Space-time areal mixture model: relabeling algorithm and model selection issues
With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label‐switching problem is often inherent in Bayesian implementation of mixture models, and a variety of relabeling algorithms...
        Saved in:
      
    
          | Published in | Environmetrics (London, Ont.) Vol. 25; no. 2; pp. 84 - 96 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Blackwell Publishing Ltd
    
        01.03.2014
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1180-4009 1099-095X 1099-095X  | 
| DOI | 10.1002/env.2265 | 
Cover
| Abstract | With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label‐switching problem is often inherent in Bayesian implementation of mixture models, and a variety of relabeling algorithms have been proposed. We use a space‐time mixture of Poisson regression models with homogeneous covariate effects to illustrate that the best model selected by using model selection criteria does not always support the model that is chosen by the optimal relabeling algorithm. The results are illustrated for real and simulated datasets. The objective is to make the reader aware that if the purpose of statistical modeling is to identify clusters, applying a relabeling algorithm to the model with the best fit may not generate the optimal relabeling. Copyright © 2014 John Wiley & Sons, Ltd. | 
    
|---|---|
| AbstractList | With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label-switching problem is often inherent in Bayesian implementation of mixture models and a variety of relabeling algorithms have been proposed. We use a space-time mixture of Poisson regression models with homogeneous covariate effects to illustrate that the best model selected by using model selection criteria does not always support the model that is chosen by the optimal relabeling algorithm. The results are illustrated for real and simulated datasets. The objective is to make the reader aware that if the purpose of statistical modeling is to identify clusters, applying a relabeling algorithm to the model with the best fit may not generate the optimal relabeling. With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label-switching problem is often inherent in Bayesian implementation of mixture models, and a variety of relabeling algorithms have been proposed. We use a space-time mixture of Poisson regression models with homogeneous covariate effects to illustrate that the best model selected by using model selection criteria does not always support the model that is chosen by the optimal relabeling algorithm. The results are illustrated for real and simulated datasets. The objective is to make the reader aware that if the purpose of statistical modeling is to identify clusters, applying a relabeling algorithm to the model with the best fit may not generate the optimal relabeling. Copyright copyright 2014 John Wiley & Sons, Ltd. With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label-switching problem is often inherent in Bayesian implementation of mixture models and a variety of relabeling algorithms have been proposed. We use a space-time mixture of Poisson regression models with homogeneous covariate effects to illustrate that the best model selected by using model selection criteria does not always support the model that is chosen by the optimal relabeling algorithm. The results are illustrated for real and simulated datasets. The objective is to make the reader aware that if the purpose of statistical modeling is to identify clusters, applying a relabeling algorithm to the model with the best fit may not generate the optimal relabeling.With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label-switching problem is often inherent in Bayesian implementation of mixture models and a variety of relabeling algorithms have been proposed. We use a space-time mixture of Poisson regression models with homogeneous covariate effects to illustrate that the best model selected by using model selection criteria does not always support the model that is chosen by the optimal relabeling algorithm. The results are illustrated for real and simulated datasets. The objective is to make the reader aware that if the purpose of statistical modeling is to identify clusters, applying a relabeling algorithm to the model with the best fit may not generate the optimal relabeling. With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label‐switching problem is often inherent in Bayesian implementation of mixture models, and a variety of relabeling algorithms have been proposed. We use a space‐time mixture of Poisson regression models with homogeneous covariate effects to illustrate that the best model selected by using model selection criteria does not always support the model that is chosen by the optimal relabeling algorithm. The results are illustrated for real and simulated datasets. The objective is to make the reader aware that if the purpose of statistical modeling is to identify clusters, applying a relabeling algorithm to the model with the best fit may not generate the optimal relabeling. Copyright © 2014 John Wiley & Sons, Ltd.  | 
    
| Author | Cai, B. Choi, J. Liu, J. Kirby, R. S. Hossain, M. M. Lawson, A. B.  | 
    
| AuthorAffiliation | 2 Division of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, Charleston, SC, USA 1 Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA 5 Department of Community and Family Health, University of South Florida, Tampa, FL, USA 3 Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA 4 Department of Mathematics, Hanyang University, South Korea  | 
    
| AuthorAffiliation_xml | – name: 3 Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA – name: 5 Department of Community and Family Health, University of South Florida, Tampa, FL, USA – name: 1 Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA – name: 2 Division of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, Charleston, SC, USA – name: 4 Department of Mathematics, Hanyang University, South Korea  | 
    
| Author_xml | – sequence: 1 givenname: M. M. surname: Hossain fullname: Hossain, M. M. email: md.hossain@cchmc.org organization: Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, OH, Cincinnati, U.S.A – sequence: 2 givenname: A. B. surname: Lawson fullname: Lawson, A. B. organization: Division of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, SC, Charleston, U.S.A – sequence: 3 givenname: B. surname: Cai fullname: Cai, B. organization: Department of Epidemiology and Biostatistics, University of South Carolina, SC, Columbia, U.S.A – sequence: 4 givenname: J. surname: Choi fullname: Choi, J. organization: Department of Mathematics, Hanyang University, South Korea – sequence: 5 givenname: J. surname: Liu fullname: Liu, J. organization: Department of Epidemiology and Biostatistics, University of South Carolina, SC, Columbia, U.S.A – sequence: 6 givenname: R. S. surname: Kirby fullname: Kirby, R. S. organization: Department of Community and Family Health, University of South Florida, FL, Tampa, U.S.A  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25221430$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkVtv1DAQhS1URC8g8QtQHuEhy9iOnZgHpFK1BakXpHLpm-U4k63BcRY7abv_nqy2tBQBfZqR5pujOWe2yUboAxLynMKMArDXGC5njEnxiGxRUCoHJc43pp5WkBcAapNsp_QNpk6K8gnZZIIxWnDYIqdnC2MxH1yHmYlofNa562GMmHV9g_5NFtGbGr0L88z4eR_dcNFlJjTreZbQox1cHzKX0ojpKXncGp_w2U3dIZ8P9j_tvc-PTg8_7O0e5VbQQuR1zWtayYZZzltsqlYpAwyKlomiaGsjoBLUUAqGSQscVCtAWVFWvEaoZcN3yKu17hgWZnllvNeL6DoTl5qCXoWip1D0KpSJfbtmF2PdYWMxDNHc8b1x-v4kuAs97y91QYVSkk0CL28EYv9jMjnoziWL3puA_Zg0rZiUAIJWD6MlUCiYEOXDqKRUMiqBT-iL3x3cnv7rj3daNvYpRWz_l8bsD9S6waxeOHl3_m8L-Xrhynlc_lNY7598uc-7NOD1LW_idy1LXgr99eRQHx-cVfz43Ud9zn8Cif7aQQ | 
    
| CitedBy_id | crossref_primary_10_6000_1929_6029_2015_04_04_1 crossref_primary_10_1002_bimj_201600018 crossref_primary_10_1007_s11222_017_9735_9 crossref_primary_10_1214_24_BA1419 crossref_primary_10_1016_j_sste_2014_08_001  | 
    
| Cites_doi | 10.1214/06-BA122 10.1214/aos/1016120364 10.1016/S0169-7161(05)25016-2 10.1111/1467-9469.00242 10.1093/biostatistics/4.1.11 10.1198/106186007X238855 10.1080/01621459.1997.10474013 10.1002/env.599 10.1080/10485250211383 10.1007/s10651-008-0102-z 10.1017/CBO9780511584589.011 10.1007/s10651‐012‐0209‐0 10.1093/biomet/65.1.31 10.1111/1467-9868.00362 10.1111/1467-9868.00095 10.1111/j.1467-9574.2012.00516.x 10.1111/1467-9868.00353 10.1080/01966324.2011.10737798 10.1007/s11222-010-9226-8 10.1214/09-BA414 10.1093/biostatistics/kxm049 10.1016/j.csda.2006.07.020 10.1007/s11222-006-9008-5 10.1093/biomet/85.1.1 10.1002/env.613 10.1214/088342305000000016 10.1214/09-BA403 10.1111/j.1467-9868.2008.00700.x 10.1111/1467-9868.00265 10.1198/016214504000001565 10.1002/sim.3917 10.1080/01621459.1997.10474012 10.1093/biomet/93.4.877 10.1002/1097-0258(20000915/30)19:17/18<2555::AID-SIM587>3.0.CO;2-# 10.1007/BF00116466 10.1191/0962280205sm388oa  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2014 John Wiley & Sons, Ltd. | 
    
| Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons, Ltd. | 
    
| DBID | BSCLL AAYXX CITATION NPM 8FD FR3 KR7 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1002/env.2265 | 
    
| DatabaseName | Istex CrossRef PubMed Technology Research Database Engineering Research Database Civil Engineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Technology Research Database Civil Engineering Abstracts Engineering Research Database MEDLINE - Academic  | 
    
| DatabaseTitleList | Technology Research Database PubMed MEDLINE - Academic CrossRef Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Environmental Sciences | 
    
| EISSN | 1099-095X | 
    
| EndPage | 96 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:4159962 PMC4159962 25221430 10_1002_env_2265 ENV2265 ark_67375_WNG_MFS83MBP_X  | 
    
| Genre | article Journal Article  | 
    
| GrantInformation_xml | – fundername: NIH funderid: R21 HL088654‐01A2 – fundername: NHLBI NIH HHS grantid: R21 HL088654  | 
    
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EDH EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 V2E W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XPP XV2 Y6R ZY4 ZZTAW ~02 ~IA ~WT AAHHS ABTAH ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WWD AAYXX CITATION NPM 8FD FR3 KR7 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c5145-bb3b186d2c33fed8f99a0204f2544fba50851a110a26c0309f509c5783be0b6d3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1180-4009 1099-095X  | 
    
| IngestDate | Wed Oct 29 12:14:45 EDT 2025 Thu Aug 21 14:10:33 EDT 2025 Thu Jul 10 22:41:36 EDT 2025 Fri Jul 11 08:52:05 EDT 2025 Thu Oct 02 03:54:51 EDT 2025 Thu Apr 03 07:04:06 EDT 2025 Wed Oct 01 01:53:30 EDT 2025 Thu Apr 24 23:03:43 EDT 2025 Wed Jan 22 17:12:48 EST 2025 Sun Sep 21 06:19:47 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | relabeling algorithm loss function homogeneous covariate effect DIC Space-time mixture model  | 
    
| Language | English | 
    
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c5145-bb3b186d2c33fed8f99a0204f2544fba50851a110a26c0309f509c5783be0b6d3 | 
    
| Notes | istex:E86E14AC134A8138621D7E61D0A2933BF2494BBB Supporting info itemSupporting info item ark:/67375/WNG-MFS83MBP-X ArticleID:ENV2265 NIH - No. R21 HL088654-01A2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/4159962 | 
    
| PMID | 25221430 | 
    
| PQID | 1611621603 | 
    
| PQPubID | 23500 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_env_2265 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4159962 proquest_miscellaneous_1826600518 proquest_miscellaneous_1701042557 proquest_miscellaneous_1611621603 pubmed_primary_25221430 crossref_primary_10_1002_env_2265 crossref_citationtrail_10_1002_env_2265 wiley_primary_10_1002_env_2265_ENV2265 istex_primary_ark_67375_WNG_MFS83MBP_X  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | March 2014 | 
    
| PublicationDateYYYYMMDD | 2014-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2014 text: March 2014  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Environmetrics (London, Ont.) | 
    
| PublicationTitleAlternate | Environmetrics | 
    
| PublicationYear | 2014 | 
    
| Publisher | Blackwell Publishing Ltd | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd | 
    
| References | Lau JW, Green PJ. 2007. Bayesian model based clustering procedure. Journal of Computational and Graphical Statistics 16: 526-558. Gelman A, Carlin JB, Stern HS, Rubin DB. 2004. Bayesian Data Analysis. Chapmann & hall/CRC: Boca Raton. Celeux G, Forbes F, Robert C, Titterington M. 2006. Deviance information criteria for missing data models. Bayesian Analysis 1: 651-674. Lawson AB, Song HR, Cai B, Hossain MM, Huang K. 2010. Space-time latent component modeling of geo-referenced health data. Statistics in Medicine 29: 2012-2027. Binder DA. 1981. Approximations to Bayesian clustering rules. The Annals of Statistics 68: 275-285. Waller LA, Carlin BP, Xia H, Gelfand AE. 1997. Hierarchical spatio temporal-mapping of disease rates. Journal of the American Statistical Association 92: 607-617. Binder DA. 1978. Bayesian cluster analysis. Biometrika 65: 31-38. Hossain MM, Lawson AB. 2010. Space-time Bayesian small area disease risk models: development and evaluation with a focus on cluster detection. Environmental and Ecological Statistics 17: 73-95. Fritsch A, Ickstadt K. 2009. Improved criteria for clustering based on the posterior similarity matrix. Bayesian Analysis 4: 367-392. Green PJ, Richardson S. 2001. Modelling heterogeneity with and without the Dirichlet process. Scandinavian Journal of Statistics 28: 355-375. Stephens M. 2000b. Dealing with label switching in mixture models. Journal of the Royal Statistical Society, Series B 62: 795-809. Hossain MM, Lawson AB, Cai B, Choi J, Liu J, Kirby RS. 2012. Space-time stick-breaking processes for small area disease cluster estimation. Environmental and Ecological Statistics. DOI: 10.1007/s10651-012-0209-0 Christiansen CL, Morris CN. 1997. Hierarchical Poisson regression modeling. Journal of the American Statistical Association 92: 618-632. Jasra A, Holmes CC, Stephens, DA. 2005. Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science 20: 50-67. Yao W. 2012. Model based labeling for mixture models. Statistics and Computing 22: 337-347. Gelfand AE, Ghosh SK. 1998. Model choice: a minimum posterior predictive loss. Biometrika 85: 1-11. Meligkotsidou L. 2007. Bayesian multivariate Poisson mixtures with an unknown number of components. Statistics and Computing 17: 93-107. Assunção RM. 2003. Space varying coefficient models for small area data. Environmetrics 14: 453-473. Rue H, Martino S, Chopin N. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B 71: 319-392. Spiegelhalter DJ, Thomas A, Best NG. 2003. WinBUGS: Bayesian Inference using Gibbs Sampling, Manual Version 1.4. Imperial College, London and Medical Research Council Biostatistics Unit: Cambridge. Tadesse MG, Sha N, Vannucci M. 2005. Bayesian variable selection in clustering high-dimensional data. Journal of the American Statistical Association 100: 602-617. Knorr-Held L. 2000. Bayesian modelling of inseparable space-time variation in disease risk. Statistics in Medicine 19: 2555-2567. Viallefont V, Richardson S, Green PJ. 2002. Bayesian analysis of Poisson mixtures. Journal of Nonparametric Statistics 14: 181-202. Stephens M. 2000a. Bayesian analysis of mixture models with an unknown number of components - an alternative to reversible jump methods. The Annals of Statistics 28: 40-74. Best N, Richardson S, Thomson A. 2005. A comparison of Bayesian spatial models for Disease mapping. Statistical Methods in Medical Research 14: 35-59. Ando T. 2012. Predictive Bayesian model selection. American Journal of Mathematical and Management Sciences 31: 13-38. Fernandez C, Green PJ. 2002. Modelling spatially correlated data via mixtures: a Bayesian approach. Journal of the Royal Statistical Society, Series B 64: 805-826. Kim S, Tadesse MG, Vannucci, M. 2006. Variable selection in clustering via Dirichlet process mixture models. Biometrika 93: 877-893. Besag J, York J, Mollie A. 1991. Bayesian image-resporation, with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics 43: 1-20. Richardson S, Green PJ. 1997. On Bayesian analysis of mixtures with an unknown number of components (with discussion). Journal of the Royal Statistical Society, Series B 59: 731-792. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. 2002. Bayesian measures of complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 64: 583-639. McGrory CA, Titterington DM. 2007. Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics and Data Analysis 51: 5352-5367. Plummer M. 2008. Penalized loss functions for Bayesian model comparison. Biostatistics 9: 523-539. Banerjee S, Carlin BP. 2003. Semiparametric spatio-temporal frailty modeling. Environmetrics 14: 523-535. Gelfand A, Vounatsou P. 2003. Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4: 11-25. Kuo L, Mallick B. 1998. Variable selection for regression models. Sankhya (Series B) 60: 65-81. Hastie DI, Green PJ. 2012. Model choice using reversible jump Markov chain Monte Carlo. Statistica Neerlandica 66: 309-338. O'Hara RB, Sillanpaa MJ. 2009. A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis 4: 85-118. 2007; 17 2006; 93 2002; 14 2012 2010; 17 2000b; 62 2008; 9 2003; 14 1981; 68 2005; 20 2006 2004 2006; 1 2001; 28 2007; 51 2003 1998; 60 1998; 85 2012; 31 1999 2007; 16 2005; 25 2000; 19 1997; 92 2002; 64 2005; 100 1991; 43 1978; 65 2010; 29 2009; 71 1997; 59 2003; 4 2000a; 28 2009; 4 2012; 66 2012; 22 2005; 14 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Stern HS (e_1_2_9_39_1) 1999 Binder DA (e_1_2_9_8_1) 1981; 68 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 Gelman A (e_1_2_9_16_1) 2004 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 Spiegelhalter DJ (e_1_2_9_36_1) 2003 e_1_2_9_3_1 e_1_2_9_2_1 Kelsall JE (e_1_2_9_22_1) 1999 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 Kuo L (e_1_2_9_25_1) 1998; 60 15690999 - Stat Methods Med Res. 2005 Feb;14 (1):35-59 20953293 - Environ Ecol Stat. 2010 Mar 1;17(1):73-95 12925327 - Biostatistics. 2003 Jan;4(1):11-25 10960871 - Stat Med. 2000 Sep 15-30;19(17-18):2555-67 18209015 - Biostatistics. 2008 Jul;9(3):523-39 23869181 - Environ Ecol Stat. 2013 Mar 1;20(1):91-107 20683893 - Stat Med. 2010 Aug 30;29(19):2012-27  | 
    
| References_xml | – reference: Assunção RM. 2003. Space varying coefficient models for small area data. Environmetrics 14: 453-473. – reference: Knorr-Held L. 2000. Bayesian modelling of inseparable space-time variation in disease risk. Statistics in Medicine 19: 2555-2567. – reference: Binder DA. 1981. Approximations to Bayesian clustering rules. The Annals of Statistics 68: 275-285. – reference: McGrory CA, Titterington DM. 2007. Variational approximations in Bayesian model selection for finite mixture distributions. Computational Statistics and Data Analysis 51: 5352-5367. – reference: Rue H, Martino S, Chopin N. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B 71: 319-392. – reference: Celeux G, Forbes F, Robert C, Titterington M. 2006. Deviance information criteria for missing data models. Bayesian Analysis 1: 651-674. – reference: Best N, Richardson S, Thomson A. 2005. A comparison of Bayesian spatial models for Disease mapping. Statistical Methods in Medical Research 14: 35-59. – reference: Gelman A, Carlin JB, Stern HS, Rubin DB. 2004. Bayesian Data Analysis. Chapmann & hall/CRC: Boca Raton. – reference: Binder DA. 1978. Bayesian cluster analysis. Biometrika 65: 31-38. – reference: Waller LA, Carlin BP, Xia H, Gelfand AE. 1997. Hierarchical spatio temporal-mapping of disease rates. Journal of the American Statistical Association 92: 607-617. – reference: Viallefont V, Richardson S, Green PJ. 2002. Bayesian analysis of Poisson mixtures. Journal of Nonparametric Statistics 14: 181-202. – reference: Plummer M. 2008. Penalized loss functions for Bayesian model comparison. Biostatistics 9: 523-539. – reference: Hastie DI, Green PJ. 2012. Model choice using reversible jump Markov chain Monte Carlo. Statistica Neerlandica 66: 309-338. – reference: Gelfand A, Vounatsou P. 2003. Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4: 11-25. – reference: Ando T. 2012. Predictive Bayesian model selection. American Journal of Mathematical and Management Sciences 31: 13-38. – reference: Fritsch A, Ickstadt K. 2009. Improved criteria for clustering based on the posterior similarity matrix. Bayesian Analysis 4: 367-392. – reference: Hossain MM, Lawson AB. 2010. Space-time Bayesian small area disease risk models: development and evaluation with a focus on cluster detection. Environmental and Ecological Statistics 17: 73-95. – reference: Hossain MM, Lawson AB, Cai B, Choi J, Liu J, Kirby RS. 2012. Space-time stick-breaking processes for small area disease cluster estimation. Environmental and Ecological Statistics. DOI: 10.1007/s10651-012-0209-0 – reference: Fernandez C, Green PJ. 2002. Modelling spatially correlated data via mixtures: a Bayesian approach. Journal of the Royal Statistical Society, Series B 64: 805-826. – reference: Lau JW, Green PJ. 2007. Bayesian model based clustering procedure. Journal of Computational and Graphical Statistics 16: 526-558. – reference: Richardson S, Green PJ. 1997. On Bayesian analysis of mixtures with an unknown number of components (with discussion). Journal of the Royal Statistical Society, Series B 59: 731-792. – reference: Christiansen CL, Morris CN. 1997. Hierarchical Poisson regression modeling. Journal of the American Statistical Association 92: 618-632. – reference: Kim S, Tadesse MG, Vannucci, M. 2006. Variable selection in clustering via Dirichlet process mixture models. Biometrika 93: 877-893. – reference: Lawson AB, Song HR, Cai B, Hossain MM, Huang K. 2010. Space-time latent component modeling of geo-referenced health data. Statistics in Medicine 29: 2012-2027. – reference: Spiegelhalter DJ, Thomas A, Best NG. 2003. WinBUGS: Bayesian Inference using Gibbs Sampling, Manual Version 1.4. Imperial College, London and Medical Research Council Biostatistics Unit: Cambridge. – reference: Gelfand AE, Ghosh SK. 1998. Model choice: a minimum posterior predictive loss. Biometrika 85: 1-11. – reference: Stephens M. 2000b. Dealing with label switching in mixture models. Journal of the Royal Statistical Society, Series B 62: 795-809. – reference: Banerjee S, Carlin BP. 2003. Semiparametric spatio-temporal frailty modeling. Environmetrics 14: 523-535. – reference: O'Hara RB, Sillanpaa MJ. 2009. A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis 4: 85-118. – reference: Meligkotsidou L. 2007. Bayesian multivariate Poisson mixtures with an unknown number of components. Statistics and Computing 17: 93-107. – reference: Stephens M. 2000a. Bayesian analysis of mixture models with an unknown number of components - an alternative to reversible jump methods. The Annals of Statistics 28: 40-74. – reference: Besag J, York J, Mollie A. 1991. Bayesian image-resporation, with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics 43: 1-20. – reference: Yao W. 2012. Model based labeling for mixture models. Statistics and Computing 22: 337-347. – reference: Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. 2002. Bayesian measures of complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 64: 583-639. – reference: Green PJ, Richardson S. 2001. Modelling heterogeneity with and without the Dirichlet process. Scandinavian Journal of Statistics 28: 355-375. – reference: Kuo L, Mallick B. 1998. Variable selection for regression models. Sankhya (Series B) 60: 65-81. – reference: Tadesse MG, Sha N, Vannucci M. 2005. Bayesian variable selection in clustering high-dimensional data. Journal of the American Statistical Association 100: 602-617. – reference: Jasra A, Holmes CC, Stephens, DA. 2005. Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science 20: 50-67. – volume: 43 start-page: 1 year: 1991 end-page: 20 article-title: Bayesian image‐resporation, with two applications in spatial statistics publication-title: Annals of the Institute of Statistical Mathematics – volume: 92 start-page: 607 year: 1997 end-page: 617 article-title: Hierarchical spatio temporal‐mapping of disease rates publication-title: Journal of the American Statistical Association – volume: 100 start-page: 602 year: 2005 end-page: 617 article-title: Bayesian variable selection in clustering high‐dimensional data publication-title: Journal of the American Statistical Association – volume: 93 start-page: 877 year: 2006 end-page: 893 article-title: Variable selection in clustering via Dirichlet process mixture models publication-title: Biometrika – start-page: 201 year: 2006 end-page: 218 – volume: 64 start-page: 805 year: 2002 end-page: 826 article-title: Modelling spatially correlated data via mixtures: a Bayesian approach publication-title: Journal of the Royal Statistical Society, Series B – volume: 66 start-page: 309 year: 2012 end-page: 338 article-title: Model choice using reversible jump Markov chain Monte Carlo publication-title: Statistica Neerlandica – volume: 60 start-page: 65 year: 1998 end-page: 81 article-title: Variable selection for regression models publication-title: Sankhya (Series B) – year: 2003 – volume: 68 start-page: 275 year: 1981 end-page: 285 article-title: Approximations to Bayesian clustering rules publication-title: The Annals of Statistics – year: 2012 article-title: Space‐time stick‐breaking processes for small area disease cluster estimation publication-title: Environmental and Ecological Statistics – volume: 4 start-page: 11 year: 2003 end-page: 25 article-title: Proper multivariate conditional autoregressive models for spatial data analysis publication-title: Biostatistics – volume: 25 year: 2005 – volume: 65 start-page: 31 year: 1978 end-page: 38 article-title: Bayesian cluster analysis publication-title: Biometrika – volume: 16 start-page: 526 year: 2007 end-page: 558 article-title: Bayesian model based clustering procedure publication-title: Journal of Computational and Graphical Statistics – volume: 31 start-page: 13 year: 2012 end-page: 38 article-title: Predictive Bayesian model selection publication-title: American Journal of Mathematical and Management Sciences – volume: 20 start-page: 50 year: 2005 end-page: 67 article-title: Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling publication-title: Statistical Science – volume: 19 start-page: 2555 year: 2000 end-page: 2567 article-title: Bayesian modelling of inseparable space‐time variation in disease risk publication-title: Statistics in Medicine – volume: 29 start-page: 2012 year: 2010 end-page: 2027 article-title: Space‐time latent component modeling of geo‐referenced health data publication-title: Statistics in Medicine – volume: 1 start-page: 651 year: 2006 end-page: 674 article-title: Deviance information criteria for missing data models publication-title: Bayesian Analysis – start-page: 63 year: 1999 end-page: 84 – volume: 71 start-page: 319 year: 2009 end-page: 392 article-title: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion) publication-title: Journal of the Royal Statistical Society, Series B – volume: 9 start-page: 523 year: 2008 end-page: 539 article-title: Penalized loss functions for Bayesian model comparison publication-title: Biostatistics – volume: 17 start-page: 73 year: 2010 end-page: 95 article-title: Space‐time Bayesian small area disease risk models: development and evaluation with a focus on cluster detection publication-title: Environmental and Ecological Statistics – volume: 4 start-page: 85 year: 2009 end-page: 118 article-title: A review of Bayesian variable selection methods: what, how and which publication-title: Bayesian Analysis – volume: 28 start-page: 355 year: 2001 end-page: 375 article-title: Modelling heterogeneity with and without the Dirichlet process publication-title: Scandinavian Journal of Statistics – volume: 4 start-page: 367 year: 2009 end-page: 392 article-title: Improved criteria for clustering based on the posterior similarity matrix publication-title: Bayesian Analysis – volume: 14 start-page: 35 year: 2005 end-page: 59 article-title: A comparison of Bayesian spatial models for Disease mapping publication-title: Statistical Methods in Medical Research – volume: 17 start-page: 93 year: 2007 end-page: 107 article-title: Bayesian multivariate Poisson mixtures with an unknown number of components publication-title: Statistics and Computing – year: 2004 – volume: 64 start-page: 583 year: 2002 end-page: 639 article-title: Bayesian measures of complexity and fit (with discussion) publication-title: Journal of the Royal Statistical Society, Series B – volume: 14 start-page: 181 year: 2002 end-page: 202 article-title: Bayesian analysis of Poisson mixtures publication-title: Journal of Nonparametric Statistics – volume: 28 start-page: 40 year: 2000a end-page: 74 article-title: Bayesian analysis of mixture models with an unknown number of components – an alternative to reversible jump methods publication-title: The Annals of Statistics – volume: 51 start-page: 5352 year: 2007 end-page: 5367 article-title: Variational approximations in Bayesian model selection for finite mixture distributions publication-title: Computational Statistics and Data Analysis – volume: 62 start-page: 795 year: 2000b end-page: 809 article-title: Dealing with label switching in mixture models publication-title: Journal of the Royal Statistical Society, Series B – volume: 59 start-page: 731 year: 1997 end-page: 792 article-title: On Bayesian analysis of mixtures with an unknown number of components (with discussion) publication-title: Journal of the Royal Statistical Society, Series B – volume: 22 start-page: 337 year: 2012 end-page: 347 article-title: Model based labeling for mixture models publication-title: Statistics and Computing – volume: 14 start-page: 453 year: 2003 end-page: 473 article-title: Space varying coefficient models for small area data publication-title: Environmetrics – volume: 92 start-page: 618 year: 1997 end-page: 632 article-title: Hierarchical Poisson regression modeling publication-title: Journal of the American Statistical Association – volume: 14 start-page: 523 year: 2003 end-page: 535 article-title: Semiparametric spatio‐temporal frailty modeling publication-title: Environmetrics – volume: 85 start-page: 1 year: 1998 end-page: 11 article-title: Model choice: a minimum posterior predictive loss publication-title: Biometrika – year: 1999 – ident: e_1_2_9_9_1 doi: 10.1214/06-BA122 – volume: 60 start-page: 65 year: 1998 ident: e_1_2_9_25_1 article-title: Variable selection for regression models publication-title: Sankhya (Series B) – ident: e_1_2_9_37_1 doi: 10.1214/aos/1016120364 – ident: e_1_2_9_28_1 doi: 10.1016/S0169-7161(05)25016-2 – ident: e_1_2_9_17_1 doi: 10.1111/1467-9469.00242 – ident: e_1_2_9_15_1 doi: 10.1093/biostatistics/4.1.11 – ident: e_1_2_9_26_1 doi: 10.1198/106186007X238855 – ident: e_1_2_9_10_1 doi: 10.1080/01621459.1997.10474013 – ident: e_1_2_9_3_1 doi: 10.1002/env.599 – ident: e_1_2_9_41_1 doi: 10.1080/10485250211383 – ident: e_1_2_9_19_1 doi: 10.1007/s10651-008-0102-z – ident: e_1_2_9_11_1 doi: 10.1017/CBO9780511584589.011 – ident: e_1_2_9_20_1 doi: 10.1007/s10651‐012‐0209‐0 – ident: e_1_2_9_7_1 doi: 10.1093/biomet/65.1.31 – ident: e_1_2_9_12_1 doi: 10.1111/1467-9868.00362 – ident: e_1_2_9_33_1 doi: 10.1111/1467-9868.00095 – volume: 68 start-page: 275 year: 1981 ident: e_1_2_9_8_1 article-title: Approximations to Bayesian clustering rules publication-title: The Annals of Statistics – start-page: 63 volume-title: Disease Mapping and Risk Assessment for Public Health year: 1999 ident: e_1_2_9_39_1 – ident: e_1_2_9_18_1 doi: 10.1111/j.1467-9574.2012.00516.x – ident: e_1_2_9_35_1 doi: 10.1111/1467-9868.00353 – ident: e_1_2_9_2_1 doi: 10.1080/01966324.2011.10737798 – ident: e_1_2_9_43_1 doi: 10.1007/s11222-010-9226-8 – ident: e_1_2_9_13_1 doi: 10.1214/09-BA414 – ident: e_1_2_9_32_1 doi: 10.1093/biostatistics/kxm049 – ident: e_1_2_9_29_1 doi: 10.1016/j.csda.2006.07.020 – ident: e_1_2_9_30_1 doi: 10.1007/s11222-006-9008-5 – ident: e_1_2_9_14_1 doi: 10.1093/biomet/85.1.1 – ident: e_1_2_9_4_1 doi: 10.1002/env.613 – ident: e_1_2_9_21_1 doi: 10.1214/088342305000000016 – volume-title: Sixth Valencia International Meeting on Bayesian Statistics year: 1999 ident: e_1_2_9_22_1 – ident: e_1_2_9_31_1 doi: 10.1214/09-BA403 – volume-title: Bayesian Data Analysis year: 2004 ident: e_1_2_9_16_1 – ident: e_1_2_9_34_1 doi: 10.1111/j.1467-9868.2008.00700.x – ident: e_1_2_9_38_1 doi: 10.1111/1467-9868.00265 – ident: e_1_2_9_40_1 doi: 10.1198/016214504000001565 – ident: e_1_2_9_27_1 doi: 10.1002/sim.3917 – ident: e_1_2_9_42_1 doi: 10.1080/01621459.1997.10474012 – ident: e_1_2_9_23_1 doi: 10.1093/biomet/93.4.877 – ident: e_1_2_9_24_1 doi: 10.1002/1097-0258(20000915/30)19:17/18<2555::AID-SIM587>3.0.CO;2-# – ident: e_1_2_9_5_1 doi: 10.1007/BF00116466 – volume-title: WinBUGS: Bayesian Inference using Gibbs Sampling, Manual Version 1.4 year: 2003 ident: e_1_2_9_36_1 – ident: e_1_2_9_6_1 doi: 10.1191/0962280205sm388oa – reference: 18209015 - Biostatistics. 2008 Jul;9(3):523-39 – reference: 10960871 - Stat Med. 2000 Sep 15-30;19(17-18):2555-67 – reference: 23869181 - Environ Ecol Stat. 2013 Mar 1;20(1):91-107 – reference: 15690999 - Stat Methods Med Res. 2005 Feb;14 (1):35-59 – reference: 20953293 - Environ Ecol Stat. 2010 Mar 1;17(1):73-95 – reference: 20683893 - Stat Med. 2010 Aug 30;29(19):2012-27 – reference: 12925327 - Biostatistics. 2003 Jan;4(1):11-25  | 
    
| SSID | ssj0009657 | 
    
| Score | 2.0359309 | 
    
| Snippet | With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley istex  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 84 | 
    
| SubjectTerms | Algorithms Clusters Computer simulation Criteria DIC homogeneous covariate effect loss function Optimization Readers Regression relabeling algorithm space-time mixture model  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZW7QEuvBfCSwYhOCVNnMRJuC2oZYXUamEplFNkOw5bbZpWfSwLJ34Cv5FfwozzQIWlglMOHllJZjzzjTzzDSFPMpmoRPHMliLUdgAe0IbMNrCZZlkQuYHnZpgoDkf8cBy8noSTPeI1vTCmaF_JqVMWM6ecnpjaysVM9Zo6sR5EHMDo4HW7PAT43SHd8ejo4KO51cSO-iScmIEqsQu5kZs0hLMu6-nyzAG0EW6FoC7-zfOL8OWfZZKXNuVCfPksimIbyppYNLhK3jZfUZWgnDqbtXTU198IHv_rM6-RKzUypQfV0nWyp8sbZL__qxEOFmtPsLpJ3hxDsq1_fPuOw-mpAOhZ0Nn0HO8jqJmu85xim4w07e5UFJ_my-n6ZEZFmVXrdGUm8IBZUKP71S0yHvTfvTy06_EMtgKUFdpS-tKLecaU7-c6i_MkEdhqmyPrWQ66RzQnAF4IxhXe5OQAThR4CF9qV_LM3yedcl7qO4RqP0CiPwW5XwwBMo-55wmInZ5QjCdMWORZo7FU1dzlOEKjSCvWZQZn_CxF3VrkUSu5qPg6LpB5apTeCojlKda3RWH6YfQqHQ6OY3_44iidwGaNVaRw6vAqRZR6vlmlgJM9znBE9w6ZCHNdSNmiHTKQ3XF0jLFFblfW1r4VA2gMaNa1SLRlh60AMoNvr4AlGYbw2ngs8ri12F1_w5jyXwXS_ug9Pu_-y273yGWAlEFVpXefdNbLjX4AsG0tH9YH9Sf1GELj priority: 102 providerName: Unpaywall  | 
    
| Title | Space-time areal mixture model: relabeling algorithm and model selection issues | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-MFS83MBP-X/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fenv.2265 https://www.ncbi.nlm.nih.gov/pubmed/25221430 https://www.proquest.com/docview/1611621603 https://www.proquest.com/docview/1701042557 https://www.proquest.com/docview/1826600518 https://pubmed.ncbi.nlm.nih.gov/PMC4159962 https://www.ncbi.nlm.nih.gov/pmc/articles/4159962  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 25 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1099-095X dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0009657 issn: 1180-4009 databaseCode: AMVHM dateStart: 20120601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1180-4009 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-095X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009657 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2h9gAXaIGCKa0WhODk1F7ba5tbQQkVUqJCCQRxsHbXaxrVdao4KaWn_gR-I7-EmfVHFCgR4uTDTiJ7PbP7nnfmDSHPUhmrWPHUliLQtg8roA3M1reZZqkfOr7rpEgU-wN-MPTfjoJRnVWJtTCVPkT7wQ0jw6zXGOBClnsL0VBdnHcAO2B9uetxw6beL5SjYh5UfVUiByiSEze6sw7ba364tBOt46ReXAcz_8yWvDkvzsT3byLPlxGt2ZJ6d8iX5mGqTJSTznwmO-ryN53H_3vaDXK7Rqp0v3KtTXJDF3fJVndRGAeD9cpQ3iPvjoB8659XP7BZPRUARXN6Or7A8wlquu28pFg2I035OxX518l0PDs-paJIq3Famo484CbU-EJ5nwx73Q-vD-y6XYOtAHUFtpSedCOeMuV5mU6jLI4Flt5mqIKWgS8guhMANwTjCk92MgArClYMT2pH8tTbImvFpNAPCdWej8J_CrhgBBtmFnHXFbCXukIxHjNhkRfNq0tUrWWOLTXypFJhZhDz5wnOl0WetJZnlX7HNTbPzdtvDcT0BPPdwiD5NHiT9HtHkdd_dZiM4M8a90ggCvFoRRR6Mi8TwM0uZ9iye4VNiNwXKFy4wgbYHseFMrLIg8rt2rtiAJUB3ToWCZccsjVApfDlkWJ8bBTDAaUBr2UWedq67qrZMI74V4OkO_iI10f_arhNbgHM9KvMvcdkbTad6x2AcjO5a4J2l6wPB4f7n38Bb_5Ipg | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENaU9lAuvAvmKRgGTk5t2ZZtOAGTEKDJAG0hB2Y0kizTTF2nk0cpnPgJ_EZ-Cbty7EygZBhOPmiTseXd1fdZ2m8JeZipVKeaZ66SkXFDyIAuMNvQZYZlYeyFvpchUez1eXc_fD2IBmvkaV0LU-lDNB_cMDJsvsYAxw_S2wvVUFOetAA8ROfIRsiBpiAier_Qjkp5VHVWSTwgSV5aK896bLv-5dJatIHTenoW0PzzvOTmrDyWX7_IoljGtHZR6lwkn-rHqc6iHLZmU9XS335TevzP571ELszBKn1WeddlsmbKK2SrvaiNg8F5cphcJe92gX-bn99_YL96KgGNFvRoeIpbFNQ23HlCsXJG2Qp4KovPo_FwenBEZZlV43Rim_KAp1DrDpNrZL_T3nvRdecdG1wNwCtylQqUn_CM6SDITZbkaSqx-jZHIbQc3AEBngTEIRnXuLmTA17RkDQCZTzFs2CLrJej0twg1AQhav9poIMJrJl5wn1fwnLqS814yqRDHtfvTui5nDl21ShEJcTMIOxPBM6XQ-43lseVhMcZNo_s628M5PgQj7zFkfjYfyl6nd0k6D1_KwbwZ7V_CAhE3F2RpRnNJgKgs88Zdu1eYRMj_QUWF6-wAcLHMVcmDrle-V1zVwzQMgBczyHxkkc2BigWvjxSDg-saDgANaC2zCEPGt9dNRvWE_9qINr9D3i9-a-G98hmd6-3I3Ze9d_cIucBdYbVQb7bZH06npk7gOym6q6N4F-ApksX | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKK0EvvEvD0yAEp2wTJ_EmcAK6S3nsqtAW9oBk2Y5DV02zq32UwomfwG_klzDjbLJaKCvEKQdPosSeGX8Tz3xDyMNUJTrRPHWVjIwbggd0IbINXWZYGja90PdSDBQ7Xb5zEL7uRb0V8rSqhSn5IeofbmgZ1l-jgZthmm3NWUNNcdIA8BCdI2thlMSYz7f9fs4dlfCo7KwSexAkeUnFPOuxrerOhb1oDaf19Cyg-We-5IVpMZRfv8g8X8S0dlNqXyKfqs8pc1GOGtOJauhvvzE9_uf3XiYXZ2CVPiu16wpZMcVVstGa18bB4Mw5jK-Rd3sQf5uf339gv3oqAY3m9Lh_ikcU1DbceUKxckbZCngq88-DUX9yeExlkZbjdGyb8oCmUKsO4-vkoN3af7Hjzjo2uBqAV-QqFSg_5inTQZCZNM6SRGL1bYZEaBmoAwI8CYhDMq7xcCcDvKLBaQTKeIqnwQZZLQaF2STUBCFy_2kIB2PYM7OY-76E7dSXmvGESYc8rtZO6BmdOXbVyEVJxMzA7E8EzpdD7teSw5LC4wyZR3b5awE5OsKUt2YkPnZfik57Lw46z3dFDx5W6YcAQ8TTFVmYwXQsADr7nGHX7iUyTQx_IYprLpGBgI-jr4wdcqPUu_qtGKBlALieQ5oLGlkLIFn44kjRP7Sk4QDUILRlDnlQ6-6y2bCa-FcB0ep-wOvNfxW8R87vbrfF21fdN7fIOoDOsMzju01WJ6OpuQPAbqLuWgP-BcVZSps | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZW7QEuvBfCSwYhOCVNnMRJuC2oZYXUamEplFNkOw5bbZpWfSwLJ34Cv5FfwozzQIWlglMOHllJZjzzjTzzDSFPMpmoRPHMliLUdgAe0IbMNrCZZlkQuYHnZpgoDkf8cBy8noSTPeI1vTCmaF_JqVMWM6ecnpjaysVM9Zo6sR5EHMDo4HW7PAT43SHd8ejo4KO51cSO-iScmIEqsQu5kZs0hLMu6-nyzAG0EW6FoC7-zfOL8OWfZZKXNuVCfPksimIbyppYNLhK3jZfUZWgnDqbtXTU198IHv_rM6-RKzUypQfV0nWyp8sbZL__qxEOFmtPsLpJ3hxDsq1_fPuOw-mpAOhZ0Nn0HO8jqJmu85xim4w07e5UFJ_my-n6ZEZFmVXrdGUm8IBZUKP71S0yHvTfvTy06_EMtgKUFdpS-tKLecaU7-c6i_MkEdhqmyPrWQ66RzQnAF4IxhXe5OQAThR4CF9qV_LM3yedcl7qO4RqP0CiPwW5XwwBMo-55wmInZ5QjCdMWORZo7FU1dzlOEKjSCvWZQZn_CxF3VrkUSu5qPg6LpB5apTeCojlKda3RWH6YfQqHQ6OY3_44iidwGaNVaRw6vAqRZR6vlmlgJM9znBE9w6ZCHNdSNmiHTKQ3XF0jLFFblfW1r4VA2gMaNa1SLRlh60AMoNvr4AlGYbw2ngs8ri12F1_w5jyXwXS_ug9Pu_-y273yGWAlEFVpXefdNbLjX4AsG0tH9YH9Sf1GELj | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Space-time+areal+mixture+model%3A+relabeling+algorithm+and+model+selection+issues&rft.jtitle=Environmetrics+%28London%2C+Ont.%29&rft.au=Hossain%2C+M+M&rft.au=Lawson%2C+AB&rft.au=Cai%2C+B&rft.au=Choi%2C+J&rft.date=2014-03-01&rft.issn=1180-4009&rft.eissn=1099-095X&rft.volume=25&rft.issue=2&rft.spage=84&rft.epage=96&rft_id=info:doi/10.1002%2Fenv.2265&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1180-4009&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1180-4009&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1180-4009&client=summon |