Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge?
The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine mul...
Saved in:
Published in | Journal of extracellular vesicles Vol. 10; no. 3; pp. e12052 - n/a |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.01.2021
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2001-3078 2001-3078 |
DOI | 10.1002/jev2.12052 |
Cover
Abstract | The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key‐challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50–300 nm with complementary techniques is thoroughly investigated in a step‐by step approach of incremental complexity. The six applied techniques include multi‐angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi‐angle light scattering (AF4‐MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high‐sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post‐processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set‐up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements. |
---|---|
AbstractList | Abstract The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key‐challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50–300 nm with complementary techniques is thoroughly investigated in a step‐by step approach of incremental complexity. The six applied techniques include multi‐angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi‐angle light scattering (AF4‐MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high‐sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post‐processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set‐up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements. The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key-challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50-300 nm with complementary techniques is thoroughly investigated in a step-by step approach of incremental complexity. The six applied techniques include multi-angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi-angle light scattering (AF4-MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high-sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post-processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set-up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements. The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key-challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50-300 nm with complementary techniques is thoroughly investigated in a step-by step approach of incremental complexity. The six applied techniques include multi-angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi-angle light scattering (AF4-MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high-sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post-processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set-up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements.The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key-challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50-300 nm with complementary techniques is thoroughly investigated in a step-by step approach of incremental complexity. The six applied techniques include multi-angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi-angle light scattering (AF4-MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high-sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post-processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set-up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements. The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their quality, for example, resulting from their production and isolation methods. The community is gradually becoming aware of the need to combine multiple orthogonal techniques to perform a robust characterization of complex biological samples. Three pillars of critical quality attribute characterization of EVs are sizing, concentration measurement and phenotyping. The repeatable measurement of vesicle concentration is one of the key‐challenges that requires further efforts, in order to obtain comparable results by using different techniques and assure reproducibility. In this study, the performance of measuring the concentration of particles in the size range of 50–300 nm with complementary techniques is thoroughly investigated in a step‐by step approach of incremental complexity. The six applied techniques include multi‐angle dynamic light scattering (MADLS), asymmetric flow field flow fractionation coupled with multi‐angle light scattering (AF4‐MALS), centrifugal liquid sedimentation (CLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), and high‐sensitivity nano flow cytometry (nFCM). To achieve comparability, monomodal samples and complex polystyrene mixtures were used as particles of metrological interest, in order to check the suitability of each technique in the size and concentration range of interest, and to develop reliable post‐processing data protocols for the analysis. Subsequent complexity was introduced by testing liposomes as validation of the developed approaches with a known sample of physicochemical properties closer to EVs. Finally, the vesicles in EV containing plasma samples were analysed with all the tested techniques. The results presented here aim to shed some light into the requirements for the complex characterization of biological samples, as this is a critical need for quality assurance by the EV and regulatory community. Such efforts go with the view to contribute to both, set‐up reproducible and reliable characterization protocols, and comply with the Minimal Information for Studies of Extracellular Vesicles (MISEV) requirements. |
Author | Aubert, Dimitri Vella, Gabriele Savage, John Marchioni, Marianne Camera, Giacomo Della Vogel, Robert Law, Alice Peacock, Ben Geiss, Otmar Calzolai, Luigi Muzard, Julien Mehn, Dora Caputo, Fanny Prina‐Mello, Adriele |
AuthorAffiliation | 3 IZON Science Ltd., Burnside Christchurch New Zealand 1 School of Mathematics and Physics The University of Queensland St Lucia Queensland Australia 6 European Commission Joint Research Centre (JRC) Ispra Italy 5 NanoFCM Co., Ltd, Medicity Nottingham UK 8 AMBER Centre CRANN Institute, Trinity College Dublin Dublin Ireland 7 Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim Norway 4 Institute of Biochemistry and Cell Biology CNR Via P. Castellino 111 Napoli Italy 2 LBCAM Department of Clinical Medicine Trinity Translational Medicine Institute Trinity College Dublin Dublin Ireland |
AuthorAffiliation_xml | – name: 5 NanoFCM Co., Ltd, Medicity Nottingham UK – name: 3 IZON Science Ltd., Burnside Christchurch New Zealand – name: 4 Institute of Biochemistry and Cell Biology CNR Via P. Castellino 111 Napoli Italy – name: 1 School of Mathematics and Physics The University of Queensland St Lucia Queensland Australia – name: 8 AMBER Centre CRANN Institute, Trinity College Dublin Dublin Ireland – name: 6 European Commission Joint Research Centre (JRC) Ispra Italy – name: 7 Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim Norway – name: 2 LBCAM Department of Clinical Medicine Trinity Translational Medicine Institute Trinity College Dublin Dublin Ireland |
Author_xml | – sequence: 1 givenname: Robert surname: Vogel fullname: Vogel, Robert organization: The University of Queensland – sequence: 2 givenname: John orcidid: 0000-0001-8350-3858 surname: Savage fullname: Savage, John organization: Trinity College Dublin – sequence: 3 givenname: Julien surname: Muzard fullname: Muzard, Julien organization: IZON Science Ltd., Burnside – sequence: 4 givenname: Giacomo Della surname: Camera fullname: Camera, Giacomo Della organization: CNR – sequence: 5 givenname: Gabriele surname: Vella fullname: Vella, Gabriele organization: Trinity College Dublin – sequence: 6 givenname: Alice surname: Law fullname: Law, Alice organization: NanoFCM Co., Ltd, Medicity – sequence: 7 givenname: Marianne surname: Marchioni fullname: Marchioni, Marianne organization: IZON Science Ltd., Burnside – sequence: 8 givenname: Dora surname: Mehn fullname: Mehn, Dora organization: Joint Research Centre (JRC) – sequence: 9 givenname: Otmar orcidid: 0000-0002-5371-3798 surname: Geiss fullname: Geiss, Otmar organization: Joint Research Centre (JRC) – sequence: 10 givenname: Ben surname: Peacock fullname: Peacock, Ben organization: NanoFCM Co., Ltd, Medicity – sequence: 11 givenname: Dimitri surname: Aubert fullname: Aubert, Dimitri organization: NanoFCM Co., Ltd, Medicity – sequence: 12 givenname: Luigi orcidid: 0000-0002-8474-7974 surname: Calzolai fullname: Calzolai, Luigi organization: Joint Research Centre (JRC) – sequence: 13 givenname: Fanny orcidid: 0000-0003-3235-2767 surname: Caputo fullname: Caputo, Fanny organization: Department of Biotechnology and Nanomedicine – sequence: 14 givenname: Adriele orcidid: 0000-0002-4371-2214 surname: Prina‐Mello fullname: Prina‐Mello, Adriele email: prinamea@tcd.ie organization: CRANN Institute, Trinity College Dublin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33473263$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1DAUhiNUREvphgdAltggpCm-5sIChKoCRUVsuCwtxzmZeOTYg-20zNPwqngmQ9VWiGxsxd_55Pz5HxcHzjsoiqcEnxKM6asVXNFTQrGgD4ojijFZMFzVB7f2h8VJjCucn4YTUTePikPGeMVoyY6K359BxSkYt0RrFZLRFpD2ToNLQSXjHfI9GiebzOg7ZVHcuDRA5lCAHgJkEo0qQTDKRqRch-BXntRg7WRVQFcQt86Irk0akA9p8EvvsiiBHpz5OUF8jX4MHpmIpjVKHmU90oOyFtwS3j4pHvbZDCf79bj49v7869nHxeWXDxdn7y4XWhBOF6Kr-1YAMNIy3rVaEdy0eQOCK11hXQkmqopXpNYl1KJuG91jzjFmuuJ9idlxcTF7O69Wch3MqMJGemXk7oUPS7mPR2KiaNsIIkrVcSB9W_ZZ2ZdNNnes1dn1Znatp3aEbs7S3pHePXFmkEt_Jasac8ybLHixFwS_TSjJ0cRtpMqBn6KkvGoqTpuaZvT5PXTlp5ADjpLhhjIuMK8z9ez2jW6u8rcHGXg5Azr4GPOvvUEIltueyW3P5K5nGcb3YG3Sriz5a4z99wiZR66Nhc1_5PLT-Xc6z_wBIJjoTQ |
CitedBy_id | crossref_primary_10_3390_nu13082505 crossref_primary_10_1002_jev2_12299 crossref_primary_10_1038_s41598_023_50279_x crossref_primary_10_1007_s13346_022_01178_7 crossref_primary_10_3390_cells11050790 crossref_primary_10_1016_j_addr_2021_113897 crossref_primary_10_1007_s13346_023_01469_7 crossref_primary_10_1007_s00216_023_04689_5 crossref_primary_10_1186_s40486_022_00156_5 crossref_primary_10_3389_fonc_2023_1256585 crossref_primary_10_1134_S1061933X23600720 crossref_primary_10_1016_j_colsurfa_2024_134980 crossref_primary_10_1007_s13346_022_01170_1 crossref_primary_10_3390_biomedicines10040784 crossref_primary_10_3390_ijms232315010 crossref_primary_10_1007_s00216_024_05719_6 crossref_primary_10_1080_09537104_2023_2242708 crossref_primary_10_3390_ph17111479 crossref_primary_10_1002_jev2_12130 crossref_primary_10_1016_j_jtcvs_2023_03_033 crossref_primary_10_31857_S0023291223600487 crossref_primary_10_1039_D3LC01007D crossref_primary_10_1002_jex2_53 crossref_primary_10_3390_ijms222312946 crossref_primary_10_1016_j_foodchem_2023_136333 crossref_primary_10_1007_s13201_023_01950_1 crossref_primary_10_1124_pharmrev_122_000788 crossref_primary_10_1002_cssc_202500329 crossref_primary_10_1016_j_jpha_2024_101004 crossref_primary_10_1002_jev2_12079 crossref_primary_10_1021_acsnano_4c04396 crossref_primary_10_1039_D4LC00364K crossref_primary_10_3390_pharmaceutics14091848 crossref_primary_10_1038_s43586_023_00240_z crossref_primary_10_1016_j_addr_2023_114962 crossref_primary_10_1038_s41598_025_87674_5 crossref_primary_10_1371_journal_pone_0284875 crossref_primary_10_1021_acs_analchem_2c04631 crossref_primary_10_20517_evcna_2024_47 crossref_primary_10_1016_j_trac_2024_117672 crossref_primary_10_3389_fbioe_2023_1298892 crossref_primary_10_1186_s12951_024_02935_1 crossref_primary_10_1186_s12885_021_08870_w crossref_primary_10_3390_v13050939 crossref_primary_10_1002_jex2_35 crossref_primary_10_47184_tev_2022_01_06 crossref_primary_10_1016_j_chroma_2024_465460 crossref_primary_10_1002_jev2_12369 crossref_primary_10_1039_D3SD00313B crossref_primary_10_1016_j_diabres_2023_110570 crossref_primary_10_3390_ijms23084347 crossref_primary_10_1186_s12915_024_01948_4 crossref_primary_10_3389_fbioe_2022_805176 crossref_primary_10_3390_ijms23042310 crossref_primary_10_1016_j_ejpb_2024_114235 crossref_primary_10_3390_ijms22073362 crossref_primary_10_3390_vaccines10010049 crossref_primary_10_1002_jex2_70031 crossref_primary_10_1208_s12249_023_02529_4 crossref_primary_10_1002_jev2_12162 crossref_primary_10_3390_ijms222312772 crossref_primary_10_3390_biomedicines10061251 |
Cites_doi | 10.3390/molecules25204703 10.1002/9783527800308 10.1016/j.snb.2006.08.031 10.1088/0957-0233/23/12/125005 10.1080/20013078.2019.1596016 10.1021/ac2030915 10.1016/j.biotechadv.2013.11.006 10.1016/j.impact.2017.12.004 10.1007/s11051-013-2101-8 10.1021/acsnano.7b07782 10.3402/jev.v5.32945 10.1016/j.ijpharm.2019.02.037 10.1016/j.biomaterials.2005.06.006 10.1016/j.jconrel.2020.01.049 10.1016/j.xphs.2018.08.020 10.3390/bioengineering6010007 10.1002/cyto.a.23782 10.1080/20013078.2018.1535750 10.1016/j.bios.2011.09.040 10.3402/jev.v5.31242 10.1007/s11095-019-2736-y 10.2217/nnm-2017-0338 10.1039/C8AY00491A 10.1016/j.ejps.2016.09.008 10.1016/j.jconrel.2019.06.007 10.1111/jth.13176 10.1529/biophysj.107.128074 10.1088/0953-8984/22/45/454116 10.1016/j.jconrel.2019.02.030 10.1016/0009-3084(79)90114-2 10.1063/1.1635984 10.1007/s11051-011-0624-4 10.1007/s00018-017-2595-9 10.1016/S0022-2275(20)38874-X 10.1016/j.talanta.2017.07.048 10.3402/jev.v2i0.19671 10.1080/20013078.2020.1816641 10.1080/20013078.2019.1697028 10.1016/j.ijpharm.2017.03.046 10.1080/20013078.2018.1490143 10.1039/C4SM01995D 10.1007/s11095-016-1867-7 10.1039/C4JA00410H 10.1088/0957-0233/27/3/035701 10.1038/s41596-019-0126-x 10.1007/s11060-013-1084-8 10.1080/20013078.2017.1344087 10.1021/acs.analchem.5b01636 10.1016/j.addr.2018.12.009 10.1016/j.jcis.2013.02.030 10.1021/ac200195n 10.29016/180419.1 10.1371/journal.pone.0149866 10.1016/S0005-2736(00)00223-6 10.1016/j.trac.2018.07.008 10.1146/annurev.bb.09.060180.002343 10.1038/nmeth.4185 10.1038/s41598-017-14981-x 10.1021/ja104052c 10.1111/jth.12602 10.1021/nn505162u 10.3402/jev.v3.26913 10.1016/j.ejpb.2018.08.006 10.1038/s41556-018-0040-4 10.1002/btpr.2489 10.1002/anie.201603007 10.1007/BF01410260 10.1021/nl503371p 10.1021/acs.langmuir.5b01402 10.1021/ac00136a016 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles 2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles – notice: 2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7X8 5PM DOA |
DOI | 10.1002/jev2.12052 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals - NZ |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | VOGEL et al |
EISSN | 2001-3078 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_01a2b95156ad4e1fb6fe85f696e8d3bc PMC7804049 33473263 10_1002_jev2_12052 JEV212052 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Horizon 2020 funderid: 825828; 761104 – fundername: H2020 Excellent Science funderid: 761104 – fundername: Science Foundation Ireland funderid: 12565 – fundername: ; grantid: 825828; 761104 – fundername: ; grantid: 12565 – fundername: ; grantid: 761104 |
GroupedDBID | 0R~ 0YH 1OC 24P 53G 5VS 8FE 8FH 8WT AAHHS AAHJG ABDBF ABMDY ABQXS ACCFJ ACCMX ACESK ACGFS ACPRK ACUHS ADBBV ADRAZ AEEZP AEGXH AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU DIK EBS EJD GROUPED_DOAJ GX1 H13 HCIFZ HYE IAO IHR INH IPNFZ ITC KQ8 LK8 M48 M4Z M7P M~E OK1 PIMPY PROAC RIG RNS RPM TDBHL TFW AAYXX CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 7QP WIN 7X8 5PM |
ID | FETCH-LOGICAL-c5142-5d8fb5ee31b34dbca109b4dbe54ac70c7535774718c6e858b9cf044003c74f603 |
IEDL.DBID | M48 |
ISSN | 2001-3078 |
IngestDate | Wed Aug 27 01:31:34 EDT 2025 Thu Aug 21 18:20:41 EDT 2025 Fri Sep 05 06:20:00 EDT 2025 Wed Aug 13 11:18:26 EDT 2025 Mon Jul 21 05:55:42 EDT 2025 Tue Jul 01 03:56:43 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Wed Jan 22 16:58:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | extracellular vesicles liposomes polystyrene nanomedicine orthogonal techniques particle size distribution particle concentration multimodal samples |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2021 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5142-5d8fb5ee31b34dbca109b4dbe54ac70c7535774718c6e858b9cf044003c74f603 |
Notes | R. Vogel, J. Savage, J. Muzard, G. Della Camera, A. G. Vella, A. Law, M. Marchioni, D. Mehn, O. Geiss and B. Peacock are joint first authors. D. Aubert, L. Calzolai, F. Caputo and A. Prina‐Mello are joint senior authors. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8474-7974 0000-0002-5371-3798 0000-0002-4371-2214 0000-0003-3235-2767 0000-0001-8350-3858 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1002/jev2.12052 |
PMID | 33473263 |
PQID | 3092345048 |
PQPubID | 2030046 |
PageCount | 28 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_01a2b95156ad4e1fb6fe85f696e8d3bc pubmedcentral_primary_oai_pubmedcentral_nih_gov_7804049 proquest_miscellaneous_2479742982 proquest_journals_3092345048 pubmed_primary_33473263 crossref_primary_10_1002_jev2_12052 crossref_citationtrail_10_1002_jev2_12052 wiley_primary_10_1002_jev2_12052_JEV212052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Abingdon – name: Hoboken |
PublicationTitle | Journal of extracellular vesicles |
PublicationTitleAlternate | J Extracell Vesicles |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 6 2017; 7 2013; 2 2013; 405 2015; 31 2015; 30 2019; 14 2011; 13 2020; 320 2016; 33 2018; 7 2010; 22 2018; 132 2013; 15 2014; 3 1979; 25 2020; 97 2018; 138 2018; 1 2006; 27 2017; 33 2015; 87 2020; 9 2014; 14 2013; 113 2019; 559 2003; 83 2014; 8 2012; 23 2018; 75 2014; 12 2017; 523 1945 2000; 1467 2019; 8 2007; 123 2019; 6 1984; 262 2018; 106 2015; 11 2011; 83 2020; 37 2019; 306 2019; 108 2012 2012 2017; 175 2008; 95 2018; 20 2016; 14 2012; 31 1987; 59 2016; 11 2016; 55 2016; 5 1967; 8 2017; 14 2020 2017; 98 2010; 132 2018 2020; 25 2017 1980; 9 2014 2018; 12 2018; 10 2016; 27 2019; 299 2014; 32 2018; 13 2012; 84 Mallick E. R. (e_1_2_6_34_1) 2020 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 (e_1_2_6_58_1) 2018 e_1_2_6_76_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 (e_1_2_6_56_1) 2018 e_1_2_6_11_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 (e_1_2_6_57_1) 2018 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 Linsinger T. (e_1_2_6_29_1) 2012 e_1_2_6_8_1 Lamb H. (e_1_2_6_25_1) 1945 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_48_1 Hole P. (e_1_2_6_24_1) 2013; 15 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 Maas S. L. N. (e_1_2_6_32_1) 2014 |
References_xml | – volume: 27 issue: 3 year: 2016 article-title: Inter‐laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements publication-title: Measurement Science & Technology – volume: 6 start-page: 7 issue: 1 year: 2019 article-title: Extracellular Vesicle Quantification and Characterization: Common Methods and Emerging Approaches publication-title: Bioengineering – volume: 12 start-page: 671 issue: 1 year: 2018 end-page: 680 article-title: Protein Profiling and Sizing of Extracellular Vesicles from Colorectal Cancer Patients via Flow Cytometry publication-title: Acs Nano – volume: 6 start-page: 1344087 issue: 1 year: 2017 end-page: 1344087 article-title: Size and concentration analyses of extracellular vesicles by nanoparticle tracking analysis: A variation study publication-title: Journal of extracellular vesicles – volume: 132 start-page: 12176 issue: 35 year: 2010 end-page: 12178 article-title: Size differentiation and absolute quantification of gold nanoparticles via single particle detection with a laboratory‐built high‐sensitivity flow cytometer publication-title: Journal of the American Chemical Society – volume: 27 start-page: 651 issue: 4 year: 2006 end-page: 659 article-title: Number‐concentration of nanoparticles in liposomal and polymeric multiparticulate preparations: Empirical and calculation methods publication-title: Biomaterials – volume: 7 year: 2017 article-title: High‐resolution single particle zeta potential characterisation of biological nanoparticles using tunable resistive pulse sensing publication-title: Scientific Reports – volume: 5 year: 2016 article-title: A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing publication-title: Journal of extracellular vesicles – volume: 2 issue: 1 year: 2013 article-title: Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis publication-title: Journal of Extracellular Vesicles – volume: 3 start-page: 26913 year: 2014 end-page: 26913 article-title: Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles publication-title: Journal of Extracellular Vesicles – volume: 13 start-page: 539 issue: 5 year: 2018 end-page: 554 article-title: Are existing standard methods suitable for the evaluation of nanomedicines: Some case studies publication-title: Nanomedicine (Lond) – volume: 83 start-page: 3499 year: 2011 end-page: 3506 article-title: Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor publication-title: Analytical Chemistry – volume: 175 start-page: 200 year: 2017 end-page: 208 article-title: Quantification and size characterisation of silver nanoparticles in environmental aqueous samples and consumer products by single particle‐ICPMS publication-title: Talanta – year: 2018 – volume: 98 start-page: 4 year: 2017 end-page: 16 article-title: Biological reference materials for extracellular vesicle studies publication-title: Eur. Journal of Pharmaceutical Sciences – volume: 9 start-page: 467 year: 1980 end-page: 508 article-title: Comparative properties and methods of preparation of lipid vesicles (liposomes) publication-title: Annual Review of Biophysics and Bioengineering – volume: 8 start-page: 10998 issue: 10 year: 2014 end-page: 11006 article-title: Light‐scattering detection below the level of single fluorescent molecules for high‐resolution characterization of functional nanoparticles publication-title: Acs Nano – volume: 15 start-page: 2101 issue: 12 year: 2013 end-page: 2101 article-title: Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA) publication-title: Journal of Nanoparticle Research : An Interdisciplinary Forum for Nanoscale Science and Technology – volume: 32 start-page: 711 issue: 4 year: 2014 end-page: 726 article-title: Techniques for physicochemical characterization of nanomaterials publication-title: Biotechnology Advances – volume: 10 start-page: 97 year: 2018 end-page: 107 article-title: Inter‐laboratory comparison of nanoparticle size measurements using dynamic light scattering and differential centrifugal sedimentation publication-title: NanoImpact – volume: 5 issue: 1 year: 2016 article-title: Techniques used for the isolation and characterization of extracellular vesicles: Results of a worldwide survey publication-title: Journal of Extracellular Vesicles – volume: 108 start-page: 563 issue: 1 year: 2019 end-page: 573 article-title: Critical evaluation of microfluidic resistive pulse sensing for quantification and sizing of nanometer‐ and micrometer‐sized particles in biopharmaceutical products publication-title: Journal of Pharmaceutical Sciences – volume: 33 start-page: 1146 issue: 4 year: 2017 end-page: 1159 article-title: A practical approach in bioreactor scale‐up and process transfer using a combination of constant P/V and vvm as the criterion publication-title: Biotechnology Progress – volume: 31 start-page: 6577 issue: 23 year: 2015 end-page: 6587 article-title: Observations of tunable resistive pulse sensing for exosome analysis: improving system sensitivity and stability publication-title: Langmuir – volume: 55 start-page: 10239 issue: 35 year: 2016 end-page: 10243 article-title: Label‐Free Analysis of Single Viruses with a Resolution Comparable to That of Electron Microscopy and the Throughput of Flow Cytometry publication-title: Angewandte Chemie‐International Edition – volume: 14 start-page: 186 issue: 1 year: 2016 end-page: 190 article-title: A liposome‐based size calibration method for measuring microvesicles by flow cytometry publication-title: Journal of Thrombosis and Haemostasis : JTH – volume: 31 start-page: 17 year: 2012 end-page: 25 article-title: Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions publication-title: Biosens. Bioelectron – volume: 405 start-page: 322 year: 2013 end-page: 330 article-title: A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions publication-title: Journal of Colloid and Interface Science – volume: 559 start-page: 427 year: 2019 end-page: 428 article-title: Preservation of exosomes at room temperature using lyophilization (vol 553, pg 1, 2018) publication-title: International Journal of Pharmaceutics – volume: 8 start-page: 551 issue: 6 year: 1967 end-page: 557 article-title: Phase equilibria and structure of dry and hydrated egg lecithin publication-title: Journal of Lipid Research – volume: 8 issue: 1 year: 2019 article-title: Extracellular vesicle measurements with nanoparticle tracking analysis ‐ An accuracy and repeatability comparison between NanoSight NS300 and ZetaView publication-title: Journal of Extracellular Vesicles – year: 1945 – volume: 138 start-page: 247 year: 2018 end-page: 258 article-title: Extracellular vesicles for personalized medicine: The input of physically triggered production, loading and theranostic properties publication-title: Advanced Drug Delivery Reviews – volume: 33 start-page: 1220 issue: 5 year: 2016 end-page: 1234 article-title: Multimodal dispersion of nanoparticles: A comprehensive evaluation of size distribution with 9 size measurement methods publication-title: Pharmaceutical Research – volume: 13 start-page: 7317 year: 2011 end-page: 7329 article-title: Interlaboratory comparison for the measurement of particle size and zeta potential of silica nanoparticles in an aqueous suspension publication-title: Journal of Nanoparticle Research – year: 2012 2012 – volume: 106 start-page: 202 year: 2018 end-page: 212 article-title: Capillary electrophoresis and asymmetric flow field‐flow fractionation for size‐based separation of engineered metallic nanoparticles: A critical comparative review publication-title: Trac‐Trends in Analytical Chemistry – volume: 523 start-page: 320 issue: 1 year: 2017 end-page: 326 article-title: Analytical ultracentrifugation for analysis of doxorubicin loaded liposomes publication-title: International Journal of Pharmaceutics – volume: 14 start-page: 6195 issue: 11 year: 2014 end-page: 6201 article-title: Refractive Index Determination of Nanoparticles in Suspension Using Nanoparticle Tracking Analysis publication-title: Nano Letters – volume: 59 start-page: 1332 issue: 9 year: 1987 end-page: 1339 article-title: Properties of an asymmetrical flow field‐flow fractionation channel having one permeable wall publication-title: Analytical Chemistry – volume: 306 start-page: 138 year: 2019 end-page: 148 article-title: Doxebo (doxorubicin‐free Doxil‐like liposomes) is safe to use as a pre‐treatment to prevent infusion reactions to PEGylated nanodrugs publication-title: Journal of Controlled Release – start-page: e51623 issue: 92 year: 2014 end-page: e51623 article-title: Quantification and size‐profiling of extracellular vesicles using tunable resistive pulse sensing publication-title: Journal of Visualized Experiments : JoVE – volume: 320 start-page: 495 year: 2020 end-page: 510 article-title: Physical characterization of liposomal drug formulations using multi‐detector asymmetrical‐flow field flow fractionation publication-title: Journal of Controlled Release – volume: 31 start-page: 17 issue: 1 year: 2012 end-page: 25 article-title: Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions publication-title: Biosens. Bioelectron – volume: 5 issue: 1 year: 2016 article-title: A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing publication-title: Journal of Extracellular Vesicles – volume: 14 start-page: 228 year: 2017 article-title: EV‐TRACK: Transparent reporting and centralizing knowledge in extracellular vesicle research publication-title: Nature Methods – volume: 84 start-page: 3125 year: 2012 end-page: 3131 article-title: A variable pressure method for characterizing nanoparticle surface charge using pore sensors publication-title: Analytical Chemistry – volume: 9 issue: 1 year: 2020 article-title: Quality and efficiency assessment of six extracellular vesicle isolation methods by nano‐flow cytometry publication-title: Journal of Extracellular Vesicles – volume: 9 issue: 1 year: 2020 article-title: Towards defining reference materials for measuring extracellular vesicle refractive index, epitope abundance, size and concentration publication-title: Journal of Extracellular Vesicles – volume: 20 start-page: 332 issue: 3 year: 2018 end-page: 343 article-title: Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field‐flow fractionation publication-title: Nature Cell Biology – volume: 113 start-page: 1 issue: 1 year: 2013 end-page: 11 article-title: Biogenesis of extracellular vesicles (EV): Exosomes, microvesicles, retrovirus‐like vesicles, and apoptotic bodies publication-title: Journal of Neuro‐Oncology – volume: 11 start-page: 28 issue: 1 year: 2015 end-page: 32 article-title: Multiangle dynamic light scattering for the improvement of multimodal particle size distribution measurements publication-title: Soft Matter – volume: 97 start-page: 569 issue: 6 year: 2020 end-page: 581 article-title: FCMPASS software aids extracellular vesicle light scatter standardization publication-title: Cytometry Part A – volume: 1 year: 2018 – volume: 83 start-page: 5316 issue: 25 year: 2003 end-page: 5318 article-title: Refractive‐index‐driven separation of colloidal polymer particles using optical chromatography publication-title: Applied Physics Letters – volume: 7 issue: 1 year: 2018 article-title: Ultrafiltration and size exclusion chromatography combined with asymmetrical‐flow field‐flow fractionation for the isolation and characterisation of extracellular vesicles from urine publication-title: Journal of Extracellular Vesicles – volume: 22 issue: 45 year: 2010 article-title: Use of tunable nanopore blockade rates to investigate colloidal dispersions publication-title: Journal of Physics: Condensed Matter – volume: 262 start-page: 406 issue: 5 year: 1984 end-page: 408 article-title: Effect of simple electrolytes on the hydrodynamic radius of polystyrene latex publication-title: Colloid and Polymer Science – volume: 11 issue: 2 year: 2016 article-title: Comparative Analysis of Technologies for Quantifying Extracellular Vesicles (EVs) in Clinical Cerebrospinal Fluids (CSF) publication-title: Plos One – volume: 299 start-page: 31 year: 2019 end-page: 43 article-title: Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI‐NCL. A step by step approach combining orthogonal measurements with increasing complexity publication-title: Journal of Controlled Release – volume: 25 start-page: 4703 issue: 18 year: 2020 article-title: Fast and Purification‐Free Characterization of Bio‐Nanoparticles in Biological Media by Electrical Asymmetrical Flow Field‐Flow Fractionation Hyphenated with Multi‐Angle Light Scattering and Nanoparticle Tracking Analysis Detection publication-title: Molecules (Basel, Switzerland) – volume: 23 issue: 12 year: 2012 article-title: Traceable size determination of nanoparticles, a comparison among European metrology institutes publication-title: Measurement Science & Technology – volume: 132 start-page: 62 year: 2018 end-page: 69 article-title: Biophysical virus particle specific characterization to sharpen the definition of virus stability publication-title: European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V – volume: 14 start-page: 1027 issue: 4 year: 2019 end-page: 1053 article-title: Asymmetric‐flow field‐flow fractionation technology for exomere and small extracellular vesicle separation and characterization publication-title: Nature Protocols – volume: 12 start-page: 1182 issue: 7 year: 2014 end-page: 1192 article-title: Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing publication-title: Journal of Thrombosis and Haemostasis : JTH – year: 2020 article-title: Characterization of extracellular vesicles and artificial nanoparticles with four orthogonal single‐particle analysis platforms publication-title: BioXriv – volume: 25 start-page: 315 issue: 3 year: 1979 end-page: 328 article-title: Molecular packing in steroid‐lecithin monolayers .2. mixed films of cholesterol with dipalmitoylphosphatidylcholine and tetradecanoic acid publication-title: Chemistry and Physics of Lipids – volume: 1467 start-page: 219 issue: 1 year: 2000 end-page: 226 article-title: Optical characterization of liposomes by right angle light scattering and turbidity measurement publication-title: Biochimica Et Biophysica Acta‐Biomembranes – volume: 75 start-page: 193 issue: 2 year: 2018 end-page: 208 article-title: Current knowledge on exosome biogenesis and release publication-title: Cellular and Molecular Life Sciences : CMLS – year: 2017 – volume: 7 issue: 1 year: 2018 article-title: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines publication-title: Journal of Extracellular Vesicles – volume: 37 issue: 1 year: 2020 article-title: Sizing up the next generation of nanomedicines publication-title: Pharmaceutical Research – volume: 95 start-page: 2636 issue: 6 year: 2008 end-page: 2646 article-title: Examining the contributions of lipid shape and headgroup charge on bilayer behavior publication-title: Biophysical Journal – volume: 10 start-page: 2647 issue: 22 year: 2018 end-page: 2657 article-title: Measuring the relative concentration of particle populations using differential centrifugal sedimentation publication-title: Analytical Methods – volume: 87 start-page: 9225 issue: 18 year: 2015 end-page: 9233 article-title: Size characterization and quantification of exosomes by asymmetrical‐flow field‐flow fractionation publication-title: Analytical Chemistry – volume: 123 start-page: 325 issue: 1 year: 2007 end-page: 330 article-title: Dynamically resizable nanometre‐scale apertures for molecular sensing publication-title: Sensors and Actuators B – volume: 30 start-page: 1255 issue: 6 year: 2015 end-page: 1265 article-title: Detection, quantification and derivation of number size distribution of silver nanoparticles in antimicrobial consumer products publication-title: Journal of Analytical Atomic Spectrometry – ident: e_1_2_6_15_1 doi: 10.3390/molecules25204703 – ident: e_1_2_6_35_1 doi: 10.1002/9783527800308 – ident: e_1_2_6_54_1 doi: 10.1016/j.snb.2006.08.031 – ident: e_1_2_6_38_1 doi: 10.1088/0957-0233/23/12/125005 – ident: e_1_2_6_7_1 doi: 10.1080/20013078.2019.1596016 – ident: e_1_2_6_69_1 doi: 10.1021/ac2030915 – ident: e_1_2_6_28_1 doi: 10.1016/j.biotechadv.2013.11.006 – volume-title: Technical Note: Adaptive Correlation: Better DLS data with less time and effort year: 2018 ident: e_1_2_6_56_1 – volume-title: Hydrodynamics year: 1945 ident: e_1_2_6_25_1 – ident: e_1_2_6_27_1 doi: 10.1016/j.impact.2017.12.004 – volume: 15 start-page: 2101 issue: 12 year: 2013 ident: e_1_2_6_24_1 article-title: Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA) publication-title: Journal of Nanoparticle Research : An Interdisciplinary Forum for Nanoscale Science and Technology doi: 10.1007/s11051-013-2101-8 – ident: e_1_2_6_61_1 doi: 10.1021/acsnano.7b07782 – ident: e_1_2_6_18_1 doi: 10.3402/jev.v5.32945 – year: 2020 ident: e_1_2_6_34_1 article-title: Characterization of extracellular vesicles and artificial nanoparticles with four orthogonal single‐particle analysis platforms publication-title: BioXriv – ident: e_1_2_6_11_1 doi: 10.1016/j.ijpharm.2019.02.037 – ident: e_1_2_6_16_1 doi: 10.1016/j.biomaterials.2005.06.006 – ident: e_1_2_6_67_1 – ident: e_1_2_6_44_1 doi: 10.1016/j.jconrel.2020.01.049 – ident: e_1_2_6_20_1 doi: 10.1016/j.xphs.2018.08.020 – ident: e_1_2_6_22_1 doi: 10.3390/bioengineering6010007 – ident: e_1_2_6_76_1 doi: 10.1002/cyto.a.23782 – ident: e_1_2_6_59_1 doi: 10.1080/20013078.2018.1535750 – ident: e_1_2_6_46_1 doi: 10.1016/j.bios.2011.09.040 – ident: e_1_2_6_71_1 doi: 10.3402/jev.v5.31242 – ident: e_1_2_6_13_1 doi: 10.1007/s11095-019-2736-y – start-page: e51623 issue: 92 year: 2014 ident: e_1_2_6_32_1 article-title: Quantification and size‐profiling of extracellular vesicles using tunable resistive pulse sensing publication-title: Journal of Visualized Experiments : JoVE – ident: e_1_2_6_19_1 doi: 10.2217/nnm-2017-0338 – ident: e_1_2_6_50_1 doi: 10.1039/C8AY00491A – ident: e_1_2_6_62_1 doi: 10.1016/j.ejps.2016.09.008 – ident: e_1_2_6_8_1 doi: 10.1016/j.jconrel.2019.06.007 – ident: e_1_2_6_51_1 doi: 10.1111/jth.13176 – ident: e_1_2_6_14_1 doi: 10.1529/biophysj.107.128074 – ident: e_1_2_6_77_1 doi: 10.1088/0953-8984/22/45/454116 – ident: e_1_2_6_9_1 doi: 10.1016/j.jconrel.2019.02.030 – ident: e_1_2_6_40_1 doi: 10.1016/0009-3084(79)90114-2 – ident: e_1_2_6_21_1 doi: 10.1063/1.1635984 – ident: e_1_2_6_26_1 doi: 10.1007/s11051-011-0624-4 – ident: e_1_2_6_23_1 doi: 10.1007/s00018-017-2595-9 – ident: e_1_2_6_53_1 doi: 10.1016/S0022-2275(20)38874-X – ident: e_1_2_6_6_1 doi: 10.1016/j.talanta.2017.07.048 – volume-title: Technical Note: Particle concentration measurements on the Zetasizer Ultra – How it works year: 2018 ident: e_1_2_6_58_1 – ident: e_1_2_6_17_1 doi: 10.3402/jev.v2i0.19671 – ident: e_1_2_6_70_1 doi: 10.3402/jev.v5.31242 – ident: e_1_2_6_75_1 doi: 10.1080/20013078.2020.1816641 – volume-title: Requirements on measurements for the implementation of the European Commission definition of the term “nanomaterial year: 2012 ident: e_1_2_6_29_1 – ident: e_1_2_6_60_1 doi: 10.1080/20013078.2019.1697028 – ident: e_1_2_6_37_1 doi: 10.1016/j.ijpharm.2017.03.046 – ident: e_1_2_6_43_1 doi: 10.1080/20013078.2018.1490143 – ident: e_1_2_6_41_1 doi: 10.1039/C4SM01995D – ident: e_1_2_6_66_1 doi: 10.1007/s11095-016-1867-7 – ident: e_1_2_6_10_1 doi: 10.1039/C4JA00410H – ident: e_1_2_6_42_1 doi: 10.1088/0957-0233/27/3/035701 – ident: e_1_2_6_80_1 doi: 10.1038/s41596-019-0126-x – ident: e_1_2_6_2_1 doi: 10.1007/s11060-013-1084-8 – ident: e_1_2_6_68_1 doi: 10.1080/20013078.2017.1344087 – ident: e_1_2_6_52_1 doi: 10.1021/acs.analchem.5b01636 – ident: e_1_2_6_47_1 doi: 10.1016/j.bios.2011.09.040 – ident: e_1_2_6_33_1 – ident: e_1_2_6_45_1 doi: 10.1016/j.addr.2018.12.009 – ident: e_1_2_6_4_1 doi: 10.1016/j.jcis.2013.02.030 – ident: e_1_2_6_73_1 doi: 10.1021/ac200195n – ident: e_1_2_6_49_1 doi: 10.29016/180419.1 – volume-title: Technical Note: Multi‐angle Dynamic Light Scattering (MADLS)on the Zetasizer Ultra – How it Works year: 2018 ident: e_1_2_6_57_1 – ident: e_1_2_6_3_1 doi: 10.1371/journal.pone.0149866 – ident: e_1_2_6_36_1 doi: 10.1016/S0005-2736(00)00223-6 – ident: e_1_2_6_39_1 doi: 10.1016/j.trac.2018.07.008 – ident: e_1_2_6_55_1 doi: 10.1146/annurev.bb.09.060180.002343 – ident: e_1_2_6_65_1 doi: 10.1038/nmeth.4185 – ident: e_1_2_6_72_1 doi: 10.1038/s41598-017-14981-x – ident: e_1_2_6_82_1 doi: 10.1021/ja104052c – ident: e_1_2_6_63_1 doi: 10.1111/jth.12602 – ident: e_1_2_6_81_1 doi: 10.1021/nn505162u – ident: e_1_2_6_30_1 doi: 10.3402/jev.v3.26913 – ident: e_1_2_6_12_1 doi: 10.1016/j.ejpb.2018.08.006 – ident: e_1_2_6_79_1 doi: 10.1038/s41556-018-0040-4 – ident: e_1_2_6_78_1 doi: 10.1002/btpr.2489 – ident: e_1_2_6_31_1 doi: 10.1002/anie.201603007 – ident: e_1_2_6_48_1 doi: 10.1007/BF01410260 – ident: e_1_2_6_64_1 doi: 10.1021/nl503371p – ident: e_1_2_6_5_1 doi: 10.1021/acs.langmuir.5b01402 – ident: e_1_2_6_74_1 doi: 10.1021/ac00136a016 |
SSID | ssj0000941589 |
Score | 2.4484034 |
Snippet | The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess their... Abstract The measurement of physicochemical properties of polydisperse complex biological samples, for example, extracellular vesicles, is critical to assess... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e12052 |
SubjectTerms | Calibration Dynamic Light Scattering - methods Extracellular vesicles Extracellular Vesicles - chemistry Flow cytometry Flow Cytometry - methods Fractionation, Field Flow - methods Light Light scattering Lipoproteins liposomes Liposomes - chemistry multimodal samples nanomedicine Nanomedicine - methods Nanoparticles Nanoparticles - chemistry Optical properties orthogonal techniques particle concentration Particle Size particle size distribution Phenotyping Physicochemical properties Polystyrene Polystyrenes - chemistry Quality assurance Sedimentation & deposition Sensors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals - NZ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFDQILiAtdfxIHC4IUKuqUjlR6M3yk7aCZNXsVuqv6V9l7GSjXVHBhZsVW5adGdvf50y-IeS1lMi3hDczZriYCd_gPsgZkhXFLbWRM5-J4tGX6uBYHJ7Ik7VUXykmbJAHHl7cLi0NswgDZGW8CGW0VQxKxqqpgvLcurT70oaukanzIV6ulKqZ9EjZ7nm4ZO9KRiXbOIGyUP9N6PLPIMl18JpPn_175O4IG-HjMNxtciu098ntIZHk1QNyfZSv-vAYgvk4JXDph8R2VMWFLkKOHfzVeeynv2oR-GE7mNKMAELXwRvBtB5wz74w6VY_hanCZehz-Byka1tIn3q6HwnCwyQB27-H76cdnPWwnMOiA-we3CpRy4eH5Hh_7-vng9mYemHmEEEhPfUqWhkCLy0X3jpT0sZiIUhhXE0dkhxZJz6rHNpBKtu4mJJXU-5qESvKH5GttmvDEwKydkGYkL7YIdcJpuHB0ljKqIKylNuCvFmZQ7tRlzylx_ipB0VlppPpdDZdQV5NbeeDGseNrT4lq04tkoJ2foB-pUcj6H_5VUF2Vj6hx2Xda04RDwuJu15BXk7VuCCTPUwbumWvmaiRo7FG4TgeDy40jYRzUSNe5gWpN5xrY6ibNe3ZaRb9TkJRyOYK8ja74V-mrw_3vrFcevo_XsQzcoelOJ587bRDthYXy_AcgdjCvshr7jeAXzUh priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEF5KRfBFvButMqIvCsdu9pKLCKLSUgoVH6z2bdnd7LYVTQ4nPYX-Gv-qM5uc1INF8C2czAm7zGW_mUy-YeyF1phvqcbOhJVqppoa46AUmKxU0nEXpWhSonjwqdg7VPtH-miDvV19CzPwQ0wFN_KMFK_Jwa3rty9JQ7-Hc_E6F1xjAL6GqF6SfQv1eaqwYOKS6zQDL_UNoTFXEz-p2L78-9qJlIj7r0KbfzdN_glm02m0e4vdHGEkvB_0fptthPYOuz4Mlry4y34dpNIfHkswH20DPH2g2I4sudBFSL2EP7sGn9NftAgEUQ6msSOAUHawTrBtAxjDF5aq_NS2CuehT-10QGVcoFc_3TFBepgoYfs38O2kg9MelnM46wAfD341uOXdPXa4u_Pl495sHMUw84ioMF1tquh0CDJ3UjXO25zXDi-CVtaX3GPSo0vKbytfhEpXrvaRhllz6UsVCy7vs822a8NDBrr0QdlAb_Aw9wm2lsHxmOtYhcpx6TL2cqUO40eechqX8cMMDMvCkOpMUl3Gnk-y84Gd40qpD6TVSYIYtdMP3eLYjEowPLfCIdzUhW1UyKMrIm4kFjXup5HOZ2xrZRNmdPPeSI74WGmMghl7Nt1GByV92DZ0y94IVWLOJuoK1_FgMKFpJVKqEvGzzFi5ZlxrS12_056eJBJwIo7C7C5jr5IZ_mP7Zn_nq0hXj_5H-DG7Iah_J5Wbttjm2WIZniAAO3NPk5_9BjAVLik priority: 102 providerName: Wiley-Blackwell |
Title | Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjev2.12052 https://www.ncbi.nlm.nih.gov/pubmed/33473263 https://www.proquest.com/docview/3092345048 https://www.proquest.com/docview/2479742982 https://pubmed.ncbi.nlm.nih.gov/PMC7804049 https://doaj.org/article/01a2b95156ad4e1fb6fe85f696e8d3bc |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIlAviDcLJTKCC0hpvX7sAwlVgFqqSkUcCPRm2V5vHyq7IZtU5NfwVxl7H2pExIFLtMo6Gzsztr9vPPkG4JWUyLdEocdMczEWRY7rIGdIVjJuqCk5KwJRPP6cHE7E0Yk82YC-fmf3AzZrqZ2vJzWZXe78-rncwwn_rhMQ3b1wV2wnZlTiUnwznBP5FL4O5l-02XOxzPJBnfT6R7bgNuciRRTDV7amoOC_Dnb-nT15HdWGbengLtzp8CR53zrAPdhw1X241VaYXD6A38chBoj7E5l2TkKs_6di1cnlkrokIanwR13gc5plhYgQ25Gh_ghBTNu6KdFVQXAxn2kf7vf5q-TKNSGvjvh4LvFnQPWpx_Zk0IZt3pLvZzU5b8hiSuY1wccT21dw2XsIk4P9rx8Px11NhrFFaIW8tchKI53jseGiMFbHNDd44aTQNqUW2Y9MPdHNbOIymZnclr6qNeU2FWVC-SPYrOrKPQEiU-uEdv4oD0mQ0zl3hpaxLDOXGcpNBK97cyjbCZb7uhmXqpVaZspbUQUrRvByaDttZTrWtvrgrTq08NLa4Y16dqo6Iygaa2YQd8pEF8LFpUlKHEiZ5DieghsbwXbvE6p3V8UpAmUhcTmM4MVwG2eqt4euXL1oFBMpkjeWZ9iPx60LDT3pXTCCdMW5Vrq6eqc6Pwtq4F5BCmleBG-CG_5j-Opo_xsLV0__-2uewRbzWT0hCLUNm_PZwj1HWDY3I7jBxJdRCGrg66eTeBRm4R95_z2y |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQEYILojwDbTGCC0hLHT_y4IIoarWUbsWhhd4s27HbIkhWm91K_TX8VWacbMqKColbtJmNbM3Y_r7J5BtCXikFfEtWZsSNkCNZlbAPCg5kpRCW2SB4FYni5DAbH8v9E3XS1-bgtzCdPsSQcMOVEfdrXOCYkN6-Ug397i_425QzBTvwTZkBd0FhZ_llSLEAc0lVbIIXC4cgmotBoJRvX_195UiKyv3Xwc2_qyb_RLPxONq7R-72OJJ-6By_Tm74-j651XWWvHxAfk1i7g_OJTrtg4M6_EKx7mVyaRNoLCb82VTwnPayBiQIdnToO0IBy3bhSU1dUdjEZwbT_Fi3Si98G-vpKOZxKb77aU4R09NBE7Z9R7-dNfS8pYspnTcUHk_dsnPL-4fkeG_36ON41PdiGDmAVMBXqyJY5b1IrZCVdSZlpYULr6RxOXPAelSOBLdwmS9UYUsXsJs1Ey6XIWPiEVmrm9o_IVTlzkvj8RUekB9vSuEtC6kKhS8sEzYhr5fu0K4XKsd-GT90J7HMNbpOR9cl5OVgO-3kOa612kGvDhYoqR1_aGanuneCZqnhFvCmykwlfRpsFmAiISthPpWwLiEby5jQ_TpvtWAAkKWCbTAhL4bbsELRH6b2zaLVXOZA2nhZwDgedyE0jEQImQOAFgnJV4JrZaird-rzs6gCjspRQO8S8iaG4T-mr_d3v_J49fR_jJ-T2-OjyYE--HT4-Rm5w7GYJ-aeNsjafLbwm4DG5nYrrrnfVk8xjw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIhAXxJtAoYPgAtJSx488EFJFoatSaNUDhd4s27HbIkhWm91K_TX9q4ydbMqKColbtJmNbM3D30wm3xDyUkrMt0SlR0xzMRJViXGQM0xWCm6o8ZxVMVHc2892DsXukTxaIe8W38J0_BBDwS14RozXwcEnld-4JA394c7Ym5RRiQH4mkDDC_bNxMFQYcHEJZVxBl7sG0JjLgZ-UrZx-felEykS91-FNv9umvwTzMbTaHyb3OphJLzv9H6HrLj6LrneDZY8v0cu9mLpD48lmPS2ATZ8oFj3LLnQeIi9hL-aCp_TntcIBFEOhrEjgFC2s07QdQUYw6c6VPlD2yqcuTa200Eo40J49dMcB0gPAyVs-xa-nzRw2sJ8ArMG8PFgF4NbNu-Tw_H21w87o34Uw8giosJ0tSq8kc7x1HBRGatTWhq8cFJom1OLSY_MQ35b2MwVsjCl9WGYNeU2Fz6j_AFZrZvaPSIgc-uEduENHuY-TpfcGepT6QtXGMpNQl4t1KFsz1MexmX8VB3DMlNBdSqqLiEvBtlJx85xpdRW0OogERi14w_N9Fj1SlA01cwg3JSZroRLvck8bsRnJe6n4sYmZG1hE6p381ZxivhYSIyCCXk-3EYHDfrQtWvmrWIix5yNlQWu42FnQsNKOBc54meekHzJuJaWunynPj2JJOCBOAqzu4S8jmb4j-2r3e1vLF49_h_hdXLj4ONYffm0__kJuclCK0-sPK2R1dl07p4iFpuZZ9HlfgOJLTDK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+particle+concentration+of+multimodal+synthetic+reference+materials+and+extracellular+vesicles+with+orthogonal+techniques%3A+Who+is+up+to+the+challenge%3F&rft.jtitle=Journal+of+extracellular+vesicles&rft.au=Vogel%2C+Robert&rft.au=Savage%2C+John&rft.au=Muzard%2C+Julien&rft.au=Camera%2C+Giacomo+Della&rft.date=2021-01-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=2001-3078&rft.volume=10&rft.issue=3&rft_id=info:doi/10.1002%2Fjev2.12052&rft_id=info%3Apmid%2F33473263&rft.externalDocID=PMC7804049 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-3078&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-3078&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-3078&client=summon |