Innovational Outliers in INAR(1) Models

We consider integer-valued autoregressive models of order one contaminated with innovational outliers. Assuming that the time points of the outliers are known but their sizes are unknown, we prove that Conditional Least Squares (CLS) estimators of the offspring and innovation means are strongly cons...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Theory and methods Vol. 39; no. 18; pp. 3343 - 3362
Main Authors Barczy, Mátyás, Ispány, Márton, Pap, Gyula, Scotto, Manuel, Eduarda Silva, Maria
Format Journal Article
LanguageEnglish
Published Philadelphia, PA Taylor & Francis Group 01.01.2010
Taylor & Francis
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0361-0926
1532-415X
DOI10.1080/03610920903259831

Cover

Abstract We consider integer-valued autoregressive models of order one contaminated with innovational outliers. Assuming that the time points of the outliers are known but their sizes are unknown, we prove that Conditional Least Squares (CLS) estimators of the offspring and innovation means are strongly consistent. In contrast, CLS estimators of the outliers' sizes are not strongly consistent. We also prove that the joint CLS estimator of the offspring and innovation means is asymptotically normal. Conditionally on the values of the process at time points preceding the outliers' occurrences, the joint CLS estimator of the sizes of the outliers is asymptotically normal.
AbstractList We consider integer-valued autoregressive models of order one contaminated with innovational outliers. Assuming that the time points of the outliers are known but their sizes are unknown, we prove that Conditional Least Squares (CLS) estimators of the offspring and innovation means are strongly consistent. In contrast, CLS estimators of the outliers' sizes are not strongly consistent. We also prove that the joint CLS estimator of the offspring and innovation means is asymptotically normal. Conditionally on the values of the process at time points preceding the outliers' occurrences, the joint CLS estimator of the sizes of the outliers is asymptotically normal.
We consider integer-valued autoregressive models of order one contaminated with innovational outliers. Assuming that the time points of the outliers are known but their sizes are unknown, we prove that Conditional Least Squares (CLS) estimators of the offspring and innovation means are strongly consistent. In contrast, CLS estimators of the outliers' sizes are not strongly consistent. We also prove that the joint CLS estimator of the offspring and innovation means is asymptotically normal. Conditionally on the values of the process at time points preceding the outliers' occurrences, the joint CLS estimator of the sizes of the outliers is asymptotically normal. [PUBLICATION ABSTRACT]
Author Barczy, Mátyás
Ispány, Márton
Eduarda Silva, Maria
Pap, Gyula
Scotto, Manuel
Author_xml – sequence: 1
  givenname: Mátyás
  surname: Barczy
  fullname: Barczy, Mátyás
  email: barczy.matyas@inf.unideb.hu
  organization: Faculty of Informatics , University of Debrecen
– sequence: 2
  givenname: Márton
  surname: Ispány
  fullname: Ispány, Márton
  organization: Faculty of Informatics , University of Debrecen
– sequence: 3
  givenname: Gyula
  surname: Pap
  fullname: Pap, Gyula
  organization: Faculty of Informatics , University of Debrecen
– sequence: 4
  givenname: Manuel
  surname: Scotto
  fullname: Scotto, Manuel
  organization: Departamento de Matemática , Universidade de Aveiro
– sequence: 5
  givenname: Maria
  surname: Eduarda Silva
  fullname: Eduarda Silva, Maria
  organization: Faculdade de Economia , Universidade do Porto
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23416104$$DView record in Pascal Francis
BookMark eNqN0UFLHDEUB_BQLHS1foDeFoqoh6l5eZNJBryIaLuwKoiCtyGTyUAkm9gka-u3N6trD4rUUw7v989L3tskGz54Q8g3oD-ASnpAsQHaMtpSZLyVCJ_IBDiyqgZ-s0Emq3pVQPOFbKZ0SylwIXFCdmfeh3uVbfDKTS-W2VkT09T66ez86HIP9qdnYTAufSWfR-WS2V6fW-T69OTq-Fc1v_g5Oz6aV5oD5kqj0nUrpWCN1EB74Eby3qgWkPZoNK97HPpR4oCSQa-EYVrLQbWNoLpnHLfI3vO9dzH8XpqUu4VN2jinvAnL1EEjoDBe48coNoii0O-v6G1YxvLjophsGsmEqIvaWSuVtHJjVF7b1N1Fu1DxoWNYQxnyysGz0zGkFM34jwDtVtvo3myjZMSrjLb5aew5Kus-krR-DHGh_oTohi6rBxfiyxPfpLr8N5fk4X-T-H7jR_vcsBA
CODEN CSTMDC
CitedBy_id crossref_primary_10_1016_j_jspi_2023_106099
crossref_primary_10_1088_1742_6596_1053_1_012094
crossref_primary_10_1080_24754269_2018_1520018
crossref_primary_10_1080_03610926_2019_1635704
crossref_primary_10_1016_j_jmva_2021_104777
crossref_primary_10_1016_j_apm_2024_115658
crossref_primary_10_1111_sjos_12278
crossref_primary_10_1007_s00362_011_0398_x
crossref_primary_10_1111_rssb_12394
crossref_primary_10_1111_jtsa_12682
crossref_primary_10_1016_j_aei_2022_101592
crossref_primary_10_1007_s00362_015_0704_0
crossref_primary_10_1177_1471082X15584701
crossref_primary_10_1080_02331888_2014_979826
crossref_primary_10_15559_19_VMSTA130
Cites_doi 10.1111/j.1467-9892.1991.tb00073.x
10.1111/j.2517-6161.1972.tb00912.x
10.1111/j.1467-9892.1987.tb00438.x
10.1111/j.1467-9892.2009.00620.x
10.1111/1467-9892.00102
10.2307/2290788
10.2307/2287983
10.2307/1270165
10.1111/j.1467-9892.2004.01685.x
10.1017/CBO9780511802256
10.1016/j.spl.2005.02.003
10.1002/047124970X
10.1111/1467-9892.00303
10.1111/j.1752-1688.1985.tb05379.x
10.2307/3315050
10.2307/1391308
10.1214/aop/1176994950
10.1007/978-3-642-49686-8
10.1002/for.3980070102
10.1239/jap/1059060900
10.1111/j.1467-9892.1993.tb00140.x
10.2307/1391755
10.1111/j.1467-9892.2006.00483.x
10.1081/STA-120021331
10.1111/j.1467-9892.2008.00581.x
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2010
2015 INIST-CNRS
Copyright Taylor and Francis Group, LLC
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2010
– notice: 2015 INIST-CNRS
– notice: Copyright Taylor and Francis Group, LLC
DBID AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610920903259831
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1532-415X
EndPage 3362
ExternalDocumentID 2889303071
23416104
10_1080_03610920903259831
426157
Genre Feature
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGCQS
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
M4Z
NA5
NY~
O9-
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
TWZ
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~02
~S~
AAGDL
AAHIA
AAYXX
ACTCW
AFRVT
AIYEW
AMVHM
CITATION
TASJS
TOXWX
07G
1TA
AAIKQ
AAKBW
ACAGQ
ACGEE
ADYSH
AEUMN
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMEWO
AMXXU
BCCOT
BPLKW
C06
CRFIH
DMQIW
DWIFK
IQODW
IVXBP
LJTGL
NHB
NUSFT
QCRFL
TAQ
TFMCV
UB9
UU8
V3K
V4Q
VH1
VOH
XOL
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c513t-c3ac49887268c10b15e85bea9130b3ec54b3dbf83d3821ba7e2cc8da9670cb253
ISSN 0361-0926
IngestDate Fri Sep 05 03:30:04 EDT 2025
Sat Sep 27 23:09:10 EDT 2025
Wed Aug 13 09:20:06 EDT 2025
Mon Jul 21 09:18:44 EDT 2025
Wed Oct 01 06:52:59 EDT 2025
Thu Apr 24 22:57:29 EDT 2025
Wed Dec 25 09:06:05 EST 2024
Mon May 13 12:09:35 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Discriminant analysis
Conditional distribution
Statistical distribution
Strong consistency
60J80
Conditional asymptotic normality
Autoregressive model
Multivariate analysis
Statistical method
Integer
Outlier
Innovational outliers
INAR
Least squares method
Asymptotic normality
Point process
62F12
Conditional least squares estimators
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c513t-c3ac49887268c10b15e85bea9130b3ec54b3dbf83d3821ba7e2cc8da9670cb253
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.tandfonline.com/doi/pdf/10.1080/03610920903259831
PQID 1286682774
PQPubID 23500
PageCount 20
ParticipantIDs informaworld_taylorfrancis_310_1080_03610920903259831
proquest_miscellaneous_1671253543
crossref_primary_10_1080_03610920903259831
proquest_journals_1286682774
crossref_citationtrail_10_1080_03610920903259831
pascalfrancis_primary_23416104
proquest_miscellaneous_1671236337
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-01-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: Philadelphia
PublicationTitle Communications in statistics. Theory and methods
PublicationYear 2010
Publisher Taylor & Francis Group
Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis
– name: Taylor & Francis Ltd
References Peña D. (CIT0024) 2001
CIT0010
CIT0011
Chung K. L. (CIT0012) 1960
Hall P. (CIT0017) 1980
Bhattacharya R. N. (CIT0007) 1990
CIT0014
CIT0013
CIT0016
CIT0018
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
van der Vaart A. W. (CIT0030) 1998
Fox A. J. (CIT0015) 1972; 34
CIT0003
CIT0025
CIT0002
CIT0005
CIT0027
CIT0004
CIT0026
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0013
  doi: 10.1111/j.1467-9892.1991.tb00073.x
– volume: 34
  start-page: 350
  year: 1972
  ident: CIT0015
  publication-title: J. Roy. Statist. Soc. Ser. B (Statist. Methodol.)
  doi: 10.1111/j.2517-6161.1972.tb00912.x
– ident: CIT0002
  doi: 10.1111/j.1467-9892.1987.tb00438.x
– ident: CIT0020
  doi: 10.1111/j.1467-9892.2009.00620.x
– ident: CIT0021
  doi: 10.1111/1467-9892.00102
– ident: CIT0022
  doi: 10.2307/2290788
– ident: CIT0009
  doi: 10.2307/2287983
– ident: CIT0010
  doi: 10.2307/1270165
– ident: CIT0027
  doi: 10.1111/j.1467-9892.2004.01685.x
– volume-title: Asymptotic Statistics
  year: 1998
  ident: CIT0030
  doi: 10.1017/CBO9780511802256
– ident: CIT0005
  doi: 10.1016/j.spl.2005.02.003
– ident: CIT0006
  doi: 10.1002/047124970X
– start-page: 136
  volume-title: A Course in Time Series Analysis
  year: 2001
  ident: CIT0024
– ident: CIT0025
  doi: 10.1111/1467-9892.00303
– ident: CIT0004
– ident: CIT0023
  doi: 10.1111/j.1752-1688.1985.tb05379.x
– ident: CIT0016
  doi: 10.2307/3315050
– ident: CIT0003
  doi: 10.2307/1391308
– volume-title: Martingale Limit Theory and Its Application
  year: 1980
  ident: CIT0017
– ident: CIT0028
  doi: 10.1214/aop/1176994950
– volume-title: Markov Chains with Stationary Transition Probabilities
  year: 1960
  ident: CIT0012
  doi: 10.1007/978-3-642-49686-8
– ident: CIT0029
  doi: 10.1002/for.3980070102
– volume-title: Stochastic Processes with Applications
  year: 1990
  ident: CIT0007
– ident: CIT0018
  doi: 10.1239/jap/1059060900
– ident: CIT0001
  doi: 10.1111/j.1467-9892.1993.tb00140.x
– ident: CIT0011
  doi: 10.2307/1391755
– ident: CIT0008
  doi: 10.1111/j.1467-9892.2006.00483.x
– ident: CIT0019
– ident: CIT0026
  doi: 10.1081/STA-120021331
– ident: CIT0014
  doi: 10.1111/j.1467-9892.2008.00581.x
SSID ssj0015783
Score 1.9207262
Snippet We consider integer-valued autoregressive models of order one contaminated with innovational outliers. Assuming that the time points of the outliers are known...
SourceID proquest
pascalfrancis
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3343
SubjectTerms Conditional asymptotic normality
Conditional least squares estimators
Distribution theory
Exact sciences and technology
General topics
INAR
Innovational outliers
Mathematical models
Mathematics
Multivariate analysis
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Statistics
Stochastic processes
Strong consistency
Studies
Time series
Title Innovational Outliers in INAR(1) Models
URI https://www.tandfonline.com/doi/abs/10.1080/03610920903259831
https://www.proquest.com/docview/1286682774
https://www.proquest.com/docview/1671236337
https://www.proquest.com/docview/1671253543
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-415X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015783
  issn: 0361-0926
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeBkPCAaIwJiCxMSHlCm248R5nGBlQ2uHWCv1LYrdVJpUpWVNJLa_iD-Tu9hJkxWVj5e0ci6N6zufz3e-3xHyRkjongx9D_jtewHoRk9lWDU1EFQHaQwNmOA8GIan4-DLREx6vZ-tU0tloY707W_zSv6Hq9AGfMUs2X_gbPOj0ADfgb9wBQ7D9a94fNaUNIWBviiLOda1Rg_G2fD4GyIw4Z4fq53NV20jtJMUUtFjWpFBbD6y2fpVUMGUl1470mFS3FZMGVTxdVrcmM_VWsCWpiVvk10X61j_17QqiPf5ppw3C8Il4kMsTOZQXtoz_NYTUR1oa3siRhtFQVonk0yCFtDHzCJf1_qWgYSISVshG3SjWvBkS71ybjCdNvS-PSjJETyeoesJdnXSLi8djO3hRdIfn58no5PJqHu3WtOZBPsN9R495P3ldw-rk2EU_5B_MuJzj9xnURhirQzuD5t4Feg9U4jb_sU6fo4o7nc71bGAOvi4eDA3XcHcnJnx27APKqNn9Ig8tLsV99iI3mPSy_I98mDQQP2u9sjuZSM7T8jbtkS6tUS6V7mLEvmOvneNND4l4_7J6OOpZ0txeFpQXniapzqIYUFiodTUV1RkUqgM5jL3Fc-0CBSfqpnkUy4ZVWmUMa3lNI3DyNeKCf6M7OSLPHtO3DStar34aqox5C3iNI64CgWdUa2imDrEr4cn0RanHsulzBNaw9neHVGHfGgeWRqQlm3EfnvMk6ISWzvim-RJ8aNwiNjyCN_yqoMOP5vOMY5-BT9wyH7N4MTqlVUCFmMYSgb7Moe8bm6D1sdQXppnixJowghhkziP_kAjuAj4i-2veUl219N5n-wU12X2CkztQh1UUv4LLWjGMg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_EPtQ-9EMtrrV2C4K1sGey2WSzj1Iqd9Y7oSj4tiS5HEiPVdw9kP71ndkvelqu4OtusptkkslkZvL7ARxIjc3TikUobxYlqBsj64k1NZHcJSbDB3TBeTxRw6vk7Fpetw63sk2rpDP0rAGKqHU1LW5yRncpcceodTnLYnIxoPWu6Rr1C0koI3SFg036KALOxoYeWeGROYtVF9X81yeW9qUl1FJKlzQljtisobp4orXrrej0DeRdJ5oMlF-DRWUH7vcjfMfn9_ItvG6t1PCkmVbvYM0Xm_Bq3EO8lpuwQWZqg_K8BYejnlwVq10sqjkxbIc3RTianPz8wo9C4lybl9twdfr98tswaikYIie5qCInjEsyVESx0o4zy6XX0nqUoWBWeCcTK6Z2psVU6Jhbk_rYOT01mUqZs7EU72G9uC38DoTG1BwfzE4dhTplZrJUWCX5jDubZjwA1gkgdy0-OdFkzHPewZg-HpAAvvZV7hpwjlWF2d9SzavaI9LK9GnxvHqoApArqogVv9pfmjF942JB50mWBLDXTaG81RlljpaCUjpGezyAz_1rXO0UwjGFv11gGZUSXI4Q6X_KSCETsfvM9n-Cl8PL8Xl-Ppr8-AAbTcIEeZ32YL26X_iPaIdVdr9ebH8ATWsg4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-kgtSHVqti-mUEwQ9I3c1mN5vH0nr01J4iFvoWdjcbEI-0NDko_vWdyRdeKyf0NZlNNjuzk9md2d8P4I3U2D2tWIT6ZlGCvjGynlhTE8ldYjK8QAecT2fq5Cz5fC7P-9qcui-rpDV02QFFtL6aJvdlUQ4VcR_R6XKWxbTDgMG7plPUDxWdMaUTHGw2JhHQGDt2ZIUr5ixWQ1LzX49Y-i0tgZZStaSpccDKjunijtNu_0STzY5utW4BDKkA5ffBorEH7s8teMd7f-QT2Ohj1PCwM6qn8MBXW_D4dAR4rbdgnYLUDuP5GbydjtSq2OzbopkTv3b4qwqns8Mf7_j7kBjX5vVzOJt8-nl0EvUEDJGTXDSRE8YlGbqhWGnHmeXSa2k9alAwK7yTiRWFLbUohI65NamPndOFyVTKnI2leAFr1UXlX0JoTMvwwWzhKNEpM5OlwirJS-5smvEA2DD-uevRyYkkY57zAcT09oAE8GFsctlBc6wSZn8rNW_a_ZBepXfF8-a6CUCuaCJWvGp_yWDGzsWCVpMsCWB3sKC89xh1jnGCUjrGaDyA1-NtnOuUwDGVv1igjEoJLEeI9D8yUshEbN-z_6_g0ffjSf51OvuyA-tdtQRtOe3CWnO18HsYhDV2v51qN7AiH5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovational+Outliers+in+INAR%281%29+Models&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Barczy%2C+M%C3%A1ty%C3%A1s&rft.au=Isp%C3%A1ny%2C+M%C3%A1rton&rft.au=Pap%2C+Gyula&rft.au=Scotto%2C+Manuel&rft.date=2010-01-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=39&rft.issue=18&rft.spage=3343&rft_id=info:doi/10.1080%2F03610920903259831&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2889303071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon