Intron mutations and early transcription termination in Duchenne and Becker muscular dystrophy

DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle‐derived RNA is an important diagnostic step for patients who have ne...

Full description

Saved in:
Bibliographic Details
Published inHuman mutation Vol. 43; no. 4; pp. 511 - 528
Main Authors Waldrop, Megan A., Moore, Steven A., Mathews, Katherine D., Darbro, Benjamin W., Medne, Livja, Finkel, Richard, Connolly, Anne M., Crawford, Thomas O., Drachman, Daniel, Wein, Nicolas, Habib, Ali A., Krzesniak‐Swinarska, Monika A., Zaidman, Craig M., Collins, James J., Jokela, Manu, Udd, Bjarne, Day, John W., Ortiz‐Guerrero, Gloria, Statland, Jeff, Butterfield, Russell J., Dunn, Diane M., Weiss, Robert B., Flanigan, Kevin M.
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.04.2022
Subjects
Online AccessGet full text
ISSN1059-7794
1098-1004
1098-1004
DOI10.1002/humu.24343

Cover

Abstract DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle‐derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription‐polymerase chain reaction or high‐throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3ʹ‐terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP‐mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full‐length dystrophin expression for some patients. Intron mutations include the novel mechanism of pseudo‐3'UTR creation, confirmed by RNA Seq.
AbstractList DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription-polymerase chain reaction or high-throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3'-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients.
DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle‐derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription‐polymerase chain reaction or high‐throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3ʹ‐terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP‐mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full‐length dystrophin expression for some patients. Intron mutations include the novel mechanism of pseudo‐3'UTR creation, confirmed by RNA Seq.
DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription-polymerase chain reaction or high-throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3'-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients.DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription-polymerase chain reaction or high-throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3'-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients.
DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle‐derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription‐polymerase chain reaction or high‐throughput RNA sequencing methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3ʹ‐terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP‐mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD. We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full‐length dystrophin expression for some patients.
DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA. However, up to 7% of DMD mutations are deep intronic and analysis of muscle-derived RNA is an important diagnostic step for patients who have negative genomic testing but abnormal dystrophin expression in muscle. In this study, muscle biopsies were evaluated from 19 patients with clinical features of a dystrophinopathy, but negative clinical DMD mutation analysis. Reverse transcription PCR (RT-PCR) or high-throughput RNA sequencing (RNA-Seq) methods identified 19 mutations with one of three pathogenic pseudoexon types: deep intronic point mutations, deletions or insertions, and translocations. In association with point mutations creating intronic splice acceptor sites, we observed the first examples of DMD pseudo 3’-terminal exon mutations causing high efficiency transcription termination within introns. This connection between splicing and premature transcription termination is reminiscent of U1 snRNP-mediating telescripting in sustaining RNA polymerase II elongation across large genes, such as DMD . We propose a novel classification of three distinct types of mutations identifiable by muscle RNA analysis, each of which differ in potential treatment approaches. Recognition and appropriate characterization may lead to therapies directed toward full-length dystrophin expression for some patients.
Author Udd, Bjarne
Dunn, Diane M.
Darbro, Benjamin W.
Zaidman, Craig M.
Statland, Jeff
Krzesniak‐Swinarska, Monika A.
Day, John W.
Drachman, Daniel
Wein, Nicolas
Finkel, Richard
Jokela, Manu
Mathews, Katherine D.
Habib, Ali A.
Connolly, Anne M.
Moore, Steven A.
Butterfield, Russell J.
Waldrop, Megan A.
Medne, Livja
Collins, James J.
Flanigan, Kevin M.
Weiss, Robert B.
Crawford, Thomas O.
Ortiz‐Guerrero, Gloria
AuthorAffiliation 8 Department of Neurology, Washington University, Saint Louis, MO 63110
18 Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT 84112
6 Children’s Hospital of Philadelphia, Philadelphia, PA 19104
9 Johns Hopkins University, Baltimore, MD 21218
1 The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH 43205
13 Neuromuscular Research Center, Tampere University Hospital and University of Tampere, Tampere, Finland
10 Columbia University, New York, NY 10032
15 Department of Neurology, University of Minnesota Medical Center, Minneapolis, MN 55454
4 Department of Pathology, The University of Iowa, Iowa City, IA, 52242
11 Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
2 Department of Neurology, The Ohio State University, Columbus, OH 43205
3 Department of Pediatrics, The Ohio State University, Columbus, OH 43205
5 Depatment of Pediatrics, The University of Iowa, Iowa City, IA, 52242
7 Nemours Children’
AuthorAffiliation_xml – name: 2 Department of Neurology, The Ohio State University, Columbus, OH 43205
– name: 14 Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
– name: 11 Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
– name: 3 Department of Pediatrics, The Ohio State University, Columbus, OH 43205
– name: 12 Department of Pediatric Neurology, Mercy Hospitals, Springfield, MO 65804
– name: 13 Neuromuscular Research Center, Tampere University Hospital and University of Tampere, Tampere, Finland
– name: 17 Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84112
– name: 8 Department of Neurology, Washington University, Saint Louis, MO 63110
– name: 9 Johns Hopkins University, Baltimore, MD 21218
– name: 1 The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH 43205
– name: 6 Children’s Hospital of Philadelphia, Philadelphia, PA 19104
– name: 16 Department of Neurology, University of Kansas, Kansas City, KS
– name: 10 Columbia University, New York, NY 10032
– name: 18 Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT 84112
– name: 5 Depatment of Pediatrics, The University of Iowa, Iowa City, IA, 52242
– name: 4 Department of Pathology, The University of Iowa, Iowa City, IA, 52242
– name: 7 Nemours Children’s Hospital, Orlando, FL 32827
– name: 15 Department of Neurology, University of Minnesota Medical Center, Minneapolis, MN 55454
Author_xml – sequence: 1
  givenname: Megan A.
  orcidid: 0000-0001-9621-8319
  surname: Waldrop
  fullname: Waldrop, Megan A.
  organization: The Ohio State University
– sequence: 2
  givenname: Steven A.
  surname: Moore
  fullname: Moore, Steven A.
  organization: The University of Iowa
– sequence: 3
  givenname: Katherine D.
  surname: Mathews
  fullname: Mathews, Katherine D.
  organization: The University of Iowa
– sequence: 4
  givenname: Benjamin W.
  surname: Darbro
  fullname: Darbro, Benjamin W.
  organization: The University of Iowa
– sequence: 5
  givenname: Livja
  surname: Medne
  fullname: Medne, Livja
  organization: Children's Hospital of Philadelphia
– sequence: 6
  givenname: Richard
  surname: Finkel
  fullname: Finkel, Richard
  organization: Nemours Children's Hospital
– sequence: 7
  givenname: Anne M.
  surname: Connolly
  fullname: Connolly, Anne M.
  organization: Washington University
– sequence: 8
  givenname: Thomas O.
  surname: Crawford
  fullname: Crawford, Thomas O.
  organization: Johns Hopkins University
– sequence: 9
  givenname: Daniel
  surname: Drachman
  fullname: Drachman, Daniel
  organization: Johns Hopkins University
– sequence: 10
  givenname: Nicolas
  surname: Wein
  fullname: Wein, Nicolas
  organization: Nationwide Children's Hospital
– sequence: 11
  givenname: Ali A.
  surname: Habib
  fullname: Habib, Ali A.
  organization: Columbia University
– sequence: 12
  givenname: Monika A.
  surname: Krzesniak‐Swinarska
  fullname: Krzesniak‐Swinarska, Monika A.
  organization: University of New Mexico Health Sciences Center
– sequence: 13
  givenname: Craig M.
  surname: Zaidman
  fullname: Zaidman, Craig M.
  organization: Washington University
– sequence: 14
  givenname: James J.
  surname: Collins
  fullname: Collins, James J.
  organization: Mercy Hospitals
– sequence: 15
  givenname: Manu
  surname: Jokela
  fullname: Jokela, Manu
  organization: Turku University Hospital and University of Turku
– sequence: 16
  givenname: Bjarne
  surname: Udd
  fullname: Udd, Bjarne
  organization: Tampere University Hospital and University of Tampere
– sequence: 17
  givenname: John W.
  surname: Day
  fullname: Day, John W.
  organization: University of Minnesota Medical Center
– sequence: 18
  givenname: Gloria
  surname: Ortiz‐Guerrero
  fullname: Ortiz‐Guerrero, Gloria
  organization: University of Kansas
– sequence: 19
  givenname: Jeff
  surname: Statland
  fullname: Statland, Jeff
  organization: University of Kansas
– sequence: 20
  givenname: Russell J.
  orcidid: 0000-0002-8452-7189
  surname: Butterfield
  fullname: Butterfield, Russell J.
  organization: The University of Utah School of Medicine
– sequence: 21
  givenname: Diane M.
  surname: Dunn
  fullname: Dunn, Diane M.
  organization: The University of Utah School of Medicine
– sequence: 22
  givenname: Robert B.
  surname: Weiss
  fullname: Weiss, Robert B.
  email: bob@genetics.utah.edu
  organization: The University of Utah School of Medicine
– sequence: 23
  givenname: Kevin M.
  orcidid: 0000-0001-6440-3376
  surname: Flanigan
  fullname: Flanigan, Kevin M.
  email: kevin.flanigan@nationwidechildrens.org
  organization: The Ohio State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35165973$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEUhoNU7Ife-ANkwBsRps3nTHIjaD9soeKNe2vIZs66qTPJNplY5t-b3alFSxECCTnP-3LOeQ_Rng8eEHpN8DHBmJ6s85CPKWecPUMHBCtZl2--t30LVbet4vvoMKUbjLEUgr1A-0yQRqiWHaDvV36MwVdDHs3ogk-V8V0FJvZTNUbjk41usy1UI8TB-R1UOV-dZbsG72HHfwL7E2IxSTb3JlbdlIrrZj29RM9Xpk_w6v4-QouL82-nl_X1189Xpx-vaysIZ7VkQlliqDVySZd42RoipeoUcNEJZSQxTDQEw8pSaIXourbocCMbDKbpsGBH6MPsu8nLAToLZSrT6010g4mTDsbpfyverfWP8EsrhQmVvBi8uzeI4TZDGvXgkoW-Nx5CTpo2VJVtNrwt6NtH6E3I0ZfxCsVZi2k5hXrzd0cPrfxZfQHez4CNIaUIqweEYL3NVW9z1btcC4wfwdbNgZVpXP-0hMySO9fD9B9zfbn4spg1vwG9w7cs
CitedBy_id crossref_primary_10_1208_s12248_022_00776_0
crossref_primary_10_1038_s41586_024_08462_1
crossref_primary_10_1002_jgc4_1892
crossref_primary_10_1186_s13023_024_03217_7
crossref_primary_10_1007_s00415_022_11432_0
crossref_primary_10_1016_j_gene_2024_148137
crossref_primary_10_1212_NXG_0000000000200215
crossref_primary_10_1038_s41477_024_01796_8
crossref_primary_10_1016_j_nmd_2024_104470
crossref_primary_10_1155_humu_2250030
crossref_primary_10_1002_acn3_51612
crossref_primary_10_3389_fgene_2024_1360224
crossref_primary_10_1007_s00439_025_02728_y
crossref_primary_10_12677_ACM_2023_1381799
crossref_primary_10_3389_fgene_2023_1226766
crossref_primary_10_1002_acn3_52245
crossref_primary_10_1002_ajmg_a_63462
crossref_primary_10_1136_jmg_2024_110152
crossref_primary_10_3390_biomedicines11072082
crossref_primary_10_3390_ijms26031303
crossref_primary_10_1111_age_13470
crossref_primary_10_1212_NXG_0000000000200064
crossref_primary_10_1016_j_heliyon_2024_e28020
crossref_primary_10_1038_s42003_024_06143_3
crossref_primary_10_1016_j_nmd_2023_12_009
crossref_primary_10_1007_s00439_022_02485_2
crossref_primary_10_1016_j_gene_2024_148862
Cites_doi 10.1002/humu.22379
10.1186/1471-2164-9-572
10.1002/mgg3.144
10.1016/S1097-2765(00)80464-5
10.1080/15476286.2015.1125074
10.1089/hum.2013.052
10.1542/peds.2014-2044
10.1007/s00439-004-1118-6
10.1002/humu.21114
10.1073/pnas.1910456117
10.1186/1471-2350-12-37
10.1038/302591a0
10.1002/humu.21471
10.1016/j.ajhg.2010.06.006
10.1212/NXG.0000000000000554
10.1016/j.ncl.2014.05.002
10.1016/j.molcel.2019.12.029
10.1101/gr.123463.111
10.1038/jhg.2010.49
10.1038/nature14466
10.1016/j.nmd.2017.11.007
10.1172/jci.insight.124403
10.1093/bioinformatics/bts635
10.1038/nmeth.2483
10.1002/ana.23982
10.1038/ejhg.2012.51
10.1002/ana.24555
10.1002/humu.10214
10.1093/nar/24.15.3059
10.1002/mus.20586
10.1016/0888-7543(88)90113-9
10.1002/acn3.267
10.1002/humu.20210
10.1002/humu.20806
10.1016/j.celrep.2019.02.049
10.3233/JND-190431
10.1016/j.nmd.2010.11.008
10.1038/srep39094
10.1016/j.cell.2018.12.015
10.1126/scitranslmed.aal5209
10.1016/j.nmd.2019.09.013
10.1002/ana.21290
10.1016/j.molcel.2019.08.007
10.1002/humu.20976
10.1002/ana.23528
10.1186/1471-2164-11-646
10.3233/JND-170272
10.1038/nm.3628
10.1371/journal.pcbi.1006360
10.1101/gr.271627.120
10.1001/jamaneurol.2013.4908
10.1002/ana.25951
10.1002/humu.22758
10.3390/genes8100253
10.1093/bioinformatics/btt656
10.1038/labinvest.2010.146
10.1007/s00439-009-0679-9
10.1002/ajmg.a.30617
10.1002/acn3.96
10.1016/j.nmd.2017.04.003
10.1002/mus.26073
10.1002/mus.22226
10.1002/humu.24005
10.1016/S1474-4422(03)00585-4
10.1002/humu.10307
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC
2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC
– notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/humu.24343
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-1004
EndPage 528
ExternalDocumentID PMC9901284
35165973
10_1002_humu_24343
HUMU24343
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Neurological Disorders and Stroke
  funderid: NS043264; NS085238; NS053672
– fundername: NINDS NIH HHS
  grantid: U54 NS053672
– fundername: NINDS NIH HHS
  grantid: P50 NS053672
– fundername: NINDS NIH HHS
  grantid: R01 NS043264
– fundername: NINDS NIH HHS
  grantid: R01 NS085238
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
29I
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88A
88E
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GNP
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0L
M1P
M66
M7P
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
QB0
QRW
R.K
RHX
RIWAO
RJQFR
ROL
RWI
RWV
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WTM
WXSBR
WYISQ
X7M
XG1
XSW
XV2
ZZTAW
~IA
~KM
~WT
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
RPM
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5143-8359c1a2ca8b2b0b7a1889d9e45d59a81a35610efc2e755dd7c5106860ea6d053
IEDL.DBID DR2
ISSN 1059-7794
1098-1004
IngestDate Thu Aug 21 18:39:03 EDT 2025
Thu Sep 04 21:44:33 EDT 2025
Fri Jul 25 19:31:14 EDT 2025
Thu Apr 03 06:57:48 EDT 2025
Tue Jul 01 04:33:52 EDT 2025
Thu Apr 24 23:10:08 EDT 2025
Wed Jan 22 16:32:43 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Becker muscular dystrophy
deep intronic
telescripting
Duchenne muscular dystrophy
transcription termination
pseudoexon
Language English
License 2022 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5143-8359c1a2ca8b2b0b7a1889d9e45d59a81a35610efc2e755dd7c5106860ea6d053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Current affiliation: University of California, Irvine, CA 92697
Current affiliation: St. Jude Children’s Research Hospital, Memphis TN 38105
Current affiliation: Department of Neurology, Stanford University Medical Center, Palo Alto, CA 94304
Current Affiliation: The Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH 43205
Author contributions: MAW, RBW and KMF contributed to the conception and design of study, acquisition and analysis of data and drafting a significant portion of the manuscript or figures. SAM and BWD contributed to acquisition and analysis of data and drafting a significant portion of the manuscript or figures. KDM, LM, RF, AMC, TOC, DD, NW, AH, MAK-S, CMZ, JJC, MJ, BU, JWD, GO-G, JS, RJB and DMD contributed to the acquisition and analysis of data. All authors critically reviewed and revised the manuscript.
ORCID 0000-0002-8452-7189
0000-0001-6440-3376
0000-0001-9621-8319
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9901284
PMID 35165973
PQID 2643702702
PQPubID 30498
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9901284
proquest_miscellaneous_2629059647
proquest_journals_2643702702
pubmed_primary_35165973
crossref_primary_10_1002_humu_24343
crossref_citationtrail_10_1002_humu_24343
wiley_primary_10_1002_humu_24343_HUMU24343
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Human mutation
PublicationTitleAlternate Hum Mutat
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2010; 11
2013; 29
2010; 55
2017; 7
2015; 36
2017; 8
2006; 34
2005; 134
2013; 24
2004; 23
2008; 9
2011; 12
2005; 26
2017; 9
2016; 79
2014; 20
2014; 1
2020; 7
2012; 71
1983; 302
2021; 31
2018; 5
2013; 10
2015; 135
2019; 26
2003; 2
2011; 21
2019; 29
2008; 63
1996; 24
2012; 22
2012; 20
2009; 126
2021; 7
2018; 28
2019; 4
2021; 89
2015; 3
2020; 41
2015; 521
2019; 76
2017; 27
2011; 32
1999; 3
2020; 77
2016; 13
1988; 2
2010; 87
2009; 30
2004; 115
2016; 3
2011; 91
2013; 34
2013; 74
2011; 44
2020; 117
2014; 30
2014; 71
2003; 21
2014; 32
2018; 14
2018; 57
2019; 176
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 2
  start-page: 90
  issue: 1
  year: 1988
  end-page: 95
  article-title: An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus
  publication-title: Genomics
– volume: 20
  start-page: 992
  issue: 9
  year: 2014
  end-page: 1000
  article-title: Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice
  publication-title: Nature Medicine
– volume: 71
  start-page: 304
  issue: 3
  year: 2012
  end-page: 313
  article-title: Evidence‐based path to newborn screening for Duchenne muscular dystrophy
  publication-title: Annals of Neurology
– volume: 79
  start-page: 257
  issue: 2
  year: 2016
  end-page: 271
  article-title: Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy
  publication-title: Annals of Neurology
– volume: 30
  start-page: 1657
  issue: 12
  year: 2009
  end-page: 1666
  article-title: Mutational spectrum of DMD mutations in dystrophinopathy patients: Application of modern diagnostic techniques to a large cohort
  publication-title: Human Mutation
– volume: 9
  issue: 386
  year: 2017
  article-title: Improving genetic diagnosis in Mendelian disease with transcriptome sequencing
  publication-title: Science Translational Medicine
– volume: 4
  issue: 6
  year: 2019
  article-title: A recurrent COL6A1 pseudoexon insertion causes muscular dystrophy and is effectively targeted by splice‐correction therapies
  publication-title: JCI Insight
– volume: 8
  issue: 10
  year: 2017
  article-title: Exonization of an intronic LINE‐1 element causing becker muscular dystrophy as a novel mutational mechanism in dystrophin gene
  publication-title: Genes (Basel)
– volume: 55
  start-page: 379
  issue: 6
  year: 2010
  end-page: 388
  article-title: Mutation spectrum of the dystrophin gene in 442 Duchenne/Becker muscular dystrophy cases from one Japanese referral center
  publication-title: Journal of Human Genetics
– volume: 2
  start-page: 731
  issue: 12
  year: 2003
  end-page: 740
  article-title: Dystrophin and mutations: One gene, several proteins, multiple phenotypes
  publication-title: Lancet Neurology
– volume: 521
  start-page: 371
  issue: 7552
  year: 2015
  end-page: 375
  article-title: Recursive splicing in long vertebrate genes
  publication-title: Nature
– volume: 24
  start-page: 702
  issue: 7
  year: 2013
  end-page: 713
  article-title: Exon skipping as a therapeutic strategy applied to an RYR1 mutation with pseudo‐exon inclusion causing a severe core myopathy
  publication-title: Human Gene Therapy
– volume: 23
  start-page: 203
  issue: 2
  year: 2004
  end-page: 204
  article-title: Three‐tiered noninvasive diagnosis in 96% of patients with Duchenne muscular dystrophy (DMD)
  publication-title: Human Mutation
– volume: 63
  start-page: 81
  issue: 1
  year: 2008
  end-page: 89
  article-title: DMD pseudoexon mutations: Splicing efficiency, phenotype, and potential therapy
  publication-title: Annals of Neurology
– volume: 34
  start-page: 135
  issue: 2
  year: 2006
  end-page: 144
  article-title: Entries in the Leiden Duchenne muscular dystrophy mutation database: An overview of mutation types and paradoxical cases that confirm the reading‐frame rule
  publication-title: Muscle and Nerve
– volume: 21
  start-page: 608
  issue: 6
  year: 2003
  end-page: 614
  article-title: Pseudoexon activation in the DMD gene as a novel mechanism for Becker muscular dystrophy
  publication-title: Human Mutation
– volume: 28
  start-page: 116
  issue: 2
  year: 2018
  end-page: 121
  article-title: Low‐level dystrophin expression attenuating the dystrophinopathy phenotype
  publication-title: Neuromuscular Disorders: NMD
– volume: 10
  start-page: 623
  issue: 7
  year: 2013
  end-page: 629
  article-title: Comparative analysis of RNA sequencing methods for degraded or low‐input samples
  publication-title: Nature Methods
– volume: 89
  start-page: 280
  issue: 2
  year: 2021
  end-page: 292
  article-title: Very low residual dystrophin quantity is associated with milder dystrophinopathy
  publication-title: Annals of Neurology
– volume: 22
  start-page: 25
  issue: 1
  year: 2012
  end-page: 34
  article-title: Aberrant firing of replication origins potentially explains intragenic nonrecurrent rearrangements within genes, including the human DMD gene
  publication-title: Genome Research
– volume: 87
  start-page: 75
  issue: 1
  year: 2010
  end-page: 89
  article-title: Mechanisms of genomic instabilities underlying two common fragile‐site‐associated loci, PARK2 and DMD, in germ cell and cancer cell lines
  publication-title: American Journal of Human Genetics
– volume: 135
  start-page: 513
  issue: 3
  year: 2015
  end-page: 521
  article-title: Prevalence of Duchenne and Becker muscular dystrophies in the United States
  publication-title: Pediatrics
– volume: 115
  start-page: 13
  issue: 1
  year: 2004
  end-page: 18
  article-title: An intragenic deletion/inversion event in the DMD gene determines a novel exon creation and results in a BMD phenotype
  publication-title: Human Genetics
– volume: 24
  start-page: 3059
  issue: 15
  year: 1996
  end-page: 3064
  article-title: Stability of the human dystrophin transcript in muscle
  publication-title: Nucleic Acids Research
– volume: 44
  start-page: 822
  issue: 5
  year: 2011
  end-page: 825
  article-title: Becker muscular dystrophy due to an inversion of exons 23 and 24 of the DMD gene
  publication-title: Muscle and Nerve
– volume: 74
  start-page: 637
  issue: 5
  year: 2013
  end-page: 647
  article-title: Eteplirsen for the treatment of Duchenne muscular dystrophy
  publication-title: Annals of Neurology
– volume: 21
  start-page: 178
  issue: 3
  year: 2011
  end-page: 182
  article-title: Duchenne muscular dystrophy caused by a complex rearrangement between intron 43 of the DMD gene and chromosome 4
  publication-title: Neuromuscular Disorders: NMD
– volume: 117
  start-page: 16456
  issue: 28
  year: 2020
  end-page: 16464
  article-title: Premature termination codons in the DMD gene cause reduced local mRNA synthesis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 3
  start-page: 320
  issue: 4
  year: 2015
  end-page: 326
  article-title: Pseudoexon activation increases phenotype severity in a Becker muscular dystrophy patient
  publication-title: Molecular Genetics & Genomic Medicine
– volume: 302
  start-page: 591
  issue: 5909
  year: 1983
  end-page: 596
  article-title: Specific transcription and RNA splicing defects in five cloned beta‐thalassaemia genes
  publication-title: Nature
– volume: 26
  start-page: 2766
  issue: 10
  year: 2019
  end-page: 2778
  article-title: Regulation of intronic polyadenylation by PCF11 impacts mRNA expression of long genes
  publication-title: Cell Reports
– volume: 26
  start-page: 184
  issue: 3
  year: 2005
  end-page: 191
  article-title: UMD (Universal Mutation Database): 2005 update
  publication-title: Human Mutation
– volume: 134
  start-page: 295
  issue: 3
  year: 2005
  end-page: 298
  article-title: Improved molecular diagnosis of dystrophinopathies in an unselected clinical cohort
  publication-title: American Journal of Medical Genetics. Part A
– volume: 30
  start-page: 22
  issue: 1
  year: 2009
  end-page: 28
  article-title: Characterization of a complex Duchenne muscular dystrophy‐causing dystrophin gene inversion and restoration of the reading frame by induced exon skipping
  publication-title: Human Mutation
– volume: 30
  start-page: 923
  issue: 7
  year: 2014
  end-page: 930
  article-title: featureCounts: An efficient general purpose program for assigning sequence reads to genomic features
  publication-title: Bioinformatics
– volume: 20
  start-page: 1096
  issue: 10
  year: 2012
  end-page: 1100
  article-title: Comprehensive oligonucleotide array‐comparative genomic hybridization analysis: New insights into the molecular pathology of the DMD gene
  publication-title: European Journal of Human Genetics
– volume: 126
  start-page: 411
  issue: 3
  year: 2009
  end-page: 423
  article-title: Regional genomic instability predisposes to complex dystrophin gene rearrangements
  publication-title: Human Genetics
– volume: 31
  start-page: 2095
  issue: 11
  year: 2021
  end-page: 2106
  article-title: Cancer‐associated dynamics and potential regulators of intronic polyadenylation revealed by IPAFinder using standard RNA‐seq data
  publication-title: Genome Research
– volume: 7
  year: 2017
  article-title: Targeted RNA‐Seq profiling of splicing pattern in the DMD gene: Exons are mostly constitutively spliced in human skeletal muscle
  publication-title: Scientific Reports
– volume: 32
  start-page: 671
  issue: 3
  year: 2014
  end-page: 688
  article-title: Duchenne and Becker muscular dystrophies
  publication-title: Neurologic Clinics
– volume: 76
  start-page: 590
  issue: 4
  year: 2019
  end-page: 599
  article-title: A complex of U1 snRNP with cleavage and polyadenylation factors controls telescripting, regulating mRNA transcription in human cells
  publication-title: Molecular Cell
– volume: 3
  start-page: 55
  issue: 1
  year: 2016
  end-page: 60
  article-title: RNAseq analysis for the diagnosis of muscular dystrophy
  publication-title: Annals of Clinical and Translational Neurology
– volume: 3
  start-page: 371
  issue: 3
  year: 1999
  end-page: 378
  article-title: Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II
  publication-title: Molecular Cell
– volume: 32
  start-page: 467
  issue: 4
  year: 2011
  end-page: 475
  article-title: Pure intronic rearrangements leading to aberrant pseudoexon inclusion in dystrophinopathy: A new class of mutations?
  publication-title: Human Mutation
– volume: 27
  start-page: 631
  issue: 7
  year: 2017
  end-page: 634
  article-title: Deep intronic variants introduce DMD pseudoexon in patient with muscular dystrophy
  publication-title: Neuromuscular Disorders: NMD
– volume: 11
  year: 2010
  article-title: POLYAR, a new computer program for prediction of poly(A) sites in human sequences
  publication-title: BMC Genomics
– volume: 9
  year: 2008
  article-title: A novel custom high density‐comparative genomic hybridization array detects common rearrangements as well as deep intronic mutations in dystrophinopathies
  publication-title: BMC Genomics
– volume: 77
  start-page: 1032
  issue: 5
  year: 2020
  end-page: 1043
  article-title: Directed RNase H cleavage of nascent transcripts causes transcription termination
  publication-title: Molecular Cell
– volume: 29
  start-page: 913
  issue: 12
  year: 2019
  end-page: 919
  article-title: Importance of muscle biopsy to establish pathogenicity of DMD missense and splice variants
  publication-title: Neuromuscular Disorders: NMD
– volume: 91
  start-page: 216
  issue: 2
  year: 2011
  end-page: 231
  article-title: An intronic LINE‐1 element insertion in the dystrophin gene aborts dystrophin expression and results in Duchenne‐like muscular dystrophy in the corgi breed
  publication-title: Laboratory Investigation
– volume: 176
  start-page: 535
  issue: 3
  year: 2019
  end-page: 548
  article-title: Predicting splicing from primary sequence with deep learning
  publication-title: Cell
– volume: 14
  issue: 8
  year: 2018
  article-title: ggsashimi: Sashimi plot revised for browser‐ and annotation‐independent splicing visualization
  publication-title: PLoS Computational Biology
– volume: 36
  start-page: 395
  issue: 4
  year: 2015
  end-page: 402
  article-title: The TREAT‐NMD DMD Global Database: Analysis of more than 7,000 Duchenne muscular dystrophy mutations
  publication-title: Human Mutation
– volume: 1
  start-page: 703
  issue: 9
  year: 2014
  end-page: 720
  article-title: A novel dysferlin mutant pseudoexon bypassed with antisense oligonucleotides
  publication-title: Annals of Clinical and Translational Neurology
– volume: 34
  start-page: 1387
  issue: 10
  year: 2013
  end-page: 1395
  article-title: In vitro correction of a pseudoexon‐generating deep intronic mutation in LGMD2A by antisense oligonucleotides and modified small nuclear RNAs
  publication-title: Human Mutation
– volume: 29
  start-page: 15
  issue: 1
  year: 2013
  end-page: 21
  article-title: STAR: Ultrafast universal RNA‐seq aligner
  publication-title: Bioinformatics
– volume: 5
  start-page: 47
  issue: 1
  year: 2018
  end-page: 58
  article-title: Long‐term pulmonary function in duchenne muscular dystrophy: Comparison of eteplirsen‐treated patients to natural history
  publication-title: Journal of Neuromuscular Diseases
– volume: 7
  issue: 1
  year: 2021
  article-title: WGS and RNA studies diagnose noncoding DMD variants in males with high creatine kinase
  publication-title: Neurology: Genetics
– volume: 7
  start-page: 77
  issue: 2
  year: 2020
  end-page: 95
  article-title: Pseudoexons of the DMD gene
  publication-title: Journal of Neuromuscular Diseases
– volume: 12
  year: 2011
  article-title: Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing
  publication-title: BMC Medical Genetics
– volume: 41
  start-page: 1145
  issue: 6
  year: 2020
  end-page: 1156
  article-title: AG‐exclusion zone revisited: Lessons to learn from 91 intronic NF1 3′ splice site mutations outside the canonical AG‐dinucleotides
  publication-title: Human Mutation
– volume: 13
  start-page: 290
  issue: 3
  year: 2016
  end-page: 305
  article-title: Non‐sequential and multi‐step splicing of the dystrophin transcript
  publication-title: RNA Biology
– volume: 57
  start-page: E136
  issue: 6
  year: 2018
  end-page: E138
  article-title: Duchenne muscular dystrophy caused by a novel deep intronic DMD mutation
  publication-title: Muscle and Nerve
– volume: 71
  start-page: 32
  issue: 1
  year: 2014
  end-page: 40
  article-title: Biochemical characterization of patients with in‐frame or out‐of‐frame DMD deletions pertinent to exon 44 or 45 skipping
  publication-title: JAMA Neurology
– volume: 30
  start-page: 934
  issue: 6
  year: 2009
  end-page: 945
  article-title: Genotype‐phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD‐DMD database: A model of nationwide knowledgebase
  publication-title: Human Mutation
– ident: e_1_2_9_10_1
  doi: 10.1002/humu.22379
– ident: e_1_2_9_13_1
  doi: 10.1186/1471-2164-9-572
– ident: e_1_2_9_30_1
  doi: 10.1002/mgg3.144
– ident: e_1_2_9_20_1
  doi: 10.1016/S1097-2765(00)80464-5
– ident: e_1_2_9_26_1
  doi: 10.1080/15476286.2015.1125074
– ident: e_1_2_9_49_1
  doi: 10.1089/hum.2013.052
– ident: e_1_2_9_50_1
  doi: 10.1542/peds.2014-2044
– ident: e_1_2_9_14_1
  doi: 10.1007/s00439-004-1118-6
– ident: e_1_2_9_23_1
  doi: 10.1002/humu.21114
– ident: e_1_2_9_24_1
  doi: 10.1073/pnas.1910456117
– ident: e_1_2_9_41_1
  doi: 10.1186/1471-2350-12-37
– ident: e_1_2_9_56_1
  doi: 10.1038/302591a0
– ident: e_1_2_9_36_1
  doi: 10.1002/humu.21471
– ident: e_1_2_9_45_1
  doi: 10.1016/j.ajhg.2010.06.006
– ident: e_1_2_9_59_1
  doi: 10.1212/NXG.0000000000000554
– ident: e_1_2_9_21_1
  doi: 10.1016/j.ncl.2014.05.002
– ident: e_1_2_9_38_1
  doi: 10.1016/j.molcel.2019.12.029
– ident: e_1_2_9_5_1
  doi: 10.1101/gr.123463.111
– ident: e_1_2_9_54_1
  doi: 10.1038/jhg.2010.49
– ident: e_1_2_9_51_1
  doi: 10.1038/nature14466
– ident: e_1_2_9_60_1
  doi: 10.1016/j.nmd.2017.11.007
– ident: e_1_2_9_11_1
  doi: 10.1172/jci.insight.124403
– ident: e_1_2_9_18_1
  doi: 10.1093/bioinformatics/bts635
– ident: e_1_2_9_3_1
  doi: 10.1038/nmeth.2483
– ident: e_1_2_9_43_1
  doi: 10.1002/ana.23982
– ident: e_1_2_9_32_1
  doi: 10.1038/ejhg.2012.51
– ident: e_1_2_9_42_1
  doi: 10.1002/ana.24555
– ident: e_1_2_9_58_1
  doi: 10.1002/humu.10214
– ident: e_1_2_9_55_1
  doi: 10.1093/nar/24.15.3059
– ident: e_1_2_9_2_1
  doi: 10.1002/mus.20586
– ident: e_1_2_9_46_1
  doi: 10.1016/0888-7543(88)90113-9
– ident: e_1_2_9_29_1
  doi: 10.1002/acn3.267
– ident: e_1_2_9_8_1
  doi: 10.1002/humu.20210
– ident: e_1_2_9_40_1
  doi: 10.1002/humu.20806
– ident: e_1_2_9_61_1
  doi: 10.1016/j.celrep.2019.02.049
– ident: e_1_2_9_35_1
  doi: 10.3233/JND-190431
– ident: e_1_2_9_7_1
  doi: 10.1016/j.nmd.2010.11.008
– ident: e_1_2_9_12_1
  doi: 10.1038/srep39094
– ident: e_1_2_9_33_1
  doi: 10.1016/j.cell.2018.12.015
– ident: e_1_2_9_15_1
  doi: 10.1126/scitranslmed.aal5209
– ident: e_1_2_9_34_1
  doi: 10.1016/j.nmd.2019.09.013
– ident: e_1_2_9_31_1
  doi: 10.1002/ana.21290
– ident: e_1_2_9_53_1
  doi: 10.1016/j.molcel.2019.08.007
– ident: e_1_2_9_57_1
  doi: 10.1002/humu.20976
– ident: e_1_2_9_44_1
  doi: 10.1002/ana.23528
– ident: e_1_2_9_4_1
  doi: 10.1186/1471-2164-11-646
– ident: e_1_2_9_37_1
  doi: 10.3233/JND-170272
– ident: e_1_2_9_62_1
  doi: 10.1038/nm.3628
– ident: e_1_2_9_25_1
  doi: 10.1371/journal.pcbi.1006360
– ident: e_1_2_9_66_1
  doi: 10.1101/gr.271627.120
– ident: e_1_2_9_6_1
  doi: 10.1001/jamaneurol.2013.4908
– ident: e_1_2_9_16_1
  doi: 10.1002/ana.25951
– ident: e_1_2_9_9_1
  doi: 10.1002/humu.22758
– ident: e_1_2_9_28_1
  doi: 10.3390/genes8100253
– ident: e_1_2_9_39_1
  doi: 10.1093/bioinformatics/btt656
– ident: e_1_2_9_52_1
  doi: 10.1038/labinvest.2010.146
– ident: e_1_2_9_48_1
  doi: 10.1007/s00439-009-0679-9
– ident: e_1_2_9_17_1
  doi: 10.1002/ajmg.a.30617
– ident: e_1_2_9_19_1
  doi: 10.1002/acn3.96
– ident: e_1_2_9_65_1
  doi: 10.1016/j.nmd.2017.04.003
– ident: e_1_2_9_27_1
  doi: 10.1002/mus.26073
– ident: e_1_2_9_22_1
  doi: 10.1002/mus.22226
– ident: e_1_2_9_63_1
  doi: 10.1002/humu.24005
– ident: e_1_2_9_47_1
  doi: 10.1016/S1474-4422(03)00585-4
– ident: e_1_2_9_64_1
  doi: 10.1002/humu.10307
SSID ssj0008553
Score 2.5069373
Snippet DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA....
DMD pathogenic variants for Duchenne and Becker muscular dystrophy are detectable with high sensitivity by standard clinical exome analyses of genomic DNA....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 511
SubjectTerms Becker muscular dystrophy
Becker's muscular dystrophy
Biopsy
deep intronic
DNA-directed RNA polymerase
Duchenne muscular dystrophy
Dystrophin
Dystrophin - genetics
Genomics
Humans
Introns
Introns - genetics
Muscular dystrophy
Muscular Dystrophy, Duchenne - diagnosis
Muscular Dystrophy, Duchenne - genetics
Muscular Dystrophy, Duchenne - pathology
Mutation
Patients
Polymerase chain reaction
pseudoexon
Reverse transcription
Ribonucleoproteins (small nuclear)
RNA polymerase
RNA Splice Sites
telescripting
Transcription termination
Translocation
Title Intron mutations and early transcription termination in Duchenne and Becker muscular dystrophy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhumu.24343
https://www.ncbi.nlm.nih.gov/pubmed/35165973
https://www.proquest.com/docview/2643702702
https://www.proquest.com/docview/2629059647
https://pubmed.ncbi.nlm.nih.gov/PMC9901284
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8QEokvgqBSQbNGXzTp0e51r7sJLyqQ0-R8MF7Ciza73W0gSiHe9QH_emZ22x4HhETemux0-7Hz8Wtn5rcA74QyDqNwElcyMXHmnIy1TUWsK8QaWqcYkajfefJtNJ5mX4_F8Qrsd70wgR-i_-FGluH9NRm4NrO9BWnoSXPWDDg1RqIDTocjIs4_-L7gjpJChOp6oRBCqqznJuV7i1OXo9EtiHm7UvI6gvUh6GgdfnY3HypPfg-auRmU_27wOj706TbgSYtN2cegTE9hxdWb8CjsVnm5CWuTNg-_Bb--UIF7zc6akMmfMV1b5ogsmc0p-nW-iLXFNv74tGYHDSoJunYv_8lRTQdOEophmb2c4ay47s9genT44_M4bndqiEsCXDHCOFWmmpdaGm4Sk-tUSmWVy4QVSstUDwmnuarkLhfC2hzPo-aUxOmRRT_wHFbr89ptA5PDSqGeiFKmZZZopyW5IS6q3GidGxvB-27FirKlMafdNP4UgYCZF_TqCv_qInjby14E8o47pXa7hS9aA54VnBKaCTXrRfCmH0bTo3yKrt15QzJc0e5FWR7Bi6An_WWGIh3htxpOni9pUC9AtN7LI_Xpiaf3pkwlgoYIPngFuefOi_F0MvVHL_9HeAcec2ri8PVHu7A6_9u4Vwit5ua1N6Eri3Qilg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8gxI8XUfyqoq6RF0h6tHvd6-6joORQjgfDJTzR7Ha3gSjFeNcH-OuZ2e31OCEm-tak022vOx-_68z8BmBDKOMwCidxJRMTZ87JWNtUxLpCrKF1ihGJ-p1Hh4PhOPt6LI7b2hzqhQn8EN0HN7IM76_JwOmD9PacNfS0OW96nDoj78GKT9ARJvo-Z4-SQoT6eqEQRKqsYyfl2_NrF-PRLZB5u1byJob1QWhvNUxanXjuQqo9-dFrpqZXXv3B7Pjfv-8JPG7hKfsU9OkpLLl6De6HgZWXa_Bg1Kbin8HJPtW41-y8Ccn8CdO1ZY74ktmUAuDMHbG23sYfn9Xsc4N6gt7dy-84KuvARUI9LLOXE1wVt_45jPe-HO0O43ZYQ1wS5ooRyaky1bzU0nCTmFynUiqrXCasUFqmuk9QzVUld7kQ1uZ4HfWnJE4PLLqCF7BcX9TuFTDZrxSqiihlWmaJdlqSJ-Kiyo3WubERbM62rChbJnMaqPGzCBzMvKBXV_hXF8HHTvZX4O-4U2p9tvNFa8OTglNOM6F-vQg-dKfR-iilomt30ZAMVzTAKMsjeBkUpbtNX6QD_LuGi-cLKtQJELP34pn67NQzfFOyEnFDBFteQ_7y5MVwPBr7o9f_IvweHg6PRgfFwf7htzfwiFNPhy9HWofl6e_GvUWkNTXvvD1dA5dEJrQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPMqjgQJGcAEp28Qbb2yJC1BWW2ArhFiplxLZsaNWpWnFbg7l1zNjJ1mWIiS4RfLEeXgeXzIznwGeC2UcRuEkrmRi4sw5GWubilhXiDW0TjEiUb_zdH80mWXvD8TBGrzqemECP0T_w40sw_trMvBzW-0sSUOPmtNmwKkx8gpczUYYJwkSfV6SR0khQnm9UIghVdaTk_Kd5bmr4egSxrxcKvkrhPUxaHwTDru7D6UnJ4NmYQblj9-IHf_38W7BjRacstdBm27Dmqs34VrYrvJiEzambSL-Dnzdowr3mp02IZU_Z7q2zBFbMltQ-OucEWurbfzxcc12G9QS9O1e_o2jog6cJFTDMnsxx1lx4e_CbPzuy9tJ3G7VEJeEuGLEcapMNS-1NNwkJteplMoqlwkrlJapHhJQc1XJXS6EtTmeR90pidMji47gHqzXZ7XbAiaHlUJFEaVMyyzRTkvyQ1xUudE6NzaCF92KFWXLY07baXwrAgMzL-jVFf7VRfCslz0P7B1_lNruFr5oLXhecMpoJtStF8HTfhhtjxIqunZnDclwRdsXZXkE94Oe9JcZinSEH2s4eb6iQb0A8XqvjtTHR57fm1KViBoieOkV5C93Xkxm05k_evAvwk9g49PuuPi4t__hIVzn1NDha5G2YX3xvXGPEGYtzGNvTT8BEswlYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intron+mutations+and+early+transcription+termination+in+Duchenne+and+Becker+muscular+dystrophy&rft.jtitle=Human+mutation&rft.au=Waldrop%2C+Megan+A&rft.au=Moore%2C+Steven+A&rft.au=Mathews%2C+Katherine+D&rft.au=Darbro%2C+Benjamin+W&rft.date=2022-04-01&rft.eissn=1098-1004&rft.volume=43&rft.issue=4&rft.spage=511&rft_id=info:doi/10.1002%2Fhumu.24343&rft_id=info%3Apmid%2F35165973&rft.externalDocID=35165973
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1059-7794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1059-7794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1059-7794&client=summon