The complement C3‐C3aR pathway mediates microglia–astrocyte interaction following status epilepticus

Gliosis is a histopathological characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs between microglia and astrocytes in the evolution of epilepsy. Here, we report in a mouse model of status epilepticus, induced by intracerebroven...

Full description

Saved in:
Bibliographic Details
Published inGlia Vol. 69; no. 5; pp. 1155 - 1169
Main Authors Wei, Yujia, Chen, Tingjun, Bosco, Dale B., Xie, Manling, Zheng, Jiaying, Dheer, Aastha, Ying, Yanlu, Wu, Qian, Lennon, Vanda A., Wu, Long‐Jun
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0894-1491
1098-1136
1098-1136
DOI10.1002/glia.23955

Cover

Abstract Gliosis is a histopathological characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs between microglia and astrocytes in the evolution of epilepsy. Here, we report in a mouse model of status epilepticus, induced by intracerebroventricular injection of kainic acid (KA), sequential activation of microglia and astrocytes and their close spatial interaction in the hippocampal CA3 region. Microglial ablation reduced astrocyte activation and their upregulation of complement C3. When compared to wild‐type mice, both C3−/− and C3aR−/− mice had significantly less microglia–astrocyte interaction in response to KA‐induced status epilepticus. Additionally, KA‐injected C3−/− mice had significantly less histochemical evidence of neurodegeneration. The results suggest that the C3‐C3aR pathway contributes to KA‐induced neurodegeneration by mediating microglia–astrocyte communication. The C3‐C3aR pathway may prove to be a potential therapeutic target for epilepsy treatment. Main Points Microglia are required for astrocytes activation in experimental status epilepticus. C3 from astrocytes activates microglia via C3a receptors. Microglia–astrocyte interaction promotes gliosis and neuronal injury after seizures.
AbstractList Gliosis is a histopathological characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs between microglia and astrocytes in the evolution of epilepsy. Here, we report in a mouse model of status epilepticus, induced by intracerebroventricular injection of kainic acid (KA), sequential activation of microglia and astrocytes and their close spatial interaction in the hippocampal CA3 region. Microglial ablation reduced astrocyte activation and their upregulation of complement C3. When compared to wild‐type mice, both C3−/− and C3aR−/− mice had significantly less microglia–astrocyte interaction in response to KA‐induced status epilepticus. Additionally, KA‐injected C3−/− mice had significantly less histochemical evidence of neurodegeneration. The results suggest that the C3‐C3aR pathway contributes to KA‐induced neurodegeneration by mediating microglia–astrocyte communication. The C3‐C3aR pathway may prove to be a potential therapeutic target for epilepsy treatment.
Gliosis is a histopathologic characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs between microglia and astrocytes in the evolution of epilepsy. Here, we report in a mouse model of status epilepticus, induced by intracerebroventricular injection of kainic acid (KA), sequential activation of microglia and astrocytes and their close spatial interaction in the hippocampal CA3 region. Microglial ablation reduced astrocyte activation and their upregulation of complement C3. When compared to wild-type mice, both C3−/− and C3aR−/− mice had significantly less microglia-astrocyte interaction in response to KA-induced status epilepticus. Additionally, KA-injected C3−/− mice had significantly less histochemical evidence of neurodegeneration. The results suggest that the C3-C3aR pathway contributes to KA-induced neurodegeneration by mediating microglia-astrocyte communication. The C3-C3aR pathway may prove to be a potential therapeutic target for epilepsy treatment.
Gliosis is a histopathological characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs between microglia and astrocytes in the evolution of epilepsy. Here, we report in a mouse model of status epilepticus, induced by intracerebroventricular injection of kainic acid (KA), sequential activation of microglia and astrocytes and their close spatial interaction in the hippocampal CA3 region. Microglial ablation reduced astrocyte activation and their upregulation of complement C3. When compared to wild-type mice, both C3-/- and C3aR-/- mice had significantly less microglia-astrocyte interaction in response to KA-induced status epilepticus. Additionally, KA-injected C3-/- mice had significantly less histochemical evidence of neurodegeneration. The results suggest that the C3-C3aR pathway contributes to KA-induced neurodegeneration by mediating microglia-astrocyte communication. The C3-C3aR pathway may prove to be a potential therapeutic target for epilepsy treatment.Gliosis is a histopathological characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs between microglia and astrocytes in the evolution of epilepsy. Here, we report in a mouse model of status epilepticus, induced by intracerebroventricular injection of kainic acid (KA), sequential activation of microglia and astrocytes and their close spatial interaction in the hippocampal CA3 region. Microglial ablation reduced astrocyte activation and their upregulation of complement C3. When compared to wild-type mice, both C3-/- and C3aR-/- mice had significantly less microglia-astrocyte interaction in response to KA-induced status epilepticus. Additionally, KA-injected C3-/- mice had significantly less histochemical evidence of neurodegeneration. The results suggest that the C3-C3aR pathway contributes to KA-induced neurodegeneration by mediating microglia-astrocyte communication. The C3-C3aR pathway may prove to be a potential therapeutic target for epilepsy treatment.
Gliosis is a histopathological characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs between microglia and astrocytes in the evolution of epilepsy. Here, we report in a mouse model of status epilepticus, induced by intracerebroventricular injection of kainic acid (KA), sequential activation of microglia and astrocytes and their close spatial interaction in the hippocampal CA3 region. Microglial ablation reduced astrocyte activation and their upregulation of complement C3. When compared to wild‐type mice, both C3 −/− and C3aR −/− mice had significantly less microglia–astrocyte interaction in response to KA‐induced status epilepticus. Additionally, KA‐injected C3 −/− mice had significantly less histochemical evidence of neurodegeneration. The results suggest that the C3‐C3aR pathway contributes to KA‐induced neurodegeneration by mediating microglia–astrocyte communication. The C3‐C3aR pathway may prove to be a potential therapeutic target for epilepsy treatment.
Gliosis is a histopathological characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs between microglia and astrocytes in the evolution of epilepsy. Here, we report in a mouse model of status epilepticus, induced by intracerebroventricular injection of kainic acid (KA), sequential activation of microglia and astrocytes and their close spatial interaction in the hippocampal CA3 region. Microglial ablation reduced astrocyte activation and their upregulation of complement C3. When compared to wild‐type mice, both C3−/− and C3aR−/− mice had significantly less microglia–astrocyte interaction in response to KA‐induced status epilepticus. Additionally, KA‐injected C3−/− mice had significantly less histochemical evidence of neurodegeneration. The results suggest that the C3‐C3aR pathway contributes to KA‐induced neurodegeneration by mediating microglia–astrocyte communication. The C3‐C3aR pathway may prove to be a potential therapeutic target for epilepsy treatment. Main Points Microglia are required for astrocytes activation in experimental status epilepticus. C3 from astrocytes activates microglia via C3a receptors. Microglia–astrocyte interaction promotes gliosis and neuronal injury after seizures.
Gliosis is a histopathological characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs between microglia and astrocytes in the evolution of epilepsy. Here, we report in a mouse model of status epilepticus, induced by intracerebroventricular injection of kainic acid (KA), sequential activation of microglia and astrocytes and their close spatial interaction in the hippocampal CA3 region. Microglial ablation reduced astrocyte activation and their upregulation of complement C3. When compared to wild-type mice, both C3 and C3aR mice had significantly less microglia-astrocyte interaction in response to KA-induced status epilepticus. Additionally, KA-injected C3 mice had significantly less histochemical evidence of neurodegeneration. The results suggest that the C3-C3aR pathway contributes to KA-induced neurodegeneration by mediating microglia-astrocyte communication. The C3-C3aR pathway may prove to be a potential therapeutic target for epilepsy treatment.
Author Ying, Yanlu
Dheer, Aastha
Wu, Long‐Jun
Zheng, Jiaying
Wu, Qian
Bosco, Dale B.
Lennon, Vanda A.
Wei, Yujia
Chen, Tingjun
Xie, Manling
AuthorAffiliation 4 Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
1 Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
2 Department of Neurosurgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
3 Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
AuthorAffiliation_xml – name: 2 Department of Neurosurgery, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
– name: 3 Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
– name: 4 Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
– name: 1 Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
Author_xml – sequence: 1
  givenname: Yujia
  surname: Wei
  fullname: Wei, Yujia
  organization: Xinqiao Hospital, Army Military Medical University
– sequence: 2
  givenname: Tingjun
  surname: Chen
  fullname: Chen, Tingjun
  organization: Mayo Clinic
– sequence: 3
  givenname: Dale B.
  surname: Bosco
  fullname: Bosco, Dale B.
  organization: Mayo Clinic
– sequence: 4
  givenname: Manling
  surname: Xie
  fullname: Xie, Manling
  organization: Mayo Clinic
– sequence: 5
  givenname: Jiaying
  surname: Zheng
  fullname: Zheng, Jiaying
  organization: Mayo Clinic
– sequence: 6
  givenname: Aastha
  surname: Dheer
  fullname: Dheer, Aastha
  organization: Mayo Clinic
– sequence: 7
  givenname: Yanlu
  surname: Ying
  fullname: Ying, Yanlu
  organization: Mayo Clinic
– sequence: 8
  givenname: Qian
  surname: Wu
  fullname: Wu, Qian
  organization: Mayo Clinic
– sequence: 9
  givenname: Vanda A.
  surname: Lennon
  fullname: Lennon, Vanda A.
  organization: Mayo Clinic
– sequence: 10
  givenname: Long‐Jun
  orcidid: 0000-0001-8019-3380
  surname: Wu
  fullname: Wu, Long‐Jun
  email: wu.longjun@mayo.edu
  organization: Mayo Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33314324$$D View this record in MEDLINE/PubMed
BookMark eNp9kdFqFDEYhYNU7LZ64wPIgDeiTE3yT2YmN4WyaFtYEKRehzST2U3JJOMk4zJ3fQTBN-yTmHVaa4v0KoR85-Q__zlAe847jdBrgo8IxvTj2hp5RIEz9gwtCOZ1TgiUe2iBa17kpOBkHx2EcIUxSZfqBdoHAFIALRZoc7HRmfJdb3WnXcyWcHP9cwnya9bLuNnKKet0Y2TUIeuMGvzur5vrXzLEwasp6sy4qAepovEua721fmvcOgtRxjFkujdW99GoMbxEz1tpg351ex6ib58_XSzP8tWX0_PlySpXjBQspxRoI3lTVrXGilasrCkHUjWcF5SQSyxp02oMnDYlKxlUwKFpuYIa61bKCg7Rh9l3dL2cttJa0Q-mk8MkCBa7fYldBvFnX4k-nul-vExBVVrBIO8VXhrx8MWZjVj7H6LiUHJWJIN3twaD_z7qEEVngtLWSqf9GAQtqvQlo4wn9O0j9MqPg0vLSBSvoAQGdaLe_DvR31HuKkvA-xlIbYQw6PbpfPgRrEyqJpWV0hj7fwmZJdvU3fSEuThdnZ_Mmt-Ixsnj
CitedBy_id crossref_primary_10_3390_biomedicines10051206
crossref_primary_10_1016_j_ebiom_2023_104653
crossref_primary_10_1016_j_nbd_2023_106249
crossref_primary_10_1007_s12028_025_02226_z
crossref_primary_10_1213_ANE_0000000000006884
crossref_primary_10_1002_ibra_12162
crossref_primary_10_1016_j_phymed_2024_155892
crossref_primary_10_1111_cns_13794
crossref_primary_10_62051_dgf2a481
crossref_primary_10_3390_brainsci13020262
crossref_primary_10_1016_j_fmre_2024_12_023
crossref_primary_10_1002_epd2_20316
crossref_primary_10_1007_s10735_024_10226_0
crossref_primary_10_3389_fnmol_2023_1265944
crossref_primary_10_3390_biom14101323
crossref_primary_10_1016_j_expneurol_2024_114853
crossref_primary_10_1016_j_intimp_2022_108903
crossref_primary_10_1016_j_brainres_2024_148820
crossref_primary_10_1038_s41380_024_02518_4
crossref_primary_10_34133_research_0598
crossref_primary_10_1016_j_bbadis_2023_166672
crossref_primary_10_1080_00207454_2023_2260088
crossref_primary_10_1016_j_neuropharm_2021_108927
crossref_primary_10_1002_iid3_900
crossref_primary_10_1016_j_yebeh_2024_110219
crossref_primary_10_1073_pnas_2021770118
crossref_primary_10_1007_s12264_021_00750_4
crossref_primary_10_1016_j_bbi_2024_09_022
crossref_primary_10_1016_j_nbd_2022_105685
crossref_primary_10_1038_s41598_023_49310_y
crossref_primary_10_1016_j_lfs_2023_121529
crossref_primary_10_1016_j_pneurobio_2022_102282
crossref_primary_10_1186_s13578_022_00832_4
crossref_primary_10_1002_glia_24311
crossref_primary_10_1016_j_brainres_2024_149275
crossref_primary_10_1016_j_brainresbull_2024_110986
crossref_primary_10_1111_jpi_12921
crossref_primary_10_1186_s12974_023_02847_1
crossref_primary_10_1016_j_bbi_2024_04_014
crossref_primary_10_1186_s12974_022_02587_8
crossref_primary_10_1016_j_neulet_2023_137063
crossref_primary_10_3390_nu15112564
crossref_primary_10_3389_fnmol_2022_955799
crossref_primary_10_1177_17448069221140532
crossref_primary_10_1002_epi4_13030
crossref_primary_10_1128_msystems_01540_24
crossref_primary_10_1002_ptr_7848
crossref_primary_10_3389_fncel_2024_1365448
crossref_primary_10_1016_j_jep_2023_116740
crossref_primary_10_3389_fncel_2023_1195843
crossref_primary_10_1158_2159_8290_CD_21_1006
crossref_primary_10_3390_antiox12122061
crossref_primary_10_3389_fneur_2021_651096
crossref_primary_10_1186_s12974_024_03272_8
crossref_primary_10_3390_ijms241311130
crossref_primary_10_3389_fnins_2022_951491
crossref_primary_10_1111_jcmm_18578
crossref_primary_10_1111_cns_70216
crossref_primary_10_1186_s12974_024_03241_1
crossref_primary_10_1016_j_bja_2023_04_044
crossref_primary_10_3389_fnmol_2023_1294514
crossref_primary_10_3389_fphar_2025_1553545
crossref_primary_10_3389_fneur_2024_1396520
crossref_primary_10_1002_ame2_12310
crossref_primary_10_1007_s10753_024_02155_7
crossref_primary_10_1186_s12974_022_02507_w
crossref_primary_10_1016_j_heliyon_2024_e38070
crossref_primary_10_1007_s12035_023_03786_x
crossref_primary_10_2174_1570159X21666221129121715
crossref_primary_10_1002_glia_24298
crossref_primary_10_1007_s10571_023_01429_2
crossref_primary_10_1016_j_neuroscience_2023_02_010
crossref_primary_10_3390_ijms22136867
crossref_primary_10_1007_s12035_024_04022_w
crossref_primary_10_1016_j_pneurobio_2024_102654
crossref_primary_10_1038_s41419_023_05807_y
crossref_primary_10_1016_j_neurot_2024_e00357
crossref_primary_10_3389_fphar_2021_674325
crossref_primary_10_1016_j_bbih_2023_100659
crossref_primary_10_1007_s12035_024_04210_8
Cites_doi 10.1016/j.jneuroim.2006.01.002
10.1016/j.expneurol.2011.08.024
10.1002/(SICI)1098-1136(199905)26:3<201::AID-GLIA2>3.0.CO;2-M
10.1002/glia.23832
10.1111/j.1528-1167.2008.01491.x
10.1007/s00429-013-0528-4
10.1016/j.neuron.2014.11.018
10.1177/1073858416645498
10.1016/j.brainres.2004.11.054
10.1038/s41583-019-0126-4
10.1016/S0140-6736(18)32596-0
10.1186/s13041-018-0376-5
10.1038/nature21029
10.1016/j.pharmthera.2016.11.014
10.1016/j.nbd.2017.10.012
10.4049/jimmunol.1502287
10.1093/brain/awv067
10.1016/j.nbd.2007.01.015
10.1016/j.neuron.2018.10.031
10.1007/s12035-010-8098-4
10.1016/j.immuni.2017.06.008
10.1111/j.1749-6632.2003.tb03138.x
10.1073/pnas.0913449107
10.1007/s00401-015-1481-5
10.7150/thno.35841
10.1016/j.immuni.2017.06.006
10.1128/JVI.00422-10
10.1016/0013-4694(72)90177-0
10.1007/s00401-009-0619-8
10.1126/science.aag2638
10.1016/j.expneurol.2016.05.003
10.1038/ncomms11499
10.1016/S0161-5890(03)00109-3
10.1016/j.tins.2009.08.002
10.1016/j.smim.2013.04.005
10.1016/j.expneurol.2017.06.009
10.1002/glia.23616
10.1523/JNEUROSCI.0315-17.2017
10.1016/j.neuron.2012.03.026
10.1111/j.1365-2818.1993.tb03313.x
10.1523/JNEUROSCI.1574-14.2015
10.1523/JNEUROSCI.0416-14.2014
10.1523/JNEUROSCI.3279-14.2015
10.7554/eLife.56502
10.1016/j.neuron.2018.03.050
10.1016/j.neuron.2014.04.038
10.1002/glia.22389
10.1038/nrd3011
10.1016/0022-510X(95)00209-K
10.1002/glia.23006
10.1523/JNEUROSCI.1860-14.2014
10.1016/j.neuron.2014.02.040
10.1073/pnas.1604263113
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
2020 Wiley Periodicals LLC.
2021 Wiley Periodicals LLC.
Copyright_xml – notice: 2020 Wiley Periodicals LLC
– notice: 2020 Wiley Periodicals LLC.
– notice: 2021 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/glia.23955
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1098-1136
EndPage 1169
ExternalDocumentID oai:pubmedcentral.nih.gov:7936954
PMC7936954
33314324
10_1002_glia_23955
GLIA23955
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 81601142
– fundername: National Institute of Neurological Disorders and Stroke
  funderid: R01NS088627; R01NS112144
– fundername: NINDS NIH HHS
  grantid: R01 NS110949
– fundername: NINDS NIH HHS
  grantid: R01 NS088627
– fundername: NINDS NIH HHS
  grantid: R01 NS112144
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T7
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5145-2232da9d678e0c2756829317d994211b0a2dfe0392d656537393df9c380efaa73
IEDL.DBID UNPAY
ISSN 0894-1491
1098-1136
IngestDate Sun Oct 26 01:41:08 EDT 2025
Tue Sep 30 16:59:33 EDT 2025
Fri Jul 11 13:35:55 EDT 2025
Tue Oct 07 06:05:49 EDT 2025
Mon Jul 21 06:01:46 EDT 2025
Thu Apr 24 23:02:26 EDT 2025
Wed Oct 01 02:33:39 EDT 2025
Wed Jan 22 16:30:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords epilepsy
kainic acid
C3a receptor
complement C3
seizures
astrocytes
gliosis
microglia
Language English
License 2020 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5145-2232da9d678e0c2756829317d994211b0a2dfe0392d656537393df9c380efaa73
Notes Funding information
National Institute of Neurological Disorders and Stroke, Grant/Award Numbers: R01NS088627, R01NS112144; National Natural Science Foundation of China, Grant/Award Number: 81601142
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8019-3380
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7936954
PMID 33314324
PQID 2497363538
PQPubID 996331
PageCount 15
ParticipantIDs unpaywall_primary_10_1002_glia_23955
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7936954
proquest_miscellaneous_2470025259
proquest_journals_2497363538
pubmed_primary_33314324
crossref_primary_10_1002_glia_23955
crossref_citationtrail_10_1002_glia_23955
wiley_primary_10_1002_glia_23955_GLIA23955
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Glia
PublicationTitleAlternate Glia
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 35
2013; 25
2014; 219
2010; 107
2013; 61
2017; 46
2013; 244
2006; 173
1995; 134
2017; 198
2020; 10
1993; 169
2003; 992
2005; 1035
2019; 20
2017; 37
2015; 138
2020; 130
2010; 119
2019; 67
2015; 85
2020; 9
2016; 113
2016; 353
2019; 393
2003; 40
2007; 26
2010; 9
2018; 100
2017; 65
1999; 26
2017; 23
2017; 172
2018; 109
2017; 295
2014; 82
2010; 41
2010; 84
2016; 283
2012; 74
2016; 7
2009; 32
2008; 49
2020; 68
1972; 32
2018; 11
2017; 541
2018; 98
2014; 34
2016; 131
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Chen T. (e_1_2_9_9_1) 2020; 130
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 32
  start-page: 281
  issue: 3
  year: 1972
  end-page: 294
  article-title: Modification of seizure activity by electrical stimulation. II. Motor seizure
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 20
  start-page: 282
  issue: 5
  year: 2019
  end-page: 297
  article-title: Neuron‐glia interactions in the pathophysiology of epilepsy
  publication-title: Nature Reviews. Neuroscience
– volume: 32
  start-page: 638
  issue: 12
  year: 2009
  end-page: 647
  article-title: Molecular dissection of reactive astrogliosis and glial scar formation
  publication-title: Trends in Neurosciences
– volume: 295
  start-page: 184
  year: 2017
  end-page: 193
  article-title: Enhanced classical complement pathway activation and altered phagocytosis signaling molecules in human epilepsy
  publication-title: Experimental Neurology
– volume: 134
  start-page: 57
  issue: Suppl
  year: 1995
  end-page: 68
  article-title: The microglial cell. A historical review
  publication-title: Journal of the Neurological Sciences
– volume: 26
  start-page: 201
  issue: 3
  year: 1999
  end-page: 211
  article-title: Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells
  publication-title: Glia
– volume: 49
  start-page: 33
  issue: Suppl 2
  year: 2008
  end-page: 41
  article-title: Rapid astrocyte and microglial activation following pilocarpine‐induced seizures in rats
  publication-title: Epilepsia
– volume: 1035
  start-page: 24
  issue: 1
  year: 2005
  end-page: 31
  article-title: Fluoro‐Jade C results in ultra high resolution and contrast labeling of degenerating neurons
  publication-title: Brain Research
– volume: 10
  start-page: 74
  issue: 1
  year: 2020
  end-page: 90
  article-title: Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion
  publication-title: Theranostics
– volume: 172
  start-page: 63
  year: 2017
  end-page: 72
  article-title: Complement: A primer for the coming therapeutic revolution
  publication-title: Pharmacology & Therapeutics
– volume: 35
  start-page: 2417
  issue: 6
  year: 2015
  end-page: 2422
  article-title: Modulation of microglial process convergence toward neuronal dendrites by extracellular calcium
  publication-title: The Journal of Neuroscience
– volume: 9
  start-page: 43
  issue: 1
  year: 2010
  end-page: 56
  article-title: Therapeutic potential of complement modulation
  publication-title: Nature Reviews. Drug Discovery
– volume: 46
  start-page: 957
  issue: 6
  year: 2017
  end-page: 967
  article-title: Reactive astrocytes: Production, function, and therapeutic potential
  publication-title: Immunity
– volume: 169
  start-page: 375
  issue: 3
  year: 1993
  end-page: 382
  article-title: Measurement of co‐localization of objects in dual‐colour confocal images
  publication-title: Journal of Microscopy
– volume: 37
  start-page: 7878
  issue: 33
  year: 2017
  end-page: 7892
  article-title: Chemokine CCL2‐CCR2 signaling induces neuronal cell death via STAT3 activation and IL‐1beta production after status epilepticus
  publication-title: The Journal of Neuroscience
– volume: 138
  start-page: 1208
  issue: Pt 5
  year: 2015
  end-page: 1222
  article-title: Astrocyte uncoupling as a cause of human temporal lobe epilepsy
  publication-title: Brain
– volume: 65
  start-page: 5
  issue: 1
  year: 2017
  end-page: 18
  article-title: Microglia‐neuron communication in epilepsy
  publication-title: Glia
– volume: 61
  start-page: 24
  issue: 1
  year: 2013
  end-page: 36
  article-title: The "quad‐partite" synapse: Microglia‐synapse interactions in the developing and mature CNS
  publication-title: Glia
– volume: 7
  year: 2016
  article-title: Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke
  publication-title: Nature Communications
– volume: 41
  start-page: 232
  issue: 2–3
  year: 2010
  end-page: 241
  article-title: Astrogliosis in CNS pathologies: Is there a role for microglia?
  publication-title: Molecular Neurobiology
– volume: 283
  start-page: 85
  year: 2016
  end-page: 96
  article-title: Regulation of astrocyte glutamate transporter‐1 (GLT1) and aquaporin‐4 (AQP4) expression in a model of epilepsy
  publication-title: Experimental Neurology
– volume: 113
  start-page: E5665
  issue: 38
  year: 2016
  end-page: E5674
  article-title: Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 84
  start-page: 6452
  issue: 13
  year: 2010
  end-page: 6460
  article-title: Role for complement in the development of seizures following acute viral infection
  publication-title: Journal of Virology
– volume: 100
  start-page: 1337
  issue: 6
  year: 2018
  end-page: 1353 e1335
  article-title: Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer's disease
  publication-title: Neuron
– volume: 74
  start-page: 691
  issue: 4
  year: 2012
  end-page: 705
  article-title: Microglia sculpt postnatal neural circuits in an activity and complement‐dependent manner
  publication-title: Neuron
– volume: 85
  start-page: 101
  issue: 1
  year: 2015
  end-page: 115
  article-title: NFkappaB‐activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease
  publication-title: Neuron
– volume: 131
  start-page: 211
  issue: 2
  year: 2016
  end-page: 234
  article-title: Infections, inflammation and epilepsy
  publication-title: Acta Neuropathologica
– volume: 26
  start-page: 497
  issue: 3
  year: 2007
  end-page: 511
  article-title: Complement activation in experimental and human temporal lobe epilepsy
  publication-title: Neurobiology of Disease
– volume: 11
  start-page: 34
  issue: 1
  year: 2018
  article-title: RNAseq analysis of hippocampal microglia after kainic acid‐induced seizures
  publication-title: Molecular Brain
– volume: 9
  start-page: 9
  year: 2020
  article-title: Microglial calcium signaling is attuned to neuronal activity in awake mice
  publication-title: Elife
– volume: 25
  start-page: 39
  issue: 1
  year: 2013
  end-page: 46
  article-title: Complement in animal development: Unexpected roles of a highly conserved pathway
  publication-title: Seminars in Immunology
– volume: 34
  start-page: 10528
  issue: 32
  year: 2014
  end-page: 10540
  article-title: Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status Epilepticus
  publication-title: The Journal of Neuroscience
– volume: 23
  start-page: 152
  issue: 2
  year: 2017
  end-page: 168
  article-title: Astroglial scarring and seizures: A cell biological perspective on epilepsy
  publication-title: The Neuroscientist
– volume: 992
  start-page: 56
  year: 2003
  end-page: 71
  article-title: Activation of complement in the central nervous system: Roles in neurodegeneration and neuroprotection
  publication-title: Annals of the New York Academy of Sciences
– volume: 173
  start-page: 188
  issue: 1–2
  year: 2006
  end-page: 195
  article-title: Evidence of activated microglia in focal cortical dysplasia
  publication-title: Journal of Neuroimmunology
– volume: 353
  start-page: 766
  issue: 6301
  year: 2016
  end-page: 771
  article-title: Multifaceted interactions between adaptive immunity and the central nervous system
  publication-title: Science
– volume: 82
  start-page: 1263
  issue: 6
  year: 2014
  end-page: 1270
  article-title: Norepinephrine controls astroglial responsiveness to local circuit activity
  publication-title: Neuron
– volume: 35
  start-page: 3330
  issue: 8
  year: 2015
  end-page: 3345
  article-title: Reactive astrogliosis causes the development of spontaneous seizures
  publication-title: The Journal of Neuroscience
– volume: 68
  start-page: 2136
  issue: 10
  year: 2020
  end-page: 2147
  article-title: Constitutive deletion of astrocytic connexins aggravates kainate‐induced epilepsy
  publication-title: Glia
– volume: 393
  start-page: 689
  issue: 10172
  year: 2019
  end-page: 701
  article-title: Epilepsy in adults
  publication-title: Lancet
– volume: 98
  start-page: 726
  issue: 4
  year: 2018
  end-page: 735 e724
  article-title: Cortical circuit activity evokes rapid astrocyte calcium signals on a similar timescale to neurons
  publication-title: Neuron
– volume: 46
  start-page: 927
  issue: 6
  year: 2017
  end-page: 942
  article-title: Mechanisms and therapeutic relevance of neuro‐immune communication
  publication-title: Immunity
– volume: 541
  start-page: 481
  issue: 7638
  year: 2017
  end-page: 487
  article-title: Neurotoxic reactive astrocytes are induced by activated microglia
  publication-title: Nature
– volume: 219
  start-page: 683
  issue: 2
  year: 2014
  end-page: 706
  article-title: MRI changes and complement activation correlate with epileptogenicity in a mouse model of temporal lobe epilepsy
  publication-title: Brain Structure & Function
– volume: 119
  start-page: 7
  issue: 1
  year: 2010
  end-page: 35
  article-title: Astrocytes: Biology and pathology
  publication-title: Acta Neuropathologica
– volume: 130
  start-page: 4025
  issue: 8
  year: 2020
  end-page: 4038
  article-title: Astrocyte‐microglia interaction drives evolving neuromyelitis optica lesion
  publication-title: The Journal of Clinical Investigation
– volume: 34
  start-page: 11929
  issue: 36
  year: 2014
  end-page: 11947
  article-title: An RNA‐sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex
  publication-title: The Journal of Neuroscience
– volume: 82
  start-page: 380
  issue: 2
  year: 2014
  end-page: 397
  article-title: Colony‐stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain
  publication-title: Neuron
– volume: 107
  start-page: 7975
  issue: 17
  year: 2010
  end-page: 7980
  article-title: Enhanced synaptic connectivity and epilepsy in C1q knockout mice
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 198
  start-page: 788
  issue: 2
  year: 2017
  end-page: 797
  article-title: Intracellular activation of complement 3 is responsible for intestinal tissue damage during mesenteric ischemia
  publication-title: Journal of Immunology
– volume: 67
  start-page: 1434
  issue: 8
  year: 2019
  end-page: 1448
  article-title: Microglial proliferation and monocyte infiltration contribute to microgliosis following status epilepticus
  publication-title: Glia
– volume: 244
  start-page: 4
  year: 2013
  end-page: 10
  article-title: Neuron‐astrocyte signaling and epilepsy
  publication-title: Experimental Neurology
– volume: 40
  start-page: 85
  issue: 2–4
  year: 2003
  end-page: 94
  article-title: "Eat me" and "don't eat me" signals govern the innate immune response and tissue repair in the CNS: Emphasis on the critical role of the complement system
  publication-title: Molecular Immunology
– volume: 109
  start-page: 163
  year: 2018
  end-page: 173
  article-title: Status epilepticus triggers long‐lasting activation of complement C1q‐C3 signaling in the hippocampus that correlates with seizure frequency in experimental epilepsy
  publication-title: Neurobiology of Disease
– ident: e_1_2_9_6_1
  doi: 10.1016/j.jneuroim.2006.01.002
– ident: e_1_2_9_39_1
  doi: 10.1016/j.expneurol.2011.08.024
– ident: e_1_2_9_11_1
  doi: 10.1002/(SICI)1098-1136(199905)26:3<201::AID-GLIA2>3.0.CO;2-M
– ident: e_1_2_9_12_1
  doi: 10.1002/glia.23832
– ident: e_1_2_9_40_1
  doi: 10.1111/j.1528-1167.2008.01491.x
– ident: e_1_2_9_20_1
  doi: 10.1007/s00429-013-0528-4
– ident: e_1_2_9_23_1
  doi: 10.1016/j.neuron.2014.11.018
– ident: e_1_2_9_32_1
  doi: 10.1177/1073858416645498
– ident: e_1_2_9_38_1
  doi: 10.1016/j.brainres.2004.11.054
– ident: e_1_2_9_29_1
  doi: 10.1038/s41583-019-0126-4
– ident: e_1_2_9_45_1
  doi: 10.1016/S0140-6736(18)32596-0
– ident: e_1_2_9_7_1
  doi: 10.1186/s13041-018-0376-5
– ident: e_1_2_9_26_1
  doi: 10.1038/nature21029
– ident: e_1_2_9_3_1
  doi: 10.1016/j.pharmthera.2016.11.014
– ident: e_1_2_9_37_1
  doi: 10.1016/j.nbd.2017.10.012
– ident: e_1_2_9_34_1
  doi: 10.4049/jimmunol.1502287
– ident: e_1_2_9_5_1
  doi: 10.1093/brain/awv067
– ident: e_1_2_9_2_1
  doi: 10.1016/j.nbd.2007.01.015
– ident: e_1_2_9_27_1
  doi: 10.1016/j.neuron.2018.10.031
– ident: e_1_2_9_53_1
  doi: 10.1007/s12035-010-8098-4
– ident: e_1_2_9_8_1
  doi: 10.1016/j.immuni.2017.06.008
– ident: e_1_2_9_48_1
  doi: 10.1111/j.1749-6632.2003.tb03138.x
– ident: e_1_2_9_10_1
  doi: 10.1073/pnas.0913449107
– ident: e_1_2_9_50_1
  doi: 10.1007/s00401-015-1481-5
– ident: e_1_2_9_54_1
  doi: 10.7150/thno.35841
– ident: e_1_2_9_25_1
  doi: 10.1016/j.immuni.2017.06.006
– ident: e_1_2_9_24_1
  doi: 10.1128/JVI.00422-10
– ident: e_1_2_9_31_1
  doi: 10.1016/0013-4694(72)90177-0
– ident: e_1_2_9_42_1
  doi: 10.1007/s00401-009-0619-8
– ident: e_1_2_9_21_1
  doi: 10.1126/science.aag2638
– ident: e_1_2_9_19_1
  doi: 10.1016/j.expneurol.2016.05.003
– ident: e_1_2_9_44_1
  doi: 10.1038/ncomms11499
– ident: e_1_2_9_14_1
  doi: 10.1016/S0161-5890(03)00109-3
– ident: e_1_2_9_41_1
  doi: 10.1016/j.tins.2009.08.002
– ident: e_1_2_9_22_1
  doi: 10.1016/j.smim.2013.04.005
– ident: e_1_2_9_52_1
  doi: 10.1016/j.expneurol.2017.06.009
– ident: e_1_2_9_18_1
  doi: 10.1002/glia.23616
– ident: e_1_2_9_46_1
  doi: 10.1523/JNEUROSCI.0315-17.2017
– ident: e_1_2_9_35_1
  doi: 10.1016/j.neuron.2012.03.026
– ident: e_1_2_9_28_1
  doi: 10.1111/j.1365-2818.1993.tb03313.x
– ident: e_1_2_9_33_1
  doi: 10.1523/JNEUROSCI.1574-14.2015
– ident: e_1_2_9_17_1
  doi: 10.1523/JNEUROSCI.0416-14.2014
– ident: e_1_2_9_15_1
  doi: 10.1523/JNEUROSCI.3279-14.2015
– ident: e_1_2_9_47_1
  doi: 10.7554/eLife.56502
– ident: e_1_2_9_43_1
  doi: 10.1016/j.neuron.2018.03.050
– ident: e_1_2_9_30_1
  doi: 10.1016/j.neuron.2014.04.038
– ident: e_1_2_9_36_1
  doi: 10.1002/glia.22389
– ident: e_1_2_9_51_1
  doi: 10.1038/nrd3011
– ident: e_1_2_9_4_1
  doi: 10.1016/0022-510X(95)00209-K
– volume: 130
  start-page: 4025
  issue: 8
  year: 2020
  ident: e_1_2_9_9_1
  article-title: Astrocyte‐microglia interaction drives evolving neuromyelitis optica lesion
  publication-title: The Journal of Clinical Investigation
– ident: e_1_2_9_16_1
  doi: 10.1002/glia.23006
– ident: e_1_2_9_55_1
  doi: 10.1523/JNEUROSCI.1860-14.2014
– ident: e_1_2_9_13_1
  doi: 10.1016/j.neuron.2014.02.040
– ident: e_1_2_9_49_1
  doi: 10.1073/pnas.1604263113
SSID ssj0011497
Score 2.6102066
Snippet Gliosis is a histopathological characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs...
Gliosis is a histopathologic characteristic of epilepsy that comprises activated microglia and astrocytes. It is unclear whether or how crosstalk occurs...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1155
SubjectTerms Ablation
Animals
Astrocytes
C3a receptor
Complement activation
complement C3
Complement C3 - genetics
Complement component C3
Complement component C3a
Complement receptors
Crosstalk
Epilepsy
Gliosis
Hippocampus
Kainic acid
Kainic Acid - toxicity
Mice
Microglia
Neurodegeneration
seizures
Status Epilepticus - chemically induced
Therapeutic targets
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5KX_TFX_VHtMqKRVDINZtNsrfgy3FYq6gPxUJfJOxmN7Z4zR1NwnE-9U8Q_A_7lzizuUs5KwV9OQKZkOzdNzffbGa-AdgRwpnIJSrkmY3CJCGXsqUNh5lOnbGlNH5m5KfP2f5h8uEoPdqAN6temE4fot9wI8_w_9fk4NrUu5eiod8mJ3oQC5VShzkXmc-nDnrtKOT5qpP5VEmIx7zXJo13Ly9dj0ZXKObVSskbbTXTi7meTNbZrA9He7fh62ohXRXK90HbmEHx4w-Nx_9d6R24teSpbNQB6y5suOoebI0qzNFPF-wl85Wjfkt-C44Ra8zXpvu9RjYWF-c_x0IfMJp3PNcL5vtTkNSyU6r_oztdnP_SdYPRc9E4RpoVZ12HBSsRmNM5BlRGvU5tzdwMH3pGGiH1fTjce_tlvB8uJziEBRKxNETuEVutLEZEFxWkND9EesGlVSrBzNNEOrali5CjWeSVqSB5PluqQgwjV2otxQPYrKaVewQMiWSE3CKSqiwTw63maO_w02jOpckCeLX6JfNiKW9OUzYmeSfMHOe0uNx_jQG86G1nnajHX622V4DIl45d55itSsQahokAnven0SXpPYuu3LQlG0lUEhPLAB52-OlvI4TgJIIYgFxDVm9Act_rZ6qTYy_7LWn2YopX7vQYvPbpX3tMXWOSv_v4fuSPHv-L8RO4GVNhj6_63IbN5qx1T5GZNeaZ98Df2-I4Aw
  priority: 102
  providerName: Wiley-Blackwell
Title The complement C3‐C3aR pathway mediates microglia–astrocyte interaction following status epilepticus
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.23955
https://www.ncbi.nlm.nih.gov/pubmed/33314324
https://www.proquest.com/docview/2497363538
https://www.proquest.com/docview/2470025259
https://pubmed.ncbi.nlm.nih.gov/PMC7936954
https://www.ncbi.nlm.nih.gov/pmc/articles/7936954
UnpaywallVersion submittedVersion
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0894-1491
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-1136
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011497
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbtNAEB2V9AFeuJWLoVSLqJBAsmN7fYkfo4hSEFQoIlJ5stbeNY1wHKuxFYWnfgISf9gvYWZ9EaGogpco0o4Sb3xWc8Y5cwbgkHOV2MqLTCeQtul5dKRkJs1RIHyVyCxM9MzIjyfB8cx7f-qf7oDT9cJo0X6azK0iX1jF_ExrK8tFOux0YsOQRtD53g3YDXyk3wPYnZ18Gn_RbDHyTGT8usgin0yaV9JbkrrDr_lcWC6PqK3v9yR0hVleFUjerItSbNYiz7dJrM5CR3dg2l1_Iz75ZtVVYqXf_7B2_K8N3oXbLSdl42bpHuyo4j7sjQusxxcb9pJplah-_L4HZ4grpnXo-rkim_DLix8TLqaMZhuvxYbpXhQksGxBWj_6NS4vfopVhZlyUylG_hTnTTcFyxCEyzUmT0Z9TfWKqRI3XZIfyOoBzI7efJ4cm-20BjNF0uWbyDNcKSKJ2U_ZKbnKj5BKOKGMIg-rzMQWrsyUjXxMIof0OVnxySxK-chWmRAhfwiDYlmox8CQNNrII-wwyjIvcaRwMF7hayIcJ0wCA151ty9OWytzmqiRx40JsxvT5mJ9qw140ceWjYHHX6P2OxTE7SFexViZhhwJGR8Z8LxfxuNH_6mIQi1rigmJNmIRacCjBjT913DOHTI8NCDcglMfQNbe2ysICG3x3WLAgMMeeNde_WuNyWtC4rcf3o31uyf_9plP4ZZL8h2t7dyHQXVeq2fIv6rkACuPqXvQnrtflrYzMw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BOZRL-Sm0gQJGVEggZZvESbw-rlaULWx7qFqpt8iJHVqxza6aRKvl1EdA4g37JMw4aaqlqBJcIksey3Eyk_nGGX8DsM25ST0TStePteeGIZmUzrXbj1VkUp2L1NaM3D-IR8fhl5PopM3NobMwDT9Et-FGlmG_12TgtCG9c8Ma-m1ypnoBl1F0Hx6EMQYqhIkOO_YoRPqyIfqUoYttv2MnDXZuxi77o1sg83au5GpdzNRiriaTZTxrHdLuo6bqaml5DCkP5XuvrtJe9uMPlsf_XutjWGuhKhs0uvUE7pniKawPCgzTzxfsPbPJo3ZXfh1OUd2YTU-3241syK8ufw65OmRU8niuFsweUUFcy84pBZBmurr8pcoKHeiiMoxoKy6aQxYsR92cztGnMjruVJfMzPCuZ0QTUj6D491PR8OR2xZxcDPEYpGL8CPQSmp0isbLiGy-jwjDF1rKEIPP1FOBzo2HME0jtIw4MfTpXGa875lcKcGfw0oxLcwmMMSSHsILT8g8D1NfKx_lDV5T5fsijR34cP0qk6xlOKdCG5Ok4WYOElpcYh-jA-862VnD6_FXqa1rjUha2y4TDFgFR5zG-w687brRKulXiyrMtCYZQWgSY0sHNhoF6qbhnPvEg-iAWFKtToAYv5d7irNTy_wtqPxihCO3OyW88-4_WqW6QyT5PN4b2NaLfxF-A6ujo_1xMt47-PoSHgaU52OTQLdgpbqozSsEalX62prjbz1jPCQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9RAFB20gvriV_2IVh2xCArZJplkJ_O4bF1brUWKhb6FmcyMLW6zoUlY1qf-BMF_2F_ivZM0Za0U9CUE5obJJPfmnpmcOZeQdcaMCkws_HCoAz-OMaS01X46lIlR2nLlakZ-3h1u7ccfD5KDjpuDe2FafYh-wQ0jw32vMcBNqe3GhWrot-mRHERMJMl1ciNORIqMvs29Xj0KkL5ohT5F7MN52KuTRhsX1y7no0sg8zJX8lZTlHIxl9PpMp51CWlyt626WjkdQ-ShfB80tRrkP_5Qefzvsd4jdzqoSketb90n10zxgKyOCpimHy_oG-rIo25VfpUcgrtRR093y410zM5Of46Z3KNY8nguF9RtUQFcS4-RAog9nZ3-klUNCXRRG4qyFSftJgtqwTdnc8ipFLc7NRU1Jdx1iTIh1UOyP3n_dbzld0Uc_BywWOID_Ii0FBqSoglyFJtPAWGEXAsRw-RTBTLS1gQA0zRAy4ShQp-2ImdpYKyUnD0iK8WsME8IBSwZALwIuLA2VqGWIdgbOCoZhlwNPfL2_FVmeadwjoU2plmrzRxlOLjMPUaPvO5ty1bX469Wa-cekXWxXWUwYeUMcBpLPfKqb4aoxF8tsjCzBm04okmYW3rkcetAfTeMsRB1ED3Cl1yrN0DF7-WW4ujQKX9zLL-YwJXrvRNeeffvnFNdYZJ92NkeubOn_2L8ktz8sjnJdrZ3Pz0jtyOk-TgO6BpZqU8a8xxwWq1euGj8DZbJO6g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB2V9AAXChSKS0GLqJBAsmN7_REfo4hSEFSoIlI5WWvvmkY4jtXYisKpPwGJf9hfwsz6Q4SiCi5RpB0l3vit5o3z5g3AIecqsZUXmU4gbdPz6EjJTJqjQPgqkVmY6JmRH0-C46n3_sw_2wKn64XRov00mVlFPreK2bnWVpbzdNjpxIYhjaDzvVuwHfhIvwewPT35NP6i2WLkmcj4dZFFPpk0r6S3JHWHX_OZsFweUVvf70noGrO8LpC8XRelWK9Enm-SWJ2FjnbgtLv-RnzyzaqrxEq__2Ht-F8bvAd3W07Kxs3SfdhSxQPYHRdYj8_X7CXTKlH9-H0XzhFXTOvQ9XNFNuFXlz8mXJwymm28Emume1GQwLI5af3o17i6_CmWFWbKdaUY-VNcNN0ULEMQLlaYPBn1NdVLpkrcdEl-IMuHMD1683lybLbTGswUSZdvIs9wpYgkZj9lp-QqP0Iq4YQyijysMhNbuDJTNvIxiRzS52TFJ7Mo5SNbZUKE_BEMikWhHgND0mgjj7DDKMu8xJHCwXiFr4lwnDAJDHjV3b44ba3MaaJGHjcmzG5Mm4v1rTbgRR9bNgYef4066FAQt4d4GWNlGnIkZHxkwPN-GY8f_aciCrWoKSYk2ohFpAF7DWj6r-GcO2R4aEC4Aac-gKy9N1cQENriu8WAAYc98G68-tcakzeExG8_vBvrd_v_9plP4I5L8h2t7TyAQXVRq6fIv6rkWXvifgFpYTJK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+complement+C3-C3aR+pathway+mediates+microglia-astrocyte+interaction+following+status+epilepticus&rft.jtitle=Glia&rft.au=Wei%2C+Yujia&rft.au=Chen%2C+Tingjun&rft.au=Bosco%2C+Dale+B.&rft.au=Xie%2C+Manling&rft.date=2021-05-01&rft.issn=0894-1491&rft.eissn=1098-1136&rft.volume=69&rft.issue=5&rft.spage=1155&rft.epage=1169&rft_id=info:doi/10.1002%2Fglia.23955&rft_id=info%3Apmid%2F33314324&rft.externalDocID=PMC7936954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon