Space-time areal mixture model: relabeling algorithm and model selection issues

With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label‐switching problem is often inherent in Bayesian implementation of mixture models, and a variety of relabeling algorithms...

Full description

Saved in:
Bibliographic Details
Published inEnvironmetrics (London, Ont.) Vol. 25; no. 2; pp. 84 - 96
Main Authors Hossain, M. M., Lawson, A. B., Cai, B., Choi, J., Liu, J., Kirby, R. S.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.03.2014
Subjects
Online AccessGet full text
ISSN1180-4009
1099-095X
1099-095X
DOI10.1002/env.2265

Cover

Abstract With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label‐switching problem is often inherent in Bayesian implementation of mixture models, and a variety of relabeling algorithms have been proposed. We use a space‐time mixture of Poisson regression models with homogeneous covariate effects to illustrate that the best model selected by using model selection criteria does not always support the model that is chosen by the optimal relabeling algorithm. The results are illustrated for real and simulated datasets. The objective is to make the reader aware that if the purpose of statistical modeling is to identify clusters, applying a relabeling algorithm to the model with the best fit may not generate the optimal relabeling. Copyright © 2014 John Wiley & Sons, Ltd.
AbstractList With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label-switching problem is often inherent in Bayesian implementation of mixture models and a variety of relabeling algorithms have been proposed. We use a space-time mixture of Poisson regression models with homogeneous covariate effects to illustrate that the best model selected by using model selection criteria does not always support the model that is chosen by the optimal relabeling algorithm. The results are illustrated for real and simulated datasets. The objective is to make the reader aware that if the purpose of statistical modeling is to identify clusters, applying a relabeling algorithm to the model with the best fit may not generate the optimal relabeling.
With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label-switching problem is often inherent in Bayesian implementation of mixture models, and a variety of relabeling algorithms have been proposed. We use a space-time mixture of Poisson regression models with homogeneous covariate effects to illustrate that the best model selected by using model selection criteria does not always support the model that is chosen by the optimal relabeling algorithm. The results are illustrated for real and simulated datasets. The objective is to make the reader aware that if the purpose of statistical modeling is to identify clusters, applying a relabeling algorithm to the model with the best fit may not generate the optimal relabeling. Copyright copyright 2014 John Wiley & Sons, Ltd.
With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label-switching problem is often inherent in Bayesian implementation of mixture models and a variety of relabeling algorithms have been proposed. We use a space-time mixture of Poisson regression models with homogeneous covariate effects to illustrate that the best model selected by using model selection criteria does not always support the model that is chosen by the optimal relabeling algorithm. The results are illustrated for real and simulated datasets. The objective is to make the reader aware that if the purpose of statistical modeling is to identify clusters, applying a relabeling algorithm to the model with the best fit may not generate the optimal relabeling.With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label-switching problem is often inherent in Bayesian implementation of mixture models and a variety of relabeling algorithms have been proposed. We use a space-time mixture of Poisson regression models with homogeneous covariate effects to illustrate that the best model selected by using model selection criteria does not always support the model that is chosen by the optimal relabeling algorithm. The results are illustrated for real and simulated datasets. The objective is to make the reader aware that if the purpose of statistical modeling is to identify clusters, applying a relabeling algorithm to the model with the best fit may not generate the optimal relabeling.
With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label‐switching problem is often inherent in Bayesian implementation of mixture models, and a variety of relabeling algorithms have been proposed. We use a space‐time mixture of Poisson regression models with homogeneous covariate effects to illustrate that the best model selected by using model selection criteria does not always support the model that is chosen by the optimal relabeling algorithm. The results are illustrated for real and simulated datasets. The objective is to make the reader aware that if the purpose of statistical modeling is to identify clusters, applying a relabeling algorithm to the model with the best fit may not generate the optimal relabeling. Copyright © 2014 John Wiley & Sons, Ltd.
Author Cai, B.
Choi, J.
Liu, J.
Kirby, R. S.
Hossain, M. M.
Lawson, A. B.
AuthorAffiliation 2 Division of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, Charleston, SC, USA
1 Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
5 Department of Community and Family Health, University of South Florida, Tampa, FL, USA
3 Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
4 Department of Mathematics, Hanyang University, South Korea
AuthorAffiliation_xml – name: 3 Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
– name: 5 Department of Community and Family Health, University of South Florida, Tampa, FL, USA
– name: 1 Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
– name: 2 Division of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, Charleston, SC, USA
– name: 4 Department of Mathematics, Hanyang University, South Korea
Author_xml – sequence: 1
  givenname: M. M.
  surname: Hossain
  fullname: Hossain, M. M.
  email: md.hossain@cchmc.org
  organization: Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, OH, Cincinnati, U.S.A
– sequence: 2
  givenname: A. B.
  surname: Lawson
  fullname: Lawson, A. B.
  organization: Division of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, SC, Charleston, U.S.A
– sequence: 3
  givenname: B.
  surname: Cai
  fullname: Cai, B.
  organization: Department of Epidemiology and Biostatistics, University of South Carolina, SC, Columbia, U.S.A
– sequence: 4
  givenname: J.
  surname: Choi
  fullname: Choi, J.
  organization: Department of Mathematics, Hanyang University, South Korea
– sequence: 5
  givenname: J.
  surname: Liu
  fullname: Liu, J.
  organization: Department of Epidemiology and Biostatistics, University of South Carolina, SC, Columbia, U.S.A
– sequence: 6
  givenname: R. S.
  surname: Kirby
  fullname: Kirby, R. S.
  organization: Department of Community and Family Health, University of South Florida, FL, Tampa, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25221430$$D View this record in MEDLINE/PubMed
BookMark eNqFkVtv1DAQhS1URC8g8QtQHuEhy9iOnZgHpFK1BakXpHLpm-U4k63BcRY7abv_nqy2tBQBfZqR5pujOWe2yUboAxLynMKMArDXGC5njEnxiGxRUCoHJc43pp5WkBcAapNsp_QNpk6K8gnZZIIxWnDYIqdnC2MxH1yHmYlofNa562GMmHV9g_5NFtGbGr0L88z4eR_dcNFlJjTreZbQox1cHzKX0ojpKXncGp_w2U3dIZ8P9j_tvc-PTg8_7O0e5VbQQuR1zWtayYZZzltsqlYpAwyKlomiaGsjoBLUUAqGSQscVCtAWVFWvEaoZcN3yKu17hgWZnllvNeL6DoTl5qCXoWip1D0KpSJfbtmF2PdYWMxDNHc8b1x-v4kuAs97y91QYVSkk0CL28EYv9jMjnoziWL3puA_Zg0rZiUAIJWD6MlUCiYEOXDqKRUMiqBT-iL3x3cnv7rj3daNvYpRWz_l8bsD9S6waxeOHl3_m8L-Xrhynlc_lNY7598uc-7NOD1LW_idy1LXgr99eRQHx-cVfz43Ud9zn8Cif7aQQ
CitedBy_id crossref_primary_10_6000_1929_6029_2015_04_04_1
crossref_primary_10_1002_bimj_201600018
crossref_primary_10_1007_s11222_017_9735_9
crossref_primary_10_1214_24_BA1419
crossref_primary_10_1016_j_sste_2014_08_001
Cites_doi 10.1214/06-BA122
10.1214/aos/1016120364
10.1016/S0169-7161(05)25016-2
10.1111/1467-9469.00242
10.1093/biostatistics/4.1.11
10.1198/106186007X238855
10.1080/01621459.1997.10474013
10.1002/env.599
10.1080/10485250211383
10.1007/s10651-008-0102-z
10.1017/CBO9780511584589.011
10.1007/s10651‐012‐0209‐0
10.1093/biomet/65.1.31
10.1111/1467-9868.00362
10.1111/1467-9868.00095
10.1111/j.1467-9574.2012.00516.x
10.1111/1467-9868.00353
10.1080/01966324.2011.10737798
10.1007/s11222-010-9226-8
10.1214/09-BA414
10.1093/biostatistics/kxm049
10.1016/j.csda.2006.07.020
10.1007/s11222-006-9008-5
10.1093/biomet/85.1.1
10.1002/env.613
10.1214/088342305000000016
10.1214/09-BA403
10.1111/j.1467-9868.2008.00700.x
10.1111/1467-9868.00265
10.1198/016214504000001565
10.1002/sim.3917
10.1080/01621459.1997.10474012
10.1093/biomet/93.4.877
10.1002/1097-0258(20000915/30)19:17/18<2555::AID-SIM587>3.0.CO;2-#
10.1007/BF00116466
10.1191/0962280205sm388oa
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
NPM
8FD
FR3
KR7
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/env.2265
DatabaseName Istex
CrossRef
PubMed
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
PubMed
MEDLINE - Academic

CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1099-095X
EndPage 96
ExternalDocumentID oai:pubmedcentral.nih.gov:4159962
PMC4159962
25221430
10_1002_env_2265
ENV2265
ark_67375_WNG_MFS83MBP_X
Genre article
Journal Article
GrantInformation_xml – fundername: NIH
  funderid: R21 HL088654‐01A2
– fundername: NHLBI NIH HHS
  grantid: R21 HL088654
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
ZY4
ZZTAW
~02
~IA
~WT
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WWD
AAYXX
CITATION
NPM
8FD
FR3
KR7
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5145-bb3b186d2c33fed8f99a0204f2544fba50851a110a26c0309f509c5783be0b6d3
IEDL.DBID DR2
ISSN 1180-4009
1099-095X
IngestDate Wed Oct 29 12:14:45 EDT 2025
Thu Aug 21 14:10:33 EDT 2025
Thu Jul 10 22:41:36 EDT 2025
Fri Jul 11 08:52:05 EDT 2025
Thu Oct 02 03:54:51 EDT 2025
Thu Apr 03 07:04:06 EDT 2025
Wed Oct 01 01:53:30 EDT 2025
Thu Apr 24 23:03:43 EDT 2025
Wed Jan 22 17:12:48 EST 2025
Sun Sep 21 06:19:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords relabeling algorithm
loss function
homogeneous covariate effect
DIC
Space-time mixture model
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5145-bb3b186d2c33fed8f99a0204f2544fba50851a110a26c0309f509c5783be0b6d3
Notes istex:E86E14AC134A8138621D7E61D0A2933BF2494BBB
Supporting info itemSupporting info item
ark:/67375/WNG-MFS83MBP-X
ArticleID:ENV2265
NIH - No. R21 HL088654-01A2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4159962
PMID 25221430
PQID 1611621603
PQPubID 23500
PageCount 13
ParticipantIDs unpaywall_primary_10_1002_env_2265
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4159962
proquest_miscellaneous_1826600518
proquest_miscellaneous_1701042557
proquest_miscellaneous_1611621603
pubmed_primary_25221430
crossref_primary_10_1002_env_2265
crossref_citationtrail_10_1002_env_2265
wiley_primary_10_1002_env_2265_ENV2265
istex_primary_ark_67375_WNG_MFS83MBP_X
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2014
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: March 2014
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmetrics (London, Ont.)
PublicationTitleAlternate Environmetrics
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Lau JW, Green PJ. 2007. Bayesian model based clustering procedure. Journal of Computational and Graphical Statistics 16: 526-558.
Gelman A, Carlin JB, Stern HS, Rubin DB. 2004. Bayesian Data Analysis. Chapmann & hall/CRC: Boca Raton.
Celeux G, Forbes F, Robert C, Titterington M. 2006. Deviance information criteria for missing data models. Bayesian Analysis 1: 651-674.
Lawson AB, Song HR, Cai B, Hossain MM, Huang K. 2010. Space-time latent component modeling of geo-referenced health data. Statistics in Medicine 29: 2012-2027.
Binder DA. 1981. Approximations to Bayesian clustering rules. The Annals of Statistics 68: 275-285.
Waller LA, Carlin BP, Xia H, Gelfand AE. 1997. Hierarchical spatio temporal-mapping of disease rates. Journal of the American Statistical Association 92: 607-617.
Binder DA. 1978. Bayesian cluster analysis. Biometrika 65: 31-38.
Hossain MM, Lawson AB. 2010. Space-time Bayesian small area disease risk models: development and evaluation with a focus on cluster detection. Environmental and Ecological Statistics 17: 73-95.
Fritsch A, Ickstadt K. 2009. Improved criteria for clustering based on the posterior similarity matrix. Bayesian Analysis 4: 367-392.
Green PJ, Richardson S. 2001. Modelling heterogeneity with and without the Dirichlet process. Scandinavian Journal of Statistics 28: 355-375.
Stephens M. 2000b. Dealing with label switching in mixture models. Journal of the Royal Statistical Society, Series B 62: 795-809.
Hossain MM, Lawson AB, Cai B, Choi J, Liu J, Kirby RS. 2012. Space-time stick-breaking processes for small area disease cluster estimation. Environmental and Ecological Statistics. DOI: 10.1007/s10651-012-0209-0
Christiansen CL, Morris CN. 1997. Hierarchical Poisson regression modeling. Journal of the American Statistical Association 92: 618-632.
Jasra A, Holmes CC, Stephens, DA. 2005. Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science 20: 50-67.
Yao W. 2012. Model based labeling for mixture models. Statistics and Computing 22: 337-347.
Gelfand AE, Ghosh SK. 1998. Model choice: a minimum posterior predictive loss. Biometrika 85: 1-11.
Meligkotsidou L. 2007. Bayesian multivariate Poisson mixtures with an unknown number of components. Statistics and Computing 17: 93-107.
Assunção RM. 2003. Space varying coefficient models for small area data. Environmetrics 14: 453-473.
Rue H, Martino S, Chopin N. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B 71: 319-392.
Spiegelhalter DJ, Thomas A, Best NG. 2003. WinBUGS: Bayesian Inference using Gibbs Sampling, Manual Version 1.4. Imperial College, London and Medical Research Council Biostatistics Unit: Cambridge.
Tadesse MG, Sha N, Vannucci M. 2005. Bayesian variable selection in clustering high-dimensional data. Journal of the American Statistical Association 100: 602-617.
Knorr-Held L. 2000. Bayesian modelling of inseparable space-time variation in disease risk. Statistics in Medicine 19: 2555-2567.
Viallefont V, Richardson S, Green PJ. 2002. Bayesian analysis of Poisson mixtures. Journal of Nonparametric Statistics 14: 181-202.
Stephens M. 2000a. Bayesian analysis of mixture models with an unknown number of components - an alternative to reversible jump methods. The Annals of Statistics 28: 40-74.
Best N, Richardson S, Thomson A. 2005. A comparison of Bayesian spatial models for Disease mapping. Statistical Methods in Medical Research 14: 35-59.
Ando T. 2012. Predictive Bayesian model selection. American Journal of Mathematical and Management Sciences 31: 13-38.
Fernandez C, Green PJ. 2002. Modelling spatially correlated data via mixtures: a Bayesian approach. Journal of the Royal Statistical Society, Series B 64: 805-826.
Kim S, Tadesse MG, Vannucci, M. 2006. Variable selection in clustering via Dirichlet process mixture models. Biometrika 93: 877-893.
Besag J, York J, Mollie A. 1991. Bayesian image-resporation, with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics 43: 1-20.
Richardson S, Green PJ. 1997. On Bayesian analysis of mixtures with an unknown number of components (with discussion). Journal of the Royal Statistical Society, Series B 59: 731-792.
Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. 2002. Bayesian measures of complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 64: 583-639.
McGrory CA, Titterington DM. 2007. Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics and Data Analysis 51: 5352-5367.
Plummer M. 2008. Penalized loss functions for Bayesian model comparison. Biostatistics 9: 523-539.
Banerjee S, Carlin BP. 2003. Semiparametric spatio-temporal frailty modeling. Environmetrics 14: 523-535.
Gelfand A, Vounatsou P. 2003. Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4: 11-25.
Kuo L, Mallick B. 1998. Variable selection for regression models. Sankhya (Series B) 60: 65-81.
Hastie DI, Green PJ. 2012. Model choice using reversible jump Markov chain Monte Carlo. Statistica Neerlandica 66: 309-338.
O'Hara RB, Sillanpaa MJ. 2009. A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis 4: 85-118.
2007; 17
2006; 93
2002; 14
2012
2010; 17
2000b; 62
2008; 9
2003; 14
1981; 68
2005; 20
2006
2004
2006; 1
2001; 28
2007; 51
2003
1998; 60
1998; 85
2012; 31
1999
2007; 16
2005; 25
2000; 19
1997; 92
2002; 64
2005; 100
1991; 43
1978; 65
2010; 29
2009; 71
1997; 59
2003; 4
2000a; 28
2009; 4
2012; 66
2012; 22
2005; 14
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Stern HS (e_1_2_9_39_1) 1999
Binder DA (e_1_2_9_8_1) 1981; 68
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Gelman A (e_1_2_9_16_1) 2004
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
Spiegelhalter DJ (e_1_2_9_36_1) 2003
e_1_2_9_3_1
e_1_2_9_2_1
Kelsall JE (e_1_2_9_22_1) 1999
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
Kuo L (e_1_2_9_25_1) 1998; 60
15690999 - Stat Methods Med Res. 2005 Feb;14 (1):35-59
20953293 - Environ Ecol Stat. 2010 Mar 1;17(1):73-95
12925327 - Biostatistics. 2003 Jan;4(1):11-25
10960871 - Stat Med. 2000 Sep 15-30;19(17-18):2555-67
18209015 - Biostatistics. 2008 Jul;9(3):523-39
23869181 - Environ Ecol Stat. 2013 Mar 1;20(1):91-107
20683893 - Stat Med. 2010 Aug 30;29(19):2012-27
References_xml – reference: Assunção RM. 2003. Space varying coefficient models for small area data. Environmetrics 14: 453-473.
– reference: Knorr-Held L. 2000. Bayesian modelling of inseparable space-time variation in disease risk. Statistics in Medicine 19: 2555-2567.
– reference: Binder DA. 1981. Approximations to Bayesian clustering rules. The Annals of Statistics 68: 275-285.
– reference: McGrory CA, Titterington DM. 2007. Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics and Data Analysis 51: 5352-5367.
– reference: Rue H, Martino S, Chopin N. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B 71: 319-392.
– reference: Celeux G, Forbes F, Robert C, Titterington M. 2006. Deviance information criteria for missing data models. Bayesian Analysis 1: 651-674.
– reference: Best N, Richardson S, Thomson A. 2005. A comparison of Bayesian spatial models for Disease mapping. Statistical Methods in Medical Research 14: 35-59.
– reference: Gelman A, Carlin JB, Stern HS, Rubin DB. 2004. Bayesian Data Analysis. Chapmann & hall/CRC: Boca Raton.
– reference: Binder DA. 1978. Bayesian cluster analysis. Biometrika 65: 31-38.
– reference: Waller LA, Carlin BP, Xia H, Gelfand AE. 1997. Hierarchical spatio temporal-mapping of disease rates. Journal of the American Statistical Association 92: 607-617.
– reference: Viallefont V, Richardson S, Green PJ. 2002. Bayesian analysis of Poisson mixtures. Journal of Nonparametric Statistics 14: 181-202.
– reference: Plummer M. 2008. Penalized loss functions for Bayesian model comparison. Biostatistics 9: 523-539.
– reference: Hastie DI, Green PJ. 2012. Model choice using reversible jump Markov chain Monte Carlo. Statistica Neerlandica 66: 309-338.
– reference: Gelfand A, Vounatsou P. 2003. Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4: 11-25.
– reference: Ando T. 2012. Predictive Bayesian model selection. American Journal of Mathematical and Management Sciences 31: 13-38.
– reference: Fritsch A, Ickstadt K. 2009. Improved criteria for clustering based on the posterior similarity matrix. Bayesian Analysis 4: 367-392.
– reference: Hossain MM, Lawson AB. 2010. Space-time Bayesian small area disease risk models: development and evaluation with a focus on cluster detection. Environmental and Ecological Statistics 17: 73-95.
– reference: Hossain MM, Lawson AB, Cai B, Choi J, Liu J, Kirby RS. 2012. Space-time stick-breaking processes for small area disease cluster estimation. Environmental and Ecological Statistics. DOI: 10.1007/s10651-012-0209-0
– reference: Fernandez C, Green PJ. 2002. Modelling spatially correlated data via mixtures: a Bayesian approach. Journal of the Royal Statistical Society, Series B 64: 805-826.
– reference: Lau JW, Green PJ. 2007. Bayesian model based clustering procedure. Journal of Computational and Graphical Statistics 16: 526-558.
– reference: Richardson S, Green PJ. 1997. On Bayesian analysis of mixtures with an unknown number of components (with discussion). Journal of the Royal Statistical Society, Series B 59: 731-792.
– reference: Christiansen CL, Morris CN. 1997. Hierarchical Poisson regression modeling. Journal of the American Statistical Association 92: 618-632.
– reference: Kim S, Tadesse MG, Vannucci, M. 2006. Variable selection in clustering via Dirichlet process mixture models. Biometrika 93: 877-893.
– reference: Lawson AB, Song HR, Cai B, Hossain MM, Huang K. 2010. Space-time latent component modeling of geo-referenced health data. Statistics in Medicine 29: 2012-2027.
– reference: Spiegelhalter DJ, Thomas A, Best NG. 2003. WinBUGS: Bayesian Inference using Gibbs Sampling, Manual Version 1.4. Imperial College, London and Medical Research Council Biostatistics Unit: Cambridge.
– reference: Gelfand AE, Ghosh SK. 1998. Model choice: a minimum posterior predictive loss. Biometrika 85: 1-11.
– reference: Stephens M. 2000b. Dealing with label switching in mixture models. Journal of the Royal Statistical Society, Series B 62: 795-809.
– reference: Banerjee S, Carlin BP. 2003. Semiparametric spatio-temporal frailty modeling. Environmetrics 14: 523-535.
– reference: O'Hara RB, Sillanpaa MJ. 2009. A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis 4: 85-118.
– reference: Meligkotsidou L. 2007. Bayesian multivariate Poisson mixtures with an unknown number of components. Statistics and Computing 17: 93-107.
– reference: Stephens M. 2000a. Bayesian analysis of mixture models with an unknown number of components - an alternative to reversible jump methods. The Annals of Statistics 28: 40-74.
– reference: Besag J, York J, Mollie A. 1991. Bayesian image-resporation, with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics 43: 1-20.
– reference: Yao W. 2012. Model based labeling for mixture models. Statistics and Computing 22: 337-347.
– reference: Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. 2002. Bayesian measures of complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 64: 583-639.
– reference: Green PJ, Richardson S. 2001. Modelling heterogeneity with and without the Dirichlet process. Scandinavian Journal of Statistics 28: 355-375.
– reference: Kuo L, Mallick B. 1998. Variable selection for regression models. Sankhya (Series B) 60: 65-81.
– reference: Tadesse MG, Sha N, Vannucci M. 2005. Bayesian variable selection in clustering high-dimensional data. Journal of the American Statistical Association 100: 602-617.
– reference: Jasra A, Holmes CC, Stephens, DA. 2005. Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science 20: 50-67.
– volume: 43
  start-page: 1
  year: 1991
  end-page: 20
  article-title: Bayesian image‐resporation, with two applications in spatial statistics
  publication-title: Annals of the Institute of Statistical Mathematics
– volume: 92
  start-page: 607
  year: 1997
  end-page: 617
  article-title: Hierarchical spatio temporal‐mapping of disease rates
  publication-title: Journal of the American Statistical Association
– volume: 100
  start-page: 602
  year: 2005
  end-page: 617
  article-title: Bayesian variable selection in clustering high‐dimensional data
  publication-title: Journal of the American Statistical Association
– volume: 93
  start-page: 877
  year: 2006
  end-page: 893
  article-title: Variable selection in clustering via Dirichlet process mixture models
  publication-title: Biometrika
– start-page: 201
  year: 2006
  end-page: 218
– volume: 64
  start-page: 805
  year: 2002
  end-page: 826
  article-title: Modelling spatially correlated data via mixtures: a Bayesian approach
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 66
  start-page: 309
  year: 2012
  end-page: 338
  article-title: Model choice using reversible jump Markov chain Monte Carlo
  publication-title: Statistica Neerlandica
– volume: 60
  start-page: 65
  year: 1998
  end-page: 81
  article-title: Variable selection for regression models
  publication-title: Sankhya (Series B)
– year: 2003
– volume: 68
  start-page: 275
  year: 1981
  end-page: 285
  article-title: Approximations to Bayesian clustering rules
  publication-title: The Annals of Statistics
– year: 2012
  article-title: Space‐time stick‐breaking processes for small area disease cluster estimation
  publication-title: Environmental and Ecological Statistics
– volume: 4
  start-page: 11
  year: 2003
  end-page: 25
  article-title: Proper multivariate conditional autoregressive models for spatial data analysis
  publication-title: Biostatistics
– volume: 25
  year: 2005
– volume: 65
  start-page: 31
  year: 1978
  end-page: 38
  article-title: Bayesian cluster analysis
  publication-title: Biometrika
– volume: 16
  start-page: 526
  year: 2007
  end-page: 558
  article-title: Bayesian model based clustering procedure
  publication-title: Journal of Computational and Graphical Statistics
– volume: 31
  start-page: 13
  year: 2012
  end-page: 38
  article-title: Predictive Bayesian model selection
  publication-title: American Journal of Mathematical and Management Sciences
– volume: 20
  start-page: 50
  year: 2005
  end-page: 67
  article-title: Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
  publication-title: Statistical Science
– volume: 19
  start-page: 2555
  year: 2000
  end-page: 2567
  article-title: Bayesian modelling of inseparable space‐time variation in disease risk
  publication-title: Statistics in Medicine
– volume: 29
  start-page: 2012
  year: 2010
  end-page: 2027
  article-title: Space‐time latent component modeling of geo‐referenced health data
  publication-title: Statistics in Medicine
– volume: 1
  start-page: 651
  year: 2006
  end-page: 674
  article-title: Deviance information criteria for missing data models
  publication-title: Bayesian Analysis
– start-page: 63
  year: 1999
  end-page: 84
– volume: 71
  start-page: 319
  year: 2009
  end-page: 392
  article-title: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 9
  start-page: 523
  year: 2008
  end-page: 539
  article-title: Penalized loss functions for Bayesian model comparison
  publication-title: Biostatistics
– volume: 17
  start-page: 73
  year: 2010
  end-page: 95
  article-title: Space‐time Bayesian small area disease risk models: development and evaluation with a focus on cluster detection
  publication-title: Environmental and Ecological Statistics
– volume: 4
  start-page: 85
  year: 2009
  end-page: 118
  article-title: A review of Bayesian variable selection methods: what, how and which
  publication-title: Bayesian Analysis
– volume: 28
  start-page: 355
  year: 2001
  end-page: 375
  article-title: Modelling heterogeneity with and without the Dirichlet process
  publication-title: Scandinavian Journal of Statistics
– volume: 4
  start-page: 367
  year: 2009
  end-page: 392
  article-title: Improved criteria for clustering based on the posterior similarity matrix
  publication-title: Bayesian Analysis
– volume: 14
  start-page: 35
  year: 2005
  end-page: 59
  article-title: A comparison of Bayesian spatial models for Disease mapping
  publication-title: Statistical Methods in Medical Research
– volume: 17
  start-page: 93
  year: 2007
  end-page: 107
  article-title: Bayesian multivariate Poisson mixtures with an unknown number of components
  publication-title: Statistics and Computing
– year: 2004
– volume: 64
  start-page: 583
  year: 2002
  end-page: 639
  article-title: Bayesian measures of complexity and fit (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 14
  start-page: 181
  year: 2002
  end-page: 202
  article-title: Bayesian analysis of Poisson mixtures
  publication-title: Journal of Nonparametric Statistics
– volume: 28
  start-page: 40
  year: 2000a
  end-page: 74
  article-title: Bayesian analysis of mixture models with an unknown number of components – an alternative to reversible jump methods
  publication-title: The Annals of Statistics
– volume: 51
  start-page: 5352
  year: 2007
  end-page: 5367
  article-title: Variational approximations in Bayesian model selection for finite mixture distributions
  publication-title: Computational Statistics and Data Analysis
– volume: 62
  start-page: 795
  year: 2000b
  end-page: 809
  article-title: Dealing with label switching in mixture models
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 59
  start-page: 731
  year: 1997
  end-page: 792
  article-title: On Bayesian analysis of mixtures with an unknown number of components (with discussion)
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 22
  start-page: 337
  year: 2012
  end-page: 347
  article-title: Model based labeling for mixture models
  publication-title: Statistics and Computing
– volume: 14
  start-page: 453
  year: 2003
  end-page: 473
  article-title: Space varying coefficient models for small area data
  publication-title: Environmetrics
– volume: 92
  start-page: 618
  year: 1997
  end-page: 632
  article-title: Hierarchical Poisson regression modeling
  publication-title: Journal of the American Statistical Association
– volume: 14
  start-page: 523
  year: 2003
  end-page: 535
  article-title: Semiparametric spatio‐temporal frailty modeling
  publication-title: Environmetrics
– volume: 85
  start-page: 1
  year: 1998
  end-page: 11
  article-title: Model choice: a minimum posterior predictive loss
  publication-title: Biometrika
– year: 1999
– ident: e_1_2_9_9_1
  doi: 10.1214/06-BA122
– volume: 60
  start-page: 65
  year: 1998
  ident: e_1_2_9_25_1
  article-title: Variable selection for regression models
  publication-title: Sankhya (Series B)
– ident: e_1_2_9_37_1
  doi: 10.1214/aos/1016120364
– ident: e_1_2_9_28_1
  doi: 10.1016/S0169-7161(05)25016-2
– ident: e_1_2_9_17_1
  doi: 10.1111/1467-9469.00242
– ident: e_1_2_9_15_1
  doi: 10.1093/biostatistics/4.1.11
– ident: e_1_2_9_26_1
  doi: 10.1198/106186007X238855
– ident: e_1_2_9_10_1
  doi: 10.1080/01621459.1997.10474013
– ident: e_1_2_9_3_1
  doi: 10.1002/env.599
– ident: e_1_2_9_41_1
  doi: 10.1080/10485250211383
– ident: e_1_2_9_19_1
  doi: 10.1007/s10651-008-0102-z
– ident: e_1_2_9_11_1
  doi: 10.1017/CBO9780511584589.011
– ident: e_1_2_9_20_1
  doi: 10.1007/s10651‐012‐0209‐0
– ident: e_1_2_9_7_1
  doi: 10.1093/biomet/65.1.31
– ident: e_1_2_9_12_1
  doi: 10.1111/1467-9868.00362
– ident: e_1_2_9_33_1
  doi: 10.1111/1467-9868.00095
– volume: 68
  start-page: 275
  year: 1981
  ident: e_1_2_9_8_1
  article-title: Approximations to Bayesian clustering rules
  publication-title: The Annals of Statistics
– start-page: 63
  volume-title: Disease Mapping and Risk Assessment for Public Health
  year: 1999
  ident: e_1_2_9_39_1
– ident: e_1_2_9_18_1
  doi: 10.1111/j.1467-9574.2012.00516.x
– ident: e_1_2_9_35_1
  doi: 10.1111/1467-9868.00353
– ident: e_1_2_9_2_1
  doi: 10.1080/01966324.2011.10737798
– ident: e_1_2_9_43_1
  doi: 10.1007/s11222-010-9226-8
– ident: e_1_2_9_13_1
  doi: 10.1214/09-BA414
– ident: e_1_2_9_32_1
  doi: 10.1093/biostatistics/kxm049
– ident: e_1_2_9_29_1
  doi: 10.1016/j.csda.2006.07.020
– ident: e_1_2_9_30_1
  doi: 10.1007/s11222-006-9008-5
– ident: e_1_2_9_14_1
  doi: 10.1093/biomet/85.1.1
– ident: e_1_2_9_4_1
  doi: 10.1002/env.613
– ident: e_1_2_9_21_1
  doi: 10.1214/088342305000000016
– volume-title: Sixth Valencia International Meeting on Bayesian Statistics
  year: 1999
  ident: e_1_2_9_22_1
– ident: e_1_2_9_31_1
  doi: 10.1214/09-BA403
– volume-title: Bayesian Data Analysis
  year: 2004
  ident: e_1_2_9_16_1
– ident: e_1_2_9_34_1
  doi: 10.1111/j.1467-9868.2008.00700.x
– ident: e_1_2_9_38_1
  doi: 10.1111/1467-9868.00265
– ident: e_1_2_9_40_1
  doi: 10.1198/016214504000001565
– ident: e_1_2_9_27_1
  doi: 10.1002/sim.3917
– ident: e_1_2_9_42_1
  doi: 10.1080/01621459.1997.10474012
– ident: e_1_2_9_23_1
  doi: 10.1093/biomet/93.4.877
– ident: e_1_2_9_24_1
  doi: 10.1002/1097-0258(20000915/30)19:17/18<2555::AID-SIM587>3.0.CO;2-#
– ident: e_1_2_9_5_1
  doi: 10.1007/BF00116466
– volume-title: WinBUGS: Bayesian Inference using Gibbs Sampling, Manual Version 1.4
  year: 2003
  ident: e_1_2_9_36_1
– ident: e_1_2_9_6_1
  doi: 10.1191/0962280205sm388oa
– reference: 18209015 - Biostatistics. 2008 Jul;9(3):523-39
– reference: 10960871 - Stat Med. 2000 Sep 15-30;19(17-18):2555-67
– reference: 23869181 - Environ Ecol Stat. 2013 Mar 1;20(1):91-107
– reference: 15690999 - Stat Methods Med Res. 2005 Feb;14 (1):35-59
– reference: 20953293 - Environ Ecol Stat. 2010 Mar 1;17(1):73-95
– reference: 20683893 - Stat Med. 2010 Aug 30;29(19):2012-27
– reference: 12925327 - Biostatistics. 2003 Jan;4(1):11-25
SSID ssj0009657
Score 2.0359309
Snippet With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 84
SubjectTerms Algorithms
Clusters
Computer simulation
Criteria
DIC
homogeneous covariate effect
loss function
Optimization
Readers
Regression
relabeling algorithm
space-time mixture model
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZW7QEuvBfCSwYhOCVNnMRJuC2oZYXUamEplFNkOw5bbZpWfSwLJ34Cv5FfwozzQIWlglMOHllJZjzzjTzzDSFPMpmoRPHMliLUdgAe0IbMNrCZZlkQuYHnZpgoDkf8cBy8noSTPeI1vTCmaF_JqVMWM6ecnpjaysVM9Zo6sR5EHMDo4HW7PAT43SHd8ejo4KO51cSO-iScmIEqsQu5kZs0hLMu6-nyzAG0EW6FoC7-zfOL8OWfZZKXNuVCfPksimIbyppYNLhK3jZfUZWgnDqbtXTU198IHv_rM6-RKzUypQfV0nWyp8sbZL__qxEOFmtPsLpJ3hxDsq1_fPuOw-mpAOhZ0Nn0HO8jqJmu85xim4w07e5UFJ_my-n6ZEZFmVXrdGUm8IBZUKP71S0yHvTfvTy06_EMtgKUFdpS-tKLecaU7-c6i_MkEdhqmyPrWQ66RzQnAF4IxhXe5OQAThR4CF9qV_LM3yedcl7qO4RqP0CiPwW5XwwBMo-55wmInZ5QjCdMWORZo7FU1dzlOEKjSCvWZQZn_CxF3VrkUSu5qPg6LpB5apTeCojlKda3RWH6YfQqHQ6OY3_44iidwGaNVaRw6vAqRZR6vlmlgJM9znBE9w6ZCHNdSNmiHTKQ3XF0jLFFblfW1r4VA2gMaNa1SLRlh60AMoNvr4AlGYbw2ngs8ri12F1_w5jyXwXS_ug9Pu_-y273yGWAlEFVpXefdNbLjX4AsG0tH9YH9Sf1GELj
  priority: 102
  providerName: Unpaywall
Title Space-time areal mixture model: relabeling algorithm and model selection issues
URI https://api.istex.fr/ark:/67375/WNG-MFS83MBP-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fenv.2265
https://www.ncbi.nlm.nih.gov/pubmed/25221430
https://www.proquest.com/docview/1611621603
https://www.proquest.com/docview/1701042557
https://www.proquest.com/docview/1826600518
https://pubmed.ncbi.nlm.nih.gov/PMC4159962
https://www.ncbi.nlm.nih.gov/pmc/articles/4159962
UnpaywallVersion submittedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1099-095X
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0009657
  issn: 1180-4009
  databaseCode: AMVHM
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1180-4009
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-095X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009657
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2h9gAXaIGCKa0WhODk1F7ba5tbQQkVUqJCCQRxsHbXaxrVdao4KaWn_gR-I7-EmfVHFCgR4uTDTiJ7PbP7nnfmDSHPUhmrWPHUliLQtg8roA3M1reZZqkfOr7rpEgU-wN-MPTfjoJRnVWJtTCVPkT7wQ0jw6zXGOBClnsL0VBdnHcAO2B9uetxw6beL5SjYh5UfVUiByiSEze6sw7ba364tBOt46ReXAcz_8yWvDkvzsT3byLPlxGt2ZJ6d8iX5mGqTJSTznwmO-ryN53H_3vaDXK7Rqp0v3KtTXJDF3fJVndRGAeD9cpQ3iPvjoB8659XP7BZPRUARXN6Or7A8wlquu28pFg2I035OxX518l0PDs-paJIq3Famo484CbU-EJ5nwx73Q-vD-y6XYOtAHUFtpSedCOeMuV5mU6jLI4Flt5mqIKWgS8guhMANwTjCk92MgArClYMT2pH8tTbImvFpNAPCdWej8J_CrhgBBtmFnHXFbCXukIxHjNhkRfNq0tUrWWOLTXypFJhZhDz5wnOl0WetJZnlX7HNTbPzdtvDcT0BPPdwiD5NHiT9HtHkdd_dZiM4M8a90ggCvFoRRR6Mi8TwM0uZ9iye4VNiNwXKFy4wgbYHseFMrLIg8rt2rtiAJUB3ToWCZccsjVApfDlkWJ8bBTDAaUBr2UWedq67qrZMI74V4OkO_iI10f_arhNbgHM9KvMvcdkbTad6x2AcjO5a4J2l6wPB4f7n38Bb_5Ipg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaU9lAuvAvmKRgGTk5t2ZZtOAGTEKDJAG0hB2Y0kizTTF2nk0cpnPgJ_EZ-Cbty7EygZBhOPmiTseXd1fdZ2m8JeZipVKeaZ66SkXFDyIAuMNvQZYZlYeyFvpchUez1eXc_fD2IBmvkaV0LU-lDNB_cMDJsvsYAxw_S2wvVUFOetAA8ROfIRsiBpiAier_Qjkp5VHVWSTwgSV5aK896bLv-5dJatIHTenoW0PzzvOTmrDyWX7_IoljGtHZR6lwkn-rHqc6iHLZmU9XS335TevzP571ELszBKn1WeddlsmbKK2SrvaiNg8F5cphcJe92gX-bn99_YL96KgGNFvRoeIpbFNQ23HlCsXJG2Qp4KovPo_FwenBEZZlV43Rim_KAp1DrDpNrZL_T3nvRdecdG1wNwCtylQqUn_CM6SDITZbkaSqx-jZHIbQc3AEBngTEIRnXuLmTA17RkDQCZTzFs2CLrJej0twg1AQhav9poIMJrJl5wn1fwnLqS814yqRDHtfvTui5nDl21ShEJcTMIOxPBM6XQ-43lseVhMcZNo_s628M5PgQj7zFkfjYfyl6nd0k6D1_KwbwZ7V_CAhE3F2RpRnNJgKgs88Zdu1eYRMj_QUWF6-wAcLHMVcmDrle-V1zVwzQMgBczyHxkkc2BigWvjxSDg-saDgANaC2zCEPGt9dNRvWE_9qINr9D3i9-a-G98hmd6-3I3Ze9d_cIucBdYbVQb7bZH06npk7gOym6q6N4F-ApksX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKK0EvvEvD0yAEp2wTJ_EmcAK6S3nsqtAW9oBk2Y5DV02zq32UwomfwG_klzDjbLJaKCvEKQdPosSeGX8Tz3xDyMNUJTrRPHWVjIwbggd0IbINXWZYGja90PdSDBQ7Xb5zEL7uRb0V8rSqhSn5IeofbmgZ1l-jgZthmm3NWUNNcdIA8BCdI2thlMSYz7f9fs4dlfCo7KwSexAkeUnFPOuxrerOhb1oDaf19Cyg-We-5IVpMZRfv8g8X8S0dlNqXyKfqs8pc1GOGtOJauhvvzE9_uf3XiYXZ2CVPiu16wpZMcVVstGa18bB4Mw5jK-Rd3sQf5uf339gv3oqAY3m9Lh_ikcU1DbceUKxckbZCngq88-DUX9yeExlkZbjdGyb8oCmUKsO4-vkoN3af7Hjzjo2uBqAV-QqFSg_5inTQZCZNM6SRGL1bYZEaBmoAwI8CYhDMq7xcCcDvKLBaQTKeIqnwQZZLQaF2STUBCFy_2kIB2PYM7OY-76E7dSXmvGESYc8rtZO6BmdOXbVyEVJxMzA7E8EzpdD7teSw5LC4wyZR3b5awE5OsKUt2YkPnZfik57Lw46z3dFDx5W6YcAQ8TTFVmYwXQsADr7nGHX7iUyTQx_IYprLpGBgI-jr4wdcqPUu_qtGKBlALieQ5oLGlkLIFn44kjRP7Sk4QDUILRlDnlQ6-6y2bCa-FcB0ep-wOvNfxW8R87vbrfF21fdN7fIOoDOsMzju01WJ6OpuQPAbqLuWgP-BcVZSps
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZW7QEuvBfCSwYhOCVNnMRJuC2oZYXUamEplFNkOw5bbZpWfSwLJ34Cv5FfwozzQIWlglMOHllJZjzzjTzzDSFPMpmoRPHMliLUdgAe0IbMNrCZZlkQuYHnZpgoDkf8cBy8noSTPeI1vTCmaF_JqVMWM6ecnpjaysVM9Zo6sR5EHMDo4HW7PAT43SHd8ejo4KO51cSO-iScmIEqsQu5kZs0hLMu6-nyzAG0EW6FoC7-zfOL8OWfZZKXNuVCfPksimIbyppYNLhK3jZfUZWgnDqbtXTU198IHv_rM6-RKzUypQfV0nWyp8sbZL__qxEOFmtPsLpJ3hxDsq1_fPuOw-mpAOhZ0Nn0HO8jqJmu85xim4w07e5UFJ_my-n6ZEZFmVXrdGUm8IBZUKP71S0yHvTfvTy06_EMtgKUFdpS-tKLecaU7-c6i_MkEdhqmyPrWQ66RzQnAF4IxhXe5OQAThR4CF9qV_LM3yedcl7qO4RqP0CiPwW5XwwBMo-55wmInZ5QjCdMWORZo7FU1dzlOEKjSCvWZQZn_CxF3VrkUSu5qPg6LpB5apTeCojlKda3RWH6YfQqHQ6OY3_44iidwGaNVaRw6vAqRZR6vlmlgJM9znBE9w6ZCHNdSNmiHTKQ3XF0jLFFblfW1r4VA2gMaNa1SLRlh60AMoNvr4AlGYbw2ngs8ri12F1_w5jyXwXS_ug9Pu_-y273yGWAlEFVpXefdNbLjX4AsG0tH9YH9Sf1GELj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space-time+areal+mixture+model%3A+relabeling+algorithm+and+model+selection+issues&rft.jtitle=Environmetrics+%28London%2C+Ont.%29&rft.au=Hossain%2C+M+M&rft.au=Lawson%2C+AB&rft.au=Cai%2C+B&rft.au=Choi%2C+J&rft.date=2014-03-01&rft.issn=1180-4009&rft.eissn=1099-095X&rft.volume=25&rft.issue=2&rft.spage=84&rft.epage=96&rft_id=info:doi/10.1002%2Fenv.2265&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1180-4009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1180-4009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1180-4009&client=summon