1_2_10_101_1 doi: 10.1039/C7CC01988B – ident: e_1_2_10_37_1 doi: 10.1039/C6TB00152A – volume: 3 start-page: 477 issue: 4 year: 2008 ident: e_1_2_10_133_1 article-title: Greater osteoblast proliferation on anodized nanotubular titanium upon electrical stimulation publication-title: Int J Nanomedicine – ident: e_1_2_10_296_1 doi: 10.1039/c2jm34690g – ident: e_1_2_10_71_1 doi: 10.1016/B978-0-08-102985-5.00009-7 – ident: e_1_2_10_115_1 doi: 10.1016/j.apmt.2020.100656 – ident: e_1_2_10_275_1 doi: 10.1002/smll.201203106 – ident: e_1_2_10_27_1 doi: 10.1016/j.carbon.2015.06.079 – ident: e_1_2_10_236_1 doi: 10.1016/j.actbio.2020.12.033 – ident: e_1_2_10_102_1 doi: 10.1016/j.actbio.2017.06.036 – ident: e_1_2_10_344_1 doi: 10.1002/marc.201600498 – ident: e_1_2_10_207_1 doi: 10.1021/acsbiomaterials.8b00658 – volume: 24 start-page: 2101 issue: 6 year: 2014 ident: e_1_2_10_350_1 article-title: Growth characteristics of different heart cells on novel nanopatch substrate during electrical stimulation publication-title: Biomed Mater Eng – ident: e_1_2_10_39_1 doi: 10.1016/j.eurpolymj.2019.05.024 – ident: e_1_2_10_337_1 doi: 10.1016/j.actbio.2015.11.047 – ident: e_1_2_10_127_1 doi: 10.1016/j.molliq.2020.113447 – ident: e_1_2_10_253_1 doi: 10.1002/bem.20000 – ident: e_1_2_10_11_1 doi: 10.1016/j.nantod.2020.100914 – ident: e_1_2_10_182_1 doi: 10.3390/polym10101078 – ident: e_1_2_10_239_1 doi: 10.1111/jocd.12730 – ident: e_1_2_10_98_1 doi: 10.1038/nmat2316 – ident: e_1_2_10_5_1 doi: 10.1007/978-981-16-2271-7_7 – ident: e_1_2_10_332_1 doi: 10.1016/j.actbio.2008.07.005 – ident: e_1_2_10_263_1 doi: 10.1016/j.trac.2021.116279 – ident: e_1_2_10_219_1 doi: 10.1021/acs.biomac.8b00276 – ident: e_1_2_10_74_1 doi: 10.1016/j.biomaterials.2009.06.045 – ident: e_1_2_10_137_1 doi: 10.1016/j.ijpharm.2017.11.065 – ident: e_1_2_10_165_1 doi: 10.1007/s10856-011-4259-x – ident: e_1_2_10_282_1 doi: 10.1021/jp906325q – volume: 3 start-page: 1 issue: 1 year: 2013 ident: e_1_2_10_186_1 article-title: Three‐dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells publication-title: Sci Rep – ident: e_1_2_10_312_1 doi: 10.7150/thno.25504 – ident: e_1_2_10_327_1 doi: 10.1016/j.biomaterials.2014.05.014 – ident: e_1_2_10_265_1 doi: 10.1021/acs.nanolett.6b02175 – ident: e_1_2_10_270_1 doi: 10.1039/d1ra06437a – ident: e_1_2_10_35_1 doi: 10.1016/S0003-4975(01)02820-X – ident: e_1_2_10_247_1 doi: 10.1089/ten.tea.2008.0689 – ident: e_1_2_10_3_1 doi: 10.1016/j.trac.2021.116455 – ident: e_1_2_10_309_1 doi: 10.1007/s12010-019-02967-6 – ident: e_1_2_10_64_1 doi: 10.1093/cvr/cvn335 – ident: e_1_2_10_198_1 doi: 10.2217/nnm.15.196 – ident: e_1_2_10_184_1 doi: 10.1039/c4ra01550a – ident: e_1_2_10_250_1 doi: 10.1016/j.actbio.2015.09.025 – ident: e_1_2_10_77_1 doi: 10.1016/j.mser.2007.08.001 – ident: e_1_2_10_297_1 doi: 10.1038/nnano.2011.209 – ident: e_1_2_10_320_1 doi: 10.1016/j.msec.2018.12.122 – volume: 31 issue: 1 year: 2017 ident: e_1_2_10_104_1 article-title: Conductive gel polymers as an extracellular matrix mimic and cell vehicle for cardiac tissue engineering publication-title: FASEB J – ident: e_1_2_10_97_1 doi: 10.1016/j.actbio.2016.12.009 – ident: e_1_2_10_313_1 doi: 10.1002/adma.201301082 – ident: e_1_2_10_147_1 doi: 10.1016/j.actbio.2016.05.027 – ident: e_1_2_10_227_1 doi: 10.1021/acsami.6b04911 – ident: e_1_2_10_202_1 doi: 10.1016/j.jphotobiol.2019.111680 – ident: e_1_2_10_272_1 doi: 10.1002/jmr.2928 – ident: e_1_2_10_56_1 doi: 10.1016/S0140-6736(14)61682-2 – ident: e_1_2_10_152_1 doi: 10.1016/B978-0-12-802002-9.00002-9 – volume: 9 start-page: 167 year: 2014 ident: e_1_2_10_132_1 article-title: 3D conductive nanocomposite scaffold for bone tissue engineering publication-title: Int J Nanomedicine – ident: e_1_2_10_273_1 doi: 10.1039/B917103G – ident: e_1_2_10_329_1 doi: 10.1016/j.ijbiomac.2019.08.046 – ident: e_1_2_10_255_1 doi: 10.1016/j.biomaterials.2012.07.040 – ident: e_1_2_10_87_1 doi: 10.1002/9783527689934 – ident: e_1_2_10_125_1 doi: 10.1002/term.383 – ident: e_1_2_10_212_1 doi: 10.1177/0885328219839037 – ident: e_1_2_10_342_1 doi: 10.1039/C9BM00434C – ident: e_1_2_10_94_1 doi: 10.1007/s10856-019-6319-6 – ident: e_1_2_10_278_1 doi: 10.1063/1.4827811 – ident: e_1_2_10_315_1 doi: 10.1016/j.carbon.2017.09.071 – ident: e_1_2_10_300_1 doi: 10.1515/bmc-2020-0017 – ident: e_1_2_10_99_1 doi: 10.1016/j.actbio.2018.09.013 – ident: e_1_2_10_301_1 doi: 10.1002/adhm.201300177 – ident: e_1_2_10_43_1 doi: 10.1021/acsabm.1c00932 – ident: e_1_2_10_109_1 doi: 10.1038/s41586-018-0765-z – ident: e_1_2_10_185_1 doi: 10.1016/j.carbon.2016.10.042 – ident: e_1_2_10_276_1 doi: 10.1016/j.colsurfb.2019.110712 – ident: e_1_2_10_155_1 doi: 10.14814/phy2.13860 – ident: e_1_2_10_26_1 doi: 10.1016/j.biomaterials.2019.119707 – ident: e_1_2_10_154_1 doi: 10.1016/B978-0-12-800180-6.00003-7 – ident: e_1_2_10_172_1 doi: 10.1002/term.348 – ident: e_1_2_10_264_1 doi: 10.1016/j.carbon.2009.09.069 – ident: e_1_2_10_305_1 doi: 10.1021/acsami.7b08777 – ident: e_1_2_10_252_1 doi: 10.1002/mabi.201100227 – ident: e_1_2_10_42_1 doi: 10.1016/j.colsurfb.2014.12.027 – ident: e_1_2_10_14_1 doi: 10.1016/j.biocel.2003.12.003 – ident: e_1_2_10_73_1 doi: 10.1001/jama.285.5.573 – ident: e_1_2_10_229_1 doi: 10.1002/jbm.a.35612 – ident: e_1_2_10_292_1 doi: 10.1016/j.carbon.2005.11.009 – ident: e_1_2_10_173_1 doi: 10.1021/nl502673m – ident: e_1_2_10_241_1 doi: 10.1163/156856206774879180 – ident: e_1_2_10_244_1 doi: 10.1016/j.hrthm.2009.02.023 – ident: e_1_2_10_286_1 doi: 10.1016/j.addr.2009.07.010 – ident: e_1_2_10_326_1 doi: 10.1002/jemt.23282 – ident: e_1_2_10_192_1 doi: 10.1039/c0jm01852j – ident: e_1_2_10_51_1 doi: 10.1016/j.microc.2021.106610 – ident: e_1_2_10_214_1 doi: 10.1016/j.msec.2018.08.054 – ident: e_1_2_10_240_1 doi: 10.1080/09205063.2017.1340044 – start-page: 815 volume-title: Development of Conductive Polymer with Carbon Nanotubes for Regenerative Medicine Applications, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology year: 2010 ident: e_1_2_10_123_1 – ident: e_1_2_10_2_1 doi: 10.1016/j.mtchem.2022.100780 – ident: e_1_2_10_256_1 doi: 10.1016/j.carbon.2012.11.058 – ident: e_1_2_10_16_1 doi: 10.1016/S0140-6736(99)90247-7 – ident: e_1_2_10_254_1 doi: 10.1016/j.cap.2003.11.044 – ident: e_1_2_10_36_1 doi: 10.3390/polym3020740 – ident: e_1_2_10_131_1 doi: 10.1002/jbm.a.36282 – ident: e_1_2_10_21_1 doi: 10.1517/14712598.2010.534079 – ident: e_1_2_10_48_1 doi: 10.2147/ijn.s353062 – ident: e_1_2_10_65_1 doi: 10.1007/978-3-031-02584-6 – ident: e_1_2_10_257_1 doi: 10.1021/jp200686k – ident: e_1_2_10_322_1 doi: 10.1002/pat.4765 – ident: e_1_2_10_206_1 doi: 10.1021/nn401196a – ident: e_1_2_10_76_1 doi: 10.1098/rstb.2007.2121 – ident: e_1_2_10_156_1 doi: 10.1016/j.biomaterials.2017.01.012 – start-page: 4201 volume-title: Three dimensional graphene scaffold for cardiac tissue engineering and in‐situ electrical recording. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) year: 2016 ident: e_1_2_10_304_1 – ident: e_1_2_10_138_1 doi: 10.1021/acsami.7b02072 – ident: e_1_2_10_345_1 doi: 10.1002/pola.28430 – start-page: 1 year: 2021 ident: e_1_2_10_29_1 article-title: Calcium‐based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery publication-title: J Nanostruct Chem – ident: e_1_2_10_197_1 doi: 10.1039/C8BM00553B – ident: e_1_2_10_70_1 doi: 10.1016/B978-0-08-102985-5.00024-3 – ident: e_1_2_10_334_1 doi: 10.2147/IJN.S114357 – ident: e_1_2_10_124_1 doi: 10.1016/j.tibtech.2019.07.002 – ident: e_1_2_10_245_1 doi: 10.1016/j.biomaterials.2005.11.037 – ident: e_1_2_10_211_1 doi: 10.1016/j.actbio.2018.03.042 – ident: e_1_2_10_339_1 doi: 10.1002/adma.201702713 – ident: e_1_2_10_303_1 doi: 10.1039/C5NR07059G – ident: e_1_2_10_299_1 doi: 10.1007/s10059-013-0277-5 – ident: e_1_2_10_330_1 doi: 10.1002/jbm.a.30315 – ident: e_1_2_10_196_1 doi: 10.1021/nl802859a – ident: e_1_2_10_258_1 doi: 10.1039/c4ra01047g – ident: e_1_2_10_107_1 doi: 10.1038/nrcardio.2017.57 – ident: e_1_2_10_119_1 doi: 10.1002/adfm.201800618 – ident: e_1_2_10_9_1 doi: 10.1038/s41598-019-42633-9 – ident: e_1_2_10_25_1 doi: 10.1039/c3nr02161k – ident: e_1_2_10_153_1 doi: 10.1016/B978-0-12-381361-9.00010-X – volume: 5 start-page: 229 issue: 2 year: 2019 ident: e_1_2_10_163_1 article-title: Conductive collagen/polypyrrole‐b‐polycaprolactone hydrogel for bioprinting of neural tissue constructs publication-title: Int J Bioprint – ident: e_1_2_10_298_1 doi: 10.1016/j.mtchem.2020.100250 – ident: e_1_2_10_49_1 doi: 10.1021/acsabm.1c01311 – volume: 4 start-page: 1558 issue: 5 year: 2018 ident: e_1_2_10_220_1 article-title: Electroconductive gelatin Methacryloyl‐PEDOT:PSS composite hydrogels: design, synthesis, and properties publication-title: ACS Biomater Sci Eng – ident: e_1_2_10_38_1 doi: 10.1016/j.carbpol.2018.01.060 – ident: e_1_2_10_144_1 doi: 10.1089/ten.tec.2014.0338 – ident: e_1_2_10_188_1 doi: 10.1039/c3tb21085e |
| SSID | ssj0001613384 |
| Score | 2.506307 |
| SecondaryResourceType | review_article |
| Snippet | A proper self‐regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders... A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders... Abstract A proper self‐regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e10347 |
| SubjectTerms | Atherosclerosis Biocompatibility Biomedical materials Carbon Carbon fibers Carbon nanotubes carbon‐based biomaterials cardiac tissue engineering Cardiovascular disease Catheters Conducting polymers Congenital diseases Coronary vessels Electrical resistivity Extracellular matrix Graphene graphene oxide Heart Literature reviews Mechanical properties Nanofibers Nanomaterials Nanoparticles Polymers Review scaffolds stem cells Substrates Surgical implants Tissue engineering Toxicity Vein & artery diseases |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS90wFD4MX9wexubm1k2log86KGZpmqSPKooI-qQg7CEkacIcd6m4exm-7SfsN-6X7CSp3b1M3MvoS9ocyiHnS_IlTb8DsI3OSeNdW8nW04pxUleGGo493ulaeN5YF7cGzs75ySU7vWqu5lJ9xTNhWR44N9yepwJJvReNc5Ihm8fL-I7oqDRlRO3j6EtkO7eY-pJ5DK692KhHSvfM9CuNf5jHPCpzM1AS6n-IXf59SHJ5Fm703Xc9mSwS2TQTHb-A5wOFLPez6y_hiQsr8GxOWPAVfDpK2W1iACZ3JS55o6orjmul1bemD79-_IyzV1fumOt-F--CDj1S14zGEnlsNETk2HKaAlO6P29_DZfHRxeHJ9WQRqGyyIZExZjzRpKmk5pY2wjdcutZg7wBqQHrkHEQybqP1AnRepy-jXbIATXBGu9qLK7CUuiDewulQ0bQUY08qeuYkd4wZqw0hjuJ0TGkgN37plV20BiPqS4mKqsjUxXDoFIYCtgabW-yssaDVgcxQqNFVMNODxAjasCI-hdGCli7j68auug3RQVvBI1aQgVsjtXYueIXEx1cP0s2UsYVoyzgTYbD6EnNuWToYwFiASgLri7WhOvPScC7lYwS3hawPULq0Sb4kND2iIk6uDijqfTuf7TXe3hKkcvlnaY1WJreztw6cq-p2Ujd7DfppS3i priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fa9RAEB_q9UH7IP5vtErEPlghNG42u5sHEU-uFKGHSAsFH8JudrcWzuQ875C--RH8jH4SZza5XA_LkZckO4RJZmb3N5vd3wDso3LKeFckqvAs4SLNEsOMwIh3OpNe5JWjqYGTsTg-45_O8_MtGC_3wtCyymWfGDpq21Q0R37IpMglI-qX99MfCVWNor-ryxIauiutYN8FirFbsM2IGWsA28PR-POX1ayLoJyM9zyl7NDMvzPaeU71Va6NTIHA_ybU-f_iyduLeqqvfunJZB3ghhHq6B7c7aBl_KH1hfuw5eoHsHONcPAhfB2FqjdkmMlVjKkwsb1ifxdXemaa-u_vPzSq2fi1uWwO8KrWdYOQtvXSGPEtCaJHVfE8GCx2q6c_grOj0enH46Qrr5BUiJJkwrnzRqW5VTqtqlzqQlSe54gnEDJwi0gkVdy-ZU7KwuOwbrRDbKhTbPEuw9PHMKib2u1C7BApWKYRP1nLjfKGc1MpY4RTTnGTRnCw_LRl1XGPUwmMSdmyJrOSzFAGM0TwqpedtowbN0oNyUK9BLFkhxvN7KLsgq70TGJC6GXuUAvMBPEw3qaaWMqMzHwEe0v7ll3o_ixXjhbBy74Zg47-pOjaNYsgoxRlkiqCJ6079JpkQiiOOkYg1xxlTdX1lvryWyD2LhRnqSgi2O9dauMneBO8bYNIOTw9YeHs6eZXfQZ3GKK3dm5pDwbz2cI9R7Q1Ny-6EPoHTuUsYQ priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9UwFD_M-aA-iH9ndUrFPTihrDdNkxR82WRjCBMfNhj4EJI20cFdOu7uRfbmR_Az-kk8J-3tXXEMpC9pc1oOOeckv5MmvwBsoXLKeldlqvIs4yIvMsuswIh3ppBelLWjqYGjL-LwhH8-LU_X4ONyL0zHDzFMuFFkxP6aAtzYy50VaaidnzPaMs7lHbg7QSBD_s3419UMi6D8i8fT5RStcReTgZ-U7axeH41Ikbj_JrT576LJe4twYa5-mul0DGzjyHTwCB72kDLd7XzgMay58AQeXCMafArf9uNpN2SQ6VWKKTCxvGI_l9ZmZtvw59dvGs2a9L09a7fxLpjQIpTtvDNFXEuC6El1Oo-GSt3q68_g5GD_-NNh1h-rkNWIjmTGufNW5WWjTF7XpTSVqD0vEUcgVOANIpBc8WbCnJSVx-HcGoeY0ORY412BxeewHtrgXkDqECE0zCBuahpulbec21pZK5xyits8ge1l0-q65xynoy-mumNLZprMoKMZEng3yF50TBs3Su2RhQYJYseOD9rZd90Hm_ZMYiLoZelQC8wA8bK-yQ2xk1lZ-AQ2l_bVfcheaiZFKRlxCyXwdqjGYKM_KCa4dhFllKIMUiWw0bnDoEkhhOKoYwJy5CgjVcc14exHJPSuFGe5qBLYGlzq1ib4EL3tFhG9d3zEYunl_wi_gvsMMVw3w7QJ6_PZwr1GzDW3b2Jo_QW2myha priority: 102 providerName: Wiley-Blackwell |
| Title | Electrically conductive carbon‐based (bio)‐nanomaterials for cardiac tissue engineering |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbtm2.10347 https://www.ncbi.nlm.nih.gov/pubmed/36684103 https://www.proquest.com/docview/2765720556 https://www.proquest.com/docview/2768811488 https://pubmed.ncbi.nlm.nih.gov/PMC9842069 https://doi.org/10.1002/btm2.10347 https://doaj.org/article/f27287f75ee84495959bfd0a1018b73f |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2380-6761 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001613384 issn: 2380-6761 databaseCode: KQ8 dateStart: 20160301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2380-6761 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001613384 issn: 2380-6761 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2380-6761 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001613384 issn: 2380-6761 databaseCode: ABDBF dateStart: 20160301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2380-6761 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001613384 issn: 2380-6761 databaseCode: DIK dateStart: 20160101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2380-6761 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001613384 issn: 2380-6761 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Open Access) customDbUrl: eissn: 2380-6761 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001613384 issn: 2380-6761 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2380-6761 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001613384 issn: 2380-6761 databaseCode: BENPR dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2380-6761 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001613384 issn: 2380-6761 databaseCode: 8FG dateStart: 20160301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2380-6761 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001613384 issn: 2380-6761 databaseCode: AVUZU dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2380-6761 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001613384 issn: 2380-6761 databaseCode: 24P dateStart: 20160101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7a2gfYA3dGYFQB9sCQMjLHsZ3HdrRMSKsqtEpDPER2YouJkkwjFRpP_AR-I7-EYycNC0wVipSbT6ITn3Piz7fPALuonFBGJ4FIDAkoC6NAEcUw4rWMuGFxpm3TwPGUHc3pu9P4dAOer-bCdPvvyWtVfSF2Yjjlm9BnMeLtHvTn09nwg1s1Ttix6-yg5R29-kCnpHGE_NehyH8HQ95YFufy8ptcLLqA1ZU4k9twuNK1HmjyeX9Zqf3s-180jus_5g7cagCnP6w95C5s6OIebF2hIbwPH8duLRxrrsWljxVkywGLf0E_kxeqLH79-GnLutx_qc7KPbwqZFEi0K1910fUawXRzzK_cmb09Z-3P4D5ZHxyeBQ0iy4EGWInHlCqjRJhnAsZZlnMZcIyQ2NEGQgkaI74JBQ0PyCa88RgYa-kRsQoQ0wxOsLTh9ArykI_Al8jfsiJRFSV51QJoyhVmVCKaaEFVaEHeysDpVnDSG4XxlikNZcySW2GpS7DPHjRyp7XPBzXSo2snVsJy53tbqAV0iYUU0M4VhMNjzVqgfVD3JTJQ2m5yxSPjAc7Ky9Jm4D-mhLOYk4s85AHz9pkDEXbvyILXS6djBC2fik82K6dqtUkYkxQ1NED3nG3jqrdlOLsk6P7TgQlIUs82G0dc20WvHI-u0YkHZ0cE3f2-P_e-QRuEsR2dcvTDvSqi6V-ilisUgPYJHSGezF5O4D-cPRmNMHjaDydvR-49o1BE66_ATVtOCw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED9N28PgAfGfwIAghsSQogXHsZ2HCVHo1LG1QqiTJu0h2IkNk0pSulZT3_gIfCI-DJ-Es_Onq5j6NvUlrU_R1b7z_e4S_w5gG5UTyugkEIkhAWVhFCiiGHq8lhE3LM60LQ30B6x3TD-dxCdr8Kc5C2Nfq2z2RLdR52Vma-S7hLOYE0v98m78M7Bdo-zT1aaFhqxbK-R7jmKsPthxqOcXmMKd7x18xPV-Rch-d_ihF9RdBoIMwQIPKNVGiTDOhQyzLOYyYZmhMYZVjJw0x4AcCpq_JZrzxGB0U1IjRJIhjhgdxbYgiiFgg0Y0weRvo9MdfP6yqPIwmwPSlheV7KrpD2JPutt-LpcioWsYcBXK_f9lzc1ZMZbzCzkaLQNqFxH3b8OtGsr67yvbuwNrurgLNy8RHN6D067rsmMNYTT3MfW27LK4v_qZnKiy-Pvrt42iuf9anZU7-K2QRYkQuvIKH_G0FUQLzvypMxBfL-5-H46vZaIfwHpRFvoR-BqRSU4k4rU8p0oYRanKhFJMCy2oCj3YaaY2zWquc9tyY5RWLM0ktcuQumXw4GUrO64YPq6U6tgVaiUsK7f7oZx8S2snTw3hmIAaHmvUAjNP_CiTh9KyoikeGQ-2mvVN663iPF0Ytgcv2mF0cvvkRha6nDkZIWzmKjx4WJlDq0nEmKCoowd8yVCWVF0eKc6-OyLxRFASssSD7dakVk7BG2dtK0TSzrBP3NXj1X_1OWz2hv2j9OhgcPgEbhBEjlVdawvWp5OZfopIb6qe1e7kw9fr9uB_M0RnhQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB5VRQJ6QPyzUGARRaJIq2wdr-09IERpQ0tpxaGVKvWw2Ls2VAq7IU1U5cYj8Dw8Dk_CjHezaUSVW5VLEo8ix56fb2btbwDWcHLKOJtGKnUs4iLuRoYZgRZvdVc6keSWSgP7B2LniH86To6X4M_0Lgwdq5z6RO-oiyqnGnmHSZFIRtQvHdcci_iy1Xs3-BlRByl60jptp1GryJ6dnGP6dvZ2dwv3-hVjve3DDztR02EgyhEoyIhz64yKk0LpOM8TqVORO55gSMWoyQsMxrHixQazUqYOI5vRFuGRjnHE2W5CxVB0_9cksbjTLfXex1l9R1D2x1tGVNYxox-M7rhTJ5cLMdC3CrgM3_5_TPPGuBzoybnu9-ehtI-FvdtwqwGx4fta6-7Aki3vwsoFasN7cLLt--uQCvQnISbdxCuLnjXM9dBU5d9fvyl-FuFrc1qt46dSlxWC59oeQkTSJIi6m4cjrxqhnf36fTi6kmV-AMtlVdpHEFrEJAXTiNSKghvlDOcmV8YIq6ziJg5gfbq0Wd6wnFOzjX5W8zOzjLYh89sQwMtWdlBze1wqtUk71EoQH7f_ohp-yxrzzhyTmHo6mVicBeac-DKuiDXxoRnZdQGsTvc3a5zEWTZT6QBetMNo3vTMRpe2GnsZpShnVQE8rNWhnUlXCMVxjgHIOUWZm-r8SHn63VOIp4qzWKQBrLUqtXAJ3nhtWyCSbR7uM__u8eK_-hyuo91mn3cP9p7ATYaQsS5orcLyaDi2TxHijcwzb0shfL1q4_0HYTNlHw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE48H4ECgrQA0VKSR3Hdo5t1apCasWhKxVxsGzHFhWLU5WsUDnxE_iN_BLGTjY0UK1QLk48sSaemfjz6zPAOiontLNVJipHMsryItNEM4x4qwruWGlsGBo4PGIHU_rupDxZgZeLvTDj-XvyVrdfSNgYTvk1WGUl4u0JrE6P3m9_iKfGibB2nW0NvKOXXxi1NJGQ_yoU-e9iyOtzf6YuvqnZbAxYY4uzfxt2F7p2C00-b85bvWm-_0XjuPxj7sCtHnCm252H3IUV6-_BzUs0hPfh4148CyeYa3aRYgc5cMDiXzA16lw3_tePn6Gtq9PX-rTZwDuvfINAt_PdFFFvEEQ_M2kbzZjaP6U_gOn-3vHuQdYfupAZxE48o9Q6LfKyFio3puSqYsbRElEGAglaIz7JBa23iOW8ctjYa2URMaocc5wtMPkQJr7x9jGkFvFDTRSiqrqmWjhNqTZCa2aFFVTnCWwsDCRNz0geDsaYyY5LmchQYTJWWAKvBtmzjofjSqmdYOdBInBnxwdoBdmHonSEYzfR8dKiFtg_xEu7OleBu0zzwiWwtvAS2Qf0V0k4KzkJzEMJvBiyMRTD_IrytplHGSFC_1Ik8KhzqkGTgjFBUccE-MjdRqqOc_zpp0j3XQlKclYlsD445tIqeBN9domI3Dk-JDH15P_KfAo3CGK7buRpDSbt-dw-QyzW6ud9MP4GM8sybg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrically+conductive+carbon-based+%28bio%29-nanomaterials+for+cardiac+tissue+engineering&rft.jtitle=Bioengineering+%26+translational+medicine&rft.au=Jalilinejad%2C+Negin&rft.au=Rabiee%2C+Mohammad&rft.au=Baheiraei%2C+Nafiseh&rft.au=Ghahremanzadeh%2C+Ramin&rft.date=2023-01-01&rft.issn=2380-6761&rft.eissn=2380-6761&rft.volume=8&rft.issue=1&rft.spage=e10347&rft_id=info:doi/10.1002%2Fbtm2.10347&rft_id=info%3Apmid%2F36684103&rft.externalDocID=36684103 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-6761&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-6761&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-6761&client=summon |