Intron mutations and early transcription termination in Duchenne and Becker muscular dystrophy
DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle‐derived RNA is an important diagnostic step for patients who have ne...
Saved in:
Published in | Human mutation Vol. 43; no. 4; pp. 511 - 528 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1059-7794 1098-1004 1098-1004 |
DOI | 10.1002/humu.24343 |
Cover
Abstract | DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle‐derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription‐polymerase chain reaction or high‐throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3ʹ‐terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP‐mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full‐length dystrophin expression for some patients.
Intron mutations include the novel mechanism of pseudo‐3'UTR creation, confirmed by RNA Seq. |
---|---|
AbstractList | DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription-polymerase chain reaction or high-throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3'-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients. DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle‐derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription‐polymerase chain reaction or high‐throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3ʹ‐terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP‐mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full‐length dystrophin expression for some patients. Intron mutations include the novel mechanism of pseudo‐3'UTR creation, confirmed by RNA Seq. DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription-polymerase chain reaction or high-throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3'-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients.DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription-polymerase chain reaction or high-throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3'-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients. DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle‐derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription‐polymerase chain reaction or high‐throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3ʹ‐terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP‐mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full‐length dystrophin expression for some patients. DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription PCR (RT-PCR) or high-throughput RNA sequencing (RNA-Seq) methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3’-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD . We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients. |
Author | Udd, Bjarne Dunn, Diane M. Darbro, Benjamin W. Zaidman, Craig M. Statland, Jeff Krzesniak‐Swinarska, Monika A. Day, John W. Drachman, Daniel Wein, Nicolas Finkel, Richard Jokela, Manu Mathews, Katherine D. Habib, Ali A. Connolly, Anne M. Moore, Steven A. Butterfield, Russell J. Waldrop, Megan A. Medne, Livja Collins, James J. Flanigan, Kevin M. Weiss, Robert B. Crawford, Thomas O. Ortiz‐Guerrero, Gloria |
AuthorAffiliation | 8 Department of Neurology, Washington University, Saint Louis, MO 63110 18 Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT 84112 6 Children’s Hospital of Philadelphia, Philadelphia, PA 19104 9 Johns Hopkins University, Baltimore, MD 21218 1 The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH 43205 13 Neuromuscular Research Center, Tampere University Hospital and University of Tampere, Tampere, Finland 10 Columbia University, New York, NY 10032 15 Department of Neurology, University of Minnesota Medical Center, Minneapolis, MN 55454 4 Department of Pathology, The University of Iowa, Iowa City, IA, 52242 11 Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 2 Department of Neurology, The Ohio State University, Columbus, OH 43205 3 Department of Pediatrics, The Ohio State University, Columbus, OH 43205 5 Depatment of Pediatrics, The University of Iowa, Iowa City, IA, 52242 7 Nemours Children’ |
AuthorAffiliation_xml | – name: 2 Department of Neurology, The Ohio State University, Columbus, OH 43205 – name: 14 Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland – name: 11 Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 – name: 3 Department of Pediatrics, The Ohio State University, Columbus, OH 43205 – name: 12 Department of Pediatric Neurology, Mercy Hospitals, Springfield, MO 65804 – name: 13 Neuromuscular Research Center, Tampere University Hospital and University of Tampere, Tampere, Finland – name: 17 Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84112 – name: 8 Department of Neurology, Washington University, Saint Louis, MO 63110 – name: 9 Johns Hopkins University, Baltimore, MD 21218 – name: 1 The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH 43205 – name: 6 Children’s Hospital of Philadelphia, Philadelphia, PA 19104 – name: 16 Department of Neurology, University of Kansas, Kansas City, KS – name: 10 Columbia University, New York, NY 10032 – name: 18 Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT 84112 – name: 5 Depatment of Pediatrics, The University of Iowa, Iowa City, IA, 52242 – name: 4 Department of Pathology, The University of Iowa, Iowa City, IA, 52242 – name: 7 Nemours Children’s Hospital, Orlando, FL 32827 – name: 15 Department of Neurology, University of Minnesota Medical Center, Minneapolis, MN 55454 |
Author_xml | – sequence: 1 givenname: Megan A. orcidid: 0000-0001-9621-8319 surname: Waldrop fullname: Waldrop, Megan A. organization: The Ohio State University – sequence: 2 givenname: Steven A. surname: Moore fullname: Moore, Steven A. organization: The University of Iowa – sequence: 3 givenname: Katherine D. surname: Mathews fullname: Mathews, Katherine D. organization: The University of Iowa – sequence: 4 givenname: Benjamin W. surname: Darbro fullname: Darbro, Benjamin W. organization: The University of Iowa – sequence: 5 givenname: Livja surname: Medne fullname: Medne, Livja organization: Children's Hospital of Philadelphia – sequence: 6 givenname: Richard surname: Finkel fullname: Finkel, Richard organization: Nemours Children's Hospital – sequence: 7 givenname: Anne M. surname: Connolly fullname: Connolly, Anne M. organization: Washington University – sequence: 8 givenname: Thomas O. surname: Crawford fullname: Crawford, Thomas O. organization: Johns Hopkins University – sequence: 9 givenname: Daniel surname: Drachman fullname: Drachman, Daniel organization: Johns Hopkins University – sequence: 10 givenname: Nicolas surname: Wein fullname: Wein, Nicolas organization: Nationwide Children's Hospital – sequence: 11 givenname: Ali A. surname: Habib fullname: Habib, Ali A. organization: Columbia University – sequence: 12 givenname: Monika A. surname: Krzesniak‐Swinarska fullname: Krzesniak‐Swinarska, Monika A. organization: University of New Mexico Health Sciences Center – sequence: 13 givenname: Craig M. surname: Zaidman fullname: Zaidman, Craig M. organization: Washington University – sequence: 14 givenname: James J. surname: Collins fullname: Collins, James J. organization: Mercy Hospitals – sequence: 15 givenname: Manu surname: Jokela fullname: Jokela, Manu organization: Turku University Hospital and University of Turku – sequence: 16 givenname: Bjarne surname: Udd fullname: Udd, Bjarne organization: Tampere University Hospital and University of Tampere – sequence: 17 givenname: John W. surname: Day fullname: Day, John W. organization: University of Minnesota Medical Center – sequence: 18 givenname: Gloria surname: Ortiz‐Guerrero fullname: Ortiz‐Guerrero, Gloria organization: University of Kansas – sequence: 19 givenname: Jeff surname: Statland fullname: Statland, Jeff organization: University of Kansas – sequence: 20 givenname: Russell J. orcidid: 0000-0002-8452-7189 surname: Butterfield fullname: Butterfield, Russell J. organization: The University of Utah School of Medicine – sequence: 21 givenname: Diane M. surname: Dunn fullname: Dunn, Diane M. organization: The University of Utah School of Medicine – sequence: 22 givenname: Robert B. surname: Weiss fullname: Weiss, Robert B. email: bob@genetics.utah.edu organization: The University of Utah School of Medicine – sequence: 23 givenname: Kevin M. orcidid: 0000-0001-6440-3376 surname: Flanigan fullname: Flanigan, Kevin M. email: kevin.flanigan@nationwidechildrens.org organization: The Ohio State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35165973$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1rFDEUhoNU7Ife-ANkwBsRps3nTHIjaD9soeKNe2vIZs66qTPJNplY5t-b3alFSxECCTnP-3LOeQ_Rng8eEHpN8DHBmJ6s85CPKWecPUMHBCtZl2--t30LVbet4vvoMKUbjLEUgr1A-0yQRqiWHaDvV36MwVdDHs3ogk-V8V0FJvZTNUbjk41usy1UI8TB-R1UOV-dZbsG72HHfwL7E2IxSTb3JlbdlIrrZj29RM9Xpk_w6v4-QouL82-nl_X1189Xpx-vaysIZ7VkQlliqDVySZd42RoipeoUcNEJZSQxTDQEw8pSaIXourbocCMbDKbpsGBH6MPsu8nLAToLZSrT6010g4mTDsbpfyverfWP8EsrhQmVvBi8uzeI4TZDGvXgkoW-Nx5CTpo2VJVtNrwt6NtH6E3I0ZfxCsVZi2k5hXrzd0cPrfxZfQHez4CNIaUIqweEYL3NVW9z1btcC4wfwdbNgZVpXP-0hMySO9fD9B9zfbn4spg1vwG9w7cs |
CitedBy_id | crossref_primary_10_1208_s12248_022_00776_0 crossref_primary_10_1038_s41586_024_08462_1 crossref_primary_10_1002_jgc4_1892 crossref_primary_10_1186_s13023_024_03217_7 crossref_primary_10_1007_s00415_022_11432_0 crossref_primary_10_1016_j_gene_2024_148137 crossref_primary_10_1212_NXG_0000000000200215 crossref_primary_10_1038_s41477_024_01796_8 crossref_primary_10_1016_j_nmd_2024_104470 crossref_primary_10_1155_humu_2250030 crossref_primary_10_1002_acn3_51612 crossref_primary_10_3389_fgene_2024_1360224 crossref_primary_10_1007_s00439_025_02728_y crossref_primary_10_12677_ACM_2023_1381799 crossref_primary_10_3389_fgene_2023_1226766 crossref_primary_10_1002_acn3_52245 crossref_primary_10_1002_ajmg_a_63462 crossref_primary_10_1136_jmg_2024_110152 crossref_primary_10_3390_biomedicines11072082 crossref_primary_10_3390_ijms26031303 crossref_primary_10_1111_age_13470 crossref_primary_10_1212_NXG_0000000000200064 crossref_primary_10_1016_j_heliyon_2024_e28020 crossref_primary_10_1038_s42003_024_06143_3 crossref_primary_10_1016_j_nmd_2023_12_009 crossref_primary_10_1007_s00439_022_02485_2 crossref_primary_10_1016_j_gene_2024_148862 |
Cites_doi | 10.1002/humu.22379 10.1186/1471-2164-9-572 10.1002/mgg3.144 10.1016/S1097-2765(00)80464-5 10.1080/15476286.2015.1125074 10.1089/hum.2013.052 10.1542/peds.2014-2044 10.1007/s00439-004-1118-6 10.1002/humu.21114 10.1073/pnas.1910456117 10.1186/1471-2350-12-37 10.1038/302591a0 10.1002/humu.21471 10.1016/j.ajhg.2010.06.006 10.1212/NXG.0000000000000554 10.1016/j.ncl.2014.05.002 10.1016/j.molcel.2019.12.029 10.1101/gr.123463.111 10.1038/jhg.2010.49 10.1038/nature14466 10.1016/j.nmd.2017.11.007 10.1172/jci.insight.124403 10.1093/bioinformatics/bts635 10.1038/nmeth.2483 10.1002/ana.23982 10.1038/ejhg.2012.51 10.1002/ana.24555 10.1002/humu.10214 10.1093/nar/24.15.3059 10.1002/mus.20586 10.1016/0888-7543(88)90113-9 10.1002/acn3.267 10.1002/humu.20210 10.1002/humu.20806 10.1016/j.celrep.2019.02.049 10.3233/JND-190431 10.1016/j.nmd.2010.11.008 10.1038/srep39094 10.1016/j.cell.2018.12.015 10.1126/scitranslmed.aal5209 10.1016/j.nmd.2019.09.013 10.1002/ana.21290 10.1016/j.molcel.2019.08.007 10.1002/humu.20976 10.1002/ana.23528 10.1186/1471-2164-11-646 10.3233/JND-170272 10.1038/nm.3628 10.1371/journal.pcbi.1006360 10.1101/gr.271627.120 10.1001/jamaneurol.2013.4908 10.1002/ana.25951 10.1002/humu.22758 10.3390/genes8100253 10.1093/bioinformatics/btt656 10.1038/labinvest.2010.146 10.1007/s00439-009-0679-9 10.1002/ajmg.a.30617 10.1002/acn3.96 10.1016/j.nmd.2017.04.003 10.1002/mus.26073 10.1002/mus.22226 10.1002/humu.24005 10.1016/S1474-4422(03)00585-4 10.1002/humu.10307 |
ContentType | Journal Article |
Copyright | 2022 Wiley Periodicals LLC 2022 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2022 Wiley Periodicals LLC – notice: 2022 Wiley Periodicals LLC. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 8FD FR3 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/humu.24343 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1098-1004 |
EndPage | 528 |
ExternalDocumentID | PMC9901284 35165973 10_1002_humu_24343 HUMU24343 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of Neurological Disorders and Stroke funderid: NS043264; NS085238; NS053672 – fundername: NINDS NIH HHS grantid: U54 NS053672 – fundername: NINDS NIH HHS grantid: P50 NS053672 – fundername: NINDS NIH HHS grantid: R01 NS043264 – fundername: NINDS NIH HHS grantid: R01 NS085238 |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 29I 31~ 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88A 88E 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DVXWH EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GNP GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HHZ HMCUK HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M0L M1P M66 M7P MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PIMPY PQQKQ PROAC PSQYO Q.N Q11 Q2X QB0 QRW R.K RHX RIWAO RJQFR ROL RWI RWV RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS UKHRP V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WTM WXSBR WYISQ X7M XG1 XSW XV2 ZZTAW ~IA ~KM ~WT AAYXX AGQPQ CITATION PHGZM PHGZT RPM CGR CUY CVF ECM EIF NPM 7QP 7TK 8FD FR3 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5143-8359c1a2ca8b2b0b7a1889d9e45d59a81a35610efc2e755dd7c5106860ea6d053 |
IEDL.DBID | DR2 |
ISSN | 1059-7794 1098-1004 |
IngestDate | Thu Aug 21 18:39:03 EDT 2025 Thu Sep 04 21:44:33 EDT 2025 Fri Jul 25 19:31:14 EDT 2025 Thu Apr 03 06:57:48 EDT 2025 Tue Jul 01 04:33:52 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Wed Jan 22 16:32:43 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Becker muscular dystrophy deep intronic telescripting Duchenne muscular dystrophy transcription termination pseudoexon |
Language | English |
License | 2022 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5143-8359c1a2ca8b2b0b7a1889d9e45d59a81a35610efc2e755dd7c5106860ea6d053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Current affiliation: University of California, Irvine, CA 92697 Current affiliation: St. Jude Children’s Research Hospital, Memphis TN 38105 Current affiliation: Department of Neurology, Stanford University Medical Center, Palo Alto, CA 94304 Current Affiliation: The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH 43205 Author contributions: MAW, RBW and KMF contributed to the conception and design of study, acquisition and analysis of data and drafting a significant portion of the manuscript or figures. SAM and BWD contributed to acquisition and analysis of data and drafting a significant portion of the manuscript or figures. KDM, LM, RF, AMC, TOC, DD, NW, AH, MAK-S, CMZ, JJC, MJ, BU, JWD, GO-G, JS, RJB and DMD contributed to the acquisition and analysis of data. All authors critically reviewed and revised the manuscript. |
ORCID | 0000-0002-8452-7189 0000-0001-6440-3376 0000-0001-9621-8319 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9901284 |
PMID | 35165973 |
PQID | 2643702702 |
PQPubID | 30498 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9901284 proquest_miscellaneous_2629059647 proquest_journals_2643702702 pubmed_primary_35165973 crossref_primary_10_1002_humu_24343 crossref_citationtrail_10_1002_humu_24343 wiley_primary_10_1002_humu_24343_HUMU24343 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Human mutation |
PublicationTitleAlternate | Hum Mutat |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2010; 11 2013; 29 2010; 55 2017; 7 2015; 36 2017; 8 2006; 34 2005; 134 2013; 24 2004; 23 2008; 9 2011; 12 2005; 26 2017; 9 2016; 79 2014; 20 2014; 1 2020; 7 2012; 71 1983; 302 2021; 31 2018; 5 2013; 10 2015; 135 2019; 26 2003; 2 2011; 21 2019; 29 2008; 63 1996; 24 2012; 22 2012; 20 2009; 126 2021; 7 2018; 28 2019; 4 2021; 89 2015; 3 2020; 41 2015; 521 2019; 76 2017; 27 2011; 32 1999; 3 2020; 77 2016; 13 1988; 2 2010; 87 2009; 30 2004; 115 2016; 3 2011; 91 2013; 34 2013; 74 2011; 44 2020; 117 2014; 30 2014; 71 2003; 21 2014; 32 2018; 14 2018; 57 2019; 176 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 2 start-page: 90 issue: 1 year: 1988 end-page: 95 article-title: An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus publication-title: Genomics – volume: 20 start-page: 992 issue: 9 year: 2014 end-page: 1000 article-title: Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice publication-title: Nature Medicine – volume: 71 start-page: 304 issue: 3 year: 2012 end-page: 313 article-title: Evidence‐based path to newborn screening for Duchenne muscular dystrophy publication-title: Annals of Neurology – volume: 79 start-page: 257 issue: 2 year: 2016 end-page: 271 article-title: Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy publication-title: Annals of Neurology – volume: 30 start-page: 1657 issue: 12 year: 2009 end-page: 1666 article-title: Mutational spectrum of DMD mutations in dystrophinopathy patients: Application of modern diagnostic techniques to a large cohort publication-title: Human Mutation – volume: 9 issue: 386 year: 2017 article-title: Improving genetic diagnosis in Mendelian disease with transcriptome sequencing publication-title: Science Translational Medicine – volume: 4 issue: 6 year: 2019 article-title: A recurrent COL6A1 pseudoexon insertion causes muscular dystrophy and is effectively targeted by splice‐correction therapies publication-title: JCI Insight – volume: 8 issue: 10 year: 2017 article-title: Exonization of an intronic LINE‐1 element causing becker muscular dystrophy as a novel mutational mechanism in dystrophin gene publication-title: Genes (Basel) – volume: 55 start-page: 379 issue: 6 year: 2010 end-page: 388 article-title: Mutation spectrum of the dystrophin gene in 442 Duchenne/Becker muscular dystrophy cases from one Japanese referral center publication-title: Journal of Human Genetics – volume: 2 start-page: 731 issue: 12 year: 2003 end-page: 740 article-title: Dystrophin and mutations: One gene, several proteins, multiple phenotypes publication-title: Lancet Neurology – volume: 521 start-page: 371 issue: 7552 year: 2015 end-page: 375 article-title: Recursive splicing in long vertebrate genes publication-title: Nature – volume: 24 start-page: 702 issue: 7 year: 2013 end-page: 713 article-title: Exon skipping as a therapeutic strategy applied to an RYR1 mutation with pseudo‐exon inclusion causing a severe core myopathy publication-title: Human Gene Therapy – volume: 23 start-page: 203 issue: 2 year: 2004 end-page: 204 article-title: Three‐tiered noninvasive diagnosis in 96% of patients with Duchenne muscular dystrophy (DMD) publication-title: Human Mutation – volume: 63 start-page: 81 issue: 1 year: 2008 end-page: 89 article-title: DMD pseudoexon mutations: Splicing efficiency, phenotype, and potential therapy publication-title: Annals of Neurology – volume: 34 start-page: 135 issue: 2 year: 2006 end-page: 144 article-title: Entries in the Leiden Duchenne muscular dystrophy mutation database: An overview of mutation types and paradoxical cases that confirm the reading‐frame rule publication-title: Muscle and Nerve – volume: 21 start-page: 608 issue: 6 year: 2003 end-page: 614 article-title: Pseudoexon activation in the DMD gene as a novel mechanism for Becker muscular dystrophy publication-title: Human Mutation – volume: 28 start-page: 116 issue: 2 year: 2018 end-page: 121 article-title: Low‐level dystrophin expression attenuating the dystrophinopathy phenotype publication-title: Neuromuscular Disorders: NMD – volume: 10 start-page: 623 issue: 7 year: 2013 end-page: 629 article-title: Comparative analysis of RNA sequencing methods for degraded or low‐input samples publication-title: Nature Methods – volume: 89 start-page: 280 issue: 2 year: 2021 end-page: 292 article-title: Very low residual dystrophin quantity is associated with milder dystrophinopathy publication-title: Annals of Neurology – volume: 22 start-page: 25 issue: 1 year: 2012 end-page: 34 article-title: Aberrant firing of replication origins potentially explains intragenic nonrecurrent rearrangements within genes, including the human DMD gene publication-title: Genome Research – volume: 87 start-page: 75 issue: 1 year: 2010 end-page: 89 article-title: Mechanisms of genomic instabilities underlying two common fragile‐site‐associated loci, PARK2 and DMD, in germ cell and cancer cell lines publication-title: American Journal of Human Genetics – volume: 135 start-page: 513 issue: 3 year: 2015 end-page: 521 article-title: Prevalence of Duchenne and Becker muscular dystrophies in the United States publication-title: Pediatrics – volume: 115 start-page: 13 issue: 1 year: 2004 end-page: 18 article-title: An intragenic deletion/inversion event in the DMD gene determines a novel exon creation and results in a BMD phenotype publication-title: Human Genetics – volume: 24 start-page: 3059 issue: 15 year: 1996 end-page: 3064 article-title: Stability of the human dystrophin transcript in muscle publication-title: Nucleic Acids Research – volume: 44 start-page: 822 issue: 5 year: 2011 end-page: 825 article-title: Becker muscular dystrophy due to an inversion of exons 23 and 24 of the DMD gene publication-title: Muscle and Nerve – volume: 74 start-page: 637 issue: 5 year: 2013 end-page: 647 article-title: Eteplirsen for the treatment of Duchenne muscular dystrophy publication-title: Annals of Neurology – volume: 21 start-page: 178 issue: 3 year: 2011 end-page: 182 article-title: Duchenne muscular dystrophy caused by a complex rearrangement between intron 43 of the DMD gene and chromosome 4 publication-title: Neuromuscular Disorders: NMD – volume: 117 start-page: 16456 issue: 28 year: 2020 end-page: 16464 article-title: Premature termination codons in the DMD gene cause reduced local mRNA synthesis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 3 start-page: 320 issue: 4 year: 2015 end-page: 326 article-title: Pseudoexon activation increases phenotype severity in a Becker muscular dystrophy patient publication-title: Molecular Genetics & Genomic Medicine – volume: 302 start-page: 591 issue: 5909 year: 1983 end-page: 596 article-title: Specific transcription and RNA splicing defects in five cloned beta‐thalassaemia genes publication-title: Nature – volume: 26 start-page: 2766 issue: 10 year: 2019 end-page: 2778 article-title: Regulation of intronic polyadenylation by PCF11 impacts mRNA expression of long genes publication-title: Cell Reports – volume: 26 start-page: 184 issue: 3 year: 2005 end-page: 191 article-title: UMD (Universal Mutation Database): 2005 update publication-title: Human Mutation – volume: 134 start-page: 295 issue: 3 year: 2005 end-page: 298 article-title: Improved molecular diagnosis of dystrophinopathies in an unselected clinical cohort publication-title: American Journal of Medical Genetics. Part A – volume: 30 start-page: 22 issue: 1 year: 2009 end-page: 28 article-title: Characterization of a complex Duchenne muscular dystrophy‐causing dystrophin gene inversion and restoration of the reading frame by induced exon skipping publication-title: Human Mutation – volume: 30 start-page: 923 issue: 7 year: 2014 end-page: 930 article-title: featureCounts: An efficient general purpose program for assigning sequence reads to genomic features publication-title: Bioinformatics – volume: 20 start-page: 1096 issue: 10 year: 2012 end-page: 1100 article-title: Comprehensive oligonucleotide array‐comparative genomic hybridization analysis: New insights into the molecular pathology of the DMD gene publication-title: European Journal of Human Genetics – volume: 126 start-page: 411 issue: 3 year: 2009 end-page: 423 article-title: Regional genomic instability predisposes to complex dystrophin gene rearrangements publication-title: Human Genetics – volume: 31 start-page: 2095 issue: 11 year: 2021 end-page: 2106 article-title: Cancer‐associated dynamics and potential regulators of intronic polyadenylation revealed by IPAFinder using standard RNA‐seq data publication-title: Genome Research – volume: 7 year: 2017 article-title: Targeted RNA‐Seq profiling of splicing pattern in the DMD gene: Exons are mostly constitutively spliced in human skeletal muscle publication-title: Scientific Reports – volume: 32 start-page: 671 issue: 3 year: 2014 end-page: 688 article-title: Duchenne and Becker muscular dystrophies publication-title: Neurologic Clinics – volume: 76 start-page: 590 issue: 4 year: 2019 end-page: 599 article-title: A complex of U1 snRNP with cleavage and polyadenylation factors controls telescripting, regulating mRNA transcription in human cells publication-title: Molecular Cell – volume: 3 start-page: 55 issue: 1 year: 2016 end-page: 60 article-title: RNAseq analysis for the diagnosis of muscular dystrophy publication-title: Annals of Clinical and Translational Neurology – volume: 3 start-page: 371 issue: 3 year: 1999 end-page: 378 article-title: Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II publication-title: Molecular Cell – volume: 32 start-page: 467 issue: 4 year: 2011 end-page: 475 article-title: Pure intronic rearrangements leading to aberrant pseudoexon inclusion in dystrophinopathy: A new class of mutations? publication-title: Human Mutation – volume: 27 start-page: 631 issue: 7 year: 2017 end-page: 634 article-title: Deep intronic variants introduce DMD pseudoexon in patient with muscular dystrophy publication-title: Neuromuscular Disorders: NMD – volume: 11 year: 2010 article-title: POLYAR, a new computer program for prediction of poly(A) sites in human sequences publication-title: BMC Genomics – volume: 9 year: 2008 article-title: A novel custom high density‐comparative genomic hybridization array detects common rearrangements as well as deep intronic mutations in dystrophinopathies publication-title: BMC Genomics – volume: 77 start-page: 1032 issue: 5 year: 2020 end-page: 1043 article-title: Directed RNase H cleavage of nascent transcripts causes transcription termination publication-title: Molecular Cell – volume: 29 start-page: 913 issue: 12 year: 2019 end-page: 919 article-title: Importance of muscle biopsy to establish pathogenicity of DMD missense and splice variants publication-title: Neuromuscular Disorders: NMD – volume: 91 start-page: 216 issue: 2 year: 2011 end-page: 231 article-title: An intronic LINE‐1 element insertion in the dystrophin gene aborts dystrophin expression and results in Duchenne‐like muscular dystrophy in the corgi breed publication-title: Laboratory Investigation – volume: 176 start-page: 535 issue: 3 year: 2019 end-page: 548 article-title: Predicting splicing from primary sequence with deep learning publication-title: Cell – volume: 14 issue: 8 year: 2018 article-title: ggsashimi: Sashimi plot revised for browser‐ and annotation‐independent splicing visualization publication-title: PLoS Computational Biology – volume: 36 start-page: 395 issue: 4 year: 2015 end-page: 402 article-title: The TREAT‐NMD DMD Global Database: Analysis of more than 7,000 Duchenne muscular dystrophy mutations publication-title: Human Mutation – volume: 1 start-page: 703 issue: 9 year: 2014 end-page: 720 article-title: A novel dysferlin mutant pseudoexon bypassed with antisense oligonucleotides publication-title: Annals of Clinical and Translational Neurology – volume: 34 start-page: 1387 issue: 10 year: 2013 end-page: 1395 article-title: In vitro correction of a pseudoexon‐generating deep intronic mutation in LGMD2A by antisense oligonucleotides and modified small nuclear RNAs publication-title: Human Mutation – volume: 29 start-page: 15 issue: 1 year: 2013 end-page: 21 article-title: STAR: Ultrafast universal RNA‐seq aligner publication-title: Bioinformatics – volume: 5 start-page: 47 issue: 1 year: 2018 end-page: 58 article-title: Long‐term pulmonary function in duchenne muscular dystrophy: Comparison of eteplirsen‐treated patients to natural history publication-title: Journal of Neuromuscular Diseases – volume: 7 issue: 1 year: 2021 article-title: WGS and RNA studies diagnose noncoding DMD variants in males with high creatine kinase publication-title: Neurology: Genetics – volume: 7 start-page: 77 issue: 2 year: 2020 end-page: 95 article-title: Pseudoexons of the DMD gene publication-title: Journal of Neuromuscular Diseases – volume: 12 year: 2011 article-title: Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing publication-title: BMC Medical Genetics – volume: 41 start-page: 1145 issue: 6 year: 2020 end-page: 1156 article-title: AG‐exclusion zone revisited: Lessons to learn from 91 intronic NF1 3′ splice site mutations outside the canonical AG‐dinucleotides publication-title: Human Mutation – volume: 13 start-page: 290 issue: 3 year: 2016 end-page: 305 article-title: Non‐sequential and multi‐step splicing of the dystrophin transcript publication-title: RNA Biology – volume: 57 start-page: E136 issue: 6 year: 2018 end-page: E138 article-title: Duchenne muscular dystrophy caused by a novel deep intronic DMD mutation publication-title: Muscle and Nerve – volume: 71 start-page: 32 issue: 1 year: 2014 end-page: 40 article-title: Biochemical characterization of patients with in‐frame or out‐of‐frame DMD deletions pertinent to exon 44 or 45 skipping publication-title: JAMA Neurology – volume: 30 start-page: 934 issue: 6 year: 2009 end-page: 945 article-title: Genotype‐phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD‐DMD database: A model of nationwide knowledgebase publication-title: Human Mutation – ident: e_1_2_9_10_1 doi: 10.1002/humu.22379 – ident: e_1_2_9_13_1 doi: 10.1186/1471-2164-9-572 – ident: e_1_2_9_30_1 doi: 10.1002/mgg3.144 – ident: e_1_2_9_20_1 doi: 10.1016/S1097-2765(00)80464-5 – ident: e_1_2_9_26_1 doi: 10.1080/15476286.2015.1125074 – ident: e_1_2_9_49_1 doi: 10.1089/hum.2013.052 – ident: e_1_2_9_50_1 doi: 10.1542/peds.2014-2044 – ident: e_1_2_9_14_1 doi: 10.1007/s00439-004-1118-6 – ident: e_1_2_9_23_1 doi: 10.1002/humu.21114 – ident: e_1_2_9_24_1 doi: 10.1073/pnas.1910456117 – ident: e_1_2_9_41_1 doi: 10.1186/1471-2350-12-37 – ident: e_1_2_9_56_1 doi: 10.1038/302591a0 – ident: e_1_2_9_36_1 doi: 10.1002/humu.21471 – ident: e_1_2_9_45_1 doi: 10.1016/j.ajhg.2010.06.006 – ident: e_1_2_9_59_1 doi: 10.1212/NXG.0000000000000554 – ident: e_1_2_9_21_1 doi: 10.1016/j.ncl.2014.05.002 – ident: e_1_2_9_38_1 doi: 10.1016/j.molcel.2019.12.029 – ident: e_1_2_9_5_1 doi: 10.1101/gr.123463.111 – ident: e_1_2_9_54_1 doi: 10.1038/jhg.2010.49 – ident: e_1_2_9_51_1 doi: 10.1038/nature14466 – ident: e_1_2_9_60_1 doi: 10.1016/j.nmd.2017.11.007 – ident: e_1_2_9_11_1 doi: 10.1172/jci.insight.124403 – ident: e_1_2_9_18_1 doi: 10.1093/bioinformatics/bts635 – ident: e_1_2_9_3_1 doi: 10.1038/nmeth.2483 – ident: e_1_2_9_43_1 doi: 10.1002/ana.23982 – ident: e_1_2_9_32_1 doi: 10.1038/ejhg.2012.51 – ident: e_1_2_9_42_1 doi: 10.1002/ana.24555 – ident: e_1_2_9_58_1 doi: 10.1002/humu.10214 – ident: e_1_2_9_55_1 doi: 10.1093/nar/24.15.3059 – ident: e_1_2_9_2_1 doi: 10.1002/mus.20586 – ident: e_1_2_9_46_1 doi: 10.1016/0888-7543(88)90113-9 – ident: e_1_2_9_29_1 doi: 10.1002/acn3.267 – ident: e_1_2_9_8_1 doi: 10.1002/humu.20210 – ident: e_1_2_9_40_1 doi: 10.1002/humu.20806 – ident: e_1_2_9_61_1 doi: 10.1016/j.celrep.2019.02.049 – ident: e_1_2_9_35_1 doi: 10.3233/JND-190431 – ident: e_1_2_9_7_1 doi: 10.1016/j.nmd.2010.11.008 – ident: e_1_2_9_12_1 doi: 10.1038/srep39094 – ident: e_1_2_9_33_1 doi: 10.1016/j.cell.2018.12.015 – ident: e_1_2_9_15_1 doi: 10.1126/scitranslmed.aal5209 – ident: e_1_2_9_34_1 doi: 10.1016/j.nmd.2019.09.013 – ident: e_1_2_9_31_1 doi: 10.1002/ana.21290 – ident: e_1_2_9_53_1 doi: 10.1016/j.molcel.2019.08.007 – ident: e_1_2_9_57_1 doi: 10.1002/humu.20976 – ident: e_1_2_9_44_1 doi: 10.1002/ana.23528 – ident: e_1_2_9_4_1 doi: 10.1186/1471-2164-11-646 – ident: e_1_2_9_37_1 doi: 10.3233/JND-170272 – ident: e_1_2_9_62_1 doi: 10.1038/nm.3628 – ident: e_1_2_9_25_1 doi: 10.1371/journal.pcbi.1006360 – ident: e_1_2_9_66_1 doi: 10.1101/gr.271627.120 – ident: e_1_2_9_6_1 doi: 10.1001/jamaneurol.2013.4908 – ident: e_1_2_9_16_1 doi: 10.1002/ana.25951 – ident: e_1_2_9_9_1 doi: 10.1002/humu.22758 – ident: e_1_2_9_28_1 doi: 10.3390/genes8100253 – ident: e_1_2_9_39_1 doi: 10.1093/bioinformatics/btt656 – ident: e_1_2_9_52_1 doi: 10.1038/labinvest.2010.146 – ident: e_1_2_9_48_1 doi: 10.1007/s00439-009-0679-9 – ident: e_1_2_9_17_1 doi: 10.1002/ajmg.a.30617 – ident: e_1_2_9_19_1 doi: 10.1002/acn3.96 – ident: e_1_2_9_65_1 doi: 10.1016/j.nmd.2017.04.003 – ident: e_1_2_9_27_1 doi: 10.1002/mus.26073 – ident: e_1_2_9_22_1 doi: 10.1002/mus.22226 – ident: e_1_2_9_63_1 doi: 10.1002/humu.24005 – ident: e_1_2_9_47_1 doi: 10.1016/S1474-4422(03)00585-4 – ident: e_1_2_9_64_1 doi: 10.1002/humu.10307 |
SSID | ssj0008553 |
Score | 2.5069373 |
Snippet | DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA.... DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA.... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 511 |
SubjectTerms | Becker muscular dystrophy Becker's muscular dystrophy Biopsy deep intronic DNA-directed RNA polymerase Duchenne muscular dystrophy Dystrophin Dystrophin - genetics Genomics Humans Introns Introns - genetics Muscular dystrophy Muscular Dystrophy, Duchenne - diagnosis Muscular Dystrophy, Duchenne - genetics Muscular Dystrophy, Duchenne - pathology Mutation Patients Polymerase chain reaction pseudoexon Reverse transcription Ribonucleoproteins (small nuclear) RNA polymerase RNA Splice Sites telescripting Transcription termination Translocation |
Title | Intron mutations and early transcription termination in Duchenne and Becker muscular dystrophy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhumu.24343 https://www.ncbi.nlm.nih.gov/pubmed/35165973 https://www.proquest.com/docview/2643702702 https://www.proquest.com/docview/2629059647 https://pubmed.ncbi.nlm.nih.gov/PMC9901284 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8QEokvgqBSQbNGXzTp0e51r7sJLyqQ0-R8MF7Ciza73W0gSiHe9QH_emZ22x4HhETemux0-7Hz8Wtn5rcA74QyDqNwElcyMXHmnIy1TUWsK8QaWqcYkajfefJtNJ5mX4_F8Qrsd70wgR-i_-FGluH9NRm4NrO9BWnoSXPWDDg1RqIDTocjIs4_-L7gjpJChOp6oRBCqqznJuV7i1OXo9EtiHm7UvI6gvUh6GgdfnY3HypPfg-auRmU_27wOj706TbgSYtN2cegTE9hxdWb8CjsVnm5CWuTNg-_Bb--UIF7zc6akMmfMV1b5ogsmc0p-nW-iLXFNv74tGYHDSoJunYv_8lRTQdOEophmb2c4ay47s9genT44_M4bndqiEsCXDHCOFWmmpdaGm4Sk-tUSmWVy4QVSstUDwmnuarkLhfC2hzPo-aUxOmRRT_wHFbr89ptA5PDSqGeiFKmZZZopyW5IS6q3GidGxvB-27FirKlMafdNP4UgYCZF_TqCv_qInjby14E8o47pXa7hS9aA54VnBKaCTXrRfCmH0bTo3yKrt15QzJc0e5FWR7Bi6An_WWGIh3htxpOni9pUC9AtN7LI_Xpiaf3pkwlgoYIPngFuefOi_F0MvVHL_9HeAcec2ri8PVHu7A6_9u4Vwit5ua1N6Eri3Qilg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8gxI8XUfyqoq6RF0h6tHvd6-6joORQjgfDJTzR7Ha3gSjFeNcH-OuZ2e31OCEm-tak022vOx-_68z8BmBDKOMwCidxJRMTZ87JWNtUxLpCrKF1ihGJ-p1Hh4PhOPt6LI7b2hzqhQn8EN0HN7IM76_JwOmD9PacNfS0OW96nDoj78GKT9ARJvo-Z4-SQoT6eqEQRKqsYyfl2_NrF-PRLZB5u1byJob1QWhvNUxanXjuQqo9-dFrpqZXXv3B7Pjfv-8JPG7hKfsU9OkpLLl6De6HgZWXa_Bg1Kbin8HJPtW41-y8Ccn8CdO1ZY74ktmUAuDMHbG23sYfn9Xsc4N6gt7dy-84KuvARUI9LLOXE1wVt_45jPe-HO0O43ZYQ1wS5ooRyaky1bzU0nCTmFynUiqrXCasUFqmuk9QzVUld7kQ1uZ4HfWnJE4PLLqCF7BcX9TuFTDZrxSqiihlWmaJdlqSJ-Kiyo3WubERbM62rChbJnMaqPGzCBzMvKBXV_hXF8HHTvZX4O-4U2p9tvNFa8OTglNOM6F-vQg-dKfR-iilomt30ZAMVzTAKMsjeBkUpbtNX6QD_LuGi-cLKtQJELP34pn67NQzfFOyEnFDBFteQ_7y5MVwPBr7o9f_IvweHg6PRgfFwf7htzfwiFNPhy9HWofl6e_GvUWkNTXvvD1dA5dEJrQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPMqjgQJGcAEp28Qbb2yJC1BWW2ArhFiplxLZsaNWpWnFbg7l1zNjJ1mWIiS4RfLEeXgeXzIznwGeC2UcRuEkrmRi4sw5GWubilhXiDW0TjEiUb_zdH80mWXvD8TBGrzqemECP0T_w40sw_trMvBzW-0sSUOPmtNmwKkx8gpczUYYJwkSfV6SR0khQnm9UIghVdaTk_Kd5bmr4egSxrxcKvkrhPUxaHwTDru7D6UnJ4NmYQblj9-IHf_38W7BjRacstdBm27Dmqs34VrYrvJiEzambSL-Dnzdowr3mp02IZU_Z7q2zBFbMltQ-OucEWurbfzxcc12G9QS9O1e_o2jog6cJFTDMnsxx1lx4e_CbPzuy9tJ3G7VEJeEuGLEcapMNS-1NNwkJteplMoqlwkrlJapHhJQc1XJXS6EtTmeR90pidMji47gHqzXZ7XbAiaHlUJFEaVMyyzRTkvyQ1xUudE6NzaCF92KFWXLY07baXwrAgMzL-jVFf7VRfCslz0P7B1_lNruFr5oLXhecMpoJtStF8HTfhhtjxIqunZnDclwRdsXZXkE94Oe9JcZinSEH2s4eb6iQb0A8XqvjtTHR57fm1KViBoieOkV5C93Xkxm05k_evAvwk9g49PuuPi4t__hIVzn1NDha5G2YX3xvXGPEGYtzGNvTT8BEswlYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intron+mutations+and+early+transcription+termination+in+Duchenne+and+Becker+muscular+dystrophy&rft.jtitle=Human+mutation&rft.au=Waldrop%2C+Megan+A&rft.au=Moore%2C+Steven+A&rft.au=Mathews%2C+Katherine+D&rft.au=Darbro%2C+Benjamin+W&rft.date=2022-04-01&rft.eissn=1098-1004&rft.volume=43&rft.issue=4&rft.spage=511&rft_id=info:doi/10.1002%2Fhumu.24343&rft_id=info%3Apmid%2F35165973&rft.externalDocID=35165973 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-7794&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-7794&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-7794&client=summon |