Pseudoprogression of brain tumors
This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high‐grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interferin...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 48; no. 3; pp. 571 - 589 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.09.2018
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1053-1807 1522-2586 1522-2586 |
DOI | 10.1002/jmri.26171 |
Cover
Abstract | This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high‐grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interfering not only with day‐to‐day patient care but also the execution and interpretation of clinical trials. Radiologically, pseudoprogression is defined as a new or enlarging area(s) of contrast agent enhancement, in the absence of true tumor growth, which subsides or stabilizes without a change in therapy. The clinical definitions of pseudoprogression have been quite variable, which may explain some of the differences in reported incidences, which range from 9–30%. Conventional structural MRI is insufficient for distinguishing pseudoprogression from true progressive disease, and advanced imaging is needed to obtain higher levels of diagnostic certainty. Perfusion MRI is the most widely used imaging technique to diagnose pseudoprogression and has high reported diagnostic accuracy. Diagnostic performance of MR spectroscopy (MRS) appears to be somewhat higher, but MRS is less suitable for the routine and universal application in brain tumor follow‐up. The combination of MRS and diffusion‐weighted imaging and/or perfusion MRI seems to be particularly powerful, with diagnostic accuracy reaching up to or even greater than 90%. While diagnostic performance can be high with appropriate implementation and interpretation, even a combination of techniques, however, does not provide 100% accuracy. It should also be noted that most studies to date are small, heterogeneous, and retrospective in nature. Future improvements in diagnostic accuracy can be expected with harmonization of acquisition and postprocessing, quantitative MRI and computer‐aided diagnostic technology, and meticulous evaluation with clinical and pathological data.
Level of Evidence: 3
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2018;48:571–589. |
---|---|
AbstractList | This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high‐grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interfering not only with day‐to‐day patient care but also the execution and interpretation of clinical trials. Radiologically, pseudoprogression is defined as a new or enlarging area(s) of contrast agent enhancement, in the absence of true tumor growth, which subsides or stabilizes without a change in therapy. The clinical definitions of pseudoprogression have been quite variable, which may explain some of the differences in reported incidences, which range from 9–30%. Conventional structural MRI is insufficient for distinguishing pseudoprogression from true progressive disease, and advanced imaging is needed to obtain higher levels of diagnostic certainty. Perfusion MRI is the most widely used imaging technique to diagnose pseudoprogression and has high reported diagnostic accuracy. Diagnostic performance of MR spectroscopy (MRS) appears to be somewhat higher, but MRS is less suitable for the routine and universal application in brain tumor follow‐up. The combination of MRS and diffusion‐weighted imaging and/or perfusion MRI seems to be particularly powerful, with diagnostic accuracy reaching up to or even greater than 90%. While diagnostic performance can be high with appropriate implementation and interpretation, even a combination of techniques, however, does not provide 100% accuracy. It should also be noted that most studies to date are small, heterogeneous, and retrospective in nature. Future improvements in diagnostic accuracy can be expected with harmonization of acquisition and postprocessing, quantitative MRI and computer‐aided diagnostic technology, and meticulous evaluation with clinical and pathological data.
Level of Evidence: 3
Technical Efficacy: Stage 2
J. Magn. Reson. Imaging 2018;48:571–589. This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high-grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interfering not only with day-to-day patient care but also the execution and interpretation of clinical trials. Radiologically, pseudoprogression is defined as a new or enlarging area(s) of contrast agent enhancement, in the absence of true tumor growth, which subsides or stabilizes without a change in therapy. The clinical definitions of pseudoprogression have been quite variable, which may explain some of the differences in reported incidences, which range from 9-30%. Conventional structural MRI is insufficient for distinguishing pseudoprogression from true progressive disease, and advanced imaging is needed to obtain higher levels of diagnostic certainty. Perfusion MRI is the most widely used imaging technique to diagnose pseudoprogression and has high reported diagnostic accuracy. Diagnostic performance of MR spectroscopy (MRS) appears to be somewhat higher, but MRS is less suitable for the routine and universal application in brain tumor follow-up. The combination of MRS and diffusion-weighted imaging and/or perfusion MRI seems to be particularly powerful, with diagnostic accuracy reaching up to or even greater than 90%. While diagnostic performance can be high with appropriate implementation and interpretation, even a combination of techniques, however, does not provide 100% accuracy. It should also be noted that most studies to date are small, heterogeneous, and retrospective in nature. Future improvements in diagnostic accuracy can be expected with harmonization of acquisition and postprocessing, quantitative MRI and computer-aided diagnostic technology, and meticulous evaluation with clinical and pathological data. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high‐grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interfering not only with day‐to‐day patient care but also the execution and interpretation of clinical trials. Radiologically, pseudoprogression is defined as a new or enlarging area(s) of contrast agent enhancement, in the absence of true tumor growth, which subsides or stabilizes without a change in therapy. The clinical definitions of pseudoprogression have been quite variable, which may explain some of the differences in reported incidences, which range from 9–30%. Conventional structural MRI is insufficient for distinguishing pseudoprogression from true progressive disease, and advanced imaging is needed to obtain higher levels of diagnostic certainty. Perfusion MRI is the most widely used imaging technique to diagnose pseudoprogression and has high reported diagnostic accuracy. Diagnostic performance of MR spectroscopy (MRS) appears to be somewhat higher, but MRS is less suitable for the routine and universal application in brain tumor follow‐up. The combination of MRS and diffusion‐weighted imaging and/or perfusion MRI seems to be particularly powerful, with diagnostic accuracy reaching up to or even greater than 90%. While diagnostic performance can be high with appropriate implementation and interpretation, even a combination of techniques, however, does not provide 100% accuracy. It should also be noted that most studies to date are small, heterogeneous, and retrospective in nature. Future improvements in diagnostic accuracy can be expected with harmonization of acquisition and postprocessing, quantitative MRI and computer‐aided diagnostic technology, and meticulous evaluation with clinical and pathological data.Level of Evidence: 3Technical Efficacy: Stage 2J. Magn. Reson. Imaging 2018;48:571–589. This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high‐grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interfering not only with day‐to‐day patient care but also the execution and interpretation of clinical trials. Radiologically, pseudoprogression is defined as a new or enlarging area(s) of contrast agent enhancement, in the absence of true tumor growth, which subsides or stabilizes without a change in therapy. The clinical definitions of pseudoprogression have been quite variable, which may explain some of the differences in reported incidences, which range from 9–30%. Conventional structural MRI is insufficient for distinguishing pseudoprogression from true progressive disease, and advanced imaging is needed to obtain higher levels of diagnostic certainty. Perfusion MRI is the most widely used imaging technique to diagnose pseudoprogression and has high reported diagnostic accuracy. Diagnostic performance of MR spectroscopy (MRS) appears to be somewhat higher, but MRS is less suitable for the routine and universal application in brain tumor follow‐up. The combination of MRS and diffusion‐weighted imaging and/or perfusion MRI seems to be particularly powerful, with diagnostic accuracy reaching up to or even greater than 90%. While diagnostic performance can be high with appropriate implementation and interpretation, even a combination of techniques, however, does not provide 100% accuracy. It should also be noted that most studies to date are small, heterogeneous, and retrospective in nature. Future improvements in diagnostic accuracy can be expected with harmonization of acquisition and postprocessing, quantitative MRI and computer‐aided diagnostic technology, and meticulous evaluation with clinical and pathological data. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:571–589. This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high-grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interfering not only with day-to-day patient care but also the execution and interpretation of clinical trials. Radiologically, pseudoprogression is defined as a new or enlarging area(s) of contrast agent enhancement, in the absence of true tumor growth, which subsides or stabilizes without a change in therapy. The clinical definitions of pseudoprogression have been quite variable, which may explain some of the differences in reported incidences, which range from 9-30%. Conventional structural MRI is insufficient for distinguishing pseudoprogression from true progressive disease, and advanced imaging is needed to obtain higher levels of diagnostic certainty. Perfusion MRI is the most widely used imaging technique to diagnose pseudoprogression and has high reported diagnostic accuracy. Diagnostic performance of MR spectroscopy (MRS) appears to be somewhat higher, but MRS is less suitable for the routine and universal application in brain tumor follow-up. The combination of MRS and diffusion-weighted imaging and/or perfusion MRI seems to be particularly powerful, with diagnostic accuracy reaching up to or even greater than 90%. While diagnostic performance can be high with appropriate implementation and interpretation, even a combination of techniques, however, does not provide 100% accuracy. It should also be noted that most studies to date are small, heterogeneous, and retrospective in nature. Future improvements in diagnostic accuracy can be expected with harmonization of acquisition and postprocessing, quantitative MRI and computer-aided diagnostic technology, and meticulous evaluation with clinical and pathological data.This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high-grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interfering not only with day-to-day patient care but also the execution and interpretation of clinical trials. Radiologically, pseudoprogression is defined as a new or enlarging area(s) of contrast agent enhancement, in the absence of true tumor growth, which subsides or stabilizes without a change in therapy. The clinical definitions of pseudoprogression have been quite variable, which may explain some of the differences in reported incidences, which range from 9-30%. Conventional structural MRI is insufficient for distinguishing pseudoprogression from true progressive disease, and advanced imaging is needed to obtain higher levels of diagnostic certainty. Perfusion MRI is the most widely used imaging technique to diagnose pseudoprogression and has high reported diagnostic accuracy. Diagnostic performance of MR spectroscopy (MRS) appears to be somewhat higher, but MRS is less suitable for the routine and universal application in brain tumor follow-up. The combination of MRS and diffusion-weighted imaging and/or perfusion MRI seems to be particularly powerful, with diagnostic accuracy reaching up to or even greater than 90%. While diagnostic performance can be high with appropriate implementation and interpretation, even a combination of techniques, however, does not provide 100% accuracy. It should also be noted that most studies to date are small, heterogeneous, and retrospective in nature. Future improvements in diagnostic accuracy can be expected with harmonization of acquisition and postprocessing, quantitative MRI and computer-aided diagnostic technology, and meticulous evaluation with clinical and pathological data.3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018.LEVEL OF EVIDENCE3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. |
Author | Smits, Marion van den Bent, Martin J. Thust, Stefanie C. |
AuthorAffiliation | 2 Department of Brain Rehabilitation and Repair UCL Institute of Neurology London UK 4 Department of Neurology The Brain Tumor Centre at Erasmus MC Cancer Institute Rotterdam The Netherlands 1 Lysholm Neuroradiology Department National Hospital for Neurology and Neurosurgery London UK 3 Imaging Department University College London Hospital London UK 5 Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam Rotterdam The Netherlands |
AuthorAffiliation_xml | – name: 4 Department of Neurology The Brain Tumor Centre at Erasmus MC Cancer Institute Rotterdam The Netherlands – name: 2 Department of Brain Rehabilitation and Repair UCL Institute of Neurology London UK – name: 5 Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam Rotterdam The Netherlands – name: 1 Lysholm Neuroradiology Department National Hospital for Neurology and Neurosurgery London UK – name: 3 Imaging Department University College London Hospital London UK |
Author_xml | – sequence: 1 givenname: Stefanie C. surname: Thust fullname: Thust, Stefanie C. organization: University College London Hospital – sequence: 2 givenname: Martin J. surname: van den Bent fullname: van den Bent, Martin J. organization: The Brain Tumor Centre at Erasmus MC Cancer Institute – sequence: 3 givenname: Marion surname: Smits fullname: Smits, Marion email: marion.smits@erasmusmc.nl organization: University Medical Centre Rotterdam |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29734497$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLxDAUhYMoPkY3_gAZcSNC9ebVNhtBxCeKIroOaZqOGdpmTFpl_r0ZR0UHcZWQfOdw7j0baLl1rUFoG8MhBiBH48bbQ5LiDC-hdcwJSQjP0-V4B04TnEO2hjZCGAOAEIyvojUiMsqYyNbR7n0wfekm3o28CcG6duiqYeGVbYdd3zgfNtFKpepgtj7PAXo6P3s8vUxu7i6uTk9uEs0xwwnJIS-B5KQoiKIVJ5RVtCyKnHHFhU5FSrVIMWeZofERtCKaAc5YCVzgTNABOp77TvqiMaU2bedVLSfeNspPpVNW_v5p7bMcuVcZB-dUzAz2Pw28e-lN6GRjgzZ1rVrj-iAJ0JQAyTCL6N4COna9b-N4kRK54DkRNFI7PxN9R_naXgRgDmjvQvCmktp2qotLjAFtLTHIWUFyVpD8KChKDhYkX65_wngOv9naTP8h5fXtw9Vc8w7ET565 |
CitedBy_id | crossref_primary_10_1016_j_radonc_2021_04_001 crossref_primary_10_7759_cureus_32840 crossref_primary_10_13104_imri_2022_26_1_10 crossref_primary_10_2298_VSP240109041G crossref_primary_10_1016_j_critrevonc_2020_103184 crossref_primary_10_1016_j_acra_2024_03_019 crossref_primary_10_1097_MD_0000000000020270 crossref_primary_10_3390_cancers15072184 crossref_primary_10_1007_s13139_022_00758_2 crossref_primary_10_1016_j_critrevonc_2025_104682 crossref_primary_10_1016_j_crad_2022_08_138 crossref_primary_10_1097_RCT_0000000000001716 crossref_primary_10_3389_fgene_2022_1114762 crossref_primary_10_1038_s41598_021_97818_y crossref_primary_10_3390_biomedicines12081649 crossref_primary_10_1155_2021_1696387 crossref_primary_10_1111_1754_9485_13504 crossref_primary_10_1148_rycan_2020190036 crossref_primary_10_31083_j_jmcm_2019_03_0302 crossref_primary_10_1097_MD_0000000000018194 crossref_primary_10_1111_jocn_16499 crossref_primary_10_1158_1078_0432_CCR_21_0471 crossref_primary_10_1155_2022_6948422 crossref_primary_10_7759_cureus_59099 crossref_primary_10_1007_s00330_023_10324_9 crossref_primary_10_1097_RLU_0000000000005157 crossref_primary_10_1016_j_adro_2022_101044 crossref_primary_10_3389_fonc_2021_674596 crossref_primary_10_1093_nop_npad063 crossref_primary_10_3390_curroncol30030203 crossref_primary_10_3389_fonc_2024_1449228 crossref_primary_10_3390_biomedicines10020285 crossref_primary_10_3389_fonc_2025_1397912 crossref_primary_10_3389_fneur_2022_789355 crossref_primary_10_1186_s40478_023_01587_w crossref_primary_10_3390_cancers12113080 crossref_primary_10_1146_annurev_bioeng_062117_121105 crossref_primary_10_1093_noajnl_vdad016 crossref_primary_10_3390_pharmaceutics15010144 crossref_primary_10_1097_CCO_0000000000000793 crossref_primary_10_1007_s00066_024_02281_z crossref_primary_10_3174_ng_2100034 crossref_primary_10_3390_curroncol30110679 crossref_primary_10_3389_fonc_2022_851877 crossref_primary_10_1007_s00330_022_09365_3 crossref_primary_10_1556_650_2023_32812 crossref_primary_10_1148_rg_2021200064 crossref_primary_10_1016_j_esmoop_2022_100424 crossref_primary_10_3389_fimmu_2023_1211900 crossref_primary_10_1089_cmb_2024_0518 crossref_primary_10_1002_mrm_29844 crossref_primary_10_3390_ijms22073797 crossref_primary_10_1097_WCO_0000000000000950 crossref_primary_10_1016_j_mric_2023_07_003 crossref_primary_10_1093_neuonc_noaa106 crossref_primary_10_1002_jmri_26900 crossref_primary_10_1002_nbm_4372 crossref_primary_10_3390_diagnostics11061041 crossref_primary_10_3389_fonc_2022_836452 crossref_primary_10_1038_s41598_022_09945_9 crossref_primary_10_1016_j_soc_2023_02_009 crossref_primary_10_3390_diagnostics12051202 crossref_primary_10_1016_j_ijrobp_2021_12_153 crossref_primary_10_3389_fonc_2022_993649 crossref_primary_10_1093_noajnl_vdac020 crossref_primary_10_1200_EDBK_350931 crossref_primary_10_3390_cancers14061432 crossref_primary_10_1016_j_canrad_2024_07_014 crossref_primary_10_1080_20450907_2024_2415285 crossref_primary_10_1186_s43556_025_00251_0 crossref_primary_10_1016_j_radonc_2022_10_026 crossref_primary_10_1016_j_jocn_2021_04_026 crossref_primary_10_3390_cancers14225523 crossref_primary_10_1186_s41747_019_0134_1 crossref_primary_10_3390_cancers12123835 crossref_primary_10_1016_j_wneu_2020_07_218 crossref_primary_10_1093_neuonc_noae097 crossref_primary_10_3390_cancers15204990 crossref_primary_10_1093_neuonc_noaa162 crossref_primary_10_1016_j_ctarc_2022_100583 crossref_primary_10_1093_noajnl_vdab044 crossref_primary_10_1212_CON_0000000000001202 crossref_primary_10_1016_j_currproblcancer_2023_100965 crossref_primary_10_3390_brainsci15020146 crossref_primary_10_1007_s11060_023_04528_8 crossref_primary_10_1038_s41416_021_01387_w crossref_primary_10_1002_mrm_30084 crossref_primary_10_3389_fradi_2023_1204517 crossref_primary_10_1002_mrm_28685 crossref_primary_10_1016_j_ijrobp_2021_12_007 crossref_primary_10_22201_fm_24484865e_2020_63_1_06 crossref_primary_10_1080_14737175_2020_1855144 crossref_primary_10_1007_s41939_024_00663_5 crossref_primary_10_3348_kjr_2020_1299 crossref_primary_10_1002_pbc_28407 crossref_primary_10_3390_cancers13091989 crossref_primary_10_1016_j_crad_2022_04_011 crossref_primary_10_3390_jimaging9100212 crossref_primary_10_3390_ijms24043151 crossref_primary_10_1093_noajnl_vdab027 crossref_primary_10_2967_jnumed_119_234757 crossref_primary_10_1111_1754_9485_13436 crossref_primary_10_1186_s40644_024_00682_y crossref_primary_10_1007_s40336_022_00495_8 crossref_primary_10_1016_j_mri_2024_06_004 crossref_primary_10_21682_2311_1267_2020_7_2_126_33 crossref_primary_10_3389_fonc_2023_1134109 crossref_primary_10_3390_tomography9030087 crossref_primary_10_1186_s40644_024_00761_0 crossref_primary_10_1007_s11060_020_03475_y crossref_primary_10_1007_s11307_019_01427_1 crossref_primary_10_1007_s11060_022_04088_3 crossref_primary_10_1158_0008_5472_CAN_22_0101 crossref_primary_10_1002_adbi_202000029 crossref_primary_10_3390_cancers14143401 crossref_primary_10_1016_j_radonc_2019_05_020 crossref_primary_10_1259_bjro_20200009 crossref_primary_10_1002_mp_14368 crossref_primary_10_1007_s00066_022_01994_3 crossref_primary_10_1016_j_radonc_2023_109486 crossref_primary_10_1007_s11060_019_03386_7 crossref_primary_10_5507_bp_2019_039 crossref_primary_10_1097_RMR_0000000000000233 crossref_primary_10_23736_S0390_5616_19_04701_5 crossref_primary_10_2967_jnumed_122_264803 crossref_primary_10_3390_cancers15205092 crossref_primary_10_1259_bjr_20210275 crossref_primary_10_1002_jmri_27136 crossref_primary_10_1155_2018_6828396 crossref_primary_10_3390_diagnostics11122385 crossref_primary_10_1007_s13760_021_01607_3 crossref_primary_10_1186_s12967_023_03941_x crossref_primary_10_1002_nbm_4719 crossref_primary_10_1007_s11060_024_04911_z crossref_primary_10_1097_RLU_0000000000005221 crossref_primary_10_3390_ijms231810525 crossref_primary_10_17352_2455_8702_000140 crossref_primary_10_3389_fradi_2022_809373 crossref_primary_10_1016_j_neuri_2022_100088 crossref_primary_10_2217_imt_2020_0188 crossref_primary_10_1093_neuonc_noab160 crossref_primary_10_1259_bjr_20210944 crossref_primary_10_3174_ajnr_A7502 crossref_primary_10_1002_jmri_29543 crossref_primary_10_1093_noajnl_vdad082 crossref_primary_10_1007_s00117_022_01014_6 crossref_primary_10_3390_pharmaceutics15030928 crossref_primary_10_1007_s40141_022_00345_8 crossref_primary_10_3390_diagnostics14141551 crossref_primary_10_1016_j_ejrad_2021_109900 crossref_primary_10_1016_j_neurad_2020_08_003 crossref_primary_10_7759_cureus_73630 crossref_primary_10_1007_s00234_022_02937_6 crossref_primary_10_1177_02841851211035911 crossref_primary_10_3390_cancers14153771 crossref_primary_10_1158_0008_5472_CAN_23_2552 crossref_primary_10_2214_AJR_21_26159 crossref_primary_10_1007_s11060_024_04645_y crossref_primary_10_3389_fimmu_2021_640082 crossref_primary_10_1097_MNM_0000000000000914 crossref_primary_10_1111_1754_9485_13267 crossref_primary_10_1097_RLU_0000000000004305 crossref_primary_10_1007_s00330_024_11004_y crossref_primary_10_1186_s13244_022_01295_4 crossref_primary_10_1080_14737140_2022_2000396 crossref_primary_10_1155_2022_5680522 crossref_primary_10_3390_cancers13235973 crossref_primary_10_1016_j_nicl_2019_102109 crossref_primary_10_1038_s41598_020_77389_0 crossref_primary_10_1172_jci_insight_178719 crossref_primary_10_1093_noajnl_vdae159 crossref_primary_10_1007_s00381_020_04819_9 crossref_primary_10_3389_fonc_2021_711405 crossref_primary_10_3390_ijms26030917 crossref_primary_10_3389_fonc_2021_627325 crossref_primary_10_3390_cancers15184429 crossref_primary_10_3390_medicina60040653 crossref_primary_10_1016_j_yao_2021_02_016 crossref_primary_10_3389_fonc_2019_00177 crossref_primary_10_1093_noajnl_vdac080 crossref_primary_10_1136_bmjno_2020_000069 crossref_primary_10_1097_RLU_0000000000004329 crossref_primary_10_1016_j_radonc_2020_10_041 crossref_primary_10_3390_cancers14051342 crossref_primary_10_1002_mrm_29243 crossref_primary_10_1016_j_ejmp_2021_04_005 crossref_primary_10_2139_ssrn_4048953 crossref_primary_10_3389_fonc_2023_1291177 crossref_primary_10_3390_biomedicines11020364 crossref_primary_10_1016_j_nicl_2023_103501 crossref_primary_10_1097_RCT_0000000000001006 crossref_primary_10_1093_braincomms_fcaa215 crossref_primary_10_3174_ajnr_A8357 crossref_primary_10_3390_cancers17010124 crossref_primary_10_1016_j_wneu_2024_01_074 crossref_primary_10_1016_j_canrad_2020_03_005 crossref_primary_10_1007_s00259_024_06782_y crossref_primary_10_1016_j_mri_2021_06_004 crossref_primary_10_1098_rsif_2019_0734 crossref_primary_10_1093_noajnl_vdad168 crossref_primary_10_3174_ng_2100083 crossref_primary_10_1093_noajnl_vdac070 crossref_primary_10_3389_fonc_2023_1021253 crossref_primary_10_1093_nop_npae099 crossref_primary_10_3389_fneur_2020_00055 |
Cites_doi | 10.1016/S1470-2045(08)70125-6 10.1007/s11060-017-2647-x 10.1093/neuonc/not158 10.1093/neuonc/nox090 10.1593/neo.81328 10.1148/radiology.217.2.r00nv36377 10.1007/s00234-009-0616-6 10.1002/jmri.22068 10.1148/radiol.12111472 10.1016/j.nicl.2016.12.020 10.1002/mrm.26820 10.1016/j.clinimag.2015.02.010 10.3174/ajnr.A5188 10.1006/jmre.1998.1440 10.1117/1.JMI.4.3.034001 10.2176/nmc.37.250 10.2214/ajr.171.6.9843274 10.1007/s00330-017-4789-9 10.1155/2015/641023 10.1007/s11060-015-1893-z 10.1371/journal.pone.0136380 10.1016/S0940-2993(11)80292-7 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S 10.1093/neuonc/now091 10.1016/S1470-2045(09)70025-7 10.1016/j.jocn.2012.09.011 10.1038/nm.2268 10.1007/s10014-006-0194-9 10.1093/neuonc/now148 10.1200/JCO.2007.15.2363 10.1016/j.nicl.2015.08.017 10.1097/00006123-200210000-00010 10.1016/j.jns.2015.02.038 10.3174/ajnr.A4451 10.1371/journal.pone.0174620 10.1148/radiol.2492071659 10.1007/s11060-006-9241-y 10.2214/AJR.17.18003 10.1002/jmri.22432 10.3174/ajnr.A2725 10.1007/s10334-011-0255-x 10.3348/kjr.2013.14.4.662 10.1007/s00234-009-0613-9 10.1007/s11060-011-0738-7 10.1016/j.acra.2012.06.011 10.3174/ajnr.A2286 10.3174/ajnr.A4341 10.1016/j.acra.2011.01.018 10.1200/jco.2007.25.18_suppl.2009 10.1007/s00234-015-1500-1 10.1002/mrm.10398 10.1200/JCO.2009.26.3541 10.1016/j.ejrad.2013.06.033 10.1016/j.ijrobp.2005.12.002 10.1371/journal.pone.0052008 10.1016/j.nic.2009.08.007 10.1007/s11060-014-1403-8 10.1002/jmri.25159 10.1097/COC.0b013e318210f54a 10.1212/WNL.0b013e31821d74e7 10.1093/neuonc/nou129 10.1007/s11060-013-1330-0 10.1016/S1470-2045(15)00088-1 10.1007/s11060-017-2375-2 10.3174/ajnr.A4898 10.1016/j.nicl.2016.02.016 10.1148/radiol.14141414 10.1148/radiol.2471062089 10.1093/neuonc/nos112 10.1159/000311520 10.3892/etm.2016.3225 10.1111/j.1754-9485.2012.02472.x 10.1007/s00234-016-1724-8 10.1371/journal.pone.0176528 10.1186/s12880-017-0183-y 10.1148/radiol.12112120 10.1002/cam4.1242 10.1007/s11060-016-2074-4 10.1200/JCO.2015.61.6870 10.3174/ajnr.A4218 10.1016/j.ijrobp.2016.11.011 10.2214/AJR.04.0933 10.1097/RCT.0b013e318074fd9d 10.1016/j.ejrad.2014.09.018 10.1007/s00234-015-1571-z 10.1007/s11307-014-0807-3 10.1007/s11060-016-2232-8 10.3174/ajnr.A4018 10.1002/jmri.24913 10.1038/ncponc1073 10.1007/s11060-011-0719-x 10.1007/s00330-006-0561-2 10.1016/j.neuroimage.2015.02.040 10.1016/j.ijrobp.2009.12.061 10.1007/s11517-016-1461-5 10.1093/neuonc/nov179 10.1016/j.nano.2016.03.009 10.3174/ajnr.A1787 10.1002/jmri.25943 10.1016/j.ejrad.2010.07.017 10.1148/radiol.13122024 10.3174/ajnr.A4474 10.3174/ajnr.A4401 10.1007/s00062-017-0584-x 10.3174/ajnr.A1377 10.1007/s00330-018-5314-5 10.1634/theoncologist.2013-0101 10.1007/s00330-012-2638-4 10.1016/j.clinimag.2015.04.003 10.1002/mrm.25197 10.1016/j.wneu.2016.01.020 10.4329/wjr.v3.i11.266 10.1007/s00701-003-0051-0 10.1007/s11060-015-1774-5 10.1148/radiol.2502071444 10.1093/neuonc/nou286 10.3174/ajnr.A3602 10.1016/j.acra.2009.10.024 10.1212/01.WNL.0000133398.11870.9A 10.1002/mrm.22147 10.1007/s13311-016-0507-6 10.1016/j.acra.2013.09.003 10.1148/radiol.2017170362 10.1158/1078-0432.CCR-16-2265 |
ContentType | Journal Article |
Copyright | 2018 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine 2018 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. 2018 International Society for Magnetic Resonance in Medicine |
Copyright_xml | – notice: 2018 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine – notice: 2018 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2018 International Society for Magnetic Resonance in Medicine |
DBID | 24P AAYXX CITATION NPM 7QO 7TK 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1002/jmri.26171 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Pseudoprogression of Brain Tumors |
EISSN | 1522-2586 |
EndPage | 589 |
ExternalDocumentID | PMC6175399 29734497 10_1002_jmri_26171 JMRI26171 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: University College London NIHR Biomedical Research Centre |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAYXX CITATION NPM 7QO 7TK 8FD FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c5141-2808d0282bb2a3f5234f3dbb845a59c6963c961547e3b840ca2c40174d0591793 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Tue Sep 30 16:37:23 EDT 2025 Fri Jul 11 04:26:15 EDT 2025 Fri Jul 25 12:24:15 EDT 2025 Mon Jul 21 05:42:28 EDT 2025 Wed Oct 01 04:37:00 EDT 2025 Thu Apr 24 23:07:32 EDT 2025 Sun Sep 21 06:19:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | diffusion magnetic resonance imaging MRI glioma perfusion weighted brain neoplasms proton magnetic resonance spectroscopy |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2018 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5141-2808d0282bb2a3f5234f3dbb845a59c6963c961547e3b840ca2c40174d0591793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26171 |
PMID | 29734497 |
PQID | 2098958293 |
PQPubID | 1006400 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6175399 proquest_miscellaneous_2036202714 proquest_journals_2098958293 pubmed_primary_29734497 crossref_citationtrail_10_1002_jmri_26171 crossref_primary_10_1002_jmri_26171 wiley_primary_10_1002_jmri_26171_JMRI26171 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2018 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: September 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Nashville – name: Hoboken |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2015; 73 2010; 17 2012; 19 2008; 32 2012; 14 2016; 37 2009; 11 1998; 171 2018; 210 2009; 10 2005; 185 2006; 23 2013; 57 2010; 28 2006; 27 2017; 78 2014; 16 2007; 9 2008; 26 2003; 49 2014; 19 2009; 19 2016; 44 2015; 57 2007; 17 2010; 31 2009; 62 2011; 80 2015; 125 2015; 123 2011; 76 2008; 249 2011; 79 2008; 247 2016; 18 1998; 133 2012; 35 2017; 134 2011; 3 2012; 107 2016; 12 2016; 11 1995; 47 1997; 37 2015; 112 2015; 351 2015; 2015 2014; 35 2007; 82 2010; 52 2017; 6 2004; 63 2015; 36 2015; 39 2017; 4 2002; 51 2013; 23 2000; 217 2013; 20 2015; 33 2008; 9 2008; 5 2005; 26 2011; 17 2011; 18 2012; 53 2010; 64 2013; 14 2006; 65 2017; 38 2015; 42 2018; 136 1999; 10 2011; 24 2007; 25 2016; 89 2014; 118 2009; 24 2015; 14 2015; 17 2012; 264 2015; 16 2010 2017; 27 2000; 21 2013; 269 2015; 10 2017; 23 2013; 266 2016; 54 2011; 33 2011; 32 2016; 128 2009; 250 2015; 9 2014; 83 2016; 58 2017; 97 2009; 30 2017; 14 2017; 17 2013; 34 2015; 275 2017; 13 2017; 12 2018 2017 2017; 19 2016 2012; 7 2003; 145 2016; 130 e_1_2_13_120_1 e_1_2_13_24_1 Thomsen H (e_1_2_13_60_1) 2012; 53 e_1_2_13_20_1 e_1_2_13_66_1 e_1_2_13_101_1 e_1_2_13_43_1 e_1_2_13_124_1 e_1_2_13_85_1 e_1_2_13_8_1 e_1_2_13_62_1 e_1_2_13_81_1 e_1_2_13_92_1 e_1_2_13_96_1 e_1_2_13_117_1 e_1_2_13_17_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 Shen Y (e_1_2_13_107_1) 2017 e_1_2_13_131_1 e_1_2_13_55_1 e_1_2_13_78_1 e_1_2_13_112_1 Jafari‐Khouzani K (e_1_2_13_80_1) 2016; 18 e_1_2_13_135_1 e_1_2_13_51_1 e_1_2_13_74_1 e_1_2_13_70_1 Boxerman JL (e_1_2_13_47_1) 2006; 27 West SE (e_1_2_13_23_1) 2017; 19 e_1_2_13_4_1 e_1_2_13_105_1 e_1_2_13_88_1 e_1_2_13_128_1 e_1_2_13_29_1 e_1_2_13_109_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_100_1 e_1_2_13_21_1 e_1_2_13_67_1 e_1_2_13_104_1 e_1_2_13_123_1 e_1_2_13_86_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_82_1 Brandes A (e_1_2_13_10_1) 2007; 9 e_1_2_13_91_1 e_1_2_13_95_1 e_1_2_13_116_1 e_1_2_13_99_1 e_1_2_13_18_1 e_1_2_13_14_1 e_1_2_13_111_1 e_1_2_13_130_1 e_1_2_13_37_1 e_1_2_13_79_1 e_1_2_13_56_1 e_1_2_13_115_1 e_1_2_13_134_1 e_1_2_13_33_1 e_1_2_13_75_1 e_1_2_13_52_1 e_1_2_13_5_1 Mullins ME (e_1_2_13_26_1) 2005; 26 e_1_2_13_108_1 e_1_2_13_127_1 e_1_2_13_49_1 e_1_2_13_122_1 e_1_2_13_68_1 Bulnes S (e_1_2_13_32_1) 2009; 24 e_1_2_13_45_1 e_1_2_13_126_1 e_1_2_13_87_1 e_1_2_13_22_1 e_1_2_13_64_1 e_1_2_13_103_1 e_1_2_13_41_1 e_1_2_13_83_1 e_1_2_13_6_1 e_1_2_13_90_1 e_1_2_13_94_1 Sugahara T (e_1_2_13_44_1) 2000; 21 e_1_2_13_98_1 e_1_2_13_119_1 e_1_2_13_138_1 e_1_2_13_19_1 e_1_2_13_133_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_110_1 e_1_2_13_137_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_76_1 e_1_2_13_30_1 Anbarloui MR (e_1_2_13_72_1) 2015; 14 e_1_2_13_2_1 e_1_2_13_121_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_102_1 e_1_2_13_125_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_84_1 e_1_2_13_7_1 e_1_2_13_61_1 Colen RR (e_1_2_13_71_1) 2016 Taal W (e_1_2_13_9_1) 2007; 25 e_1_2_13_93_1 e_1_2_13_97_1 e_1_2_13_118_1 e_1_2_13_39_1 e_1_2_13_132_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_58_1 e_1_2_13_113_1 Nailon WH (e_1_2_13_114_1) 2010 e_1_2_13_136_1 e_1_2_13_31_1 e_1_2_13_77_1 e_1_2_13_12_1 e_1_2_13_54_1 Ellingson BM (e_1_2_13_129_1) 2015; 17 e_1_2_13_73_1 e_1_2_13_50_1 e_1_2_13_3_1 e_1_2_13_106_1 e_1_2_13_89_1 e_1_2_13_28_1 |
References_xml | – volume: 17 start-page: 1188 year: 2015 end-page: 1198 article-title: Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials publication-title: Neuro Oncol – volume: 145 start-page: 557 year: 2003 end-page: 564 article-title: Diagnosis and treatment of progressive space‐occupying radiation necrosis following stereotactic radiosurgery for brain metastasis: value of proton magnetic resonance spectroscopy publication-title: Acta Neurochir (Wien) – volume: 39 start-page: 775 year: 2015 end-page: 780 article-title: Differentiation of true‐progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide by GLCM texture analysis of conventional MRI publication-title: Clin Imaging – volume: 37 start-page: 250 year: 1997 end-page: 256 article-title: Differentiation of cerebral radiation necrosis from tumor recurrence by proton magnetic resonance spectroscopy publication-title: Neurol Med Chir (Tokyo) – volume: 19 start-page: 1353 year: 2012 end-page: 1361 article-title: Diffusion‐weighted MR imaging for the differentiation of true progression from pseudoprogression following concomitant radiotherapy with temozolomide in patients with newly diagnosed high‐grade gliomas publication-title: Acad Radiol – volume: 57 start-page: 1181 year: 2015 end-page: 1202 article-title: A neuroradiologist's guide to arterial spin labeling MRI in clinical practice publication-title: Neuroradiology – volume: 17 start-page: 1675 year: 2007 end-page: 1684 article-title: Predicting patterns of glioma recurrence using diffusion tensor imaging publication-title: Eur Radiol – volume: 49 start-page: 440 year: 2003 end-page: 449 article-title: Mechanism of magnetization transfer during on‐resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids publication-title: Magn Reson Med – volume: 11 start-page: 2432 year: 2016 end-page: 2436 article-title: Differentiation between recurrent gliomas and radiation necrosis using arterial spin labeling perfusion imaging publication-title: Exp Ther Med – volume: 83 start-page: 2181 year: 2014 end-page: 2189 article-title: Role of magnetic resonance spectroscopy for the differentiation of recurrent glioma from radiation necrosis: a systematic review and meta‐analysis publication-title: Eur J Radiol – volume: 52 start-page: 307 year: 2010 end-page: 317 article-title: Perfusion MRI of brain tumours: a comparative study of pseudo‐continuous arterial spin labelling and dynamic susceptibility contrast imaging publication-title: Neuroradiology – volume: 16 start-page: vii24 issue: Suppl 7 year: 2014 end-page: 35 article-title: Impact of imaging measurements on response assessment in glioblastoma clinical trials publication-title: Neuro Oncol – volume: 36 start-page: 1846 year: 2015 end-page: 1852 article-title: Independent poor prognostic factors for true progression after radiation therapy and concomitant temozolomide in patients with glioblastoma: subependymal enhancement and low ADC value publication-title: AJNR Am J Neuroradiol – volume: 39 start-page: 571 year: 2015 end-page: 575 article-title: Detection of small brain metastases at 3 T: comparing the diagnostic performances of contrast‐enhanced T1‐weighted SPACE, MPRAGE, and 2D FLASH imaging publication-title: Clin Imaging – volume: 26 start-page: 3387 year: 2008 end-page: 3394 article-title: Functional diffusion map as an early imaging biomarker for high‐grade glioma: correlation with conventional radiologic response and overall survival publication-title: J Clin Oncol – volume: 65 start-page: 499 year: 2006 end-page: 508 article-title: Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy publication-title: Int J Radiat Oncol Biol Phys – volume: 38 start-page: 1297 year: 2017 end-page: 1302 article-title: What does the boxed warning tell us? Safe practice of using ferumoxytol as an MRI contrast agent publication-title: AJNR Am J Neuroradiol – volume: 20 start-page: 485 year: 2013 end-page: 502 article-title: Cerebral radiation necrosis: a review of the pathobiology, diagnosis and management considerations publication-title: J Clin Neurosci – volume: 17 start-page: 130 year: 2011 end-page: 134 article-title: Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides publication-title: Nat Med – volume: 7 start-page: e52008 year: 2012 article-title: Delayed contrast extravasation MRI for depicting tumor and non‐tumoral tissues in primary and metastatic brain tumors publication-title: PLoS One – volume: 19 start-page: 75 year: 2014 end-page: 81 article-title: Low incidence of pseudoprogression by imaging in newly diagnosed glioblastoma patients treated with cediranib in combination with chemoradiation publication-title: Oncologist – volume: 266 start-page: 842 year: 2013 end-page: 852 article-title: Pseudoprogression of glioblastoma after chemo‐ and radiation therapy: diagnosis by using dynamic susceptibility‐weighted contrast‐enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival publication-title: Radiology – volume: 107 start-page: 207 year: 2012 end-page: 212 article-title: Improved survival time trends for glioblastoma using the SEER 17 population‐based registries publication-title: J Neurooncol – volume: 62 start-page: 1609 year: 2009 end-page: 1618 article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme publication-title: Magn Reson Med – volume: 14 start-page: 307 year: 2017 end-page: 320 article-title: Modified criteria for radiographic response assessment in glioblastoma clinical trials publication-title: Neurother J Am Soc Exp Neurother – volume: 83 start-page: e100 year: 2014 end-page: 105 article-title: Molecular and metabolic pattern classification for detection of brain glioma progression publication-title: Eur J Radiol – volume: 185 start-page: 1471 year: 2005 end-page: 1476 article-title: Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy publication-title: AJR Am J Roentgenol – volume: 275 start-page: 792 year: 2015 end-page: 802 article-title: Pseudoprogression in patients with glioblastoma: assessment by using volume‐weighted voxel‐based multiparametric clustering of MR imaging data in an independent test set publication-title: Radiology – volume: 30 start-page: 552 year: 2009 end-page: 558 article-title: Relative cerebral blood volume values to differentiate high‐grade glioma recurrence from posttreatment radiation effect: direct correlation between image‐guided tissue histopathology and localized dynamic susceptibility‐weighted contrast‐enhanced perfusion MR imaging measurements publication-title: AJNR Am J Neuroradiol – volume: 264 start-page: 834 year: 2012 end-page: 843 article-title: Percent change of perfusion skewness and kurtosis: a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas publication-title: Radiology – volume: 128 start-page: 67 year: 2016 end-page: 74 article-title: Small increases in enhancement on MRI may predict survival post radiotherapy in patients with glioblastoma publication-title: J Neurooncol – volume: 31 start-page: 40 year: 2010 end-page: 48 article-title: Optimized preload leakage‐correction methods to improve the diagnostic accuracy of dynamic susceptibility‐weighted contrast‐enhanced perfusion MR imaging in posttreatment gliomas publication-title: Am J Neuroradiol – volume: 18 start-page: 467 year: 2016 end-page: 478 article-title: Physiologic MRI for assessment of response to therapy and prognosis in glioblastoma publication-title: Neuro Oncol – volume: 17 start-page: 151 year: 2015 end-page: 159 article-title: Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence publication-title: Neuro Oncol – volume: 14 start-page: 29 year: 2015 end-page: 34 article-title: Accuracy of magnetic resonance spectroscopy in distinction between radiation necrosis and recurrence of brain tumors publication-title: Iran J Neurol – volume: 36 start-page: 877 year: 2015 end-page: 885 article-title: Diffusion and perfusion MRI to differentiate treatment‐related changes including pseudoprogression from recurrent tumors in high‐grade gliomas with histopathologic evidence publication-title: AJNR Am J Neuroradiol – volume: 19 start-page: 1391 year: 2017 end-page: 1397 article-title: Biopsy of enlarging lesions after stereotactic radiosurgery for brain metastases frequently reveals radiation necrosis publication-title: Neuro Oncol – volume: 42 start-page: 1362 year: 2015 end-page: 1368 article-title: Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI publication-title: J Magn Reson Imaging JMRI – volume: 118 start-page: 123 year: 2014 end-page: 129 article-title: Impact of MRI head placement on glioma response assessment publication-title: J Neurooncol – volume: 125 start-page: 183 year: 2015 end-page: 190 article-title: Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma publication-title: J Neurooncol – year: 2018 article-title: Cerebral blood volume mapping with ferumoxytol in dynamic susceptibility contrast perfusion MRI: Comparison to standard of care publication-title: J Magn Reson Imaging JMRI – volume: 12 start-page: e0176528 year: 2017 article-title: Analysis of heterogeneity in T2‐weighted MR images can differentiate pseudoprogression from progression in glioblastoma publication-title: PLoS One – volume: 33 start-page: 296 year: 2011 end-page: 305 article-title: Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma publication-title: J Magn Reson Imaging JMRI – volume: 17 start-page: 282 year: 2010 end-page: 290 article-title: Glioma recurrence versus radiation necrosis? A pilot comparison of arterial spin‐labeled, dynamic susceptibility contrast enhanced MRI, and FDG‐PET imaging publication-title: Acad Radiol – volume: 80 start-page: 462 year: 2011 end-page: 470 article-title: Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas publication-title: Eur J Radiol – volume: 37 start-page: 2201 year: 2016 end-page: 2208 article-title: Progressing bevacizumab‐induced diffusion restriction is associated with coagulative necrosis surrounded by viable tumor and decreased overall survival in patients with recurrent glioblastoma publication-title: AJNR Am J Neuroradiol – year: 2017 article-title: Incidence of tumour progression and pseudoprogression in high‐grade gliomas: a systematic review and meta‐analysis publication-title: Clin Neuroradiol – volume: 19 start-page: 527 year: 2009 end-page: 557 article-title: Magnetic resonance perfusion and permeability imaging in brain tumors publication-title: Neuroimaging Clin N Am – volume: 107 start-page: 51 year: 2012 end-page: 60 article-title: Evaluation of radiation necrosis and malignant glioma in rat models using diffusion tensor MR imaging publication-title: J Neurooncol – volume: 53 start-page: 95 year: 2012 end-page: 101 article-title: Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas publication-title: Acta Radiol Stockh Swed 1987 – volume: 35 start-page: 2091 year: 2014 end-page: 2098 article-title: Comparison of multiple parameters obtained on 3T pulsed arterial spin‐labeling, diffusion tensor imaging, and MRS and the Ki‐67 labeling index in evaluating glioma grading publication-title: AJNR Am J Neuroradiol – volume: 23 start-page: 879 year: 2013 end-page: 886 article-title: Analysis of the layering pattern of the apparent diffusion coefficient (ADC) for differentiation of radiation necrosis from tumour progression publication-title: Eur Radiol – volume: 63 start-page: 535 year: 2004 end-page: 537 article-title: Immediate post‐radiotherapy changes in malignant glioma can mimic tumor progression publication-title: Neurology – year: 2016 – volume: 24 start-page: 211 year: 2011 end-page: 223 article-title: Correlation between arterial blood volume obtained by arterial spin labelling and cerebral blood volume in intracranial tumours publication-title: Magma – volume: 28 start-page: 1963 year: 2010 end-page: 1972 article-title: Updated response assessment criteria for high‐grade gliomas: response assessment in neuro‐oncology working group publication-title: J Clin Oncol – volume: 76 start-page: 1918 year: 2011 end-page: 1924 article-title: Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma publication-title: Neurology – year: 2010 – volume: 73 start-page: 102 year: 2015 end-page: 116 article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn Reson Med – volume: 19 start-page: 719 year: 2017 end-page: 725 article-title: Incidence of pseudoprogression in low‐grade gliomas treated with radiotherapy publication-title: Neuro Oncol – volume: 247 start-page: 170 year: 2008 end-page: 178 article-title: Low‐grade gliomas: do changes in rCBV measurements at longitudinal perfusion‐weighted MR imaging predict malignant transformation? publication-title: Radiology – volume: 217 start-page: 377 year: 2000 end-page: 384 article-title: Malignant gliomas: MR imaging spectrum of radiation therapy‐ and chemotherapy‐induced necrosis of the brain after treatment publication-title: Radiology – volume: 250 start-page: 887 year: 2009 end-page: 896 article-title: Posttreatment recurrence of malignant brain neoplasm: accuracy of relative cerebral blood volume fraction in discriminating low from high malignant histologic volume fraction publication-title: Radiology – volume: 79 start-page: 1487 year: 2011 end-page: 1495 article-title: Randomized double‐blind placebo‐controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system publication-title: Int J Radiat Oncol Biol Phys – volume: 130 start-page: 181 year: 2016 end-page: 192 article-title: Do perfusion and diffusion MRI predict glioblastoma relapse sites following chemoradiation? publication-title: J Neurooncol – volume: 27 start-page: 4129 year: 2017 end-page: 4144 article-title: Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high‐grade glioma, a systematic review and meta‐analysis publication-title: Eur Radiol – start-page: 30 year: 2017 article-title: Imaging of nuclear Overhauser enhancement at 7 and 3 T publication-title: NMR Biomed – volume: 20 start-page: 1557 year: 2013 end-page: 1565 article-title: Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high‐grade gliomas from stable disease publication-title: Acad Radiol – volume: 34 start-page: 2298 year: 2013 end-page: 2303 article-title: Stroke‐like migraine attacks after radiation therapy (SMART) syndrome is not always completely reversible: a case series publication-title: AJNR Am J Neuroradiol – year: 2018 article-title: Glioma imaging in Europe: A survey of 220 centres and recommendations for best clinical practice publication-title: Eur Radiol – volume: 5 start-page: 220 year: 2008 end-page: 233 article-title: Technology insight: water diffusion MRI—a potential new biomarker of response to cancer therapy publication-title: Nat Clin Pract Oncol – volume: 52 start-page: 297 year: 2010 end-page: 306 article-title: Distinction between glioma progression and post‐radiation change by combined physiologic MR imaging publication-title: Neuroradiology – volume: 27 start-page: 859 year: 2006 end-page: 867 article-title: Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not publication-title: AJNR Am J Neuroradiol – volume: 9 start-page: 453 year: 2008 end-page: 461 article-title: Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas publication-title: Lancet Oncol – volume: 133 start-page: 36 year: 1998 end-page: 45 article-title: Detection of proton chemical exchange between metabolites and water in biological tissues publication-title: J Magn Reson – volume: 23 start-page: 3667 year: 2017 end-page: 3675 article-title: Differentiation between radiation necrosis and tumor progression using chemical exchange saturation transfer publication-title: Clin Cancer Res – volume: 54 start-page: 1707 year: 2016 end-page: 1718 article-title: Extracted magnetic resonance texture features discriminate between phenotypes and are associated with overall survival in glioblastoma multiforme patients publication-title: Med Biol Eng Comput – volume: 123 start-page: 141 year: 2015 end-page: 150 article-title: Characterization of pseudoprogression in patients with glioblastoma: is histology the gold standard? publication-title: J Neurooncol – volume: 17 start-page: 434 year: 2015 end-page: 442 article-title: Relationship between [18F]FDOPA PET uptake, apparent diffusion coefficient (ADC), and proliferation rate in recurrent malignant gliomas publication-title: Mol Imaging Biol – volume: 10 start-page: e0136380 year: 2015 article-title: Uninterpretable dynamic susceptibility contrast‐enhanced perfusion MR images in patients with post‐treatment glioblastomas: cross‐validation of alternative imaging options publication-title: PLoS One – volume: 19 start-page: 118 year: 2017 end-page: 127 article-title: MR perfusion‐weighted imaging in the evaluation of high‐grade gliomas after treatment: a systematic review and meta‐analysis publication-title: Neuro Oncol – volume: 51 start-page: 912 year: 2002 end-page: 919 article-title: Correlations between magnetic resonance spectroscopy and image‐guided histopathology, with special attention to radiation necrosis publication-title: Neurosurgery – volume: 9 start-page: 529 year: 2007 end-page: 529 article-title: Pseudoprogression after concomitant radio‐chemotherapy treatment in newly diagnosed glioblastoma patients and potential correlation with MGMT methylation status publication-title: Neuro Oncol – volume: 37 start-page: 28 year: 2016 end-page: 36 article-title: Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI publication-title: AJNR Am J Neuroradiol – volume: 6 start-page: 2858 year: 2017 end-page: 2866 article-title: Pseudoprogression as an adverse event of glioblastoma therapy publication-title: Cancer Med – volume: 9 start-page: 291 year: 2015 end-page: 299 article-title: Clinically feasible NODDI characterization of glioma using multiband EPI at 7 T publication-title: NeuroImage Clin – volume: 4 start-page: 034001 year: 2017 article-title: Effective user interaction in online interactive semantic segmentation of glioblastoma magnetic resonance imaging publication-title: J Med Imaging – volume: 16 start-page: e534 year: 2015 end-page: e542 article-title: Immunotherapy response assessment in neuro oncology (iRANO): A report of the RANO Working Group publication-title: Lancet Oncol – volume: 2015 start-page: 641023 year: 2015 article-title: The diagnostic ability of follow‐up imaging biomarkers after treatment of glioblastoma in the temozolomide era: implications from proton MR spectroscopy and apparent diffusion coefficient mapping publication-title: BioMed Res Int – volume: 18 start-page: 575 year: 2011 end-page: 583 article-title: Distinguishing recurrent high‐grade gliomas from radiation injury: a pilot study using dynamic contrast‐enhanced MR imaging publication-title: Acad Radiol – volume: 47 start-page: 89 year: 1995 end-page: 94 article-title: Vascular morphology and angiogenesis in glial tumors publication-title: Exp Toxicol Pathol – volume: 12 start-page: 1535 year: 2016 end-page: 1542 article-title: Ferumoxytol nanoparticle uptake in brain during acute neuroinflammation is cell‐specific publication-title: Nanomed Nanotechnol Biol Med – volume: 32 start-page: 382 year: 2011 end-page: 387 article-title: Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen‐6‐methylguanine‐DNA methyltransferase promoter methylation status publication-title: AJNR Am J Neuroradiol – volume: 11 start-page: 102 year: 2009 end-page: 125 article-title: Diffusion‐weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations publication-title: Neoplasia N – volume: 171 start-page: 1479 year: 1998 end-page: 1486 article-title: Correlation of MR imaging‐determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas publication-title: AJR Am J Roentgenol – volume: 36 start-page: E41 year: 2015 end-page: 51 article-title: ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain publication-title: AJNR Am J Neuroradiol – volume: 14 start-page: 662 year: 2013 end-page: 672 article-title: True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis publication-title: Korean J Radiol – volume: 112 start-page: 180 year: 2015 end-page: 188 article-title: Relaxation‐compensated CEST‐MRI of the human brain at 7T: Unbiased insight into NOE and amide signal changes in human glioblastoma publication-title: NeuroImage – volume: 11 start-page: 316 year: 2016 end-page: 321 article-title: Advanced MRI increases the diagnostic accuracy of recurrent glioblastoma: Single institution thresholds and validation of MR spectroscopy and diffusion weighted MR imaging publication-title: NeuroImage Clin – volume: 18 start-page: 1569 year: 2016 end-page: 1578 article-title: Volumetric relationship between 2‐hydroxyglutarate and FLAIR hyperintensity has potential implications for radiotherapy planning of mutant IDH glioma patients publication-title: Neuro Oncol – volume: 35 start-page: 284 year: 2012 end-page: 289 article-title: Pseudoprogression in patients with glioblastoma multiforme after concurrent radiotherapy and temozolomide publication-title: Am J Clin Oncol – volume: 25 start-page: 2009 issue: 18_suppl year: 2007 end-page: 2009 article-title: The incidence of pseudo‐progression in a cohort of malignant glioma patients treated with chemo‐radiation with temozolomide publication-title: J Clin Oncol – volume: 351 start-page: 65 year: 2015 end-page: 71 article-title: Diagnostic accuracy of diffusion MRI with quantitative ADC measurements in differentiating glioma recurrence from radiation necrosis publication-title: J Neurol Sci – volume: 16 start-page: 441 year: 2014 end-page: 448 article-title: Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades publication-title: Neuro Oncol – volume: 36 start-page: 2242 year: 2015 end-page: 2249 article-title: Impact of software modeling on the accuracy of perfusion MRI in glioma publication-title: AJNR Am J Neuroradiol – volume: 13 start-page: 386 year: 2017 end-page: 394 article-title: The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy publication-title: NeuroImage Clin – volume: 31 start-page: 538 year: 2010 end-page: 548 article-title: Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity publication-title: J Magn Reson Imaging JMRI – volume: 57 start-page: 441 year: 2015 end-page: 467 article-title: State‐of‐the‐art MRI techniques in neuroradiology: principles, pitfalls, and clinical applications publication-title: Neuroradiology – volume: 44 start-page: 456 year: 2016 end-page: 462 article-title: Applying amide proton transfer‐weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas publication-title: J Magn Reson Imaging JMRI – volume: 21 start-page: 901 year: 2000 end-page: 909 article-title: Posttherapeutic intraaxial brain tumor: the value of perfusion‐sensitive contrast‐enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast‐enhancing tissue publication-title: AJNR Am J Neuroradiol – volume: 64 start-page: 21 year: 2010 end-page: 26 article-title: A comparative study of perfusion measurement in brain tumours at 3 Tesla MR: Arterial spin labeling versus dynamic susceptibility contrast‐enhanced MRI publication-title: Eur Neurol – volume: 12 start-page: e0174620 year: 2017 article-title: Differentiation of pseudoprogression and real progression in glioblastoma using ADC parametric response maps publication-title: PLoS One – volume: 17 start-page: 10 year: 2017 article-title: Combination of IVIM‐DWI and 3D‐ASL for differentiating true progression from pseudoprogression of Glioblastoma multiforme after concurrent chemoradiotherapy: study protocol of a prospective diagnostic trial publication-title: BMC Med Imaging – volume: 32 start-page: 313 year: 2008 end-page: 319 article-title: Difference in enhancement between spin echo and 3‐dimensional fast spoiled gradient recalled acquisition in steady state magnetic resonance imaging of brain metastasis at 3‐T magnetic resonance imaging publication-title: J Comput Assist Tomogr – volume: 210 start-page: 18 year: 2018 end-page: 23 article-title: Multiparametric MRI for differentiation of radiation necrosis from recurrent tumor in patients with treated glioblastoma publication-title: AJR Am J Roentgenol – volume: 10 start-page: 459 year: 2009 end-page: 466 article-title: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5‐year analysis of the EORTC‐NCIC trial publication-title: Lancet Oncol – volume: 136 start-page: 207 year: 2018 end-page: 212 article-title: Imaging changes over 18 months following stereotactic radiosurgery for brain metastases: both late radiation necrosis and tumor progression can occur publication-title: J Neurooncol – volume: 33 start-page: 3541 year: 2015 end-page: 3543 article-title: Pseudoprogression and immune‐related response in solid tumors publication-title: J Clin Oncol – volume: 24 start-page: 693 year: 2009 end-page: 706 article-title: Microvascular adaptive changes in experimental endogenous brain gliomas publication-title: Histol Histopathol – volume: 134 start-page: 495 year: 2017 end-page: 504 article-title: Pseudoprogression, radionecrosis, inflammation or true tumor progression? Challenges associated with glioblastoma response assessment in an evolving therapeutic landscape publication-title: J Neurooncol – volume: 269 start-page: 831 year: 2013 end-page: 840 article-title: Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high‐b‐value diffusion‐weighted imaging publication-title: Radiology – volume: 26 start-page: 1967 year: 2005 end-page: 1972 article-title: Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis publication-title: AJNR Am J Neuroradiol – start-page: 170362 year: 2018 article-title: Brain gliomas: multicenter standardized assessment of dynamic contrast‐enhanced and dynamic susceptibility contrast MR images publication-title: Radiology – volume: 32 start-page: 2073 year: 2011 end-page: 2079 article-title: Quantitative blood flow measurements in gliomas using arterial spin‐labeling at 3T: intermodality agreement and inter‐ and intraobserver reproducibility study publication-title: AJNR Am J Neuroradiol – volume: 23 start-page: 19 year: 2006 end-page: 27 article-title: Multivoxel proton MRS for differentiation of radiation‐induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases publication-title: Brain Tumor Pathol – volume: 3 start-page: 266 year: 2011 end-page: 272 article-title: Magnetic resonance imaging appearance and changes on intracavitary Gliadel wafer placement: A pilot study publication-title: World J Radiol – volume: 97 start-page: 586 year: 2017 end-page: 595 article-title: Association of radiomics and metabolic tumor volumes in radiation treatment of glioblastoma multiforme publication-title: Int J Radiat Oncol Biol Phys – volume: 78 start-page: 1100 year: 2017 end-page: 1109 article-title: Predicting IDH mutation status in grade II gliomas using amide proton transfer‐weighted (APTw) MRI publication-title: Magn Reson Med – volume: 118 start-page: 435 year: 2014 end-page: 460 article-title: The role of imaging in the management of progressive glioblastoma?: A systematic review and evidence‐based clinical practice guideline publication-title: J Neurooncol – volume: 89 start-page: 37 year: 2016 end-page: 41 article-title: Impact of resecting radiation necrosis and pseudoprogression on survival of patients with glioblastoma publication-title: World Neurosurg – volume: 14 start-page: 919 year: 2012 end-page: 930 article-title: Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival publication-title: Neuro Oncol – volume: 82 start-page: 81 year: 2007 end-page: 83 article-title: Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma publication-title: J Neurooncol – volume: 58 start-page: 1027 year: 2016 end-page: 1034 article-title: Discrepant longitudinal volumetric and metabolic evolution of diffuse intrinsic Pontine gliomas during treatment: implications for current response assessment strategies publication-title: Neuroradiology – volume: 249 start-page: 601 year: 2008 end-page: 613 article-title: Comparison of dynamic susceptibility‐weighted contrast‐enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors publication-title: Radiology – volume: 10 start-page: 223 year: 1999 end-page: 232 article-title: Estimating kinetic parameters from dynamic contrast‐enhanced T(1)‐weighted MRI of a diffusable tracer: standardized quantities and symbols publication-title: J Magn Reson Imaging JMRI – volume: 57 start-page: 349 year: 2013 end-page: 355 article-title: MRI patterns of T1 enhancing radiation necrosis versus tumour recurrence in high‐grade gliomas publication-title: J Med Imaging Radiat Oncol – volume: 18 start-page: 1434 year: 2016 end-page: 1441 article-title: Evaluation of pseudoprogression rates and tumor progression patterns in a phase III trial of bevacizumab plus radiotherapy/temozolomide for newly diagnosed glioblastoma publication-title: Neuro Oncol – ident: e_1_2_13_18_1 doi: 10.1016/S1470-2045(08)70125-6 – volume-title: Imaging of Brain Tumors, An Issue of Magnetic Resonance Imaging Clinics of North America, E‐Book year: 2016 ident: e_1_2_13_71_1 – ident: e_1_2_13_25_1 doi: 10.1007/s11060-017-2647-x – ident: e_1_2_13_109_1 doi: 10.1093/neuonc/not158 – ident: e_1_2_13_24_1 doi: 10.1093/neuonc/nox090 – ident: e_1_2_13_133_1 doi: 10.1593/neo.81328 – ident: e_1_2_13_7_1 doi: 10.1148/radiology.217.2.r00nv36377 – ident: e_1_2_13_62_1 doi: 10.1007/s00234-009-0616-6 – volume: 14 start-page: 29 year: 2015 ident: e_1_2_13_72_1 article-title: Accuracy of magnetic resonance spectroscopy in distinction between radiation necrosis and recurrence of brain tumors publication-title: Iran J Neurol – ident: e_1_2_13_84_1 doi: 10.1002/jmri.22068 – ident: e_1_2_13_101_1 doi: 10.1148/radiol.12111472 – ident: e_1_2_13_126_1 doi: 10.1016/j.nicl.2016.12.020 – ident: e_1_2_13_110_1 doi: 10.1002/mrm.26820 – ident: e_1_2_13_131_1 doi: 10.1016/j.clinimag.2015.02.010 – ident: e_1_2_13_104_1 doi: 10.3174/ajnr.A5188 – ident: e_1_2_13_105_1 doi: 10.1006/jmre.1998.1440 – ident: e_1_2_13_136_1 doi: 10.1117/1.JMI.4.3.034001 – ident: e_1_2_13_68_1 doi: 10.2176/nmc.37.250 – ident: e_1_2_13_34_1 doi: 10.2214/ajr.171.6.9843274 – ident: e_1_2_13_40_1 doi: 10.1007/s00330-017-4789-9 – ident: e_1_2_13_75_1 doi: 10.1155/2015/641023 – ident: e_1_2_13_55_1 doi: 10.1007/s11060-015-1893-z – ident: e_1_2_13_59_1 doi: 10.1371/journal.pone.0136380 – ident: e_1_2_13_33_1 doi: 10.1016/S0940-2993(11)80292-7 – ident: e_1_2_13_53_1 doi: 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S – ident: e_1_2_13_11_1 doi: 10.1093/neuonc/now091 – volume-title: Texture Analysis Methods for Medical Image Characterisation year: 2010 ident: e_1_2_13_114_1 – ident: e_1_2_13_3_1 doi: 10.1016/S1470-2045(09)70025-7 – ident: e_1_2_13_19_1 doi: 10.1016/j.jocn.2012.09.011 – ident: e_1_2_13_111_1 doi: 10.1038/nm.2268 – ident: e_1_2_13_77_1 doi: 10.1007/s10014-006-0194-9 – ident: e_1_2_13_41_1 doi: 10.1093/neuonc/now148 – ident: e_1_2_13_92_1 doi: 10.1200/JCO.2007.15.2363 – ident: e_1_2_13_97_1 doi: 10.1016/j.nicl.2015.08.017 – ident: e_1_2_13_73_1 doi: 10.1097/00006123-200210000-00010 – ident: e_1_2_13_89_1 doi: 10.1016/j.jns.2015.02.038 – ident: e_1_2_13_135_1 doi: 10.3174/ajnr.A4451 – volume: 24 start-page: 693 year: 2009 ident: e_1_2_13_32_1 article-title: Microvascular adaptive changes in experimental endogenous brain gliomas publication-title: Histol Histopathol – ident: e_1_2_13_93_1 doi: 10.1371/journal.pone.0174620 – ident: e_1_2_13_50_1 doi: 10.1148/radiol.2492071659 – ident: e_1_2_13_5_1 doi: 10.1007/s11060-006-9241-y – ident: e_1_2_13_56_1 doi: 10.2214/AJR.17.18003 – ident: e_1_2_13_119_1 doi: 10.1002/jmri.22432 – ident: e_1_2_13_65_1 doi: 10.3174/ajnr.A2725 – ident: e_1_2_13_64_1 doi: 10.1007/s10334-011-0255-x – volume: 27 start-page: 859 year: 2006 ident: e_1_2_13_47_1 article-title: Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not publication-title: AJNR Am J Neuroradiol – ident: e_1_2_13_86_1 doi: 10.3348/kjr.2013.14.4.662 – ident: e_1_2_13_125_1 doi: 10.1007/s00234-009-0613-9 – ident: e_1_2_13_2_1 doi: 10.1007/s11060-011-0738-7 – ident: e_1_2_13_85_1 doi: 10.1016/j.acra.2012.06.011 – ident: e_1_2_13_46_1 doi: 10.3174/ajnr.A2286 – ident: e_1_2_13_49_1 doi: 10.3174/ajnr.A4341 – ident: e_1_2_13_57_1 doi: 10.1016/j.acra.2011.01.018 – volume: 25 start-page: 2009 issue: 18 year: 2007 ident: e_1_2_13_9_1 article-title: The incidence of pseudo‐progression in a cohort of malignant glioma patients treated with chemo‐radiation with temozolomide publication-title: J Clin Oncol doi: 10.1200/jco.2007.25.18_suppl.2009 – ident: e_1_2_13_138_1 doi: 10.1007/s00234-015-1500-1 – ident: e_1_2_13_106_1 doi: 10.1002/mrm.10398 – volume: 18 start-page: 1569 year: 2016 ident: e_1_2_13_80_1 article-title: Volumetric relationship between 2‐hydroxyglutarate and FLAIR hyperintensity has potential implications for radiotherapy planning of mutant IDH glioma patients publication-title: Neuro Oncol – ident: e_1_2_13_8_1 doi: 10.1200/JCO.2009.26.3541 – ident: e_1_2_13_121_1 doi: 10.1016/j.ejrad.2013.06.033 – ident: e_1_2_13_6_1 doi: 10.1016/j.ijrobp.2005.12.002 – ident: e_1_2_13_58_1 doi: 10.1371/journal.pone.0052008 – ident: e_1_2_13_54_1 doi: 10.1016/j.nic.2009.08.007 – ident: e_1_2_13_132_1 doi: 10.1007/s11060-014-1403-8 – volume: 21 start-page: 901 year: 2000 ident: e_1_2_13_44_1 article-title: Posttherapeutic intraaxial brain tumor: the value of perfusion‐sensitive contrast‐enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast‐enhancing tissue publication-title: AJNR Am J Neuroradiol – ident: e_1_2_13_112_1 doi: 10.1002/jmri.25159 – ident: e_1_2_13_14_1 doi: 10.1097/COC.0b013e318210f54a – ident: e_1_2_13_15_1 doi: 10.1212/WNL.0b013e31821d74e7 – ident: e_1_2_13_12_1 doi: 10.1093/neuonc/nou129 – ident: e_1_2_13_37_1 doi: 10.1007/s11060-013-1330-0 – ident: e_1_2_13_28_1 doi: 10.1016/S1470-2045(15)00088-1 – ident: e_1_2_13_20_1 doi: 10.1007/s11060-017-2375-2 – ident: e_1_2_13_100_1 doi: 10.3174/ajnr.A4898 – ident: e_1_2_13_69_1 doi: 10.1016/j.nicl.2016.02.016 – ident: e_1_2_13_99_1 doi: 10.1148/radiol.14141414 – ident: e_1_2_13_127_1 doi: 10.1148/radiol.2471062089 – volume: 17 start-page: 1188 year: 2015 ident: e_1_2_13_129_1 article-title: Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials publication-title: Neuro Oncol – volume: 9 start-page: 529 year: 2007 ident: e_1_2_13_10_1 article-title: Pseudoprogression after concomitant radio‐chemotherapy treatment in newly diagnosed glioblastoma patients and potential correlation with MGMT methylation status publication-title: Neuro Oncol – volume: 19 start-page: 719 year: 2017 ident: e_1_2_13_23_1 article-title: Incidence of pseudoprogression in low‐grade gliomas treated with radiotherapy publication-title: Neuro Oncol – ident: e_1_2_13_52_1 doi: 10.1093/neuonc/nos112 – ident: e_1_2_13_63_1 doi: 10.1159/000311520 – ident: e_1_2_13_66_1 doi: 10.3892/etm.2016.3225 – volume: 53 start-page: 95 year: 2012 ident: e_1_2_13_60_1 article-title: Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas publication-title: Acta Radiol Stockh Swed 1987 – ident: e_1_2_13_36_1 doi: 10.1111/j.1754-9485.2012.02472.x – ident: e_1_2_13_79_1 doi: 10.1007/s00234-016-1724-8 – ident: e_1_2_13_118_1 doi: 10.1371/journal.pone.0176528 – ident: e_1_2_13_98_1 doi: 10.1186/s12880-017-0183-y – ident: e_1_2_13_51_1 doi: 10.1148/radiol.12112120 – ident: e_1_2_13_13_1 doi: 10.1002/cam4.1242 – ident: e_1_2_13_31_1 doi: 10.1007/s11060-016-2074-4 – ident: e_1_2_13_27_1 doi: 10.1200/JCO.2015.61.6870 – ident: e_1_2_13_87_1 doi: 10.3174/ajnr.A4218 – ident: e_1_2_13_78_1 doi: 10.1016/j.ijrobp.2016.11.011 – ident: e_1_2_13_74_1 doi: 10.2214/AJR.04.0933 – ident: e_1_2_13_130_1 doi: 10.1097/RCT.0b013e318074fd9d – ident: e_1_2_13_76_1 doi: 10.1016/j.ejrad.2014.09.018 – ident: e_1_2_13_61_1 doi: 10.1007/s00234-015-1571-z – ident: e_1_2_13_82_1 doi: 10.1007/s11307-014-0807-3 – ident: e_1_2_13_96_1 doi: 10.1007/s11060-016-2232-8 – ident: e_1_2_13_83_1 doi: 10.3174/ajnr.A4018 – ident: e_1_2_13_120_1 doi: 10.1002/jmri.24913 – ident: e_1_2_13_81_1 doi: 10.1038/ncponc1073 – ident: e_1_2_13_90_1 doi: 10.1007/s11060-011-0719-x – ident: e_1_2_13_95_1 doi: 10.1007/s00330-006-0561-2 – ident: e_1_2_13_108_1 doi: 10.1016/j.neuroimage.2015.02.040 – ident: e_1_2_13_21_1 doi: 10.1016/j.ijrobp.2009.12.061 – ident: e_1_2_13_115_1 doi: 10.1007/s11517-016-1461-5 – ident: e_1_2_13_48_1 doi: 10.1093/neuonc/nov179 – ident: e_1_2_13_103_1 doi: 10.1016/j.nano.2016.03.009 – ident: e_1_2_13_45_1 doi: 10.3174/ajnr.A1787 – ident: e_1_2_13_102_1 doi: 10.1002/jmri.25943 – ident: e_1_2_13_124_1 doi: 10.1016/j.ejrad.2010.07.017 – volume: 26 start-page: 1967 year: 2005 ident: e_1_2_13_26_1 article-title: Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis publication-title: AJNR Am J Neuroradiol – ident: e_1_2_13_88_1 doi: 10.1148/radiol.13122024 – ident: e_1_2_13_94_1 doi: 10.3174/ajnr.A4474 – ident: e_1_2_13_35_1 doi: 10.3174/ajnr.A4401 – ident: e_1_2_13_39_1 doi: 10.1007/s00062-017-0584-x – ident: e_1_2_13_42_1 doi: 10.3174/ajnr.A1377 – ident: e_1_2_13_38_1 doi: 10.1007/s00330-018-5314-5 – ident: e_1_2_13_22_1 doi: 10.1634/theoncologist.2013-0101 – ident: e_1_2_13_91_1 doi: 10.1007/s00330-012-2638-4 – ident: e_1_2_13_117_1 doi: 10.1016/j.clinimag.2015.04.003 – start-page: 30 year: 2017 ident: e_1_2_13_107_1 article-title: Imaging of nuclear Overhauser enhancement at 7 and 3 T publication-title: NMR Biomed – ident: e_1_2_13_134_1 doi: 10.1002/mrm.25197 – ident: e_1_2_13_16_1 doi: 10.1016/j.wneu.2016.01.020 – ident: e_1_2_13_29_1 doi: 10.4329/wjr.v3.i11.266 – ident: e_1_2_13_70_1 doi: 10.1007/s00701-003-0051-0 – ident: e_1_2_13_17_1 doi: 10.1007/s11060-015-1774-5 – ident: e_1_2_13_43_1 doi: 10.1148/radiol.2502071444 – ident: e_1_2_13_128_1 doi: 10.1093/neuonc/nou286 – ident: e_1_2_13_30_1 doi: 10.3174/ajnr.A3602 – ident: e_1_2_13_67_1 doi: 10.1016/j.acra.2009.10.024 – ident: e_1_2_13_4_1 doi: 10.1212/01.WNL.0000133398.11870.9A – ident: e_1_2_13_116_1 doi: 10.1002/mrm.22147 – ident: e_1_2_13_122_1 doi: 10.1007/s13311-016-0507-6 – ident: e_1_2_13_123_1 doi: 10.1016/j.acra.2013.09.003 – ident: e_1_2_13_137_1 doi: 10.1148/radiol.2017170362 – ident: e_1_2_13_113_1 doi: 10.1158/1078-0432.CCR-16-2265 |
SSID | ssj0009945 |
Score | 2.6285472 |
Snippet | This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 571 |
SubjectTerms | Accuracy Brain Brain cancer brain neoplasms Brain tumors Clinical trials CME Contrast agents Data processing Diagnostic systems diffusion Glioma Magnetic resonance imaging Magnetic resonance spectroscopy Medical imaging Medical research MRI Neuroimaging NMR Nuclear magnetic resonance Perfusion perfusion weighted proton magnetic resonance spectroscopy Technology assessment Tumors |
Title | Pseudoprogression of brain tumors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26171 https://www.ncbi.nlm.nih.gov/pubmed/29734497 https://www.proquest.com/docview/2098958293 https://www.proquest.com/docview/2036202714 https://pubmed.ncbi.nlm.nih.gov/PMC6175399 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1053-1807 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2586 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009945 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7Ug3jx_agvKnpR6NqmaZuAFxFFBUXEBS9SkqbFVbeV3e3FX-8k7XZdVwS9lWSaJp1O8k0y_QbgAIuZJII7GVHKoZJ6OA8GwiHSD4WbKSEzE21xG1626fVj8DgFJ8N_YSp-iGbDTVuGma-1gQvZPx6Rhr50e52W5hPXvo_nB-aM9n7EHcW5yVCM-MF3POZGDTcpOR7dOr4aTUDMyUjJrwjWLEEXC_A07HwVefLaKgeylXx843X87-gWYb7GpvZp9TEtwVSaL8PsTX36vgJ7d_20VIUJ6aroPOwis6VOMmEPym7R669C--L84ezSqVMsOAkiJc8hzGVKu10SFeZn6JXSzFdSMhqIgCchmmfCEfTQKPWx0E0ESdAji6hCWKZtew1m8iJPN8BOAqGwGZcKvUkZKnSNFA2x7ZAz9H09Cw6HrzpOav5xnQbjLa6Yk0msxxybMVuw38i-V6wbP0ptDzUW15bXj4nLGQ8YohgL9ppqtBl9ECLytCi1DC7buk_UgvVKwc1jdC4vSnlkQTSm-kZA83GP1-SdZ8PLHWrWU84tODKa_aXn8fXN_ZW52vyL8BbMIV5jVYjbNswMemW6g5hoIHdhmtC7XWMBn7JFB4w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EQb2Ib6urVvSiULebpm1yFFHWx4qIgreSNC0q2so-_r8zabfrogjeSjJNy0wm-SadfgNwhM1CMyW9nBnjcc07uA6GymM6iJSfG6Vzm21xF3Wf-PVz-Fzn5tC_MBU_RHPgRp5h12tycDqQbk9YQ98--q-nRCiOwc8cj5hPk5rx-wnnrrQ1ihFBBF5H-HHDTsrak3un96MfIPNnruR3DGs3octlWKrRo3tWmXsFZrJiFeZ79ffxNTi4H2QjU9qkq4pwwy1zV1MZCHc4-ij7g3V4urx4PO96dREEL0Us0_GY8IWhwEijSoMc40aeB0ZrwUMVyjRCB0olwhIeZwE2-qliKcZMMTcInMj7NmC2KItsC9w0VAaH8bmiY8TIYPBieIRjR1JgdNpx4HisiiStGcKpUMV7UnEbs4TUlli1OXDYyH5WvBi_SrXGGk1q3xgkaCghQ4E4w4GDphtnNX2qUEVWjkgGN1Z6J-7AZmWA5jFUbYtzGTsQT5mmESDG7Ome4vXFMmdHxEsqpQMn1oh_vHly3Xu4slfb_xHeh4XuY-82ub26u9mBRURXokpIa8HssD_KdhHBDPWenadfHkTpmg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hkKq98DE2CDAI2l42KW2aOIkt7QUxKj4rhIbEyxTZcSIKNEFt88Jfz52TpnRMk-Atsi-JncvZv7PPvwP4hsVceVI4mae1wxTr4jgYSMdTfijdTEuVmWiLfnh8zU5vgpsF-Dk9C1PxQzQLbmQZZrwmA3_UWWdGGno3HA3axCeOvs8SC9G9Ikh0NSOPEsKkKEYA4Ttd7kYNOanXmd07Px29wpivQyVfQlgzB_VW4M-09VXoyX27nKh28vQXseN7u7cKyzU4tQ-qv2kNFtL8I7Qu6u33ddi_HKelLkxMV8XnYReZrSjLhD0ph8Vo_Amue0e_D4-dOseCkyBU6joed7kmv0uhxvwM3VKW-VopzgIZiCRE-0wEoh4WpT4Wuon0EnTJIqYRl5Fxf4bFvMjTTbCTQGp8jMskrVKGGn0jTXrhoeCona4F36efOk5qAnLKg_EQV9TJXkx9jk2fLfjayD5WtBv_lNqZaiyuTW8ce67gIuAIYyzYb6rRaGgnROZpUZIMztvUJmbBRqXg5jWUzIsxEVkQzam-ESBC7vmafHBriLlDoj0VwoIfRrP_aXl8enF1Yq623iK8B63LX734_KR_tg0fELvxKtxtBxYnozL9gvhoonaNGTwDxZcJgA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudoprogression+of+brain+tumors&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Thust%2C+Stefanie+C.&rft.au=van+den+Bent%2C+Martin+J.&rft.au=Smits%2C+Marion&rft.date=2018-09-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=48&rft.issue=3&rft.spage=571&rft.epage=589&rft_id=info:doi/10.1002%2Fjmri.26171&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jmri_26171 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |