Interpretable Machine Learning for Serum-Based Metabolomics in Breast Cancer Diagnostics: Insights from Multi-Objective Feature Selection-Driven LightGBM-SHAP Models
Background and Objectives: Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates, but traditional biomarkers like CA 15-3 and HER2 lack sensitivity and specificity, particularly for early-stage disease. Advances in metabolo...
Saved in:
| Published in | Medicina (Kaunas, Lithuania) Vol. 61; no. 6; p. 1112 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
19.06.2025
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1648-9144 1010-660X 1648-9144 |
| DOI | 10.3390/medicina61061112 |
Cover
| Abstract | Background and Objectives: Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates, but traditional biomarkers like CA 15-3 and HER2 lack sensitivity and specificity, particularly for early-stage disease. Advances in metabolomics and machine learning, particularly explainable artificial intelligence (XAI), offer new opportunities for identifying robust biomarkers and improving diagnostic accuracy. This study aimed to identify and validate serum-based metabolic biomarkers for breast cancer using advanced metabolomic profiling techniques and a Light Gradient Boosting Machine (LightGBM) model. Additionally, SHapley Additive exPlanations (SHAP) were applied to enhance model interpretability and biological insight. Materials and Methods: The study included 103 breast cancer patients and 31 healthy controls. Serum samples underwent liquid and gas chromatography–time-of-flight mass spectrometry (LC-TOFMS and GC-TOFMS). Mutual Information (MI), Sparse Partial Least Squares (sPLS), Boruta, and Multi-Objective Feature Selection (MOFS) approaches were applied to the data for biomarker discovery. LightGBM, AdaBoost, and Random Forest were employed for classification and to identify class imbalance with the Synthetic Minority Oversampling Technique (SMOTE). SHAP analysis ranked metabolites based on their contribution to model predictions. Results: Compared to other feature selection approaches, the MOFS approach was more robust in terms of predictive performance, and metabolites identified by this method were used in subsequent analyses for biomarker discovery. LightGBM outperformed the AdaBoost and Random Forest models, achieving 86.6% accuracy, 89.1% sensitivity, 84.2% specificity, and an F1-score of 87.0%. SHAP analysis identified 2-Aminobutyric acid, choline, and coproporphyrin as the most influential metabolites, with dysregulation of these markers associated with breast cancer risk. Conclusions: This study is among the first to integrate SHAP explainability with metabolomic profiling, bridging computational predictions and biological insights for improved clinical adoption. This study demonstrates the effectiveness of combining metabolomics with XAI-driven machine learning for breast cancer diagnostics. The identified biomarkers not only improve diagnostic accuracy but also reveal critical metabolic dysregulations associated with disease progression. |
|---|---|
| AbstractList | Background and Objectives: Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates, but traditional biomarkers like CA 15-3 and HER2 lack sensitivity and specificity, particularly for early-stage disease. Advances in metabolomics and machine learning, particularly explainable artificial intelligence (XAI), offer new opportunities for identifying robust biomarkers and improving diagnostic accuracy. This study aimed to identify and validate serum-based metabolic biomarkers for breast cancer using advanced metabolomic profiling techniques and a Light Gradient Boosting Machine (LightGBM) model. Additionally, SHapley Additive exPlanations (SHAP) were applied to enhance model interpretability and biological insight. Materials and Methods: The study included 103 breast cancer patients and 31 healthy controls. Serum samples underwent liquid and gas chromatography–time-of-flight mass spectrometry (LC-TOFMS and GC-TOFMS). Mutual Information (MI), Sparse Partial Least Squares (sPLS), Boruta, and Multi-Objective Feature Selection (MOFS) approaches were applied to the data for biomarker discovery. LightGBM, AdaBoost, and Random Forest were employed for classification and to identify class imbalance with the Synthetic Minority Oversampling Technique (SMOTE). SHAP analysis ranked metabolites based on their contribution to model predictions. Results: Compared to other feature selection approaches, the MOFS approach was more robust in terms of predictive performance, and metabolites identified by this method were used in subsequent analyses for biomarker discovery. LightGBM outperformed the AdaBoost and Random Forest models, achieving 86.6% accuracy, 89.1% sensitivity, 84.2% specificity, and an F1-score of 87.0%. SHAP analysis identified 2-Aminobutyric acid, choline, and coproporphyrin as the most influential metabolites, with dysregulation of these markers associated with breast cancer risk. Conclusions: This study is among the first to integrate SHAP explainability with metabolomic profiling, bridging computational predictions and biological insights for improved clinical adoption. This study demonstrates the effectiveness of combining metabolomics with XAI-driven machine learning for breast cancer diagnostics. The identified biomarkers not only improve diagnostic accuracy but also reveal critical metabolic dysregulations associated with disease progression. Background and Objectives: Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates, but traditional biomarkers like CA 15-3 and HER2 lack sensitivity and specificity, particularly for early-stage disease. Advances in metabolomics and machine learning, particularly explainable artificial intelligence (XAI), offer new opportunities for identifying robust biomarkers and improving diagnostic accuracy. This study aimed to identify and validate serum-based metabolic biomarkers for breast cancer using advanced metabolomic profiling techniques and a Light Gradient Boosting Machine (LightGBM) model. Additionally, SHapley Additive exPlanations (SHAP) were applied to enhance model interpretability and biological insight. Materials and Methods: The study included 103 breast cancer patients and 31 healthy controls. Serum samples underwent liquid and gas chromatography-time-of-flight mass spectrometry (LC-TOFMS and GC-TOFMS). Mutual Information (MI), Sparse Partial Least Squares (sPLS), Boruta, and Multi-Objective Feature Selection (MOFS) approaches were applied to the data for biomarker discovery. LightGBM, AdaBoost, and Random Forest were employed for classification and to identify class imbalance with the Synthetic Minority Oversampling Technique (SMOTE). SHAP analysis ranked metabolites based on their contribution to model predictions. Results: Compared to other feature selection approaches, the MOFS approach was more robust in terms of predictive performance, and metabolites identified by this method were used in subsequent analyses for biomarker discovery. LightGBM outperformed the AdaBoost and Random Forest models, achieving 86.6% accuracy, 89.1% sensitivity, 84.2% specificity, and an F1-score of 87.0%. SHAP analysis identified 2-Aminobutyric acid, choline, and coproporphyrin as the most influential metabolites, with dysregulation of these markers associated with breast cancer risk. Conclusions: This study is among the first to integrate SHAP explainability with metabolomic profiling, bridging computational predictions and biological insights for improved clinical adoption. This study demonstrates the effectiveness of combining metabolomics with XAI-driven machine learning for breast cancer diagnostics. The identified biomarkers not only improve diagnostic accuracy but also reveal critical metabolic dysregulations associated with disease progression.Background and Objectives: Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates, but traditional biomarkers like CA 15-3 and HER2 lack sensitivity and specificity, particularly for early-stage disease. Advances in metabolomics and machine learning, particularly explainable artificial intelligence (XAI), offer new opportunities for identifying robust biomarkers and improving diagnostic accuracy. This study aimed to identify and validate serum-based metabolic biomarkers for breast cancer using advanced metabolomic profiling techniques and a Light Gradient Boosting Machine (LightGBM) model. Additionally, SHapley Additive exPlanations (SHAP) were applied to enhance model interpretability and biological insight. Materials and Methods: The study included 103 breast cancer patients and 31 healthy controls. Serum samples underwent liquid and gas chromatography-time-of-flight mass spectrometry (LC-TOFMS and GC-TOFMS). Mutual Information (MI), Sparse Partial Least Squares (sPLS), Boruta, and Multi-Objective Feature Selection (MOFS) approaches were applied to the data for biomarker discovery. LightGBM, AdaBoost, and Random Forest were employed for classification and to identify class imbalance with the Synthetic Minority Oversampling Technique (SMOTE). SHAP analysis ranked metabolites based on their contribution to model predictions. Results: Compared to other feature selection approaches, the MOFS approach was more robust in terms of predictive performance, and metabolites identified by this method were used in subsequent analyses for biomarker discovery. LightGBM outperformed the AdaBoost and Random Forest models, achieving 86.6% accuracy, 89.1% sensitivity, 84.2% specificity, and an F1-score of 87.0%. SHAP analysis identified 2-Aminobutyric acid, choline, and coproporphyrin as the most influential metabolites, with dysregulation of these markers associated with breast cancer risk. Conclusions: This study is among the first to integrate SHAP explainability with metabolomic profiling, bridging computational predictions and biological insights for improved clinical adoption. This study demonstrates the effectiveness of combining metabolomics with XAI-driven machine learning for breast cancer diagnostics. The identified biomarkers not only improve diagnostic accuracy but also reveal critical metabolic dysregulations associated with disease progression. Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates, but traditional biomarkers like CA 15-3 and HER2 lack sensitivity and specificity, particularly for early-stage disease. Advances in metabolomics and machine learning, particularly explainable artificial intelligence (XAI), offer new opportunities for identifying robust biomarkers and improving diagnostic accuracy. This study aimed to identify and validate serum-based metabolic biomarkers for breast cancer using advanced metabolomic profiling techniques and a Light Gradient Boosting Machine (LightGBM) model. Additionally, SHapley Additive exPlanations (SHAP) were applied to enhance model interpretability and biological insight. The study included 103 breast cancer patients and 31 healthy controls. Serum samples underwent liquid and gas chromatography-time-of-flight mass spectrometry (LC-TOFMS and GC-TOFMS). Mutual Information (MI), Sparse Partial Least Squares (sPLS), Boruta, and Multi-Objective Feature Selection (MOFS) approaches were applied to the data for biomarker discovery. LightGBM, AdaBoost, and Random Forest were employed for classification and to identify class imbalance with the Synthetic Minority Oversampling Technique (SMOTE). SHAP analysis ranked metabolites based on their contribution to model predictions. Compared to other feature selection approaches, the MOFS approach was more robust in terms of predictive performance, and metabolites identified by this method were used in subsequent analyses for biomarker discovery. LightGBM outperformed the AdaBoost and Random Forest models, achieving 86.6% accuracy, 89.1% sensitivity, 84.2% specificity, and an F1-score of 87.0%. SHAP analysis identified 2-Aminobutyric acid, choline, and coproporphyrin as the most influential metabolites, with dysregulation of these markers associated with breast cancer risk. This study is among the first to integrate SHAP explainability with metabolomic profiling, bridging computational predictions and biological insights for improved clinical adoption. This study demonstrates the effectiveness of combining metabolomics with XAI-driven machine learning for breast cancer diagnostics. The identified biomarkers not only improve diagnostic accuracy but also reveal critical metabolic dysregulations associated with disease progression. |
| Audience | Academic |
| Author | Guldogan, Emek Alhussan, Amel Ali Ardigò, Luca Paolo Alzakari, Sarah A. Yagin, Fatma Hilal Ucuzal, Hasan |
| AuthorAffiliation | 2 Department of Biostatistics, Faculty of Medicine, Malatya Turgut Ozal University, 44210 Malatya, Turkey 1 Department of Biostatistics, and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; emek.guldogan@inonu.edu.tr (E.G.); hasan.ucuzal@inonu.edu.tr (H.U.) 3 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia 4 Department of Teacher Education, NLA University College, Linstows Gate 3, 0166 Oslo, Norway |
| AuthorAffiliation_xml | – name: 1 Department of Biostatistics, and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; emek.guldogan@inonu.edu.tr (E.G.); hasan.ucuzal@inonu.edu.tr (H.U.) – name: 4 Department of Teacher Education, NLA University College, Linstows Gate 3, 0166 Oslo, Norway – name: 3 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia – name: 2 Department of Biostatistics, Faculty of Medicine, Malatya Turgut Ozal University, 44210 Malatya, Turkey |
| Author_xml | – sequence: 1 givenname: Emek orcidid: 0000-0002-5436-8164 surname: Guldogan fullname: Guldogan, Emek – sequence: 2 givenname: Fatma Hilal orcidid: 0000-0002-9848-7958 surname: Yagin fullname: Yagin, Fatma Hilal – sequence: 3 givenname: Hasan surname: Ucuzal fullname: Ucuzal, Hasan – sequence: 4 givenname: Sarah A. surname: Alzakari fullname: Alzakari, Sarah A. – sequence: 5 givenname: Amel Ali orcidid: 0000-0001-7530-7961 surname: Alhussan fullname: Alhussan, Amel Ali – sequence: 6 givenname: Luca Paolo orcidid: 0000-0001-7677-5070 surname: Ardigò fullname: Ardigò, Luca Paolo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40572800$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1v1DAQhiNURD_gzglZ4sIlxV_JZrmg3S1tV9pVkQpna-JMUq8Se7GTov4g_icOW6rdCglFkUcz7zz2a89pcmSdxSR5y-i5EFP6scPKaGMhZzRnjPEXyQnLZZFOmZRHe_FxchrChlLBswl_lRxLGteC0pPk19L26LceeyhbJGvQd8YiWSF4a2xDaufJLfqhS-cQsCLrUeha1xkdiLFk7hFCTxZgNXpyYaCxLvSx-IksbTDNXR9I7V1H1kPbm_Sm3KDuzT2SS4R-8Bjh7ZhxNr3wMW_Jamy6mq_T2-vZV7J2FbbhdfKyhjbgm8f1LPl--eXb4jpd3VwtF7NVqjMm-lQXgkkKQCeQ6bzOKGpWyrxmQkNGWfxzqDJdQJELUVKq64LGqEJR8QJRiLNkueNWDjZq600H_kE5MOpPwvlGgY_uWlQlr7HII1IiyBgAkwXwUpcIcSOYRBbbsQa7hYef0LZPQEbV-Hzq-fPFns-7nu1QxqJG23toDw5yWLHmTjXuXjHOphnnI-HDI8G7HwOGXnUmaGxbsOiGoATnMpecT4ooff9MunGDt_F-R5WY8pxO91QNRNfG1i5urEeomhUyKyJvOpo9_4cqfhXGSYlDW5uYP2h4t-_0yeLfyYwCuhNo70LwWP__9n4D_x34eQ |
| Cites_doi | 10.1118/1.1418724 10.1016/j.health.2023.100218 10.1109/CITA.2015.7349827 10.1038/s42256-019-0138-9 10.1002/bies.201900162 10.1109/BIBM55620.2022.9995516 10.3389/fninf.2014.00018 10.3390/cancers14205055 10.1111/cts.70056 10.1109/TNN.2008.2005601 10.1016/j.chemolab.2023.104813 10.1016/j.ymeth.2024.01.003 10.1007/s00521-013-1368-0 10.1016/j.prp.2024.155551 10.1109/ICICET59348.2024.10616318 10.20944/preprints202405.0996.v1 10.1056/NEJMp1500523 10.3389/fnut.2022.1056648 10.1016/j.artmed.2022.102331 10.1158/0008-5472.CAN-10-1319 10.1007/978-3-319-31808-0_10 10.1038/srep36749 10.21203/rs.3.rs-4649887/v1 10.1152/physrev.00035.2018 10.1007/s00535-022-01849-9 10.1007/s10462-025-11117-w 10.1038/s41598-022-06264-x 10.20944/preprints202401.0228.v1 10.1371/journal.pone.0311810 10.1126/sciadv.adf0115 10.15252/embj.2019103209 10.1613/jair.953 10.1136/ebnurs-2019-103225 10.3390/ijms231911269 10.1016/j.ins.2019.08.040 10.3322/caac.21492 10.3390/cancers15133468 10.61919/jhrr.v4i3.1609 10.1007/s11042-023-15627-z 10.1074/mcp.M110.004945 10.31083/j.fbl2905182 10.18632/oncotarget.5409 10.1016/j.ijbiomac.2023.126404 10.1016/j.biopha.2023.114933 10.3233/FI-2010-288 10.3390/biology13110848 10.1002/sam.10074 10.3322/caac.21660 10.1007/s13385-022-00328-y 10.1016/j.eswa.2018.10.030 10.1155/2023/9328344 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/medicina61061112 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest One Health & Nursing ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1648-9144 |
| ExternalDocumentID | oai_doaj_org_article_b2fe86a504ea486aa148a2bcbea1a5a7 10.3390/medicina61061112 PMC12195222 A845822497 40572800 10_3390_medicina61061112 |
| Genre | Journal Article |
| GeographicLocations | Turkey United States--US |
| GeographicLocations_xml | – name: Turkey – name: United States--US |
| GrantInformation_xml | – fundername: Princess Nourah bint Abdulrahman University grantid: PNURSP2025R716 – fundername: Princess Nourah bint Abdulrahman University Researchers Supporting Project grantid: PNURSP2025R716 |
| GroupedDBID | 0R~ 29M 2WC 4.4 457 53G 5GY 5VS 7X7 8FI 8FJ AADQD AAEDT AAFWJ AAIKJ AAYXX ABMAC ABUWG ACGFS ADBBV ADEZE AFKRA AFPKN AFZYC AGHFR AHDRD ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR CCPQU CITATION EMOBN F5P FDB FYUFA GROUPED_DOAJ HMCUK HYE IAO IHR ITC KQ8 MODMG O9- OK1 OVT PGMZT PHGZM PHGZT PIMPY RPM UKHRP XSB ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM AAEDW AALRI AAXUO AAYWO ADTOC ADVLN AITUG AMRAJ EBS EJD IPNFZ M41 RIG ROL SSZ UNPAY |
| ID | FETCH-LOGICAL-c513t-c83140aa07a5c6f50ec1b46f13ca501a506ad5c8a8633b00cf80633de3d28ee33 |
| IEDL.DBID | UNPAY |
| ISSN | 1648-9144 1010-660X |
| IngestDate | Fri Oct 03 12:41:57 EDT 2025 Sun Oct 26 03:34:06 EDT 2025 Tue Sep 30 17:01:11 EDT 2025 Fri Sep 05 15:47:20 EDT 2025 Tue Oct 07 07:11:28 EDT 2025 Mon Oct 20 22:41:27 EDT 2025 Mon Oct 20 16:50:24 EDT 2025 Sun Jun 29 01:31:30 EDT 2025 Thu Oct 16 04:43:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | SHAP diagnostic accuracy metabolomics LightGBM biomarkers breast cancer explainable AI |
| Language | English |
| License | Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c513t-c83140aa07a5c6f50ec1b46f13ca501a506ad5c8a8633b00cf80633de3d28ee33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5436-8164 0000-0001-7530-7961 0000-0002-9848-7958 0000-0001-7677-5070 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1648-9144/61/6/1112/pdf?version=1750328288 |
| PMID | 40572800 |
| PQID | 3223926098 |
| PQPubID | 5046879 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b2fe86a504ea486aa148a2bcbea1a5a7 unpaywall_primary_10_3390_medicina61061112 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12195222 proquest_miscellaneous_3224642278 proquest_journals_3223926098 gale_infotracmisc_A845822497 gale_infotracacademiconefile_A845822497 pubmed_primary_40572800 crossref_primary_10_3390_medicina61061112 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-19 |
| PublicationDateYYYYMMDD | 2025-06-19 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Medicina (Kaunas, Lithuania) |
| PublicationTitleAlternate | Medicina (Kaunas) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_14 Chen (ref_4) 2011; 10 ref_57 ref_56 ref_54 ref_52 ref_51 Survarachakan (ref_45) 2022; 130 Tourassi (ref_12) 2001; 28 Asiago (ref_5) 2010; 70 ref_17 Lundberg (ref_28) 2020; 2 Wishart (ref_25) 2019; 99 Yadav (ref_31) 2024; 25 Manjunath (ref_46) 2024; 83 Abdelsamea (ref_48) 2019; 118 Swift (ref_30) 2020; 23 Chawla (ref_22) 2002; 16 ref_23 ref_21 ref_20 ref_29 Akrida (ref_36) 2024; 262 ref_27 Saeidnia (ref_43) 2025; 58 Schmitt (ref_41) 2024; 17 Nogueira (ref_24) 2017; 18 Delcaillau (ref_40) 2022; 12 Nishida (ref_47) 2022; 57 Bray (ref_2) 2018; 68 ref_35 ref_34 Feldker (ref_37) 2020; 39 ref_33 ref_32 Xie (ref_10) 2015; 6 Zhang (ref_19) 2020; 507 ref_39 ref_38 Farahzadi (ref_55) 2023; 2023 Omotehinwa (ref_26) 2023; 4 McWilliams (ref_16) 2010; 3 Sung (ref_1) 2021; 71 Collins (ref_50) 2015; 372 ref_44 ref_42 Vergara (ref_11) 2014; 24 ref_3 Gong (ref_9) 2024; 222 Tesmer (ref_13) 2009; 20 Alsouki (ref_15) 2023; 237 ref_49 ref_8 Izzo (ref_53) 2023; 9 ref_7 Kursa (ref_18) 2010; 101 ref_6 |
| References_xml | – volume: 28 start-page: 2394 year: 2001 ident: ref_12 article-title: Application of the mutual information criterion for feature selection in computer-aided diagnosis publication-title: Med. Phys. doi: 10.1118/1.1418724 – volume: 4 start-page: 100218 year: 2023 ident: ref_26 article-title: A light gradient-boosting machine algorithm with tree-structured parzen estimator for breast cancer diagnosis publication-title: Healthc. Anal. doi: 10.1016/j.health.2023.100218 – ident: ref_14 doi: 10.1109/CITA.2015.7349827 – volume: 2 start-page: 56 year: 2020 ident: ref_28 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0138-9 – ident: ref_39 doi: 10.1002/bies.201900162 – ident: ref_42 doi: 10.1109/BIBM55620.2022.9995516 – ident: ref_17 doi: 10.3389/fninf.2014.00018 – ident: ref_8 doi: 10.3390/cancers14205055 – volume: 25 start-page: 4872 year: 2024 ident: ref_31 article-title: Developing Model-Agnostic Meta-Learning Enabled Lightbgm Model Asthma Level Prediction in Smart Healthcare Modeling publication-title: Scalable Comput. Pract. Exp. – volume: 17 start-page: e70056 year: 2024 ident: ref_41 article-title: Practical guide to SHAP analysis: Explaining supervised machine learning model predictions in drug development publication-title: Clin. Transl. Sci. doi: 10.1111/cts.70056 – ident: ref_23 – volume: 20 start-page: 189 year: 2009 ident: ref_13 article-title: Normalized mutual information feature selection publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2005601 – volume: 237 start-page: 104813 year: 2023 ident: ref_15 article-title: Dual-sPLS: A family of Dual Sparse Partial Least Squares regressions for feature selection and prediction with tunable sparsity; evaluation on simulated and near-infrared (NIR) data publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2023.104813 – volume: 222 start-page: 100 year: 2024 ident: ref_9 article-title: LC-MS/MS platform-based serum untargeted screening reveals the diagnostic biomarker panel and molecular mechanism of breast cancer publication-title: Methods doi: 10.1016/j.ymeth.2024.01.003 – volume: 24 start-page: 175 year: 2014 ident: ref_11 article-title: A review of feature selection methods based on mutual information publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1368-0 – volume: 262 start-page: 155551 year: 2024 ident: ref_36 article-title: Hippo pathway effectors YAP, TAZ and TEAD are associated with EMT master regulators ZEB, Snail and with aggressive phenotype in phyllodes breast tumors publication-title: Pathol.-Res. Pract. doi: 10.1016/j.prp.2024.155551 – ident: ref_32 doi: 10.1109/ICICET59348.2024.10616318 – ident: ref_3 doi: 10.20944/preprints202405.0996.v1 – ident: ref_27 – volume: 372 start-page: 793 year: 2015 ident: ref_50 article-title: A new initiative on precision medicine publication-title: New Engl. J. Med. doi: 10.1056/NEJMp1500523 – ident: ref_34 doi: 10.3389/fnut.2022.1056648 – volume: 130 start-page: 102331 year: 2022 ident: ref_45 article-title: Deep learning for image-based liver analysis—A comprehensive review focusing on malignant lesions publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2022.102331 – volume: 70 start-page: 8309 year: 2010 ident: ref_5 article-title: Early detection of recurrent breast cancer using metabolite profiling publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-1319 – ident: ref_49 doi: 10.1007/978-3-319-31808-0_10 – ident: ref_56 doi: 10.1038/srep36749 – ident: ref_7 doi: 10.21203/rs.3.rs-4649887/v1 – volume: 99 start-page: 1819 year: 2019 ident: ref_25 article-title: Metabolomics for investigating physiological and pathophysiological processes publication-title: Physiol. Rev. doi: 10.1152/physrev.00035.2018 – ident: ref_20 – volume: 57 start-page: 309 year: 2022 ident: ref_47 article-title: Artificial intelligence (AI) models for the ultrasonographic diagnosis of liver tumors and comparison of diagnostic accuracies between AI and human experts publication-title: J. Gastroenterol. doi: 10.1007/s00535-022-01849-9 – volume: 58 start-page: 105 year: 2025 ident: ref_43 article-title: Advancing cancer diagnosis and treatment: Integrating image analysis and AI algorithms for enhanced clinical practice publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-025-11117-w – ident: ref_44 doi: 10.1038/s41598-022-06264-x – ident: ref_38 doi: 10.20944/preprints202401.0228.v1 – ident: ref_6 doi: 10.1371/journal.pone.0311810 – volume: 9 start-page: eadf0115 year: 2023 ident: ref_53 article-title: Acetylcarnitine shuttling links mitochondrial metabolism to histone acetylation and lipogenesis publication-title: Sci. Adv. doi: 10.1126/sciadv.adf0115 – volume: 39 start-page: e103209 year: 2020 ident: ref_37 article-title: Genome-wide cooperation of EMT transcription factor ZEB 1 with YAP and AP-1 in breast cancer publication-title: EMBO J. doi: 10.15252/embj.2019103209 – volume: 16 start-page: 321 year: 2002 ident: ref_22 article-title: SMOTE: Synthetic minority over-sampling technique publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 23 start-page: 2 year: 2020 ident: ref_30 article-title: What are sensitivity and specificity? publication-title: Evid.-Based Nurs. doi: 10.1136/ebnurs-2019-103225 – ident: ref_51 doi: 10.3390/ijms231911269 – volume: 507 start-page: 67 year: 2020 ident: ref_19 article-title: Binary differential evolution with self-learning for multi-objective feature selection publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.08.040 – ident: ref_21 – volume: 68 start-page: 394 year: 2018 ident: ref_2 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21492 – ident: ref_35 doi: 10.3390/cancers15133468 – ident: ref_29 doi: 10.61919/jhrr.v4i3.1609 – volume: 18 start-page: 1 year: 2017 ident: ref_24 article-title: Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning publication-title: J. Mach. Learn. Res. – volume: 83 start-page: 2773 year: 2024 ident: ref_46 article-title: Deep learning algorithm performance evaluation in detection and classification of liver disease using CT images publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-15627-z – volume: 10 start-page: M110.004945 year: 2011 ident: ref_4 article-title: Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.M110.004945 – ident: ref_57 doi: 10.31083/j.fbl2905182 – volume: 6 start-page: 33369 year: 2015 ident: ref_10 article-title: Lowered circulating aspartate is a metabolic feature of human breast cancer publication-title: Oncotarget doi: 10.18632/oncotarget.5409 – ident: ref_52 doi: 10.1016/j.ijbiomac.2023.126404 – ident: ref_54 doi: 10.1016/j.biopha.2023.114933 – volume: 101 start-page: 271 year: 2010 ident: ref_18 article-title: Boruta–a system for feature selection publication-title: Fundam. Informaticae doi: 10.3233/FI-2010-288 – ident: ref_33 doi: 10.3390/biology13110848 – volume: 3 start-page: 170 year: 2010 ident: ref_16 article-title: Sparse partial least squares regression for on-line variable selection with multivariate data streams publication-title: Stat. Anal. Data Min. ASA Data Sci. J. doi: 10.1002/sam.10074 – volume: 71 start-page: 209 year: 2021 ident: ref_1 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21660 – volume: 12 start-page: 443 year: 2022 ident: ref_40 article-title: Model transparency and interpretability: Survey and application to the insurance industry publication-title: Eur. Actuar. J. doi: 10.1007/s13385-022-00328-y – volume: 118 start-page: 539 year: 2019 ident: ref_48 article-title: A cascade-learning approach for automated segmentation of tumour epithelium in colorectal cancer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.10.030 – volume: 2023 start-page: 9328344 year: 2023 ident: ref_55 article-title: Clinical significance of carnitine in the treatment of cancer: From traffic to the regulation publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2023/9328344 |
| SSID | ssj0032572 |
| Score | 2.362709 |
| Snippet | Background and Objectives: Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates,... Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates, but traditional biomarkers... |
| SourceID | doaj unpaywall pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 1112 |
| SubjectTerms | Accuracy Adult Aged Algorithms Analysis Artificial intelligence Biomarkers Biomarkers, Tumor - analysis Biomarkers, Tumor - blood Boosting Machine Learning Algorithms Breast cancer Breast Neoplasms - blood Breast Neoplasms - diagnosis Care and treatment Chromatography Demographic aspects Diagnosis explainable AI Feature selection Female Glycerol Health aspects Health care Humans LightGBM Machine learning Machine Learning - standards Mass spectrometry Medical prognosis Medical research Metabolism Metabolites Metabolomics Metabolomics - methods Methods Middle Aged Patients Random variables Reproducibility Scientific imaging SHAP |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQHoAXxDeBgYyEhECyFsex4_DWboyCKCDBpL5FF8cZRV02Na0QfxD_J3dxWprxsBfeqvgS1b6v3-nOd4y9SJMkK3UlhcRlkbq0FmDjXDjq3WXrutKhyveTmZykH2Z6tjPqi2rCQnvgcHAHZVJ7a0DHqYcUfwDid0hKV3qQoKG7Rx7bfBNMBRusUBBDnhOtjDHxLCQoFQb4B33OGgwFQ1ImA4fU9e3_1zrvuKfLpZM31s0F_PoJi8WOXzq-zW71gJKPwkbusGu-ucuuT_uU-T32-29ZYbnwfNoVT3re91U95QhaORqM9ZkYo0Or-JQI0SKezV3L5w0fU9X6ih-SdCz5UajMo97Ob_j7pqXQvuV0R4V3V3nF5_JHMKGcwOV66fHji67cqxFHSzKt_CO99G48FV8noy-chrEt2vvs5Pjtt8OJ6GczCKelWglnFYZmAHEG2plax97JMjW1VDRjATkTG6i0s2CNUqjarrYIhlTlVZVY75V6wPaa88Y_YryuLKIYKHOw-IXEQOayWrtMV7WUoHzEXm0YVFyEFhwFhi7EzOIyMyM2Jg5u6ah5dvcARaroRaq4SqQi9pL4X5CKI5Md9DcV8O9Ss6xiZCnZiHErUu4PKFE13XB5I0FFbxraAi0oYlIT5zZiz7fL9CaVuzX-fN3RpIbUCGkeBoHbbokQdoIwP2J2IIqDPQ9Xmvn3rnG4RPeEeBtP6fVWaq880sf_40ifsJsJDU6moU_5PttbLdf-KaK5VfmsU9w_oKhKpw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ta9RAEF7qFdQvxdeaWmUFQRSWJtlksxFELn3xFO8sauG-hc1mU0_S3JlcEH-Q_9OZvFybCvohcGQnYTcz8-zMzewMIc891w0SP3WYA8PM017GlLRDprF2l8yy1G-zfGdicuZ9mPvzLTLrz8JgWmWPiQ1Qp0uN_5EfgODBVi7sUL5d_WDYNQqjq30LDdW1VkjfNCXGbpBtFytjjch2dDw7_dxjMwcBbeOfgD5C2PM2cMnB8T_oYtlKoJPkOO5go2rq-f-N2le2resplbfqYqV-_VR5fmW_OrlDdjpDk45bybhLtkxxj9ycdqH0--T3Zbphkhs6bZIqDe3qrZ5TMGYpAEl9wSLY6FI6RUJAyouFruiioBFms6_pIUpNSY_ajD2s-fyavi8qdPkrimdXaHPEl31KvrfQStHorEsDL8-bNLCCHZUIufQjPvQumrIvk_EpxSZtefWAnJ0cfz2csK5nA9O-w9dMSw4um1J2oHwtMt822kk8kTkcey84cAmV-loqKTgHldeZBCOJp4anrjSG84dkVCwL84jQLJVg3agkVBLe4AoV6CDzdeCnmeMobizysmdQvGpLc8Tg0iAz4-vMtEiEHNzQYVHt5sayPI87HY0TNzNSwBQ9ozz4ocBVVG6iE6Ng4iqwyAvkf4yqD0zWqjvBANPFIlrxWGIQEvxZoNwfUILK6uFwL0FxBxlVfCngFnm2GcYnMQ2uMMu6ofEEqhfQ7LYCt1kSWt4umP8WkQNRHKx5OFIsvjUFxUFVQrDD4Su92kjtfz_p3r8X8ZjcdrFVMrZ5CvfJaF3W5gnYb-vkaaeUfwDHSUc- priority: 102 providerName: ProQuest |
| Title | Interpretable Machine Learning for Serum-Based Metabolomics in Breast Cancer Diagnostics: Insights from Multi-Objective Feature Selection-Driven LightGBM-SHAP Models |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40572800 https://www.proquest.com/docview/3223926098 https://www.proquest.com/docview/3224642278 https://pubmed.ncbi.nlm.nih.gov/PMC12195222 https://www.mdpi.com/1648-9144/61/6/1112/pdf?version=1750328288 https://doaj.org/article/b2fe86a504ea486aa148a2bcbea1a5a7 |
| UnpaywallVersion | publishedVersion |
| Volume | 61 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1648-9144 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032572 issn: 1648-9144 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1648-9144 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032572 issn: 1648-9144 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1648-9144 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032572 issn: 1648-9144 databaseCode: RPM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1648-9144 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032572 issn: 1648-9144 databaseCode: 7X7 dateStart: 20180101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1648-9144 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032572 issn: 1648-9144 databaseCode: BENPR dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYVgIuvB-FpTISEgIp2zpOHJcLavdBQbRUQKVyCo7jLIVuWjUJCP4P_5OZxC2bckCIQ6Wonlh29PnzjGc8Q8gjz3WDyI-Zw6DZ8bSXOEp2e47G3F0ySWK_ivIdi-HUezXzZ7bOaWbDKsEUn5ckDao8rkbP6wjWER1Ylm5nFSfPv9qjJIZOOLQZ5B5pCh-U8QZpTseT_ofSxwkMI0R3hs-bjipHJQdDv2N910qgUcSYW9uYyvz9f7L0uW1qN4TyUpGu1PdvarE4tz-dXCUfNzOrwlK-HBR5dKB_7CR9_I-pXyNXrO5K-xXYrpMLJr1BLo6sd_4m-fk7gjFaGDoq4zQNtSlcTynoxxS4qThzBrB3xnSEgkC-Z3Od0XlKBxggn9NDBOKaHlVBgJhG-hl9mWZ4ipBRvA5Dy1vDzpvoc8XWFPXYYm2g80UZWZY6R2tkcfoaX3oxGDnvhv0Jxbpvi-wWmZ4cvz8cOrYMhKN9xnNHSw5WoFLdQPlaJH7XaBZ5ImEcyzkw-AkV-1oqKTgHFtGJBL2Lx4bHrjSG89ukkS5Tc5fQJJagMKmopyT04AoV6CDxdeDHCWOKmxZ5ssFAuKqyfYRgJSFewl28tMgAQbKVwzzd5R_L9Wlol30YuYmRAoboGeXBgwLrU7mRjoyCgaugRR4jxEJkE8CRVvZSBAwX83KFfYl-TTCRQXK_JgksoOvNG5CGloWyEMga1F_R7ckWebhtxjcxsi41y6KU8QSuWJC5U2F6OyVU5l2wKFpE1tBem3O9JZ1_KnOUM9gJQbWHr_R0uzD--knv_YvwfXLZxVrMWEeqt08a-bowD0BBzKM22QtmQZs0B8fjydt2eczStsTwC78zZMA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemTWK8IP4vMMBIIASStSROHAdpQu260bK2TLBJfQuO44yiLi1Nq2kfiK_BZ-Muf7plSPC0h0pRfYmc3Pl3d77zHSGvPNcNYj9xmAPDzNNeypS0Q6axdpdM08Qvs3yHonvifRr5ozXyuz4Lg2mVNSYWQJ1MNe6R74DggSoXdig_zH4y7BqF0dW6hYaqWisku0WJsepgx6G5OAcXLt_tdYDfr133YP94r8uqLgNM-w5fMC05OBlK2YHytUh922gn9kTqcOwW4MBPqMTXUknBOQipTiWodZ4YnrjSGNwQBRWw4XEvBOdvo70_PPpS6wIOC6KMtwLaCWGPykAp56G9U8XOlUCnzHHchmIs-gf8rSWuqMnrKZyby2ymLs7VZHJFPx7cJXcqw5a2Skm8R9ZMdp_cGlSh-wfk12V6YzwxdFAkcRpa1Xc9pWA8UwCu5Rlrg2JN6AAJAZnPxjqn44y2MXt-QfdQSue0U2YIYo3p97SX5bjFkFM8K0OLI8Xsc_yjhHKKRu5ybuDhkyLtLGOdOUI87eNNH9sD9rXbOqLYFG6SPyQnN8K9R2Q9m2Zmi9A0kWBNqThUEp7gChXoIPV14Cep4yhuLPK2ZlA0K0uBROBCITOj68y0SBs5uKLDIt7FH9P5aVRhQhS7qZECpugZ5cGFAtdUubGOjYKJq8Aib5D_EUINMFmr6sQETBeLdkUtiUFP8J-BcrtBCRChm8O1BEUVROXR5YKyyMvVMN6JaXeZmS4LGk_gcgaax6XArV4JLX0X3A2LyIYoNt65OZKNvxcFzB1Qk2D3w1d6t5La_37SJ_9-iRdks3s86Ef93vDwKbntYptmbDEVbpP1xXxpnoHtuIifVwuUkm83jQl_AK5EhAI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemIQ1eEP_pGGAkEALJahwnjouEULtSWraOSTCpb8Fx7NGpS0vTatoH4kvw6bhL0m4ZEjztoVJUXyInd_7dne98R8jLwPejJEw54zDMAhM4ppXXYgZrdynn0rDM8j2Q_aPg8ygcbZDfq7MwmFa5wsQCqNOpwT3yJggeqHLptVTTVWkRh93eh9lPhh2kMNK6aqdRisiePT8D9y1_P-gCr1_5fu_jt90-qzoMMBNysWBGCXAwtPYiHRrpQs8angTScYGdAjj8pE5Do7SSQoCAGqdApYvUitRX1uJmKMD_jUiIFqYTRqO1sydgKZSRVsA5Kb1RGSIFQq9ZRc21RHeMc7-mEovOAX_rh0sK8mry5s1lNtPnZ3oyuaQZe3fI7cqkpe1SBu-SDZvdI1vDKmh_n_y6SGxMJpYOi_RNS6vKrscUzGYKkLU8ZR1QqSkdIiFg8unY5HSc0Q7mzS_oLsrnnHbL3ECsLv2ODrIcNxdyiqdkaHGYmH1JTkoQp2jeLucWHj4pEs4y1p0juNN9vOlTZ8i-9tuHFNvBTfIH5OhaePeQbGbTzD4m1KUK7CidtLSCJ_hSRyZyoYnC1HGuhW2QNysGxbOyCEgMzhMyM77KzAbpIAfXdFi-u_hjOj-OKzSIE99ZJWGKgdUBXGhwSrWfmMRqmLiOGuQ18j9GkAEmG12dlYDpYrmuuK0w3AmeM1Du1CgBHEx9eCVBcQVOeXyxlBrkxXoY78SEu8xOlwVNIHEhA82jUuDWr4Q2vg-ORoOomijW3rk-ko1_FKXLOShIsPjhK71dS-1_P-n2v1_iOdkCJIj3Bwd7T8gtH_szY2-p1g7ZXMyX9ikYjYvkWbE6Kfl-3XDwBxj9gZw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagKwEX3o_CgoyEhEDyto4Tx-WC2l2WguiyElQqp-A49lLoplXTgOD_8D-ZSdyyKQeEOESK4ollR-PP32TGM4Q8CoMgTqOMMw7NLDShY1p1e8xg7i7lXBbVUb5HcjgOX0-iia9zWviwSjDFpxVIA5XH1RiGHck7sgPLMugsMvf8q_-VxNEJhzaDOk92ZARkvEV2xkfH_Q-VjxMQRsruBO_XHdWOSgGGfsf7rrVEo4jzoLExVfn7_0TpM9vUdgjlxTJf6O_f9Gx2Zn86vEI-rmdWh6V82StX6Z75sZX08T-mfpVc9tyV9mtlu0bO2fw6uTDy3vkb5OfvCMZ0ZumoitO01KdwPaHAjylgU3nKBrB3ZnSEggC-p1NT0GlOBxggv6L7qIhLelAHAWIa6Wf0VV7gX4SC4nEYWp0aZm_TzzVaU-Sx5dJC57MqsixnB0tEcfoGX3o5GLF3w_4xxbpvs-ImGR--eL8_ZL4MBDMRFytmlAArUOturCMjXdS1hqehdFxgOQcOl9RZZJRWUghAEeMU8C6RWZEFylohbpFWPs_tHUJdpoAw6bSnFfQQSB2b2EUmjjLHuRa2TZ6sdSBZ1Nk-ErCSUF-SbX1pkwEqyUYO83RXD-bLk8Qv-yQNnFUShhhaHcKNButTB6lJrYaB67hNHqOKJYgmoEdG-0MRMFzMy5X0Ffo1wUQGyd2GJKCAaTavlTTxKFQkANZAf2W3p9rk4aYZ38TIutzOy0omlLhiQeZ2rdObKSGZD8CiaBPV0PbGnJst-fRTlaOcw04I1B6-0tPNwvjrJ737L8L3yKUAazFjHaneLmmtlqW9DwRxlT7wIPALCtVhSg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+Machine+Learning+for+Serum-Based+Metabolomics+in+Breast+Cancer+Diagnostics%3A+Insights+from+Multi-Objective+Feature+Selection-Driven+LightGBM-SHAP+Models&rft.jtitle=Medicina+%28Kaunas%2C+Lithuania%29&rft.au=Guldogan%2C+Emek&rft.au=Yagin%2C+Fatma+Hilal&rft.au=Ucuzal%2C+Hasan&rft.au=Alzakari%2C+Sarah+A&rft.date=2025-06-19&rft.eissn=1648-9144&rft.volume=61&rft.issue=6&rft_id=info:doi/10.3390%2Fmedicina61061112&rft_id=info%3Apmid%2F40572800&rft.externalDocID=40572800 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1648-9144&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1648-9144&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1648-9144&client=summon |