Innovational Outliers in INAR(1) Models
We consider integer-valued autoregressive models of order one contaminated with innovational outliers. Assuming that the time points of the outliers are known but their sizes are unknown, we prove that Conditional Least Squares (CLS) estimators of the offspring and innovation means are strongly cons...
Saved in:
Published in | Communications in statistics. Theory and methods Vol. 39; no. 18; pp. 3343 - 3362 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
Taylor & Francis Group
01.01.2010
Taylor & Francis Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0361-0926 1532-415X |
DOI | 10.1080/03610920903259831 |
Cover
Abstract | We consider integer-valued autoregressive models of order one contaminated with innovational outliers. Assuming that the time points of the outliers are known but their sizes are unknown, we prove that Conditional Least Squares (CLS) estimators of the offspring and innovation means are strongly consistent. In contrast, CLS estimators of the outliers' sizes are not strongly consistent. We also prove that the joint CLS estimator of the offspring and innovation means is asymptotically normal. Conditionally on the values of the process at time points preceding the outliers' occurrences, the joint CLS estimator of the sizes of the outliers is asymptotically normal. |
---|---|
AbstractList | We consider integer-valued autoregressive models of order one contaminated with innovational outliers. Assuming that the time points of the outliers are known but their sizes are unknown, we prove that Conditional Least Squares (CLS) estimators of the offspring and innovation means are strongly consistent. In contrast, CLS estimators of the outliers' sizes are not strongly consistent. We also prove that the joint CLS estimator of the offspring and innovation means is asymptotically normal. Conditionally on the values of the process at time points preceding the outliers' occurrences, the joint CLS estimator of the sizes of the outliers is asymptotically normal. We consider integer-valued autoregressive models of order one contaminated with innovational outliers. Assuming that the time points of the outliers are known but their sizes are unknown, we prove that Conditional Least Squares (CLS) estimators of the offspring and innovation means are strongly consistent. In contrast, CLS estimators of the outliers' sizes are not strongly consistent. We also prove that the joint CLS estimator of the offspring and innovation means is asymptotically normal. Conditionally on the values of the process at time points preceding the outliers' occurrences, the joint CLS estimator of the sizes of the outliers is asymptotically normal. [PUBLICATION ABSTRACT] |
Author | Barczy, Mátyás Ispány, Márton Eduarda Silva, Maria Pap, Gyula Scotto, Manuel |
Author_xml | – sequence: 1 givenname: Mátyás surname: Barczy fullname: Barczy, Mátyás email: barczy.matyas@inf.unideb.hu organization: Faculty of Informatics , University of Debrecen – sequence: 2 givenname: Márton surname: Ispány fullname: Ispány, Márton organization: Faculty of Informatics , University of Debrecen – sequence: 3 givenname: Gyula surname: Pap fullname: Pap, Gyula organization: Faculty of Informatics , University of Debrecen – sequence: 4 givenname: Manuel surname: Scotto fullname: Scotto, Manuel organization: Departamento de Matemática , Universidade de Aveiro – sequence: 5 givenname: Maria surname: Eduarda Silva fullname: Eduarda Silva, Maria organization: Faculdade de Economia , Universidade do Porto |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23416104$$DView record in Pascal Francis |
BookMark | eNqN0UFLHDEUB_BQLHS1foDeFoqoh6l5eZNJBryIaLuwKoiCtyGTyUAkm9gka-u3N6trD4rUUw7v989L3tskGz54Q8g3oD-ASnpAsQHaMtpSZLyVCJ_IBDiyqgZ-s0Emq3pVQPOFbKZ0SylwIXFCdmfeh3uVbfDKTS-W2VkT09T66ez86HIP9qdnYTAufSWfR-WS2V6fW-T69OTq-Fc1v_g5Oz6aV5oD5kqj0nUrpWCN1EB74Eby3qgWkPZoNK97HPpR4oCSQa-EYVrLQbWNoLpnHLfI3vO9dzH8XpqUu4VN2jinvAnL1EEjoDBe48coNoii0O-v6G1YxvLjophsGsmEqIvaWSuVtHJjVF7b1N1Fu1DxoWNYQxnyysGz0zGkFM34jwDtVtvo3myjZMSrjLb5aew5Kus-krR-DHGh_oTohi6rBxfiyxPfpLr8N5fk4X-T-H7jR_vcsBA |
CODEN | CSTMDC |
CitedBy_id | crossref_primary_10_1016_j_jspi_2023_106099 crossref_primary_10_1088_1742_6596_1053_1_012094 crossref_primary_10_1080_24754269_2018_1520018 crossref_primary_10_1080_03610926_2019_1635704 crossref_primary_10_1016_j_jmva_2021_104777 crossref_primary_10_1016_j_apm_2024_115658 crossref_primary_10_1111_sjos_12278 crossref_primary_10_1007_s00362_011_0398_x crossref_primary_10_1111_rssb_12394 crossref_primary_10_1111_jtsa_12682 crossref_primary_10_1016_j_aei_2022_101592 crossref_primary_10_1007_s00362_015_0704_0 crossref_primary_10_1177_1471082X15584701 crossref_primary_10_1080_02331888_2014_979826 crossref_primary_10_15559_19_VMSTA130 |
Cites_doi | 10.1111/j.1467-9892.1991.tb00073.x 10.1111/j.2517-6161.1972.tb00912.x 10.1111/j.1467-9892.1987.tb00438.x 10.1111/j.1467-9892.2009.00620.x 10.1111/1467-9892.00102 10.2307/2290788 10.2307/2287983 10.2307/1270165 10.1111/j.1467-9892.2004.01685.x 10.1017/CBO9780511802256 10.1016/j.spl.2005.02.003 10.1002/047124970X 10.1111/1467-9892.00303 10.1111/j.1752-1688.1985.tb05379.x 10.2307/3315050 10.2307/1391308 10.1214/aop/1176994950 10.1007/978-3-642-49686-8 10.1002/for.3980070102 10.1239/jap/1059060900 10.1111/j.1467-9892.1993.tb00140.x 10.2307/1391755 10.1111/j.1467-9892.2006.00483.x 10.1081/STA-120021331 10.1111/j.1467-9892.2008.00581.x |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2010 2015 INIST-CNRS Copyright Taylor and Francis Group, LLC |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2010 – notice: 2015 INIST-CNRS – notice: Copyright Taylor and Francis Group, LLC |
DBID | AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610920903259831 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1532-415X |
EndPage | 3362 |
ExternalDocumentID | 2889303071 23416104 10_1080_03610920903259831 426157 |
Genre | Feature |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGCQS AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO EBS EJD E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM M4Z NA5 NY~ O9- QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF TWZ UPT UT5 UU3 WH7 ZGOLN ZL0 ~02 ~S~ AAGDL AAHIA AAYXX ACTCW AFRVT AIYEW AMVHM CITATION TASJS TOXWX 07G 1TA AAIKQ AAKBW ACAGQ ACGEE ADYSH AEUMN AGLEN AGROQ AHMOU AI. ALCKM AMEWO AMXXU BCCOT BPLKW C06 CRFIH DMQIW DWIFK IQODW IVXBP LJTGL NHB NUSFT QCRFL TAQ TFMCV UB9 UU8 V3K V4Q VH1 VOH XOL 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c513t-c3ac49887268c10b15e85bea9130b3ec54b3dbf83d3821ba7e2cc8da9670cb253 |
ISSN | 0361-0926 |
IngestDate | Fri Sep 05 03:30:04 EDT 2025 Sat Sep 27 23:09:10 EDT 2025 Wed Aug 13 09:20:06 EDT 2025 Mon Jul 21 09:18:44 EDT 2025 Wed Oct 01 06:52:59 EDT 2025 Thu Apr 24 22:57:29 EDT 2025 Wed Dec 25 09:06:05 EST 2024 Mon May 13 12:09:35 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Discriminant analysis Conditional distribution Statistical distribution Strong consistency 60J80 Conditional asymptotic normality Autoregressive model Multivariate analysis Statistical method Integer Outlier Innovational outliers INAR Least squares method Asymptotic normality Point process 62F12 Conditional least squares estimators |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c513t-c3ac49887268c10b15e85bea9130b3ec54b3dbf83d3821ba7e2cc8da9670cb253 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.tandfonline.com/doi/pdf/10.1080/03610920903259831 |
PQID | 1286682774 |
PQPubID | 23500 |
PageCount | 20 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_03610920903259831 proquest_miscellaneous_1671253543 crossref_primary_10_1080_03610920903259831 proquest_journals_1286682774 crossref_citationtrail_10_1080_03610920903259831 pascalfrancis_primary_23416104 proquest_miscellaneous_1671236337 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-01-01 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: Philadelphia |
PublicationTitle | Communications in statistics. Theory and methods |
PublicationYear | 2010 |
Publisher | Taylor & Francis Group Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Peña D. (CIT0024) 2001 CIT0010 CIT0011 Chung K. L. (CIT0012) 1960 Hall P. (CIT0017) 1980 Bhattacharya R. N. (CIT0007) 1990 CIT0014 CIT0013 CIT0016 CIT0018 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 van der Vaart A. W. (CIT0030) 1998 Fox A. J. (CIT0015) 1972; 34 CIT0003 CIT0025 CIT0002 CIT0005 CIT0027 CIT0004 CIT0026 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0013 doi: 10.1111/j.1467-9892.1991.tb00073.x – volume: 34 start-page: 350 year: 1972 ident: CIT0015 publication-title: J. Roy. Statist. Soc. Ser. B (Statist. Methodol.) doi: 10.1111/j.2517-6161.1972.tb00912.x – ident: CIT0002 doi: 10.1111/j.1467-9892.1987.tb00438.x – ident: CIT0020 doi: 10.1111/j.1467-9892.2009.00620.x – ident: CIT0021 doi: 10.1111/1467-9892.00102 – ident: CIT0022 doi: 10.2307/2290788 – ident: CIT0009 doi: 10.2307/2287983 – ident: CIT0010 doi: 10.2307/1270165 – ident: CIT0027 doi: 10.1111/j.1467-9892.2004.01685.x – volume-title: Asymptotic Statistics year: 1998 ident: CIT0030 doi: 10.1017/CBO9780511802256 – ident: CIT0005 doi: 10.1016/j.spl.2005.02.003 – ident: CIT0006 doi: 10.1002/047124970X – start-page: 136 volume-title: A Course in Time Series Analysis year: 2001 ident: CIT0024 – ident: CIT0025 doi: 10.1111/1467-9892.00303 – ident: CIT0004 – ident: CIT0023 doi: 10.1111/j.1752-1688.1985.tb05379.x – ident: CIT0016 doi: 10.2307/3315050 – ident: CIT0003 doi: 10.2307/1391308 – volume-title: Martingale Limit Theory and Its Application year: 1980 ident: CIT0017 – ident: CIT0028 doi: 10.1214/aop/1176994950 – volume-title: Markov Chains with Stationary Transition Probabilities year: 1960 ident: CIT0012 doi: 10.1007/978-3-642-49686-8 – ident: CIT0029 doi: 10.1002/for.3980070102 – volume-title: Stochastic Processes with Applications year: 1990 ident: CIT0007 – ident: CIT0018 doi: 10.1239/jap/1059060900 – ident: CIT0001 doi: 10.1111/j.1467-9892.1993.tb00140.x – ident: CIT0011 doi: 10.2307/1391755 – ident: CIT0008 doi: 10.1111/j.1467-9892.2006.00483.x – ident: CIT0019 – ident: CIT0026 doi: 10.1081/STA-120021331 – ident: CIT0014 doi: 10.1111/j.1467-9892.2008.00581.x |
SSID | ssj0015783 |
Score | 1.9207262 |
Snippet | We consider integer-valued autoregressive models of order one contaminated with innovational outliers. Assuming that the time points of the outliers are known... |
SourceID | proquest pascalfrancis crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3343 |
SubjectTerms | Conditional asymptotic normality Conditional least squares estimators Distribution theory Exact sciences and technology General topics INAR Innovational outliers Mathematical models Mathematics Multivariate analysis Probability and statistics Probability theory and stochastic processes Sciences and techniques of general use Statistics Stochastic processes Strong consistency Studies Time series |
Title | Innovational Outliers in INAR(1) Models |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610920903259831 https://www.proquest.com/docview/1286682774 https://www.proquest.com/docview/1671236337 https://www.proquest.com/docview/1671253543 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1532-415X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015783 issn: 0361-0926 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeBkPCAaIwJiCxMSHlCm248R5nGBlQ2uHWCv1LYrdVJpUpWVNJLa_iD-Tu9hJkxWVj5e0ci6N6zufz3e-3xHyRkjongx9D_jtewHoRk9lWDU1EFQHaQwNmOA8GIan4-DLREx6vZ-tU0tloY707W_zSv6Hq9AGfMUs2X_gbPOj0ADfgb9wBQ7D9a94fNaUNIWBviiLOda1Rg_G2fD4GyIw4Z4fq53NV20jtJMUUtFjWpFBbD6y2fpVUMGUl1470mFS3FZMGVTxdVrcmM_VWsCWpiVvk10X61j_17QqiPf5ppw3C8Il4kMsTOZQXtoz_NYTUR1oa3siRhtFQVonk0yCFtDHzCJf1_qWgYSISVshG3SjWvBkS71ybjCdNvS-PSjJETyeoesJdnXSLi8djO3hRdIfn58no5PJqHu3WtOZBPsN9R495P3ldw-rk2EU_5B_MuJzj9xnURhirQzuD5t4Feg9U4jb_sU6fo4o7nc71bGAOvi4eDA3XcHcnJnx27APKqNn9Ig8tLsV99iI3mPSy_I98mDQQP2u9sjuZSM7T8jbtkS6tUS6V7mLEvmOvneNND4l4_7J6OOpZ0txeFpQXniapzqIYUFiodTUV1RkUqgM5jL3Fc-0CBSfqpnkUy4ZVWmUMa3lNI3DyNeKCf6M7OSLPHtO3DStar34aqox5C3iNI64CgWdUa2imDrEr4cn0RanHsulzBNaw9neHVGHfGgeWRqQlm3EfnvMk6ISWzvim-RJ8aNwiNjyCN_yqoMOP5vOMY5-BT9wyH7N4MTqlVUCFmMYSgb7Moe8bm6D1sdQXppnixJowghhkziP_kAjuAj4i-2veUl219N5n-wU12X2CkztQh1UUv4LLWjGMg |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_EPtQ-9EMtrrV2C4K1sGey2WSzj1Iqd9Y7oSj4tiS5HEiPVdw9kP71ndkvelqu4OtusptkkslkZvL7ARxIjc3TikUobxYlqBsj64k1NZHcJSbDB3TBeTxRw6vk7Fpetw63sk2rpDP0rAGKqHU1LW5yRncpcceodTnLYnIxoPWu6Rr1C0koI3SFg036KALOxoYeWeGROYtVF9X81yeW9qUl1FJKlzQljtisobp4orXrrej0DeRdJ5oMlF-DRWUH7vcjfMfn9_ItvG6t1PCkmVbvYM0Xm_Bq3EO8lpuwQWZqg_K8BYejnlwVq10sqjkxbIc3RTianPz8wo9C4lybl9twdfr98tswaikYIie5qCInjEsyVESx0o4zy6XX0nqUoWBWeCcTK6Z2psVU6Jhbk_rYOT01mUqZs7EU72G9uC38DoTG1BwfzE4dhTplZrJUWCX5jDubZjwA1gkgdy0-OdFkzHPewZg-HpAAvvZV7hpwjlWF2d9SzavaI9LK9GnxvHqoApArqogVv9pfmjF942JB50mWBLDXTaG81RlljpaCUjpGezyAz_1rXO0UwjGFv11gGZUSXI4Q6X_KSCETsfvM9n-Cl8PL8Xl-Ppr8-AAbTcIEeZ32YL26X_iPaIdVdr9ebH8ATWsg4w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-kgtSHVqti-mUEwQ9I3c1mN5vH0nr01J4iFvoWdjcbEI-0NDko_vWdyRdeKyf0NZlNNjuzk9md2d8P4I3U2D2tWIT6ZlGCvjGynlhTE8ldYjK8QAecT2fq5Cz5fC7P-9qcui-rpDV02QFFtL6aJvdlUQ4VcR_R6XKWxbTDgMG7plPUDxWdMaUTHGw2JhHQGDt2ZIUr5ixWQ1LzX49Y-i0tgZZStaSpccDKjunijtNu_0STzY5utW4BDKkA5ffBorEH7s8teMd7f-QT2Ohj1PCwM6qn8MBXW_D4dAR4rbdgnYLUDuP5GbydjtSq2OzbopkTv3b4qwqns8Mf7_j7kBjX5vVzOJt8-nl0EvUEDJGTXDSRE8YlGbqhWGnHmeXSa2k9alAwK7yTiRWFLbUohI65NamPndOFyVTKnI2leAFr1UXlX0JoTMvwwWzhKNEpM5OlwirJS-5smvEA2DD-uevRyYkkY57zAcT09oAE8GFsctlBc6wSZn8rNW_a_ZBepXfF8-a6CUCuaCJWvGp_yWDGzsWCVpMsCWB3sKC89xh1jnGCUjrGaDyA1-NtnOuUwDGVv1igjEoJLEeI9D8yUshEbN-z_6_g0ffjSf51OvuyA-tdtQRtOe3CWnO18HsYhDV2v51qN7AiH5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovational+Outliers+in+INAR%281%29+Models&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Barczy%2C+M%C3%A1ty%C3%A1s&rft.au=Isp%C3%A1ny%2C+M%C3%A1rton&rft.au=Pap%2C+Gyula&rft.au=Scotto%2C+Manuel&rft.date=2010-01-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=39&rft.issue=18&rft.spage=3343&rft_id=info:doi/10.1080%2F03610920903259831&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2889303071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon |