Interpretable Machine Learning for Serum-Based Metabolomics in Breast Cancer Diagnostics: Insights from Multi-Objective Feature Selection-Driven LightGBM-SHAP Models

Background and Objectives: Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates, but traditional biomarkers like CA 15-3 and HER2 lack sensitivity and specificity, particularly for early-stage disease. Advances in metabolo...

Full description

Saved in:
Bibliographic Details
Published inMedicina (Kaunas, Lithuania) Vol. 61; no. 6; p. 1112
Main Authors Guldogan, Emek, Yagin, Fatma Hilal, Ucuzal, Hasan, Alzakari, Sarah A., Alhussan, Amel Ali, Ardigò, Luca Paolo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.06.2025
MDPI
Subjects
Online AccessGet full text
ISSN1648-9144
1010-660X
1648-9144
DOI10.3390/medicina61061112

Cover

Abstract Background and Objectives: Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates, but traditional biomarkers like CA 15-3 and HER2 lack sensitivity and specificity, particularly for early-stage disease. Advances in metabolomics and machine learning, particularly explainable artificial intelligence (XAI), offer new opportunities for identifying robust biomarkers and improving diagnostic accuracy. This study aimed to identify and validate serum-based metabolic biomarkers for breast cancer using advanced metabolomic profiling techniques and a Light Gradient Boosting Machine (LightGBM) model. Additionally, SHapley Additive exPlanations (SHAP) were applied to enhance model interpretability and biological insight. Materials and Methods: The study included 103 breast cancer patients and 31 healthy controls. Serum samples underwent liquid and gas chromatography–time-of-flight mass spectrometry (LC-TOFMS and GC-TOFMS). Mutual Information (MI), Sparse Partial Least Squares (sPLS), Boruta, and Multi-Objective Feature Selection (MOFS) approaches were applied to the data for biomarker discovery. LightGBM, AdaBoost, and Random Forest were employed for classification and to identify class imbalance with the Synthetic Minority Oversampling Technique (SMOTE). SHAP analysis ranked metabolites based on their contribution to model predictions. Results: Compared to other feature selection approaches, the MOFS approach was more robust in terms of predictive performance, and metabolites identified by this method were used in subsequent analyses for biomarker discovery. LightGBM outperformed the AdaBoost and Random Forest models, achieving 86.6% accuracy, 89.1% sensitivity, 84.2% specificity, and an F1-score of 87.0%. SHAP analysis identified 2-Aminobutyric acid, choline, and coproporphyrin as the most influential metabolites, with dysregulation of these markers associated with breast cancer risk. Conclusions: This study is among the first to integrate SHAP explainability with metabolomic profiling, bridging computational predictions and biological insights for improved clinical adoption. This study demonstrates the effectiveness of combining metabolomics with XAI-driven machine learning for breast cancer diagnostics. The identified biomarkers not only improve diagnostic accuracy but also reveal critical metabolic dysregulations associated with disease progression.
AbstractList Background and Objectives: Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates, but traditional biomarkers like CA 15-3 and HER2 lack sensitivity and specificity, particularly for early-stage disease. Advances in metabolomics and machine learning, particularly explainable artificial intelligence (XAI), offer new opportunities for identifying robust biomarkers and improving diagnostic accuracy. This study aimed to identify and validate serum-based metabolic biomarkers for breast cancer using advanced metabolomic profiling techniques and a Light Gradient Boosting Machine (LightGBM) model. Additionally, SHapley Additive exPlanations (SHAP) were applied to enhance model interpretability and biological insight. Materials and Methods: The study included 103 breast cancer patients and 31 healthy controls. Serum samples underwent liquid and gas chromatography–time-of-flight mass spectrometry (LC-TOFMS and GC-TOFMS). Mutual Information (MI), Sparse Partial Least Squares (sPLS), Boruta, and Multi-Objective Feature Selection (MOFS) approaches were applied to the data for biomarker discovery. LightGBM, AdaBoost, and Random Forest were employed for classification and to identify class imbalance with the Synthetic Minority Oversampling Technique (SMOTE). SHAP analysis ranked metabolites based on their contribution to model predictions. Results: Compared to other feature selection approaches, the MOFS approach was more robust in terms of predictive performance, and metabolites identified by this method were used in subsequent analyses for biomarker discovery. LightGBM outperformed the AdaBoost and Random Forest models, achieving 86.6% accuracy, 89.1% sensitivity, 84.2% specificity, and an F1-score of 87.0%. SHAP analysis identified 2-Aminobutyric acid, choline, and coproporphyrin as the most influential metabolites, with dysregulation of these markers associated with breast cancer risk. Conclusions: This study is among the first to integrate SHAP explainability with metabolomic profiling, bridging computational predictions and biological insights for improved clinical adoption. This study demonstrates the effectiveness of combining metabolomics with XAI-driven machine learning for breast cancer diagnostics. The identified biomarkers not only improve diagnostic accuracy but also reveal critical metabolic dysregulations associated with disease progression.
Background and Objectives: Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates, but traditional biomarkers like CA 15-3 and HER2 lack sensitivity and specificity, particularly for early-stage disease. Advances in metabolomics and machine learning, particularly explainable artificial intelligence (XAI), offer new opportunities for identifying robust biomarkers and improving diagnostic accuracy. This study aimed to identify and validate serum-based metabolic biomarkers for breast cancer using advanced metabolomic profiling techniques and a Light Gradient Boosting Machine (LightGBM) model. Additionally, SHapley Additive exPlanations (SHAP) were applied to enhance model interpretability and biological insight. Materials and Methods: The study included 103 breast cancer patients and 31 healthy controls. Serum samples underwent liquid and gas chromatography-time-of-flight mass spectrometry (LC-TOFMS and GC-TOFMS). Mutual Information (MI), Sparse Partial Least Squares (sPLS), Boruta, and Multi-Objective Feature Selection (MOFS) approaches were applied to the data for biomarker discovery. LightGBM, AdaBoost, and Random Forest were employed for classification and to identify class imbalance with the Synthetic Minority Oversampling Technique (SMOTE). SHAP analysis ranked metabolites based on their contribution to model predictions. Results: Compared to other feature selection approaches, the MOFS approach was more robust in terms of predictive performance, and metabolites identified by this method were used in subsequent analyses for biomarker discovery. LightGBM outperformed the AdaBoost and Random Forest models, achieving 86.6% accuracy, 89.1% sensitivity, 84.2% specificity, and an F1-score of 87.0%. SHAP analysis identified 2-Aminobutyric acid, choline, and coproporphyrin as the most influential metabolites, with dysregulation of these markers associated with breast cancer risk. Conclusions: This study is among the first to integrate SHAP explainability with metabolomic profiling, bridging computational predictions and biological insights for improved clinical adoption. This study demonstrates the effectiveness of combining metabolomics with XAI-driven machine learning for breast cancer diagnostics. The identified biomarkers not only improve diagnostic accuracy but also reveal critical metabolic dysregulations associated with disease progression.Background and Objectives: Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates, but traditional biomarkers like CA 15-3 and HER2 lack sensitivity and specificity, particularly for early-stage disease. Advances in metabolomics and machine learning, particularly explainable artificial intelligence (XAI), offer new opportunities for identifying robust biomarkers and improving diagnostic accuracy. This study aimed to identify and validate serum-based metabolic biomarkers for breast cancer using advanced metabolomic profiling techniques and a Light Gradient Boosting Machine (LightGBM) model. Additionally, SHapley Additive exPlanations (SHAP) were applied to enhance model interpretability and biological insight. Materials and Methods: The study included 103 breast cancer patients and 31 healthy controls. Serum samples underwent liquid and gas chromatography-time-of-flight mass spectrometry (LC-TOFMS and GC-TOFMS). Mutual Information (MI), Sparse Partial Least Squares (sPLS), Boruta, and Multi-Objective Feature Selection (MOFS) approaches were applied to the data for biomarker discovery. LightGBM, AdaBoost, and Random Forest were employed for classification and to identify class imbalance with the Synthetic Minority Oversampling Technique (SMOTE). SHAP analysis ranked metabolites based on their contribution to model predictions. Results: Compared to other feature selection approaches, the MOFS approach was more robust in terms of predictive performance, and metabolites identified by this method were used in subsequent analyses for biomarker discovery. LightGBM outperformed the AdaBoost and Random Forest models, achieving 86.6% accuracy, 89.1% sensitivity, 84.2% specificity, and an F1-score of 87.0%. SHAP analysis identified 2-Aminobutyric acid, choline, and coproporphyrin as the most influential metabolites, with dysregulation of these markers associated with breast cancer risk. Conclusions: This study is among the first to integrate SHAP explainability with metabolomic profiling, bridging computational predictions and biological insights for improved clinical adoption. This study demonstrates the effectiveness of combining metabolomics with XAI-driven machine learning for breast cancer diagnostics. The identified biomarkers not only improve diagnostic accuracy but also reveal critical metabolic dysregulations associated with disease progression.
Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates, but traditional biomarkers like CA 15-3 and HER2 lack sensitivity and specificity, particularly for early-stage disease. Advances in metabolomics and machine learning, particularly explainable artificial intelligence (XAI), offer new opportunities for identifying robust biomarkers and improving diagnostic accuracy. This study aimed to identify and validate serum-based metabolic biomarkers for breast cancer using advanced metabolomic profiling techniques and a Light Gradient Boosting Machine (LightGBM) model. Additionally, SHapley Additive exPlanations (SHAP) were applied to enhance model interpretability and biological insight. The study included 103 breast cancer patients and 31 healthy controls. Serum samples underwent liquid and gas chromatography-time-of-flight mass spectrometry (LC-TOFMS and GC-TOFMS). Mutual Information (MI), Sparse Partial Least Squares (sPLS), Boruta, and Multi-Objective Feature Selection (MOFS) approaches were applied to the data for biomarker discovery. LightGBM, AdaBoost, and Random Forest were employed for classification and to identify class imbalance with the Synthetic Minority Oversampling Technique (SMOTE). SHAP analysis ranked metabolites based on their contribution to model predictions. Compared to other feature selection approaches, the MOFS approach was more robust in terms of predictive performance, and metabolites identified by this method were used in subsequent analyses for biomarker discovery. LightGBM outperformed the AdaBoost and Random Forest models, achieving 86.6% accuracy, 89.1% sensitivity, 84.2% specificity, and an F1-score of 87.0%. SHAP analysis identified 2-Aminobutyric acid, choline, and coproporphyrin as the most influential metabolites, with dysregulation of these markers associated with breast cancer risk. This study is among the first to integrate SHAP explainability with metabolomic profiling, bridging computational predictions and biological insights for improved clinical adoption. This study demonstrates the effectiveness of combining metabolomics with XAI-driven machine learning for breast cancer diagnostics. The identified biomarkers not only improve diagnostic accuracy but also reveal critical metabolic dysregulations associated with disease progression.
Audience Academic
Author Guldogan, Emek
Alhussan, Amel Ali
Ardigò, Luca Paolo
Alzakari, Sarah A.
Yagin, Fatma Hilal
Ucuzal, Hasan
AuthorAffiliation 2 Department of Biostatistics, Faculty of Medicine, Malatya Turgut Ozal University, 44210 Malatya, Turkey
1 Department of Biostatistics, and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; emek.guldogan@inonu.edu.tr (E.G.); hasan.ucuzal@inonu.edu.tr (H.U.)
3 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
4 Department of Teacher Education, NLA University College, Linstows Gate 3, 0166 Oslo, Norway
AuthorAffiliation_xml – name: 1 Department of Biostatistics, and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; emek.guldogan@inonu.edu.tr (E.G.); hasan.ucuzal@inonu.edu.tr (H.U.)
– name: 4 Department of Teacher Education, NLA University College, Linstows Gate 3, 0166 Oslo, Norway
– name: 3 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
– name: 2 Department of Biostatistics, Faculty of Medicine, Malatya Turgut Ozal University, 44210 Malatya, Turkey
Author_xml – sequence: 1
  givenname: Emek
  orcidid: 0000-0002-5436-8164
  surname: Guldogan
  fullname: Guldogan, Emek
– sequence: 2
  givenname: Fatma Hilal
  orcidid: 0000-0002-9848-7958
  surname: Yagin
  fullname: Yagin, Fatma Hilal
– sequence: 3
  givenname: Hasan
  surname: Ucuzal
  fullname: Ucuzal, Hasan
– sequence: 4
  givenname: Sarah A.
  surname: Alzakari
  fullname: Alzakari, Sarah A.
– sequence: 5
  givenname: Amel Ali
  orcidid: 0000-0001-7530-7961
  surname: Alhussan
  fullname: Alhussan, Amel Ali
– sequence: 6
  givenname: Luca Paolo
  orcidid: 0000-0001-7677-5070
  surname: Ardigò
  fullname: Ardigò, Luca Paolo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40572800$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURD_gzglZ4sIlxV_JZrmg3S1tV9pVkQpna-JMUq8Se7GTov4g_icOW6rdCglFkUcz7zz2a89pcmSdxSR5y-i5EFP6scPKaGMhZzRnjPEXyQnLZZFOmZRHe_FxchrChlLBswl_lRxLGteC0pPk19L26LceeyhbJGvQd8YiWSF4a2xDaufJLfqhS-cQsCLrUeha1xkdiLFk7hFCTxZgNXpyYaCxLvSx-IksbTDNXR9I7V1H1kPbm_Sm3KDuzT2SS4R-8Bjh7ZhxNr3wMW_Jamy6mq_T2-vZV7J2FbbhdfKyhjbgm8f1LPl--eXb4jpd3VwtF7NVqjMm-lQXgkkKQCeQ6bzOKGpWyrxmQkNGWfxzqDJdQJELUVKq64LGqEJR8QJRiLNkueNWDjZq600H_kE5MOpPwvlGgY_uWlQlr7HII1IiyBgAkwXwUpcIcSOYRBbbsQa7hYef0LZPQEbV-Hzq-fPFns-7nu1QxqJG23toDw5yWLHmTjXuXjHOphnnI-HDI8G7HwOGXnUmaGxbsOiGoATnMpecT4ooff9MunGDt_F-R5WY8pxO91QNRNfG1i5urEeomhUyKyJvOpo9_4cqfhXGSYlDW5uYP2h4t-_0yeLfyYwCuhNo70LwWP__9n4D_x34eQ
Cites_doi 10.1118/1.1418724
10.1016/j.health.2023.100218
10.1109/CITA.2015.7349827
10.1038/s42256-019-0138-9
10.1002/bies.201900162
10.1109/BIBM55620.2022.9995516
10.3389/fninf.2014.00018
10.3390/cancers14205055
10.1111/cts.70056
10.1109/TNN.2008.2005601
10.1016/j.chemolab.2023.104813
10.1016/j.ymeth.2024.01.003
10.1007/s00521-013-1368-0
10.1016/j.prp.2024.155551
10.1109/ICICET59348.2024.10616318
10.20944/preprints202405.0996.v1
10.1056/NEJMp1500523
10.3389/fnut.2022.1056648
10.1016/j.artmed.2022.102331
10.1158/0008-5472.CAN-10-1319
10.1007/978-3-319-31808-0_10
10.1038/srep36749
10.21203/rs.3.rs-4649887/v1
10.1152/physrev.00035.2018
10.1007/s00535-022-01849-9
10.1007/s10462-025-11117-w
10.1038/s41598-022-06264-x
10.20944/preprints202401.0228.v1
10.1371/journal.pone.0311810
10.1126/sciadv.adf0115
10.15252/embj.2019103209
10.1613/jair.953
10.1136/ebnurs-2019-103225
10.3390/ijms231911269
10.1016/j.ins.2019.08.040
10.3322/caac.21492
10.3390/cancers15133468
10.61919/jhrr.v4i3.1609
10.1007/s11042-023-15627-z
10.1074/mcp.M110.004945
10.31083/j.fbl2905182
10.18632/oncotarget.5409
10.1016/j.ijbiomac.2023.126404
10.1016/j.biopha.2023.114933
10.3233/FI-2010-288
10.3390/biology13110848
10.1002/sam.10074
10.3322/caac.21660
10.1007/s13385-022-00328-y
10.1016/j.eswa.2018.10.030
10.1155/2023/9328344
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/medicina61061112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic


Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1648-9144
ExternalDocumentID oai_doaj_org_article_b2fe86a504ea486aa148a2bcbea1a5a7
10.3390/medicina61061112
PMC12195222
A845822497
40572800
10_3390_medicina61061112
Genre Journal Article
GeographicLocations Turkey
United States--US
GeographicLocations_xml – name: Turkey
– name: United States--US
GrantInformation_xml – fundername: Princess Nourah bint Abdulrahman University
  grantid: PNURSP2025R716
– fundername: Princess Nourah bint Abdulrahman University Researchers Supporting Project
  grantid: PNURSP2025R716
GroupedDBID 0R~
29M
2WC
4.4
457
53G
5GY
5VS
7X7
8FI
8FJ
AADQD
AAEDT
AAFWJ
AAIKJ
AAYXX
ABMAC
ABUWG
ACGFS
ADBBV
ADEZE
AFKRA
AFPKN
AFZYC
AGHFR
AHDRD
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
EMOBN
F5P
FDB
FYUFA
GROUPED_DOAJ
HMCUK
HYE
IAO
IHR
ITC
KQ8
MODMG
O9-
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
XSB
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
AAEDW
AALRI
AAXUO
AAYWO
ADTOC
ADVLN
AITUG
AMRAJ
EBS
EJD
IPNFZ
M41
RIG
ROL
SSZ
UNPAY
ID FETCH-LOGICAL-c513t-c83140aa07a5c6f50ec1b46f13ca501a506ad5c8a8633b00cf80633de3d28ee33
IEDL.DBID UNPAY
ISSN 1648-9144
1010-660X
IngestDate Fri Oct 03 12:41:57 EDT 2025
Sun Oct 26 03:34:06 EDT 2025
Tue Sep 30 17:01:11 EDT 2025
Fri Sep 05 15:47:20 EDT 2025
Tue Oct 07 07:11:28 EDT 2025
Mon Oct 20 22:41:27 EDT 2025
Mon Oct 20 16:50:24 EDT 2025
Sun Jun 29 01:31:30 EDT 2025
Thu Oct 16 04:43:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords SHAP
diagnostic accuracy
metabolomics
LightGBM
biomarkers
breast cancer
explainable AI
Language English
License Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-c83140aa07a5c6f50ec1b46f13ca501a506ad5c8a8633b00cf80633de3d28ee33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5436-8164
0000-0001-7530-7961
0000-0002-9848-7958
0000-0001-7677-5070
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1648-9144/61/6/1112/pdf?version=1750328288
PMID 40572800
PQID 3223926098
PQPubID 5046879
ParticipantIDs doaj_primary_oai_doaj_org_article_b2fe86a504ea486aa148a2bcbea1a5a7
unpaywall_primary_10_3390_medicina61061112
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12195222
proquest_miscellaneous_3224642278
proquest_journals_3223926098
gale_infotracmisc_A845822497
gale_infotracacademiconefile_A845822497
pubmed_primary_40572800
crossref_primary_10_3390_medicina61061112
PublicationCentury 2000
PublicationDate 2025-06-19
PublicationDateYYYYMMDD 2025-06-19
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-19
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Medicina (Kaunas, Lithuania)
PublicationTitleAlternate Medicina (Kaunas)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
Chen (ref_4) 2011; 10
ref_57
ref_56
ref_54
ref_52
ref_51
Survarachakan (ref_45) 2022; 130
Tourassi (ref_12) 2001; 28
Asiago (ref_5) 2010; 70
ref_17
Lundberg (ref_28) 2020; 2
Wishart (ref_25) 2019; 99
Yadav (ref_31) 2024; 25
Manjunath (ref_46) 2024; 83
Abdelsamea (ref_48) 2019; 118
Swift (ref_30) 2020; 23
Chawla (ref_22) 2002; 16
ref_23
ref_21
ref_20
ref_29
Akrida (ref_36) 2024; 262
ref_27
Saeidnia (ref_43) 2025; 58
Schmitt (ref_41) 2024; 17
Nogueira (ref_24) 2017; 18
Delcaillau (ref_40) 2022; 12
Nishida (ref_47) 2022; 57
Bray (ref_2) 2018; 68
ref_35
ref_34
Feldker (ref_37) 2020; 39
ref_33
ref_32
Xie (ref_10) 2015; 6
Zhang (ref_19) 2020; 507
ref_39
ref_38
Farahzadi (ref_55) 2023; 2023
Omotehinwa (ref_26) 2023; 4
McWilliams (ref_16) 2010; 3
Sung (ref_1) 2021; 71
Collins (ref_50) 2015; 372
ref_44
ref_42
Vergara (ref_11) 2014; 24
ref_3
Gong (ref_9) 2024; 222
Tesmer (ref_13) 2009; 20
Alsouki (ref_15) 2023; 237
ref_49
ref_8
Izzo (ref_53) 2023; 9
ref_7
Kursa (ref_18) 2010; 101
ref_6
References_xml – volume: 28
  start-page: 2394
  year: 2001
  ident: ref_12
  article-title: Application of the mutual information criterion for feature selection in computer-aided diagnosis
  publication-title: Med. Phys.
  doi: 10.1118/1.1418724
– volume: 4
  start-page: 100218
  year: 2023
  ident: ref_26
  article-title: A light gradient-boosting machine algorithm with tree-structured parzen estimator for breast cancer diagnosis
  publication-title: Healthc. Anal.
  doi: 10.1016/j.health.2023.100218
– ident: ref_14
  doi: 10.1109/CITA.2015.7349827
– volume: 2
  start-page: 56
  year: 2020
  ident: ref_28
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0138-9
– ident: ref_39
  doi: 10.1002/bies.201900162
– ident: ref_42
  doi: 10.1109/BIBM55620.2022.9995516
– ident: ref_17
  doi: 10.3389/fninf.2014.00018
– ident: ref_8
  doi: 10.3390/cancers14205055
– volume: 25
  start-page: 4872
  year: 2024
  ident: ref_31
  article-title: Developing Model-Agnostic Meta-Learning Enabled Lightbgm Model Asthma Level Prediction in Smart Healthcare Modeling
  publication-title: Scalable Comput. Pract. Exp.
– volume: 17
  start-page: e70056
  year: 2024
  ident: ref_41
  article-title: Practical guide to SHAP analysis: Explaining supervised machine learning model predictions in drug development
  publication-title: Clin. Transl. Sci.
  doi: 10.1111/cts.70056
– ident: ref_23
– volume: 20
  start-page: 189
  year: 2009
  ident: ref_13
  article-title: Normalized mutual information feature selection
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005601
– volume: 237
  start-page: 104813
  year: 2023
  ident: ref_15
  article-title: Dual-sPLS: A family of Dual Sparse Partial Least Squares regressions for feature selection and prediction with tunable sparsity; evaluation on simulated and near-infrared (NIR) data
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2023.104813
– volume: 222
  start-page: 100
  year: 2024
  ident: ref_9
  article-title: LC-MS/MS platform-based serum untargeted screening reveals the diagnostic biomarker panel and molecular mechanism of breast cancer
  publication-title: Methods
  doi: 10.1016/j.ymeth.2024.01.003
– volume: 24
  start-page: 175
  year: 2014
  ident: ref_11
  article-title: A review of feature selection methods based on mutual information
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1368-0
– volume: 262
  start-page: 155551
  year: 2024
  ident: ref_36
  article-title: Hippo pathway effectors YAP, TAZ and TEAD are associated with EMT master regulators ZEB, Snail and with aggressive phenotype in phyllodes breast tumors
  publication-title: Pathol.-Res. Pract.
  doi: 10.1016/j.prp.2024.155551
– ident: ref_32
  doi: 10.1109/ICICET59348.2024.10616318
– ident: ref_3
  doi: 10.20944/preprints202405.0996.v1
– ident: ref_27
– volume: 372
  start-page: 793
  year: 2015
  ident: ref_50
  article-title: A new initiative on precision medicine
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMp1500523
– ident: ref_34
  doi: 10.3389/fnut.2022.1056648
– volume: 130
  start-page: 102331
  year: 2022
  ident: ref_45
  article-title: Deep learning for image-based liver analysis—A comprehensive review focusing on malignant lesions
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2022.102331
– volume: 70
  start-page: 8309
  year: 2010
  ident: ref_5
  article-title: Early detection of recurrent breast cancer using metabolite profiling
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-1319
– ident: ref_49
  doi: 10.1007/978-3-319-31808-0_10
– ident: ref_56
  doi: 10.1038/srep36749
– ident: ref_7
  doi: 10.21203/rs.3.rs-4649887/v1
– volume: 99
  start-page: 1819
  year: 2019
  ident: ref_25
  article-title: Metabolomics for investigating physiological and pathophysiological processes
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00035.2018
– ident: ref_20
– volume: 57
  start-page: 309
  year: 2022
  ident: ref_47
  article-title: Artificial intelligence (AI) models for the ultrasonographic diagnosis of liver tumors and comparison of diagnostic accuracies between AI and human experts
  publication-title: J. Gastroenterol.
  doi: 10.1007/s00535-022-01849-9
– volume: 58
  start-page: 105
  year: 2025
  ident: ref_43
  article-title: Advancing cancer diagnosis and treatment: Integrating image analysis and AI algorithms for enhanced clinical practice
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-025-11117-w
– ident: ref_44
  doi: 10.1038/s41598-022-06264-x
– ident: ref_38
  doi: 10.20944/preprints202401.0228.v1
– ident: ref_6
  doi: 10.1371/journal.pone.0311810
– volume: 9
  start-page: eadf0115
  year: 2023
  ident: ref_53
  article-title: Acetylcarnitine shuttling links mitochondrial metabolism to histone acetylation and lipogenesis
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adf0115
– volume: 39
  start-page: e103209
  year: 2020
  ident: ref_37
  article-title: Genome-wide cooperation of EMT transcription factor ZEB 1 with YAP and AP-1 in breast cancer
  publication-title: EMBO J.
  doi: 10.15252/embj.2019103209
– volume: 16
  start-page: 321
  year: 2002
  ident: ref_22
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 23
  start-page: 2
  year: 2020
  ident: ref_30
  article-title: What are sensitivity and specificity?
  publication-title: Evid.-Based Nurs.
  doi: 10.1136/ebnurs-2019-103225
– ident: ref_51
  doi: 10.3390/ijms231911269
– volume: 507
  start-page: 67
  year: 2020
  ident: ref_19
  article-title: Binary differential evolution with self-learning for multi-objective feature selection
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.08.040
– ident: ref_21
– volume: 68
  start-page: 394
  year: 2018
  ident: ref_2
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21492
– ident: ref_35
  doi: 10.3390/cancers15133468
– ident: ref_29
  doi: 10.61919/jhrr.v4i3.1609
– volume: 18
  start-page: 1
  year: 2017
  ident: ref_24
  article-title: Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn. Res.
– volume: 83
  start-page: 2773
  year: 2024
  ident: ref_46
  article-title: Deep learning algorithm performance evaluation in detection and classification of liver disease using CT images
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-15627-z
– volume: 10
  start-page: M110.004945
  year: 2011
  ident: ref_4
  article-title: Serum and urine metabolite profiling reveals potential biomarkers of human hepatocellular carcinoma
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.M110.004945
– ident: ref_57
  doi: 10.31083/j.fbl2905182
– volume: 6
  start-page: 33369
  year: 2015
  ident: ref_10
  article-title: Lowered circulating aspartate is a metabolic feature of human breast cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5409
– ident: ref_52
  doi: 10.1016/j.ijbiomac.2023.126404
– ident: ref_54
  doi: 10.1016/j.biopha.2023.114933
– volume: 101
  start-page: 271
  year: 2010
  ident: ref_18
  article-title: Boruta–a system for feature selection
  publication-title: Fundam. Informaticae
  doi: 10.3233/FI-2010-288
– ident: ref_33
  doi: 10.3390/biology13110848
– volume: 3
  start-page: 170
  year: 2010
  ident: ref_16
  article-title: Sparse partial least squares regression for on-line variable selection with multivariate data streams
  publication-title: Stat. Anal. Data Min. ASA Data Sci. J.
  doi: 10.1002/sam.10074
– volume: 71
  start-page: 209
  year: 2021
  ident: ref_1
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21660
– volume: 12
  start-page: 443
  year: 2022
  ident: ref_40
  article-title: Model transparency and interpretability: Survey and application to the insurance industry
  publication-title: Eur. Actuar. J.
  doi: 10.1007/s13385-022-00328-y
– volume: 118
  start-page: 539
  year: 2019
  ident: ref_48
  article-title: A cascade-learning approach for automated segmentation of tumour epithelium in colorectal cancer
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.10.030
– volume: 2023
  start-page: 9328344
  year: 2023
  ident: ref_55
  article-title: Clinical significance of carnitine in the treatment of cancer: From traffic to the regulation
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2023/9328344
SSID ssj0032572
Score 2.362709
Snippet Background and Objectives: Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates,...
Breast cancer accounts for 12.5% of all new cancer cases in women worldwide. Early detection significantly improves survival rates, but traditional biomarkers...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1112
SubjectTerms Accuracy
Adult
Aged
Algorithms
Analysis
Artificial intelligence
Biomarkers
Biomarkers, Tumor - analysis
Biomarkers, Tumor - blood
Boosting Machine Learning Algorithms
Breast cancer
Breast Neoplasms - blood
Breast Neoplasms - diagnosis
Care and treatment
Chromatography
Demographic aspects
Diagnosis
explainable AI
Feature selection
Female
Glycerol
Health aspects
Health care
Humans
LightGBM
Machine learning
Machine Learning - standards
Mass spectrometry
Medical prognosis
Medical research
Metabolism
Metabolites
Metabolomics
Metabolomics - methods
Methods
Middle Aged
Patients
Random variables
Reproducibility
Scientific imaging
SHAP
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQHoAXxDeBgYyEhECyFsex4_DWboyCKCDBpL5FF8cZRV02Na0QfxD_J3dxWprxsBfeqvgS1b6v3-nOd4y9SJMkK3UlhcRlkbq0FmDjXDjq3WXrutKhyveTmZykH2Z6tjPqi2rCQnvgcHAHZVJ7a0DHqYcUfwDid0hKV3qQoKG7Rx7bfBNMBRusUBBDnhOtjDHxLCQoFQb4B33OGgwFQ1ImA4fU9e3_1zrvuKfLpZM31s0F_PoJi8WOXzq-zW71gJKPwkbusGu-ucuuT_uU-T32-29ZYbnwfNoVT3re91U95QhaORqM9ZkYo0Or-JQI0SKezV3L5w0fU9X6ih-SdCz5UajMo97Ob_j7pqXQvuV0R4V3V3nF5_JHMKGcwOV66fHji67cqxFHSzKt_CO99G48FV8noy-chrEt2vvs5Pjtt8OJ6GczCKelWglnFYZmAHEG2plax97JMjW1VDRjATkTG6i0s2CNUqjarrYIhlTlVZVY75V6wPaa88Y_YryuLKIYKHOw-IXEQOayWrtMV7WUoHzEXm0YVFyEFhwFhi7EzOIyMyM2Jg5u6ah5dvcARaroRaq4SqQi9pL4X5CKI5Md9DcV8O9Ss6xiZCnZiHErUu4PKFE13XB5I0FFbxraAi0oYlIT5zZiz7fL9CaVuzX-fN3RpIbUCGkeBoHbbokQdoIwP2J2IIqDPQ9Xmvn3rnG4RPeEeBtP6fVWaq880sf_40ifsJsJDU6moU_5PttbLdf-KaK5VfmsU9w_oKhKpw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ta9RAEF7qFdQvxdeaWmUFQRSWJtlksxFELn3xFO8sauG-hc1mU0_S3JlcEH-Q_9OZvFybCvohcGQnYTcz8-zMzewMIc891w0SP3WYA8PM017GlLRDprF2l8yy1G-zfGdicuZ9mPvzLTLrz8JgWmWPiQ1Qp0uN_5EfgODBVi7sUL5d_WDYNQqjq30LDdW1VkjfNCXGbpBtFytjjch2dDw7_dxjMwcBbeOfgD5C2PM2cMnB8T_oYtlKoJPkOO5go2rq-f-N2le2resplbfqYqV-_VR5fmW_OrlDdjpDk45bybhLtkxxj9ycdqH0--T3Zbphkhs6bZIqDe3qrZ5TMGYpAEl9wSLY6FI6RUJAyouFruiioBFms6_pIUpNSY_ajD2s-fyavi8qdPkrimdXaHPEl31KvrfQStHorEsDL8-bNLCCHZUIufQjPvQumrIvk_EpxSZtefWAnJ0cfz2csK5nA9O-w9dMSw4um1J2oHwtMt822kk8kTkcey84cAmV-loqKTgHldeZBCOJp4anrjSG84dkVCwL84jQLJVg3agkVBLe4AoV6CDzdeCnmeMobizysmdQvGpLc8Tg0iAz4-vMtEiEHNzQYVHt5sayPI87HY0TNzNSwBQ9ozz4ocBVVG6iE6Ng4iqwyAvkf4yqD0zWqjvBANPFIlrxWGIQEvxZoNwfUILK6uFwL0FxBxlVfCngFnm2GcYnMQ2uMMu6ofEEqhfQ7LYCt1kSWt4umP8WkQNRHKx5OFIsvjUFxUFVQrDD4Su92kjtfz_p3r8X8ZjcdrFVMrZ5CvfJaF3W5gnYb-vkaaeUfwDHSUc-
  priority: 102
  providerName: ProQuest
Title Interpretable Machine Learning for Serum-Based Metabolomics in Breast Cancer Diagnostics: Insights from Multi-Objective Feature Selection-Driven LightGBM-SHAP Models
URI https://www.ncbi.nlm.nih.gov/pubmed/40572800
https://www.proquest.com/docview/3223926098
https://www.proquest.com/docview/3224642278
https://pubmed.ncbi.nlm.nih.gov/PMC12195222
https://www.mdpi.com/1648-9144/61/6/1112/pdf?version=1750328288
https://doaj.org/article/b2fe86a504ea486aa148a2bcbea1a5a7
UnpaywallVersion publishedVersion
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1648-9144
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032572
  issn: 1648-9144
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1648-9144
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032572
  issn: 1648-9144
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1648-9144
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032572
  issn: 1648-9144
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1648-9144
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032572
  issn: 1648-9144
  databaseCode: 7X7
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1648-9144
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032572
  issn: 1648-9144
  databaseCode: BENPR
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYVgIuvB-FpTISEgIp2zpOHJcLavdBQbRUQKVyCo7jLIVuWjUJCP4P_5OZxC2bckCIQ6Wonlh29PnzjGc8Q8gjz3WDyI-Zw6DZ8bSXOEp2e47G3F0ySWK_ivIdi-HUezXzZ7bOaWbDKsEUn5ckDao8rkbP6wjWER1Ylm5nFSfPv9qjJIZOOLQZ5B5pCh-U8QZpTseT_ofSxwkMI0R3hs-bjipHJQdDv2N910qgUcSYW9uYyvz9f7L0uW1qN4TyUpGu1PdvarE4tz-dXCUfNzOrwlK-HBR5dKB_7CR9_I-pXyNXrO5K-xXYrpMLJr1BLo6sd_4m-fk7gjFaGDoq4zQNtSlcTynoxxS4qThzBrB3xnSEgkC-Z3Od0XlKBxggn9NDBOKaHlVBgJhG-hl9mWZ4ipBRvA5Dy1vDzpvoc8XWFPXYYm2g80UZWZY6R2tkcfoaX3oxGDnvhv0Jxbpvi-wWmZ4cvz8cOrYMhKN9xnNHSw5WoFLdQPlaJH7XaBZ5ImEcyzkw-AkV-1oqKTgHFtGJBL2Lx4bHrjSG89ukkS5Tc5fQJJagMKmopyT04AoV6CDxdeDHCWOKmxZ5ssFAuKqyfYRgJSFewl28tMgAQbKVwzzd5R_L9Wlol30YuYmRAoboGeXBgwLrU7mRjoyCgaugRR4jxEJkE8CRVvZSBAwX83KFfYl-TTCRQXK_JgksoOvNG5CGloWyEMga1F_R7ckWebhtxjcxsi41y6KU8QSuWJC5U2F6OyVU5l2wKFpE1tBem3O9JZ1_KnOUM9gJQbWHr_R0uzD--knv_YvwfXLZxVrMWEeqt08a-bowD0BBzKM22QtmQZs0B8fjydt2eczStsTwC78zZMA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemTWK8IP4vMMBIIASStSROHAdpQu260bK2TLBJfQuO44yiLi1Nq2kfiK_BZ-Muf7plSPC0h0pRfYmc3Pl3d77zHSGvPNcNYj9xmAPDzNNeypS0Q6axdpdM08Qvs3yHonvifRr5ozXyuz4Lg2mVNSYWQJ1MNe6R74DggSoXdig_zH4y7BqF0dW6hYaqWisku0WJsepgx6G5OAcXLt_tdYDfr133YP94r8uqLgNM-w5fMC05OBlK2YHytUh922gn9kTqcOwW4MBPqMTXUknBOQipTiWodZ4YnrjSGNwQBRWw4XEvBOdvo70_PPpS6wIOC6KMtwLaCWGPykAp56G9U8XOlUCnzHHchmIs-gf8rSWuqMnrKZyby2ymLs7VZHJFPx7cJXcqw5a2Skm8R9ZMdp_cGlSh-wfk12V6YzwxdFAkcRpa1Xc9pWA8UwCu5Rlrg2JN6AAJAZnPxjqn44y2MXt-QfdQSue0U2YIYo3p97SX5bjFkFM8K0OLI8Xsc_yjhHKKRu5ybuDhkyLtLGOdOUI87eNNH9sD9rXbOqLYFG6SPyQnN8K9R2Q9m2Zmi9A0kWBNqThUEp7gChXoIPV14Cep4yhuLPK2ZlA0K0uBROBCITOj68y0SBs5uKLDIt7FH9P5aVRhQhS7qZECpugZ5cGFAtdUubGOjYKJq8Aib5D_EUINMFmr6sQETBeLdkUtiUFP8J-BcrtBCRChm8O1BEUVROXR5YKyyMvVMN6JaXeZmS4LGk_gcgaax6XArV4JLX0X3A2LyIYoNt65OZKNvxcFzB1Qk2D3w1d6t5La_37SJ_9-iRdks3s86Ef93vDwKbntYptmbDEVbpP1xXxpnoHtuIifVwuUkm83jQl_AK5EhAI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemIQ1eEP_pGGAkEALJahwnjouEULtSWraOSTCpb8Fx7NGpS0vTatoH4kvw6bhL0m4ZEjztoVJUXyInd_7dne98R8jLwPejJEw54zDMAhM4ppXXYgZrdynn0rDM8j2Q_aPg8ygcbZDfq7MwmFa5wsQCqNOpwT3yJggeqHLptVTTVWkRh93eh9lPhh2kMNK6aqdRisiePT8D9y1_P-gCr1_5fu_jt90-qzoMMBNysWBGCXAwtPYiHRrpQs8angTScYGdAjj8pE5Do7SSQoCAGqdApYvUitRX1uJmKMD_jUiIFqYTRqO1sydgKZSRVsA5Kb1RGSIFQq9ZRc21RHeMc7-mEovOAX_rh0sK8mry5s1lNtPnZ3oyuaQZe3fI7cqkpe1SBu-SDZvdI1vDKmh_n_y6SGxMJpYOi_RNS6vKrscUzGYKkLU8ZR1QqSkdIiFg8unY5HSc0Q7mzS_oLsrnnHbL3ECsLv2ODrIcNxdyiqdkaHGYmH1JTkoQp2jeLucWHj4pEs4y1p0juNN9vOlTZ8i-9tuHFNvBTfIH5OhaePeQbGbTzD4m1KUK7CidtLSCJ_hSRyZyoYnC1HGuhW2QNysGxbOyCEgMzhMyM77KzAbpIAfXdFi-u_hjOj-OKzSIE99ZJWGKgdUBXGhwSrWfmMRqmLiOGuQ18j9GkAEmG12dlYDpYrmuuK0w3AmeM1Du1CgBHEx9eCVBcQVOeXyxlBrkxXoY78SEu8xOlwVNIHEhA82jUuDWr4Q2vg-ORoOomijW3rk-ko1_FKXLOShIsPjhK71dS-1_P-n2v1_iOdkCJIj3Bwd7T8gtH_szY2-p1g7ZXMyX9ikYjYvkWbE6Kfl-3XDwBxj9gZw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagKwEX3o_CgoyEhEDyto4Tx-WC2l2WguiyElQqp-A49lLoplXTgOD_8D-ZSdyyKQeEOESK4ollR-PP32TGM4Q8CoMgTqOMMw7NLDShY1p1e8xg7i7lXBbVUb5HcjgOX0-iia9zWviwSjDFpxVIA5XH1RiGHck7sgPLMugsMvf8q_-VxNEJhzaDOk92ZARkvEV2xkfH_Q-VjxMQRsruBO_XHdWOSgGGfsf7rrVEo4jzoLExVfn7_0TpM9vUdgjlxTJf6O_f9Gx2Zn86vEI-rmdWh6V82StX6Z75sZX08T-mfpVc9tyV9mtlu0bO2fw6uTDy3vkb5OfvCMZ0ZumoitO01KdwPaHAjylgU3nKBrB3ZnSEggC-p1NT0GlOBxggv6L7qIhLelAHAWIa6Wf0VV7gX4SC4nEYWp0aZm_TzzVaU-Sx5dJC57MqsixnB0tEcfoGX3o5GLF3w_4xxbpvs-ImGR--eL8_ZL4MBDMRFytmlAArUOturCMjXdS1hqehdFxgOQcOl9RZZJRWUghAEeMU8C6RWZEFylohbpFWPs_tHUJdpoAw6bSnFfQQSB2b2EUmjjLHuRa2TZ6sdSBZ1Nk-ErCSUF-SbX1pkwEqyUYO83RXD-bLk8Qv-yQNnFUShhhaHcKNButTB6lJrYaB67hNHqOKJYgmoEdG-0MRMFzMy5X0Ffo1wUQGyd2GJKCAaTavlTTxKFQkANZAf2W3p9rk4aYZ38TIutzOy0omlLhiQeZ2rdObKSGZD8CiaBPV0PbGnJst-fRTlaOcw04I1B6-0tPNwvjrJ737L8L3yKUAazFjHaneLmmtlqW9DwRxlT7wIPALCtVhSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+Machine+Learning+for+Serum-Based+Metabolomics+in+Breast+Cancer+Diagnostics%3A+Insights+from+Multi-Objective+Feature+Selection-Driven+LightGBM-SHAP+Models&rft.jtitle=Medicina+%28Kaunas%2C+Lithuania%29&rft.au=Guldogan%2C+Emek&rft.au=Yagin%2C+Fatma+Hilal&rft.au=Ucuzal%2C+Hasan&rft.au=Alzakari%2C+Sarah+A&rft.date=2025-06-19&rft.eissn=1648-9144&rft.volume=61&rft.issue=6&rft_id=info:doi/10.3390%2Fmedicina61061112&rft_id=info%3Apmid%2F40572800&rft.externalDocID=40572800
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1648-9144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1648-9144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1648-9144&client=summon