Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge?

The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine mul...

Full description

Saved in:
Bibliographic Details
Published inJournal of extracellular vesicles Vol. 10; no. 3; pp. e12052 - n/a
Main Authors Vogel, Robert, Savage, John, Muzard, Julien, Camera, Giacomo Della, Vella, Gabriele, Law, Alice, Marchioni, Marianne, Mehn, Dora, Geiss, Otmar, Peacock, Ben, Aubert, Dimitri, Calzolai, Luigi, Caputo, Fanny, Prina‐Mello, Adriele
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.01.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text
ISSN2001-3078
2001-3078
DOI10.1002/jev2.12052

Cover

Abstract The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key‐challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50–300 nm with complementary techniques is thoroughly investigated in a step‐by step approach of incremental complexity. The six applied techniques include multi‐angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi‐angle light scattering (AF4‐MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high‐sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post‐processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set‐up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements.
AbstractList Abstract The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key‐challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50–300 nm with complementary techniques is thoroughly investigated in a step‐by step approach of incremental complexity. The six applied techniques include multi‐angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi‐angle light scattering (AF4‐MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high‐sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post‐processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set‐up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements.
The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key-challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50-300 nm with complementary techniques is thoroughly investigated in a step-by step approach of incremental complexity. The six applied techniques include multi-angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi-angle light scattering (AF4-MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high-sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post-processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set-up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements.
The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key-challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50-300 nm with complementary techniques is thoroughly investigated in a step-by step approach of incremental complexity. The six applied techniques include multi-angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi-angle light scattering (AF4-MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high-sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post-processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set-up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements.The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key-challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50-300 nm with complementary techniques is thoroughly investigated in a step-by step approach of incremental complexity. The six applied techniques include multi-angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi-angle light scattering (AF4-MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high-sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post-processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set-up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements.
The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key‐challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50–300 nm with complementary techniques is thoroughly investigated in a step‐by step approach of incremental complexity. The six applied techniques include multi‐angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi‐angle light scattering (AF4‐MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high‐sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post‐processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set‐up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements.
Author Aubert, Dimitri
Vella, Gabriele
Savage, John
Marchioni, Marianne
Camera, Giacomo Della
Vogel, Robert
Law, Alice
Peacock, Ben
Geiss, Otmar
Calzolai, Luigi
Muzard, Julien
Mehn, Dora
Caputo, Fanny
Prina‐Mello, Adriele
AuthorAffiliation 3 IZON Science Ltd., Burnside Christchurch New Zealand
1 School of Mathematics and Physics The University of Queensland St Lucia Queensland Australia
6 European Commission Joint Research Centre (JRC) Ispra Italy
5 NanoFCM Co., Ltd, Medicity Nottingham UK
8 AMBER Centre CRANN Institute, Trinity College Dublin Dublin Ireland
7 Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim Norway
4 Institute of Biochemistry and Cell Biology CNR Via P. Castellino 111 Napoli Italy
2 LBCAM Department of Clinical Medicine Trinity Translational Medicine Institute Trinity College Dublin Dublin Ireland
AuthorAffiliation_xml – name: 5 NanoFCM Co., Ltd, Medicity Nottingham UK
– name: 3 IZON Science Ltd., Burnside Christchurch New Zealand
– name: 4 Institute of Biochemistry and Cell Biology CNR Via P. Castellino 111 Napoli Italy
– name: 1 School of Mathematics and Physics The University of Queensland St Lucia Queensland Australia
– name: 8 AMBER Centre CRANN Institute, Trinity College Dublin Dublin Ireland
– name: 6 European Commission Joint Research Centre (JRC) Ispra Italy
– name: 7 Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim Norway
– name: 2 LBCAM Department of Clinical Medicine Trinity Translational Medicine Institute Trinity College Dublin Dublin Ireland
Author_xml – sequence: 1
  givenname: Robert
  surname: Vogel
  fullname: Vogel, Robert
  organization: The University of Queensland
– sequence: 2
  givenname: John
  orcidid: 0000-0001-8350-3858
  surname: Savage
  fullname: Savage, John
  organization: Trinity College Dublin
– sequence: 3
  givenname: Julien
  surname: Muzard
  fullname: Muzard, Julien
  organization: IZON Science Ltd., Burnside
– sequence: 4
  givenname: Giacomo Della
  surname: Camera
  fullname: Camera, Giacomo Della
  organization: CNR
– sequence: 5
  givenname: Gabriele
  surname: Vella
  fullname: Vella, Gabriele
  organization: Trinity College Dublin
– sequence: 6
  givenname: Alice
  surname: Law
  fullname: Law, Alice
  organization: NanoFCM Co., Ltd, Medicity
– sequence: 7
  givenname: Marianne
  surname: Marchioni
  fullname: Marchioni, Marianne
  organization: IZON Science Ltd., Burnside
– sequence: 8
  givenname: Dora
  surname: Mehn
  fullname: Mehn, Dora
  organization: Joint Research Centre (JRC)
– sequence: 9
  givenname: Otmar
  orcidid: 0000-0002-5371-3798
  surname: Geiss
  fullname: Geiss, Otmar
  organization: Joint Research Centre (JRC)
– sequence: 10
  givenname: Ben
  surname: Peacock
  fullname: Peacock, Ben
  organization: NanoFCM Co., Ltd, Medicity
– sequence: 11
  givenname: Dimitri
  surname: Aubert
  fullname: Aubert, Dimitri
  organization: NanoFCM Co., Ltd, Medicity
– sequence: 12
  givenname: Luigi
  orcidid: 0000-0002-8474-7974
  surname: Calzolai
  fullname: Calzolai, Luigi
  organization: Joint Research Centre (JRC)
– sequence: 13
  givenname: Fanny
  orcidid: 0000-0003-3235-2767
  surname: Caputo
  fullname: Caputo, Fanny
  organization: Department of Biotechnology and Nanomedicine
– sequence: 14
  givenname: Adriele
  orcidid: 0000-0002-4371-2214
  surname: Prina‐Mello
  fullname: Prina‐Mello, Adriele
  email: prinamea@tcd.ie
  organization: CRANN Institute, Trinity College Dublin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33473263$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNUREvphgdAltggpCm-5sIChKoCRUVsuCwtxzmZeOTYg-20zNPwqngmQ9VWiGxsxd_55Pz5HxcHzjsoiqcEnxKM6asVXNFTQrGgD4ojijFZMFzVB7f2h8VJjCucn4YTUTePikPGeMVoyY6K359BxSkYt0RrFZLRFpD2ToNLQSXjHfI9GiebzOg7ZVHcuDRA5lCAHgJkEo0qQTDKRqRch-BXntRg7WRVQFcQt86Irk0akA9p8EvvsiiBHpz5OUF8jX4MHpmIpjVKHmU90oOyFtwS3j4pHvbZDCf79bj49v7869nHxeWXDxdn7y4XWhBOF6Kr-1YAMNIy3rVaEdy0eQOCK11hXQkmqopXpNYl1KJuG91jzjFmuuJ9idlxcTF7O69Wch3MqMJGemXk7oUPS7mPR2KiaNsIIkrVcSB9W_ZZ2ZdNNnes1dn1Znatp3aEbs7S3pHePXFmkEt_Jasac8ybLHixFwS_TSjJ0cRtpMqBn6KkvGoqTpuaZvT5PXTlp5ADjpLhhjIuMK8z9ez2jW6u8rcHGXg5Azr4GPOvvUEIltueyW3P5K5nGcb3YG3Sriz5a4z99wiZR66Nhc1_5PLT-Xc6z_wBIJjoTQ
CitedBy_id crossref_primary_10_3390_nu13082505
crossref_primary_10_1002_jev2_12299
crossref_primary_10_1038_s41598_023_50279_x
crossref_primary_10_1007_s13346_022_01178_7
crossref_primary_10_3390_cells11050790
crossref_primary_10_1016_j_addr_2021_113897
crossref_primary_10_1007_s13346_023_01469_7
crossref_primary_10_1007_s00216_023_04689_5
crossref_primary_10_1186_s40486_022_00156_5
crossref_primary_10_3389_fonc_2023_1256585
crossref_primary_10_1134_S1061933X23600720
crossref_primary_10_1016_j_colsurfa_2024_134980
crossref_primary_10_1007_s13346_022_01170_1
crossref_primary_10_3390_biomedicines10040784
crossref_primary_10_3390_ijms232315010
crossref_primary_10_1007_s00216_024_05719_6
crossref_primary_10_1080_09537104_2023_2242708
crossref_primary_10_3390_ph17111479
crossref_primary_10_1002_jev2_12130
crossref_primary_10_1016_j_jtcvs_2023_03_033
crossref_primary_10_31857_S0023291223600487
crossref_primary_10_1039_D3LC01007D
crossref_primary_10_1002_jex2_53
crossref_primary_10_3390_ijms222312946
crossref_primary_10_1016_j_foodchem_2023_136333
crossref_primary_10_1007_s13201_023_01950_1
crossref_primary_10_1124_pharmrev_122_000788
crossref_primary_10_1002_cssc_202500329
crossref_primary_10_1016_j_jpha_2024_101004
crossref_primary_10_1002_jev2_12079
crossref_primary_10_1021_acsnano_4c04396
crossref_primary_10_1039_D4LC00364K
crossref_primary_10_3390_pharmaceutics14091848
crossref_primary_10_1038_s43586_023_00240_z
crossref_primary_10_1016_j_addr_2023_114962
crossref_primary_10_1038_s41598_025_87674_5
crossref_primary_10_1371_journal_pone_0284875
crossref_primary_10_1021_acs_analchem_2c04631
crossref_primary_10_20517_evcna_2024_47
crossref_primary_10_1016_j_trac_2024_117672
crossref_primary_10_3389_fbioe_2023_1298892
crossref_primary_10_1186_s12951_024_02935_1
crossref_primary_10_1186_s12885_021_08870_w
crossref_primary_10_3390_v13050939
crossref_primary_10_1002_jex2_35
crossref_primary_10_47184_tev_2022_01_06
crossref_primary_10_1016_j_chroma_2024_465460
crossref_primary_10_1002_jev2_12369
crossref_primary_10_1039_D3SD00313B
crossref_primary_10_1016_j_diabres_2023_110570
crossref_primary_10_3390_ijms23084347
crossref_primary_10_1186_s12915_024_01948_4
crossref_primary_10_3389_fbioe_2022_805176
crossref_primary_10_3390_ijms23042310
crossref_primary_10_1016_j_ejpb_2024_114235
crossref_primary_10_3390_ijms22073362
crossref_primary_10_3390_vaccines10010049
crossref_primary_10_1002_jex2_70031
crossref_primary_10_1208_s12249_023_02529_4
crossref_primary_10_1002_jev2_12162
crossref_primary_10_3390_ijms222312772
crossref_primary_10_3390_biomedicines10061251
Cites_doi 10.3390/molecules25204703
10.1002/9783527800308
10.1016/j.snb.2006.08.031
10.1088/0957-0233/23/12/125005
10.1080/20013078.2019.1596016
10.1021/ac2030915
10.1016/j.biotechadv.2013.11.006
10.1016/j.impact.2017.12.004
10.1007/s11051-013-2101-8
10.1021/acsnano.7b07782
10.3402/jev.v5.32945
10.1016/j.ijpharm.2019.02.037
10.1016/j.biomaterials.2005.06.006
10.1016/j.jconrel.2020.01.049
10.1016/j.xphs.2018.08.020
10.3390/bioengineering6010007
10.1002/cyto.a.23782
10.1080/20013078.2018.1535750
10.1016/j.bios.2011.09.040
10.3402/jev.v5.31242
10.1007/s11095-019-2736-y
10.2217/nnm-2017-0338
10.1039/C8AY00491A
10.1016/j.ejps.2016.09.008
10.1016/j.jconrel.2019.06.007
10.1111/jth.13176
10.1529/biophysj.107.128074
10.1088/0953-8984/22/45/454116
10.1016/j.jconrel.2019.02.030
10.1016/0009-3084(79)90114-2
10.1063/1.1635984
10.1007/s11051-011-0624-4
10.1007/s00018-017-2595-9
10.1016/S0022-2275(20)38874-X
10.1016/j.talanta.2017.07.048
10.3402/jev.v2i0.19671
10.1080/20013078.2020.1816641
10.1080/20013078.2019.1697028
10.1016/j.ijpharm.2017.03.046
10.1080/20013078.2018.1490143
10.1039/C4SM01995D
10.1007/s11095-016-1867-7
10.1039/C4JA00410H
10.1088/0957-0233/27/3/035701
10.1038/s41596-019-0126-x
10.1007/s11060-013-1084-8
10.1080/20013078.2017.1344087
10.1021/acs.analchem.5b01636
10.1016/j.addr.2018.12.009
10.1016/j.jcis.2013.02.030
10.1021/ac200195n
10.29016/180419.1
10.1371/journal.pone.0149866
10.1016/S0005-2736(00)00223-6
10.1016/j.trac.2018.07.008
10.1146/annurev.bb.09.060180.002343
10.1038/nmeth.4185
10.1038/s41598-017-14981-x
10.1021/ja104052c
10.1111/jth.12602
10.1021/nn505162u
10.3402/jev.v3.26913
10.1016/j.ejpb.2018.08.006
10.1038/s41556-018-0040-4
10.1002/btpr.2489
10.1002/anie.201603007
10.1007/BF01410260
10.1021/nl503371p
10.1021/acs.langmuir.5b01402
10.1021/ac00136a016
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles
2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles
– notice: 2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7X8
5PM
DOA
DOI 10.1002/jev2.12052
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals - NZ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef

MEDLINE - Academic
Calcium & Calcified Tissue Abstracts

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate VOGEL et al
EISSN 2001-3078
EndPage n/a
ExternalDocumentID oai_doaj_org_article_01a2b95156ad4e1fb6fe85f696e8d3bc
PMC7804049
33473263
10_1002_jev2_12052
JEV212052
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Horizon 2020
  funderid: 825828; 761104
– fundername: H2020 Excellent Science
  funderid: 761104
– fundername: Science Foundation Ireland
  funderid: 12565
– fundername: ;
  grantid: 825828; 761104
– fundername: ;
  grantid: 12565
– fundername: ;
  grantid: 761104
GroupedDBID 0R~
0YH
1OC
24P
53G
5VS
8FE
8FH
8WT
AAHHS
AAHJG
ABDBF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACPRK
ACUHS
ADBBV
ADRAZ
AEEZP
AEGXH
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
DIK
EBS
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
IAO
IHR
INH
IPNFZ
ITC
KQ8
LK8
M48
M4Z
M7P
M~E
OK1
PIMPY
PROAC
RIG
RNS
RPM
TDBHL
TFW
AAYXX
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7QP
WIN
7X8
5PM
ID FETCH-LOGICAL-c5142-5d8fb5ee31b34dbca109b4dbe54ac70c7535774718c6e858b9cf044003c74f603
IEDL.DBID M48
ISSN 2001-3078
IngestDate Wed Aug 27 01:31:34 EDT 2025
Thu Aug 21 18:20:41 EDT 2025
Fri Sep 05 06:20:00 EDT 2025
Wed Aug 13 11:18:26 EDT 2025
Mon Jul 21 05:55:42 EDT 2025
Tue Jul 01 03:56:43 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Wed Jan 22 16:58:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords extracellular vesicles
liposomes
polystyrene
nanomedicine
orthogonal techniques
particle size distribution
particle concentration
multimodal samples
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5142-5d8fb5ee31b34dbca109b4dbe54ac70c7535774718c6e858b9cf044003c74f603
Notes R. Vogel, J. Savage, J. Muzard, G. Della Camera, A. G. Vella, A. Law, M. Marchioni, D. Mehn, O. Geiss and B. Peacock are joint first authors.
D. Aubert, L. Calzolai, F. Caputo and A. Prina‐Mello are joint senior authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8474-7974
0000-0002-5371-3798
0000-0002-4371-2214
0000-0003-3235-2767
0000-0001-8350-3858
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/jev2.12052
PMID 33473263
PQID 3092345048
PQPubID 2030046
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_01a2b95156ad4e1fb6fe85f696e8d3bc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7804049
proquest_miscellaneous_2479742982
proquest_journals_3092345048
pubmed_primary_33473263
crossref_primary_10_1002_jev2_12052
crossref_citationtrail_10_1002_jev2_12052
wiley_primary_10_1002_jev2_12052_JEV212052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Abingdon
– name: Hoboken
PublicationTitle Journal of extracellular vesicles
PublicationTitleAlternate J Extracell Vesicles
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2017; 6
2017; 7
2013; 2
2013; 405
2015; 31
2015; 30
2019; 14
2011; 13
2020; 320
2016; 33
2018; 7
2010; 22
2018; 132
2013; 15
2014; 3
1979; 25
2020; 97
2018; 138
2018; 1
2006; 27
2017; 33
2015; 87
2020; 9
2014; 14
2013; 113
2019; 559
2003; 83
2014; 8
2012; 23
2018; 75
2014; 12
2017; 523
1945
2000; 1467
2019; 8
2007; 123
2019; 6
1984; 262
2018; 106
2015; 11
2011; 83
2020; 37
2019; 306
2019; 108
2012 2012
2017; 175
2008; 95
2018; 20
2016; 14
2012; 31
1987; 59
2016; 11
2016; 55
2016; 5
1967; 8
2017; 14
2020
2017; 98
2010; 132
2018
2020; 25
2017
1980; 9
2014
2018; 12
2018; 10
2016; 27
2019; 299
2014; 32
2018; 13
2012; 84
Mallick E. R. (e_1_2_6_34_1) 2020
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
(e_1_2_6_58_1) 2018
e_1_2_6_76_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
(e_1_2_6_56_1) 2018
e_1_2_6_11_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
(e_1_2_6_57_1) 2018
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_80_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_82_1
Linsinger T. (e_1_2_6_29_1) 2012
e_1_2_6_8_1
Lamb H. (e_1_2_6_25_1) 1945
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_48_1
Hole P. (e_1_2_6_24_1) 2013; 15
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
Maas S. L. N. (e_1_2_6_32_1) 2014
References_xml – volume: 27
  issue: 3
  year: 2016
  article-title: Inter‐laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements
  publication-title: Measurement Science & Technology
– volume: 6
  start-page: 7
  issue: 1
  year: 2019
  article-title: Extracellular Vesicle Quantification and Characterization: Common Methods and Emerging Approaches
  publication-title: Bioengineering
– volume: 12
  start-page: 671
  issue: 1
  year: 2018
  end-page: 680
  article-title: Protein Profiling and Sizing of Extracellular Vesicles from Colorectal Cancer Patients via Flow Cytometry
  publication-title: Acs Nano
– volume: 6
  start-page: 1344087
  issue: 1
  year: 2017
  end-page: 1344087
  article-title: Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: A variation study
  publication-title: Journal of extracellular vesicles
– volume: 132
  start-page: 12176
  issue: 35
  year: 2010
  end-page: 12178
  article-title: Size differentiation and absolute quantification of gold nanoparticles via single particle detection with a laboratory‐built high‐sensitivity flow cytometer
  publication-title: Journal of the American Chemical Society
– volume: 27
  start-page: 651
  issue: 4
  year: 2006
  end-page: 659
  article-title: Number‐concentration of nanoparticles in liposomal and polymeric multiparticulate preparations: Empirical and calculation methods
  publication-title: Biomaterials
– volume: 7
  year: 2017
  article-title: High‐resolution single particle zeta potential characterisation of biological nanoparticles using tunable resistive pulse sensing
  publication-title: Scientific Reports
– volume: 5
  year: 2016
  article-title: A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing
  publication-title: Journal of extracellular vesicles
– volume: 2
  issue: 1
  year: 2013
  article-title: Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis
  publication-title: Journal of Extracellular Vesicles
– volume: 3
  start-page: 26913
  year: 2014
  end-page: 26913
  article-title: Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles
  publication-title: Journal of Extracellular Vesicles
– volume: 13
  start-page: 539
  issue: 5
  year: 2018
  end-page: 554
  article-title: Are existing standard methods suitable for the evaluation of nanomedicines: Some case studies
  publication-title: Nanomedicine (Lond)
– volume: 83
  start-page: 3499
  year: 2011
  end-page: 3506
  article-title: Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor
  publication-title: Analytical Chemistry
– volume: 175
  start-page: 200
  year: 2017
  end-page: 208
  article-title: Quantification and size characterisation of silver nanoparticles in environmental aqueous samples and consumer products by single particle‐ICPMS
  publication-title: Talanta
– year: 2018
– volume: 98
  start-page: 4
  year: 2017
  end-page: 16
  article-title: Biological reference materials for extracellular vesicle studies
  publication-title: Eur. Journal of Pharmaceutical Sciences
– volume: 9
  start-page: 467
  year: 1980
  end-page: 508
  article-title: Comparative properties and methods of preparation of lipid vesicles (liposomes)
  publication-title: Annual Review of Biophysics and Bioengineering
– volume: 8
  start-page: 10998
  issue: 10
  year: 2014
  end-page: 11006
  article-title: Light‐scattering detection below the level of single fluorescent molecules for high‐resolution characterization of functional nanoparticles
  publication-title: Acs Nano
– volume: 15
  start-page: 2101
  issue: 12
  year: 2013
  end-page: 2101
  article-title: Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA)
  publication-title: Journal of Nanoparticle Research : An Interdisciplinary Forum for Nanoscale Science and Technology
– volume: 32
  start-page: 711
  issue: 4
  year: 2014
  end-page: 726
  article-title: Techniques for physicochemical characterization of nanomaterials
  publication-title: Biotechnology Advances
– volume: 10
  start-page: 97
  year: 2018
  end-page: 107
  article-title: Inter‐laboratory comparison of nanoparticle size measurements using dynamic light scattering and differential centrifugal sedimentation
  publication-title: NanoImpact
– volume: 5
  issue: 1
  year: 2016
  article-title: Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey
  publication-title: Journal of Extracellular Vesicles
– volume: 108
  start-page: 563
  issue: 1
  year: 2019
  end-page: 573
  article-title: Critical evaluation of microfluidic resistive pulse sensing for quantification and sizing of nanometer‐ and micrometer‐sized particles in biopharmaceutical products
  publication-title: Journal of Pharmaceutical Sciences
– volume: 33
  start-page: 1146
  issue: 4
  year: 2017
  end-page: 1159
  article-title: A practical approach in bioreactor scale‐up and process transfer using a combination of constant P/V and vvm as the criterion
  publication-title: Biotechnology Progress
– volume: 31
  start-page: 6577
  issue: 23
  year: 2015
  end-page: 6587
  article-title: Observations of tunable resistive pulse sensing for exosome analysis: improving system sensitivity and stability
  publication-title: Langmuir
– volume: 55
  start-page: 10239
  issue: 35
  year: 2016
  end-page: 10243
  article-title: Label‐Free Analysis of Single Viruses with a Resolution Comparable to That of Electron Microscopy and the Throughput of Flow Cytometry
  publication-title: Angewandte Chemie‐International Edition
– volume: 14
  start-page: 186
  issue: 1
  year: 2016
  end-page: 190
  article-title: A liposome‐based size calibration method for measuring microvesicles by flow cytometry
  publication-title: Journal of Thrombosis and Haemostasis : JTH
– volume: 31
  start-page: 17
  year: 2012
  end-page: 25
  article-title: Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions
  publication-title: Biosens. Bioelectron
– volume: 405
  start-page: 322
  year: 2013
  end-page: 330
  article-title: A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions
  publication-title: Journal of Colloid and Interface Science
– volume: 559
  start-page: 427
  year: 2019
  end-page: 428
  article-title: Preservation of exosomes at room temperature using lyophilization (vol 553, pg 1, 2018)
  publication-title: International Journal of Pharmaceutics
– volume: 8
  start-page: 551
  issue: 6
  year: 1967
  end-page: 557
  article-title: Phase equilibria and structure of dry and hydrated egg lecithin
  publication-title: Journal of Lipid Research
– volume: 8
  issue: 1
  year: 2019
  article-title: Extracellular vesicle measurements with nanoparticle tracking analysis ‐ An accuracy and repeatability comparison between NanoSight NS300 and ZetaView
  publication-title: Journal of Extracellular Vesicles
– year: 1945
– volume: 138
  start-page: 247
  year: 2018
  end-page: 258
  article-title: Extracellular vesicles for personalized medicine: The input of physically triggered production, loading and theranostic properties
  publication-title: Advanced Drug Delivery Reviews
– volume: 33
  start-page: 1220
  issue: 5
  year: 2016
  end-page: 1234
  article-title: Multimodal dispersion of nanoparticles: A comprehensive evaluation of size distribution with 9 size measurement methods
  publication-title: Pharmaceutical Research
– volume: 13
  start-page: 7317
  year: 2011
  end-page: 7329
  article-title: Interlaboratory comparison for the measurement of particle size and zeta potential of silica nanoparticles in an aqueous suspension
  publication-title: Journal of Nanoparticle Research
– year: 2012 2012
– volume: 106
  start-page: 202
  year: 2018
  end-page: 212
  article-title: Capillary electrophoresis and asymmetric flow field‐flow fractionation for size‐based separation of engineered metallic nanoparticles: A critical comparative review
  publication-title: Trac‐Trends in Analytical Chemistry
– volume: 523
  start-page: 320
  issue: 1
  year: 2017
  end-page: 326
  article-title: Analytical ultracentrifugation for analysis of doxorubicin loaded liposomes
  publication-title: International Journal of Pharmaceutics
– volume: 14
  start-page: 6195
  issue: 11
  year: 2014
  end-page: 6201
  article-title: Refractive Index Determination of Nanoparticles in Suspension Using Nanoparticle Tracking Analysis
  publication-title: Nano Letters
– volume: 59
  start-page: 1332
  issue: 9
  year: 1987
  end-page: 1339
  article-title: Properties of an asymmetrical flow field‐flow fractionation channel having one permeable wall
  publication-title: Analytical Chemistry
– volume: 306
  start-page: 138
  year: 2019
  end-page: 148
  article-title: Doxebo (doxorubicin‐free Doxil‐like liposomes) is safe to use as a pre‐treatment to prevent infusion reactions to PEGylated nanodrugs
  publication-title: Journal of Controlled Release
– start-page: e51623
  issue: 92
  year: 2014
  end-page: e51623
  article-title: Quantification and size‐profiling of extracellular vesicles using tunable resistive pulse sensing
  publication-title: Journal of Visualized Experiments : JoVE
– volume: 320
  start-page: 495
  year: 2020
  end-page: 510
  article-title: Physical characterization of liposomal drug formulations using multi‐detector asymmetrical‐flow field flow fractionation
  publication-title: Journal of Controlled Release
– volume: 31
  start-page: 17
  issue: 1
  year: 2012
  end-page: 25
  article-title: Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions
  publication-title: Biosens. Bioelectron
– volume: 5
  issue: 1
  year: 2016
  article-title: A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing
  publication-title: Journal of Extracellular Vesicles
– volume: 14
  start-page: 228
  year: 2017
  article-title: EV‐TRACK: Transparent reporting and centralizing knowledge in extracellular vesicle research
  publication-title: Nature Methods
– volume: 84
  start-page: 3125
  year: 2012
  end-page: 3131
  article-title: A variable pressure method for characterizing nanoparticle surface charge using pore sensors
  publication-title: Analytical Chemistry
– volume: 9
  issue: 1
  year: 2020
  article-title: Quality and efficiency assessment of six extracellular vesicle isolation methods by nano‐flow cytometry
  publication-title: Journal of Extracellular Vesicles
– volume: 9
  issue: 1
  year: 2020
  article-title: Towards defining reference materials for measuring extracellular vesicle refractive index, epitope abundance, size and concentration
  publication-title: Journal of Extracellular Vesicles
– volume: 20
  start-page: 332
  issue: 3
  year: 2018
  end-page: 343
  article-title: Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field‐flow fractionation
  publication-title: Nature Cell Biology
– volume: 113
  start-page: 1
  issue: 1
  year: 2013
  end-page: 11
  article-title: Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus‐like vesicles, and apoptotic bodies
  publication-title: Journal of Neuro‐Oncology
– volume: 11
  start-page: 28
  issue: 1
  year: 2015
  end-page: 32
  article-title: Multiangle dynamic light scattering for the improvement of multimodal particle size distribution measurements
  publication-title: Soft Matter
– volume: 97
  start-page: 569
  issue: 6
  year: 2020
  end-page: 581
  article-title: FCMPASS software aids extracellular vesicle light scatter standardization
  publication-title: Cytometry Part A
– volume: 1
  year: 2018
– volume: 83
  start-page: 5316
  issue: 25
  year: 2003
  end-page: 5318
  article-title: Refractive‐index‐driven separation of colloidal polymer particles using optical chromatography
  publication-title: Applied Physics Letters
– volume: 7
  issue: 1
  year: 2018
  article-title: Ultrafiltration and size exclusion chromatography combined with asymmetrical‐flow field‐flow fractionation for the isolation and characterisation of extracellular vesicles from urine
  publication-title: Journal of Extracellular Vesicles
– volume: 22
  issue: 45
  year: 2010
  article-title: Use of tunable nanopore blockade rates to investigate colloidal dispersions
  publication-title: Journal of Physics: Condensed Matter
– volume: 262
  start-page: 406
  issue: 5
  year: 1984
  end-page: 408
  article-title: Effect of simple electrolytes on the hydrodynamic radius of polystyrene latex
  publication-title: Colloid and Polymer Science
– volume: 11
  issue: 2
  year: 2016
  article-title: Comparative Analysis of Technologies for Quantifying Extracellular Vesicles (EVs) in Clinical Cerebrospinal Fluids (CSF)
  publication-title: Plos One
– volume: 299
  start-page: 31
  year: 2019
  end-page: 43
  article-title: Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI‐NCL. A step by step approach combining orthogonal measurements with increasing complexity
  publication-title: Journal of Controlled Release
– volume: 25
  start-page: 4703
  issue: 18
  year: 2020
  article-title: Fast and Purification‐Free Characterization of Bio‐Nanoparticles in Biological Media by Electrical Asymmetrical Flow Field‐Flow Fractionation Hyphenated with Multi‐Angle Light Scattering and Nanoparticle Tracking Analysis Detection
  publication-title: Molecules (Basel, Switzerland)
– volume: 23
  issue: 12
  year: 2012
  article-title: Traceable size determination of nanoparticles, a comparison among European metrology institutes
  publication-title: Measurement Science & Technology
– volume: 132
  start-page: 62
  year: 2018
  end-page: 69
  article-title: Biophysical virus particle specific characterization to sharpen the definition of virus stability
  publication-title: European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V
– volume: 14
  start-page: 1027
  issue: 4
  year: 2019
  end-page: 1053
  article-title: Asymmetric‐flow field‐flow fractionation technology for exomere and small extracellular vesicle separation and characterization
  publication-title: Nature Protocols
– volume: 12
  start-page: 1182
  issue: 7
  year: 2014
  end-page: 1192
  article-title: Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing
  publication-title: Journal of Thrombosis and Haemostasis : JTH
– year: 2020
  article-title: Characterization of extracellular vesicles and artificial nanoparticles with four orthogonal single‐particle analysis platforms
  publication-title: BioXriv
– volume: 25
  start-page: 315
  issue: 3
  year: 1979
  end-page: 328
  article-title: Molecular packing in steroid‐lecithin monolayers .2. mixed films of cholesterol with dipalmitoylphosphatidylcholine and tetradecanoic acid
  publication-title: Chemistry and Physics of Lipids
– volume: 1467
  start-page: 219
  issue: 1
  year: 2000
  end-page: 226
  article-title: Optical characterization of liposomes by right angle light scattering and turbidity measurement
  publication-title: Biochimica Et Biophysica Acta‐Biomembranes
– volume: 75
  start-page: 193
  issue: 2
  year: 2018
  end-page: 208
  article-title: Current knowledge on exosome biogenesis and release
  publication-title: Cellular and Molecular Life Sciences : CMLS
– year: 2017
– volume: 7
  issue: 1
  year: 2018
  article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
  publication-title: Journal of Extracellular Vesicles
– volume: 37
  issue: 1
  year: 2020
  article-title: Sizing up the next generation of nanomedicines
  publication-title: Pharmaceutical Research
– volume: 95
  start-page: 2636
  issue: 6
  year: 2008
  end-page: 2646
  article-title: Examining the contributions of lipid shape and headgroup charge on bilayer behavior
  publication-title: Biophysical Journal
– volume: 10
  start-page: 2647
  issue: 22
  year: 2018
  end-page: 2657
  article-title: Measuring the relative concentration of particle populations using differential centrifugal sedimentation
  publication-title: Analytical Methods
– volume: 87
  start-page: 9225
  issue: 18
  year: 2015
  end-page: 9233
  article-title: Size characterization and quantification of exosomes by asymmetrical‐flow field‐flow fractionation
  publication-title: Analytical Chemistry
– volume: 123
  start-page: 325
  issue: 1
  year: 2007
  end-page: 330
  article-title: Dynamically resizable nanometre‐scale apertures for molecular sensing
  publication-title: Sensors and Actuators B
– volume: 30
  start-page: 1255
  issue: 6
  year: 2015
  end-page: 1265
  article-title: Detection, quantification and derivation of number size distribution of silver nanoparticles in antimicrobial consumer products
  publication-title: Journal of Analytical Atomic Spectrometry
– ident: e_1_2_6_15_1
  doi: 10.3390/molecules25204703
– ident: e_1_2_6_35_1
  doi: 10.1002/9783527800308
– ident: e_1_2_6_54_1
  doi: 10.1016/j.snb.2006.08.031
– ident: e_1_2_6_38_1
  doi: 10.1088/0957-0233/23/12/125005
– ident: e_1_2_6_7_1
  doi: 10.1080/20013078.2019.1596016
– ident: e_1_2_6_69_1
  doi: 10.1021/ac2030915
– ident: e_1_2_6_28_1
  doi: 10.1016/j.biotechadv.2013.11.006
– volume-title: Technical Note: Adaptive Correlation: Better DLS data with less time and effort
  year: 2018
  ident: e_1_2_6_56_1
– volume-title: Hydrodynamics
  year: 1945
  ident: e_1_2_6_25_1
– ident: e_1_2_6_27_1
  doi: 10.1016/j.impact.2017.12.004
– volume: 15
  start-page: 2101
  issue: 12
  year: 2013
  ident: e_1_2_6_24_1
  article-title: Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA)
  publication-title: Journal of Nanoparticle Research : An Interdisciplinary Forum for Nanoscale Science and Technology
  doi: 10.1007/s11051-013-2101-8
– ident: e_1_2_6_61_1
  doi: 10.1021/acsnano.7b07782
– ident: e_1_2_6_18_1
  doi: 10.3402/jev.v5.32945
– year: 2020
  ident: e_1_2_6_34_1
  article-title: Characterization of extracellular vesicles and artificial nanoparticles with four orthogonal single‐particle analysis platforms
  publication-title: BioXriv
– ident: e_1_2_6_11_1
  doi: 10.1016/j.ijpharm.2019.02.037
– ident: e_1_2_6_16_1
  doi: 10.1016/j.biomaterials.2005.06.006
– ident: e_1_2_6_67_1
– ident: e_1_2_6_44_1
  doi: 10.1016/j.jconrel.2020.01.049
– ident: e_1_2_6_20_1
  doi: 10.1016/j.xphs.2018.08.020
– ident: e_1_2_6_22_1
  doi: 10.3390/bioengineering6010007
– ident: e_1_2_6_76_1
  doi: 10.1002/cyto.a.23782
– ident: e_1_2_6_59_1
  doi: 10.1080/20013078.2018.1535750
– ident: e_1_2_6_46_1
  doi: 10.1016/j.bios.2011.09.040
– ident: e_1_2_6_71_1
  doi: 10.3402/jev.v5.31242
– ident: e_1_2_6_13_1
  doi: 10.1007/s11095-019-2736-y
– start-page: e51623
  issue: 92
  year: 2014
  ident: e_1_2_6_32_1
  article-title: Quantification and size‐profiling of extracellular vesicles using tunable resistive pulse sensing
  publication-title: Journal of Visualized Experiments : JoVE
– ident: e_1_2_6_19_1
  doi: 10.2217/nnm-2017-0338
– ident: e_1_2_6_50_1
  doi: 10.1039/C8AY00491A
– ident: e_1_2_6_62_1
  doi: 10.1016/j.ejps.2016.09.008
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jconrel.2019.06.007
– ident: e_1_2_6_51_1
  doi: 10.1111/jth.13176
– ident: e_1_2_6_14_1
  doi: 10.1529/biophysj.107.128074
– ident: e_1_2_6_77_1
  doi: 10.1088/0953-8984/22/45/454116
– ident: e_1_2_6_9_1
  doi: 10.1016/j.jconrel.2019.02.030
– ident: e_1_2_6_40_1
  doi: 10.1016/0009-3084(79)90114-2
– ident: e_1_2_6_21_1
  doi: 10.1063/1.1635984
– ident: e_1_2_6_26_1
  doi: 10.1007/s11051-011-0624-4
– ident: e_1_2_6_23_1
  doi: 10.1007/s00018-017-2595-9
– ident: e_1_2_6_53_1
  doi: 10.1016/S0022-2275(20)38874-X
– ident: e_1_2_6_6_1
  doi: 10.1016/j.talanta.2017.07.048
– volume-title: Technical Note: Particle concentration measurements on the Zetasizer Ultra – How it works
  year: 2018
  ident: e_1_2_6_58_1
– ident: e_1_2_6_17_1
  doi: 10.3402/jev.v2i0.19671
– ident: e_1_2_6_70_1
  doi: 10.3402/jev.v5.31242
– ident: e_1_2_6_75_1
  doi: 10.1080/20013078.2020.1816641
– volume-title: Requirements on measurements for the implementation of the European Commission definition of the term “nanomaterial
  year: 2012
  ident: e_1_2_6_29_1
– ident: e_1_2_6_60_1
  doi: 10.1080/20013078.2019.1697028
– ident: e_1_2_6_37_1
  doi: 10.1016/j.ijpharm.2017.03.046
– ident: e_1_2_6_43_1
  doi: 10.1080/20013078.2018.1490143
– ident: e_1_2_6_41_1
  doi: 10.1039/C4SM01995D
– ident: e_1_2_6_66_1
  doi: 10.1007/s11095-016-1867-7
– ident: e_1_2_6_10_1
  doi: 10.1039/C4JA00410H
– ident: e_1_2_6_42_1
  doi: 10.1088/0957-0233/27/3/035701
– ident: e_1_2_6_80_1
  doi: 10.1038/s41596-019-0126-x
– ident: e_1_2_6_2_1
  doi: 10.1007/s11060-013-1084-8
– ident: e_1_2_6_68_1
  doi: 10.1080/20013078.2017.1344087
– ident: e_1_2_6_52_1
  doi: 10.1021/acs.analchem.5b01636
– ident: e_1_2_6_47_1
  doi: 10.1016/j.bios.2011.09.040
– ident: e_1_2_6_33_1
– ident: e_1_2_6_45_1
  doi: 10.1016/j.addr.2018.12.009
– ident: e_1_2_6_4_1
  doi: 10.1016/j.jcis.2013.02.030
– ident: e_1_2_6_73_1
  doi: 10.1021/ac200195n
– ident: e_1_2_6_49_1
  doi: 10.29016/180419.1
– volume-title: Technical Note: Multi‐angle Dynamic Light Scattering (MADLS)on the Zetasizer Ultra – How it Works
  year: 2018
  ident: e_1_2_6_57_1
– ident: e_1_2_6_3_1
  doi: 10.1371/journal.pone.0149866
– ident: e_1_2_6_36_1
  doi: 10.1016/S0005-2736(00)00223-6
– ident: e_1_2_6_39_1
  doi: 10.1016/j.trac.2018.07.008
– ident: e_1_2_6_55_1
  doi: 10.1146/annurev.bb.09.060180.002343
– ident: e_1_2_6_65_1
  doi: 10.1038/nmeth.4185
– ident: e_1_2_6_72_1
  doi: 10.1038/s41598-017-14981-x
– ident: e_1_2_6_82_1
  doi: 10.1021/ja104052c
– ident: e_1_2_6_63_1
  doi: 10.1111/jth.12602
– ident: e_1_2_6_81_1
  doi: 10.1021/nn505162u
– ident: e_1_2_6_30_1
  doi: 10.3402/jev.v3.26913
– ident: e_1_2_6_12_1
  doi: 10.1016/j.ejpb.2018.08.006
– ident: e_1_2_6_79_1
  doi: 10.1038/s41556-018-0040-4
– ident: e_1_2_6_78_1
  doi: 10.1002/btpr.2489
– ident: e_1_2_6_31_1
  doi: 10.1002/anie.201603007
– ident: e_1_2_6_48_1
  doi: 10.1007/BF01410260
– ident: e_1_2_6_64_1
  doi: 10.1021/nl503371p
– ident: e_1_2_6_5_1
  doi: 10.1021/acs.langmuir.5b01402
– ident: e_1_2_6_74_1
  doi: 10.1021/ac00136a016
SSID ssj0000941589
Score 2.4484034
Snippet The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their...
Abstract The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e12052
SubjectTerms Calibration
Dynamic Light Scattering - methods
Extracellular vesicles
Extracellular Vesicles - chemistry
Flow cytometry
Flow Cytometry - methods
Fractionation, Field Flow - methods
Light
Light scattering
Lipoproteins
liposomes
Liposomes - chemistry
multimodal samples
nanomedicine
Nanomedicine - methods
Nanoparticles
Nanoparticles - chemistry
Optical properties
orthogonal techniques
particle concentration
Particle Size
particle size distribution
Phenotyping
Physicochemical properties
Polystyrene
Polystyrenes - chemistry
Quality assurance
Sedimentation & deposition
Sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals - NZ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFDQILiAtdfxIHC4IUKuqUjlR6M3yk7aCZNXsVuqv6V9l7GSjXVHBhZsVW5adGdvf50y-IeS1lMi3hDczZriYCd_gPsgZkhXFLbWRM5-J4tGX6uBYHJ7Ik7VUXykmbJAHHl7cLi0NswgDZGW8CGW0VQxKxqqpgvLcurT70oaukanzIV6ulKqZ9EjZ7nm4ZO9KRiXbOIGyUP9N6PLPIMl18JpPn_175O4IG-HjMNxtciu098ntIZHk1QNyfZSv-vAYgvk4JXDph8R2VMWFLkKOHfzVeeynv2oR-GE7mNKMAELXwRvBtB5wz74w6VY_hanCZehz-Byka1tIn3q6HwnCwyQB27-H76cdnPWwnMOiA-we3CpRy4eH5Hh_7-vng9mYemHmEEEhPfUqWhkCLy0X3jpT0sZiIUhhXE0dkhxZJz6rHNpBKtu4mJJXU-5qESvKH5GttmvDEwKydkGYkL7YIdcJpuHB0ljKqIKylNuCvFmZQ7tRlzylx_ipB0VlppPpdDZdQV5NbeeDGseNrT4lq04tkoJ2foB-pUcj6H_5VUF2Vj6hx2Xda04RDwuJu15BXk7VuCCTPUwbumWvmaiRo7FG4TgeDy40jYRzUSNe5gWpN5xrY6ibNe3ZaRb9TkJRyOYK8ja74V-mrw_3vrFcevo_XsQzcoelOJ587bRDthYXy_AcgdjCvshr7jeAXzUh
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEF5KRfBFvButMqIvCsdu9pKLCKLSUgoVH6z2bdnd7LYVTQ4nPYX-Gv-qM5uc1INF8C2czAm7zGW_mUy-YeyF1phvqcbOhJVqppoa46AUmKxU0nEXpWhSonjwqdg7VPtH-miDvV19CzPwQ0wFN_KMFK_Jwa3rty9JQ7-Hc_E6F1xjAL6GqF6SfQv1eaqwYOKS6zQDL_UNoTFXEz-p2L78-9qJlIj7r0KbfzdN_glm02m0e4vdHGEkvB_0fptthPYOuz4Mlry4y34dpNIfHkswH20DPH2g2I4sudBFSL2EP7sGn9NftAgEUQ6msSOAUHawTrBtAxjDF5aq_NS2CuehT-10QGVcoFc_3TFBepgoYfs38O2kg9MelnM46wAfD341uOXdPXa4u_Pl495sHMUw84ioMF1tquh0CDJ3UjXO25zXDi-CVtaX3GPSo0vKbytfhEpXrvaRhllz6UsVCy7vs822a8NDBrr0QdlAb_Aw9wm2lsHxmOtYhcpx6TL2cqUO40eechqX8cMMDMvCkOpMUl3Gnk-y84Gd40qpD6TVSYIYtdMP3eLYjEowPLfCIdzUhW1UyKMrIm4kFjXup5HOZ2xrZRNmdPPeSI74WGmMghl7Nt1GByV92DZ0y94IVWLOJuoK1_FgMKFpJVKqEvGzzFi5ZlxrS12_056eJBJwIo7C7C5jr5IZ_mP7Zn_nq0hXj_5H-DG7Iah_J5Wbttjm2WIZniAAO3NPk5_9BjAVLik
  priority: 102
  providerName: Wiley-Blackwell
Title Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge?
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjev2.12052
https://www.ncbi.nlm.nih.gov/pubmed/33473263
https://www.proquest.com/docview/3092345048
https://www.proquest.com/docview/2479742982
https://pubmed.ncbi.nlm.nih.gov/PMC7804049
https://doaj.org/article/01a2b95156ad4e1fb6fe85f696e8d3bc
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIlAviDcLJTKCC0hpvX7sAwlVgFqqSkUcCPRm2V5vHyq7IZtU5NfwVxl7H2pExIFLtMo6Gzsztr9vPPkG4JWUyLdEocdMczEWRY7rIGdIVjJuqCk5KwJRPP6cHE7E0Yk82YC-fmf3AzZrqZ2vJzWZXe78-rncwwn_rhMQ3b1wV2wnZlTiUnwznBP5FL4O5l-02XOxzPJBnfT6R7bgNuciRRTDV7amoOC_Dnb-nT15HdWGbengLtzp8CR53zrAPdhw1X241VaYXD6A38chBoj7E5l2TkKs_6di1cnlkrokIanwR13gc5plhYgQ25Gh_ghBTNu6KdFVQXAxn2kf7vf5q-TKNSGvjvh4LvFnQPWpx_Zk0IZt3pLvZzU5b8hiSuY1wccT21dw2XsIk4P9rx8Px11NhrFFaIW8tchKI53jseGiMFbHNDd44aTQNqUW2Y9MPdHNbOIymZnclr6qNeU2FWVC-SPYrOrKPQEiU-uEdv4oD0mQ0zl3hpaxLDOXGcpNBK97cyjbCZb7uhmXqpVaZspbUQUrRvByaDttZTrWtvrgrTq08NLa4Y16dqo6Iygaa2YQd8pEF8LFpUlKHEiZ5DieghsbwXbvE6p3V8UpAmUhcTmM4MVwG2eqt4euXL1oFBMpkjeWZ9iPx60LDT3pXTCCdMW5Vrq6eqc6Pwtq4F5BCmleBG-CG_5j-Opo_xsLV0__-2uewRbzWT0hCLUNm_PZwj1HWDY3I7jBxJdRCGrg66eTeBRm4R95_z2y
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEYILojwDbTGCC0hLHT_y4IIoarWUbsWhhd4s27HbIkhWm91K_TX8VWacbMqKColbtJmNbM3Y_r7J5BtCXikFfEtWZsSNkCNZlbAPCg5kpRCW2SB4FYni5DAbH8v9E3XS1-bgtzCdPsSQcMOVEfdrXOCYkN6-Ug397i_425QzBTvwTZkBd0FhZ_llSLEAc0lVbIIXC4cgmotBoJRvX_195UiKyv3Xwc2_qyb_RLPxONq7R-72OJJ-6By_Tm74-j651XWWvHxAfk1i7g_OJTrtg4M6_EKx7mVyaRNoLCb82VTwnPayBiQIdnToO0IBy3bhSU1dUdjEZwbT_Fi3Si98G-vpKOZxKb77aU4R09NBE7Z9R7-dNfS8pYspnTcUHk_dsnPL-4fkeG_36ON41PdiGDmAVMBXqyJY5b1IrZCVdSZlpYULr6RxOXPAelSOBLdwmS9UYUsXsJs1Ey6XIWPiEVmrm9o_IVTlzkvj8RUekB9vSuEtC6kKhS8sEzYhr5fu0K4XKsd-GT90J7HMNbpOR9cl5OVgO-3kOa612kGvDhYoqR1_aGanuneCZqnhFvCmykwlfRpsFmAiISthPpWwLiEby5jQ_TpvtWAAkKWCbTAhL4bbsELRH6b2zaLVXOZA2nhZwDgedyE0jEQImQOAFgnJV4JrZaird-rzs6gCjspRQO8S8iaG4T-mr_d3v_J49fR_jJ-T2-OjyYE--HT4-Rm5w7GYJ-aeNsjafLbwm4DG5nYrrrnfVk8xjw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIhAXxJtAoYPgAtJSx488EFJFoatSaNUDhd4s27HbIkhWm91K_TX9q4ydbMqKColbtJmNbM3D30wm3xDyUkrMt0SlR0xzMRJViXGQM0xWCm6o8ZxVMVHc2892DsXukTxaIe8W38J0_BBDwS14RozXwcEnld-4JA394c7Ym5RRiQH4mkDDC_bNxMFQYcHEJZVxBl7sG0JjLgZ-UrZx-felEykS91-FNv9umvwTzMbTaHyb3OphJLzv9H6HrLj6LrneDZY8v0cu9mLpD48lmPS2ATZ8oFj3LLnQeIi9hL-aCp_TntcIBFEOhrEjgFC2s07QdQUYw6c6VPlD2yqcuTa200Eo40J49dMcB0gPAyVs-xa-nzRw2sJ8ArMG8PFgF4NbNu-Tw_H21w87o34Uw8giosJ0tSq8kc7x1HBRGatTWhq8cFJom1OLSY_MQ35b2MwVsjCl9WGYNeU2Fz6j_AFZrZvaPSIgc-uEduENHuY-TpfcGepT6QtXGMpNQl4t1KFsz1MexmX8VB3DMlNBdSqqLiEvBtlJx85xpdRW0OogERi14w_N9Fj1SlA01cwg3JSZroRLvck8bsRnJe6n4sYmZG1hE6p381ZxivhYSIyCCXk-3EYHDfrQtWvmrWIix5yNlQWu42FnQsNKOBc54meekHzJuJaWunynPj2JJOCBOAqzu4S8jmb4j-2r3e1vLF49_h_hdXLj4ONYffm0__kJuclCK0-sPK2R1dl07p4iFpuZZ9HlfgOJLTDK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+particle+concentration+of+multimodal+synthetic+reference+materials+and+extracellular+vesicles+with+orthogonal+techniques%3A+Who+is+up+to+the+challenge%3F&rft.jtitle=Journal+of+extracellular+vesicles&rft.au=Vogel%2C+Robert&rft.au=Savage%2C+John&rft.au=Muzard%2C+Julien&rft.au=Camera%2C+Giacomo+Della&rft.date=2021-01-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2001-3078&rft.volume=10&rft.issue=3&rft_id=info:doi/10.1002%2Fjev2.12052&rft_id=info%3Apmid%2F33473263&rft.externalDocID=PMC7804049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-3078&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-3078&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-3078&client=summon