Study of Microheterogeneity in Acetonitrile-Water Binary Mixtures by using Polarity-Resolved Solvation Dynamics
The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile–water (ACN–H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (XACN)≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogene...
Saved in:
Published in | Chemphyschem Vol. 16; no. 16; pp. 3518 - 3526 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
16.11.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1439-4235 1439-7641 1439-7641 |
DOI | 10.1002/cphc.201500663 |
Cover
Abstract | The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile–water (ACN–H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (XACN)≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230–1120 ps) at higher ACN concentrations (XACN≈0.2), thus indicating the onset of nonideality within the mixture that continues until XACN≈0.8. This nonideality regime (XACN≈0.2–0.8) comprises of multiple dye‐dependent anomalous regions. At very high ACN concentrations (XACN≈0.8–1), the ACN–H2O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN–H2O mixtures is a subject of debate. However, a careful examination of the widths of time‐resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole.
What a mix! The solvation dynamics of three coumarin dyes with various polarities were studied in acetonitrile–water (ACN–H2O) mixtures. Mixtures with ACN mole fractions between 0.2 and 0.8 show unexpectedly slow solvation times. The source of this nonideality is studied by time‐resolved emission spectroscopy and is revealed to be the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole. |
---|---|
AbstractList | The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile-water (ACN-H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (XACN)≤0.1], the solvation dynamics are fast (<40ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230-1120ps) at higher ACN concentrations (XACN[asymptotically =]0.2), thus indicating the onset of nonideality within the mixture that continues until XACN[asymptotically =]0.8. This nonideality regime (XACN[asymptotically =]0.2-0.8) comprises of multiple dye-dependent anomalous regions. At very high ACN concentrations (XACN[asymptotically =]0.8-1), the ACN-H2O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN-H2O mixtures is a subject of debate. However, a careful examination of the widths of time-resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole. The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile–water (ACN–H 2 O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions ( X ACN )≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230–1120 ps) at higher ACN concentrations ( X ACN ≈0.2), thus indicating the onset of nonideality within the mixture that continues until X ACN ≈0.8. This nonideality regime ( X ACN ≈0.2–0.8) comprises of multiple dye‐dependent anomalous regions. At very high ACN concentrations ( X ACN ≈0.8–1), the ACN–H 2 O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN–H 2 O mixtures is a subject of debate. However, a careful examination of the widths of time‐resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole. The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile–water (ACN–H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (XACN)≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230–1120 ps) at higher ACN concentrations (XACN≈0.2), thus indicating the onset of nonideality within the mixture that continues until XACN≈0.8. This nonideality regime (XACN≈0.2–0.8) comprises of multiple dye‐dependent anomalous regions. At very high ACN concentrations (XACN≈0.8–1), the ACN–H2O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN–H2O mixtures is a subject of debate. However, a careful examination of the widths of time‐resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole. What a mix! The solvation dynamics of three coumarin dyes with various polarities were studied in acetonitrile–water (ACN–H2O) mixtures. Mixtures with ACN mole fractions between 0.2 and 0.8 show unexpectedly slow solvation times. The source of this nonideality is studied by time‐resolved emission spectroscopy and is revealed to be the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole. The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile-water (ACN-H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (X(ACN))≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230-1120 ps) at higher ACN concentrations (X(ACN)≈0.2), thus indicating the onset of nonideality within the mixture that continues until X(ACN)≈0.8. This nonideality regime (X(ACN)≈0.2-0.8) comprises of multiple dye-dependent anomalous regions. At very high ACN concentrations (X(ACN)≈0.8-1), the ACN-H2O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN-H2O mixtures is a subject of debate. However, a careful examination of the widths of time-resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole.The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile-water (ACN-H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (X(ACN))≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230-1120 ps) at higher ACN concentrations (X(ACN)≈0.2), thus indicating the onset of nonideality within the mixture that continues until X(ACN)≈0.8. This nonideality regime (X(ACN)≈0.2-0.8) comprises of multiple dye-dependent anomalous regions. At very high ACN concentrations (X(ACN)≈0.8-1), the ACN-H2O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN-H2O mixtures is a subject of debate. However, a careful examination of the widths of time-resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole. The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile-water (ACN-H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (X(ACN))≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230-1120 ps) at higher ACN concentrations (X(ACN)≈0.2), thus indicating the onset of nonideality within the mixture that continues until X(ACN)≈0.8. This nonideality regime (X(ACN)≈0.2-0.8) comprises of multiple dye-dependent anomalous regions. At very high ACN concentrations (X(ACN)≈0.8-1), the ACN-H2O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN-H2O mixtures is a subject of debate. However, a careful examination of the widths of time-resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole. |
Author | Ghosh, Subhadip Koley, Somnath |
Author_xml | – sequence: 1 givenname: Somnath surname: Koley fullname: Koley, Somnath organization: School of Chemical Sciences, National Institute of Science Education and Research, 751 005, Bhubaneswar, India – sequence: 2 givenname: Subhadip surname: Ghosh fullname: Ghosh, Subhadip email: sghosh@niser.ac.in organization: School of Chemical Sciences, National Institute of Science Education and Research, 751 005, Bhubaneswar, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26403589$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvFCEYhompse3q1aMh8eJlVhgGmDnWVbfGqrWr6ZEwzDctdRZWYLTz76XuujFNjKePhOeBL-97jA6cd4DQU0rmlJDypdlcm3lJKCdECPYAHdGKNYUUFT3YnauS8UN0HOMNIaQmkj5Ch6WoCON1c4T8Ko3dhH2PP1gT_DUkCP4KHNg0YevwiYHknU3BDlBc6nyLX1mnw5T52zQGiLid8Bitu8LnftAhe8UFRD_8gA6v8tDJeodfT06vrYmP0cNeDxGe7OYMfX375svitDj7tHy3ODkrDM9bF5rTnpOmr6UUvO8lIWAMLXlrdFP1QMqWt1p2stTQaUMJFVVbQi8Il9pILdgMvdi-uwn--wgxqbWNBoZBO_BjVFQKUteC5Bxm6Pk99MaPweXtMsUl5RVjTaae7aixXUOnNsGucwzqT5QZmG-BHGOMAfo9Qom660rddaX2XWWhuicYm36nlYK2w7-1Zqv9zJVM__lELc5PF3-7xda1McHt3tXhmxKSSa4uPy5VWV-sPr9nS1WzXyi6uR0 |
CitedBy_id | crossref_primary_10_1007_s11814_020_0680_5 crossref_primary_10_1002_asia_201801272 crossref_primary_10_1021_acs_jpclett_8b03803 crossref_primary_10_1021_acs_langmuir_7b01081 crossref_primary_10_1039_C7TC01938F crossref_primary_10_1039_C6CP05024G crossref_primary_10_1021_acs_jpcb_6b08777 crossref_primary_10_1021_acs_jpclett_1c03530 crossref_primary_10_1021_acs_jpcb_0c00551 crossref_primary_10_1021_acsanm_2c00414 crossref_primary_10_1016_j_jhazmat_2024_135943 crossref_primary_10_1016_j_molliq_2024_125450 crossref_primary_10_3390_molecules29225294 crossref_primary_10_1021_acs_jpcb_6b10176 crossref_primary_10_1021_acs_jpcc_7b11979 crossref_primary_10_3390_su15064795 crossref_primary_10_1021_acs_jpcc_2c05477 crossref_primary_10_1002_slct_201702944 |
Cites_doi | 10.1016/j.cryobiol.2012.10.006 10.1021/jp9716694 10.1021/ja00015a013 10.1016/S0022-2275(20)38027-5 10.1063/1.1556296 10.1016/0378-3812(85)87027-8 10.1021/ac960679i 10.1063/1.4813417 10.1021/j100248a024 10.1021/jp030083g 10.1039/C4CP03525A 10.1021/jp010825a 10.1039/f19878300495 10.1016/S0009-2614(97)01270-0 10.1021/jp984080t 10.1021/je60034a013 10.1016/j.cplett.2003.11.098 10.1051/jphysrad:01934005010049700 10.1039/a903549d 10.1039/tf9686401193 10.1016/0021-9614(76)90060-4 10.1515/zpch-1982-26305 10.1021/jp013580a 10.1063/1.449982 10.1002/9783527632220 10.1016/j.jcis.2005.04.053 10.1006/cryo.1997.2064 10.1021/jp502003x 10.1007/978-0-387-46312-4 10.1021/jp0014519 10.5194/acp-4-275-2004 10.1021/je9000813 10.1021/jp027244l 10.1063/1.4906541 10.1063/1.452460 10.1021/jp014653t 10.1007/BF00645018 10.1063/1.1436074 10.1021/jp034760i 10.1063/1.461742 10.1016/0009-2614(95)00085-I 10.1039/b915888j 10.1063/1.454020 10.1021/jp5113922 10.1016/0301-0104(94)00019-0 10.1039/tf9706601369 10.1021/jp0747454 10.1016/j.chemphys.2005.05.022 10.1021/j100154a070 10.1021/ac60347a052 10.1021/jp9639511 10.1021/jp406853r 10.1021/j100336a002 10.1021/jp5120338 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/cphc.201500663 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1439-7641 |
EndPage | 3526 |
ExternalDocumentID | 3922649421 26403589 10_1002_cphc_201500663 CPHC201500663 ark_67375_WNG_28RSQK3G_8 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ramanujan fellowship funderid: SR/S2/RJN-36/2012 – fundername: DST |
GroupedDBID | --- -DZ -~X .GJ 05W 0R~ 1L6 1OC 29B 31~ 33P 3WU 4.4 4ZD 50Y 53G 5GY 5VS 66C 6J9 77Q 8-0 8-1 8UM AAESR AAHQN AAIHA AAMMB AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AI. AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZFZN AZVAB BDRZF BFHJK BMXJE BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IH2 IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- OIG P2P P2W PQQKQ QRW R.K RNS ROL RX1 SUPJJ SV3 UPT V2E VH1 W99 WBKPD WH7 WJL WOHZO WXSBR XPP XSW XV2 Y6R YZZ ZGI ZZTAW ~S- A00 AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AIWBW AJBDE P4E RWI WYJ AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
ID | FETCH-LOGICAL-c5143-a51f509f87765ff700ecc125bca94fe02b5ba7d72aedac10164b2ef6057ac7a63 |
IEDL.DBID | DR2 |
ISSN | 1439-4235 1439-7641 |
IngestDate | Fri Sep 05 10:38:37 EDT 2025 Fri Jul 25 12:15:58 EDT 2025 Mon Jul 21 05:49:52 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Wed Oct 01 03:59:18 EDT 2025 Wed Jan 22 16:28:05 EST 2025 Sun Sep 21 06:18:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | time-resolved spectroscopy solvent effects preferential solvation solvation dynamics binary solvents |
Language | English |
License | 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5143-a51f509f87765ff700ecc125bca94fe02b5ba7d72aedac10164b2ef6057ac7a63 |
Notes | DST ark:/67375/WNG-28RSQK3G-8 Ramanujan fellowship - No. SR/S2/RJN-36/2012 istex:ACCEF30E085240C02970C845A78F10D1AE8B05A4 ArticleID:CPHC201500663 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26403589 |
PQID | 1757154339 |
PQPubID | 986334 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1760886040 proquest_journals_1757154339 pubmed_primary_26403589 crossref_primary_10_1002_cphc_201500663 crossref_citationtrail_10_1002_cphc_201500663 wiley_primary_10_1002_cphc_201500663_CPHC201500663 istex_primary_ark_67375_WNG_28RSQK3G_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 16, 2015 |
PublicationDateYYYYMMDD | 2015-11-16 |
PublicationDate_xml | – month: 11 year: 2015 text: November 16, 2015 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Chemphyschem |
PublicationTitleAlternate | ChemPhysChem |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | F. Perrin, J. Phys. Radium 1934, 5, 497-511. A. Chandra, Chem. Phys. Lett. 1995, 235, 133-139. R. S. Fee, M. Maroncelli, Chem. Phys. 1994, 183, 235-247. I. Bakó, T. Megyes, G. Pálinkás, Chem. Phys. 2005, 316, 235-244. F. Chicos, A. Wilert, U. Rempel, C. von Borczyskowski, J. Phys. Chem. A 1997, 101, 8179-8185. Y. C. Guillaume, C. Guinchard, Anal. Chem. 1997, 69, 183-189. P. J. Suppan, J. Chem. Soc. Faraday Trans. 1 1987, 83, 495-509. A. Uritski, D. Huppert, J. Phys. Chem. A 2007, 111, 10544-10551. S. Roy, B. Bagchi, J. Chem. Phys. 2013, 139, 034308. B. M. Luther, J. R. Kimmel, N. E. Levinger, J. Chem. Phys. 2002, 116, 3370-3377. S. S. Murthy, Cryobiology 1998, 36, 84-96. V. Kabisch, Z. Phys. Chem. (Leipzig) 1982, 263, 48-60. G. Douhéret, C. Moreau, A. Viallard, Fluid Phase Equilib. 1985, 22, 277-287. C. Moreau, G. Douhéret, J. Chem. Thermodyn. 1976, 8, 403-410. H. Kovacs, A. Laaksonen, J. Am. Chem. Soc. 1991, 113, 5596-5605. D. Banik, N. Kundu, J. Kuchlyan, A. Roy, C. Banerjee, S. Ghosh, N. Sarkar, J. Chem. Phys. 2015, 142, 054505. T. Molotsky, D. Huppert, J. Phys. Chem. A 2003, 107, 8449-8457. M. A. Kahlow, T. J. Kang, P. F. Barbara, J. Chem. Phys. 1988, 88, 2372-2378. S. Mukherjee, K. Sahu, D. Roy, S. K. Mondal, K. Bhattacharyya, Chem. Phys. Lett. 2004, 384, 128-133. L. R. Snyder, Anal. Chem. 1974, 46, 1384-1393. G. P. Cunningham, G. A. Vidulich, R. L. Kay, J. Chem. Eng. Data 1967, 12, 336-337. M. E. Johnson, C. Malardier-Jugrootd, T. Head-Gordon, Phys. Chem. Chem. Phys. 2010, 12, 393-405. S. J. Rosenthal, X. Xie, M. Du, G. R. Fleming, J. Chem. Phys. 1991, 95, 4715-4718. W. Jarzeba, G. C. Walker, A. E. Johnson, M. A. Kahlow, P. F. Barbara, J. Phys. Chem. 1988, 92, 7039-7041. S. Şanli, Y. Altun, N. Şanli, G. Alsancak, J. L. Beltran, J. Chem. Eng. Data 2009, 54, 3014-3021. J. R. Lackowicz, Principle of fluorescence spectroscopy, 3rd ed., Springer, Berlin, 2006. E. Sanhueza, R. Holzinger, B. Kleiss, L. Donoso, P. J. Crutzen, Atmos. Chem. Phys. 2004, 4, 275-280. M. K. Blandamer, M. J. Foster, D. A. Waddington, Trans. Farad. Soc. 1970, 66, 1369-1380. U. Taşdemira, S. Büyükleblebicib, P. B. Tuncera, E. Coşkunc, T. Özgürtaşd, F. N. Aydınd, O. Büyükleblebicib, I. S. Gürcane, Cryobiology 2013, 66, 38-42. G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy, Oxford University Press, New York, 1986. B. M. Ladanyi, B. C. Perng, J. Phys. Chem. A 2002, 106, 6922-6934. M. I. Aveldano, M. VanRollins, L. A. Horrocks, J. Lipid Res. 1983, 24, 83-93. B. B. Raju, S. M. B. Costa, Phys. Chem. Chem. Phys. 1999, 1, 3539-3547. D. Martin, H. Hanthal, Dimethyl Sulfoxide, Wiley, New York, 1975. J. E. Bertie, Z. Lan, J. Phys. Chem. B 1997, 101, 4111-4119. T. Molotsky, D. Huppert, J. Phys. Chem. A 2002, 106, 8525-8530. C. Reichardt, T. Welton, Solvents, solvent effects in organic chemistry, 4th ed., Wiley-VCH, Weinheim, 2010. J. E. Lewis, M. Maroncelli, Chem. Phys. Lett. 1998, 282, 197-203. S. Gupta, S. Rafiq, P. Sen, J. Phys. Chem. B 2015, 119, 3135-3141. Y. P. Handa, G. C. Benson, J. Solution Chem. 1981, 10, 291-300. H. Kaur, S. Koley, S. Ghosh, J. Phys. Chem. B 2014, 118, 7577-7585. Y. Marcus, Y. Migron, J. Phys. Chem. 1991, 95, 400-406. P. Dutta, P. Sen, S. Mukherjee, A. Halder, K. Bhattacharyya, J. Phys. Chem. B 2003, 107, 10815-10822. M. Khajehpour, J. F. Kauffman, J. Phys. Chem. A 2000, 104, 7151-7159. M. Maroncelli, G. R. Fleming, J. Chem. Phys. 1987, 86, 6221-6239. S. Koley, H. Kaur, S. Ghosh, Phys. Chem. Chem. Phys. 2014, 16, 22352-22363. D. A. Armitage, M. K. Blandamer, M. J. Foster, N. J. Hidden, K. W. Morcom, M. C. R. Symons, M. J. Wooten, Trans. Farad. Soc. 1968, 64, 1193-1200. C. A. Deakyne, M. Meot-Ner, C. L. Campbell, M. G. Hughes, S. P. Murphy, J. Chem. Phys. 1986, 84, 4958-4969. M. Khajehpour, C. M. Welch, K. A. Kleiner, J. F. Kauffman, J. Phys. Chem. A 2001, 105, 5372-5379. F. Cichos, A. Willert, U. Rempel, C. V. Borczyskowski, J. Phys. Chem. A 1997, 101, 8179-8185. G. Jones II, W. R. Jackson, C. Y. Choi, W. R. Bergmark, J. Phys. Chem. 1985, 89, 294-300. L. R. Martins, A. Tamashiro, D. Laria, M. S. Skaf, J. Chem. Phys. 2003, 118, 5955-5963. P. Majumder, R. Sarkar, A. K. Shaw, A. Chakraborty, S. K. Pal, J. Colloid Interface Sci. 2005, 290, 462-474. G. B. Dutt, T. K. Ghanty, J. Phys. Chem. B 2003, 107, 3257-3264. F. Chicos, R. Brown, U. Rempel, C. von Borczyskowski, J. Phys. Chem. A 1999, 103, 2506-2512. S. Mandal, S. Ghosh, S. Banerjee, J. Kuchlyan, N. Sarkar, J. Phys. Chem. B 2013, 117, 12212-12223. 2010; 12 2005; 290 1991; 113 2003; 118 2013; 66 2015; 142 1991; 95 2004; 4 1975 1982; 263 2002; 116 1985; 22 2001; 105 1968; 64 1974; 46 1987; 86 2009; 54 1986; 84 1987; 83 1967; 12 1994; 183 1997; 101 2013; 117 2002; 106 2014; 16 1988; 88 1986 1970; 66 1983; 24 1998; 282 2014; 118 2004; 384 2010 1997; 69 2005; 316 2006 1999; 103 1995; 235 1999; 1 1985; 89 1988; 92 1976; 8 1934; 5 2003; 107 2000; 104 2007; 111 2013; 139 2015; 119 1981; 10 1998; 36 e_1_2_6_53_1 e_1_2_6_32_1 Fleming G. R. (e_1_2_6_51_1) 1986 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 Kabisch V. (e_1_2_6_30_1) 1982; 263 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 Lackowicz J. R. (e_1_2_6_57_1) 2006 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 Martin D. (e_1_2_6_6_1) 1975 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: W. Jarzeba, G. C. Walker, A. E. Johnson, M. A. Kahlow, P. F. Barbara, J. Phys. Chem. 1988, 92, 7039-7041. – reference: D. Banik, N. Kundu, J. Kuchlyan, A. Roy, C. Banerjee, S. Ghosh, N. Sarkar, J. Chem. Phys. 2015, 142, 054505. – reference: A. Uritski, D. Huppert, J. Phys. Chem. A 2007, 111, 10544-10551. – reference: Y. P. Handa, G. C. Benson, J. Solution Chem. 1981, 10, 291-300. – reference: E. Sanhueza, R. Holzinger, B. Kleiss, L. Donoso, P. J. Crutzen, Atmos. Chem. Phys. 2004, 4, 275-280. – reference: S. Gupta, S. Rafiq, P. Sen, J. Phys. Chem. B 2015, 119, 3135-3141. – reference: S. J. Rosenthal, X. Xie, M. Du, G. R. Fleming, J. Chem. Phys. 1991, 95, 4715-4718. – reference: C. Moreau, G. Douhéret, J. Chem. Thermodyn. 1976, 8, 403-410. – reference: G. Douhéret, C. Moreau, A. Viallard, Fluid Phase Equilib. 1985, 22, 277-287. – reference: M. Khajehpour, J. F. Kauffman, J. Phys. Chem. A 2000, 104, 7151-7159. – reference: M. A. Kahlow, T. J. Kang, P. F. Barbara, J. Chem. Phys. 1988, 88, 2372-2378. – reference: P. Majumder, R. Sarkar, A. K. Shaw, A. Chakraborty, S. K. Pal, J. Colloid Interface Sci. 2005, 290, 462-474. – reference: M. K. Blandamer, M. J. Foster, D. A. Waddington, Trans. Farad. Soc. 1970, 66, 1369-1380. – reference: C. Reichardt, T. Welton, Solvents, solvent effects in organic chemistry, 4th ed., Wiley-VCH, Weinheim, 2010. – reference: B. B. Raju, S. M. B. Costa, Phys. Chem. Chem. Phys. 1999, 1, 3539-3547. – reference: S. Roy, B. Bagchi, J. Chem. Phys. 2013, 139, 034308. – reference: G. B. Dutt, T. K. Ghanty, J. Phys. Chem. B 2003, 107, 3257-3264. – reference: T. Molotsky, D. Huppert, J. Phys. Chem. A 2003, 107, 8449-8457. – reference: P. J. Suppan, J. Chem. Soc. Faraday Trans. 1 1987, 83, 495-509. – reference: T. Molotsky, D. Huppert, J. Phys. Chem. A 2002, 106, 8525-8530. – reference: F. Perrin, J. Phys. Radium 1934, 5, 497-511. – reference: H. Kaur, S. Koley, S. Ghosh, J. Phys. Chem. B 2014, 118, 7577-7585. – reference: V. Kabisch, Z. Phys. Chem. (Leipzig) 1982, 263, 48-60. – reference: J. R. Lackowicz, Principle of fluorescence spectroscopy, 3rd ed., Springer, Berlin, 2006. – reference: H. Kovacs, A. Laaksonen, J. Am. Chem. Soc. 1991, 113, 5596-5605. – reference: S. Mukherjee, K. Sahu, D. Roy, S. K. Mondal, K. Bhattacharyya, Chem. Phys. Lett. 2004, 384, 128-133. – reference: M. I. Aveldano, M. VanRollins, L. A. Horrocks, J. Lipid Res. 1983, 24, 83-93. – reference: R. S. Fee, M. Maroncelli, Chem. Phys. 1994, 183, 235-247. – reference: S. Şanli, Y. Altun, N. Şanli, G. Alsancak, J. L. Beltran, J. Chem. Eng. Data 2009, 54, 3014-3021. – reference: A. Chandra, Chem. Phys. Lett. 1995, 235, 133-139. – reference: S. S. Murthy, Cryobiology 1998, 36, 84-96. – reference: B. M. Luther, J. R. Kimmel, N. E. Levinger, J. Chem. Phys. 2002, 116, 3370-3377. – reference: U. Taşdemira, S. Büyükleblebicib, P. B. Tuncera, E. Coşkunc, T. Özgürtaşd, F. N. Aydınd, O. Büyükleblebicib, I. S. Gürcane, Cryobiology 2013, 66, 38-42. – reference: M. E. Johnson, C. Malardier-Jugrootd, T. Head-Gordon, Phys. Chem. Chem. Phys. 2010, 12, 393-405. – reference: I. Bakó, T. Megyes, G. Pálinkás, Chem. Phys. 2005, 316, 235-244. – reference: G. P. Cunningham, G. A. Vidulich, R. L. Kay, J. Chem. Eng. Data 1967, 12, 336-337. – reference: L. R. Martins, A. Tamashiro, D. Laria, M. S. Skaf, J. Chem. Phys. 2003, 118, 5955-5963. – reference: F. Chicos, A. Wilert, U. Rempel, C. von Borczyskowski, J. Phys. Chem. A 1997, 101, 8179-8185. – reference: B. M. Ladanyi, B. C. Perng, J. Phys. Chem. A 2002, 106, 6922-6934. – reference: M. Maroncelli, G. R. Fleming, J. Chem. Phys. 1987, 86, 6221-6239. – reference: S. Koley, H. Kaur, S. Ghosh, Phys. Chem. Chem. Phys. 2014, 16, 22352-22363. – reference: L. R. Snyder, Anal. Chem. 1974, 46, 1384-1393. – reference: Y. C. Guillaume, C. Guinchard, Anal. Chem. 1997, 69, 183-189. – reference: Y. Marcus, Y. Migron, J. Phys. Chem. 1991, 95, 400-406. – reference: P. Dutta, P. Sen, S. Mukherjee, A. Halder, K. Bhattacharyya, J. Phys. Chem. B 2003, 107, 10815-10822. – reference: G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy, Oxford University Press, New York, 1986. – reference: S. Mandal, S. Ghosh, S. Banerjee, J. Kuchlyan, N. Sarkar, J. Phys. Chem. B 2013, 117, 12212-12223. – reference: F. Cichos, A. Willert, U. Rempel, C. V. Borczyskowski, J. Phys. Chem. A 1997, 101, 8179-8185. – reference: D. Martin, H. Hanthal, Dimethyl Sulfoxide, Wiley, New York, 1975. – reference: F. Chicos, R. Brown, U. Rempel, C. von Borczyskowski, J. Phys. Chem. A 1999, 103, 2506-2512. – reference: D. A. Armitage, M. K. Blandamer, M. J. Foster, N. J. Hidden, K. W. Morcom, M. C. R. Symons, M. J. Wooten, Trans. Farad. Soc. 1968, 64, 1193-1200. – reference: J. E. Lewis, M. Maroncelli, Chem. Phys. Lett. 1998, 282, 197-203. – reference: G. Jones II, W. R. Jackson, C. Y. Choi, W. R. Bergmark, J. Phys. Chem. 1985, 89, 294-300. – reference: J. E. Bertie, Z. Lan, J. Phys. Chem. B 1997, 101, 4111-4119. – reference: C. A. Deakyne, M. Meot-Ner, C. L. Campbell, M. G. Hughes, S. P. Murphy, J. Chem. Phys. 1986, 84, 4958-4969. – reference: M. Khajehpour, C. M. Welch, K. A. Kleiner, J. F. Kauffman, J. Phys. Chem. A 2001, 105, 5372-5379. – volume: 95 start-page: 4715 year: 1991 end-page: 4718 publication-title: J. Chem. Phys. – volume: 106 start-page: 6922 year: 2002 end-page: 6934 publication-title: J. Phys. Chem. A – volume: 36 start-page: 84 year: 1998 end-page: 96 publication-title: Cryobiology – volume: 106 start-page: 8525 year: 2002 end-page: 8530 publication-title: J. Phys. Chem. A – volume: 1 start-page: 3539 year: 1999 end-page: 3547 publication-title: Phys. Chem. Chem. Phys. – volume: 384 start-page: 128 year: 2004 end-page: 133 publication-title: Chem. Phys. Lett. – volume: 235 start-page: 133 year: 1995 end-page: 139 publication-title: Chem. Phys. Lett. – volume: 111 start-page: 10544 year: 2007 end-page: 10551 publication-title: J. Phys. Chem. A – volume: 4 start-page: 275 year: 2004 end-page: 280 publication-title: Atmos. Chem. Phys. – year: 1975 – volume: 101 start-page: 8179 year: 1997 end-page: 8185 publication-title: J. Phys. Chem. A – volume: 290 start-page: 462 year: 2005 end-page: 474 publication-title: J. Colloid Interface Sci. – volume: 66 start-page: 38 year: 2013 end-page: 42 publication-title: Cryobiology – volume: 113 start-page: 5596 year: 1991 end-page: 5605 publication-title: J. Am. Chem. Soc. – volume: 105 start-page: 5372 year: 2001 end-page: 5379 publication-title: J. Phys. Chem. A – volume: 12 start-page: 336 year: 1967 end-page: 337 publication-title: J. Chem. Eng. Data – volume: 117 start-page: 12212 year: 2013 end-page: 12223 publication-title: J. Phys. Chem. B – year: 1986 – volume: 116 start-page: 3370 year: 2002 end-page: 3377 publication-title: J. Chem. Phys. – volume: 66 start-page: 1369 year: 1970 end-page: 1380 publication-title: Trans. Farad. Soc. – volume: 316 start-page: 235 year: 2005 end-page: 244 publication-title: Chem. Phys. – volume: 118 start-page: 7577 year: 2014 end-page: 7585 publication-title: J. Phys. Chem. B – volume: 46 start-page: 1384 year: 1974 end-page: 1393 publication-title: Anal. Chem. – volume: 86 start-page: 6221 year: 1987 end-page: 6239 publication-title: J. Chem. Phys. – volume: 84 start-page: 4958 year: 1986 end-page: 4969 publication-title: J. Chem. Phys. – volume: 10 start-page: 291 year: 1981 end-page: 300 publication-title: J. Solution Chem. – volume: 5 start-page: 497 year: 1934 end-page: 511 publication-title: J. Phys. Radium – volume: 24 start-page: 83 year: 1983 end-page: 93 publication-title: J. Lipid Res. – volume: 139 start-page: 034308 year: 2013 publication-title: J. Chem. Phys. – volume: 95 start-page: 400 year: 1991 end-page: 406 publication-title: J. Phys. Chem. – volume: 107 start-page: 3257 year: 2003 end-page: 3264 publication-title: J. Phys. Chem. B – volume: 101 start-page: 4111 year: 1997 end-page: 4119 publication-title: J. Phys. Chem. B – volume: 282 start-page: 197 year: 1998 end-page: 203 publication-title: Chem. Phys. Lett. – volume: 107 start-page: 10815 year: 2003 end-page: 10822 publication-title: J. Phys. Chem. B – volume: 183 start-page: 235 year: 1994 end-page: 247 publication-title: Chem. Phys. – volume: 107 start-page: 8449 year: 2003 end-page: 8457 publication-title: J. Phys. Chem. A – volume: 8 start-page: 403 year: 1976 end-page: 410 publication-title: J. Chem. Thermodyn. – volume: 16 start-page: 22352 year: 2014 end-page: 22363 publication-title: Phys. Chem. Chem. Phys. – year: 2010 – volume: 92 start-page: 7039 year: 1988 end-page: 7041 publication-title: J. Phys. Chem. – volume: 22 start-page: 277 year: 1985 end-page: 287 publication-title: Fluid Phase Equilib. – volume: 54 start-page: 3014 year: 2009 end-page: 3021 publication-title: J. Chem. Eng. Data – volume: 104 start-page: 7151 year: 2000 end-page: 7159 publication-title: J. Phys. Chem. A – volume: 83 start-page: 495 year: 1987 end-page: 509 publication-title: J. Chem. Soc. Faraday Trans. 1 – year: 2006 – volume: 142 start-page: 054505 year: 2015 publication-title: J. Chem. Phys. – volume: 64 start-page: 1193 year: 1968 end-page: 1200 publication-title: Trans. Farad. Soc. – volume: 88 start-page: 2372 year: 1988 end-page: 2378 publication-title: J. Chem. Phys. – volume: 69 start-page: 183 year: 1997 end-page: 189 publication-title: Anal. Chem. – volume: 12 start-page: 393 year: 2010 end-page: 405 publication-title: Phys. Chem. Chem. Phys. – volume: 119 start-page: 3135 year: 2015 end-page: 3141 publication-title: J. Phys. Chem. B – volume: 103 start-page: 2506 year: 1999 end-page: 2512 publication-title: J. Phys. Chem. A – volume: 118 start-page: 5955 year: 2003 end-page: 5963 publication-title: J. Chem. Phys. – volume: 89 start-page: 294 year: 1985 end-page: 300 publication-title: J. Phys. Chem. – volume: 263 start-page: 48 year: 1982 end-page: 60 publication-title: Z. Phys. Chem. (Leipzig) – ident: e_1_2_6_3_1 doi: 10.1016/j.cryobiol.2012.10.006 – ident: e_1_2_6_35_1 doi: 10.1021/jp9716694 – ident: e_1_2_6_12_1 doi: 10.1021/ja00015a013 – ident: e_1_2_6_25_1 doi: 10.1016/S0022-2275(20)38027-5 – ident: e_1_2_6_13_1 doi: 10.1063/1.1556296 – ident: e_1_2_6_29_1 doi: 10.1016/0378-3812(85)87027-8 – ident: e_1_2_6_21_1 doi: 10.1021/ac960679i – ident: e_1_2_6_11_1 doi: 10.1063/1.4813417 – ident: e_1_2_6_41_1 doi: 10.1021/j100248a024 – ident: e_1_2_6_49_1 doi: 10.1021/jp030083g – volume-title: Chemical Applications of Ultrafast Spectroscopy year: 1986 ident: e_1_2_6_51_1 – ident: e_1_2_6_10_1 doi: 10.1039/C4CP03525A – ident: e_1_2_6_38_1 doi: 10.1021/jp010825a – ident: e_1_2_6_37_1 doi: 10.1039/f19878300495 – ident: e_1_2_6_44_1 doi: 10.1016/S0009-2614(97)01270-0 – ident: e_1_2_6_34_1 doi: 10.1021/jp984080t – ident: e_1_2_6_39_1 doi: 10.1021/je60034a013 – ident: e_1_2_6_7_1 doi: 10.1016/j.cplett.2003.11.098 – ident: e_1_2_6_50_1 doi: 10.1051/jphysrad:01934005010049700 – ident: e_1_2_6_42_1 doi: 10.1039/a903549d – ident: e_1_2_6_55_1 doi: 10.1039/tf9686401193 – ident: e_1_2_6_28_1 doi: 10.1016/0021-9614(76)90060-4 – ident: e_1_2_6_20_1 doi: 10.1021/jp9716694 – volume: 263 start-page: 48 year: 1982 ident: e_1_2_6_30_1 publication-title: Z. Phys. Chem. (Leipzig) doi: 10.1515/zpch-1982-26305 – ident: e_1_2_6_33_1 doi: 10.1021/jp013580a – ident: e_1_2_6_16_1 doi: 10.1063/1.449982 – ident: e_1_2_6_1_1 doi: 10.1002/9783527632220 – ident: e_1_2_6_48_1 doi: 10.1016/j.jcis.2005.04.053 – ident: e_1_2_6_2_1 doi: 10.1006/cryo.1997.2064 – ident: e_1_2_6_9_1 doi: 10.1021/jp502003x – volume-title: Principle of fluorescence spectroscopy year: 2006 ident: e_1_2_6_57_1 doi: 10.1007/978-0-387-46312-4 – ident: e_1_2_6_18_1 doi: 10.1021/jp0014519 – ident: e_1_2_6_27_1 doi: 10.5194/acp-4-275-2004 – ident: e_1_2_6_26_1 doi: 10.1021/je9000813 – ident: e_1_2_6_52_1 doi: 10.1021/jp027244l – ident: e_1_2_6_15_1 doi: 10.1063/1.4906541 – ident: e_1_2_6_46_1 doi: 10.1063/1.452460 – ident: e_1_2_6_8_1 doi: 10.1021/jp014653t – ident: e_1_2_6_56_1 doi: 10.1007/BF00645018 – ident: e_1_2_6_19_1 doi: 10.1063/1.1436074 – ident: e_1_2_6_40_1 doi: 10.1021/jp034760i – ident: e_1_2_6_23_1 doi: 10.1063/1.461742 – volume-title: Dimethyl Sulfoxide year: 1975 ident: e_1_2_6_6_1 – ident: e_1_2_6_36_1 doi: 10.1016/0009-2614(95)00085-I – ident: e_1_2_6_5_1 doi: 10.1039/b915888j – ident: e_1_2_6_47_1 doi: 10.1063/1.454020 – ident: e_1_2_6_24_1 doi: 10.1021/jp5113922 – ident: e_1_2_6_45_1 doi: 10.1016/0301-0104(94)00019-0 – ident: e_1_2_6_54_1 doi: 10.1039/tf9706601369 – ident: e_1_2_6_17_1 doi: 10.1021/jp0747454 – ident: e_1_2_6_32_1 doi: 10.1016/j.chemphys.2005.05.022 – ident: e_1_2_6_53_1 doi: 10.1021/j100154a070 – ident: e_1_2_6_4_1 doi: 10.1021/ac60347a052 – ident: e_1_2_6_31_1 doi: 10.1021/jp9639511 – ident: e_1_2_6_43_1 doi: 10.1021/jp406853r – ident: e_1_2_6_22_1 doi: 10.1021/j100336a002 – ident: e_1_2_6_14_1 doi: 10.1021/jp5120338 |
SSID | ssj0008071 |
Score | 2.2460446 |
Snippet | The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile–water (ACN–H2O) mixtures across the entire... The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile–water (ACN–H 2 O) mixtures across the entire... The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile-water (ACN-H2O) mixtures across the entire... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3518 |
SubjectTerms | Acetonitriles - chemistry binary solvents Coumarins - chemistry Dimethyl Sulfoxide - chemistry Models, Molecular preferential solvation solvation dynamics solvent effects Solvents - chemistry Spectrometry, Fluorescence Spectrophotometry, Infrared time-resolved spectroscopy Water - chemistry |
Title | Study of Microheterogeneity in Acetonitrile-Water Binary Mixtures by using Polarity-Resolved Solvation Dynamics |
URI | https://api.istex.fr/ark:/67375/WNG-28RSQK3G-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcphc.201500663 https://www.ncbi.nlm.nih.gov/pubmed/26403589 https://www.proquest.com/docview/1757154339 https://www.proquest.com/docview/1760886040 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1439-4235 databaseCode: DR2 dateStart: 20000101 customDbUrl: isFulltext: true eissn: 1439-7641 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008071 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOcCFf2igICMhOKVN7DhOjmWhXYFalZaqvVn-pVVLttrsoi6nPgISb9gnYSbZpCwCIcEpieJRHHs8_sYz_kzIC4D0Wjsr4sI5jmHGNNbB87hgmU8Zc4IZjOhubefD_ezdoTj8aRd_yw_RL7jhyGjsNQ5wbeq1K9JQe3aEFIQAaHDWBCOcctHEaXev-KOKpPW4Mgx3Mi461saErS2KL8xK17GBz38HORcRbDMFbdwmuqt8m3lysjqdmFX79Rdex__5uzvk1hyf0vVWoe6Sa766R24MumPh7pMaMw9ndBToFubyHWE6zQi00AOcp8cVXbd-gnZiDJ-9vPh-AFh2TF83u35B4hwDFjU1M4oJ95_oDnrWIHl58Q0DCadfvKN7cGn0hb6ZVfrzsa0fkP2Ntx8Hw3h-ckNsEYDFWqQBkEgopMxFCDJJQFMAShmryyz4hBlhtHSSae-0xQWEzDAfwLWS2kqd84dkqRpVfpnQwG2ZZ2WWM5dn1idGgI0BH7b0mbO29BGJu55Tdk5rjqdrnKqWkJkpbErVN2VEXvXlz1pCjz-WfNkoQl9Mj08wDU4KdbC9qVixu_fhPd9URURWOk1RcwtQK4BlEuAp52VEnvevoa8wIKMrP5pimRyMfA52NCKPWg3rPwZANeGiAGnW6MlfKqsGO8NB__T4X4SekJt4jxst03yFLE3GU_8UENfEPGtG1Q_bqiSz |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61cKCXvh9poXWlqj0Fsk6cxxGWwrawK8pDcLNsxy4ImkX7qFhO_IRK_Yf8EmaSTdBWrSq1pyiJR3Hs8fgbz_gzwDuE9ErlRvhpnocUZmz5ytnQT3lkW5zngmuK6HZ7cecg-nwk6mxC2gtT8UM0C240Mkp7TQOcFqRXbllDzfkxcRAioqFp8y7MU5COxub67i2DVBpUPldEAU8eipq3MeArs_Iz89I8NfHF70DnLIYtJ6GNB6Dr6le5J6fL45FeNpe_MDv-1_89hPtTiMpWK516BHds8RgW2vXJcE9gSMmHE9Z3rEvpfMeUUdNHRbSI6NlJwVaNHZGpGOB3r69-HiKcHbC1cuMvSlxQzGLI9IRRzv1XtkPONUpeX_2gWMLZd5uzPbyUKsPWJ4X6dmKGT-Fg4-N-u-NPD2_wDWEwX4mWQzDi0iSJhXNJEKCyIJrSRmWRswHXQqskT7iyuTK0hhBpbh16V4kyiYrDZzBX9Av7ApgLTRZHWRTzPI6MDbRAM4NubGaj3JjMeuDXXSfNlNmcDtg4kxUnM5fUlLJpSg8-NOXPK06PP5Z8X2pCU0wNTikTLhHysLcpebq792Ur3JSpB4u1qsipERhKRGYJItQwzDx427zGvqKYjCpsf0xlYrTzMZpSD55XKtZ8DLFqEIoUpXmpKH-prGzvdNrN3ct_EXoDC5397rbc_tTbegX36Dntu2zFizA3GoztEgKwkX5dDrEbEsIozw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglYAL70KggJEQnNJmHdtJjmXLdqF0tbRU7c1y_KBVS3a1D9Tl1J-AxD_sL2Em2aQsAiHBKUriURx7PP7GM_5MyAuA9FpbI8LU2hjDjK1QexeHKeOuxZgVLMeI7k5Pdvf5u0Nx-NMu_oofollww5FR2msc4EPr1y9JQ83wCCkIAdDgrHmVLHMJLhbCot1LAqk0qlwujvFOFouatjFi64vyC9PSMrbw2e8w5yKELeegzi2i69pXqScna9NJvma-_kLs-D-_d5vcnANUulFp1B1yxRV3yfV2fS7cPTLG1MMZHXi6g8l8R5hPMwA1dIDn6XFBN4yboKEYwWcvzr8fAJgd0dfltl-QOMOIxZjmM4oZ959oH11rkLw4_4aRhNMvztI9uJQKQzdnhf58bMb3yX7nzcd2N5wf3RAaRGChFi0PUMSnSSKF90kUgaoAlsqNzrh3EctFrhObMO2sNriCwHPmPPhWiTaJlvEKWSoGhXtIqI9NJnnGJbOSGxflAowMOLGZ49aYzAUkrHtOmTmvOR6vcaoqRmamsClV05QBedWUH1aMHn8s-bJUhKaYHp1gHlwi1EFvS7F0d-_Ddryl0oCs1pqi5iZgrACXJYBP4zgLyPPmNfQVRmR04QZTLCPBykswpAF5UGlY8zFAqlEsUpBmpZ78pbKq3e-2m7tH_yL0jFzrb3bU-7e97cfkBj7GTZctuUqWJqOpewLoa5I_LQfYD3h5J34 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+Microheterogeneity+in+Acetonitrile-Water+Binary+Mixtures+by+using+Polarity-Resolved+Solvation+Dynamics&rft.jtitle=Chemphyschem&rft.au=Koley%2C+Somnath&rft.au=Ghosh%2C+Subhadip&rft.date=2015-11-16&rft.issn=1439-7641&rft.eissn=1439-7641&rft.volume=16&rft.issue=16&rft.spage=3518&rft_id=info:doi/10.1002%2Fcphc.201500663&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-4235&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-4235&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-4235&client=summon |