Electrically conductive carbon‐based (bio)‐nanomaterials for cardiac tissue engineering

A proper self‐regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tis...

Full description

Saved in:
Bibliographic Details
Published inBioengineering & translational medicine Vol. 8; no. 1; pp. e10347 - n/a
Main Authors Jalilinejad, Negin, Rabiee, Mohammad, Baheiraei, Nafiseh, Ghahremanzadeh, Ramin, Salarian, Reza, Rabiee, Navid, Akhavan, Omid, Zarrintaj, Payam, Hejna, Aleksander, Saeb, Mohammad Reza, Zarrabi, Ali, Sharifi, Esmaeel, Yousefiasl, Satar, Zare, Ehsan Nazarzadeh
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2023
Wiley
Subjects
Online AccessGet full text
ISSN2380-6761
2380-6761
DOI10.1002/btm2.10347

Cover

Abstract A proper self‐regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon‐based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon‐based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon‐based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.
AbstractList A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon-based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon-based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon-based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon-based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.
A proper self‐regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon‐based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon‐based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon‐based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.
Abstract A proper self‐regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon‐based nanomaterials because of their exceptional variable functionality, conductivity, and mechanical properties. Electrically conductive biomaterials used as cell bearers provide the tissue with an appropriate microenvironment for the specific seeded cells as substrates for the sake of protecting cells in biological media against attacking mechanisms. Nevertheless, their advantages and shortcoming in view of cellular behavior, toxicity, and targeted delivery depend on the tissue in which they are implanted or being used as a scaffold. This review seeks to address, summarize, classify, conceptualize, and discuss the use of carbon‐based nanoparticles in cardiac tissue engineering emphasizing their conductivity. We considered electrical conductivity as a key affecting the regeneration of cells. Correspondingly, we reviewed conductive polymers used in tissue engineering and specifically in cardiac repair as key biomaterials with high efficiency. We comprehensively classified and discussed the advantages of using conductive biomaterials in cardiac tissue engineering. An overall review of the open literature on electroactive substrates including carbon‐based biomaterials over the last decade was provided, tabulated, and thoroughly discussed. The most commonly used conductive substrates comprising graphene, graphene oxide, carbon nanotubes, and carbon nanofibers in cardiac repair were studied.
Author Rabiee, Navid
Akhavan, Omid
Ghahremanzadeh, Ramin
Baheiraei, Nafiseh
Zare, Ehsan Nazarzadeh
Rabiee, Mohammad
Yousefiasl, Satar
Hejna, Aleksander
Zarrabi, Ali
Zarrintaj, Payam
Saeb, Mohammad Reza
Sharifi, Esmaeel
Salarian, Reza
Jalilinejad, Negin
AuthorAffiliation 2 Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
4 Biomedical Engineering Department Maziar University Royan Mazandaran Iran
5 Department of Physics Sharif University of Technology Tehran Iran
12 School of Dentistry Hamadan University of Medical Sciences Hamadan Iran
3 Nanobiotechnology Research Center Avicenna Research Institute, ACECR Tehran Iran
13 School of Chemistry Damghan University Damghan Iran
1 Biomaterial Group, Department of Biomedical Engineering Amirkabir University of Technology Tehran Iran
9 Department of Polymer Technology, Faculty of Chemistry Gdańsk University of Technology Gdańsk Poland
10 Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences Istinye University Istanbul Turkey
7 Department of Materials Science and Engineering Pohang University of Science and Technology (POSTECH), 77 Cheongam‐ro, Nam‐gu Pohang Gyeongbuk South Korea
11 Depart
AuthorAffiliation_xml – name: 1 Biomaterial Group, Department of Biomedical Engineering Amirkabir University of Technology Tehran Iran
– name: 7 Department of Materials Science and Engineering Pohang University of Science and Technology (POSTECH), 77 Cheongam‐ro, Nam‐gu Pohang Gyeongbuk South Korea
– name: 6 School of Engineering Macquarie University Sydney New South Wales Australia
– name: 2 Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
– name: 9 Department of Polymer Technology, Faculty of Chemistry Gdańsk University of Technology Gdańsk Poland
– name: 10 Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences Istinye University Istanbul Turkey
– name: 11 Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies Hamadan University of Medical Sciences Hamadan Iran
– name: 13 School of Chemistry Damghan University Damghan Iran
– name: 8 School of Chemical Engineering Oklahoma State University Stillwater Oklahoma USA
– name: 3 Nanobiotechnology Research Center Avicenna Research Institute, ACECR Tehran Iran
– name: 5 Department of Physics Sharif University of Technology Tehran Iran
– name: 12 School of Dentistry Hamadan University of Medical Sciences Hamadan Iran
– name: 4 Biomedical Engineering Department Maziar University Royan Mazandaran Iran
Author_xml – sequence: 1
  givenname: Negin
  surname: Jalilinejad
  fullname: Jalilinejad, Negin
  organization: Amirkabir University of Technology
– sequence: 2
  givenname: Mohammad
  surname: Rabiee
  fullname: Rabiee, Mohammad
  email: mrabiee@aut.ac.ir
  organization: Amirkabir University of Technology
– sequence: 3
  givenname: Nafiseh
  surname: Baheiraei
  fullname: Baheiraei, Nafiseh
  organization: Tarbiat Modares University
– sequence: 4
  givenname: Ramin
  surname: Ghahremanzadeh
  fullname: Ghahremanzadeh, Ramin
  organization: Avicenna Research Institute, ACECR
– sequence: 5
  givenname: Reza
  surname: Salarian
  fullname: Salarian, Reza
  email: r.salarian@maziar.ac.ir
  organization: Maziar University
– sequence: 6
  givenname: Navid
  orcidid: 0000-0002-6945-8541
  surname: Rabiee
  fullname: Rabiee, Navid
  email: nrabiee94@gmail.com, navid.rabiee@mq.edu.au, navid.rabiee@mq.edu.au
  organization: Pohang University of Science and Technology (POSTECH), 77 Cheongam‐ro, Nam‐gu
– sequence: 7
  givenname: Omid
  surname: Akhavan
  fullname: Akhavan, Omid
  organization: Sharif University of Technology
– sequence: 8
  givenname: Payam
  surname: Zarrintaj
  fullname: Zarrintaj, Payam
  organization: Oklahoma State University
– sequence: 9
  givenname: Aleksander
  surname: Hejna
  fullname: Hejna, Aleksander
  organization: Gdańsk University of Technology
– sequence: 10
  givenname: Mohammad Reza
  surname: Saeb
  fullname: Saeb, Mohammad Reza
  organization: Gdańsk University of Technology
– sequence: 11
  givenname: Ali
  orcidid: 0000-0003-0391-1769
  surname: Zarrabi
  fullname: Zarrabi, Ali
  organization: Istinye University
– sequence: 12
  givenname: Esmaeel
  orcidid: 0000-0003-3400-3106
  surname: Sharifi
  fullname: Sharifi, Esmaeel
  organization: Hamadan University of Medical Sciences
– sequence: 13
  givenname: Satar
  orcidid: 0000-0001-9876-6220
  surname: Yousefiasl
  fullname: Yousefiasl, Satar
  organization: Hamadan University of Medical Sciences
– sequence: 14
  givenname: Ehsan Nazarzadeh
  orcidid: 0000-0002-0446-4385
  surname: Zare
  fullname: Zare, Ehsan Nazarzadeh
  email: ehsan.nazarzadehzare@gmail.com
  organization: Damghan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36684103$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhSNUREvphgdAkdgU0IB_Y2eDBFWBSkVsyoqF5TjXg0cZe2o7rWbHI_CMPAlOU6q2QpUXvvb97tHx8dNqxwcPVfUco7cYIfKuy2tSKsrEo2qPUIkWjWjwzq16tzpIaYUQwg2mVLIn1S5tGsnK0F7143gAk6Mzehi2tQm-H012F1AbHbvg__z63ekEfX3YufCqnLz2Ya0zRKeHVNsQJ7B32tTZpTRCDX7pPJS-Xz6rHttCwcH1vl99_3R8dvRlcfrt88nRh9OF4ZiJBWNgO4l4LzUyhgvdNsYyjgUnhLK-oRxJ1mMCQrQWS95p4JRqVDoWaCn3q5NZtw96pTbRrXXcqqCduroIcal0zM4MoCwRRAorOIBkrOVldbZHGiMsO0Ft0Xoza41-o7eXJZUbQYzUlLiaEldXiRf6_Uxvxm4NvQGfox7uWLjb8e6nWoYL1UpGUNMWgcNrgRjOR0hZrV0yMAzaQxiTIqKREmMmZUFf3kNXYYy-BDtRXBDEeVOoF7cd3Vj59-MFQDNgYkgpglXGZZ1dmAy64f-vfH1v5MFI8AxfugG2D5Dq49lXMs_8BZ3l3S8
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2025_142050
crossref_primary_10_1016_j_smaim_2024_12_003
crossref_primary_10_1002_jbm_a_37871
crossref_primary_10_1016_j_nanoms_2024_11_004
crossref_primary_10_1002_smll_202406206
crossref_primary_10_2147_IJN_S419957
crossref_primary_10_1021_acsami_4c12245
crossref_primary_10_1021_acsnano_3c09699
crossref_primary_10_1002_mco2_425
crossref_primary_10_1007_s00339_022_06342_x
crossref_primary_10_1177_20412479241266953
crossref_primary_10_1016_j_cej_2024_156888
crossref_primary_10_1016_j_envres_2023_116933
crossref_primary_10_1002_smm2_1311
crossref_primary_10_1021_acsanm_4c04441
crossref_primary_10_1016_j_jconrel_2023_11_056
crossref_primary_10_1021_acsami_3c00216
crossref_primary_10_1002_pen_26057
crossref_primary_10_4103_mgmj_mgmj_76_24
crossref_primary_10_1088_2053_1591_ad9549
crossref_primary_10_1016_j_tibtech_2023_11_017
crossref_primary_10_1021_acspolymersau_3c00031
crossref_primary_10_1088_1361_6528_ad857d
crossref_primary_10_1186_s12951_024_02805_w
crossref_primary_10_1007_s00339_024_07436_4
crossref_primary_10_1080_09205063_2024_2399909
crossref_primary_10_1080_25740881_2025_2467264
crossref_primary_10_3390_nano13081417
crossref_primary_10_1016_j_mattod_2023_09_005
crossref_primary_10_3390_gels10110693
crossref_primary_10_1007_s00339_023_06801_z
crossref_primary_10_3390_gels10090568
crossref_primary_10_1063_5_0181222
crossref_primary_10_1016_j_clnesp_2024_03_031
crossref_primary_10_1016_j_mtbio_2023_100710
crossref_primary_10_1039_D4BM01109K
crossref_primary_10_3390_biomimetics8060473
crossref_primary_10_37349_ebmx_2025_101331
crossref_primary_10_3390_membranes13040403
crossref_primary_10_1134_S002689332470064X
crossref_primary_10_3390_pharmaceutics15030982
crossref_primary_10_3389_fbioe_2024_1385124
crossref_primary_10_1016_j_jcis_2024_02_139
crossref_primary_10_1016_j_matt_2023_03_018
crossref_primary_10_1016_j_ijbiomac_2025_141177
crossref_primary_10_1021_acsomega_3c02474
crossref_primary_10_3390_pharmaceutics16040473
crossref_primary_10_1016_j_matdes_2023_111885
crossref_primary_10_1016_j_colsurfa_2023_131763
crossref_primary_10_1002_mba2_76
crossref_primary_10_3389_fcell_2024_1472103
crossref_primary_10_1016_j_cej_2025_160852
crossref_primary_10_1063_5_0160168
crossref_primary_10_1016_j_cej_2023_148189
Cites_doi 10.1007/s00774-010-0257-1
10.1016/j.actbio.2018.11.032
10.1016/j.matpr.2018.05.084
10.1021/bm100470q
10.1039/d1ra06030a
10.1021/acsnano.9b03050
10.1016/j.addr.2004.05.001
10.1016/j.jddst.2020.101879
10.1038/am.2013.79
10.1002/adhm.201200307
10.1016/j.carbon.2010.01.058
10.1089/ten.tea.2020.0341
10.1016/j.carbon.2018.05.068
10.1021/acsabm.8b00440
10.1016/j.msec.2019.109921
10.1016/j.actbio.2016.09.019
10.1016/j.biomaterials.2010.08.090
10.1007/s10527-015-9476-z
10.1557/opl.2011.663
10.1002/jbm.b.34564
10.1016/j.carbpol.2020.116678
10.1088/2053-2571/aafb0cch4
10.1038/nrcardio.2016.207
10.1016/j.transproceed.2003.10.041
10.1016/j.msec.2018.12.100
10.1021/acsami.0c05732
10.1038/s41598-020-65786-4
10.1021/ja200297j
10.1021/acs.nanolett.9b00472
10.2217/nnm-2017-0173
10.1038/nature17623
10.1002/jbm.a.32905
10.1039/C5RA01851J
10.3390/cells9030682
10.1016/j.ijbiomac.2021.05.003
10.1021/nl201514a
10.1016/j.msec.2014.06.004
10.1002/mame.201900187
10.1533/9780857096715.1.17
10.1016/j.jacc.2006.06.005
10.1016/j.compositesb.2018.01.028
10.1038/nnano.2011.160
10.1139/cjpp-2018-0225
10.1021/acsnano.7b01062
10.1016/j.carbpol.2019.115161
10.1016/j.molliq.2019.112021
10.1016/j.biomaterials.2008.12.031
10.1039/c2tx20035j
10.1016/j.micromeso.2020.110115
10.1101/cshperspect.a015636
10.1146/annurev-med-102715-092331
10.1038/s41577-018-0098-z
10.1038/nprot.2012.027
10.1161/CIR.0b013e3182009701
10.1016/j.biomaterials.2010.08.098
10.2217/nnm‐2020‐0353
10.1152/physrev.00012.2007
10.1016/j.biomaterials.2012.10.065
10.1002/mabi.200800005
10.1002/smll.200901934
10.1016/j.actbio.2018.09.035
10.1007/s10856-012-4654-y
10.3390/bioengineering6010017
10.1002/adma.201704235
10.1016/j.polymer.2016.11.012
10.1002/9783527689934.ch13
10.1002/pat.5054
10.1039/d0cc03061a
10.1021/nl060162e
10.1039/c3tx50060h
10.1002/jbm.a.36481
10.1021/nn103521g
10.1016/j.bbrc.2014.08.062
10.1016/B978-0-12-387738-3.00030-5
10.1002/adfm.201102373
10.1161/CIRCEP.118.006920
10.3390/biom9090448
10.1038/s41598-020-62122-8
10.1016/j.ijbiomac.2020.06.259
10.1002/adma.201500411
10.1557/mrs2010.528
10.2147/IJN.S245936
10.1088/1361-6528/aba142
10.1016/j.actbio.2011.04.028
10.1161/CIRCRESAHA.116.309115
10.1002/adfm.201500365
10.1155/2013/751913
10.1002/jmr.2927
10.1177/0885328219839037
10.1021/am404696u
10.1016/S0960-894X(00)00159-1
10.1002/jbm.a.35080
10.1039/D0GC02719G
10.1016/j.drudis.2020.02.005
10.1016/j.jconrel.2020.07.028
10.1021/acsami.1c01460
10.1016/j.carbpol.2019.115112
10.2147/IJN.S128030
10.1016/S1369-7021(11)70058-X
10.1152/ajpheart.00610.2003
10.1021/acssuschemeng.1c00781
10.1002/jbm.a.37031
10.1007/s40204-019-00121-3
10.1016/j.jconrel.2006.03.017
10.1016/j.jhazmat.2021.127130
10.1016/j.biomaterials.2018.01.021
10.1016/j.scitotenv.2022.153902
10.1039/C8TB01116H
10.1016/j.cardiores.2003.12.022
10.1016/j.physe.2018.01.025
10.1007/978-981-16-2271-7_5
10.1016/j.msec.2020.111344
10.1016/j.matdes.2009.11.058
10.1016/j.biomaterials.2016.09.003
10.1002/jbm.a.35447
10.1039/C5NR00520E
10.1007/s10544-017-0184-1
10.1007/s12010-019-03135-6
10.1002/jbm.a.34400
10.1016/S0142-9612(00)00102-2
10.1021/acsbiomaterials.0c00266
10.1002/pat.4579
10.1161/CIRCRESAHA.113.300219
10.1016/j.actbio.2014.02.023
10.1016/j.carbon.2013.09.015
10.1002/jbm.a.37048
10.1021/jp801379g
10.3389/fbioe.2020.529244
10.1117/12.2084165
10.1016/j.carbon.2013.03.010
10.1007/s40097‐022‐00491‐4
10.1016/j.apmt.2020.100784
10.1016/j.addr.2019.06.001
10.1021/acsami.6b15271
10.3390/polym13071105
10.1161/CIR.0000000000000558
10.1038/s41598-017-17486-9
10.1557/opl.2012.763
10.1016/j.msec.2020.111614
10.1016/B978-0-12-802734-9.00029-9
10.1021/nn305559j
10.1038/s41427-018-0092-8
10.1002/smll.201600178
10.1007/978-981-10-2723-9_2
10.4172/2161-0525.1000384
10.1002/adfm.201401300
10.1021/am100293r
10.1016/j.carbon.2015.08.017
10.3390/polym8030102
10.1002/jbm.a.36555
10.1093/eurheartj/ehy462
10.1126/science.aam5894
10.1021/acsami.7b10583
10.1021/acsnano.7b00221
10.1016/j.jcis.2017.12.062
10.1016/j.biomaterials.2015.03.030
10.1016/j.bbagen.2015.01.020
10.1007/s40820-021-00697-1
10.1016/j.jcis.2018.01.044
10.1063/1.4775582
10.1088/0957-4484/17/2/008
10.1016/j.biomaterials.2016.02.010
10.1142/S0256767907002199
10.1021/acsami.8b18844
10.1016/j.msec.2014.07.061
10.1016/j.carbpol.2020.116277
10.1021/bm4018963
10.2147/nano.2006.1.1.15
10.1039/d0py00787k
10.1002/jbm.a.30386
10.1016/j.biologicals.2017.01.007
10.1038/s41467-020-19756-z
10.1016/B978-0-12-818791-3.00013-9
10.1021/bm401679q
10.1039/C4TB00668B
10.1186/s13287-016-0341-0
10.1038/nmat3404
10.1002/adfm.201908612
10.1016/j.jare.2019.03.011
10.1016/j.ijbiomac.2021.03.001
10.1016/j.biomaterials.2006.12.007
10.1039/C7RA03780E
10.1126/sciadv.1601007
10.1016/B978-0-12-813355-2.00005-3
10.1098/rsif.2011.0301
10.1007/978-1-62703-511-8_1
10.1016/j.carbon.2011.02.004
10.1021/acsami.5b08376
10.1016/j.actbio.2016.10.025
10.1021/bm060220q
10.1016/j.biotechadv.2019.02.009
10.1021/nn507149w
10.1038/s41467-019-10555-9
10.1002/jbm.a.35408
10.1016/j.msec.2016.02.056
10.1016/j.cej.2019.02.072
10.1161/CIR.0000000000000350
10.1038/s41467-019-09851-1
10.1016/j.diamond.2013.10.012
10.1021/cr500304f
10.1002/mabi.201600250
10.1039/C7CC01988B
10.1039/C6TB00152A
10.1039/c2jm34690g
10.1016/B978-0-08-102985-5.00009-7
10.1016/j.apmt.2020.100656
10.1002/smll.201203106
10.1016/j.carbon.2015.06.079
10.1016/j.actbio.2020.12.033
10.1016/j.actbio.2017.06.036
10.1002/marc.201600498
10.1021/acsbiomaterials.8b00658
10.1016/j.eurpolymj.2019.05.024
10.1016/j.actbio.2015.11.047
10.1016/j.molliq.2020.113447
10.1002/bem.20000
10.1016/j.nantod.2020.100914
10.3390/polym10101078
10.1111/jocd.12730
10.1038/nmat2316
10.1007/978-981-16-2271-7_7
10.1016/j.actbio.2008.07.005
10.1016/j.trac.2021.116279
10.1021/acs.biomac.8b00276
10.1016/j.biomaterials.2009.06.045
10.1016/j.ijpharm.2017.11.065
10.1007/s10856-011-4259-x
10.1021/jp906325q
10.7150/thno.25504
10.1016/j.biomaterials.2014.05.014
10.1021/acs.nanolett.6b02175
10.1039/d1ra06437a
10.1016/S0003-4975(01)02820-X
10.1089/ten.tea.2008.0689
10.1016/j.trac.2021.116455
10.1007/s12010-019-02967-6
10.1093/cvr/cvn335
10.2217/nnm.15.196
10.1039/c4ra01550a
10.1016/j.actbio.2015.09.025
10.1016/j.mser.2007.08.001
10.1038/nnano.2011.209
10.1016/j.msec.2018.12.122
10.1016/j.actbio.2016.12.009
10.1002/adma.201301082
10.1016/j.actbio.2016.05.027
10.1021/acsami.6b04911
10.1016/j.jphotobiol.2019.111680
10.1002/jmr.2928
10.1016/S0140-6736(14)61682-2
10.1016/B978-0-12-802002-9.00002-9
10.1039/B917103G
10.1016/j.ijbiomac.2019.08.046
10.1016/j.biomaterials.2012.07.040
10.1002/9783527689934
10.1002/term.383
10.1039/C9BM00434C
10.1007/s10856-019-6319-6
10.1063/1.4827811
10.1016/j.carbon.2017.09.071
10.1515/bmc-2020-0017
10.1016/j.actbio.2018.09.013
10.1002/adhm.201300177
10.1021/acsabm.1c00932
10.1038/s41586-018-0765-z
10.1016/j.carbon.2016.10.042
10.1016/j.colsurfb.2019.110712
10.14814/phy2.13860
10.1016/j.biomaterials.2019.119707
10.1016/B978-0-12-800180-6.00003-7
10.1002/term.348
10.1016/j.carbon.2009.09.069
10.1021/acsami.7b08777
10.1002/mabi.201100227
10.1016/j.colsurfb.2014.12.027
10.1016/j.biocel.2003.12.003
10.1001/jama.285.5.573
10.1002/jbm.a.35612
10.1016/j.carbon.2005.11.009
10.1021/nl502673m
10.1163/156856206774879180
10.1016/j.hrthm.2009.02.023
10.1016/j.addr.2009.07.010
10.1002/jemt.23282
10.1039/c0jm01852j
10.1016/j.microc.2021.106610
10.1016/j.msec.2018.08.054
10.1080/09205063.2017.1340044
10.1016/j.mtchem.2022.100780
10.1016/j.carbon.2012.11.058
10.1016/S0140-6736(99)90247-7
10.1016/j.cap.2003.11.044
10.3390/polym3020740
10.1002/jbm.a.36282
10.1517/14712598.2010.534079
10.2147/ijn.s353062
10.1007/978-3-031-02584-6
10.1021/jp200686k
10.1002/pat.4765
10.1021/nn401196a
10.1098/rstb.2007.2121
10.1016/j.biomaterials.2017.01.012
10.1021/acsami.7b02072
10.1002/pola.28430
10.1039/C8BM00553B
10.1016/B978-0-08-102985-5.00024-3
10.2147/IJN.S114357
10.1016/j.tibtech.2019.07.002
10.1016/j.biomaterials.2005.11.037
10.1016/j.actbio.2018.03.042
10.1002/adma.201702713
10.1039/C5NR07059G
10.1007/s10059-013-0277-5
10.1002/jbm.a.30315
10.1021/nl802859a
10.1039/c4ra01047g
10.1038/nrcardio.2017.57
10.1002/adfm.201800618
10.1038/s41598-019-42633-9
10.1039/c3nr02161k
10.1016/B978-0-12-381361-9.00010-X
10.1016/j.mtchem.2020.100250
10.1021/acsabm.1c01311
10.1016/j.carbpol.2018.01.060
10.1089/ten.tec.2014.0338
10.1039/c3tb21085e
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.
2022 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.
– notice: 2022 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1002/btm2.10347
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
SciTech Premium Collection (Proquest)
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Jalilinejad et al
EISSN 2380-6761
EndPage n/a
ExternalDocumentID oai_doaj_org_article_f27287f75ee84495959bfd0a1018b73f
10.1002/btm2.10347
PMC9842069
36684103
10_1002_btm2_10347
BTM210347
Genre reviewArticle
Journal Article
Review
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 0R~
1OC
24P
53G
5VS
8FE
8FG
AAHHS
AAZKR
ABDBF
ABJCF
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BCNDV
BENPR
BGLVJ
CCPQU
DIK
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
L6V
M7S
M~E
OK1
PIMPY
PROAC
PTHSS
RPM
TUS
WIN
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
NPM
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5147-44efb805d8a0cc57a96cf451752234d635084d12e779f185bae533a0d63fe3533
IEDL.DBID UNPAY
ISSN 2380-6761
IngestDate Tue Oct 14 19:09:14 EDT 2025
Sun Oct 26 03:35:13 EDT 2025
Tue Sep 30 17:15:59 EDT 2025
Thu Sep 04 19:45:37 EDT 2025
Wed Aug 13 06:08:10 EDT 2025
Wed Feb 19 02:26:19 EST 2025
Thu Oct 16 04:44:07 EDT 2025
Thu Apr 24 22:52:30 EDT 2025
Wed Jan 22 16:18:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords graphene oxide
stem cells
cardiac tissue engineering
scaffolds
carbon‐based biomaterials
graphene
Language English
License Attribution
2022 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5147-44efb805d8a0cc57a96cf451752234d635084d12e779f185bae533a0d63fe3533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9876-6220
0000-0002-6945-8541
0000-0003-0391-1769
0000-0003-3400-3106
0000-0002-0446-4385
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1002/btm2.10347
PMID 36684103
PQID 2765720556
PQPubID 4368370
PageCount 39
ParticipantIDs doaj_primary_oai_doaj_org_article_f27287f75ee84495959bfd0a1018b73f
unpaywall_primary_10_1002_btm2_10347
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9842069
proquest_miscellaneous_2768811488
proquest_journals_2765720556
pubmed_primary_36684103
crossref_citationtrail_10_1002_btm2_10347
crossref_primary_10_1002_btm2_10347
wiley_primary_10_1002_btm2_10347_BTM210347
PublicationCentury 2000
PublicationDate January 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Bioengineering & translational medicine
PublicationTitleAlternate Bioeng Transl Med
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2011; 115
2009; 81
2020; 20
2020; 163
2019; 10
2018; 564
2004; 25
2019; 13
2019; 12
2015; 385
2004; 4
2020; 16
2016; 31
2020; 15
2019; 19
2019; 18
2020; 12
2020; 11
2020; 10
2012; 12
2012; 11
2016; 37
2013; 59
2013; 54
2004; 36
2000; 10
2005; 74
2016; 41
2013; 113
2020; 299
2020; 298
2008; 112
2010; 2
2012; 23
2012; 22
2011; 123
2016; 46
2010; 6
2001; 285
2015; 126
2020; 42
2018; 106
2019; 30
2021; 423
2009; 61
2019; 34
2017; 68
2013; 101
2008; 59
2020; 38
2015; 1850
2013; 103
2013; 102
2020; 34
2011; 3
2011; 6
2016; 16
2011; 5
2012; 33
2019; 188
2011; 7
2011; 133
2014; 310
2016; 12
2016; 11
2006; 113
2016; 4
2017; 53
2016; 6
2016; 7
2017; 52
1920; 119
2019; 40
2016; 2
2017; 59
2020; 31
2015; 115
2020; 30
2022; 5
2017; 55
2004; 56
2020; 25
2018; 96
1999; 354
2018; 93
2018; 99
2016; 8
2004; 62
2013; 25
2017; 48
2020; 242
2016; 107
2017; 46
2020; 247
2018; 80
2020; 59
2008; 7
2008; 8
2016; 106
2020; 56
2008; 3
2016; 104
2008; 4
2017; 111
2017; 356
2014; 66
2020; 8
2007; 28
2017; 31
2020; 6
2014; 4
2014; 3
2014; 2
2016; 118
2018; 536
2020; 9
2016; 110
2017; 120
2018; 72
2014; 9
2017; 122
2014; 6
2017; 125
2007; 25
2021; 9
2021; 4
2015; 5
2012
2011
2010
2017; 28
2015; 95
2013; 40
2006; 17
2007; 362
2009
2017; 29
2019; 304
2015; 9
2015; 7
2020; 108
2020; 109
2019; 82
2013; 36
2019; 84
2022
2017; 14
2021
2005; 288
2017; 17
2020
2013; 34
2017; 11
2017; 12
2019
2018
2016; 133
2020; 117
2009; 9
2017
2016
2017; 19
2020; 232
2009; 6
2015
2014
2010; 95
2010; 11
2010; 10
2013; 3
2018; 160
2013; 1
2013; 2
2021; 169
2019; 98
2022; 24
2020; 326
2009; 113
2014; 24
2020; 202
2013; 7
2013; 5
2013; 9
2018; 6
2010; 20
2018; 8
2018; 5
2018; 4
2012; 1417
2013; 2013
2018; 1
2006; 27
2014; 15
2014; 14
2018; 30
2011; 1316
2014; 17
2009; 15
2014; 10
2019; 8
2019; 7
2019; 9
2018; 187
2018; 28
2010; 31
2019; 6
2010; 35
2019; 5
2021; 145
2010; 39
2015; 55
2019; 104
2003; 35
2016; 97
2021; 140
2019; 224
2019; 107
2014; 45
2014; 44
2018; 19
2018; 17
2010; 48
2018; 514
2006; 44
2006; 48
2022; 12
2014; 35
2018; 516
2020; 312
2007; 87
2018; 10
2005; 17
2022; 17
2018; 13
2021; 27
2017; 7
2017; 2
2021; 23
2017; 4
2015; 103
2011; 11
2019; 366
2011; 14
2014; 452
2022; 139
2017; 9
2015; 48
2021; 34
2018; 138
2018; 137
2016; 87
2011; 22
2019; 117
2011; 29
2001; 72
2018; 143
2020; 186
2013; 1036
2000; 21
2006; 7
2021; 183
2011; 32
2006; 6
2006; 1
2019; 140
2019; 144
2021; 180
2021; 13
2021; 16
2015; 25
2020; 190
2009; 30
2015; 28
2015; 27
2021; 12
2021; 11
2012; 1
2015; 21
2016; 63
2022; 825
2016; 532
2012; 7
2011; 49
2012; 4
2012; 9
2014; 102
e_1_2_10_271_1
e_1_2_10_339_1
e_1_2_10_40_1
e_1_2_10_109_1
Sacks D (e_1_2_10_118_1) 2018; 13
e_1_2_10_210_1
e_1_2_10_233_1
e_1_2_10_256_1
e_1_2_10_279_1
e_1_2_10_294_1
Spencer AR (e_1_2_10_220_1) 2018; 4
e_1_2_10_207_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_327_1
e_1_2_10_342_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_112_1
e_1_2_10_196_1
Biga LM (e_1_2_10_149_1) 2020
e_1_2_10_13_1
Rabiee N (e_1_2_10_29_1) 2021
e_1_2_10_260_1
e_1_2_10_51_1
Vijayavenkataraman S (e_1_2_10_163_1) 2019; 5
e_1_2_10_222_1
e_1_2_10_245_1
e_1_2_10_268_1
e_1_2_10_283_1
Stout DA (e_1_2_10_158_1) 2012; 7
e_1_2_10_147_1
e_1_2_10_219_1
e_1_2_10_330_1
Antoniadou EV (e_1_2_10_123_1) 2010
Li N (e_1_2_10_186_1) 2013; 3
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_338_1
e_1_2_10_353_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_315_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_272_1
e_1_2_10_41_1
Shahini A (e_1_2_10_132_1) 2014; 9
e_1_2_10_211_1
e_1_2_10_257_1
e_1_2_10_295_1
Zhu D (e_1_2_10_110_1) 2021; 12
e_1_2_10_234_1
e_1_2_10_341_1
e_1_2_10_159_1
e_1_2_10_90_1
Eftekhari BS (e_1_2_10_141_1) 2020
e_1_2_10_208_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_174_1
e_1_2_10_197_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_326_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_303_1
e_1_2_10_261_1
e_1_2_10_269_1
e_1_2_10_200_1
e_1_2_10_246_1
e_1_2_10_284_1
e_1_2_10_223_1
e_1_2_10_352_1
e_1_2_10_148_1
e_1_2_10_337_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_314_1
e_1_2_10_26_1
e_1_2_10_250_1
e_1_2_10_273_1
e_1_2_10_42_1
e_1_2_10_190_1
e_1_2_10_258_1
e_1_2_10_212_1
e_1_2_10_235_1
e_1_2_10_296_1
e_1_2_10_340_1
e_1_2_10_91_1
e_1_2_10_209_1
e_1_2_10_4_1
e_1_2_10_348_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_198_1
e_1_2_10_302_1
e_1_2_10_325_1
e_1_2_10_175_1
e_1_2_10_262_1
e_1_2_10_30_1
e_1_2_10_247_1
e_1_2_10_201_1
e_1_2_10_224_1
e_1_2_10_285_1
e_1_2_10_80_1
Carlier A (e_1_2_10_31_1) 2014; 17
e_1_2_10_336_1
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_313_1
e_1_2_10_274_1
e_1_2_10_43_1
e_1_2_10_251_1
e_1_2_10_20_1
e_1_2_10_236_1
e_1_2_10_259_1
e_1_2_10_213_1
e_1_2_10_297_1
e_1_2_10_130_1
e_1_2_10_199_1
e_1_2_10_92_1
e_1_2_10_301_1
e_1_2_10_347_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_191_1
Ameri SK (e_1_2_10_304_1) 2016
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_324_1
e_1_2_10_263_1
e_1_2_10_309_1
e_1_2_10_240_1
e_1_2_10_225_1
e_1_2_10_248_1
e_1_2_10_202_1
e_1_2_10_286_1
e_1_2_10_188_1
Zhou P (e_1_2_10_60_1) 2016; 118
e_1_2_10_81_1
e_1_2_10_312_1
e_1_2_10_335_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_252_1
e_1_2_10_275_1
e_1_2_10_298_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_214_1
e_1_2_10_237_1
e_1_2_10_290_1
Drake R (e_1_2_10_57_1) 2009
e_1_2_10_131_1
e_1_2_10_177_1
Asiri AM (e_1_2_10_351_1) 2014; 9
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_300_1
e_1_2_10_323_1
e_1_2_10_346_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_116_1
e_1_2_10_192_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
Ercan B (e_1_2_10_133_1) 2008; 3
e_1_2_10_241_1
e_1_2_10_264_1
e_1_2_10_287_1
e_1_2_10_308_1
e_1_2_10_32_1
e_1_2_10_203_1
e_1_2_10_226_1
e_1_2_10_249_1
e_1_2_10_120_1
Azevedo PS (e_1_2_10_67_1) 2016; 106
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_334_1
e_1_2_10_128_1
e_1_2_10_311_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_143_1
Hall JE (e_1_2_10_151_1) 2020
e_1_2_10_45_1
e_1_2_10_253_1
e_1_2_10_299_1
e_1_2_10_319_1
e_1_2_10_22_1
e_1_2_10_230_1
e_1_2_10_215_1
e_1_2_10_291_1
e_1_2_10_238_1
e_1_2_10_276_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_193_1
e_1_2_10_94_1
e_1_2_10_322_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_345_1
e_1_2_10_242_1
e_1_2_10_288_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_307_1
e_1_2_10_204_1
e_1_2_10_280_1
e_1_2_10_227_1
e_1_2_10_265_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_333_1
e_1_2_10_310_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_231_1
e_1_2_10_318_1
e_1_2_10_239_1
e_1_2_10_292_1
e_1_2_10_216_1
e_1_2_10_254_1
e_1_2_10_277_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_194_1
e_1_2_10_321_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_344_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_289_1
e_1_2_10_306_1
e_1_2_10_329_1
e_1_2_10_11_1
Maldonado MA (e_1_2_10_104_1) 2017; 31
e_1_2_10_119_1
e_1_2_10_205_1
e_1_2_10_228_1
e_1_2_10_281_1
Stout DA (e_1_2_10_349_1) 2012; 1417
e_1_2_10_243_1
e_1_2_10_266_1
e_1_2_10_145_1
e_1_2_10_168_1
Stout DA (e_1_2_10_350_1) 2014; 24
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_332_1
e_1_2_10_160_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_317_1
e_1_2_10_270_1
e_1_2_10_108_1
e_1_2_10_217_1
e_1_2_10_293_1
e_1_2_10_232_1
e_1_2_10_278_1
e_1_2_10_255_1
e_1_2_10_157_1
e_1_2_10_229_1
Zarrintaj P (e_1_2_10_166_1) 2017; 4
Zhao L (e_1_2_10_316_1) 2019; 9
e_1_2_10_73_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_320_1
e_1_2_10_305_1
e_1_2_10_343_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_195_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_328_1
e_1_2_10_50_1
e_1_2_10_206_1
e_1_2_10_282_1
e_1_2_10_221_1
e_1_2_10_267_1
e_1_2_10_244_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_218_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_331_1
e_1_2_10_354_1
e_1_2_10_100_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 102
  start-page: 4169
  issue: 11
  year: 2014
  end-page: 4181
  article-title: Conducting scaffolds for liver tissue engineering
  publication-title: J Biomed Mater Res A
– volume: 29
  issue: 44
  year: 2017
  article-title: Superaligned carbon nanotubes guide oriented cell growth and promote electrophysiological homogeneity for synthetic cardiac tissues
  publication-title: Adv Mater
– volume: 4
  issue: 2
  year: 2017
  article-title: Bio‐conductive scaffold based on agarose‐polyaniline for tissue engineering
  publication-title: J Skin Stem Cell
– volume: 7
  start-page: 2891
  issue: 4
  year: 2013
  end-page: 2897
  article-title: Carbon‐based nanomaterials: multifunctional materials for biomedical engineering
  publication-title: ACS Nano
– volume: 15
  start-page: 1115
  issue: 4
  year: 2014
  end-page: 1123
  article-title: In vitro study of electroactive tetraaniline‐containing thermosensitive hydrogels for cardiac tissue engineering
  publication-title: Biomacromolecules
– volume: 106
  start-page: 62
  issue: 1
  year: 2016
  end-page: 69
  article-title: Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment
  publication-title: Arq Bras Cardiol
– volume: 34
  start-page: 74
  issue: 1
  year: 2019
  end-page: 85
  article-title: Threedimensional graphene foam as a conductive scaffold for cardiac tissue engineering
  publication-title: J Biomater Appl
– volume: 7
  start-page: 1692
  issue: 6
  year: 2006
  end-page: 1695
  article-title: Carboxylic acid‐functionalized conductive polypyrrole as a bioactive platform for cell adhesion
  publication-title: Biomacromolecules
– volume: 144
  start-page: 162
  year: 2019
  end-page: 179
  article-title: Electrically conductive nanomaterials for cardiac tissue engineering
  publication-title: Adv Drug Deliv Rev
– volume: 7
  start-page: 3906
  issue: 9
  year: 2019
  end-page: 3917
  article-title: Carbon nanotube doped pericardial matrix derived electroconductive biohybrid hydrogel for cardiac tissue engineering
  publication-title: Biomater Sci
– volume: 59
  start-page: 68
  year: 2017
  end-page: 81
  article-title: Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators
  publication-title: Acta Biomater
– volume: 80
  start-page: 258
  year: 2018
  end-page: 268
  article-title: Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights
  publication-title: Acta Biomater
– volume: 4
  start-page: 343
  issue: 2
  year: 2004
  end-page: 346
  article-title: Evaluation of antioxidant activity of aniline and polyaniline
  publication-title: Curr Appl Phys
– volume: 14
  start-page: 88
  issue: 3
  year: 2011
  end-page: 95
  article-title: Biomaterials & scaffolds for tissue engineering
  publication-title: Mater Today
– volume: 38
  start-page: 24
  issue: 1
  year: 2020
  end-page: 49
  article-title: Electric phenomenon: a disregarded tool in tissue engineering and regenerative medicine
  publication-title: Trends Biotechnol
– volume: 40
  start-page: 107
  year: 2013
  end-page: 114
  article-title: Nanodiamonds for surface engineering of orthopedic implants: enhanced biocompatibility in human osteosarcoma cell culture
  publication-title: Diamond Relat Mater
– volume: 7
  issue: 1
  year: 2019
  article-title: Conduction in cardiac tissue. Historical reflections
  publication-title: Physiol Rep
– volume: 6
  start-page: 587
  issue: 5
  year: 2009
  end-page: 591
  article-title: Fractionated atrial electrograms during sinus rhythm: relationship to age, voltage, and conduction velocity
  publication-title: Heart Rhythm
– volume: 16
  start-page: 237
  issue: 3
  year: 2021
  end-page: 258
  article-title: Nanotechnology‐assisted microfluidic systems: from bench to bedside
  publication-title: Nanomedicine
– volume: 36
  start-page: 1031
  issue: 6
  year: 2004
  end-page: 1037
  article-title: Tissue repair and the dynamics of the extracellular matrix
  publication-title: Int J Biochem Cell Biol
– volume: 15
  start-page: 3605
  issue: 11
  year: 2009
  end-page: 3619
  article-title: Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering
  publication-title: Tissue Eng Part A
– volume: 72
  start-page: 16
  year: 2018
  end-page: 34
  article-title: Oligoaniline‐based conductive biomaterials for tissue engineering
  publication-title: Acta Biomater
– volume: 20
  year: 2020
  article-title: Conductive biomaterials as nerve conduits: recent advances and future challenges
  publication-title: Appl Mater Today
– volume: 109
  start-page: 488
  year: 2020
  end-page: 499
  article-title: Aligned graphene/silk fibroin conductive fibrous scaffolds for guiding neurite outgrowth in rat spinal cord neurons
  publication-title: J Biomed Mater Res A
– volume: 14
  start-page: 224
  issue: 4
  year: 2017
  end-page: 237
  article-title: Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors
  publication-title: Nat Rev Cardiol
– volume: 49
  start-page: 2370
  issue: 7
  year: 2011
  end-page: 2379
  article-title: Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites
  publication-title: Carbon
– volume: 5
  start-page: 2248
  issue: 3
  year: 2011
  end-page: 2256
  article-title: Fullerenol‐based electroactive artificial muscles utilizing biocompatible polyetherimide
  publication-title: ACS Nano
– volume: 8
  start-page: 8
  year: 2020
  article-title: Biomaterials in Valvular Heart Diseases
  publication-title: Front Bioeng Biotechnol
– volume: 117
  start-page: 402
  year: 2019
  end-page: 423
  article-title: Thermo‐sensitive polymers in medicine: A review
  publication-title: Eur Polym J
– volume: 5
  start-page: 229
  issue: 2.1
  year: 2019
  article-title: Conductive collagen/polypyrrole‐b‐polycaprolactone hydrogel for bioprinting of neural tissue constructs
  publication-title: Int J Bioprint
– volume: 20
  year: 2020
  article-title: Fabrication, applications and challenges of natural biomaterials in tissue engineering
  publication-title: Appl Mater Today
– volume: 17
  start-page: 693
  year: 2018
  end-page: 702
  article-title: Skin care and rejuvenation by cosmeceutical facial mask
  publication-title: J Cosmet Dermatol
– volume: 36
  start-page: 577
  issue: 6
  year: 2013
  end-page: 582
  article-title: Graphene films show stable cell attachment and biocompatibility with electrogenic primary cardiac cells
  publication-title: Mol Cells
– volume: 9
  start-page: 401
  issue: 11
  year: 2019
  article-title: A novel graphene oxide polymer gel platform for cardiac tissue engineering application
  publication-title: Biotechniques
– volume: 48
  start-page: 2127
  issue: 8
  year: 2010
  end-page: 2150
  article-title: Production, properties and potential of graphene
  publication-title: Carbon
– volume: 52
  start-page: 81
  year: 2017
  end-page: 91
  article-title: Moldable elastomeric polyester‐carbon nanotube scaffolds for cardiac tissue engineering
  publication-title: Acta Biomater
– volume: 9
  start-page: 29595
  issue: 35
  year: 2017
  end-page: 29611
  article-title: Dopamine‐incorporated dual bioactive electroactive shape memory polyurethane elastomers with physiological shape recovery temperature, high stretchability, and enhanced C2C12 myogenic differentiation
  publication-title: ACS Appl Mater Interfaces
– volume: 11
  start-page: 34688
  issue: 55
  year: 2021
  end-page: 34698
  article-title: Anti‐bacterial activity of gold nanocomposites as a new nanomaterial weapon to combat photogenic agents: recent advances and challenges
  publication-title: RSC Adv
– volume: 25
  start-page: 6385
  issue: 44
  year: 2013
  end-page: 6391
  article-title: Cell‐laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide
  publication-title: Adv Mater
– volume: 8
  start-page: 627
  issue: 7
  year: 2008
  end-page: 637
  article-title: Development of electroactive and elastic nanofibers that contain polyaniline and poly(L‐lactide‐co‐epsilon‐caprolactone) for the control of cell adhesion
  publication-title: Macromol Biosci
– volume: 102
  issue: 2
  year: 2013
  article-title: The effect of degree of reduction on the electrical properties of functionalized graphene sheets
  publication-title: Appl Phys Lett
– volume: 9
  start-page: 25929
  issue: 31
  year: 2017
  end-page: 25940
  article-title: Graphene sheet‐induced global maturation of Cardiomyocytes derived from human induced pluripotent stem cells
  publication-title: ACS Appl Mater Interfaces
– volume: 298
  year: 2020
  article-title: Electro‐conductive carbon nanofibers as the promising interfacial biomaterials for bone tissue engineering
  publication-title: J Mol Liq
– volume: 6
  start-page: 7185
  year: 2018
  end-page: 7196
  article-title: Conductive silk‐polypyrrole composite scaffolds with bioinspired nanotopographic cues for cardiac tissue engineering
  publication-title: J Mater Chem B
– volume: 84
  start-page: 98
  year: 2019
  end-page: 113
  article-title: In vitro and in vivo studies of electroactive reduced graphene oxide‐modified nanofiber scaffolds for peripheral nerve regeneration
  publication-title: Acta Biomater
– volume: 17
  start-page: 391
  issue: 2
  year: 2005
  end-page: 397
  article-title: Carbon nanotube biocompatibility with cardiac muscle cells
  publication-title: Nanotechnology
– year: 2019
– volume: 103
  issue: 18
  year: 2013
  article-title: DNA‐decorated graphene nanomesh for detection of chemical vapors
  publication-title: Appl Phys Lett
– volume: 61
  start-page: 1097
  issue: 12
  year: 2009
  end-page: 1114
  article-title: Carbon nanofibers and carbon nanotubes in regenerative medicine
  publication-title: Adv Drug Deliv Rev
– volume: 19
  start-page: 2198
  issue: 4
  year: 2019
  end-page: 2206
  article-title: Gold nanoparticle‐integrated scaffolds for tissue engineering and regenerative medicine
  publication-title: Nano Lett
– volume: 59
  start-page: 1
  issue: 1–6
  year: 2008
  end-page: 37
  article-title: Biomaterials in cardiac tissue engineering: ten years of research survey
  publication-title: Mater Sci Eng R Rep
– volume: 9
  start-page: 273
  issue: 1
  year: 2009
  end-page: 278
  article-title: Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein
  publication-title: Nano Lett
– volume: 188
  start-page: 952
  issue: 4
  year: 2019
  end-page: 964
  article-title: Preparation of an electrically conductive graphene oxide/chitosan scaffold for cardiac tissue engineering
  publication-title: Appl Biochem Biotechnol
– volume: 39
  start-page: 228
  issue: 1
  year: 2010
  end-page: 240
  article-title: The chemistry of graphene oxide
  publication-title: Chem Soc Rev
– volume: 140
  start-page: 278
  year: 2019
  end-page: 287
  article-title: Chitosan‐PVA‐CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering
  publication-title: Int J Biol Macromol
– volume: 11
  start-page: 4355
  issue: 27
  year: 2020
  end-page: 4381
  article-title: Radical polymerization as a versatile tool for surface grafting of thin hydrogel films
  publication-title: Polym Chem
– volume: 108
  start-page: 2276
  issue: 5
  year: 2020
  end-page: 2293
  article-title: Fabrication, characterization, and in vitro evaluation of electrospun polyurethane‐gelatin‐carbon nanotube scaffolds for cardiovascular tissue engineering applications
  publication-title: J Biomed Mater Res B Appl Biomater
– volume: 118
  start-page: 368
  year: 2016
  end-page: 370
  article-title: Recounting cardiac cellular composition
  publication-title: Am Heart Assoc
– volume: 202
  year: 2020
  article-title: Photoluminescent functionalized carbon quantum dots loaded electroactive silk fibroin/PLA nanofibrous bioactive scaffolds for cardiac tissue engineering
  publication-title: J Photochem Photobiol B Biol
– volume: 532
  start-page: 195
  issue: 7598
  year: 2016
  end-page: 200
  article-title: Astrocyte scar formation aids central nervous system axon regeneration
  publication-title: Nature
– volume: 2013
  year: 2013
  article-title: Fullerenols as a new therapeutic approach in nanomedicine
  publication-title: Biomed Res Int
– volume: 10
  start-page: 44668
  issue: 51
  year: 2018
  end-page: 44677
  article-title: Nanoengineered Electroconductive collagen‐based cardiac patch for infarcted myocardium repair
  publication-title: ACS Appl Mater Interfaces
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  article-title: Recombinant spider silk protein eADF4 (C16)‐RGD coatings are suitable for cardiac tissue engineering
  publication-title: Sci Rep
– volume: 8
  start-page: 3317
  issue: 12
  year: 2018
  end-page: 3330
  article-title: Injectable OPF/graphene oxide hydrogels provide mechanical support and enhance cell electrical signaling after implantation into myocardial infarct
  publication-title: Theranostics
– volume: 13
  start-page: 1
  issue: 1
  year: 2021
  end-page: 24
  article-title: Prevascularized micro‐/nano‐sized spheroid/bead aggregates for vascular tissue engineering
  publication-title: Nano‐Micro Lett
– volume: 299
  year: 2020
  article-title: Smart drug delivery: capping strategies for mesoporous silica nanoparticles
  publication-title: Microporous Mesoporous Mater
– volume: 3
  start-page: 477
  issue: 4
  year: 2008
  end-page: 485
  article-title: Greater osteoblast proliferation on anodized nanotubular titanium upon electrical stimulation
  publication-title: Int J Nanomedicine
– volume: 17
  start-page: 199
  issue: 1–2
  year: 2006
  end-page: 212
  article-title: Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts
  publication-title: J Biomater Sci Polym Ed
– volume: 103
  start-page: 3179
  issue: 10
  year: 2015
  end-page: 3187
  article-title: Preparation of a porous conductive scaffold from aniline pentamer‐modified polyurethane/PCL blend for cardiac tissue engineering
  publication-title: J Biomed Mater Res A
– volume: 1
  start-page: 1530
  issue: 5
  year: 2018
  end-page: 1537
  article-title: 3D carbon‐nanotube‐based composites for cardiac tissue engineering
  publication-title: ACS Appl Bio Mater
– volume: 825
  year: 2022
  article-title: Bioactive hybrid metal‐organic framework (MOF)‐based nanosensors for optical detection of recombinant SARS‐CoV‐2 spike antigen
  publication-title: Sci Total Environ
– volume: 106
  start-page: 718
  issue: 3
  year: 2018
  end-page: 724
  article-title: Hydrogel/fiber conductive scaffold for bone tissue engineering
  publication-title: J Biomed Mater Res A
– start-page: 4201
  year: 2016
  end-page: 4203
– volume: 13
  start-page: 10796
  issue: 9
  year: 2021
  end-page: 10811
  article-title: Polymer‐coated NH ‐UiO‐66 for the codelivery of DOX/pCRISPR
  publication-title: ACS Appl Mater Interfaces
– volume: 4
  start-page: 1
  issue: 1
  year: 2012
  end-page: 200
  article-title: Cardiac tissue engineering: principles, materials, and applications
  publication-title: Synth Lect Tissue Eng
– volume: 7
  start-page: 850
  issue: 5
  year: 2012
  end-page: 858
  article-title: Fabrication of functional three‐dimensional tissues by stacking cell sheets in vitro
  publication-title: Nat Protoc
– volume: 7
  start-page: 11
  issue: 1
  year: 2012
  end-page: 23
  article-title: The properties and applications of nanodiamonds
  publication-title: Nat Nanotechnol
– volume: 224
  year: 2019
  article-title: Conductive hydrogels based on agarose/alginate/chitosan for neural disorder therapy
  publication-title: Carbohydr Polym
– volume: 107
  start-page: 177
  year: 2016
  end-page: 190
  article-title: Novel nanofibrous electrically conductive scaffolds based on poly (ethylene glycol) s‐modified polythiophene and poly (ε‐caprolactone) for tissue engineering applications
  publication-title: Polymer
– volume: 1
  start-page: 201
  issue: 3
  year: 2012
  end-page: 205
  article-title: Cellular responses of aniline oligomers: a preliminary study
  publication-title: Toxicol Res
– volume: 95
  start-page: 309
  year: 2015
  end-page: 317
  article-title: Dose‐dependent effects of nanoscale graphene oxide on reproduction capability of mammals
  publication-title: Carbon
– start-page: 25
  year: 2016
  end-page: 51
– volume: 17
  start-page: 735
  issue: 3
  year: 2014
  article-title: Bringing regenerating tissues to life: the importance of angiogenesis in tissue engineering
  publication-title: Angiogenesis
– volume: 5
  start-page: 560
  issue: 7
  year: 2011
  end-page: 568
  article-title: Characterization of electrospun poly (L‐lactide) and gold nanoparticle composite scaffolds for skeletal muscle tissue engineering
  publication-title: J Tissue Eng Regen Med
– volume: 42
  year: 2020
  article-title: Biomaterializing the promise of cardiac tissue engineering
  publication-title: Biotechnol Adv
– year: 2020
  article-title: Synergistic effects of conductivity and cell‐imprinted topography of chitosan‐polyaniline based scaffolds for neural differentiation of adipose‐derived stem cells
  publication-title: bioRxiv
– volume: 74
  start-page: 208
  issue: 2
  year: 2005
  end-page: 214
  article-title: Improving the blood compatibility of polyurethane using carbon nanotubes as fillers and its implications to cardiovascular surgery
  publication-title: J Biomed Mater Res A
– volume: 15
  start-page: 635
  issue: 2
  year: 2014
  end-page: 643
  article-title: Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering
  publication-title: Biomacromolecules
– volume: 19
  start-page: 63
  issue: 1
  year: 2019
  end-page: 64
  article-title: Cardioimmunology of arrhythmias: the role of autoimmune and inflammatory cardiac channelopathies
  publication-title: Nat Rev Immunol
– volume: 30
  start-page: 1473
  issue: 6
  year: 2019
  end-page: 1483
  article-title: Electrospun electroactive nanofibers of gelatin‐oligoaniline/poly (vinyl alcohol) templates for architecting of cardiac tissue with on‐demand drug release
  publication-title: Polym Adv Technol
– volume: 4
  start-page: 1583
  issue: 6
  year: 2008
  end-page: 1592
  article-title: Carbon nanotubes increase the electrical conductivity of fibroblast‐seeded collagen hydrogels
  publication-title: Acta Biomater
– volume: 423
  year: 2021
  article-title: Green porous benzamide‐like nanomembranes for hazardous cations detection, separation, and concentration adjustment
  publication-title: J Hazard Mater
– volume: 30
  issue: 23
  year: 2018
  article-title: Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches
  publication-title: Adv Mater
– volume: 7
  start-page: 31980
  issue: 51
  year: 2017
  end-page: 31988
  article-title: Injectable and thermoresponsive pericardial matrix derived conductive scaffold for cardiac tissue engineering
  publication-title: RSC Adv
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 10
  article-title: Symbiotic cardiac pacemaker
  publication-title: Nat Commun
– volume: 6
  start-page: 711
  issue: 6
  year: 2010
  end-page: 723
  article-title: Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon‐based materials
  publication-title: Small
– start-page: 153
  year: 2021
  end-page: 186
– volume: 6
  start-page: 525
  issue: 4
  year: 2016
  end-page: 2161
  article-title: Gold and silver nanoparticles: synthesis methods, characterization routes and applications towards drugs
  publication-title: J Environ Anal Toxicol
– year: 2009
– volume: 59
  year: 2020
  article-title: Carbosilane dendrimers: drug and gene delivery applications
  publication-title: J Drug Deliv Sci Technol
– volume: 11
  start-page: 3643
  issue: 9
  year: 2011
  end-page: 3648
  article-title: Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression
  publication-title: Nano Lett
– volume: 46
  start-page: 234
  year: 2016
  end-page: 244
  article-title: Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation
  publication-title: Acta Biomater
– volume: 111
  start-page: 752
  year: 2017
  end-page: 763
  article-title: Tough and conductive hybrid graphene‐PVA: alginate fibrous scaffolds for engineering neural construct
  publication-title: Carbon
– volume: 35
  start-page: 597
  issue: 8
  year: 2010
  end-page: 606
  article-title: Wound healing versus regeneration: role of the tissue environment in regenerative medicine
  publication-title: MRS Bull Mater Res Soc
– volume: 25
  start-page: 642
  issue: 4
  year: 2020
  end-page: 656
  article-title: Zeolites in drug delivery: progress, challenges and opportunities
  publication-title: Drug Discov Today
– start-page: 1
  year: 2021
  end-page: 14
  article-title: Calcium‐based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery
  publication-title: J Nanostruct Chem
– volume: 24
  start-page: 2101
  issue: 6
  year: 2014
  end-page: 2107
  article-title: Growth characteristics of different heart cells on novel nanopatch substrate during electrical stimulation
  publication-title: Biomed Mater Eng
– volume: 24
  year: 2022
  article-title: Elucidating the impact of enzymatic modifications on the structure, properties, and applications of cellulose, chitosan, starch and their derivatives: a review
  publication-title: Mater Today Chem
– volume: 123
  start-page: e18
  issue: 4
  year: 2011
  end-page: e209
  article-title: Heart disease and stroke statistics—2011 update: a report from the American Heart Association
  publication-title: Circulation
– volume: 2
  start-page: 244
  issue: 2
  year: 2013
  end-page: 260
  article-title: Carbon‐based nanomaterials for tissue engineering
  publication-title: Adv Healthc Mater
– start-page: 17
  year: 2014
  end-page: 48
– volume: 3
  start-page: 1
  issue: 1
  year: 2013
  end-page: 6
  article-title: Three‐dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells
  publication-title: Sci Rep
– volume: 11
  start-page: 2345
  issue: 9
  year: 2010
  end-page: 2351
  article-title: Fabrication, mechanical properties, and biocompatibility of graphene‐reinforced chitosan composites
  publication-title: Biomacromolecules
– volume: 13
  start-page: 12525
  issue: 11
  year: 2019
  end-page: 12539
  article-title: Nanoparticle‐based hybrid scaffolds for deciphering the role of multimodal cues in cardiac tissue engineering
  publication-title: ACS Nano
– volume: 59
  start-page: 200
  year: 2013
  end-page: 211
  article-title: Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells
  publication-title: Carbon
– volume: 2
  issue: 11
  year: 2016
  article-title: A conducting polymer with enhanced electronic stability applied in cardiac models
  publication-title: Sci Adv
– volume: 285
  start-page: 573
  issue: 5
  year: 2001
  end-page: 576
  article-title: Prospects for organ and tissue replacement
  publication-title: JAMA
– volume: 27
  start-page: 2705
  issue: 13
  year: 2006
  end-page: 2715
  article-title: Electrospinning polyaniline‐contained gelatin nanofibers for tissue engineering applications
  publication-title: Biomaterials
– volume: 31
  start-page: 2406
  issue: 5
  year: 2010
  end-page: 2413
  article-title: Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites
  publication-title: Mater Design
– volume: 2
  start-page: 2521
  issue: 9
  year: 2010
  end-page: 2529
  article-title: Fabrication of free‐standing, electrochemically active, and biocompatible graphene oxide–polyaniline and graphene–polyaniline hybrid papers
  publication-title: ACS Appl Mater Interfaces
– volume: 109
  start-page: 637
  year: 2020
  end-page: 648
  article-title: Carbon quantum dots‐embedded electrospun antimicrobial and fluorescent scaffold for reepithelialization in albino wistar rats
  publication-title: J Biomed Mater Res A
– volume: 10
  start-page: 1043
  issue: 10
  year: 2000
  end-page: 1045
  article-title: Antimycobacterial activity of ionic fullerene derivatives
  publication-title: Bioorg Med Chem Lett
– volume: 82
  start-page: 1316
  issue: 8
  year: 2019
  end-page: 1325
  article-title: Development of electrically conductive hybrid nanofibers based on CNT‐polyurethane nanocomposite for cardiac tissue engineering
  publication-title: Microsc Res Tech
– volume: 8
  start-page: 7075
  issue: 13
  year: 2016
  end-page: 7084
  article-title: Graphene induces spontaneous cardiac differentiation in embryoid bodies
  publication-title: Nanoscale
– volume: 103
  start-page: 2635
  issue: 8
  year: 2015
  end-page: 2644
  article-title: An electrically conductive 3D scaffold based on a nonwoven web of poly (l‐lactic acid) and conductive poly (3, 4‐ethylenedioxythiophene)
  publication-title: J Biomed Mater Res A
– volume: 45
  start-page: 671
  year: 2014
  end-page: 681
  article-title: The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine
  publication-title: Mater Sci Eng C
– volume: 6
  start-page: 2375
  issue: 9
  year: 2018
  end-page: 2385
  article-title: Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds
  publication-title: Biomater Sci
– volume: 19
  start-page: 1764
  issue: 6
  year: 2018
  end-page: 1782
  article-title: Conducting polymers for tissue engineering
  publication-title: Biomacromolecules
– volume: 326
  start-page: 523
  year: 2020
  end-page: 546
  article-title: Agarose‐based biomaterials for advanced drug delivery
  publication-title: J Control Release
– start-page: 181
  year: 2020
  end-page: 200
– volume: 6
  start-page: 17
  issue: 1
  year: 2019
  article-title: Application of metal nanoparticle–hydrogel composites in tissue regeneration
  publication-title: Bioengineering
– volume: 18
  start-page: 185
  year: 2019
  end-page: 201
  article-title: Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review
  publication-title: J Adv Res
– volume: 11
  start-page: 182
  issue: 1
  year: 2020
  end-page: 200
  article-title: Graphene oxide: a promising material for regenerative medicine and tissue engineering
  publication-title: Biomol Concepts
– volume: 17
  start-page: 1600250
  issue: 4
  year: 2017
  article-title: 3D printed polycaprolactone carbon nanotube composite scaffolds for cardiac tissue engineering
  publication-title: Macromol Biosci
– volume: 9
  start-page: 3593
  issue: 21
  year: 2013
  end-page: 3601
  article-title: Graphene nanomesh promises extremely efficient in vivo photothermal therapy
  publication-title: Small
– volume: 104
  year: 2019
  article-title: Electroactive cardiac patch containing reduced graphene oxide with potential antibacterial properties
  publication-title: Mater Sci Eng C
– volume: 10
  start-page: 8789
  issue: 1
  year: 2020
  article-title: Recombinant spider silk protein eADF4(C16)‐RGD coatings are suitable for cardiac tissue engineering
  publication-title: Sci Rep
– start-page: 121
  year: 2021
  end-page: 133
– volume: 117
  year: 2020
  article-title: Reduced graphene oxide foam templated by nickel foam for organ‐on‐a‐chip engineering of cardiac constructs
  publication-title: Mater Sci Eng C
– volume: 28
  issue: 21
  year: 2018
  article-title: Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction
  publication-title: Adv Funct Mater
– volume: 98
  start-page: 266
  year: 2019
  end-page: 278
  article-title: Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 5
  start-page: e17
  issue: 4
  year: 2011
  end-page: e35
  article-title: Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering
  publication-title: J Tissue Eng Regen Med
– volume: 31
  issue: 42
  year: 2020
  article-title: Green synthesis of CuO‐and Cu O‐NPs in assistance with high‐gravity: the flowering of nanobiotechnology
  publication-title: Nanotechnology
– volume: 120
  start-page: 366
  issue: 2
  year: 2017
  end-page: 380
  article-title: Decline in cardiovascular mortality: possible causes and implications
  publication-title: Circ Res
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  end-page: 18
  article-title: In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix
  publication-title: Nat Commun
– volume: 288
  start-page: H1620
  issue: 4
  year: 2005
  end-page: H1626
  article-title: Engineering skeletal myoblasts: roles of three‐dimensional culture and electrical stimulation
  publication-title: Am J Physiol Heart Circ Physiol
– year: 2015
– volume: 137
  start-page: e67
  issue: 12
  year: 2018
  end-page: e492
  article-title: Heart disease and stroke Statistics‐2018 update: a report from the American Heart Association
  publication-title: Circulation
– volume: 536
  start-page: 241
  issue: 1
  year: 2018
  end-page: 250
  article-title: Conductive vancomycin‐loaded mesoporous silica polypyrrole‐based scaffolds for bone regeneration
  publication-title: Int J Pharm
– volume: 3
  start-page: 740
  issue: 2
  year: 2011
  end-page: 761
  article-title: Hydrogels for cardiac tissue engineering
  publication-title: Polymers
– volume: 54
  start-page: 419
  year: 2013
  end-page: 431
  article-title: Genotoxicity of graphene nanoribbons in human mesenchymal stem cells
  publication-title: Carbon
– volume: 362
  start-page: 1357
  issue: 1484
  year: 2007
  end-page: 1368
  article-title: Biomimetic approach to cardiac tissue engineering
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 46
  start-page: 99
  year: 2017
  end-page: 107
  article-title: Electrical stimulation of somatic human stem cells mediated by composite containing conductive nanofibers for ligament regeneration
  publication-title: Biologicals
– volume: 96
  start-page: 869
  issue: 9
  year: 2018
  end-page: 878
  article-title: Graphene‐based drug delivery systems in tissue engineering and nanomedicine
  publication-title: Can J Physiol Pharmacol
– volume: 93
  start-page: 890
  year: 2018
  end-page: 901
  article-title: 3D culture of neural stem cells within conductive PEDOT layer‐assembled chitosan/gelatin scaffolds for neural tissue engineering
  publication-title: Mater Sci Eng C
– volume: 48
  start-page: 88
  year: 2017
  end-page: 99
  article-title: Carbon nanotube‐composite hydrogels promote intercalated disc assembly in engineered cardiac tissues through β1‐integrin mediated FAK and RhoA pathway
  publication-title: Acta Biomater
– volume: 55
  start-page: 485
  issue: 3
  year: 2017
  end-page: 494
  article-title: Metathesis cyclopolymerization of substituted 1, 6‐heptadiyne and dual conductivity of doped polyacetylene bearing branched triazole pendants
  publication-title: J Polym Sci A Polym Chem
– volume: 312
  year: 2020
  article-title: Conductive polymers in water treatment: a review
  publication-title: J Mol Liq
– volume: 16
  year: 2020
  article-title: Mechanisms of graphene influence on cell differentiation
  publication-title: Mater Today Chem
– volume: 122
  start-page: 63
  year: 2017
  end-page: 71
  article-title: A π‐π conjugation‐containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction
  publication-title: Biomaterials
– volume: 138
  start-page: 8
  year: 2018
  end-page: 17
  article-title: Graphene oxide in generation of nanobubbles using controllable microvortices of jet flows
  publication-title: Carbon
– volume: 160
  start-page: 69
  year: 2018
  end-page: 81
  article-title: An injectable conductive hydrogel encapsulating plasmid DNA‐eNOs and ADSCs for treating myocardial infarction
  publication-title: Biomaterials
– volume: 12
  start-page: 3109
  year: 2017
  end-page: 3120
  article-title: Carbon nanotube‐incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs
  publication-title: Int J Nanomedicine
– volume: 87
  start-page: 1285
  issue: 4
  year: 2007
  end-page: 1342
  article-title: Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function
  publication-title: Physiol Rev
– volume: 113
  start-page: 810
  issue: 6
  year: 2013
  end-page: 834
  article-title: Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions
  publication-title: Circ Res
– volume: 6
  issue: 2
  year: 2014
  article-title: Therapeutic applications of low‐toxicity spherical nanocarbon materials
  publication-title: NPG Asia Materials
– volume: 11
  start-page: 5474
  issue: 6
  year: 2017
  end-page: 5488
  article-title: Injectable fullerenol/alginate hydrogel for suppression of oxidative stress damage in brown adipose‐derived stem cells and cardiac repair
  publication-title: ACS Nano
– volume: 30
  start-page: 5409
  issue: 29
  year: 2009
  end-page: 5416
  article-title: Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering
  publication-title: Biomaterials
– volume: 143
  start-page: 19
  year: 2018
  end-page: 27
  article-title: A critical review of nanodiamond based nanocomposites: synthesis, properties and applications
  publication-title: Compos Part B Eng
– volume: 34
  start-page: 1063
  issue: 4
  year: 2013
  end-page: 1072
  article-title: Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating
  publication-title: Biomaterials
– volume: 452
  start-page: 174
  issue: 1
  year: 2014
  end-page: 180
  article-title: Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells
  publication-title: Biochem Biophys Res Commun
– start-page: 93
  year: 2021
  end-page: 103
– volume: 13
  start-page: 612
  issue: 6
  year: 2018
  end-page: 632
  article-title: Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke
  publication-title: Int J Stroke
– volume: 22
  start-page: 24230
  issue: 46
  year: 2012
  end-page: 24253
  article-title: Carbon nanodots: synthesis, properties and applications
  publication-title: J Mater Chem
– volume: 48
  start-page: 907
  issue: 5
  year: 2006
  end-page: 913
  article-title: Biomaterials for the treatment of myocardial infarction
  publication-title: J Am Coll Cardiol
– volume: 180
  start-page: 590
  year: 2021
  end-page: 598
  article-title: Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering
  publication-title: Int J Biol Macromol
– volume: 63
  start-page: 131
  year: 2016
  end-page: 141
  article-title: Electrically conductive gold nanoparticle‐chitosan thermosensitive hydrogels for cardiac tissue engineering
  publication-title: Mater Sci Eng C
– volume: 133
  start-page: 5206
  issue: 14
  year: 2011
  end-page: 5209
  article-title: Electrical switching between vesicles and micelles via redox‐responsive self‐assembly of amphiphilic rod‐coils
  publication-title: J Am Chem Soc
– volume: 68
  start-page: 29
  year: 2017
  end-page: 40
  article-title: Tissue engineering: toward a new era of medicine
  publication-title: Annu Rev Med
– volume: 186
  year: 2020
  article-title: Graphene aerogel nanoparticles for in‐situ loading/pH sensitive releasing anticancer drugs
  publication-title: Colloids Surf B Biointerfaces
– year: 2020
– volume: 1316
  year: 2011
  article-title: Poly lactic‐co‐glycolic acid carbon nanofiber composite for enhancing Cardiomyocyte function
  publication-title: MRS Proc
– volume: 366
  start-page: 208
  year: 2019
  end-page: 222
  article-title: Micropatterned, electroactive, and biodegradable poly(glycerol sebacate)‐aniline trimer elastomer for cardiac tissue engineering
  publication-title: Chem Eng J
– volume: 106
  start-page: 2923
  issue: 11
  year: 2018
  end-page: 2933
  article-title: Electroactive graphene composite scaffolds for cardiac tissue engineering
  publication-title: J Biomed Mater Res A
– volume: 15
  start-page: 4205
  year: 2020
  end-page: 4224
  article-title: Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine
  publication-title: Int J Nanomedicine
– year: 2022
  article-title: Biodegradable antibacterial and antioxidant nanocomposite films based on dextrin for bioactive food packaging
  publication-title: J Nanostruct Chem
– volume: 107
  start-page: 204
  issue: 1
  year: 2019
  end-page: 219
  article-title: Electroactive graphene oxide‐incorporated collagen assisting vascularization for cardiac tissue engineering
  publication-title: J Biomed Mater Res A
– volume: 190
  start-page: 931
  issue: 3
  year: 2020
  end-page: 948
  article-title: Development of a novel electroactive cardiac patch based on carbon nanofibers and gelatin encouraging vascularization
  publication-title: Appl Biochem Biotechnol
– start-page: 17
  year: 2018
  end-page: 51
– start-page: 135
  year: 2012
  end-page: 153
– volume: 4
  start-page: 20441
  issue: 39
  year: 2014
  end-page: 20448
  article-title: Synthesis of graphene from natural and industrial carbonaceous wastes
  publication-title: RSC Adv
– volume: 31
  issue: 1_supplement
  year: 2017
  article-title: Conductive gel polymers as an extracellular matrix mimic and cell vehicle for cardiac tissue engineering
  publication-title: FASEB J
– volume: 5
  start-page: 193
  issue: 1
  year: 2018
  end-page: 214
  article-title: Three‐dimensional graphene foams: synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering
  publication-title: ACS Biomater Sci Eng
– year: 2011
– start-page: 581
  year: 2020
  end-page: 601
– volume: 20
  start-page: 9032
  issue: 41
  year: 2010
  end-page: 9036
  article-title: Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films
  publication-title: J Mater Chem
– volume: 87
  start-page: 18
  year: 2016
  end-page: 31
  article-title: Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering
  publication-title: Biomaterials
– volume: 41
  start-page: 133
  year: 2016
  end-page: 146
  article-title: Gold nanorod‐incorporated gelatin‐based conductive hydrogels for engineering cardiac tissue constructs
  publication-title: Acta Biomater
– volume: 48
  start-page: 310
  issue: 6
  year: 2015
  end-page: 314
  article-title: Biomedical applications of promising nanomaterials with carbon nanotubes
  publication-title: Biomed Eng
– volume: 98
  start-page: 324
  year: 2019
  end-page: 332
  article-title: Preparation and characterization of electrospun rGO‐poly (ester amide) conductive scaffolds
  publication-title: Mater Sci Eng C
– volume: 356
  start-page: 1035
  issue: 6342
  year: 2017
  end-page: 1039
  article-title: Cardiac regeneration strategies: staying young at heart
  publication-title: Science
– volume: 6
  start-page: 4214
  year: 2020
  end-page: 4224
  article-title: Electroconductive graphene containing polymeric patch: a promising platform for cardiac repair
  publication-title: ACS Biomater Sci Eng
– volume: 1417
  year: 2012
  article-title: Improved cardiomyocyte functions of carbon nanofiber cardiac patches
  publication-title: MRS Online Proc Lib Arch
– volume: 27
  start-page: 7563
  issue: 46
  year: 2015
  end-page: 7582
  article-title: Graphite oxide to graphene
  publication-title: Biomaterials to Bionics Adv Mater
– volume: 28
  start-page: 1741
  issue: 10
  year: 2007
  end-page: 1751
  article-title: Synthesis and characterization of electroactive and biodegradable ABA block copolymer of polylactide and aniline pentamer
  publication-title: Biomaterials
– volume: 10
  start-page: 2434
  issue: 6
  year: 2014
  end-page: 2445
  article-title: Development and characterization of novel electrically conductive PANI–PGS composites for cardiac tissue engineering applications
  publication-title: Acta Biomater
– volume: 30
  start-page: 1
  issue: 10
  year: 2019
  end-page: 15
  article-title: A review of accelerated wound healing approaches: biomaterial‐assisted tissue remodeling
  publication-title: J Mater Sci Mater Med
– volume: 34
  issue: 11
  year: 2021
  article-title: Trifluralin recognition using touch‐based fingertip: application of wearable glove‐based sensor toward environmental pollution and human health control
  publication-title: J Mol Recogn
– volume: 55
  start-page: 84
  year: 2015
  end-page: 95
  article-title: Carbon nanotubes enhance intercalated disc assembly in cardiac myocytes via the β1‐integrin‐mediated signaling pathway
  publication-title: Biomaterials
– volume: 564
  start-page: 430
  issue: 7736
  year: 2018
  end-page: 433
  article-title: Consistent success in life‐supporting porcine cardiac xenotransplantation
  publication-title: Nature
– volume: 25
  start-page: 2590
  issue: 17
  year: 2015
  end-page: 2600
  article-title: Graphene potentiates the myocardial repair efficacy of mesenchymal stem cells by stimulating the expression of angiogenic growth factors and gap junction protein
  publication-title: Adv Funct Mater
– start-page: 815
  year: 2010
  end-page: 818
– volume: 9
  start-page: 4987
  issue: 5
  year: 2015
  end-page: 4999
  article-title: Graphene oxide flakes as a cellular adhesive: prevention of reactive oxygen species mediated death of implanted cells for cardiac repair
  publication-title: ACS Nano
– volume: 10
  start-page: 982
  issue: 10
  year: 2018
  end-page: 994
  article-title: Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues
  publication-title: NPG Asia Materials
– volume: 25
  start-page: 369
  issue: 5
  year: 2004
  end-page: 373
  article-title: A portable meter for measuring low frequency currents in the human body
  publication-title: Bioelectromagnetics
– volume: 27
  start-page: 821
  issue: 11–12
  year: 2021
  end-page: 843
  article-title: Injectable cell‐laden hydrogels for tissue engineering: recent advances and future opportunities
  publication-title: Tissue Eng Part A
– volume: 242
  year: 2020
  article-title: Polycyclodextrins: synthesis, functionalization, and applications
  publication-title: Carbohydr Polym
– volume: 125
  start-page: 557
  year: 2017
  end-page: 570
  article-title: Mussel‐inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self‐healing and recovery behavior for tissue engineering
  publication-title: Carbon
– volume: 12
  issue: 3
  year: 2019
  article-title: Three‐dimensional printed biopatches with conductive ink facilitate cardiac conduction when applied to disrupted myocardium
  publication-title: Circ Arrhythm Electrophysiol
– volume: 2
  start-page: 427
  issue: 6
  year: 2013
  end-page: 433
  article-title: Biocompatibility evaluation of aniline oligomers with different end‐functional groups
  publication-title: Toxicol Res
– volume: 5
  start-page: 1305
  issue: 3
  year: 2022
  end-page: 1318
  article-title: Folic acid‐adorned curcumin‐loaded iron oxide nanoparticles for cervical cancer
  publication-title: ACS Appl Bio Mater
– volume: 4
  issue: 5
  year: 2014
  article-title: Heart transplantation: challenges facing the field
  publication-title: Cold Spring Harb Perspect Med
– volume: 9
  start-page: 8706
  issue: 26
  year: 2021
  end-page: 8720
  article-title: Multifunctional 3D hierarchical bioactive green carbon‐based nanocomposites
  publication-title: ACS Sustain Chem Eng
– volume: 12
  start-page: 35813
  issue: 32
  year: 2020
  end-page: 35825
  article-title: Graphene/CuO Nanoshuttles with controllable release of oxygen Nanobubbles promoting interruption of bacterial respiration
  publication-title: ACS Appl Mater Interfaces
– volume: 126
  start-page: 313
  year: 2015
  end-page: 321
  article-title: Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors
  publication-title: Colloids Surf B Biointerfaces
– volume: 14
  start-page: 484
  issue: 8
  year: 2017
  end-page: 491
  article-title: Redefining the identity of cardiac fibroblasts
  publication-title: Nat Rev Cardiol
– volume: 28
  start-page: 1617
  issue: 15
  year: 2017
  end-page: 1638
  article-title: A novel bio electro active alginate‐aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study
  publication-title: J Biomater Sci Polym Ed
– volume: 2
  start-page: 413
  year: 2017
  end-page: 443
– volume: 4
  start-page: 8110
  issue: 12
  year: 2021
  end-page: 8128
  article-title: Emerging phospholipid nanobiomaterials for biomedical applications to lab‐on‐a‐chip, drug delivery, and cellular engineering
  publication-title: ACS Appl Bio Mater
– volume: 7
  start-page: 8978
  issue: 19
  year: 2015
  end-page: 8994
  article-title: Personalized disease‐specific protein corona influences the therapeutic impact of graphene oxide
  publication-title: Nanoscale
– volume: 12
  start-page: 2403
  issue: 19
  year: 2017
  end-page: 2422
  article-title: Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing
  publication-title: Nanomedicine
– volume: 110
  start-page: 45
  year: 2016
  end-page: 59
  article-title: Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart‐on‐a‐chip
  publication-title: Biomaterials
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  end-page: 15
  article-title: Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling
  publication-title: Sci Rep
– volume: 32
  start-page: 579
  issue: 2
  year: 2011
  end-page: 586
  article-title: Infarct stabilization and cardiac repair with a VEGF‐conjugated, injectable hydrogel
  publication-title: Biomaterials
– volume: 7
  start-page: 3101
  issue: 8
  year: 2011
  end-page: 3112
  article-title: Poly (lactic–co‐glycolic acid): carbon nanofiber composites for myocardial tissue engineering applications
  publication-title: Acta Biomater
– volume: 40
  start-page: 237
  issue: 3
  year: 2019
  end-page: 269
  article-title: Fourth universal definition of myocardial infarction (2018)
  publication-title: Eur Heart J
– volume: 11
  start-page: 5646
  issue: 6
  year: 2017
  end-page: 5659
  article-title: Interwoven aligned conductive nanofiber yarn/hydrogel composite scaffolds for engineered 3D cardiac anisotropy
  publication-title: ACS Nano
– volume: 29
  start-page: 535
  issue: 5
  year: 2011
  end-page: 544
  article-title: Accelerated osteoblast mineralization on a conductive substrate by multiple electrical stimulation
  publication-title: J Bone Miner Metab
– volume: 5
  start-page: 10316
  issue: 21
  year: 2013
  end-page: 10326
  article-title: Flash photo stimulation of human neural stem cells on graphene/TiO heterojunction for differentiation into neurons
  publication-title: Nanoscale
– volume: 37
  start-page: 2017
  issue: 24
  year: 2016
  end-page: 2022
  article-title: Branched 1,2,3‐Triazolium‐functionalized polyacetylene with enhanced conductivity
  publication-title: Macromol Rapid Commun
– start-page: 535
  year: 2012
  end-page: 546
– volume: 66
  start-page: 395
  year: 2014
  end-page: 406
  article-title: Accelerated differentiation of neural stem cells into neurons on ginseng‐reduced graphene oxide sheets
  publication-title: Carbon
– volume: 56
  start-page: 1635
  issue: 11
  year: 2004
  end-page: 1647
  article-title: Three‐dimensional tissue fabrication
  publication-title: Adv Drug Deliv Rev
– volume: 30
  start-page: 1908612
  issue: 7
  year: 2020
  article-title: Nanofibrous composite with tailorable electrical and mechanical properties for cardiac tissue engineering
  publication-title: Adv Funct Mater
– volume: 34
  year: 2020
  article-title: Stimulus‐responsive sequential release systems for drug and gene delivery
  publication-title: Nano Today
– volume: 169
  year: 2021
  article-title: An innovative flexible and portable DNA based biodevice towards sensitive identification of Haemophilus influenzae bacterial genome: a new platform for the rapid and low cost recognition of pathogenic bacteria using point of care (POC) analysis
  publication-title: Microchem J
– volume: 1036
  start-page: 1
  year: 2013
  end-page: 17
  article-title: Cellular cardiomyoplasty: its past, present, and future
  publication-title: Methods Mol Biol
– volume: 514
  start-page: 517
  year: 2018
  end-page: 527
  article-title: Conductive nanofibrous composite scaffolds based on in‐situ formed polyaniline nanoparticle and polylactide for bone regeneration
  publication-title: J Colloid Interface Sci
– volume: 104
  start-page: 775
  issue: 3
  year: 2016
  end-page: 787
  article-title: Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part I: synthesis, characterization, and myoblast proliferation and differentiation
  publication-title: J Biomed Mater Res A
– volume: 34
  start-page: 74
  issue: 1
  year: 2019
  end-page: 85
  article-title: Three‐dimensional graphene foam as a conductive scaffold for cardiac tissue engineering
  publication-title: J Biomater Appl
– volume: 9
  start-page: 682
  issue: 3
  year: 2020
  article-title: 3D printed conductive Nanocellulose scaffolds for the differentiation of human Neuroblastoma cells
  publication-title: Cell
– volume: 95
  start-page: 1270
  issue: 4
  year: 2010
  end-page: 1279
  article-title: Bone bioelectricity: what have we learned in the past 160 years?
  publication-title: J Biomed Mater Res A
– volume: 56
  start-page: 11931
  issue: 80
  year: 2020
  end-page: 11940
  article-title: Fighting corrosion with stimuli‐responsive polymer conjugates
  publication-title: Chem Commun
– volume: 31
  start-page: 248
  issue: 2
  year: 2020
  end-page: 259
  article-title: Incorporation of two‐dimensional nanomaterials into silk fibroin nanofibers for cardiac tissue engineering
  publication-title: Polym Adv Technol
– volume: 304
  start-page: 1900187
  issue: 8
  year: 2019
  article-title: Studying the potential application of electrospun polyethylene terephthalate/graphene oxide nanofibers as electroconductive cardiac patch
  publication-title: Macromol Mater Eng
– volume: 232
  year: 2020
  article-title: Recent advances in porphyrin‐based nanocomposites for effective targeted imaging and therapy
  publication-title: Biomaterials
– volume: 22
  start-page: 2692
  issue: 13
  year: 2012
  end-page: 2699
  article-title: A single component conducting polymer hydrogel as a scaffold for tissue engineering
  publication-title: Adv Funct Mater
– volume: 101
  start-page: 1095
  issue: 4
  year: 2013
  end-page: 1102
  article-title: Novel injectable biomimetic hydrogels with carbon nanofibers and self assembled rosette nanotubes for myocardial applications
  publication-title: J Biomed Mater Res A
– volume: 8
  start-page: 17138
  issue: 27
  year: 2016
  end-page: 17150
  article-title: Self‐healing conductive injectable hydrogels with antibacterial activity as cell delivery carrier for cardiac cell therapy
  publication-title: ACS Appl Mater Interfaces
– volume: 140
  year: 2021
  article-title: Poly (amino acids) towards sensing: recent progress and challenges
  publication-title: Trends Anal Chem
– volume: 112
  start-page: 8922
  issue: 24
  year: 2008
  end-page: 8927
  article-title: Carbon nanotubes as free‐radical scavengers
  publication-title: J Phys Chem C
– start-page: 95
  year: 2019
  end-page: 124
– volume: 28
  start-page: 109
  year: 2015
  end-page: 120
  article-title: Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological development of cardiac cells
  publication-title: Acta Biomater
– volume: 9
  start-page: 6849
  issue: 8
  year: 2017
  end-page: 6864
  article-title: Enhanced cardiac differentiation of human cardiovascular disease patient‐specific induced pluripotent stem cells by applying unidirectional electrical pulses using aligned electroactive nanofibrous scaffolds
  publication-title: ACS Appl Mater Interfaces
– volume: 7
  start-page: 5653
  year: 2012
  article-title: Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application
  publication-title: Int J Nanomedicine
– volume: 3
  start-page: 176
  issue: 2
  year: 2014
  end-page: 181
  article-title: Graphene–regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules
  publication-title: Adv Healthc Mater
– volume: 115
  start-page: 4744
  issue: 11
  year: 2015
  end-page: 4822
  article-title: Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures
  publication-title: Chem Rev
– volume: 32
  start-page: 87
  issue: 1
  year: 2011
  end-page: 94
  article-title: Fluorescent PLLA‐nanodiamond composites for bone tissue engineering
  publication-title: Biomaterials
– volume: 31
  start-page: 3302
  issue: 12
  year: 2020
  end-page: 3315
  article-title: Electrospun captopril‐loaded PCL‐carbon quantum dots nanocomposite scaffold: fabrication, characterization, and in vitro studies
  publication-title: Polym Adv Technol
– volume: 247
  start-page: 116678
  year: 2020
  article-title: Antibacterial tragacanth gum‐based nanocomposite films carrying ascorbic acid antioxidant for bioactive food packaging
  publication-title: Carbohydr Polym
– volume: 354
  start-page: S32
  year: 1999
  end-page: S34
  article-title: Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation
  publication-title: Lancet
– volume: 4
  start-page: 27213
  issue: 52
  year: 2014
  end-page: 27223
  article-title: Cyto and genotoxicities of graphene oxide and reduced graphene oxide sheets on spermatozoa
  publication-title: RSC Adv
– volume: 4
  start-page: 1558
  issue: 5
  year: 2018
  end-page: 1567
  article-title: Electroconductive gelatin Methacryloyl‐PEDOT:PSS composite hydrogels: design, synthesis, and properties
  publication-title: ACS Biomater Sci Eng
– volume: 1
  start-page: 6291
  issue: 45
  year: 2013
  end-page: 6301
  article-title: Differentiation of human neural stem cells into neural networks on graphene nanogrids
  publication-title: J Mater Chem B
– volume: 16
  start-page: 5619
  issue: 9
  year: 2016
  end-page: 5630
  article-title: Graphene jet nanomotors in remote controllable self‐propulsion swimmers in pure water
  publication-title: Nano Lett
– volume: 24
  start-page: 6136
  issue: 39
  year: 2014
  end-page: 6144
  article-title: Layer‐by‐layer assembly of 3D tissue constructs with functionalized graphene
  publication-title: Adv Funct Mater
– volume: 19
  start-page: 57
  issue: 3
  year: 2017
  article-title: Carbon nanotubes embedded in embryoid bodies direct cardiac differentiation
  publication-title: Biomed Microdevices
– volume: 14
  start-page: 5792
  issue: 10
  year: 2014
  end-page: 5796
  article-title: Gold nanoparticle‐decellularized matrix hybrids for cardiac tissue engineering
  publication-title: Nano Lett
– volume: 74
  start-page: 489
  issue: 3
  year: 2005
  end-page: 496
  article-title: Collagen–carbon nanotube composite materials as scaffolds in tissue engineering
  publication-title: J Biomed Mater Res A
– volume: 81
  start-page: 457
  issue: 3
  year: 2009
  end-page: 464
  article-title: Oxidative stress and left ventricular remodelling after myocardial infarction
  publication-title: Cardiovasc Res
– volume: 31
  start-page: 134
  year: 2016
  end-page: 143
  article-title: Hybrid hydrogel‐aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies
  publication-title: Acta Biomater
– volume: 9
  start-page: 1
  issue: 66
  year: 2012
  end-page: 19
  article-title: Biomaterial strategies for alleviation of myocardial infarction
  publication-title: J R Soc Interface
– volume: 4
  start-page: 3169
  issue: 19
  year: 2016
  end-page: 3190
  article-title: Graphene scaffolds in progressive nanotechnology/stem cell‐based tissue engineering of the nervous system
  publication-title: J Mater Chem B
– start-page: 459
  year: 2017
  end-page: 478
– volume: 34
  start-page: Portico
  issue: 11
  year: 2021
  article-title: Enzymatic recognition of hydrogen peroxide (H O ) in human plasma samples using HRP immobilized on the surface of poly(arginine‐toluidine blue)‐Fe O nanoparticles modified polydopamine; A novel biosensor
  publication-title: J Mol Recogn
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  end-page: 10
  article-title: Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair
  publication-title: Nat Commun
– volume: 23
  start-page: 1797
  issue: 7
  year: 2012
  end-page: 1809
  article-title: Axially aligned electrically conducting biodegradable nanofibers for neural regeneration
  publication-title: J Mater Sci Mater Med
– volume: 2
  start-page: 5602
  issue: 34
  year: 2014
  end-page: 5611
  article-title: The use of graphene in the self‐organized differentiation of human neural stem cells into neurons under pulsed laser stimulation
  publication-title: J Mater Chem B
– volume: 44
  start-page: 24
  year: 2014
  end-page: 37
  article-title: Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application
  publication-title: Mater Sci Eng C
– volume: 6
  start-page: 1470
  issue: 3
  year: 2014
  end-page: 1480
  article-title: New strategy for controlled release of drugs. Potential pinpoint targeting with multiresponsive Tetraaniline Diblock polymer vesicles: site‐directed burst release with voltage
  publication-title: ACS Appl Mater Interfaces
– volume: 145
  year: 2021
  article-title: Smartphone based immunosensors as next generation of healthcare tools: technical and analytical overview towards improvement of personalized medicine
  publication-title: Trends Anal Chem
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 10
  article-title: β‐Cardiac myosin hypertrophic cardiomyopathy mutations release sequestered heads and increase enzymatic activity
  publication-title: Nat Commun
– volume: 5
  start-page: 37553
  issue: 47
  year: 2015
  end-page: 37567
  article-title: Electrically conductive polymers and composites for biomedical applications
  publication-title: RSC Adv
– volume: 23
  start-page: 1312
  issue: 3
  year: 2021
  end-page: 1329
  article-title: An environmentally friendly wound dressing based on a self‐healing, extensible and compressible antibacterial hydrogel
  publication-title: Green Chem
– volume: 6
  start-page: 4214
  issue: 7
  year: 2020
  end-page: 4224
  article-title: Electroconductive graphene‐containing polymeric patch: a promising platform for future cardiac repair
  publication-title: ACS Biomater Sci Eng
– volume: 385
  start-page: 117
  issue: 9963
  year: 2015
  end-page: 171
  article-title: Global, regional, and national age‐sex specific all‐cause and cause‐specific mortality for 240 causes of death, 1990‐2013: a systematic analysis for the global burden of disease study 2013
  publication-title: Lancet
– volume: 1
  start-page: 15
  issue: 1
  year: 2006
  end-page: 30
  article-title: Nanofibers and their applications in tissue engineering
  publication-title: Int J Nanomedicine
– volume: 12
  start-page: 3677
  issue: 27
  year: 2016
  end-page: 3689
  article-title: Reduced graphene oxide‐gelMA hybrid hydrogels as scaffolds for cardiac tissue engineering
  publication-title: Small
– volume: 11
  start-page: 4381
  year: 2016
  end-page: 4395
  article-title: Carbon nanotube‐based substrates promote cardiogenesis in brown adipose‐derived stem cells via β1‐integrin‐dependent TGF‐β1 signaling pathway
  publication-title: Int J Nanomedicine
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 14
  article-title: A new nanocomposite copolymer based on functionalised graphene oxide for development of heart valves
  publication-title: Sci Rep
– volume: 183
  start-page: 1818
  year: 2021
  end-page: 1850
  article-title: Chitosan‐based blends for biomedical applications
  publication-title: Int J Biol Macromol
– volume: 44
  start-page: 1100
  issue: 6
  year: 2006
  end-page: 1105
  article-title: Effects of fullerenes and single‐wall carbon nanotubes on murine and human macrophages
  publication-title: Carbon
– volume: 10
  start-page: 1078
  issue: 10
  year: 2018
  article-title: Incorporation of conductive materials into hydrogels for tissue engineering applications
  publication-title: Polymers
– volume: 1850
  start-page: 1158
  issue: 6
  year: 2015
  end-page: 1168
  article-title: Neural stem cell differentiation by electrical stimulation using a cross‐linked PEDOT substrate: expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering
  publication-title: Biochim Biophys Acta (BBA) Gen Subj
– volume: 139
  start-page: 179
  year: 2022
  end-page: 189
  article-title: Electrically conductive 3D printed Ti3C2Tx MXene‐PEG composite constructs for cardiac tissue engineering
  publication-title: Acta Biomater
– volume: 8
  start-page: 102
  issue: 3
  year: 2016
  article-title: Mussel‐inspired anisotropic nanocellulose and silver nanoparticle composite with improved mechanical properties, electrical conductivity and antibacterial activity
  publication-title: Polymers
– volume: 21
  start-page: 385
  issue: 4
  year: 2015
  end-page: 393
  article-title: Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering
  publication-title: Tissue Eng Part C Methods
– volume: 13
  start-page: 1005
  issue: 7
  year: 2021
  article-title: A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds
  publication-title: Polymers (Basel)
– volume: 11
  start-page: 986
  issue: 11
  year: 2012
  end-page: 994
  article-title: Macroporous nanowire nanoelectronic scaffolds for synthetic tissues
  publication-title: Nat Mater
– volume: 9
  start-page: 448
  issue: 9
  year: 2019
  article-title: Electrically conductive materials: opportunities and challenges in tissue engineering
  publication-title: Biomolecules
– volume: 113
  start-page: 164
  issue: 2
  year: 2006
  end-page: 172
  article-title: PLGA:poloxamer and PLGA:poloxamine blend nanostructures as carriers for nasal gene delivery
  publication-title: J Control Release
– volume: 7
  start-page: 82
  issue: 1
  year: 2016
  article-title: Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015)
  publication-title: Stem Cell Res Ther
– volume: 163
  start-page: 1136
  year: 2020
  end-page: 1146
  article-title: Conductive carbon nanofibers incorporated into collagen bio‐scaffold assists myocardial injury repair
  publication-title: Int J Biol Macromol
– volume: 72
  start-page: 577
  issue: 2
  year: 2001
  end-page: 591
  article-title: Tissue engineering: a 21st century solution to surgical reconstruction
  publication-title: Ann Thorac Surg
– volume: 7
  start-page: 17187
  issue: 1
  year: 2017
  article-title: A novel electroactive agarose‐aniline Pentamer platform as a potential candidate for neural tissue engineering
  publication-title: Sci Rep
– volume: 10
  start-page: 1717
  issue: 12
  year: 2010
  end-page: 1728
  article-title: Decellularized matrices for tissue engineering
  publication-title: Expert Opin Biol Ther
– volume: 11
  start-page: 269
  year: 2016
  article-title: Fullerene mediates proliferation and cardiomyogenic differentiation of adipose‐derived stem cells via modulation of MAPK pathway and cardiac protein expression
  publication-title: Int J Nanomedicine
– volume: 35
  start-page: 3069
  year: 2003
  end-page: 3071
  article-title: Challenges in heart transplantation: now and the future
  publication-title: Transplant Proc
– volume: 115
  start-page: 6279
  issue: 19
  year: 2011
  end-page: 6288
  article-title: Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near‐infrared irradiation
  publication-title: J Phys Chem B
– volume: 30
  start-page: 1725
  issue: 9
  year: 2009
  end-page: 1731
  article-title: Tubular micro‐scale multiwalled carbon nanotube‐based scaffolds for tissue engineering
  publication-title: Biomaterials
– volume: 99
  start-page: 82
  year: 2018
  end-page: 90
  article-title: Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite
  publication-title: Phys E
– volume: 187
  start-page: 66
  year: 2018
  end-page: 84
  article-title: Agarose‐based biomaterials for tissue engineering
  publication-title: Carbohydr Polym
– volume: 9
  start-page: 14677
  issue: 17
  year: 2017
  end-page: 14690
  article-title: Functionalized carbon nanotube and graphene oxide embedded electrically conductive hydrogel synergistically stimulates nerve cell differentiation
  publication-title: ACS Appl Mater Interfaces
– volume: 97
  start-page: 71
  year: 2016
  end-page: 77
  article-title: Rolled graphene oxide foams as three‐dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells
  publication-title: Carbon
– volume: 7
  start-page: 1003
  issue: 12
  year: 2008
  end-page: 1010
  article-title: Accordion‐like honeycombs for tissue engineering of cardiac anisotropy
  publication-title: Nat Mater
– volume: 113
  start-page: 20214
  issue: 47
  year: 2009
  end-page: 20220
  article-title: Photocatalytic reduction of graphene oxide nanosheets on TiO thin film for photoinactivation of bacteria in solar light irradiation
  publication-title: J Phys Chem C
– volume: 53
  start-page: 7412
  issue: 53
  year: 2017
  end-page: 7415
  article-title: Micro‐and nano‐patterned conductive graphene–PEG hybrid scaffolds for cardiac tissue engineering
  publication-title: Chem Commun
– volume: 8
  start-page: 239
  issue: 4
  year: 2019
  end-page: 248
  article-title: A novel polycaprolactone/carbon nanofiber composite as a conductive neural guidance channel: An in vitro and in vivo study
  publication-title: Prog Biomater
– volume: 25
  start-page: 331
  issue: 04
  year: 2007
  end-page: 339
  article-title: Electroactive and nanostructured polymers as scaffold materials for neuronal and cardiac tissue engineering
  publication-title: Chin J Polym Sci
– volume: 9
  start-page: 5533
  year: 2014
  article-title: Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites
  publication-title: Int J Nanomedicine
– volume: 80
  start-page: 154
  year: 2018
  end-page: 168
  article-title: Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post‐myocardial infarction in rats
  publication-title: Acta Biomater
– volume: 310
  start-page: 89
  year: 2014
  end-page: 128
  article-title: New insights into the roles of Xin repeat‐containing proteins in cardiac development, function, and disease
  publication-title: Int Rev Cell Mol Biol
– volume: 21
  start-page: 2347
  issue: 23
  year: 2000
  end-page: 2359
  article-title: Biomaterial developments for bone tissue engineering
  publication-title: Biomaterials
– volume: 62
  start-page: 34
  issue: 1
  year: 2004
  end-page: 42
  article-title: Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro
  publication-title: Cardiovasc Res
– volume: 22
  start-page: 1053
  issue: 4
  year: 2011
  end-page: 1062
  article-title: Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle
  publication-title: J Mater Sci Mater Med
– volume: 12
  start-page: 241
  issue: 2
  year: 2012
  end-page: 250
  article-title: Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin
  publication-title: Macromol Biosci
– volume: 119
  year: 1920
  article-title: Graphene‐based materials enhance cardiomyogenic and angiogenic differentiation capacity of human mesenchymal stem cells in vitro–focus on cardiac tissue regeneration
  publication-title: Mater Sci Eng C
– volume: 12
  start-page: 4346
  issue: 7
  year: 2022
  end-page: 4357
  article-title: Sensitive immunosensing of α‐synuclein protein in human plasma samples using gold nanoparticles conjugated with graphene: an innovative immuno‐platform towards early stage identification of Parkinson's disease using point of care (POC) analysis
  publication-title: RSC Adv
– volume: 6
  start-page: 1121
  issue: 6
  year: 2006
  end-page: 1125
  article-title: Cellular toxicity of carbon‐based nanomaterials
  publication-title: Nano Lett
– volume: 35
  start-page: 7346
  issue: 26
  year: 2014
  end-page: 7354
  article-title: Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs
  publication-title: Biomaterials
– volume: 7
  start-page: 24296
  issue: 43
  year: 2015
  end-page: 24311
  article-title: Stimulation of wound healing by electroactive, antibacterial, and antioxidant polyurethane/siloxane dressing membranes: in vitro and in vivo evaluations
  publication-title: ACS Appl Mater Interfaces
– volume: 224
  year: 2019
  article-title: An electroactive alginate hydrogel nanocomposite reinforced by functionalized graphite nanofilaments for neural tissue engineering
  publication-title: Carbohydr Polym
– volume: 48
  start-page: 509
  issue: 2
  year: 2010
  end-page: 519
  article-title: The effect of heat treatment on formation of graphene thin films from graphene oxide nanosheets
  publication-title: Carbon
– volume: 133
  start-page: e38
  issue: 4
  year: 2016
  end-page: e360
  article-title: Heart disease and stroke Statistics‐2016 update: a report from the American Heart Association
  publication-title: Circulation
– year: 2017
– volume: 9
  start-page: 167
  year: 2014
  article-title: 3D conductive nanocomposite scaffold for bone tissue engineering
  publication-title: Int J Nanomedicine
– volume: 5
  start-page: 15852
  issue: 7, Part 3
  year: 2018
  end-page: 15860
  article-title: Polyaniline in retrospect and prospect
  publication-title: Mater Today Proc
– volume: 17
  start-page: 1035
  year: 2022
  end-page: 1068
  article-title: Cell‐seeded biomaterial scaffolds: the urgent need for unanswered accelerated angiogenesis
  publication-title: Int J Nanomedicine
– volume: 7
  start-page: 2369
  issue: 3
  year: 2013
  end-page: 2380
  article-title: Carbon‐nanotube‐embedded hydrogel sheets for engineering cardiac constructs and bioactuators
  publication-title: ACS Nano
– volume: 6
  start-page: 720
  issue: 11
  year: 2011
  end-page: 725
  article-title: Nanowired three‐dimensional cardiac patches
  publication-title: Nat Nanotechnol
– volume: 516
  start-page: 57
  year: 2018
  end-page: 66
  article-title: A facile route to the synthesis of anilinic electroactive colloidal hydrogels for neural tissue engineering applications
  publication-title: J Colloid Interface Sci
– volume: 33
  start-page: 8017
  issue: 32
  year: 2012
  end-page: 8025
  article-title: Size‐dependent genotoxicity of graphene nanoplatelets in human stem cells
  publication-title: Biomaterials
– ident: e_1_2_10_134_1
  doi: 10.1007/s00774-010-0257-1
– ident: e_1_2_10_191_1
  doi: 10.1016/j.actbio.2018.11.032
– ident: e_1_2_10_221_1
  doi: 10.1016/j.matpr.2018.05.084
– ident: e_1_2_10_285_1
  doi: 10.1021/bm100470q
– ident: e_1_2_10_89_1
  doi: 10.1039/d1ra06030a
– ident: e_1_2_10_343_1
  doi: 10.1021/acsnano.9b03050
– ident: e_1_2_10_32_1
  doi: 10.1016/j.addr.2004.05.001
– ident: e_1_2_10_10_1
  doi: 10.1016/j.jddst.2020.101879
– ident: e_1_2_10_261_1
  doi: 10.1038/am.2013.79
– ident: e_1_2_10_266_1
  doi: 10.1002/adhm.201200307
– ident: e_1_2_10_267_1
  doi: 10.1016/j.carbon.2010.01.058
– ident: e_1_2_10_40_1
  doi: 10.1089/ten.tea.2020.0341
– ident: e_1_2_10_277_1
  doi: 10.1016/j.carbon.2018.05.068
– ident: e_1_2_10_324_1
  doi: 10.1021/acsabm.8b00440
– ident: e_1_2_10_8_1
  doi: 10.1016/j.msec.2019.109921
– ident: e_1_2_10_230_1
  doi: 10.1016/j.actbio.2016.09.019
– ident: e_1_2_10_204_1
  doi: 10.1016/j.biomaterials.2010.08.090
– ident: e_1_2_10_288_1
  doi: 10.1007/s10527-015-9476-z
– ident: e_1_2_10_348_1
  doi: 10.1557/opl.2011.663
– ident: e_1_2_10_340_1
  doi: 10.1002/jbm.b.34564
– ident: e_1_2_10_47_1
  doi: 10.1016/j.carbpol.2020.116678
– ident: e_1_2_10_93_1
  doi: 10.1088/2053-2571/aafb0cch4
– ident: e_1_2_10_113_1
  doi: 10.1038/nrcardio.2016.207
– ident: e_1_2_10_72_1
  doi: 10.1016/j.transproceed.2003.10.041
– ident: e_1_2_10_215_1
  doi: 10.1016/j.msec.2018.12.100
– ident: e_1_2_10_176_1
  doi: 10.1021/acsami.0c05732
– ident: e_1_2_10_319_1
  doi: 10.1038/s41598-020-65786-4
– ident: e_1_2_10_235_1
  doi: 10.1021/ja200297j
– ident: e_1_2_10_174_1
  doi: 10.1021/acs.nanolett.9b00472
– ident: e_1_2_10_224_1
  doi: 10.2217/nnm-2017-0173
– ident: e_1_2_10_13_1
  doi: 10.1038/nature17623
– ident: e_1_2_10_160_1
  doi: 10.1002/jbm.a.32905
– ident: e_1_2_10_161_1
  doi: 10.1039/C5RA01851J
– ident: e_1_2_10_140_1
  doi: 10.3390/cells9030682
– ident: e_1_2_10_41_1
  doi: 10.1016/j.ijbiomac.2021.05.003
– ident: e_1_2_10_175_1
  doi: 10.1021/nl201514a
– ident: e_1_2_10_126_1
  doi: 10.1016/j.msec.2014.06.004
– ident: e_1_2_10_310_1
  doi: 10.1002/mame.201900187
– ident: e_1_2_10_79_1
  doi: 10.1533/9780857096715.1.17
– ident: e_1_2_10_85_1
  doi: 10.1016/j.jacc.2006.06.005
– ident: e_1_2_10_205_1
  doi: 10.1016/j.compositesb.2018.01.028
– ident: e_1_2_10_117_1
  doi: 10.1038/nnano.2011.160
– ident: e_1_2_10_269_1
  doi: 10.1139/cjpp-2018-0225
– ident: e_1_2_10_114_1
  doi: 10.1021/acsnano.7b01062
– ident: e_1_2_10_135_1
  doi: 10.1016/j.carbpol.2019.115161
– ident: e_1_2_10_194_1
  doi: 10.1016/j.molliq.2019.112021
– ident: e_1_2_10_284_1
  doi: 10.1016/j.biomaterials.2008.12.031
– ident: e_1_2_10_234_1
  doi: 10.1039/c2tx20035j
– ident: e_1_2_10_95_1
  doi: 10.1016/j.micromeso.2020.110115
– ident: e_1_2_10_75_1
  doi: 10.1101/cshperspect.a015636
– ident: e_1_2_10_4_1
  doi: 10.1146/annurev-med-102715-092331
– ident: e_1_2_10_106_1
  doi: 10.1038/s41577-018-0098-z
– ident: e_1_2_10_86_1
  doi: 10.1038/nprot.2012.027
– ident: e_1_2_10_55_1
  doi: 10.1161/CIR.0b013e3182009701
– ident: e_1_2_10_81_1
  doi: 10.1016/j.biomaterials.2010.08.098
– ident: e_1_2_10_44_1
  doi: 10.2217/nnm‐2020‐0353
– ident: e_1_2_10_66_1
  doi: 10.1152/physrev.00012.2007
– ident: e_1_2_10_226_1
  doi: 10.1016/j.biomaterials.2012.10.065
– ident: e_1_2_10_246_1
  doi: 10.1002/mabi.200800005
– volume: 9
  start-page: 401
  issue: 11
  year: 2019
  ident: e_1_2_10_316_1
  article-title: A novel graphene oxide polymer gel platform for cardiac tissue engineering application
  publication-title: Biotechniques
– ident: e_1_2_10_268_1
  doi: 10.1002/smll.200901934
– volume-title: Gray's Anatomy for Students
  year: 2009
  ident: e_1_2_10_57_1
– ident: e_1_2_10_210_1
  doi: 10.1016/j.actbio.2018.09.035
– ident: e_1_2_10_170_1
  doi: 10.1007/s10856-012-4654-y
– ident: e_1_2_10_181_1
  doi: 10.3390/bioengineering6010017
– ident: e_1_2_10_218_1
  doi: 10.1002/adma.201704235
– ident: e_1_2_10_167_1
  doi: 10.1016/j.polymer.2016.11.012
– ident: e_1_2_10_83_1
  doi: 10.1002/9783527689934.ch13
– ident: e_1_2_10_200_1
  doi: 10.1002/pat.5054
– ident: e_1_2_10_271_1
  doi: 10.1039/d0cc03061a
– ident: e_1_2_10_289_1
  doi: 10.1021/nl060162e
– ident: e_1_2_10_233_1
  doi: 10.1039/c3tx50060h
– ident: e_1_2_10_306_1
  doi: 10.1002/jbm.a.36481
– ident: e_1_2_10_321_1
  doi: 10.1038/s41598-020-65786-4
– volume: 13
  start-page: 612
  issue: 6
  year: 2018
  ident: e_1_2_10_118_1
  article-title: Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke
  publication-title: Int J Stroke
– ident: e_1_2_10_199_1
  doi: 10.1021/nn103521g
– ident: e_1_2_10_302_1
  doi: 10.1016/j.bbrc.2014.08.062
– ident: e_1_2_10_150_1
  doi: 10.1016/B978-0-12-387738-3.00030-5
– ident: e_1_2_10_168_1
  doi: 10.1002/adfm.201102373
– ident: e_1_2_10_341_1
  doi: 10.1161/CIRCEP.118.006920
– ident: e_1_2_10_130_1
  doi: 10.3390/biom9090448
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: e_1_2_10_110_1
  article-title: Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair
  publication-title: Nat Commun
– ident: e_1_2_10_311_1
  doi: 10.1038/s41598-020-62122-8
– ident: e_1_2_10_354_1
  doi: 10.1016/j.ijbiomac.2020.06.259
– ident: e_1_2_10_129_1
  doi: 10.1002/adma.201500411
– ident: e_1_2_10_63_1
  doi: 10.1557/mrs2010.528
– ident: e_1_2_10_91_1
  doi: 10.2147/IJN.S245936
– ident: e_1_2_10_177_1
  doi: 10.1088/1361-6528/aba142
– ident: e_1_2_10_195_1
  doi: 10.1016/j.actbio.2011.04.028
– ident: e_1_2_10_53_1
  doi: 10.1161/CIRCRESAHA.116.309115
– volume-title: Anatomy & Physiology
  year: 2020
  ident: e_1_2_10_149_1
– volume: 7
  start-page: 5653
  year: 2012
  ident: e_1_2_10_158_1
  article-title: Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application
  publication-title: Int J Nanomedicine
– ident: e_1_2_10_317_1
  doi: 10.1002/adfm.201500365
– ident: e_1_2_10_294_1
  doi: 10.1155/2013/751913
– year: 2020
  ident: e_1_2_10_141_1
  article-title: Synergistic effects of conductivity and cell‐imprinted topography of chitosan‐polyaniline based scaffolds for neural differentiation of adipose‐derived stem cells
  publication-title: bioRxiv
– ident: e_1_2_10_50_1
  doi: 10.1002/jmr.2927
– ident: e_1_2_10_92_1
  doi: 10.1177/0885328219839037
– ident: e_1_2_10_223_1
  doi: 10.1021/am404696u
– ident: e_1_2_10_290_1
  doi: 10.1016/S0960-894X(00)00159-1
– ident: e_1_2_10_128_1
  doi: 10.1002/jbm.a.35080
– ident: e_1_2_10_15_1
  doi: 10.1039/D0GC02719G
– ident: e_1_2_10_69_1
  doi: 10.1016/j.drudis.2020.02.005
– volume: 9
  start-page: 5533
  year: 2014
  ident: e_1_2_10_351_1
  article-title: Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites
  publication-title: Int J Nanomedicine
– ident: e_1_2_10_68_1
  doi: 10.1016/j.jconrel.2020.07.028
– ident: e_1_2_10_28_1
  doi: 10.1021/acsami.1c01460
– ident: e_1_2_10_183_1
  doi: 10.1016/j.carbpol.2019.115112
– ident: e_1_2_10_336_1
  doi: 10.2147/IJN.S128030
– ident: e_1_2_10_30_1
  doi: 10.1016/S1369-7021(11)70058-X
– ident: e_1_2_10_213_1
  doi: 10.1152/ajpheart.00610.2003
– ident: e_1_2_10_96_1
  doi: 10.1021/acssuschemeng.1c00781
– ident: e_1_2_10_142_1
  doi: 10.1002/jbm.a.37031
– ident: e_1_2_10_193_1
  doi: 10.1007/s40204-019-00121-3
– ident: e_1_2_10_222_1
  doi: 10.1016/j.jconrel.2006.03.017
– ident: e_1_2_10_23_1
  doi: 10.1016/j.jhazmat.2021.127130
– ident: e_1_2_10_228_1
  doi: 10.1016/j.biomaterials.2018.01.021
– ident: e_1_2_10_52_1
  doi: 10.1016/j.scitotenv.2022.153902
– ident: e_1_2_10_100_1
  doi: 10.1039/C8TB01116H
– ident: e_1_2_10_146_1
  doi: 10.1016/j.cardiores.2003.12.022
– ident: e_1_2_10_281_1
  doi: 10.1016/j.physe.2018.01.025
– ident: e_1_2_10_6_1
  doi: 10.1007/978-981-16-2271-7_5
– ident: e_1_2_10_159_1
  doi: 10.1016/j.msec.2020.111344
– ident: e_1_2_10_287_1
  doi: 10.1016/j.matdes.2009.11.058
– ident: e_1_2_10_90_1
  doi: 10.1016/j.biomaterials.2016.09.003
– ident: e_1_2_10_105_1
  doi: 10.1002/jbm.a.35447
– ident: e_1_2_10_260_1
  doi: 10.1039/C5NR00520E
– ident: e_1_2_10_338_1
  doi: 10.1007/s10544-017-0184-1
– ident: e_1_2_10_353_1
  doi: 10.1007/s12010-019-03135-6
– ident: e_1_2_10_352_1
  doi: 10.1002/jbm.a.34400
– ident: e_1_2_10_18_1
  doi: 10.1016/S0142-9612(00)00102-2
– ident: e_1_2_10_308_1
  doi: 10.1021/acsbiomaterials.0c00266
– ident: e_1_2_10_7_1
  doi: 10.1002/pat.4579
– ident: e_1_2_10_88_1
  doi: 10.1161/CIRCRESAHA.113.300219
– ident: e_1_2_10_148_1
  doi: 10.1016/j.actbio.2014.02.023
– ident: e_1_2_10_24_1
  doi: 10.1016/j.carbon.2013.09.015
– ident: e_1_2_10_201_1
  doi: 10.1002/jbm.a.37048
– ident: e_1_2_10_293_1
  doi: 10.1021/jp801379g
– ident: e_1_2_10_17_1
  doi: 10.3389/fbioe.2020.529244
– ident: e_1_2_10_251_1
  doi: 10.1117/12.2084165
– ident: e_1_2_10_22_1
  doi: 10.1016/j.carbon.2013.03.010
– volume: 106
  start-page: 62
  issue: 1
  year: 2016
  ident: e_1_2_10_67_1
  article-title: Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment
  publication-title: Arq Bras Cardiol
– ident: e_1_2_10_46_1
  doi: 10.1007/s40097‐022‐00491‐4
– ident: e_1_2_10_122_1
  doi: 10.1016/j.apmt.2020.100784
– ident: e_1_2_10_145_1
  doi: 10.1016/j.addr.2019.06.001
– ident: e_1_2_10_225_1
  doi: 10.1021/acsami.6b15271
– ident: e_1_2_10_45_1
  doi: 10.3390/polym13071105
– ident: e_1_2_10_54_1
  doi: 10.1161/CIR.0000000000000558
– ident: e_1_2_10_139_1
  doi: 10.1038/s41598-017-17486-9
– volume: 1417
  year: 2012
  ident: e_1_2_10_349_1
  article-title: Improved cardiomyocyte functions of carbon nanofiber cardiac patches
  publication-title: MRS Online Proc Lib Arch
  doi: 10.1557/opl.2012.763
– ident: e_1_2_10_262_1
– ident: e_1_2_10_279_1
  doi: 10.1016/j.msec.2020.111614
– ident: e_1_2_10_82_1
  doi: 10.1016/B978-0-12-802734-9.00029-9
– ident: e_1_2_10_157_1
  doi: 10.1021/nn305559j
– ident: e_1_2_10_318_1
  doi: 10.1038/s41427-018-0092-8
– ident: e_1_2_10_190_1
  doi: 10.1002/smll.201600178
– ident: e_1_2_10_34_1
  doi: 10.1007/978-981-10-2723-9_2
– ident: e_1_2_10_178_1
  doi: 10.4172/2161-0525.1000384
– ident: e_1_2_10_307_1
  doi: 10.1021/acsbiomaterials.0c00266
– ident: e_1_2_10_314_1
  doi: 10.1002/adfm.201401300
– ident: e_1_2_10_187_1
  doi: 10.1021/am100293r
– ident: e_1_2_10_259_1
  doi: 10.1016/j.carbon.2015.08.017
– ident: e_1_2_10_180_1
  doi: 10.3390/polym8030102
– ident: e_1_2_10_189_1
  doi: 10.1002/jbm.a.36555
– ident: e_1_2_10_59_1
  doi: 10.1093/eurheartj/ehy462
– ident: e_1_2_10_62_1
  doi: 10.1126/science.aam5894
– ident: e_1_2_10_231_1
  doi: 10.1021/acsami.7b10583
– ident: e_1_2_10_295_1
  doi: 10.1021/acsnano.7b00221
– ident: e_1_2_10_136_1
  doi: 10.1016/j.jcis.2017.12.062
– ident: e_1_2_10_333_1
  doi: 10.1016/j.biomaterials.2015.03.030
– ident: e_1_2_10_143_1
  doi: 10.1016/j.bbagen.2015.01.020
– ident: e_1_2_10_20_1
  doi: 10.1007/s40820-021-00697-1
– volume: 17
  start-page: 735
  issue: 3
  year: 2014
  ident: e_1_2_10_31_1
  article-title: Bringing regenerating tissues to life: the importance of angiogenesis in tissue engineering
  publication-title: Angiogenesis
– ident: e_1_2_10_121_1
  doi: 10.1016/j.jcis.2018.01.044
– ident: e_1_2_10_280_1
  doi: 10.1063/1.4775582
– ident: e_1_2_10_323_1
  doi: 10.1088/0957-4484/17/2/008
– ident: e_1_2_10_248_1
  doi: 10.1016/j.biomaterials.2016.02.010
– volume: 4
  issue: 2
  year: 2017
  ident: e_1_2_10_166_1
  article-title: Bio‐conductive scaffold based on agarose‐polyaniline for tissue engineering
  publication-title: J Skin Stem Cell
– ident: e_1_2_10_242_1
  doi: 10.1142/S0256767907002199
– ident: e_1_2_10_217_1
  doi: 10.1021/acsami.8b18844
– ident: e_1_2_10_164_1
  doi: 10.1016/j.msec.2014.07.061
– ident: e_1_2_10_209_1
  doi: 10.1016/j.carbpol.2020.116277
– ident: e_1_2_10_232_1
  doi: 10.1021/bm4018963
– ident: e_1_2_10_346_1
  doi: 10.2147/nano.2006.1.1.15
– ident: e_1_2_10_347_1
  doi: 10.1039/d0py00787k
– ident: e_1_2_10_331_1
  doi: 10.1002/jbm.a.30386
– ident: e_1_2_10_249_1
  doi: 10.1016/j.biologicals.2017.01.007
– ident: e_1_2_10_111_1
  doi: 10.1038/s41467-020-19756-z
– ident: e_1_2_10_12_1
  doi: 10.1016/B978-0-12-818791-3.00013-9
– ident: e_1_2_10_61_1
  doi: 10.1021/bm401679q
– ident: e_1_2_10_19_1
  doi: 10.1039/C4TB00668B
– ident: e_1_2_10_84_1
  doi: 10.1186/s13287-016-0341-0
– volume: 118
  start-page: 368
  year: 2016
  ident: e_1_2_10_60_1
  article-title: Recounting cardiac cellular composition
  publication-title: Am Heart Assoc
– ident: e_1_2_10_120_1
  doi: 10.1038/nmat3404
– ident: e_1_2_10_238_1
  doi: 10.1002/adfm.201908612
– ident: e_1_2_10_274_1
  doi: 10.1016/j.jare.2019.03.011
– ident: e_1_2_10_328_1
  doi: 10.1016/j.ijbiomac.2021.03.001
– ident: e_1_2_10_208_1
  doi: 10.1016/j.biomaterials.2006.12.007
– ident: e_1_2_10_103_1
  doi: 10.1039/C7RA03780E
– ident: e_1_2_10_237_1
  doi: 10.1126/sciadv.1601007
– ident: e_1_2_10_283_1
  doi: 10.1016/B978-0-12-813355-2.00005-3
– ident: e_1_2_10_33_1
  doi: 10.1098/rsif.2011.0301
– ident: e_1_2_10_78_1
  doi: 10.1007/978-1-62703-511-8_1
– ident: e_1_2_10_179_1
  doi: 10.1016/j.carbon.2011.02.004
– ident: e_1_2_10_216_1
  doi: 10.1021/acsami.5b08376
– ident: e_1_2_10_335_1
  doi: 10.1016/j.actbio.2016.10.025
– ident: e_1_2_10_162_1
  doi: 10.1021/bm060220q
– ident: e_1_2_10_116_1
  doi: 10.1016/j.biotechadv.2019.02.009
– ident: e_1_2_10_80_1
  doi: 10.1021/nn507149w
– ident: e_1_2_10_112_1
  doi: 10.1038/s41467-019-10555-9
– ident: e_1_2_10_169_1
  doi: 10.1002/jbm.a.35408
– ident: e_1_2_10_171_1
  doi: 10.1016/j.msec.2016.02.056
– ident: e_1_2_10_243_1
  doi: 10.1016/j.cej.2019.02.072
– volume-title: Guyton and Hall Textbook of Medical Physiology (e‐Book)
  year: 2020
  ident: e_1_2_10_151_1
– ident: e_1_2_10_58_1
  doi: 10.1161/CIR.0000000000000350
– ident: e_1_2_10_108_1
  doi: 10.1038/s41467-019-09851-1
– ident: e_1_2_10_203_1
  doi: 10.1016/j.diamond.2013.10.012
– ident: e_1_2_10_291_1
  doi: 10.1021/cr500304f
– ident: e_1_2_10_325_1
  doi: 10.1002/mabi.201600250
– ident: e_1_2_10_101_1
  doi: 10.1039/C7CC01988B
– ident: e_1_2_10_37_1
  doi: 10.1039/C6TB00152A
– volume: 3
  start-page: 477
  issue: 4
  year: 2008
  ident: e_1_2_10_133_1
  article-title: Greater osteoblast proliferation on anodized nanotubular titanium upon electrical stimulation
  publication-title: Int J Nanomedicine
– ident: e_1_2_10_296_1
  doi: 10.1039/c2jm34690g
– ident: e_1_2_10_71_1
  doi: 10.1016/B978-0-08-102985-5.00009-7
– ident: e_1_2_10_115_1
  doi: 10.1016/j.apmt.2020.100656
– ident: e_1_2_10_275_1
  doi: 10.1002/smll.201203106
– ident: e_1_2_10_27_1
  doi: 10.1016/j.carbon.2015.06.079
– ident: e_1_2_10_236_1
  doi: 10.1016/j.actbio.2020.12.033
– ident: e_1_2_10_102_1
  doi: 10.1016/j.actbio.2017.06.036
– ident: e_1_2_10_344_1
  doi: 10.1002/marc.201600498
– ident: e_1_2_10_207_1
  doi: 10.1021/acsbiomaterials.8b00658
– volume: 24
  start-page: 2101
  issue: 6
  year: 2014
  ident: e_1_2_10_350_1
  article-title: Growth characteristics of different heart cells on novel nanopatch substrate during electrical stimulation
  publication-title: Biomed Mater Eng
– ident: e_1_2_10_39_1
  doi: 10.1016/j.eurpolymj.2019.05.024
– ident: e_1_2_10_337_1
  doi: 10.1016/j.actbio.2015.11.047
– ident: e_1_2_10_127_1
  doi: 10.1016/j.molliq.2020.113447
– ident: e_1_2_10_253_1
  doi: 10.1002/bem.20000
– ident: e_1_2_10_11_1
  doi: 10.1016/j.nantod.2020.100914
– ident: e_1_2_10_182_1
  doi: 10.3390/polym10101078
– ident: e_1_2_10_239_1
  doi: 10.1111/jocd.12730
– ident: e_1_2_10_98_1
  doi: 10.1038/nmat2316
– ident: e_1_2_10_5_1
  doi: 10.1007/978-981-16-2271-7_7
– ident: e_1_2_10_332_1
  doi: 10.1016/j.actbio.2008.07.005
– ident: e_1_2_10_263_1
  doi: 10.1016/j.trac.2021.116279
– ident: e_1_2_10_219_1
  doi: 10.1021/acs.biomac.8b00276
– ident: e_1_2_10_74_1
  doi: 10.1016/j.biomaterials.2009.06.045
– ident: e_1_2_10_137_1
  doi: 10.1016/j.ijpharm.2017.11.065
– ident: e_1_2_10_165_1
  doi: 10.1007/s10856-011-4259-x
– ident: e_1_2_10_282_1
  doi: 10.1021/jp906325q
– volume: 3
  start-page: 1
  issue: 1
  year: 2013
  ident: e_1_2_10_186_1
  article-title: Three‐dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells
  publication-title: Sci Rep
– ident: e_1_2_10_312_1
  doi: 10.7150/thno.25504
– ident: e_1_2_10_327_1
  doi: 10.1016/j.biomaterials.2014.05.014
– ident: e_1_2_10_265_1
  doi: 10.1021/acs.nanolett.6b02175
– ident: e_1_2_10_270_1
  doi: 10.1039/d1ra06437a
– ident: e_1_2_10_35_1
  doi: 10.1016/S0003-4975(01)02820-X
– ident: e_1_2_10_247_1
  doi: 10.1089/ten.tea.2008.0689
– ident: e_1_2_10_3_1
  doi: 10.1016/j.trac.2021.116455
– ident: e_1_2_10_309_1
  doi: 10.1007/s12010-019-02967-6
– ident: e_1_2_10_64_1
  doi: 10.1093/cvr/cvn335
– ident: e_1_2_10_198_1
  doi: 10.2217/nnm.15.196
– ident: e_1_2_10_184_1
  doi: 10.1039/c4ra01550a
– ident: e_1_2_10_250_1
  doi: 10.1016/j.actbio.2015.09.025
– ident: e_1_2_10_77_1
  doi: 10.1016/j.mser.2007.08.001
– ident: e_1_2_10_297_1
  doi: 10.1038/nnano.2011.209
– ident: e_1_2_10_320_1
  doi: 10.1016/j.msec.2018.12.122
– volume: 31
  issue: 1
  year: 2017
  ident: e_1_2_10_104_1
  article-title: Conductive gel polymers as an extracellular matrix mimic and cell vehicle for cardiac tissue engineering
  publication-title: FASEB J
– ident: e_1_2_10_97_1
  doi: 10.1016/j.actbio.2016.12.009
– ident: e_1_2_10_313_1
  doi: 10.1002/adma.201301082
– ident: e_1_2_10_147_1
  doi: 10.1016/j.actbio.2016.05.027
– ident: e_1_2_10_227_1
  doi: 10.1021/acsami.6b04911
– ident: e_1_2_10_202_1
  doi: 10.1016/j.jphotobiol.2019.111680
– ident: e_1_2_10_272_1
  doi: 10.1002/jmr.2928
– ident: e_1_2_10_56_1
  doi: 10.1016/S0140-6736(14)61682-2
– ident: e_1_2_10_152_1
  doi: 10.1016/B978-0-12-802002-9.00002-9
– volume: 9
  start-page: 167
  year: 2014
  ident: e_1_2_10_132_1
  article-title: 3D conductive nanocomposite scaffold for bone tissue engineering
  publication-title: Int J Nanomedicine
– ident: e_1_2_10_273_1
  doi: 10.1039/B917103G
– ident: e_1_2_10_329_1
  doi: 10.1016/j.ijbiomac.2019.08.046
– ident: e_1_2_10_255_1
  doi: 10.1016/j.biomaterials.2012.07.040
– ident: e_1_2_10_87_1
  doi: 10.1002/9783527689934
– ident: e_1_2_10_125_1
  doi: 10.1002/term.383
– ident: e_1_2_10_212_1
  doi: 10.1177/0885328219839037
– ident: e_1_2_10_342_1
  doi: 10.1039/C9BM00434C
– ident: e_1_2_10_94_1
  doi: 10.1007/s10856-019-6319-6
– ident: e_1_2_10_278_1
  doi: 10.1063/1.4827811
– ident: e_1_2_10_315_1
  doi: 10.1016/j.carbon.2017.09.071
– ident: e_1_2_10_300_1
  doi: 10.1515/bmc-2020-0017
– ident: e_1_2_10_99_1
  doi: 10.1016/j.actbio.2018.09.013
– ident: e_1_2_10_301_1
  doi: 10.1002/adhm.201300177
– ident: e_1_2_10_43_1
  doi: 10.1021/acsabm.1c00932
– ident: e_1_2_10_109_1
  doi: 10.1038/s41586-018-0765-z
– ident: e_1_2_10_185_1
  doi: 10.1016/j.carbon.2016.10.042
– ident: e_1_2_10_276_1
  doi: 10.1016/j.colsurfb.2019.110712
– ident: e_1_2_10_155_1
  doi: 10.14814/phy2.13860
– ident: e_1_2_10_26_1
  doi: 10.1016/j.biomaterials.2019.119707
– ident: e_1_2_10_154_1
  doi: 10.1016/B978-0-12-800180-6.00003-7
– ident: e_1_2_10_172_1
  doi: 10.1002/term.348
– ident: e_1_2_10_264_1
  doi: 10.1016/j.carbon.2009.09.069
– ident: e_1_2_10_305_1
  doi: 10.1021/acsami.7b08777
– ident: e_1_2_10_252_1
  doi: 10.1002/mabi.201100227
– ident: e_1_2_10_42_1
  doi: 10.1016/j.colsurfb.2014.12.027
– ident: e_1_2_10_14_1
  doi: 10.1016/j.biocel.2003.12.003
– ident: e_1_2_10_73_1
  doi: 10.1001/jama.285.5.573
– ident: e_1_2_10_229_1
  doi: 10.1002/jbm.a.35612
– ident: e_1_2_10_292_1
  doi: 10.1016/j.carbon.2005.11.009
– ident: e_1_2_10_173_1
  doi: 10.1021/nl502673m
– ident: e_1_2_10_241_1
  doi: 10.1163/156856206774879180
– ident: e_1_2_10_244_1
  doi: 10.1016/j.hrthm.2009.02.023
– ident: e_1_2_10_286_1
  doi: 10.1016/j.addr.2009.07.010
– ident: e_1_2_10_326_1
  doi: 10.1002/jemt.23282
– ident: e_1_2_10_192_1
  doi: 10.1039/c0jm01852j
– ident: e_1_2_10_51_1
  doi: 10.1016/j.microc.2021.106610
– ident: e_1_2_10_214_1
  doi: 10.1016/j.msec.2018.08.054
– ident: e_1_2_10_240_1
  doi: 10.1080/09205063.2017.1340044
– start-page: 815
  volume-title: Development of Conductive Polymer with Carbon Nanotubes for Regenerative Medicine Applications, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
  year: 2010
  ident: e_1_2_10_123_1
– ident: e_1_2_10_2_1
  doi: 10.1016/j.mtchem.2022.100780
– ident: e_1_2_10_256_1
  doi: 10.1016/j.carbon.2012.11.058
– ident: e_1_2_10_16_1
  doi: 10.1016/S0140-6736(99)90247-7
– ident: e_1_2_10_254_1
  doi: 10.1016/j.cap.2003.11.044
– ident: e_1_2_10_36_1
  doi: 10.3390/polym3020740
– ident: e_1_2_10_131_1
  doi: 10.1002/jbm.a.36282
– ident: e_1_2_10_21_1
  doi: 10.1517/14712598.2010.534079
– ident: e_1_2_10_48_1
  doi: 10.2147/ijn.s353062
– ident: e_1_2_10_65_1
  doi: 10.1007/978-3-031-02584-6
– ident: e_1_2_10_257_1
  doi: 10.1021/jp200686k
– ident: e_1_2_10_322_1
  doi: 10.1002/pat.4765
– ident: e_1_2_10_206_1
  doi: 10.1021/nn401196a
– ident: e_1_2_10_76_1
  doi: 10.1098/rstb.2007.2121
– ident: e_1_2_10_156_1
  doi: 10.1016/j.biomaterials.2017.01.012
– start-page: 4201
  volume-title: Three dimensional graphene scaffold for cardiac tissue engineering and in‐situ electrical recording. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2016
  ident: e_1_2_10_304_1
– ident: e_1_2_10_138_1
  doi: 10.1021/acsami.7b02072
– ident: e_1_2_10_345_1
  doi: 10.1002/pola.28430
– start-page: 1
  year: 2021
  ident: e_1_2_10_29_1
  article-title: Calcium‐based nanomaterials and their interrelation with chitosan: optimization for pCRISPR delivery
  publication-title: J Nanostruct Chem
– ident: e_1_2_10_197_1
  doi: 10.1039/C8BM00553B
– ident: e_1_2_10_70_1
  doi: 10.1016/B978-0-08-102985-5.00024-3
– ident: e_1_2_10_334_1
  doi: 10.2147/IJN.S114357
– ident: e_1_2_10_124_1
  doi: 10.1016/j.tibtech.2019.07.002
– ident: e_1_2_10_245_1
  doi: 10.1016/j.biomaterials.2005.11.037
– ident: e_1_2_10_211_1
  doi: 10.1016/j.actbio.2018.03.042
– ident: e_1_2_10_339_1
  doi: 10.1002/adma.201702713
– ident: e_1_2_10_303_1
  doi: 10.1039/C5NR07059G
– ident: e_1_2_10_299_1
  doi: 10.1007/s10059-013-0277-5
– ident: e_1_2_10_330_1
  doi: 10.1002/jbm.a.30315
– ident: e_1_2_10_196_1
  doi: 10.1021/nl802859a
– ident: e_1_2_10_258_1
  doi: 10.1039/c4ra01047g
– ident: e_1_2_10_107_1
  doi: 10.1038/nrcardio.2017.57
– ident: e_1_2_10_119_1
  doi: 10.1002/adfm.201800618
– ident: e_1_2_10_9_1
  doi: 10.1038/s41598-019-42633-9
– ident: e_1_2_10_25_1
  doi: 10.1039/c3nr02161k
– ident: e_1_2_10_153_1
  doi: 10.1016/B978-0-12-381361-9.00010-X
– volume: 5
  start-page: 229
  issue: 2
  year: 2019
  ident: e_1_2_10_163_1
  article-title: Conductive collagen/polypyrrole‐b‐polycaprolactone hydrogel for bioprinting of neural tissue constructs
  publication-title: Int J Bioprint
– ident: e_1_2_10_298_1
  doi: 10.1016/j.mtchem.2020.100250
– ident: e_1_2_10_49_1
  doi: 10.1021/acsabm.1c01311
– volume: 4
  start-page: 1558
  issue: 5
  year: 2018
  ident: e_1_2_10_220_1
  article-title: Electroconductive gelatin Methacryloyl‐PEDOT:PSS composite hydrogels: design, synthesis, and properties
  publication-title: ACS Biomater Sci Eng
– ident: e_1_2_10_38_1
  doi: 10.1016/j.carbpol.2018.01.060
– ident: e_1_2_10_144_1
  doi: 10.1089/ten.tec.2014.0338
– ident: e_1_2_10_188_1
  doi: 10.1039/c3tb21085e
SSID ssj0001613384
Score 2.506307
SecondaryResourceType review_article
Snippet A proper self‐regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders...
A proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders...
Abstract A proper self‐regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e10347
SubjectTerms Atherosclerosis
Biocompatibility
Biomedical materials
Carbon
Carbon fibers
Carbon nanotubes
carbon‐based biomaterials
cardiac tissue engineering
Cardiovascular disease
Catheters
Conducting polymers
Congenital diseases
Coronary vessels
Electrical resistivity
Extracellular matrix
Graphene
graphene oxide
Heart
Literature reviews
Mechanical properties
Nanofibers
Nanomaterials
Nanoparticles
Polymers
Review
scaffolds
stem cells
Substrates
Surgical implants
Tissue engineering
Toxicity
Vein & artery diseases
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS90wFD4MX9wexubm1k2log86KGZpmqSPKooI-qQg7CEkacIcd6m4exm-7SfsN-6X7CSp3b1M3MvoS9ocyiHnS_IlTb8DsI3OSeNdW8nW04pxUleGGo493ulaeN5YF7cGzs75ySU7vWqu5lJ9xTNhWR44N9yepwJJvReNc5Ihm8fL-I7oqDRlRO3j6EtkO7eY-pJ5DK692KhHSvfM9CuNf5jHPCpzM1AS6n-IXf59SHJ5Fm703Xc9mSwS2TQTHb-A5wOFLPez6y_hiQsr8GxOWPAVfDpK2W1iACZ3JS55o6orjmul1bemD79-_IyzV1fumOt-F--CDj1S14zGEnlsNETk2HKaAlO6P29_DZfHRxeHJ9WQRqGyyIZExZjzRpKmk5pY2wjdcutZg7wBqQHrkHEQybqP1AnRepy-jXbIATXBGu9qLK7CUuiDewulQ0bQUY08qeuYkd4wZqw0hjuJ0TGkgN37plV20BiPqS4mKqsjUxXDoFIYCtgabW-yssaDVgcxQqNFVMNODxAjasCI-hdGCli7j68auug3RQVvBI1aQgVsjtXYueIXEx1cP0s2UsYVoyzgTYbD6EnNuWToYwFiASgLri7WhOvPScC7lYwS3hawPULq0Sb4kND2iIk6uDijqfTuf7TXe3hKkcvlnaY1WJreztw6cq-p2Ujd7DfppS3i
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fa9RAEB_q9UH7IP5vtErEPlghNG42u5sHEU-uFKGHSAsFH8JudrcWzuQ875C--RH8jH4SZza5XA_LkZckO4RJZmb3N5vd3wDso3LKeFckqvAs4SLNEsOMwIh3OpNe5JWjqYGTsTg-45_O8_MtGC_3wtCyymWfGDpq21Q0R37IpMglI-qX99MfCVWNor-ryxIauiutYN8FirFbsM2IGWsA28PR-POX1ayLoJyM9zyl7NDMvzPaeU71Va6NTIHA_ybU-f_iyduLeqqvfunJZB3ghhHq6B7c7aBl_KH1hfuw5eoHsHONcPAhfB2FqjdkmMlVjKkwsb1ifxdXemaa-u_vPzSq2fi1uWwO8KrWdYOQtvXSGPEtCaJHVfE8GCx2q6c_grOj0enH46Qrr5BUiJJkwrnzRqW5VTqtqlzqQlSe54gnEDJwi0gkVdy-ZU7KwuOwbrRDbKhTbPEuw9PHMKib2u1C7BApWKYRP1nLjfKGc1MpY4RTTnGTRnCw_LRl1XGPUwmMSdmyJrOSzFAGM0TwqpedtowbN0oNyUK9BLFkhxvN7KLsgq70TGJC6GXuUAvMBPEw3qaaWMqMzHwEe0v7ll3o_ixXjhbBy74Zg47-pOjaNYsgoxRlkiqCJ6079JpkQiiOOkYg1xxlTdX1lvryWyD2LhRnqSgi2O9dauMneBO8bYNIOTw9YeHs6eZXfQZ3GKK3dm5pDwbz2cI9R7Q1Ny-6EPoHTuUsYQ
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9UwFD_M-aA-iH9ndUrFPTihrDdNkxR82WRjCBMfNhj4EJI20cFdOu7uRfbmR_Az-kk8J-3tXXEMpC9pc1oOOeckv5MmvwBsoXLKeldlqvIs4yIvMsuswIh3ppBelLWjqYGjL-LwhH8-LU_X4ONyL0zHDzFMuFFkxP6aAtzYy50VaaidnzPaMs7lHbg7QSBD_s3419UMi6D8i8fT5RStcReTgZ-U7axeH41Ikbj_JrT576LJe4twYa5-mul0DGzjyHTwCB72kDLd7XzgMay58AQeXCMafArf9uNpN2SQ6VWKKTCxvGI_l9ZmZtvw59dvGs2a9L09a7fxLpjQIpTtvDNFXEuC6El1Oo-GSt3q68_g5GD_-NNh1h-rkNWIjmTGufNW5WWjTF7XpTSVqD0vEUcgVOANIpBc8WbCnJSVx-HcGoeY0ORY412BxeewHtrgXkDqECE0zCBuahpulbec21pZK5xyits8ge1l0-q65xynoy-mumNLZprMoKMZEng3yF50TBs3Su2RhQYJYseOD9rZd90Hm_ZMYiLoZelQC8wA8bK-yQ2xk1lZ-AQ2l_bVfcheaiZFKRlxCyXwdqjGYKM_KCa4dhFllKIMUiWw0bnDoEkhhOKoYwJy5CgjVcc14exHJPSuFGe5qBLYGlzq1ib4EL3tFhG9d3zEYunl_wi_gvsMMVw3w7QJ6_PZwr1GzDW3b2Jo_QW2myha
  priority: 102
  providerName: Wiley-Blackwell
Title Electrically conductive carbon‐based (bio)‐nanomaterials for cardiac tissue engineering
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbtm2.10347
https://www.ncbi.nlm.nih.gov/pubmed/36684103
https://www.proquest.com/docview/2765720556
https://www.proquest.com/docview/2768811488
https://pubmed.ncbi.nlm.nih.gov/PMC9842069
https://doi.org/10.1002/btm2.10347
https://doaj.org/article/f27287f75ee84495959bfd0a1018b73f
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2380-6761
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001613384
  issn: 2380-6761
  databaseCode: KQ8
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2380-6761
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001613384
  issn: 2380-6761
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2380-6761
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001613384
  issn: 2380-6761
  databaseCode: ABDBF
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2380-6761
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001613384
  issn: 2380-6761
  databaseCode: DIK
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2380-6761
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001613384
  issn: 2380-6761
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Open Access)
  customDbUrl:
  eissn: 2380-6761
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001613384
  issn: 2380-6761
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2380-6761
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001613384
  issn: 2380-6761
  databaseCode: BENPR
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2380-6761
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001613384
  issn: 2380-6761
  databaseCode: 8FG
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2380-6761
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001613384
  issn: 2380-6761
  databaseCode: AVUZU
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2380-6761
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001613384
  issn: 2380-6761
  databaseCode: 24P
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7a2gfYA3dGYFQB9sCQMjLHsZ3HdrRMSKsqtEpDPER2YouJkkwjFRpP_AR-I7-EYycNC0wVipSbT6ITn3Piz7fPALuonFBGJ4FIDAkoC6NAEcUw4rWMuGFxpm3TwPGUHc3pu9P4dAOer-bCdPvvyWtVfSF2Yjjlm9BnMeLtHvTn09nwg1s1Ttix6-yg5R29-kCnpHGE_NehyH8HQ95YFufy8ptcLLqA1ZU4k9twuNK1HmjyeX9Zqf3s-180jus_5g7cagCnP6w95C5s6OIebF2hIbwPH8duLRxrrsWljxVkywGLf0E_kxeqLH79-GnLutx_qc7KPbwqZFEi0K1910fUawXRzzK_cmb09Z-3P4D5ZHxyeBQ0iy4EGWInHlCqjRJhnAsZZlnMZcIyQ2NEGQgkaI74JBQ0PyCa88RgYa-kRsQoQ0wxOsLTh9ArykI_Al8jfsiJRFSV51QJoyhVmVCKaaEFVaEHeysDpVnDSG4XxlikNZcySW2GpS7DPHjRyp7XPBzXSo2snVsJy53tbqAV0iYUU0M4VhMNjzVqgfVD3JTJQ2m5yxSPjAc7Ky9Jm4D-mhLOYk4s85AHz9pkDEXbvyILXS6djBC2fik82K6dqtUkYkxQ1NED3nG3jqrdlOLsk6P7TgQlIUs82G0dc20WvHI-u0YkHZ0cE3f2-P_e-QRuEsR2dcvTDvSqi6V-ilisUgPYJHSGezF5O4D-cPRmNMHjaDydvR-49o1BE66_ATVtOCw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED9N28PgAfGfwIAghsSQogXHsZ2HCVHo1LG1QqiTJu0h2IkNk0pSulZT3_gIfCI-DJ-Es_Onq5j6NvUlrU_R1b7z_e4S_w5gG5UTyugkEIkhAWVhFCiiGHq8lhE3LM60LQ30B6x3TD-dxCdr8Kc5C2Nfq2z2RLdR52Vma-S7hLOYE0v98m78M7Bdo-zT1aaFhqxbK-R7jmKsPthxqOcXmMKd7x18xPV-Rch-d_ihF9RdBoIMwQIPKNVGiTDOhQyzLOYyYZmhMYZVjJw0x4AcCpq_JZrzxGB0U1IjRJIhjhgdxbYgiiFgg0Y0weRvo9MdfP6yqPIwmwPSlheV7KrpD2JPutt-LpcioWsYcBXK_f9lzc1ZMZbzCzkaLQNqFxH3b8OtGsr67yvbuwNrurgLNy8RHN6D067rsmMNYTT3MfW27LK4v_qZnKiy-Pvrt42iuf9anZU7-K2QRYkQuvIKH_G0FUQLzvypMxBfL-5-H46vZaIfwHpRFvoR-BqRSU4k4rU8p0oYRanKhFJMCy2oCj3YaaY2zWquc9tyY5RWLM0ktcuQumXw4GUrO64YPq6U6tgVaiUsK7f7oZx8S2snTw3hmIAaHmvUAjNP_CiTh9KyoikeGQ-2mvVN663iPF0Ytgcv2mF0cvvkRha6nDkZIWzmKjx4WJlDq0nEmKCoowd8yVCWVF0eKc6-OyLxRFASssSD7dakVk7BG2dtK0TSzrBP3NXj1X_1OWz2hv2j9OhgcPgEbhBEjlVdawvWp5OZfopIb6qe1e7kw9fr9uB_M0RnhQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB5VRQJ6QPyzUGARRaJIq2wdr-09IERpQ0tpxaGVKvWw2Ls2VAq7IU1U5cYj8Dw8Dk_CjHezaUSVW5VLEo8ix56fb2btbwDWcHLKOJtGKnUs4iLuRoYZgRZvdVc6keSWSgP7B2LniH86To6X4M_0Lgwdq5z6RO-oiyqnGnmHSZFIRtQvHdcci_iy1Xs3-BlRByl60jptp1GryJ6dnGP6dvZ2dwv3-hVjve3DDztR02EgyhEoyIhz64yKk0LpOM8TqVORO55gSMWoyQsMxrHixQazUqYOI5vRFuGRjnHE2W5CxVB0_9cksbjTLfXex1l9R1D2x1tGVNYxox-M7rhTJ5cLMdC3CrgM3_5_TPPGuBzoybnu9-ehtI-FvdtwqwGx4fta6-7Aki3vwsoFasN7cLLt--uQCvQnISbdxCuLnjXM9dBU5d9fvyl-FuFrc1qt46dSlxWC59oeQkTSJIi6m4cjrxqhnf36fTi6kmV-AMtlVdpHEFrEJAXTiNSKghvlDOcmV8YIq6ziJg5gfbq0Wd6wnFOzjX5W8zOzjLYh89sQwMtWdlBze1wqtUk71EoQH7f_ohp-yxrzzhyTmHo6mVicBeac-DKuiDXxoRnZdQGsTvc3a5zEWTZT6QBetMNo3vTMRpe2GnsZpShnVQE8rNWhnUlXCMVxjgHIOUWZm-r8SHn63VOIp4qzWKQBrLUqtXAJ3nhtWyCSbR7uM__u8eK_-hyuo91mn3cP9p7ATYaQsS5orcLyaDi2TxHijcwzb0shfL1q4_0HYTNlHw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QE48H4ECgrQA0VKSR3Hdo5t1apCasWhKxVxsGzHFhWLU5WsUDnxE_iN_BLGTjY0UK1QLk48sSaemfjz6zPAOiontLNVJipHMsryItNEM4x4qwruWGlsGBo4PGIHU_rupDxZgZeLvTDj-XvyVrdfSNgYTvk1WGUl4u0JrE6P3m9_iKfGibB2nW0NvKOXXxi1NJGQ_yoU-e9iyOtzf6YuvqnZbAxYY4uzfxt2F7p2C00-b85bvWm-_0XjuPxj7sCtHnCm252H3IUV6-_BzUs0hPfh4148CyeYa3aRYgc5cMDiXzA16lw3_tePn6Gtq9PX-rTZwDuvfINAt_PdFFFvEEQ_M2kbzZjaP6U_gOn-3vHuQdYfupAZxE48o9Q6LfKyFio3puSqYsbRElEGAglaIz7JBa23iOW8ctjYa2URMaocc5wtMPkQJr7x9jGkFvFDTRSiqrqmWjhNqTZCa2aFFVTnCWwsDCRNz0geDsaYyY5LmchQYTJWWAKvBtmzjofjSqmdYOdBInBnxwdoBdmHonSEYzfR8dKiFtg_xEu7OleBu0zzwiWwtvAS2Qf0V0k4KzkJzEMJvBiyMRTD_IrytplHGSFC_1Ik8KhzqkGTgjFBUccE-MjdRqqOc_zpp0j3XQlKclYlsD445tIqeBN9domI3Dk-JDH15P_KfAo3CGK7buRpDSbt-dw-QyzW6ud9MP4GM8sybg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrically+conductive+carbon-based+%28bio%29-nanomaterials+for+cardiac+tissue+engineering&rft.jtitle=Bioengineering+%26+translational+medicine&rft.au=Jalilinejad%2C+Negin&rft.au=Rabiee%2C+Mohammad&rft.au=Baheiraei%2C+Nafiseh&rft.au=Ghahremanzadeh%2C+Ramin&rft.date=2023-01-01&rft.issn=2380-6761&rft.eissn=2380-6761&rft.volume=8&rft.issue=1&rft.spage=e10347&rft_id=info:doi/10.1002%2Fbtm2.10347&rft_id=info%3Apmid%2F36684103&rft.externalDocID=36684103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-6761&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-6761&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-6761&client=summon