Pseudoprogression of brain tumors

This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high‐grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interferin...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 48; no. 3; pp. 571 - 589
Main Authors Thust, Stefanie C., van den Bent, Martin J., Smits, Marion
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.09.2018
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.26171

Cover

Abstract This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high‐grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interfering not only with day‐to‐day patient care but also the execution and interpretation of clinical trials. Radiologically, pseudoprogression is defined as a new or enlarging area(s) of contrast agent enhancement, in the absence of true tumor growth, which subsides or stabilizes without a change in therapy. The clinical definitions of pseudoprogression have been quite variable, which may explain some of the differences in reported incidences, which range from 9–30%. Conventional structural MRI is insufficient for distinguishing pseudoprogression from true progressive disease, and advanced imaging is needed to obtain higher levels of diagnostic certainty. Perfusion MRI is the most widely used imaging technique to diagnose pseudoprogression and has high reported diagnostic accuracy. Diagnostic performance of MR spectroscopy (MRS) appears to be somewhat higher, but MRS is less suitable for the routine and universal application in brain tumor follow‐up. The combination of MRS and diffusion‐weighted imaging and/or perfusion MRI seems to be particularly powerful, with diagnostic accuracy reaching up to or even greater than 90%. While diagnostic performance can be high with appropriate implementation and interpretation, even a combination of techniques, however, does not provide 100% accuracy. It should also be noted that most studies to date are small, heterogeneous, and retrospective in nature. Future improvements in diagnostic accuracy can be expected with harmonization of acquisition and postprocessing, quantitative MRI and computer‐aided diagnostic technology, and meticulous evaluation with clinical and pathological data. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:571–589.
AbstractList This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high‐grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interfering not only with day‐to‐day patient care but also the execution and interpretation of clinical trials. Radiologically, pseudoprogression is defined as a new or enlarging area(s) of contrast agent enhancement, in the absence of true tumor growth, which subsides or stabilizes without a change in therapy. The clinical definitions of pseudoprogression have been quite variable, which may explain some of the differences in reported incidences, which range from 9–30%. Conventional structural MRI is insufficient for distinguishing pseudoprogression from true progressive disease, and advanced imaging is needed to obtain higher levels of diagnostic certainty. Perfusion MRI is the most widely used imaging technique to diagnose pseudoprogression and has high reported diagnostic accuracy. Diagnostic performance of MR spectroscopy (MRS) appears to be somewhat higher, but MRS is less suitable for the routine and universal application in brain tumor follow‐up. The combination of MRS and diffusion‐weighted imaging and/or perfusion MRI seems to be particularly powerful, with diagnostic accuracy reaching up to or even greater than 90%. While diagnostic performance can be high with appropriate implementation and interpretation, even a combination of techniques, however, does not provide 100% accuracy. It should also be noted that most studies to date are small, heterogeneous, and retrospective in nature. Future improvements in diagnostic accuracy can be expected with harmonization of acquisition and postprocessing, quantitative MRI and computer‐aided diagnostic technology, and meticulous evaluation with clinical and pathological data. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:571–589.
This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high-grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interfering not only with day-to-day patient care but also the execution and interpretation of clinical trials. Radiologically, pseudoprogression is defined as a new or enlarging area(s) of contrast agent enhancement, in the absence of true tumor growth, which subsides or stabilizes without a change in therapy. The clinical definitions of pseudoprogression have been quite variable, which may explain some of the differences in reported incidences, which range from 9-30%. Conventional structural MRI is insufficient for distinguishing pseudoprogression from true progressive disease, and advanced imaging is needed to obtain higher levels of diagnostic certainty. Perfusion MRI is the most widely used imaging technique to diagnose pseudoprogression and has high reported diagnostic accuracy. Diagnostic performance of MR spectroscopy (MRS) appears to be somewhat higher, but MRS is less suitable for the routine and universal application in brain tumor follow-up. The combination of MRS and diffusion-weighted imaging and/or perfusion MRI seems to be particularly powerful, with diagnostic accuracy reaching up to or even greater than 90%. While diagnostic performance can be high with appropriate implementation and interpretation, even a combination of techniques, however, does not provide 100% accuracy. It should also be noted that most studies to date are small, heterogeneous, and retrospective in nature. Future improvements in diagnostic accuracy can be expected with harmonization of acquisition and postprocessing, quantitative MRI and computer-aided diagnostic technology, and meticulous evaluation with clinical and pathological data. 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018.
This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high‐grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interfering not only with day‐to‐day patient care but also the execution and interpretation of clinical trials. Radiologically, pseudoprogression is defined as a new or enlarging area(s) of contrast agent enhancement, in the absence of true tumor growth, which subsides or stabilizes without a change in therapy. The clinical definitions of pseudoprogression have been quite variable, which may explain some of the differences in reported incidences, which range from 9–30%. Conventional structural MRI is insufficient for distinguishing pseudoprogression from true progressive disease, and advanced imaging is needed to obtain higher levels of diagnostic certainty. Perfusion MRI is the most widely used imaging technique to diagnose pseudoprogression and has high reported diagnostic accuracy. Diagnostic performance of MR spectroscopy (MRS) appears to be somewhat higher, but MRS is less suitable for the routine and universal application in brain tumor follow‐up. The combination of MRS and diffusion‐weighted imaging and/or perfusion MRI seems to be particularly powerful, with diagnostic accuracy reaching up to or even greater than 90%. While diagnostic performance can be high with appropriate implementation and interpretation, even a combination of techniques, however, does not provide 100% accuracy. It should also be noted that most studies to date are small, heterogeneous, and retrospective in nature. Future improvements in diagnostic accuracy can be expected with harmonization of acquisition and postprocessing, quantitative MRI and computer‐aided diagnostic technology, and meticulous evaluation with clinical and pathological data.Level of Evidence: 3Technical Efficacy: Stage 2J. Magn. Reson. Imaging 2018;48:571–589.
This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high‐grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interfering not only with day‐to‐day patient care but also the execution and interpretation of clinical trials. Radiologically, pseudoprogression is defined as a new or enlarging area(s) of contrast agent enhancement, in the absence of true tumor growth, which subsides or stabilizes without a change in therapy. The clinical definitions of pseudoprogression have been quite variable, which may explain some of the differences in reported incidences, which range from 9–30%. Conventional structural MRI is insufficient for distinguishing pseudoprogression from true progressive disease, and advanced imaging is needed to obtain higher levels of diagnostic certainty. Perfusion MRI is the most widely used imaging technique to diagnose pseudoprogression and has high reported diagnostic accuracy. Diagnostic performance of MR spectroscopy (MRS) appears to be somewhat higher, but MRS is less suitable for the routine and universal application in brain tumor follow‐up. The combination of MRS and diffusion‐weighted imaging and/or perfusion MRI seems to be particularly powerful, with diagnostic accuracy reaching up to or even greater than 90%. While diagnostic performance can be high with appropriate implementation and interpretation, even a combination of techniques, however, does not provide 100% accuracy. It should also be noted that most studies to date are small, heterogeneous, and retrospective in nature. Future improvements in diagnostic accuracy can be expected with harmonization of acquisition and postprocessing, quantitative MRI and computer‐aided diagnostic technology, and meticulous evaluation with clinical and pathological data. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:571–589.
This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high-grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interfering not only with day-to-day patient care but also the execution and interpretation of clinical trials. Radiologically, pseudoprogression is defined as a new or enlarging area(s) of contrast agent enhancement, in the absence of true tumor growth, which subsides or stabilizes without a change in therapy. The clinical definitions of pseudoprogression have been quite variable, which may explain some of the differences in reported incidences, which range from 9-30%. Conventional structural MRI is insufficient for distinguishing pseudoprogression from true progressive disease, and advanced imaging is needed to obtain higher levels of diagnostic certainty. Perfusion MRI is the most widely used imaging technique to diagnose pseudoprogression and has high reported diagnostic accuracy. Diagnostic performance of MR spectroscopy (MRS) appears to be somewhat higher, but MRS is less suitable for the routine and universal application in brain tumor follow-up. The combination of MRS and diffusion-weighted imaging and/or perfusion MRI seems to be particularly powerful, with diagnostic accuracy reaching up to or even greater than 90%. While diagnostic performance can be high with appropriate implementation and interpretation, even a combination of techniques, however, does not provide 100% accuracy. It should also be noted that most studies to date are small, heterogeneous, and retrospective in nature. Future improvements in diagnostic accuracy can be expected with harmonization of acquisition and postprocessing, quantitative MRI and computer-aided diagnostic technology, and meticulous evaluation with clinical and pathological data.This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in particular, but not limited to, high-grade glioma. Pseudoprogression is an important clinical problem after brain tumor treatment, interfering not only with day-to-day patient care but also the execution and interpretation of clinical trials. Radiologically, pseudoprogression is defined as a new or enlarging area(s) of contrast agent enhancement, in the absence of true tumor growth, which subsides or stabilizes without a change in therapy. The clinical definitions of pseudoprogression have been quite variable, which may explain some of the differences in reported incidences, which range from 9-30%. Conventional structural MRI is insufficient for distinguishing pseudoprogression from true progressive disease, and advanced imaging is needed to obtain higher levels of diagnostic certainty. Perfusion MRI is the most widely used imaging technique to diagnose pseudoprogression and has high reported diagnostic accuracy. Diagnostic performance of MR spectroscopy (MRS) appears to be somewhat higher, but MRS is less suitable for the routine and universal application in brain tumor follow-up. The combination of MRS and diffusion-weighted imaging and/or perfusion MRI seems to be particularly powerful, with diagnostic accuracy reaching up to or even greater than 90%. While diagnostic performance can be high with appropriate implementation and interpretation, even a combination of techniques, however, does not provide 100% accuracy. It should also be noted that most studies to date are small, heterogeneous, and retrospective in nature. Future improvements in diagnostic accuracy can be expected with harmonization of acquisition and postprocessing, quantitative MRI and computer-aided diagnostic technology, and meticulous evaluation with clinical and pathological data.3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018.LEVEL OF EVIDENCE3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018.
Author Smits, Marion
van den Bent, Martin J.
Thust, Stefanie C.
AuthorAffiliation 2 Department of Brain Rehabilitation and Repair UCL Institute of Neurology London UK
4 Department of Neurology The Brain Tumor Centre at Erasmus MC Cancer Institute Rotterdam The Netherlands
1 Lysholm Neuroradiology Department National Hospital for Neurology and Neurosurgery London UK
3 Imaging Department University College London Hospital London UK
5 Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam Rotterdam The Netherlands
AuthorAffiliation_xml – name: 4 Department of Neurology The Brain Tumor Centre at Erasmus MC Cancer Institute Rotterdam The Netherlands
– name: 2 Department of Brain Rehabilitation and Repair UCL Institute of Neurology London UK
– name: 5 Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Centre Rotterdam Rotterdam The Netherlands
– name: 1 Lysholm Neuroradiology Department National Hospital for Neurology and Neurosurgery London UK
– name: 3 Imaging Department University College London Hospital London UK
Author_xml – sequence: 1
  givenname: Stefanie C.
  surname: Thust
  fullname: Thust, Stefanie C.
  organization: University College London Hospital
– sequence: 2
  givenname: Martin J.
  surname: van den Bent
  fullname: van den Bent, Martin J.
  organization: The Brain Tumor Centre at Erasmus MC Cancer Institute
– sequence: 3
  givenname: Marion
  surname: Smits
  fullname: Smits, Marion
  email: marion.smits@erasmusmc.nl
  organization: University Medical Centre Rotterdam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29734497$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAUhYMoPkY3_gAZcSNC9ebVNhtBxCeKIroOaZqOGdpmTFpl_r0ZR0UHcZWQfOdw7j0baLl1rUFoG8MhBiBH48bbQ5LiDC-hdcwJSQjP0-V4B04TnEO2hjZCGAOAEIyvojUiMsqYyNbR7n0wfekm3o28CcG6duiqYeGVbYdd3zgfNtFKpepgtj7PAXo6P3s8vUxu7i6uTk9uEs0xwwnJIS-B5KQoiKIVJ5RVtCyKnHHFhU5FSrVIMWeZofERtCKaAc5YCVzgTNABOp77TvqiMaU2bedVLSfeNspPpVNW_v5p7bMcuVcZB-dUzAz2Pw28e-lN6GRjgzZ1rVrj-iAJ0JQAyTCL6N4COna9b-N4kRK54DkRNFI7PxN9R_naXgRgDmjvQvCmktp2qotLjAFtLTHIWUFyVpD8KChKDhYkX65_wngOv9naTP8h5fXtw9Vc8w7ET565
CitedBy_id crossref_primary_10_1016_j_radonc_2021_04_001
crossref_primary_10_7759_cureus_32840
crossref_primary_10_13104_imri_2022_26_1_10
crossref_primary_10_2298_VSP240109041G
crossref_primary_10_1016_j_critrevonc_2020_103184
crossref_primary_10_1016_j_acra_2024_03_019
crossref_primary_10_1097_MD_0000000000020270
crossref_primary_10_3390_cancers15072184
crossref_primary_10_1007_s13139_022_00758_2
crossref_primary_10_1016_j_critrevonc_2025_104682
crossref_primary_10_1016_j_crad_2022_08_138
crossref_primary_10_1097_RCT_0000000000001716
crossref_primary_10_3389_fgene_2022_1114762
crossref_primary_10_1038_s41598_021_97818_y
crossref_primary_10_3390_biomedicines12081649
crossref_primary_10_1155_2021_1696387
crossref_primary_10_1111_1754_9485_13504
crossref_primary_10_1148_rycan_2020190036
crossref_primary_10_31083_j_jmcm_2019_03_0302
crossref_primary_10_1097_MD_0000000000018194
crossref_primary_10_1111_jocn_16499
crossref_primary_10_1158_1078_0432_CCR_21_0471
crossref_primary_10_1155_2022_6948422
crossref_primary_10_7759_cureus_59099
crossref_primary_10_1007_s00330_023_10324_9
crossref_primary_10_1097_RLU_0000000000005157
crossref_primary_10_1016_j_adro_2022_101044
crossref_primary_10_3389_fonc_2021_674596
crossref_primary_10_1093_nop_npad063
crossref_primary_10_3390_curroncol30030203
crossref_primary_10_3389_fonc_2024_1449228
crossref_primary_10_3390_biomedicines10020285
crossref_primary_10_3389_fonc_2025_1397912
crossref_primary_10_3389_fneur_2022_789355
crossref_primary_10_1186_s40478_023_01587_w
crossref_primary_10_3390_cancers12113080
crossref_primary_10_1146_annurev_bioeng_062117_121105
crossref_primary_10_1093_noajnl_vdad016
crossref_primary_10_3390_pharmaceutics15010144
crossref_primary_10_1097_CCO_0000000000000793
crossref_primary_10_1007_s00066_024_02281_z
crossref_primary_10_3174_ng_2100034
crossref_primary_10_3390_curroncol30110679
crossref_primary_10_3389_fonc_2022_851877
crossref_primary_10_1007_s00330_022_09365_3
crossref_primary_10_1556_650_2023_32812
crossref_primary_10_1148_rg_2021200064
crossref_primary_10_1016_j_esmoop_2022_100424
crossref_primary_10_3389_fimmu_2023_1211900
crossref_primary_10_1089_cmb_2024_0518
crossref_primary_10_1002_mrm_29844
crossref_primary_10_3390_ijms22073797
crossref_primary_10_1097_WCO_0000000000000950
crossref_primary_10_1016_j_mric_2023_07_003
crossref_primary_10_1093_neuonc_noaa106
crossref_primary_10_1002_jmri_26900
crossref_primary_10_1002_nbm_4372
crossref_primary_10_3390_diagnostics11061041
crossref_primary_10_3389_fonc_2022_836452
crossref_primary_10_1038_s41598_022_09945_9
crossref_primary_10_1016_j_soc_2023_02_009
crossref_primary_10_3390_diagnostics12051202
crossref_primary_10_1016_j_ijrobp_2021_12_153
crossref_primary_10_3389_fonc_2022_993649
crossref_primary_10_1093_noajnl_vdac020
crossref_primary_10_1200_EDBK_350931
crossref_primary_10_3390_cancers14061432
crossref_primary_10_1016_j_canrad_2024_07_014
crossref_primary_10_1080_20450907_2024_2415285
crossref_primary_10_1186_s43556_025_00251_0
crossref_primary_10_1016_j_radonc_2022_10_026
crossref_primary_10_1016_j_jocn_2021_04_026
crossref_primary_10_3390_cancers14225523
crossref_primary_10_1186_s41747_019_0134_1
crossref_primary_10_3390_cancers12123835
crossref_primary_10_1016_j_wneu_2020_07_218
crossref_primary_10_1093_neuonc_noae097
crossref_primary_10_3390_cancers15204990
crossref_primary_10_1093_neuonc_noaa162
crossref_primary_10_1016_j_ctarc_2022_100583
crossref_primary_10_1093_noajnl_vdab044
crossref_primary_10_1212_CON_0000000000001202
crossref_primary_10_1016_j_currproblcancer_2023_100965
crossref_primary_10_3390_brainsci15020146
crossref_primary_10_1007_s11060_023_04528_8
crossref_primary_10_1038_s41416_021_01387_w
crossref_primary_10_1002_mrm_30084
crossref_primary_10_3389_fradi_2023_1204517
crossref_primary_10_1002_mrm_28685
crossref_primary_10_1016_j_ijrobp_2021_12_007
crossref_primary_10_22201_fm_24484865e_2020_63_1_06
crossref_primary_10_1080_14737175_2020_1855144
crossref_primary_10_1007_s41939_024_00663_5
crossref_primary_10_3348_kjr_2020_1299
crossref_primary_10_1002_pbc_28407
crossref_primary_10_3390_cancers13091989
crossref_primary_10_1016_j_crad_2022_04_011
crossref_primary_10_3390_jimaging9100212
crossref_primary_10_3390_ijms24043151
crossref_primary_10_1093_noajnl_vdab027
crossref_primary_10_2967_jnumed_119_234757
crossref_primary_10_1111_1754_9485_13436
crossref_primary_10_1186_s40644_024_00682_y
crossref_primary_10_1007_s40336_022_00495_8
crossref_primary_10_1016_j_mri_2024_06_004
crossref_primary_10_21682_2311_1267_2020_7_2_126_33
crossref_primary_10_3389_fonc_2023_1134109
crossref_primary_10_3390_tomography9030087
crossref_primary_10_1186_s40644_024_00761_0
crossref_primary_10_1007_s11060_020_03475_y
crossref_primary_10_1007_s11307_019_01427_1
crossref_primary_10_1007_s11060_022_04088_3
crossref_primary_10_1158_0008_5472_CAN_22_0101
crossref_primary_10_1002_adbi_202000029
crossref_primary_10_3390_cancers14143401
crossref_primary_10_1016_j_radonc_2019_05_020
crossref_primary_10_1259_bjro_20200009
crossref_primary_10_1002_mp_14368
crossref_primary_10_1007_s00066_022_01994_3
crossref_primary_10_1016_j_radonc_2023_109486
crossref_primary_10_1007_s11060_019_03386_7
crossref_primary_10_5507_bp_2019_039
crossref_primary_10_1097_RMR_0000000000000233
crossref_primary_10_23736_S0390_5616_19_04701_5
crossref_primary_10_2967_jnumed_122_264803
crossref_primary_10_3390_cancers15205092
crossref_primary_10_1259_bjr_20210275
crossref_primary_10_1002_jmri_27136
crossref_primary_10_1155_2018_6828396
crossref_primary_10_3390_diagnostics11122385
crossref_primary_10_1007_s13760_021_01607_3
crossref_primary_10_1186_s12967_023_03941_x
crossref_primary_10_1002_nbm_4719
crossref_primary_10_1007_s11060_024_04911_z
crossref_primary_10_1097_RLU_0000000000005221
crossref_primary_10_3390_ijms231810525
crossref_primary_10_17352_2455_8702_000140
crossref_primary_10_3389_fradi_2022_809373
crossref_primary_10_1016_j_neuri_2022_100088
crossref_primary_10_2217_imt_2020_0188
crossref_primary_10_1093_neuonc_noab160
crossref_primary_10_1259_bjr_20210944
crossref_primary_10_3174_ajnr_A7502
crossref_primary_10_1002_jmri_29543
crossref_primary_10_1093_noajnl_vdad082
crossref_primary_10_1007_s00117_022_01014_6
crossref_primary_10_3390_pharmaceutics15030928
crossref_primary_10_1007_s40141_022_00345_8
crossref_primary_10_3390_diagnostics14141551
crossref_primary_10_1016_j_ejrad_2021_109900
crossref_primary_10_1016_j_neurad_2020_08_003
crossref_primary_10_7759_cureus_73630
crossref_primary_10_1007_s00234_022_02937_6
crossref_primary_10_1177_02841851211035911
crossref_primary_10_3390_cancers14153771
crossref_primary_10_1158_0008_5472_CAN_23_2552
crossref_primary_10_2214_AJR_21_26159
crossref_primary_10_1007_s11060_024_04645_y
crossref_primary_10_3389_fimmu_2021_640082
crossref_primary_10_1097_MNM_0000000000000914
crossref_primary_10_1111_1754_9485_13267
crossref_primary_10_1097_RLU_0000000000004305
crossref_primary_10_1007_s00330_024_11004_y
crossref_primary_10_1186_s13244_022_01295_4
crossref_primary_10_1080_14737140_2022_2000396
crossref_primary_10_1155_2022_5680522
crossref_primary_10_3390_cancers13235973
crossref_primary_10_1016_j_nicl_2019_102109
crossref_primary_10_1038_s41598_020_77389_0
crossref_primary_10_1172_jci_insight_178719
crossref_primary_10_1093_noajnl_vdae159
crossref_primary_10_1007_s00381_020_04819_9
crossref_primary_10_3389_fonc_2021_711405
crossref_primary_10_3390_ijms26030917
crossref_primary_10_3389_fonc_2021_627325
crossref_primary_10_3390_cancers15184429
crossref_primary_10_3390_medicina60040653
crossref_primary_10_1016_j_yao_2021_02_016
crossref_primary_10_3389_fonc_2019_00177
crossref_primary_10_1093_noajnl_vdac080
crossref_primary_10_1136_bmjno_2020_000069
crossref_primary_10_1097_RLU_0000000000004329
crossref_primary_10_1016_j_radonc_2020_10_041
crossref_primary_10_3390_cancers14051342
crossref_primary_10_1002_mrm_29243
crossref_primary_10_1016_j_ejmp_2021_04_005
crossref_primary_10_2139_ssrn_4048953
crossref_primary_10_3389_fonc_2023_1291177
crossref_primary_10_3390_biomedicines11020364
crossref_primary_10_1016_j_nicl_2023_103501
crossref_primary_10_1097_RCT_0000000000001006
crossref_primary_10_1093_braincomms_fcaa215
crossref_primary_10_3174_ajnr_A8357
crossref_primary_10_3390_cancers17010124
crossref_primary_10_1016_j_wneu_2024_01_074
crossref_primary_10_1016_j_canrad_2020_03_005
crossref_primary_10_1007_s00259_024_06782_y
crossref_primary_10_1016_j_mri_2021_06_004
crossref_primary_10_1098_rsif_2019_0734
crossref_primary_10_1093_noajnl_vdad168
crossref_primary_10_3174_ng_2100083
crossref_primary_10_1093_noajnl_vdac070
crossref_primary_10_3389_fonc_2023_1021253
crossref_primary_10_1093_nop_npae099
crossref_primary_10_3389_fneur_2020_00055
Cites_doi 10.1016/S1470-2045(08)70125-6
10.1007/s11060-017-2647-x
10.1093/neuonc/not158
10.1093/neuonc/nox090
10.1593/neo.81328
10.1148/radiology.217.2.r00nv36377
10.1007/s00234-009-0616-6
10.1002/jmri.22068
10.1148/radiol.12111472
10.1016/j.nicl.2016.12.020
10.1002/mrm.26820
10.1016/j.clinimag.2015.02.010
10.3174/ajnr.A5188
10.1006/jmre.1998.1440
10.1117/1.JMI.4.3.034001
10.2176/nmc.37.250
10.2214/ajr.171.6.9843274
10.1007/s00330-017-4789-9
10.1155/2015/641023
10.1007/s11060-015-1893-z
10.1371/journal.pone.0136380
10.1016/S0940-2993(11)80292-7
10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
10.1093/neuonc/now091
10.1016/S1470-2045(09)70025-7
10.1016/j.jocn.2012.09.011
10.1038/nm.2268
10.1007/s10014-006-0194-9
10.1093/neuonc/now148
10.1200/JCO.2007.15.2363
10.1016/j.nicl.2015.08.017
10.1097/00006123-200210000-00010
10.1016/j.jns.2015.02.038
10.3174/ajnr.A4451
10.1371/journal.pone.0174620
10.1148/radiol.2492071659
10.1007/s11060-006-9241-y
10.2214/AJR.17.18003
10.1002/jmri.22432
10.3174/ajnr.A2725
10.1007/s10334-011-0255-x
10.3348/kjr.2013.14.4.662
10.1007/s00234-009-0613-9
10.1007/s11060-011-0738-7
10.1016/j.acra.2012.06.011
10.3174/ajnr.A2286
10.3174/ajnr.A4341
10.1016/j.acra.2011.01.018
10.1200/jco.2007.25.18_suppl.2009
10.1007/s00234-015-1500-1
10.1002/mrm.10398
10.1200/JCO.2009.26.3541
10.1016/j.ejrad.2013.06.033
10.1016/j.ijrobp.2005.12.002
10.1371/journal.pone.0052008
10.1016/j.nic.2009.08.007
10.1007/s11060-014-1403-8
10.1002/jmri.25159
10.1097/COC.0b013e318210f54a
10.1212/WNL.0b013e31821d74e7
10.1093/neuonc/nou129
10.1007/s11060-013-1330-0
10.1016/S1470-2045(15)00088-1
10.1007/s11060-017-2375-2
10.3174/ajnr.A4898
10.1016/j.nicl.2016.02.016
10.1148/radiol.14141414
10.1148/radiol.2471062089
10.1093/neuonc/nos112
10.1159/000311520
10.3892/etm.2016.3225
10.1111/j.1754-9485.2012.02472.x
10.1007/s00234-016-1724-8
10.1371/journal.pone.0176528
10.1186/s12880-017-0183-y
10.1148/radiol.12112120
10.1002/cam4.1242
10.1007/s11060-016-2074-4
10.1200/JCO.2015.61.6870
10.3174/ajnr.A4218
10.1016/j.ijrobp.2016.11.011
10.2214/AJR.04.0933
10.1097/RCT.0b013e318074fd9d
10.1016/j.ejrad.2014.09.018
10.1007/s00234-015-1571-z
10.1007/s11307-014-0807-3
10.1007/s11060-016-2232-8
10.3174/ajnr.A4018
10.1002/jmri.24913
10.1038/ncponc1073
10.1007/s11060-011-0719-x
10.1007/s00330-006-0561-2
10.1016/j.neuroimage.2015.02.040
10.1016/j.ijrobp.2009.12.061
10.1007/s11517-016-1461-5
10.1093/neuonc/nov179
10.1016/j.nano.2016.03.009
10.3174/ajnr.A1787
10.1002/jmri.25943
10.1016/j.ejrad.2010.07.017
10.1148/radiol.13122024
10.3174/ajnr.A4474
10.3174/ajnr.A4401
10.1007/s00062-017-0584-x
10.3174/ajnr.A1377
10.1007/s00330-018-5314-5
10.1634/theoncologist.2013-0101
10.1007/s00330-012-2638-4
10.1016/j.clinimag.2015.04.003
10.1002/mrm.25197
10.1016/j.wneu.2016.01.020
10.4329/wjr.v3.i11.266
10.1007/s00701-003-0051-0
10.1007/s11060-015-1774-5
10.1148/radiol.2502071444
10.1093/neuonc/nou286
10.3174/ajnr.A3602
10.1016/j.acra.2009.10.024
10.1212/01.WNL.0000133398.11870.9A
10.1002/mrm.22147
10.1007/s13311-016-0507-6
10.1016/j.acra.2013.09.003
10.1148/radiol.2017170362
10.1158/1078-0432.CCR-16-2265
ContentType Journal Article
Copyright 2018 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
2018 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
2018 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2018 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine
– notice: 2018 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2018 International Society for Magnetic Resonance in Medicine
DBID 24P
AAYXX
CITATION
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1002/jmri.26171
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Pseudoprogression of Brain Tumors
EISSN 1522-2586
EndPage 589
ExternalDocumentID PMC6175399
29734497
10_1002_jmri_26171
JMRI26171
Genre article
Journal Article
GrantInformation_xml – fundername: University College London NIHR Biomedical Research Centre
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5141-2808d0282bb2a3f5234f3dbb845a59c6963c961547e3b840ca2c40174d0591793
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Tue Sep 30 16:37:23 EDT 2025
Fri Jul 11 04:26:15 EDT 2025
Fri Jul 25 12:24:15 EDT 2025
Mon Jul 21 05:42:28 EDT 2025
Wed Oct 01 04:37:00 EDT 2025
Thu Apr 24 23:07:32 EDT 2025
Sun Sep 21 06:19:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords diffusion
magnetic resonance imaging
MRI
glioma
perfusion weighted
brain neoplasms
proton magnetic resonance spectroscopy
Language English
License Attribution-NonCommercial-NoDerivs
2018 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5141-2808d0282bb2a3f5234f3dbb845a59c6963c961547e3b840ca2c40174d0591793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26171
PMID 29734497
PQID 2098958293
PQPubID 1006400
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6175399
proquest_miscellaneous_2036202714
proquest_journals_2098958293
pubmed_primary_29734497
crossref_citationtrail_10_1002_jmri_26171
crossref_primary_10_1002_jmri_26171
wiley_primary_10_1002_jmri_26171_JMRI26171
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2018
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Nashville
– name: Hoboken
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2015; 73
2010; 17
2012; 19
2008; 32
2012; 14
2016; 37
2009; 11
1998; 171
2018; 210
2009; 10
2005; 185
2006; 23
2013; 57
2010; 28
2006; 27
2017; 78
2014; 16
2007; 9
2008; 26
2003; 49
2014; 19
2009; 19
2016; 44
2015; 57
2007; 17
2010; 31
2009; 62
2011; 80
2015; 125
2015; 123
2011; 76
2008; 249
2011; 79
2008; 247
2016; 18
1998; 133
2012; 35
2017; 134
2011; 3
2012; 107
2016; 12
2016; 11
1995; 47
1997; 37
2015; 112
2015; 351
2015; 2015
2014; 35
2007; 82
2010; 52
2017; 6
2004; 63
2015; 36
2015; 39
2017; 4
2002; 51
2013; 23
2000; 217
2013; 20
2015; 33
2008; 9
2008; 5
2005; 26
2011; 17
2011; 18
2012; 53
2010; 64
2013; 14
2006; 65
2017; 38
2015; 42
2018; 136
1999; 10
2011; 24
2007; 25
2016; 89
2014; 118
2009; 24
2015; 14
2015; 17
2012; 264
2015; 16
2010
2017; 27
2000; 21
2013; 269
2015; 10
2017; 23
2013; 266
2016; 54
2011; 33
2011; 32
2016; 128
2009; 250
2015; 9
2014; 83
2016; 58
2017; 97
2009; 30
2017; 14
2017; 17
2013; 34
2015; 275
2017; 13
2017; 12
2018
2017
2017; 19
2016
2012; 7
2003; 145
2016; 130
e_1_2_13_120_1
e_1_2_13_24_1
Thomsen H (e_1_2_13_60_1) 2012; 53
e_1_2_13_20_1
e_1_2_13_66_1
e_1_2_13_101_1
e_1_2_13_43_1
e_1_2_13_124_1
e_1_2_13_85_1
e_1_2_13_8_1
e_1_2_13_62_1
e_1_2_13_81_1
e_1_2_13_92_1
e_1_2_13_96_1
e_1_2_13_117_1
e_1_2_13_17_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
Shen Y (e_1_2_13_107_1) 2017
e_1_2_13_131_1
e_1_2_13_55_1
e_1_2_13_78_1
e_1_2_13_112_1
Jafari‐Khouzani K (e_1_2_13_80_1) 2016; 18
e_1_2_13_135_1
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_70_1
Boxerman JL (e_1_2_13_47_1) 2006; 27
West SE (e_1_2_13_23_1) 2017; 19
e_1_2_13_4_1
e_1_2_13_105_1
e_1_2_13_88_1
e_1_2_13_128_1
e_1_2_13_29_1
e_1_2_13_109_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_100_1
e_1_2_13_21_1
e_1_2_13_67_1
e_1_2_13_104_1
e_1_2_13_123_1
e_1_2_13_86_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_82_1
Brandes A (e_1_2_13_10_1) 2007; 9
e_1_2_13_91_1
e_1_2_13_95_1
e_1_2_13_116_1
e_1_2_13_99_1
e_1_2_13_18_1
e_1_2_13_14_1
e_1_2_13_111_1
e_1_2_13_130_1
e_1_2_13_37_1
e_1_2_13_79_1
e_1_2_13_56_1
e_1_2_13_115_1
e_1_2_13_134_1
e_1_2_13_33_1
e_1_2_13_75_1
e_1_2_13_52_1
e_1_2_13_5_1
Mullins ME (e_1_2_13_26_1) 2005; 26
e_1_2_13_108_1
e_1_2_13_127_1
e_1_2_13_49_1
e_1_2_13_122_1
e_1_2_13_68_1
Bulnes S (e_1_2_13_32_1) 2009; 24
e_1_2_13_45_1
e_1_2_13_126_1
e_1_2_13_87_1
e_1_2_13_22_1
e_1_2_13_64_1
e_1_2_13_103_1
e_1_2_13_41_1
e_1_2_13_83_1
e_1_2_13_6_1
e_1_2_13_90_1
e_1_2_13_94_1
Sugahara T (e_1_2_13_44_1) 2000; 21
e_1_2_13_98_1
e_1_2_13_119_1
e_1_2_13_138_1
e_1_2_13_19_1
e_1_2_13_133_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_110_1
e_1_2_13_137_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_76_1
e_1_2_13_30_1
Anbarloui MR (e_1_2_13_72_1) 2015; 14
e_1_2_13_2_1
e_1_2_13_121_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_102_1
e_1_2_13_125_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_84_1
e_1_2_13_7_1
e_1_2_13_61_1
Colen RR (e_1_2_13_71_1) 2016
Taal W (e_1_2_13_9_1) 2007; 25
e_1_2_13_93_1
e_1_2_13_97_1
e_1_2_13_118_1
e_1_2_13_39_1
e_1_2_13_132_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_58_1
e_1_2_13_113_1
Nailon WH (e_1_2_13_114_1) 2010
e_1_2_13_136_1
e_1_2_13_31_1
e_1_2_13_77_1
e_1_2_13_12_1
e_1_2_13_54_1
Ellingson BM (e_1_2_13_129_1) 2015; 17
e_1_2_13_73_1
e_1_2_13_50_1
e_1_2_13_3_1
e_1_2_13_106_1
e_1_2_13_89_1
e_1_2_13_28_1
References_xml – volume: 17
  start-page: 1188
  year: 2015
  end-page: 1198
  article-title: Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials
  publication-title: Neuro Oncol
– volume: 145
  start-page: 557
  year: 2003
  end-page: 564
  article-title: Diagnosis and treatment of progressive space‐occupying radiation necrosis following stereotactic radiosurgery for brain metastasis: value of proton magnetic resonance spectroscopy
  publication-title: Acta Neurochir (Wien)
– volume: 39
  start-page: 775
  year: 2015
  end-page: 780
  article-title: Differentiation of true‐progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide by GLCM texture analysis of conventional MRI
  publication-title: Clin Imaging
– volume: 37
  start-page: 250
  year: 1997
  end-page: 256
  article-title: Differentiation of cerebral radiation necrosis from tumor recurrence by proton magnetic resonance spectroscopy
  publication-title: Neurol Med Chir (Tokyo)
– volume: 19
  start-page: 1353
  year: 2012
  end-page: 1361
  article-title: Diffusion‐weighted MR imaging for the differentiation of true progression from pseudoprogression following concomitant radiotherapy with temozolomide in patients with newly diagnosed high‐grade gliomas
  publication-title: Acad Radiol
– volume: 57
  start-page: 1181
  year: 2015
  end-page: 1202
  article-title: A neuroradiologist's guide to arterial spin labeling MRI in clinical practice
  publication-title: Neuroradiology
– volume: 17
  start-page: 1675
  year: 2007
  end-page: 1684
  article-title: Predicting patterns of glioma recurrence using diffusion tensor imaging
  publication-title: Eur Radiol
– volume: 49
  start-page: 440
  year: 2003
  end-page: 449
  article-title: Mechanism of magnetization transfer during on‐resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids
  publication-title: Magn Reson Med
– volume: 11
  start-page: 2432
  year: 2016
  end-page: 2436
  article-title: Differentiation between recurrent gliomas and radiation necrosis using arterial spin labeling perfusion imaging
  publication-title: Exp Ther Med
– volume: 83
  start-page: 2181
  year: 2014
  end-page: 2189
  article-title: Role of magnetic resonance spectroscopy for the differentiation of recurrent glioma from radiation necrosis: a systematic review and meta‐analysis
  publication-title: Eur J Radiol
– volume: 52
  start-page: 307
  year: 2010
  end-page: 317
  article-title: Perfusion MRI of brain tumours: a comparative study of pseudo‐continuous arterial spin labelling and dynamic susceptibility contrast imaging
  publication-title: Neuroradiology
– volume: 16
  start-page: vii24
  issue: Suppl 7
  year: 2014
  end-page: 35
  article-title: Impact of imaging measurements on response assessment in glioblastoma clinical trials
  publication-title: Neuro Oncol
– volume: 36
  start-page: 1846
  year: 2015
  end-page: 1852
  article-title: Independent poor prognostic factors for true progression after radiation therapy and concomitant temozolomide in patients with glioblastoma: subependymal enhancement and low ADC value
  publication-title: AJNR Am J Neuroradiol
– volume: 39
  start-page: 571
  year: 2015
  end-page: 575
  article-title: Detection of small brain metastases at 3 T: comparing the diagnostic performances of contrast‐enhanced T1‐weighted SPACE, MPRAGE, and 2D FLASH imaging
  publication-title: Clin Imaging
– volume: 26
  start-page: 3387
  year: 2008
  end-page: 3394
  article-title: Functional diffusion map as an early imaging biomarker for high‐grade glioma: correlation with conventional radiologic response and overall survival
  publication-title: J Clin Oncol
– volume: 65
  start-page: 499
  year: 2006
  end-page: 508
  article-title: Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 38
  start-page: 1297
  year: 2017
  end-page: 1302
  article-title: What does the boxed warning tell us? Safe practice of using ferumoxytol as an MRI contrast agent
  publication-title: AJNR Am J Neuroradiol
– volume: 20
  start-page: 485
  year: 2013
  end-page: 502
  article-title: Cerebral radiation necrosis: a review of the pathobiology, diagnosis and management considerations
  publication-title: J Clin Neurosci
– volume: 17
  start-page: 130
  year: 2011
  end-page: 134
  article-title: Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides
  publication-title: Nat Med
– volume: 7
  start-page: e52008
  year: 2012
  article-title: Delayed contrast extravasation MRI for depicting tumor and non‐tumoral tissues in primary and metastatic brain tumors
  publication-title: PLoS One
– volume: 19
  start-page: 75
  year: 2014
  end-page: 81
  article-title: Low incidence of pseudoprogression by imaging in newly diagnosed glioblastoma patients treated with cediranib in combination with chemoradiation
  publication-title: Oncologist
– volume: 266
  start-page: 842
  year: 2013
  end-page: 852
  article-title: Pseudoprogression of glioblastoma after chemo‐ and radiation therapy: diagnosis by using dynamic susceptibility‐weighted contrast‐enhanced perfusion MR imaging with ferumoxytol versus gadoteridol and correlation with survival
  publication-title: Radiology
– volume: 107
  start-page: 207
  year: 2012
  end-page: 212
  article-title: Improved survival time trends for glioblastoma using the SEER 17 population‐based registries
  publication-title: J Neurooncol
– volume: 62
  start-page: 1609
  year: 2009
  end-page: 1618
  article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme
  publication-title: Magn Reson Med
– volume: 14
  start-page: 307
  year: 2017
  end-page: 320
  article-title: Modified criteria for radiographic response assessment in glioblastoma clinical trials
  publication-title: Neurother J Am Soc Exp Neurother
– volume: 83
  start-page: e100
  year: 2014
  end-page: 105
  article-title: Molecular and metabolic pattern classification for detection of brain glioma progression
  publication-title: Eur J Radiol
– volume: 185
  start-page: 1471
  year: 2005
  end-page: 1476
  article-title: Differentiation between brain tumor recurrence and radiation injury using MR spectroscopy
  publication-title: AJR Am J Roentgenol
– volume: 275
  start-page: 792
  year: 2015
  end-page: 802
  article-title: Pseudoprogression in patients with glioblastoma: assessment by using volume‐weighted voxel‐based multiparametric clustering of MR imaging data in an independent test set
  publication-title: Radiology
– volume: 30
  start-page: 552
  year: 2009
  end-page: 558
  article-title: Relative cerebral blood volume values to differentiate high‐grade glioma recurrence from posttreatment radiation effect: direct correlation between image‐guided tissue histopathology and localized dynamic susceptibility‐weighted contrast‐enhanced perfusion MR imaging measurements
  publication-title: AJNR Am J Neuroradiol
– volume: 264
  start-page: 834
  year: 2012
  end-page: 843
  article-title: Percent change of perfusion skewness and kurtosis: a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas
  publication-title: Radiology
– volume: 128
  start-page: 67
  year: 2016
  end-page: 74
  article-title: Small increases in enhancement on MRI may predict survival post radiotherapy in patients with glioblastoma
  publication-title: J Neurooncol
– volume: 31
  start-page: 40
  year: 2010
  end-page: 48
  article-title: Optimized preload leakage‐correction methods to improve the diagnostic accuracy of dynamic susceptibility‐weighted contrast‐enhanced perfusion MR imaging in posttreatment gliomas
  publication-title: Am J Neuroradiol
– volume: 18
  start-page: 467
  year: 2016
  end-page: 478
  article-title: Physiologic MRI for assessment of response to therapy and prognosis in glioblastoma
  publication-title: Neuro Oncol
– volume: 17
  start-page: 151
  year: 2015
  end-page: 159
  article-title: Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence
  publication-title: Neuro Oncol
– volume: 14
  start-page: 29
  year: 2015
  end-page: 34
  article-title: Accuracy of magnetic resonance spectroscopy in distinction between radiation necrosis and recurrence of brain tumors
  publication-title: Iran J Neurol
– volume: 36
  start-page: 877
  year: 2015
  end-page: 885
  article-title: Diffusion and perfusion MRI to differentiate treatment‐related changes including pseudoprogression from recurrent tumors in high‐grade gliomas with histopathologic evidence
  publication-title: AJNR Am J Neuroradiol
– volume: 19
  start-page: 1391
  year: 2017
  end-page: 1397
  article-title: Biopsy of enlarging lesions after stereotactic radiosurgery for brain metastases frequently reveals radiation necrosis
  publication-title: Neuro Oncol
– volume: 42
  start-page: 1362
  year: 2015
  end-page: 1368
  article-title: Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI
  publication-title: J Magn Reson Imaging JMRI
– volume: 118
  start-page: 123
  year: 2014
  end-page: 129
  article-title: Impact of MRI head placement on glioma response assessment
  publication-title: J Neurooncol
– volume: 125
  start-page: 183
  year: 2015
  end-page: 190
  article-title: Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma
  publication-title: J Neurooncol
– year: 2018
  article-title: Cerebral blood volume mapping with ferumoxytol in dynamic susceptibility contrast perfusion MRI: Comparison to standard of care
  publication-title: J Magn Reson Imaging JMRI
– volume: 12
  start-page: e0176528
  year: 2017
  article-title: Analysis of heterogeneity in T2‐weighted MR images can differentiate pseudoprogression from progression in glioblastoma
  publication-title: PLoS One
– volume: 33
  start-page: 296
  year: 2011
  end-page: 305
  article-title: Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma
  publication-title: J Magn Reson Imaging JMRI
– volume: 17
  start-page: 282
  year: 2010
  end-page: 290
  article-title: Glioma recurrence versus radiation necrosis? A pilot comparison of arterial spin‐labeled, dynamic susceptibility contrast enhanced MRI, and FDG‐PET imaging
  publication-title: Acad Radiol
– volume: 80
  start-page: 462
  year: 2011
  end-page: 470
  article-title: Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas
  publication-title: Eur J Radiol
– volume: 37
  start-page: 2201
  year: 2016
  end-page: 2208
  article-title: Progressing bevacizumab‐induced diffusion restriction is associated with coagulative necrosis surrounded by viable tumor and decreased overall survival in patients with recurrent glioblastoma
  publication-title: AJNR Am J Neuroradiol
– year: 2017
  article-title: Incidence of tumour progression and pseudoprogression in high‐grade gliomas: a systematic review and meta‐analysis
  publication-title: Clin Neuroradiol
– volume: 19
  start-page: 527
  year: 2009
  end-page: 557
  article-title: Magnetic resonance perfusion and permeability imaging in brain tumors
  publication-title: Neuroimaging Clin N Am
– volume: 107
  start-page: 51
  year: 2012
  end-page: 60
  article-title: Evaluation of radiation necrosis and malignant glioma in rat models using diffusion tensor MR imaging
  publication-title: J Neurooncol
– volume: 53
  start-page: 95
  year: 2012
  end-page: 101
  article-title: Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas
  publication-title: Acta Radiol Stockh Swed 1987
– volume: 35
  start-page: 2091
  year: 2014
  end-page: 2098
  article-title: Comparison of multiple parameters obtained on 3T pulsed arterial spin‐labeling, diffusion tensor imaging, and MRS and the Ki‐67 labeling index in evaluating glioma grading
  publication-title: AJNR Am J Neuroradiol
– volume: 23
  start-page: 879
  year: 2013
  end-page: 886
  article-title: Analysis of the layering pattern of the apparent diffusion coefficient (ADC) for differentiation of radiation necrosis from tumour progression
  publication-title: Eur Radiol
– volume: 63
  start-page: 535
  year: 2004
  end-page: 537
  article-title: Immediate post‐radiotherapy changes in malignant glioma can mimic tumor progression
  publication-title: Neurology
– year: 2016
– volume: 24
  start-page: 211
  year: 2011
  end-page: 223
  article-title: Correlation between arterial blood volume obtained by arterial spin labelling and cerebral blood volume in intracranial tumours
  publication-title: Magma
– volume: 28
  start-page: 1963
  year: 2010
  end-page: 1972
  article-title: Updated response assessment criteria for high‐grade gliomas: response assessment in neuro‐oncology working group
  publication-title: J Clin Oncol
– volume: 76
  start-page: 1918
  year: 2011
  end-page: 1924
  article-title: Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma
  publication-title: Neurology
– year: 2010
– volume: 73
  start-page: 102
  year: 2015
  end-page: 116
  article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med
– volume: 19
  start-page: 719
  year: 2017
  end-page: 725
  article-title: Incidence of pseudoprogression in low‐grade gliomas treated with radiotherapy
  publication-title: Neuro Oncol
– volume: 247
  start-page: 170
  year: 2008
  end-page: 178
  article-title: Low‐grade gliomas: do changes in rCBV measurements at longitudinal perfusion‐weighted MR imaging predict malignant transformation?
  publication-title: Radiology
– volume: 217
  start-page: 377
  year: 2000
  end-page: 384
  article-title: Malignant gliomas: MR imaging spectrum of radiation therapy‐ and chemotherapy‐induced necrosis of the brain after treatment
  publication-title: Radiology
– volume: 250
  start-page: 887
  year: 2009
  end-page: 896
  article-title: Posttreatment recurrence of malignant brain neoplasm: accuracy of relative cerebral blood volume fraction in discriminating low from high malignant histologic volume fraction
  publication-title: Radiology
– volume: 79
  start-page: 1487
  year: 2011
  end-page: 1495
  article-title: Randomized double‐blind placebo‐controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 130
  start-page: 181
  year: 2016
  end-page: 192
  article-title: Do perfusion and diffusion MRI predict glioblastoma relapse sites following chemoradiation?
  publication-title: J Neurooncol
– volume: 27
  start-page: 4129
  year: 2017
  end-page: 4144
  article-title: Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high‐grade glioma, a systematic review and meta‐analysis
  publication-title: Eur Radiol
– start-page: 30
  year: 2017
  article-title: Imaging of nuclear Overhauser enhancement at 7 and 3 T
  publication-title: NMR Biomed
– volume: 20
  start-page: 1557
  year: 2013
  end-page: 1565
  article-title: Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high‐grade gliomas from stable disease
  publication-title: Acad Radiol
– volume: 34
  start-page: 2298
  year: 2013
  end-page: 2303
  article-title: Stroke‐like migraine attacks after radiation therapy (SMART) syndrome is not always completely reversible: a case series
  publication-title: AJNR Am J Neuroradiol
– year: 2018
  article-title: Glioma imaging in Europe: A survey of 220 centres and recommendations for best clinical practice
  publication-title: Eur Radiol
– volume: 5
  start-page: 220
  year: 2008
  end-page: 233
  article-title: Technology insight: water diffusion MRI—a potential new biomarker of response to cancer therapy
  publication-title: Nat Clin Pract Oncol
– volume: 52
  start-page: 297
  year: 2010
  end-page: 306
  article-title: Distinction between glioma progression and post‐radiation change by combined physiologic MR imaging
  publication-title: Neuroradiology
– volume: 27
  start-page: 859
  year: 2006
  end-page: 867
  article-title: Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not
  publication-title: AJNR Am J Neuroradiol
– volume: 9
  start-page: 453
  year: 2008
  end-page: 461
  article-title: Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas
  publication-title: Lancet Oncol
– volume: 133
  start-page: 36
  year: 1998
  end-page: 45
  article-title: Detection of proton chemical exchange between metabolites and water in biological tissues
  publication-title: J Magn Reson
– volume: 23
  start-page: 3667
  year: 2017
  end-page: 3675
  article-title: Differentiation between radiation necrosis and tumor progression using chemical exchange saturation transfer
  publication-title: Clin Cancer Res
– volume: 54
  start-page: 1707
  year: 2016
  end-page: 1718
  article-title: Extracted magnetic resonance texture features discriminate between phenotypes and are associated with overall survival in glioblastoma multiforme patients
  publication-title: Med Biol Eng Comput
– volume: 123
  start-page: 141
  year: 2015
  end-page: 150
  article-title: Characterization of pseudoprogression in patients with glioblastoma: is histology the gold standard?
  publication-title: J Neurooncol
– volume: 17
  start-page: 434
  year: 2015
  end-page: 442
  article-title: Relationship between [18F]FDOPA PET uptake, apparent diffusion coefficient (ADC), and proliferation rate in recurrent malignant gliomas
  publication-title: Mol Imaging Biol
– volume: 10
  start-page: e0136380
  year: 2015
  article-title: Uninterpretable dynamic susceptibility contrast‐enhanced perfusion MR images in patients with post‐treatment glioblastomas: cross‐validation of alternative imaging options
  publication-title: PLoS One
– volume: 19
  start-page: 118
  year: 2017
  end-page: 127
  article-title: MR perfusion‐weighted imaging in the evaluation of high‐grade gliomas after treatment: a systematic review and meta‐analysis
  publication-title: Neuro Oncol
– volume: 51
  start-page: 912
  year: 2002
  end-page: 919
  article-title: Correlations between magnetic resonance spectroscopy and image‐guided histopathology, with special attention to radiation necrosis
  publication-title: Neurosurgery
– volume: 9
  start-page: 529
  year: 2007
  end-page: 529
  article-title: Pseudoprogression after concomitant radio‐chemotherapy treatment in newly diagnosed glioblastoma patients and potential correlation with MGMT methylation status
  publication-title: Neuro Oncol
– volume: 37
  start-page: 28
  year: 2016
  end-page: 36
  article-title: Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI
  publication-title: AJNR Am J Neuroradiol
– volume: 6
  start-page: 2858
  year: 2017
  end-page: 2866
  article-title: Pseudoprogression as an adverse event of glioblastoma therapy
  publication-title: Cancer Med
– volume: 9
  start-page: 291
  year: 2015
  end-page: 299
  article-title: Clinically feasible NODDI characterization of glioma using multiband EPI at 7 T
  publication-title: NeuroImage Clin
– volume: 4
  start-page: 034001
  year: 2017
  article-title: Effective user interaction in online interactive semantic segmentation of glioblastoma magnetic resonance imaging
  publication-title: J Med Imaging
– volume: 16
  start-page: e534
  year: 2015
  end-page: e542
  article-title: Immunotherapy response assessment in neuro oncology (iRANO): A report of the RANO Working Group
  publication-title: Lancet Oncol
– volume: 2015
  start-page: 641023
  year: 2015
  article-title: The diagnostic ability of follow‐up imaging biomarkers after treatment of glioblastoma in the temozolomide era: implications from proton MR spectroscopy and apparent diffusion coefficient mapping
  publication-title: BioMed Res Int
– volume: 18
  start-page: 575
  year: 2011
  end-page: 583
  article-title: Distinguishing recurrent high‐grade gliomas from radiation injury: a pilot study using dynamic contrast‐enhanced MR imaging
  publication-title: Acad Radiol
– volume: 47
  start-page: 89
  year: 1995
  end-page: 94
  article-title: Vascular morphology and angiogenesis in glial tumors
  publication-title: Exp Toxicol Pathol
– volume: 12
  start-page: 1535
  year: 2016
  end-page: 1542
  article-title: Ferumoxytol nanoparticle uptake in brain during acute neuroinflammation is cell‐specific
  publication-title: Nanomed Nanotechnol Biol Med
– volume: 32
  start-page: 382
  year: 2011
  end-page: 387
  article-title: Diagnostic dilemma of pseudoprogression in the treatment of newly diagnosed glioblastomas: the role of assessing relative cerebral blood flow volume and oxygen‐6‐methylguanine‐DNA methyltransferase promoter methylation status
  publication-title: AJNR Am J Neuroradiol
– volume: 11
  start-page: 102
  year: 2009
  end-page: 125
  article-title: Diffusion‐weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations
  publication-title: Neoplasia N
– volume: 171
  start-page: 1479
  year: 1998
  end-page: 1486
  article-title: Correlation of MR imaging‐determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas
  publication-title: AJR Am J Roentgenol
– volume: 36
  start-page: E41
  year: 2015
  end-page: 51
  article-title: ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain
  publication-title: AJNR Am J Neuroradiol
– volume: 14
  start-page: 662
  year: 2013
  end-page: 672
  article-title: True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis
  publication-title: Korean J Radiol
– volume: 112
  start-page: 180
  year: 2015
  end-page: 188
  article-title: Relaxation‐compensated CEST‐MRI of the human brain at 7T: Unbiased insight into NOE and amide signal changes in human glioblastoma
  publication-title: NeuroImage
– volume: 11
  start-page: 316
  year: 2016
  end-page: 321
  article-title: Advanced MRI increases the diagnostic accuracy of recurrent glioblastoma: Single institution thresholds and validation of MR spectroscopy and diffusion weighted MR imaging
  publication-title: NeuroImage Clin
– volume: 18
  start-page: 1569
  year: 2016
  end-page: 1578
  article-title: Volumetric relationship between 2‐hydroxyglutarate and FLAIR hyperintensity has potential implications for radiotherapy planning of mutant IDH glioma patients
  publication-title: Neuro Oncol
– volume: 35
  start-page: 284
  year: 2012
  end-page: 289
  article-title: Pseudoprogression in patients with glioblastoma multiforme after concurrent radiotherapy and temozolomide
  publication-title: Am J Clin Oncol
– volume: 25
  start-page: 2009
  issue: 18_suppl
  year: 2007
  end-page: 2009
  article-title: The incidence of pseudo‐progression in a cohort of malignant glioma patients treated with chemo‐radiation with temozolomide
  publication-title: J Clin Oncol
– volume: 351
  start-page: 65
  year: 2015
  end-page: 71
  article-title: Diagnostic accuracy of diffusion MRI with quantitative ADC measurements in differentiating glioma recurrence from radiation necrosis
  publication-title: J Neurol Sci
– volume: 16
  start-page: 441
  year: 2014
  end-page: 448
  article-title: Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades
  publication-title: Neuro Oncol
– volume: 36
  start-page: 2242
  year: 2015
  end-page: 2249
  article-title: Impact of software modeling on the accuracy of perfusion MRI in glioma
  publication-title: AJNR Am J Neuroradiol
– volume: 13
  start-page: 386
  year: 2017
  end-page: 394
  article-title: The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy
  publication-title: NeuroImage Clin
– volume: 31
  start-page: 538
  year: 2010
  end-page: 548
  article-title: Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity
  publication-title: J Magn Reson Imaging JMRI
– volume: 57
  start-page: 441
  year: 2015
  end-page: 467
  article-title: State‐of‐the‐art MRI techniques in neuroradiology: principles, pitfalls, and clinical applications
  publication-title: Neuroradiology
– volume: 44
  start-page: 456
  year: 2016
  end-page: 462
  article-title: Applying amide proton transfer‐weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas
  publication-title: J Magn Reson Imaging JMRI
– volume: 21
  start-page: 901
  year: 2000
  end-page: 909
  article-title: Posttherapeutic intraaxial brain tumor: the value of perfusion‐sensitive contrast‐enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast‐enhancing tissue
  publication-title: AJNR Am J Neuroradiol
– volume: 64
  start-page: 21
  year: 2010
  end-page: 26
  article-title: A comparative study of perfusion measurement in brain tumours at 3 Tesla MR: Arterial spin labeling versus dynamic susceptibility contrast‐enhanced MRI
  publication-title: Eur Neurol
– volume: 12
  start-page: e0174620
  year: 2017
  article-title: Differentiation of pseudoprogression and real progression in glioblastoma using ADC parametric response maps
  publication-title: PLoS One
– volume: 17
  start-page: 10
  year: 2017
  article-title: Combination of IVIM‐DWI and 3D‐ASL for differentiating true progression from pseudoprogression of Glioblastoma multiforme after concurrent chemoradiotherapy: study protocol of a prospective diagnostic trial
  publication-title: BMC Med Imaging
– volume: 32
  start-page: 313
  year: 2008
  end-page: 319
  article-title: Difference in enhancement between spin echo and 3‐dimensional fast spoiled gradient recalled acquisition in steady state magnetic resonance imaging of brain metastasis at 3‐T magnetic resonance imaging
  publication-title: J Comput Assist Tomogr
– volume: 210
  start-page: 18
  year: 2018
  end-page: 23
  article-title: Multiparametric MRI for differentiation of radiation necrosis from recurrent tumor in patients with treated glioblastoma
  publication-title: AJR Am J Roentgenol
– volume: 10
  start-page: 459
  year: 2009
  end-page: 466
  article-title: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5‐year analysis of the EORTC‐NCIC trial
  publication-title: Lancet Oncol
– volume: 136
  start-page: 207
  year: 2018
  end-page: 212
  article-title: Imaging changes over 18 months following stereotactic radiosurgery for brain metastases: both late radiation necrosis and tumor progression can occur
  publication-title: J Neurooncol
– volume: 33
  start-page: 3541
  year: 2015
  end-page: 3543
  article-title: Pseudoprogression and immune‐related response in solid tumors
  publication-title: J Clin Oncol
– volume: 24
  start-page: 693
  year: 2009
  end-page: 706
  article-title: Microvascular adaptive changes in experimental endogenous brain gliomas
  publication-title: Histol Histopathol
– volume: 134
  start-page: 495
  year: 2017
  end-page: 504
  article-title: Pseudoprogression, radionecrosis, inflammation or true tumor progression? Challenges associated with glioblastoma response assessment in an evolving therapeutic landscape
  publication-title: J Neurooncol
– volume: 269
  start-page: 831
  year: 2013
  end-page: 840
  article-title: Differentiation of true progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide: comparison study of standard and high‐b‐value diffusion‐weighted imaging
  publication-title: Radiology
– volume: 26
  start-page: 1967
  year: 2005
  end-page: 1972
  article-title: Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis
  publication-title: AJNR Am J Neuroradiol
– start-page: 170362
  year: 2018
  article-title: Brain gliomas: multicenter standardized assessment of dynamic contrast‐enhanced and dynamic susceptibility contrast MR images
  publication-title: Radiology
– volume: 32
  start-page: 2073
  year: 2011
  end-page: 2079
  article-title: Quantitative blood flow measurements in gliomas using arterial spin‐labeling at 3T: intermodality agreement and inter‐ and intraobserver reproducibility study
  publication-title: AJNR Am J Neuroradiol
– volume: 23
  start-page: 19
  year: 2006
  end-page: 27
  article-title: Multivoxel proton MRS for differentiation of radiation‐induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases
  publication-title: Brain Tumor Pathol
– volume: 3
  start-page: 266
  year: 2011
  end-page: 272
  article-title: Magnetic resonance imaging appearance and changes on intracavitary Gliadel wafer placement: A pilot study
  publication-title: World J Radiol
– volume: 97
  start-page: 586
  year: 2017
  end-page: 595
  article-title: Association of radiomics and metabolic tumor volumes in radiation treatment of glioblastoma multiforme
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 78
  start-page: 1100
  year: 2017
  end-page: 1109
  article-title: Predicting IDH mutation status in grade II gliomas using amide proton transfer‐weighted (APTw) MRI
  publication-title: Magn Reson Med
– volume: 118
  start-page: 435
  year: 2014
  end-page: 460
  article-title: The role of imaging in the management of progressive glioblastoma?: A systematic review and evidence‐based clinical practice guideline
  publication-title: J Neurooncol
– volume: 89
  start-page: 37
  year: 2016
  end-page: 41
  article-title: Impact of resecting radiation necrosis and pseudoprogression on survival of patients with glioblastoma
  publication-title: World Neurosurg
– volume: 14
  start-page: 919
  year: 2012
  end-page: 930
  article-title: Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival
  publication-title: Neuro Oncol
– volume: 82
  start-page: 81
  year: 2007
  end-page: 83
  article-title: Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma
  publication-title: J Neurooncol
– volume: 58
  start-page: 1027
  year: 2016
  end-page: 1034
  article-title: Discrepant longitudinal volumetric and metabolic evolution of diffuse intrinsic Pontine gliomas during treatment: implications for current response assessment strategies
  publication-title: Neuroradiology
– volume: 249
  start-page: 601
  year: 2008
  end-page: 613
  article-title: Comparison of dynamic susceptibility‐weighted contrast‐enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors
  publication-title: Radiology
– volume: 10
  start-page: 223
  year: 1999
  end-page: 232
  article-title: Estimating kinetic parameters from dynamic contrast‐enhanced T(1)‐weighted MRI of a diffusable tracer: standardized quantities and symbols
  publication-title: J Magn Reson Imaging JMRI
– volume: 57
  start-page: 349
  year: 2013
  end-page: 355
  article-title: MRI patterns of T1 enhancing radiation necrosis versus tumour recurrence in high‐grade gliomas
  publication-title: J Med Imaging Radiat Oncol
– volume: 18
  start-page: 1434
  year: 2016
  end-page: 1441
  article-title: Evaluation of pseudoprogression rates and tumor progression patterns in a phase III trial of bevacizumab plus radiotherapy/temozolomide for newly diagnosed glioblastoma
  publication-title: Neuro Oncol
– ident: e_1_2_13_18_1
  doi: 10.1016/S1470-2045(08)70125-6
– volume-title: Imaging of Brain Tumors, An Issue of Magnetic Resonance Imaging Clinics of North America, E‐Book
  year: 2016
  ident: e_1_2_13_71_1
– ident: e_1_2_13_25_1
  doi: 10.1007/s11060-017-2647-x
– ident: e_1_2_13_109_1
  doi: 10.1093/neuonc/not158
– ident: e_1_2_13_24_1
  doi: 10.1093/neuonc/nox090
– ident: e_1_2_13_133_1
  doi: 10.1593/neo.81328
– ident: e_1_2_13_7_1
  doi: 10.1148/radiology.217.2.r00nv36377
– ident: e_1_2_13_62_1
  doi: 10.1007/s00234-009-0616-6
– volume: 14
  start-page: 29
  year: 2015
  ident: e_1_2_13_72_1
  article-title: Accuracy of magnetic resonance spectroscopy in distinction between radiation necrosis and recurrence of brain tumors
  publication-title: Iran J Neurol
– ident: e_1_2_13_84_1
  doi: 10.1002/jmri.22068
– ident: e_1_2_13_101_1
  doi: 10.1148/radiol.12111472
– ident: e_1_2_13_126_1
  doi: 10.1016/j.nicl.2016.12.020
– ident: e_1_2_13_110_1
  doi: 10.1002/mrm.26820
– ident: e_1_2_13_131_1
  doi: 10.1016/j.clinimag.2015.02.010
– ident: e_1_2_13_104_1
  doi: 10.3174/ajnr.A5188
– ident: e_1_2_13_105_1
  doi: 10.1006/jmre.1998.1440
– ident: e_1_2_13_136_1
  doi: 10.1117/1.JMI.4.3.034001
– ident: e_1_2_13_68_1
  doi: 10.2176/nmc.37.250
– ident: e_1_2_13_34_1
  doi: 10.2214/ajr.171.6.9843274
– ident: e_1_2_13_40_1
  doi: 10.1007/s00330-017-4789-9
– ident: e_1_2_13_75_1
  doi: 10.1155/2015/641023
– ident: e_1_2_13_55_1
  doi: 10.1007/s11060-015-1893-z
– ident: e_1_2_13_59_1
  doi: 10.1371/journal.pone.0136380
– ident: e_1_2_13_33_1
  doi: 10.1016/S0940-2993(11)80292-7
– ident: e_1_2_13_53_1
  doi: 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S
– ident: e_1_2_13_11_1
  doi: 10.1093/neuonc/now091
– volume-title: Texture Analysis Methods for Medical Image Characterisation
  year: 2010
  ident: e_1_2_13_114_1
– ident: e_1_2_13_3_1
  doi: 10.1016/S1470-2045(09)70025-7
– ident: e_1_2_13_19_1
  doi: 10.1016/j.jocn.2012.09.011
– ident: e_1_2_13_111_1
  doi: 10.1038/nm.2268
– ident: e_1_2_13_77_1
  doi: 10.1007/s10014-006-0194-9
– ident: e_1_2_13_41_1
  doi: 10.1093/neuonc/now148
– ident: e_1_2_13_92_1
  doi: 10.1200/JCO.2007.15.2363
– ident: e_1_2_13_97_1
  doi: 10.1016/j.nicl.2015.08.017
– ident: e_1_2_13_73_1
  doi: 10.1097/00006123-200210000-00010
– ident: e_1_2_13_89_1
  doi: 10.1016/j.jns.2015.02.038
– ident: e_1_2_13_135_1
  doi: 10.3174/ajnr.A4451
– volume: 24
  start-page: 693
  year: 2009
  ident: e_1_2_13_32_1
  article-title: Microvascular adaptive changes in experimental endogenous brain gliomas
  publication-title: Histol Histopathol
– ident: e_1_2_13_93_1
  doi: 10.1371/journal.pone.0174620
– ident: e_1_2_13_50_1
  doi: 10.1148/radiol.2492071659
– ident: e_1_2_13_5_1
  doi: 10.1007/s11060-006-9241-y
– ident: e_1_2_13_56_1
  doi: 10.2214/AJR.17.18003
– ident: e_1_2_13_119_1
  doi: 10.1002/jmri.22432
– ident: e_1_2_13_65_1
  doi: 10.3174/ajnr.A2725
– ident: e_1_2_13_64_1
  doi: 10.1007/s10334-011-0255-x
– volume: 27
  start-page: 859
  year: 2006
  ident: e_1_2_13_47_1
  article-title: Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_13_86_1
  doi: 10.3348/kjr.2013.14.4.662
– ident: e_1_2_13_125_1
  doi: 10.1007/s00234-009-0613-9
– ident: e_1_2_13_2_1
  doi: 10.1007/s11060-011-0738-7
– ident: e_1_2_13_85_1
  doi: 10.1016/j.acra.2012.06.011
– ident: e_1_2_13_46_1
  doi: 10.3174/ajnr.A2286
– ident: e_1_2_13_49_1
  doi: 10.3174/ajnr.A4341
– ident: e_1_2_13_57_1
  doi: 10.1016/j.acra.2011.01.018
– volume: 25
  start-page: 2009
  issue: 18
  year: 2007
  ident: e_1_2_13_9_1
  article-title: The incidence of pseudo‐progression in a cohort of malignant glioma patients treated with chemo‐radiation with temozolomide
  publication-title: J Clin Oncol
  doi: 10.1200/jco.2007.25.18_suppl.2009
– ident: e_1_2_13_138_1
  doi: 10.1007/s00234-015-1500-1
– ident: e_1_2_13_106_1
  doi: 10.1002/mrm.10398
– volume: 18
  start-page: 1569
  year: 2016
  ident: e_1_2_13_80_1
  article-title: Volumetric relationship between 2‐hydroxyglutarate and FLAIR hyperintensity has potential implications for radiotherapy planning of mutant IDH glioma patients
  publication-title: Neuro Oncol
– ident: e_1_2_13_8_1
  doi: 10.1200/JCO.2009.26.3541
– ident: e_1_2_13_121_1
  doi: 10.1016/j.ejrad.2013.06.033
– ident: e_1_2_13_6_1
  doi: 10.1016/j.ijrobp.2005.12.002
– ident: e_1_2_13_58_1
  doi: 10.1371/journal.pone.0052008
– ident: e_1_2_13_54_1
  doi: 10.1016/j.nic.2009.08.007
– ident: e_1_2_13_132_1
  doi: 10.1007/s11060-014-1403-8
– volume: 21
  start-page: 901
  year: 2000
  ident: e_1_2_13_44_1
  article-title: Posttherapeutic intraaxial brain tumor: the value of perfusion‐sensitive contrast‐enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast‐enhancing tissue
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_13_112_1
  doi: 10.1002/jmri.25159
– ident: e_1_2_13_14_1
  doi: 10.1097/COC.0b013e318210f54a
– ident: e_1_2_13_15_1
  doi: 10.1212/WNL.0b013e31821d74e7
– ident: e_1_2_13_12_1
  doi: 10.1093/neuonc/nou129
– ident: e_1_2_13_37_1
  doi: 10.1007/s11060-013-1330-0
– ident: e_1_2_13_28_1
  doi: 10.1016/S1470-2045(15)00088-1
– ident: e_1_2_13_20_1
  doi: 10.1007/s11060-017-2375-2
– ident: e_1_2_13_100_1
  doi: 10.3174/ajnr.A4898
– ident: e_1_2_13_69_1
  doi: 10.1016/j.nicl.2016.02.016
– ident: e_1_2_13_99_1
  doi: 10.1148/radiol.14141414
– ident: e_1_2_13_127_1
  doi: 10.1148/radiol.2471062089
– volume: 17
  start-page: 1188
  year: 2015
  ident: e_1_2_13_129_1
  article-title: Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials
  publication-title: Neuro Oncol
– volume: 9
  start-page: 529
  year: 2007
  ident: e_1_2_13_10_1
  article-title: Pseudoprogression after concomitant radio‐chemotherapy treatment in newly diagnosed glioblastoma patients and potential correlation with MGMT methylation status
  publication-title: Neuro Oncol
– volume: 19
  start-page: 719
  year: 2017
  ident: e_1_2_13_23_1
  article-title: Incidence of pseudoprogression in low‐grade gliomas treated with radiotherapy
  publication-title: Neuro Oncol
– ident: e_1_2_13_52_1
  doi: 10.1093/neuonc/nos112
– ident: e_1_2_13_63_1
  doi: 10.1159/000311520
– ident: e_1_2_13_66_1
  doi: 10.3892/etm.2016.3225
– volume: 53
  start-page: 95
  year: 2012
  ident: e_1_2_13_60_1
  article-title: Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas
  publication-title: Acta Radiol Stockh Swed 1987
– ident: e_1_2_13_36_1
  doi: 10.1111/j.1754-9485.2012.02472.x
– ident: e_1_2_13_79_1
  doi: 10.1007/s00234-016-1724-8
– ident: e_1_2_13_118_1
  doi: 10.1371/journal.pone.0176528
– ident: e_1_2_13_98_1
  doi: 10.1186/s12880-017-0183-y
– ident: e_1_2_13_51_1
  doi: 10.1148/radiol.12112120
– ident: e_1_2_13_13_1
  doi: 10.1002/cam4.1242
– ident: e_1_2_13_31_1
  doi: 10.1007/s11060-016-2074-4
– ident: e_1_2_13_27_1
  doi: 10.1200/JCO.2015.61.6870
– ident: e_1_2_13_87_1
  doi: 10.3174/ajnr.A4218
– ident: e_1_2_13_78_1
  doi: 10.1016/j.ijrobp.2016.11.011
– ident: e_1_2_13_74_1
  doi: 10.2214/AJR.04.0933
– ident: e_1_2_13_130_1
  doi: 10.1097/RCT.0b013e318074fd9d
– ident: e_1_2_13_76_1
  doi: 10.1016/j.ejrad.2014.09.018
– ident: e_1_2_13_61_1
  doi: 10.1007/s00234-015-1571-z
– ident: e_1_2_13_82_1
  doi: 10.1007/s11307-014-0807-3
– ident: e_1_2_13_96_1
  doi: 10.1007/s11060-016-2232-8
– ident: e_1_2_13_83_1
  doi: 10.3174/ajnr.A4018
– ident: e_1_2_13_120_1
  doi: 10.1002/jmri.24913
– ident: e_1_2_13_81_1
  doi: 10.1038/ncponc1073
– ident: e_1_2_13_90_1
  doi: 10.1007/s11060-011-0719-x
– ident: e_1_2_13_95_1
  doi: 10.1007/s00330-006-0561-2
– ident: e_1_2_13_108_1
  doi: 10.1016/j.neuroimage.2015.02.040
– ident: e_1_2_13_21_1
  doi: 10.1016/j.ijrobp.2009.12.061
– ident: e_1_2_13_115_1
  doi: 10.1007/s11517-016-1461-5
– ident: e_1_2_13_48_1
  doi: 10.1093/neuonc/nov179
– ident: e_1_2_13_103_1
  doi: 10.1016/j.nano.2016.03.009
– ident: e_1_2_13_45_1
  doi: 10.3174/ajnr.A1787
– ident: e_1_2_13_102_1
  doi: 10.1002/jmri.25943
– ident: e_1_2_13_124_1
  doi: 10.1016/j.ejrad.2010.07.017
– volume: 26
  start-page: 1967
  year: 2005
  ident: e_1_2_13_26_1
  article-title: Radiation necrosis versus glioma recurrence: conventional MR imaging clues to diagnosis
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_13_88_1
  doi: 10.1148/radiol.13122024
– ident: e_1_2_13_94_1
  doi: 10.3174/ajnr.A4474
– ident: e_1_2_13_35_1
  doi: 10.3174/ajnr.A4401
– ident: e_1_2_13_39_1
  doi: 10.1007/s00062-017-0584-x
– ident: e_1_2_13_42_1
  doi: 10.3174/ajnr.A1377
– ident: e_1_2_13_38_1
  doi: 10.1007/s00330-018-5314-5
– ident: e_1_2_13_22_1
  doi: 10.1634/theoncologist.2013-0101
– ident: e_1_2_13_91_1
  doi: 10.1007/s00330-012-2638-4
– ident: e_1_2_13_117_1
  doi: 10.1016/j.clinimag.2015.04.003
– start-page: 30
  year: 2017
  ident: e_1_2_13_107_1
  article-title: Imaging of nuclear Overhauser enhancement at 7 and 3 T
  publication-title: NMR Biomed
– ident: e_1_2_13_134_1
  doi: 10.1002/mrm.25197
– ident: e_1_2_13_16_1
  doi: 10.1016/j.wneu.2016.01.020
– ident: e_1_2_13_29_1
  doi: 10.4329/wjr.v3.i11.266
– ident: e_1_2_13_70_1
  doi: 10.1007/s00701-003-0051-0
– ident: e_1_2_13_17_1
  doi: 10.1007/s11060-015-1774-5
– ident: e_1_2_13_43_1
  doi: 10.1148/radiol.2502071444
– ident: e_1_2_13_128_1
  doi: 10.1093/neuonc/nou286
– ident: e_1_2_13_30_1
  doi: 10.3174/ajnr.A3602
– ident: e_1_2_13_67_1
  doi: 10.1016/j.acra.2009.10.024
– ident: e_1_2_13_4_1
  doi: 10.1212/01.WNL.0000133398.11870.9A
– ident: e_1_2_13_116_1
  doi: 10.1002/mrm.22147
– ident: e_1_2_13_122_1
  doi: 10.1007/s13311-016-0507-6
– ident: e_1_2_13_123_1
  doi: 10.1016/j.acra.2013.09.003
– ident: e_1_2_13_137_1
  doi: 10.1148/radiol.2017170362
– ident: e_1_2_13_113_1
  doi: 10.1158/1078-0432.CCR-16-2265
SSID ssj0009945
Score 2.6285472
Snippet This review describes the definition, incidence, clinical implications, and magnetic resonance imaging (MRI) findings of pseudoprogression of brain tumors, in...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 571
SubjectTerms Accuracy
Brain
Brain cancer
brain neoplasms
Brain tumors
Clinical trials
CME
Contrast agents
Data processing
Diagnostic systems
diffusion
Glioma
Magnetic resonance imaging
Magnetic resonance spectroscopy
Medical imaging
Medical research
MRI
Neuroimaging
NMR
Nuclear magnetic resonance
Perfusion
perfusion weighted
proton magnetic resonance spectroscopy
Technology assessment
Tumors
Title Pseudoprogression of brain tumors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26171
https://www.ncbi.nlm.nih.gov/pubmed/29734497
https://www.proquest.com/docview/2098958293
https://www.proquest.com/docview/2036202714
https://pubmed.ncbi.nlm.nih.gov/PMC6175399
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1053-1807
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009945
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7Ug3jx_agvKnpR6NqmaZuAFxFFBUXEBS9SkqbFVbeV3e3FX-8k7XZdVwS9lWSaJp1O8k0y_QbgAIuZJII7GVHKoZJ6OA8GwiHSD4WbKSEzE21xG1626fVj8DgFJ8N_YSp-iGbDTVuGma-1gQvZPx6Rhr50e52W5hPXvo_nB-aM9n7EHcW5yVCM-MF3POZGDTcpOR7dOr4aTUDMyUjJrwjWLEEXC_A07HwVefLaKgeylXx843X87-gWYb7GpvZp9TEtwVSaL8PsTX36vgJ7d_20VIUJ6aroPOwis6VOMmEPym7R669C--L84ezSqVMsOAkiJc8hzGVKu10SFeZn6JXSzFdSMhqIgCchmmfCEfTQKPWx0E0ESdAji6hCWKZtew1m8iJPN8BOAqGwGZcKvUkZKnSNFA2x7ZAz9H09Cw6HrzpOav5xnQbjLa6Yk0msxxybMVuw38i-V6wbP0ptDzUW15bXj4nLGQ8YohgL9ppqtBl9ECLytCi1DC7buk_UgvVKwc1jdC4vSnlkQTSm-kZA83GP1-SdZ8PLHWrWU84tODKa_aXn8fXN_ZW52vyL8BbMIV5jVYjbNswMemW6g5hoIHdhmtC7XWMBn7JFB4w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EQb2Ib6urVvSiULebpm1yFFHWx4qIgreSNC0q2so-_r8zabfrogjeSjJNy0wm-SadfgNwhM1CMyW9nBnjcc07uA6GymM6iJSfG6Vzm21xF3Wf-PVz-Fzn5tC_MBU_RHPgRp5h12tycDqQbk9YQ98--q-nRCiOwc8cj5hPk5rx-wnnrrQ1ihFBBF5H-HHDTsrak3un96MfIPNnruR3DGs3octlWKrRo3tWmXsFZrJiFeZ79ffxNTi4H2QjU9qkq4pwwy1zV1MZCHc4-ij7g3V4urx4PO96dREEL0Us0_GY8IWhwEijSoMc40aeB0ZrwUMVyjRCB0olwhIeZwE2-qliKcZMMTcInMj7NmC2KItsC9w0VAaH8bmiY8TIYPBieIRjR1JgdNpx4HisiiStGcKpUMV7UnEbs4TUlli1OXDYyH5WvBi_SrXGGk1q3xgkaCghQ4E4w4GDphtnNX2qUEVWjkgGN1Z6J-7AZmWA5jFUbYtzGTsQT5mmESDG7Ome4vXFMmdHxEsqpQMn1oh_vHly3Xu4slfb_xHeh4XuY-82ub26u9mBRURXokpIa8HssD_KdhHBDPWenadfHkTpmg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hkKq98DE2CDAI2l42KW2aOIkt7QUxKj4rhIbEyxTZcSIKNEFt88Jfz52TpnRMk-Atsi-JncvZv7PPvwP4hsVceVI4mae1wxTr4jgYSMdTfijdTEuVmWiLfnh8zU5vgpsF-Dk9C1PxQzQLbmQZZrwmA3_UWWdGGno3HA3axCeOvs8SC9G9Ikh0NSOPEsKkKEYA4Ttd7kYNOanXmd07Px29wpivQyVfQlgzB_VW4M-09VXoyX27nKh28vQXseN7u7cKyzU4tQ-qv2kNFtL8I7Qu6u33ddi_HKelLkxMV8XnYReZrSjLhD0ph8Vo_Amue0e_D4-dOseCkyBU6joed7kmv0uhxvwM3VKW-VopzgIZiCRE-0wEoh4WpT4Wuon0EnTJIqYRl5Fxf4bFvMjTTbCTQGp8jMskrVKGGn0jTXrhoeCona4F36efOk5qAnLKg_EQV9TJXkx9jk2fLfjayD5WtBv_lNqZaiyuTW8ce67gIuAIYyzYb6rRaGgnROZpUZIMztvUJmbBRqXg5jWUzIsxEVkQzam-ESBC7vmafHBriLlDoj0VwoIfRrP_aXl8enF1Yq623iK8B63LX734_KR_tg0fELvxKtxtBxYnozL9gvhoonaNGTwDxZcJgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudoprogression+of+brain+tumors&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Thust%2C+Stefanie+C.&rft.au=van+den+Bent%2C+Martin+J.&rft.au=Smits%2C+Marion&rft.date=2018-09-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=48&rft.issue=3&rft.spage=571&rft.epage=589&rft_id=info:doi/10.1002%2Fjmri.26171&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jmri_26171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon