Study of Microheterogeneity in Acetonitrile-Water Binary Mixtures by using Polarity-Resolved Solvation Dynamics

The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile–water (ACN–H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (XACN)≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogene...

Full description

Saved in:
Bibliographic Details
Published inChemphyschem Vol. 16; no. 16; pp. 3518 - 3526
Main Authors Koley, Somnath, Ghosh, Subhadip
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 16.11.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1439-4235
1439-7641
1439-7641
DOI10.1002/cphc.201500663

Cover

Abstract The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile–water (ACN–H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (XACN)≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230–1120 ps) at higher ACN concentrations (XACN≈0.2), thus indicating the onset of nonideality within the mixture that continues until XACN≈0.8. This nonideality regime (XACN≈0.2–0.8) comprises of multiple dye‐dependent anomalous regions. At very high ACN concentrations (XACN≈0.8–1), the ACN–H2O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN–H2O mixtures is a subject of debate. However, a careful examination of the widths of time‐resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole. What a mix! The solvation dynamics of three coumarin dyes with various polarities were studied in acetonitrile–water (ACN–H2O) mixtures. Mixtures with ACN mole fractions between 0.2 and 0.8 show unexpectedly slow solvation times. The source of this nonideality is studied by time‐resolved emission spectroscopy and is revealed to be the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole.
AbstractList The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile-water (ACN-H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (XACN)≤0.1], the solvation dynamics are fast (<40ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230-1120ps) at higher ACN concentrations (XACN[asymptotically =]0.2), thus indicating the onset of nonideality within the mixture that continues until XACN[asymptotically =]0.8. This nonideality regime (XACN[asymptotically =]0.2-0.8) comprises of multiple dye-dependent anomalous regions. At very high ACN concentrations (XACN[asymptotically =]0.8-1), the ACN-H2O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN-H2O mixtures is a subject of debate. However, a careful examination of the widths of time-resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole.
The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile–water (ACN–H 2 O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions ( X ACN )≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230–1120 ps) at higher ACN concentrations ( X ACN ≈0.2), thus indicating the onset of nonideality within the mixture that continues until X ACN ≈0.8. This nonideality regime ( X ACN ≈0.2–0.8) comprises of multiple dye‐dependent anomalous regions. At very high ACN concentrations ( X ACN ≈0.8–1), the ACN–H 2 O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN–H 2 O mixtures is a subject of debate. However, a careful examination of the widths of time‐resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole.
The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile–water (ACN–H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (XACN)≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230–1120 ps) at higher ACN concentrations (XACN≈0.2), thus indicating the onset of nonideality within the mixture that continues until XACN≈0.8. This nonideality regime (XACN≈0.2–0.8) comprises of multiple dye‐dependent anomalous regions. At very high ACN concentrations (XACN≈0.8–1), the ACN–H2O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN–H2O mixtures is a subject of debate. However, a careful examination of the widths of time‐resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole. What a mix! The solvation dynamics of three coumarin dyes with various polarities were studied in acetonitrile–water (ACN–H2O) mixtures. Mixtures with ACN mole fractions between 0.2 and 0.8 show unexpectedly slow solvation times. The source of this nonideality is studied by time‐resolved emission spectroscopy and is revealed to be the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole.
The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile-water (ACN-H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (X(ACN))≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230-1120 ps) at higher ACN concentrations (X(ACN)≈0.2), thus indicating the onset of nonideality within the mixture that continues until X(ACN)≈0.8. This nonideality regime (X(ACN)≈0.2-0.8) comprises of multiple dye-dependent anomalous regions. At very high ACN concentrations (X(ACN)≈0.8-1), the ACN-H2O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN-H2O mixtures is a subject of debate. However, a careful examination of the widths of time-resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole.The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile-water (ACN-H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (X(ACN))≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230-1120 ps) at higher ACN concentrations (X(ACN)≈0.2), thus indicating the onset of nonideality within the mixture that continues until X(ACN)≈0.8. This nonideality regime (X(ACN)≈0.2-0.8) comprises of multiple dye-dependent anomalous regions. At very high ACN concentrations (X(ACN)≈0.8-1), the ACN-H2O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN-H2O mixtures is a subject of debate. However, a careful examination of the widths of time-resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole.
The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile-water (ACN-H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (X(ACN))≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230-1120 ps) at higher ACN concentrations (X(ACN)≈0.2), thus indicating the onset of nonideality within the mixture that continues until X(ACN)≈0.8. This nonideality regime (X(ACN)≈0.2-0.8) comprises of multiple dye-dependent anomalous regions. At very high ACN concentrations (X(ACN)≈0.8-1), the ACN-H2O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN-H2O mixtures is a subject of debate. However, a careful examination of the widths of time-resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole.
Author Ghosh, Subhadip
Koley, Somnath
Author_xml – sequence: 1
  givenname: Somnath
  surname: Koley
  fullname: Koley, Somnath
  organization: School of Chemical Sciences, National Institute of Science Education and Research, 751 005, Bhubaneswar, India
– sequence: 2
  givenname: Subhadip
  surname: Ghosh
  fullname: Ghosh, Subhadip
  email: sghosh@niser.ac.in
  organization: School of Chemical Sciences, National Institute of Science Education and Research, 751 005, Bhubaneswar, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26403589$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvFCEYhompse3q1aMh8eJlVhgGmDnWVbfGqrWr6ZEwzDctdRZWYLTz76XuujFNjKePhOeBL-97jA6cd4DQU0rmlJDypdlcm3lJKCdECPYAHdGKNYUUFT3YnauS8UN0HOMNIaQmkj5Ch6WoCON1c4T8Ko3dhH2PP1gT_DUkCP4KHNg0YevwiYHknU3BDlBc6nyLX1mnw5T52zQGiLid8Bitu8LnftAhe8UFRD_8gA6v8tDJeodfT06vrYmP0cNeDxGe7OYMfX375svitDj7tHy3ODkrDM9bF5rTnpOmr6UUvO8lIWAMLXlrdFP1QMqWt1p2stTQaUMJFVVbQi8Il9pILdgMvdi-uwn--wgxqbWNBoZBO_BjVFQKUteC5Bxm6Pk99MaPweXtMsUl5RVjTaae7aixXUOnNsGucwzqT5QZmG-BHGOMAfo9Qom660rddaX2XWWhuicYm36nlYK2w7-1Zqv9zJVM__lELc5PF3-7xda1McHt3tXhmxKSSa4uPy5VWV-sPr9nS1WzXyi6uR0
CitedBy_id crossref_primary_10_1007_s11814_020_0680_5
crossref_primary_10_1002_asia_201801272
crossref_primary_10_1021_acs_jpclett_8b03803
crossref_primary_10_1021_acs_langmuir_7b01081
crossref_primary_10_1039_C7TC01938F
crossref_primary_10_1039_C6CP05024G
crossref_primary_10_1021_acs_jpcb_6b08777
crossref_primary_10_1021_acs_jpclett_1c03530
crossref_primary_10_1021_acs_jpcb_0c00551
crossref_primary_10_1021_acsanm_2c00414
crossref_primary_10_1016_j_jhazmat_2024_135943
crossref_primary_10_1016_j_molliq_2024_125450
crossref_primary_10_3390_molecules29225294
crossref_primary_10_1021_acs_jpcb_6b10176
crossref_primary_10_1021_acs_jpcc_7b11979
crossref_primary_10_3390_su15064795
crossref_primary_10_1021_acs_jpcc_2c05477
crossref_primary_10_1002_slct_201702944
Cites_doi 10.1016/j.cryobiol.2012.10.006
10.1021/jp9716694
10.1021/ja00015a013
10.1016/S0022-2275(20)38027-5
10.1063/1.1556296
10.1016/0378-3812(85)87027-8
10.1021/ac960679i
10.1063/1.4813417
10.1021/j100248a024
10.1021/jp030083g
10.1039/C4CP03525A
10.1021/jp010825a
10.1039/f19878300495
10.1016/S0009-2614(97)01270-0
10.1021/jp984080t
10.1021/je60034a013
10.1016/j.cplett.2003.11.098
10.1051/jphysrad:01934005010049700
10.1039/a903549d
10.1039/tf9686401193
10.1016/0021-9614(76)90060-4
10.1515/zpch-1982-26305
10.1021/jp013580a
10.1063/1.449982
10.1002/9783527632220
10.1016/j.jcis.2005.04.053
10.1006/cryo.1997.2064
10.1021/jp502003x
10.1007/978-0-387-46312-4
10.1021/jp0014519
10.5194/acp-4-275-2004
10.1021/je9000813
10.1021/jp027244l
10.1063/1.4906541
10.1063/1.452460
10.1021/jp014653t
10.1007/BF00645018
10.1063/1.1436074
10.1021/jp034760i
10.1063/1.461742
10.1016/0009-2614(95)00085-I
10.1039/b915888j
10.1063/1.454020
10.1021/jp5113922
10.1016/0301-0104(94)00019-0
10.1039/tf9706601369
10.1021/jp0747454
10.1016/j.chemphys.2005.05.022
10.1021/j100154a070
10.1021/ac60347a052
10.1021/jp9639511
10.1021/jp406853r
10.1021/j100336a002
10.1021/jp5120338
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/cphc.201500663
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1439-7641
EndPage 3526
ExternalDocumentID 3922649421
26403589
10_1002_cphc_201500663
CPHC201500663
ark_67375_WNG_28RSQK3G_8
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ramanujan fellowship
  funderid: SR/S2/RJN-36/2012
– fundername: DST
GroupedDBID ---
-DZ
-~X
.GJ
05W
0R~
1L6
1OC
29B
31~
33P
3WU
4.4
4ZD
50Y
53G
5GY
5VS
66C
6J9
77Q
8-0
8-1
8UM
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AI.
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IH2
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
OIG
P2P
P2W
PQQKQ
QRW
R.K
RNS
ROL
RX1
SUPJJ
SV3
UPT
V2E
VH1
W99
WBKPD
WH7
WJL
WOHZO
WXSBR
XPP
XSW
XV2
Y6R
YZZ
ZGI
ZZTAW
~S-
A00
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AIWBW
AJBDE
P4E
RWI
WYJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c5143-a51f509f87765ff700ecc125bca94fe02b5ba7d72aedac10164b2ef6057ac7a63
IEDL.DBID DR2
ISSN 1439-4235
1439-7641
IngestDate Fri Sep 05 10:38:37 EDT 2025
Fri Jul 25 12:15:58 EDT 2025
Mon Jul 21 05:49:52 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Wed Oct 01 03:59:18 EDT 2025
Wed Jan 22 16:28:05 EST 2025
Sun Sep 21 06:18:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords time-resolved spectroscopy
solvent effects
preferential solvation
solvation dynamics
binary solvents
Language English
License 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5143-a51f509f87765ff700ecc125bca94fe02b5ba7d72aedac10164b2ef6057ac7a63
Notes DST
ark:/67375/WNG-28RSQK3G-8
Ramanujan fellowship - No. SR/S2/RJN-36/2012
istex:ACCEF30E085240C02970C845A78F10D1AE8B05A4
ArticleID:CPHC201500663
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26403589
PQID 1757154339
PQPubID 986334
PageCount 9
ParticipantIDs proquest_miscellaneous_1760886040
proquest_journals_1757154339
pubmed_primary_26403589
crossref_primary_10_1002_cphc_201500663
crossref_citationtrail_10_1002_cphc_201500663
wiley_primary_10_1002_cphc_201500663_CPHC201500663
istex_primary_ark_67375_WNG_28RSQK3G_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 16, 2015
PublicationDateYYYYMMDD 2015-11-16
PublicationDate_xml – month: 11
  year: 2015
  text: November 16, 2015
  day: 16
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Chemphyschem
PublicationTitleAlternate ChemPhysChem
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References F. Perrin, J. Phys. Radium 1934, 5, 497-511.
A. Chandra, Chem. Phys. Lett. 1995, 235, 133-139.
R. S. Fee, M. Maroncelli, Chem. Phys. 1994, 183, 235-247.
I. Bakó, T. Megyes, G. Pálinkás, Chem. Phys. 2005, 316, 235-244.
F. Chicos, A. Wilert, U. Rempel, C. von Borczyskowski, J. Phys. Chem. A 1997, 101, 8179-8185.
Y. C. Guillaume, C. Guinchard, Anal. Chem. 1997, 69, 183-189.
P. J. Suppan, J. Chem. Soc. Faraday Trans. 1 1987, 83, 495-509.
A. Uritski, D. Huppert, J. Phys. Chem. A 2007, 111, 10544-10551.
S. Roy, B. Bagchi, J. Chem. Phys. 2013, 139, 034308.
B. M. Luther, J. R. Kimmel, N. E. Levinger, J. Chem. Phys. 2002, 116, 3370-3377.
S. S. Murthy, Cryobiology 1998, 36, 84-96.
V. Kabisch, Z. Phys. Chem. (Leipzig) 1982, 263, 48-60.
G. Douhéret, C. Moreau, A. Viallard, Fluid Phase Equilib. 1985, 22, 277-287.
C. Moreau, G. Douhéret, J. Chem. Thermodyn. 1976, 8, 403-410.
H. Kovacs, A. Laaksonen, J. Am. Chem. Soc. 1991, 113, 5596-5605.
D. Banik, N. Kundu, J. Kuchlyan, A. Roy, C. Banerjee, S. Ghosh, N. Sarkar, J. Chem. Phys. 2015, 142, 054505.
T. Molotsky, D. Huppert, J. Phys. Chem. A 2003, 107, 8449-8457.
M. A. Kahlow, T. J. Kang, P. F. Barbara, J. Chem. Phys. 1988, 88, 2372-2378.
S. Mukherjee, K. Sahu, D. Roy, S. K. Mondal, K. Bhattacharyya, Chem. Phys. Lett. 2004, 384, 128-133.
L. R. Snyder, Anal. Chem. 1974, 46, 1384-1393.
G. P. Cunningham, G. A. Vidulich, R. L. Kay, J. Chem. Eng. Data 1967, 12, 336-337.
M. E. Johnson, C. Malardier-Jugrootd, T. Head-Gordon, Phys. Chem. Chem. Phys. 2010, 12, 393-405.
S. J. Rosenthal, X. Xie, M. Du, G. R. Fleming, J. Chem. Phys. 1991, 95, 4715-4718.
W. Jarzeba, G. C. Walker, A. E. Johnson, M. A. Kahlow, P. F. Barbara, J. Phys. Chem. 1988, 92, 7039-7041.
S. Şanli, Y. Altun, N. Şanli, G. Alsancak, J. L. Beltran, J. Chem. Eng. Data 2009, 54, 3014-3021.
J. R. Lackowicz, Principle of fluorescence spectroscopy, 3rd ed., Springer, Berlin, 2006.
E. Sanhueza, R. Holzinger, B. Kleiss, L. Donoso, P. J. Crutzen, Atmos. Chem. Phys. 2004, 4, 275-280.
M. K. Blandamer, M. J. Foster, D. A. Waddington, Trans. Farad. Soc. 1970, 66, 1369-1380.
U. Taşdemira, S. Büyükleblebicib, P. B. Tuncera, E. Coşkunc, T. Özgürtaşd, F. N. Aydınd, O. Büyükleblebicib, I. S. Gürcane, Cryobiology 2013, 66, 38-42.
G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy, Oxford University Press, New York, 1986.
B. M. Ladanyi, B. C. Perng, J. Phys. Chem. A 2002, 106, 6922-6934.
M. I. Aveldano, M. VanRollins, L. A. Horrocks, J. Lipid Res. 1983, 24, 83-93.
B. B. Raju, S. M. B. Costa, Phys. Chem. Chem. Phys. 1999, 1, 3539-3547.
D. Martin, H. Hanthal, Dimethyl Sulfoxide, Wiley, New York, 1975.
J. E. Bertie, Z. Lan, J. Phys. Chem. B 1997, 101, 4111-4119.
T. Molotsky, D. Huppert, J. Phys. Chem. A 2002, 106, 8525-8530.
C. Reichardt, T. Welton, Solvents, solvent effects in organic chemistry, 4th ed., Wiley-VCH, Weinheim, 2010.
J. E. Lewis, M. Maroncelli, Chem. Phys. Lett. 1998, 282, 197-203.
S. Gupta, S. Rafiq, P. Sen, J. Phys. Chem. B 2015, 119, 3135-3141.
Y. P. Handa, G. C. Benson, J. Solution Chem. 1981, 10, 291-300.
H. Kaur, S. Koley, S. Ghosh, J. Phys. Chem. B 2014, 118, 7577-7585.
Y. Marcus, Y. Migron, J. Phys. Chem. 1991, 95, 400-406.
P. Dutta, P. Sen, S. Mukherjee, A. Halder, K. Bhattacharyya, J. Phys. Chem. B 2003, 107, 10815-10822.
M. Khajehpour, J. F. Kauffman, J. Phys. Chem. A 2000, 104, 7151-7159.
M. Maroncelli, G. R. Fleming, J. Chem. Phys. 1987, 86, 6221-6239.
S. Koley, H. Kaur, S. Ghosh, Phys. Chem. Chem. Phys. 2014, 16, 22352-22363.
D. A. Armitage, M. K. Blandamer, M. J. Foster, N. J. Hidden, K. W. Morcom, M. C. R. Symons, M. J. Wooten, Trans. Farad. Soc. 1968, 64, 1193-1200.
C. A. Deakyne, M. Meot-Ner, C. L. Campbell, M. G. Hughes, S. P. Murphy, J. Chem. Phys. 1986, 84, 4958-4969.
M. Khajehpour, C. M. Welch, K. A. Kleiner, J. F. Kauffman, J. Phys. Chem. A 2001, 105, 5372-5379.
F. Cichos, A. Willert, U. Rempel, C. V. Borczyskowski, J. Phys. Chem. A 1997, 101, 8179-8185.
G. Jones II, W. R. Jackson, C. Y. Choi, W. R. Bergmark, J. Phys. Chem. 1985, 89, 294-300.
L. R. Martins, A. Tamashiro, D. Laria, M. S. Skaf, J. Chem. Phys. 2003, 118, 5955-5963.
P. Majumder, R. Sarkar, A. K. Shaw, A. Chakraborty, S. K. Pal, J. Colloid Interface Sci. 2005, 290, 462-474.
G. B. Dutt, T. K. Ghanty, J. Phys. Chem. B 2003, 107, 3257-3264.
F. Chicos, R. Brown, U. Rempel, C. von Borczyskowski, J. Phys. Chem. A 1999, 103, 2506-2512.
S. Mandal, S. Ghosh, S. Banerjee, J. Kuchlyan, N. Sarkar, J. Phys. Chem. B 2013, 117, 12212-12223.
2010; 12
2005; 290
1991; 113
2003; 118
2013; 66
2015; 142
1991; 95
2004; 4
1975
1982; 263
2002; 116
1985; 22
2001; 105
1968; 64
1974; 46
1987; 86
2009; 54
1986; 84
1987; 83
1967; 12
1994; 183
1997; 101
2013; 117
2002; 106
2014; 16
1988; 88
1986
1970; 66
1983; 24
1998; 282
2014; 118
2004; 384
2010
1997; 69
2005; 316
2006
1999; 103
1995; 235
1999; 1
1985; 89
1988; 92
1976; 8
1934; 5
2003; 107
2000; 104
2007; 111
2013; 139
2015; 119
1981; 10
1998; 36
e_1_2_6_53_1
e_1_2_6_32_1
Fleming G. R. (e_1_2_6_51_1) 1986
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
Kabisch V. (e_1_2_6_30_1) 1982; 263
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Lackowicz J. R. (e_1_2_6_57_1) 2006
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
Martin D. (e_1_2_6_6_1) 1975
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: W. Jarzeba, G. C. Walker, A. E. Johnson, M. A. Kahlow, P. F. Barbara, J. Phys. Chem. 1988, 92, 7039-7041.
– reference: D. Banik, N. Kundu, J. Kuchlyan, A. Roy, C. Banerjee, S. Ghosh, N. Sarkar, J. Chem. Phys. 2015, 142, 054505.
– reference: A. Uritski, D. Huppert, J. Phys. Chem. A 2007, 111, 10544-10551.
– reference: Y. P. Handa, G. C. Benson, J. Solution Chem. 1981, 10, 291-300.
– reference: E. Sanhueza, R. Holzinger, B. Kleiss, L. Donoso, P. J. Crutzen, Atmos. Chem. Phys. 2004, 4, 275-280.
– reference: S. Gupta, S. Rafiq, P. Sen, J. Phys. Chem. B 2015, 119, 3135-3141.
– reference: S. J. Rosenthal, X. Xie, M. Du, G. R. Fleming, J. Chem. Phys. 1991, 95, 4715-4718.
– reference: C. Moreau, G. Douhéret, J. Chem. Thermodyn. 1976, 8, 403-410.
– reference: G. Douhéret, C. Moreau, A. Viallard, Fluid Phase Equilib. 1985, 22, 277-287.
– reference: M. Khajehpour, J. F. Kauffman, J. Phys. Chem. A 2000, 104, 7151-7159.
– reference: M. A. Kahlow, T. J. Kang, P. F. Barbara, J. Chem. Phys. 1988, 88, 2372-2378.
– reference: P. Majumder, R. Sarkar, A. K. Shaw, A. Chakraborty, S. K. Pal, J. Colloid Interface Sci. 2005, 290, 462-474.
– reference: M. K. Blandamer, M. J. Foster, D. A. Waddington, Trans. Farad. Soc. 1970, 66, 1369-1380.
– reference: C. Reichardt, T. Welton, Solvents, solvent effects in organic chemistry, 4th ed., Wiley-VCH, Weinheim, 2010.
– reference: B. B. Raju, S. M. B. Costa, Phys. Chem. Chem. Phys. 1999, 1, 3539-3547.
– reference: S. Roy, B. Bagchi, J. Chem. Phys. 2013, 139, 034308.
– reference: G. B. Dutt, T. K. Ghanty, J. Phys. Chem. B 2003, 107, 3257-3264.
– reference: T. Molotsky, D. Huppert, J. Phys. Chem. A 2003, 107, 8449-8457.
– reference: P. J. Suppan, J. Chem. Soc. Faraday Trans. 1 1987, 83, 495-509.
– reference: T. Molotsky, D. Huppert, J. Phys. Chem. A 2002, 106, 8525-8530.
– reference: F. Perrin, J. Phys. Radium 1934, 5, 497-511.
– reference: H. Kaur, S. Koley, S. Ghosh, J. Phys. Chem. B 2014, 118, 7577-7585.
– reference: V. Kabisch, Z. Phys. Chem. (Leipzig) 1982, 263, 48-60.
– reference: J. R. Lackowicz, Principle of fluorescence spectroscopy, 3rd ed., Springer, Berlin, 2006.
– reference: H. Kovacs, A. Laaksonen, J. Am. Chem. Soc. 1991, 113, 5596-5605.
– reference: S. Mukherjee, K. Sahu, D. Roy, S. K. Mondal, K. Bhattacharyya, Chem. Phys. Lett. 2004, 384, 128-133.
– reference: M. I. Aveldano, M. VanRollins, L. A. Horrocks, J. Lipid Res. 1983, 24, 83-93.
– reference: R. S. Fee, M. Maroncelli, Chem. Phys. 1994, 183, 235-247.
– reference: S. Şanli, Y. Altun, N. Şanli, G. Alsancak, J. L. Beltran, J. Chem. Eng. Data 2009, 54, 3014-3021.
– reference: A. Chandra, Chem. Phys. Lett. 1995, 235, 133-139.
– reference: S. S. Murthy, Cryobiology 1998, 36, 84-96.
– reference: B. M. Luther, J. R. Kimmel, N. E. Levinger, J. Chem. Phys. 2002, 116, 3370-3377.
– reference: U. Taşdemira, S. Büyükleblebicib, P. B. Tuncera, E. Coşkunc, T. Özgürtaşd, F. N. Aydınd, O. Büyükleblebicib, I. S. Gürcane, Cryobiology 2013, 66, 38-42.
– reference: M. E. Johnson, C. Malardier-Jugrootd, T. Head-Gordon, Phys. Chem. Chem. Phys. 2010, 12, 393-405.
– reference: I. Bakó, T. Megyes, G. Pálinkás, Chem. Phys. 2005, 316, 235-244.
– reference: G. P. Cunningham, G. A. Vidulich, R. L. Kay, J. Chem. Eng. Data 1967, 12, 336-337.
– reference: L. R. Martins, A. Tamashiro, D. Laria, M. S. Skaf, J. Chem. Phys. 2003, 118, 5955-5963.
– reference: F. Chicos, A. Wilert, U. Rempel, C. von Borczyskowski, J. Phys. Chem. A 1997, 101, 8179-8185.
– reference: B. M. Ladanyi, B. C. Perng, J. Phys. Chem. A 2002, 106, 6922-6934.
– reference: M. Maroncelli, G. R. Fleming, J. Chem. Phys. 1987, 86, 6221-6239.
– reference: S. Koley, H. Kaur, S. Ghosh, Phys. Chem. Chem. Phys. 2014, 16, 22352-22363.
– reference: L. R. Snyder, Anal. Chem. 1974, 46, 1384-1393.
– reference: Y. C. Guillaume, C. Guinchard, Anal. Chem. 1997, 69, 183-189.
– reference: Y. Marcus, Y. Migron, J. Phys. Chem. 1991, 95, 400-406.
– reference: P. Dutta, P. Sen, S. Mukherjee, A. Halder, K. Bhattacharyya, J. Phys. Chem. B 2003, 107, 10815-10822.
– reference: G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy, Oxford University Press, New York, 1986.
– reference: S. Mandal, S. Ghosh, S. Banerjee, J. Kuchlyan, N. Sarkar, J. Phys. Chem. B 2013, 117, 12212-12223.
– reference: F. Cichos, A. Willert, U. Rempel, C. V. Borczyskowski, J. Phys. Chem. A 1997, 101, 8179-8185.
– reference: D. Martin, H. Hanthal, Dimethyl Sulfoxide, Wiley, New York, 1975.
– reference: F. Chicos, R. Brown, U. Rempel, C. von Borczyskowski, J. Phys. Chem. A 1999, 103, 2506-2512.
– reference: D. A. Armitage, M. K. Blandamer, M. J. Foster, N. J. Hidden, K. W. Morcom, M. C. R. Symons, M. J. Wooten, Trans. Farad. Soc. 1968, 64, 1193-1200.
– reference: J. E. Lewis, M. Maroncelli, Chem. Phys. Lett. 1998, 282, 197-203.
– reference: G. Jones II, W. R. Jackson, C. Y. Choi, W. R. Bergmark, J. Phys. Chem. 1985, 89, 294-300.
– reference: J. E. Bertie, Z. Lan, J. Phys. Chem. B 1997, 101, 4111-4119.
– reference: C. A. Deakyne, M. Meot-Ner, C. L. Campbell, M. G. Hughes, S. P. Murphy, J. Chem. Phys. 1986, 84, 4958-4969.
– reference: M. Khajehpour, C. M. Welch, K. A. Kleiner, J. F. Kauffman, J. Phys. Chem. A 2001, 105, 5372-5379.
– volume: 95
  start-page: 4715
  year: 1991
  end-page: 4718
  publication-title: J. Chem. Phys.
– volume: 106
  start-page: 6922
  year: 2002
  end-page: 6934
  publication-title: J. Phys. Chem. A
– volume: 36
  start-page: 84
  year: 1998
  end-page: 96
  publication-title: Cryobiology
– volume: 106
  start-page: 8525
  year: 2002
  end-page: 8530
  publication-title: J. Phys. Chem. A
– volume: 1
  start-page: 3539
  year: 1999
  end-page: 3547
  publication-title: Phys. Chem. Chem. Phys.
– volume: 384
  start-page: 128
  year: 2004
  end-page: 133
  publication-title: Chem. Phys. Lett.
– volume: 235
  start-page: 133
  year: 1995
  end-page: 139
  publication-title: Chem. Phys. Lett.
– volume: 111
  start-page: 10544
  year: 2007
  end-page: 10551
  publication-title: J. Phys. Chem. A
– volume: 4
  start-page: 275
  year: 2004
  end-page: 280
  publication-title: Atmos. Chem. Phys.
– year: 1975
– volume: 101
  start-page: 8179
  year: 1997
  end-page: 8185
  publication-title: J. Phys. Chem. A
– volume: 290
  start-page: 462
  year: 2005
  end-page: 474
  publication-title: J. Colloid Interface Sci.
– volume: 66
  start-page: 38
  year: 2013
  end-page: 42
  publication-title: Cryobiology
– volume: 113
  start-page: 5596
  year: 1991
  end-page: 5605
  publication-title: J. Am. Chem. Soc.
– volume: 105
  start-page: 5372
  year: 2001
  end-page: 5379
  publication-title: J. Phys. Chem. A
– volume: 12
  start-page: 336
  year: 1967
  end-page: 337
  publication-title: J. Chem. Eng. Data
– volume: 117
  start-page: 12212
  year: 2013
  end-page: 12223
  publication-title: J. Phys. Chem. B
– year: 1986
– volume: 116
  start-page: 3370
  year: 2002
  end-page: 3377
  publication-title: J. Chem. Phys.
– volume: 66
  start-page: 1369
  year: 1970
  end-page: 1380
  publication-title: Trans. Farad. Soc.
– volume: 316
  start-page: 235
  year: 2005
  end-page: 244
  publication-title: Chem. Phys.
– volume: 118
  start-page: 7577
  year: 2014
  end-page: 7585
  publication-title: J. Phys. Chem. B
– volume: 46
  start-page: 1384
  year: 1974
  end-page: 1393
  publication-title: Anal. Chem.
– volume: 86
  start-page: 6221
  year: 1987
  end-page: 6239
  publication-title: J. Chem. Phys.
– volume: 84
  start-page: 4958
  year: 1986
  end-page: 4969
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 291
  year: 1981
  end-page: 300
  publication-title: J. Solution Chem.
– volume: 5
  start-page: 497
  year: 1934
  end-page: 511
  publication-title: J. Phys. Radium
– volume: 24
  start-page: 83
  year: 1983
  end-page: 93
  publication-title: J. Lipid Res.
– volume: 139
  start-page: 034308
  year: 2013
  publication-title: J. Chem. Phys.
– volume: 95
  start-page: 400
  year: 1991
  end-page: 406
  publication-title: J. Phys. Chem.
– volume: 107
  start-page: 3257
  year: 2003
  end-page: 3264
  publication-title: J. Phys. Chem. B
– volume: 101
  start-page: 4111
  year: 1997
  end-page: 4119
  publication-title: J. Phys. Chem. B
– volume: 282
  start-page: 197
  year: 1998
  end-page: 203
  publication-title: Chem. Phys. Lett.
– volume: 107
  start-page: 10815
  year: 2003
  end-page: 10822
  publication-title: J. Phys. Chem. B
– volume: 183
  start-page: 235
  year: 1994
  end-page: 247
  publication-title: Chem. Phys.
– volume: 107
  start-page: 8449
  year: 2003
  end-page: 8457
  publication-title: J. Phys. Chem. A
– volume: 8
  start-page: 403
  year: 1976
  end-page: 410
  publication-title: J. Chem. Thermodyn.
– volume: 16
  start-page: 22352
  year: 2014
  end-page: 22363
  publication-title: Phys. Chem. Chem. Phys.
– year: 2010
– volume: 92
  start-page: 7039
  year: 1988
  end-page: 7041
  publication-title: J. Phys. Chem.
– volume: 22
  start-page: 277
  year: 1985
  end-page: 287
  publication-title: Fluid Phase Equilib.
– volume: 54
  start-page: 3014
  year: 2009
  end-page: 3021
  publication-title: J. Chem. Eng. Data
– volume: 104
  start-page: 7151
  year: 2000
  end-page: 7159
  publication-title: J. Phys. Chem. A
– volume: 83
  start-page: 495
  year: 1987
  end-page: 509
  publication-title: J. Chem. Soc. Faraday Trans. 1
– year: 2006
– volume: 142
  start-page: 054505
  year: 2015
  publication-title: J. Chem. Phys.
– volume: 64
  start-page: 1193
  year: 1968
  end-page: 1200
  publication-title: Trans. Farad. Soc.
– volume: 88
  start-page: 2372
  year: 1988
  end-page: 2378
  publication-title: J. Chem. Phys.
– volume: 69
  start-page: 183
  year: 1997
  end-page: 189
  publication-title: Anal. Chem.
– volume: 12
  start-page: 393
  year: 2010
  end-page: 405
  publication-title: Phys. Chem. Chem. Phys.
– volume: 119
  start-page: 3135
  year: 2015
  end-page: 3141
  publication-title: J. Phys. Chem. B
– volume: 103
  start-page: 2506
  year: 1999
  end-page: 2512
  publication-title: J. Phys. Chem. A
– volume: 118
  start-page: 5955
  year: 2003
  end-page: 5963
  publication-title: J. Chem. Phys.
– volume: 89
  start-page: 294
  year: 1985
  end-page: 300
  publication-title: J. Phys. Chem.
– volume: 263
  start-page: 48
  year: 1982
  end-page: 60
  publication-title: Z. Phys. Chem. (Leipzig)
– ident: e_1_2_6_3_1
  doi: 10.1016/j.cryobiol.2012.10.006
– ident: e_1_2_6_35_1
  doi: 10.1021/jp9716694
– ident: e_1_2_6_12_1
  doi: 10.1021/ja00015a013
– ident: e_1_2_6_25_1
  doi: 10.1016/S0022-2275(20)38027-5
– ident: e_1_2_6_13_1
  doi: 10.1063/1.1556296
– ident: e_1_2_6_29_1
  doi: 10.1016/0378-3812(85)87027-8
– ident: e_1_2_6_21_1
  doi: 10.1021/ac960679i
– ident: e_1_2_6_11_1
  doi: 10.1063/1.4813417
– ident: e_1_2_6_41_1
  doi: 10.1021/j100248a024
– ident: e_1_2_6_49_1
  doi: 10.1021/jp030083g
– volume-title: Chemical Applications of Ultrafast Spectroscopy
  year: 1986
  ident: e_1_2_6_51_1
– ident: e_1_2_6_10_1
  doi: 10.1039/C4CP03525A
– ident: e_1_2_6_38_1
  doi: 10.1021/jp010825a
– ident: e_1_2_6_37_1
  doi: 10.1039/f19878300495
– ident: e_1_2_6_44_1
  doi: 10.1016/S0009-2614(97)01270-0
– ident: e_1_2_6_34_1
  doi: 10.1021/jp984080t
– ident: e_1_2_6_39_1
  doi: 10.1021/je60034a013
– ident: e_1_2_6_7_1
  doi: 10.1016/j.cplett.2003.11.098
– ident: e_1_2_6_50_1
  doi: 10.1051/jphysrad:01934005010049700
– ident: e_1_2_6_42_1
  doi: 10.1039/a903549d
– ident: e_1_2_6_55_1
  doi: 10.1039/tf9686401193
– ident: e_1_2_6_28_1
  doi: 10.1016/0021-9614(76)90060-4
– ident: e_1_2_6_20_1
  doi: 10.1021/jp9716694
– volume: 263
  start-page: 48
  year: 1982
  ident: e_1_2_6_30_1
  publication-title: Z. Phys. Chem. (Leipzig)
  doi: 10.1515/zpch-1982-26305
– ident: e_1_2_6_33_1
  doi: 10.1021/jp013580a
– ident: e_1_2_6_16_1
  doi: 10.1063/1.449982
– ident: e_1_2_6_1_1
  doi: 10.1002/9783527632220
– ident: e_1_2_6_48_1
  doi: 10.1016/j.jcis.2005.04.053
– ident: e_1_2_6_2_1
  doi: 10.1006/cryo.1997.2064
– ident: e_1_2_6_9_1
  doi: 10.1021/jp502003x
– volume-title: Principle of fluorescence spectroscopy
  year: 2006
  ident: e_1_2_6_57_1
  doi: 10.1007/978-0-387-46312-4
– ident: e_1_2_6_18_1
  doi: 10.1021/jp0014519
– ident: e_1_2_6_27_1
  doi: 10.5194/acp-4-275-2004
– ident: e_1_2_6_26_1
  doi: 10.1021/je9000813
– ident: e_1_2_6_52_1
  doi: 10.1021/jp027244l
– ident: e_1_2_6_15_1
  doi: 10.1063/1.4906541
– ident: e_1_2_6_46_1
  doi: 10.1063/1.452460
– ident: e_1_2_6_8_1
  doi: 10.1021/jp014653t
– ident: e_1_2_6_56_1
  doi: 10.1007/BF00645018
– ident: e_1_2_6_19_1
  doi: 10.1063/1.1436074
– ident: e_1_2_6_40_1
  doi: 10.1021/jp034760i
– ident: e_1_2_6_23_1
  doi: 10.1063/1.461742
– volume-title: Dimethyl Sulfoxide
  year: 1975
  ident: e_1_2_6_6_1
– ident: e_1_2_6_36_1
  doi: 10.1016/0009-2614(95)00085-I
– ident: e_1_2_6_5_1
  doi: 10.1039/b915888j
– ident: e_1_2_6_47_1
  doi: 10.1063/1.454020
– ident: e_1_2_6_24_1
  doi: 10.1021/jp5113922
– ident: e_1_2_6_45_1
  doi: 10.1016/0301-0104(94)00019-0
– ident: e_1_2_6_54_1
  doi: 10.1039/tf9706601369
– ident: e_1_2_6_17_1
  doi: 10.1021/jp0747454
– ident: e_1_2_6_32_1
  doi: 10.1016/j.chemphys.2005.05.022
– ident: e_1_2_6_53_1
  doi: 10.1021/j100154a070
– ident: e_1_2_6_4_1
  doi: 10.1021/ac60347a052
– ident: e_1_2_6_31_1
  doi: 10.1021/jp9639511
– ident: e_1_2_6_43_1
  doi: 10.1021/jp406853r
– ident: e_1_2_6_22_1
  doi: 10.1021/j100336a002
– ident: e_1_2_6_14_1
  doi: 10.1021/jp5120338
SSID ssj0008071
Score 2.2460446
Snippet The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile–water (ACN–H2O) mixtures across the entire...
The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile–water (ACN–H 2 O) mixtures across the entire...
The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile-water (ACN-H2O) mixtures across the entire...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3518
SubjectTerms Acetonitriles - chemistry
binary solvents
Coumarins - chemistry
Dimethyl Sulfoxide - chemistry
Models, Molecular
preferential solvation
solvation dynamics
solvent effects
Solvents - chemistry
Spectrometry, Fluorescence
Spectrophotometry, Infrared
time-resolved spectroscopy
Water - chemistry
Title Study of Microheterogeneity in Acetonitrile-Water Binary Mixtures by using Polarity-Resolved Solvation Dynamics
URI https://api.istex.fr/ark:/67375/WNG-28RSQK3G-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.201500663
https://www.ncbi.nlm.nih.gov/pubmed/26403589
https://www.proquest.com/docview/1757154339
https://www.proquest.com/docview/1760886040
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1439-4235
  databaseCode: DR2
  dateStart: 20000101
  customDbUrl:
  isFulltext: true
  eissn: 1439-7641
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008071
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOcCFf2igICMhOKVN7DhOjmWhXYFalZaqvVn-pVVLttrsoi6nPgISb9gnYSbZpCwCIcEpieJRHHs8_sYz_kzIC4D0Wjsr4sI5jmHGNNbB87hgmU8Zc4IZjOhubefD_ezdoTj8aRd_yw_RL7jhyGjsNQ5wbeq1K9JQe3aEFIQAaHDWBCOcctHEaXev-KOKpPW4Mgx3Mi461saErS2KL8xK17GBz38HORcRbDMFbdwmuqt8m3lysjqdmFX79Rdex__5uzvk1hyf0vVWoe6Sa766R24MumPh7pMaMw9ndBToFubyHWE6zQi00AOcp8cVXbd-gnZiDJ-9vPh-AFh2TF83u35B4hwDFjU1M4oJ95_oDnrWIHl58Q0DCadfvKN7cGn0hb6ZVfrzsa0fkP2Ntx8Hw3h-ckNsEYDFWqQBkEgopMxFCDJJQFMAShmryyz4hBlhtHSSae-0xQWEzDAfwLWS2kqd84dkqRpVfpnQwG2ZZ2WWM5dn1idGgI0BH7b0mbO29BGJu55Tdk5rjqdrnKqWkJkpbErVN2VEXvXlz1pCjz-WfNkoQl9Mj08wDU4KdbC9qVixu_fhPd9URURWOk1RcwtQK4BlEuAp52VEnvevoa8wIKMrP5pimRyMfA52NCKPWg3rPwZANeGiAGnW6MlfKqsGO8NB__T4X4SekJt4jxst03yFLE3GU_8UENfEPGtG1Q_bqiSz
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61cKCXvh9poXWlqj0Fsk6cxxGWwrawK8pDcLNsxy4ImkX7qFhO_IRK_Yf8EmaSTdBWrSq1pyiJR3Hs8fgbz_gzwDuE9ErlRvhpnocUZmz5ytnQT3lkW5zngmuK6HZ7cecg-nwk6mxC2gtT8UM0C240Mkp7TQOcFqRXbllDzfkxcRAioqFp8y7MU5COxub67i2DVBpUPldEAU8eipq3MeArs_Iz89I8NfHF70DnLIYtJ6GNB6Dr6le5J6fL45FeNpe_MDv-1_89hPtTiMpWK516BHds8RgW2vXJcE9gSMmHE9Z3rEvpfMeUUdNHRbSI6NlJwVaNHZGpGOB3r69-HiKcHbC1cuMvSlxQzGLI9IRRzv1XtkPONUpeX_2gWMLZd5uzPbyUKsPWJ4X6dmKGT-Fg4-N-u-NPD2_wDWEwX4mWQzDi0iSJhXNJEKCyIJrSRmWRswHXQqskT7iyuTK0hhBpbh16V4kyiYrDZzBX9Av7ApgLTRZHWRTzPI6MDbRAM4NubGaj3JjMeuDXXSfNlNmcDtg4kxUnM5fUlLJpSg8-NOXPK06PP5Z8X2pCU0wNTikTLhHysLcpebq792Ur3JSpB4u1qsipERhKRGYJItQwzDx427zGvqKYjCpsf0xlYrTzMZpSD55XKtZ8DLFqEIoUpXmpKH-prGzvdNrN3ct_EXoDC5397rbc_tTbegX36Dntu2zFizA3GoztEgKwkX5dDrEbEsIozw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglYAL70KggJEQnNJmHdtJjmXLdqF0tbRU7c1y_KBVS3a1D9Tl1J-AxD_sL2Em2aQsAiHBKUriURx7PP7GM_5MyAuA9FpbI8LU2hjDjK1QexeHKeOuxZgVLMeI7k5Pdvf5u0Nx-NMu_oofollww5FR2msc4EPr1y9JQ83wCCkIAdDgrHmVLHMJLhbCot1LAqk0qlwujvFOFouatjFi64vyC9PSMrbw2e8w5yKELeegzi2i69pXqScna9NJvma-_kLs-D-_d5vcnANUulFp1B1yxRV3yfV2fS7cPTLG1MMZHXi6g8l8R5hPMwA1dIDn6XFBN4yboKEYwWcvzr8fAJgd0dfltl-QOMOIxZjmM4oZ959oH11rkLw4_4aRhNMvztI9uJQKQzdnhf58bMb3yX7nzcd2N5wf3RAaRGChFi0PUMSnSSKF90kUgaoAlsqNzrh3EctFrhObMO2sNriCwHPmPPhWiTaJlvEKWSoGhXtIqI9NJnnGJbOSGxflAowMOLGZ49aYzAUkrHtOmTmvOR6vcaoqRmamsClV05QBedWUH1aMHn8s-bJUhKaYHp1gHlwi1EFvS7F0d-_Ddryl0oCs1pqi5iZgrACXJYBP4zgLyPPmNfQVRmR04QZTLCPBykswpAF5UGlY8zFAqlEsUpBmpZ78pbKq3e-2m7tH_yL0jFzrb3bU-7e97cfkBj7GTZctuUqWJqOpewLoa5I_LQfYD3h5J34
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+Microheterogeneity+in+Acetonitrile-Water+Binary+Mixtures+by+using+Polarity-Resolved+Solvation+Dynamics&rft.jtitle=Chemphyschem&rft.au=Koley%2C+Somnath&rft.au=Ghosh%2C+Subhadip&rft.date=2015-11-16&rft.issn=1439-7641&rft.eissn=1439-7641&rft.volume=16&rft.issue=16&rft.spage=3518&rft_id=info:doi/10.1002%2Fcphc.201500663&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon