Adverse Listening Conditions and Memory Load Drive a Common Alpha Oscillatory Network

How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8–13 Hz) during retention of items in working memory are often interpreted to reflect increased demands on storage and inhibition. We hypothesized that auditory signal degradation poses an addi...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 32; no. 36; pp. 12376 - 12383
Main Authors Obleser, Jonas, Wöstmann, Malte, Hellbernd, Nele, Wilsch, Anna, Maess, Burkhard
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 05.09.2012
Subjects
Online AccessGet full text
ISSN0270-6474
1529-2401
1529-2401
DOI10.1523/JNEUROSCI.4908-11.2012

Cover

Abstract How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8–13 Hz) during retention of items in working memory are often interpreted to reflect increased demands on storage and inhibition. We hypothesized that auditory signal degradation poses an additional challenge to human listeners partly because it draws on the same neural mechanisms. In an adapted Sternberg paradigm, auditory memory load and acoustic degradation were parametrically varied and the magnetoencephalographic response was analyzed in the time–frequency domain. Notably, during the stimulus-free delay interval, alpha power monotonically increased at central–parietal sensors as functions of memory load (higher alpha power with more memory load) and of acoustic degradation (also higher alpha power with more severe acoustic degradation). This alpha effect was superadditive when highest load was combined with most severe degradation. Moreover, alpha oscillatory dynamics during stimulus-free delay were predictive of response times to the probe item. Source localization of alpha power during stimulus-free delay indicated that alpha generators in right parietal, cingulate, supramarginal, and superior temporal cortex were sensitive to combined memory load and acoustic degradation. In summary, both challenges of memory load and acoustic degradation increase activity in a common alpha-frequency network. The results set the stage for future studies on how chronic or acute degradations of sensory input affect mechanisms of executive control.
AbstractList How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8-13 Hz) during retention of items in working memory are often interpreted to reflect increased demands on storage and inhibition. We hypothesized that auditory signal degradation poses an additional challenge to human listeners partly because it draws on the same neural mechanisms. In an adapted Sternberg paradigm, auditory memory load and acoustic degradation were parametrically varied and the magnetoencephalographic response was analyzed in the time-frequency domain. Notably, during the stimulus-free delay interval, alpha power monotonically increased at central-parietal sensors as functions of memory load (higher alpha power with more memory load) and of acoustic degradation (also higher alpha power with more severe acoustic degradation). This alpha effect was superadditive when highest load was combined with most severe degradation. Moreover, alpha oscillatory dynamics during stimulus-free delay were predictive of response times to the probe item. Source localization of alpha power during stimulus-free delay indicated that alpha generators in right parietal, cingulate, supramarginal, and superior temporal cortex were sensitive to combined memory load and acoustic degradation. In summary, both challenges of memory load and acoustic degradation increase activity in a common alpha-frequency network. The results set the stage for future studies on how chronic or acute degradations of sensory input affect mechanisms of executive control.
How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8-13 Hz) during retention of items in working memory are often interpreted to reflect increased demands on storage and inhibition. We hypothesized that auditory signal degradation poses an additional challenge to human listeners partly because it draws on the same neural mechanisms. In an adapted Sternberg paradigm, auditory memory load and acoustic degradation were parametrically varied and the magnetoencephalographic response was analyzed in the time-frequency domain. Notably, during the stimulus-free delay interval, alpha power monotonically increased at central-parietal sensors as functions of memory load (higher alpha power with more memory load) and of acoustic degradation (also higher alpha power with more severe acoustic degradation). This alpha effect was superadditive when highest load was combined with most severe degradation. Moreover, alpha oscillatory dynamics during stimulus-free delay were predictive of response times to the probe item. Source localization of alpha power during stimulus-free delay indicated that alpha generators in right parietal, cingulate, supramarginal, and superior temporal cortex were sensitive to combined memory load and acoustic degradation. In summary, both challenges of memory load and acoustic degradation increase activity in a common alpha-frequency network. The results set the stage for future studies on how chronic or acute degradations of sensory input affect mechanisms of executive control.How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8-13 Hz) during retention of items in working memory are often interpreted to reflect increased demands on storage and inhibition. We hypothesized that auditory signal degradation poses an additional challenge to human listeners partly because it draws on the same neural mechanisms. In an adapted Sternberg paradigm, auditory memory load and acoustic degradation were parametrically varied and the magnetoencephalographic response was analyzed in the time-frequency domain. Notably, during the stimulus-free delay interval, alpha power monotonically increased at central-parietal sensors as functions of memory load (higher alpha power with more memory load) and of acoustic degradation (also higher alpha power with more severe acoustic degradation). This alpha effect was superadditive when highest load was combined with most severe degradation. Moreover, alpha oscillatory dynamics during stimulus-free delay were predictive of response times to the probe item. Source localization of alpha power during stimulus-free delay indicated that alpha generators in right parietal, cingulate, supramarginal, and superior temporal cortex were sensitive to combined memory load and acoustic degradation. In summary, both challenges of memory load and acoustic degradation increase activity in a common alpha-frequency network. The results set the stage for future studies on how chronic or acute degradations of sensory input affect mechanisms of executive control.
Author Hellbernd, Nele
Maess, Burkhard
Wöstmann, Malte
Wilsch, Anna
Obleser, Jonas
Author_xml – sequence: 1
  givenname: Jonas
  surname: Obleser
  fullname: Obleser, Jonas
– sequence: 2
  givenname: Malte
  surname: Wöstmann
  fullname: Wöstmann, Malte
– sequence: 3
  givenname: Nele
  surname: Hellbernd
  fullname: Hellbernd, Nele
– sequence: 4
  givenname: Anna
  surname: Wilsch
  fullname: Wilsch, Anna
– sequence: 5
  givenname: Burkhard
  surname: Maess
  fullname: Maess, Burkhard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22956828$$D View this record in MEDLINE/PubMed
BookMark eNqNklFv0zAUhS00xLrBX5jyyEs6XyexHQkhVWXAUFkloM-W49xuHold7LRT__0cdQwYD_DkB3_n-pxzfUKOnHdIyBnQKVSsOP90dbH6svw6v5yWNZU5wJRRYM_IJN3WOSspHJEJZYLmvBTlMTmJ8ZZSKiiIF-SYsbrikskJWc3aHYaI2cLGAZ1119ncu9YO1ruYaddmn7H3YZ8tvG6zd8HuMNMJ6Xvvslm3udHZMhrbdXoYqSsc7nz4_pI8X-su4quH85Ss3l98m3_MF8sPl_PZIjcVFEPeoKxrasqWN7IomDGV4VBhXbUNrw3UpgQpENdNu2Ylk9gkvBSCN1ByKQQUp0Qc5m7dRu_vdNepTbC9DnsFVI1FqVuH2-CTRTUWpQDUWFRSvj0oN9umx9agG4L-pfbaqj9vnL1R136nOGfAKpkGvH4YEPyPLcZB9TYaTEU49NuYHq-AQ_L7HygtJAfKWJHQs99tPfr5ubAE8ANgUqgYcP1X4Mef8TTwmydCYwc9rjnFs92_5Peyvb9D
CitedBy_id crossref_primary_10_1007_s10548_024_01064_0
crossref_primary_10_1016_j_neuroimage_2016_11_062
crossref_primary_10_3389_fnhum_2016_00538
crossref_primary_10_1016_j_bandl_2016_09_008
crossref_primary_10_1177_2331216519886722
crossref_primary_10_1177_23312165221130656
crossref_primary_10_1016_j_neuroimage_2023_119883
crossref_primary_10_1111_ejn_13855
crossref_primary_10_1016_j_biopsycho_2018_05_018
crossref_primary_10_1111_psyp_13877
crossref_primary_10_1080_14992027_2021_1899314
crossref_primary_10_1111_ejn_15477
crossref_primary_10_1080_23273798_2016_1262051
crossref_primary_10_3389_fpsyg_2018_00678
crossref_primary_10_3389_fpsyg_2018_00679
crossref_primary_10_1097_AUD_0000000000000295
crossref_primary_10_1016_j_neuroimage_2017_08_040
crossref_primary_10_1016_j_neuroimage_2014_11_050
crossref_primary_10_3389_fnins_2022_915349
crossref_primary_10_1016_j_clinph_2015_02_055
crossref_primary_10_1016_j_neuropsychologia_2024_108968
crossref_primary_10_1097_AUD_0000000000000697
crossref_primary_10_1097_AUD_0000000000000856
crossref_primary_10_3389_fnins_2014_00137
crossref_primary_10_1016_j_neuroimage_2015_04_038
crossref_primary_10_1523_JNEUROSCI_2181_22_2023
crossref_primary_10_1016_j_heares_2013_07_009
crossref_primary_10_3758_s13414_019_01727_2
crossref_primary_10_1111_ejn_15365
crossref_primary_10_1162_imag_a_00130
crossref_primary_10_1080_14992027_2020_1853262
crossref_primary_10_1177_23312165231205107
crossref_primary_10_1016_j_neuroimage_2020_116882
crossref_primary_10_1055_s_0043_1767669
crossref_primary_10_1162_jocn_a_00761
crossref_primary_10_1016_j_neuroimage_2018_10_085
crossref_primary_10_1016_j_bandl_2018_09_005
crossref_primary_10_1016_j_brainres_2015_06_038
crossref_primary_10_7554_eLife_55508
crossref_primary_10_1002_hbm_23877
crossref_primary_10_3389_fnhum_2014_00350
crossref_primary_10_1044_2018_JSLHR_H_ASCC7_18_0142
crossref_primary_10_1121_1_5057114
crossref_primary_10_1111_psyp_12968
crossref_primary_10_1093_cercor_bhx074
crossref_primary_10_1177_23312165241262517
crossref_primary_10_1111_ejn_13759
crossref_primary_10_1371_journal_pbio_3001713
crossref_primary_10_1016_j_jneuroling_2019_04_002
crossref_primary_10_3389_fpsyg_2016_00678
crossref_primary_10_1016_j_heares_2024_109167
crossref_primary_10_1093_cercor_bhu004
crossref_primary_10_1177_2331216520948410
crossref_primary_10_1080_25742442_2021_1903293
crossref_primary_10_1080_25742442_2023_2218239
crossref_primary_10_1109_JSEN_2023_3260000
crossref_primary_10_1177_23312165231222098
crossref_primary_10_1055_s_0043_1766105
crossref_primary_10_1121_10_0020539
crossref_primary_10_1162_jocn_a_01301
crossref_primary_10_3390_cancers13112593
crossref_primary_10_1097_AUD_0000000000000396
crossref_primary_10_1097_AUD_0000000000000312
crossref_primary_10_1152_jn_00042_2023
crossref_primary_10_3389_fnins_2022_790057
crossref_primary_10_1016_j_neuroimage_2023_120026
crossref_primary_10_3389_fpsyg_2015_00177
crossref_primary_10_3389_fpsyg_2015_01147
crossref_primary_10_1016_j_heares_2018_05_003
crossref_primary_10_3389_fnhum_2022_1043499
crossref_primary_10_1162_jocn_a_02249
crossref_primary_10_1016_j_bandl_2019_02_001
crossref_primary_10_1038_ncomms15801
crossref_primary_10_1080_14992027_2018_1551631
crossref_primary_10_21053_ceo_2018_00052
crossref_primary_10_1016_j_neuropsychologia_2016_12_003
crossref_primary_10_3389_fnhum_2019_00033
crossref_primary_10_1371_journal_pone_0254162
crossref_primary_10_1097_AUD_0000000000001138
crossref_primary_10_3389_fnhum_2019_00150
crossref_primary_10_1371_journal_pone_0288461
crossref_primary_10_1523_JNEUROSCI_0583_21_2021
crossref_primary_10_7874_jao_2017_00136
crossref_primary_10_1093_cercor_bhac094
crossref_primary_10_3389_fpsyg_2022_967260
crossref_primary_10_1016_j_neuropsychologia_2023_108494
crossref_primary_10_1111_ejn_14226
crossref_primary_10_1016_j_jneumeth_2024_110348
crossref_primary_10_1016_j_neuroimage_2018_10_057
crossref_primary_10_3389_fnbeh_2015_00111
crossref_primary_10_1097_AUD_0000000000000494
crossref_primary_10_1097_AUD_0000000000001464
crossref_primary_10_1016_j_neuroimage_2024_120787
crossref_primary_10_1523_JNEUROSCI_3250_14_2015
crossref_primary_10_1016_j_neuroimage_2024_120546
crossref_primary_10_3389_fnagi_2022_806439
crossref_primary_10_5112_jjlp_65_154
crossref_primary_10_1016_j_nlm_2019_107098
crossref_primary_10_1177_2331216517706396
crossref_primary_10_3389_fpsyg_2016_00745
crossref_primary_10_1097_AUD_0000000000001508
crossref_primary_10_3390_brainsci13071084
crossref_primary_10_1016_j_bandl_2015_06_005
crossref_primary_10_1111_ejn_14753
crossref_primary_10_1044_2018_JSLHR_H_17_0396
crossref_primary_10_1093_cercor_bhz263
crossref_primary_10_1016_j_cortex_2020_06_007
crossref_primary_10_1093_cercor_bhaa400
crossref_primary_10_1016_j_ijporl_2017_05_006
crossref_primary_10_1016_j_bbr_2020_113102
crossref_primary_10_1016_j_brainres_2015_10_035
crossref_primary_10_1016_j_bandl_2016_01_003
crossref_primary_10_1016_j_heares_2019_04_011
crossref_primary_10_1097_AUD_0000000000000302
crossref_primary_10_3389_fnhum_2022_905837
crossref_primary_10_3389_fnhum_2014_00577
crossref_primary_10_1080_14992027_2018_1431696
crossref_primary_10_1016_j_neuroimage_2014_04_005
crossref_primary_10_1177_23312165221129407
crossref_primary_10_1093_cercor_bht113
crossref_primary_10_1371_journal_pbio_2000812
crossref_primary_10_1523_JNEUROSCI_2674_15_2015
crossref_primary_10_1111_ejn_16140
crossref_primary_10_1080_25742442_2024_2395217
crossref_primary_10_1155_2021_8840452
crossref_primary_10_1016_j_clinph_2024_10_017
crossref_primary_10_1016_j_bandl_2021_104996
crossref_primary_10_1002_hbm_23987
crossref_primary_10_1016_j_neuroimage_2022_119580
crossref_primary_10_1002_hbm_26572
crossref_primary_10_1111_psyp_12413
crossref_primary_10_1016_j_nlm_2017_05_007
crossref_primary_10_3389_fnins_2015_00068
crossref_primary_10_1016_j_neuropsychologia_2013_09_012
crossref_primary_10_1162_jocn_a_01071
crossref_primary_10_1523_JNEUROSCI_0589_24_2024
crossref_primary_10_1371_journal_pone_0307158
crossref_primary_10_1177_23312165211014437
crossref_primary_10_1097_AUD_0000000000001050
crossref_primary_10_1162_jocn_a_00389
crossref_primary_10_1016_j_brainres_2015_10_054
crossref_primary_10_3389_fpsyg_2018_00184
crossref_primary_10_1097_AUD_0000000000001211
Cites_doi 10.3766/jaaa.22.3.4
10.1121/1.428215
10.1126/science.153.3736.652
10.1109/TBME.2006.873752
10.1523/JNEUROSCI.4040-09.2010
10.1002/hbm.20842
10.1093/brain/123.12.2400
10.1016/j.neuroimage.2006.02.002
10.1088/0031-9155/48/22/002
10.1162/jocn.2008.20501
10.1097/00001756-199812010-00030
10.1177/1084713808325306
10.1523/JNEUROSCI.23-29-09541.2003
10.1523/JNEUROSCI.4663-06.2007
10.3389/fpsyg.2011.00073
10.1016/j.mri.2004.10.010
10.1121/1.2216725
10.1023/B:BRAT.0000032864.93890.f9
10.1016/j.neuroimage.2009.11.008
10.1126/science.270.5234.303
10.1523/JNEUROSCI.0412-09.2009
10.3389/fpsyg.2011.00154
10.1093/cercor/12.8.877
10.1093/cercor/bhl145
10.3389/fnhum.2011.00112
10.1097/00003446-200002000-00010
10.1080/17470218.2010.492621
10.1093/cercor/bhr325
10.1121/1.412282
10.1152/jn.00425.2001
10.3389/fnhum.2012.00127
10.1038/362342a0
10.1016/j.neuroimage.2011.06.092
10.1152/jn.00873.2007
10.1121/1.413112
10.1016/j.tics.2008.09.005
10.1016/j.brainres.2010.09.070
10.1155/2011/156869
10.1016/j.neuron.2010.12.027
10.1016/j.jneumeth.2007.03.024
10.1097/00003446-200110000-00007
10.1080/14640746808400158
10.1016/S1053-8119(03)00286-6
10.1523/JNEUROSCI.1290-08.2008
10.3389/fnhum.2010.00186
10.1016/j.brainresrev.2006.06.003
10.1016/S1364-6613(00)01704-6
10.1073/pnas.98.2.694
10.1111/j.0963-7214.2005.00356.x
10.1093/schbul/sbr107
10.1080/14992020500243893
10.1523/JNEUROSCI.3631-09.2010
10.1523/JNEUROSCI.23-08-03423.2003
10.1523/JNEUROSCI.1004-10.2010
10.1016/j.tics.2006.09.002
10.1177/108471380601000103
10.1006/nimg.2001.0978
10.1016/j.brainres.2006.08.066
10.1093/cercor/bhg086
ContentType Journal Article
Copyright Copyright © 2012 the authors 0270-6474/12/3212376-08$15.00/0 2012
Copyright_xml – notice: Copyright © 2012 the authors 0270-6474/12/3212376-08$15.00/0 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QG
7TK
5PM
ADTOC
UNPAY
DOI 10.1523/JNEUROSCI.4908-11.2012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Animal Behavior Abstracts
Neurosciences Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
Animal Behavior Abstracts
DatabaseTitleList Neurosciences Abstracts
CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 12383
ExternalDocumentID 10.1523/jneurosci.4908-11.2012
PMC6621258
22956828
10_1523_JNEUROSCI_4908_11_2012
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
AFCFT
AFHIN
AFOSN
AIZTS
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
7QG
7TK
5PM
.GJ
1CY
ADTOC
ADXHL
AFFNX
AI.
UNPAY
VH1
YYP
ZGI
ZXP
ID FETCH-LOGICAL-c513t-be8990c4d6b8332cc5c615e95db69c19c4187eefbdf2428eb8994776b14687713
ISSN 0270-6474
1529-2401
IngestDate Wed Aug 20 00:15:19 EDT 2025
Thu Aug 21 17:56:56 EDT 2025
Thu Sep 04 17:14:03 EDT 2025
Fri Sep 05 05:48:20 EDT 2025
Wed Feb 19 02:34:41 EST 2025
Thu Apr 24 23:04:20 EDT 2025
Wed Oct 01 04:26:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c513t-be8990c4d6b8332cc5c615e95db69c19c4187eefbdf2428eb8994776b14687713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Author contributions: J.O. designed research; J.O., M.W., N.H., A.W., and B.M. performed research; J.O., M.W., N.H., A.W., and B.M. analyzed data; J.O., A.W., and B.M. wrote the paper.
OpenAccessLink https://www.jneurosci.org/content/jneuro/32/36/12376.full.pdf
PMID 22956828
PQID 1038610223
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1523_jneurosci_4908_11_2012
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6621258
proquest_miscellaneous_1551619948
proquest_miscellaneous_1038610223
pubmed_primary_22956828
crossref_primary_10_1523_JNEUROSCI_4908_11_2012
crossref_citationtrail_10_1523_JNEUROSCI_4908_11_2012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-05
2012-Sep-05
20120905
PublicationDateYYYYMMDD 2012-09-05
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2012
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041303583120000_32.36.12376.46
2023041303583120000_32.36.12376.45
2023041303583120000_32.36.12376.48
2023041303583120000_32.36.12376.47
2023041303583120000_32.36.12376.49
2023041303583120000_32.36.12376.40
2023041303583120000_32.36.12376.42
2023041303583120000_32.36.12376.41
Reas (2023041303583120000_32.36.12376.44) 2011; 5
2023041303583120000_32.36.12376.43
Jacquemot (2023041303583120000_32.36.12376.19) 2003; 23
2023041303583120000_32.36.12376.35
2023041303583120000_32.36.12376.34
2023041303583120000_32.36.12376.37
2023041303583120000_32.36.12376.36
2023041303583120000_32.36.12376.39
2023041303583120000_32.36.12376.38
2023041303583120000_32.36.12376.33
2023041303583120000_32.36.12376.32
2023041303583120000_32.36.12376.1
2023041303583120000_32.36.12376.2
2023041303583120000_32.36.12376.3
2023041303583120000_32.36.12376.4
2023041303583120000_32.36.12376.5
Davis (2023041303583120000_32.36.12376.6) 2003; 23
2023041303583120000_32.36.12376.7
2023041303583120000_32.36.12376.24
2023041303583120000_32.36.12376.8
2023041303583120000_32.36.12376.23
2023041303583120000_32.36.12376.9
2023041303583120000_32.36.12376.26
2023041303583120000_32.36.12376.25
2023041303583120000_32.36.12376.28
2023041303583120000_32.36.12376.27
Nenert (2023041303583120000_32.36.12376.31) 2012; 6
2023041303583120000_32.36.12376.29
2023041303583120000_32.36.12376.20
2023041303583120000_32.36.12376.22
2023041303583120000_32.36.12376.21
Miller (2023041303583120000_32.36.12376.30) 2002; 87
2023041303583120000_32.36.12376.13
2023041303583120000_32.36.12376.57
2023041303583120000_32.36.12376.12
2023041303583120000_32.36.12376.56
2023041303583120000_32.36.12376.15
2023041303583120000_32.36.12376.59
2023041303583120000_32.36.12376.14
2023041303583120000_32.36.12376.58
2023041303583120000_32.36.12376.17
2023041303583120000_32.36.12376.16
2023041303583120000_32.36.12376.18
2023041303583120000_32.36.12376.51
2023041303583120000_32.36.12376.50
2023041303583120000_32.36.12376.53
2023041303583120000_32.36.12376.52
2023041303583120000_32.36.12376.11
2023041303583120000_32.36.12376.55
2023041303583120000_32.36.12376.10
2023041303583120000_32.36.12376.54
References_xml – ident: 2023041303583120000_32.36.12376.46
  doi: 10.3766/jaaa.22.3.4
– ident: 2023041303583120000_32.36.12376.45
  doi: 10.1121/1.428215
– ident: 2023041303583120000_32.36.12376.55
  doi: 10.1126/science.153.3736.652
– ident: 2023041303583120000_32.36.12376.5
  doi: 10.1109/TBME.2006.873752
– ident: 2023041303583120000_32.36.12376.9
  doi: 10.1523/JNEUROSCI.4040-09.2010
– ident: 2023041303583120000_32.36.12376.14
  doi: 10.1002/hbm.20842
– ident: 2023041303583120000_32.36.12376.49
  doi: 10.1093/brain/123.12.2400
– ident: 2023041303583120000_32.36.12376.25
  doi: 10.1016/j.neuroimage.2006.02.002
– ident: 2023041303583120000_32.36.12376.32
  doi: 10.1088/0031-9155/48/22/002
– ident: 2023041303583120000_32.36.12376.3
  doi: 10.1162/jocn.2008.20501
– ident: 2023041303583120000_32.36.12376.12
  doi: 10.1097/00001756-199812010-00030
– ident: 2023041303583120000_32.36.12376.54
  doi: 10.1177/1084713808325306
– volume: 23
  start-page: 9541
  year: 2003
  ident: 2023041303583120000_32.36.12376.19
  article-title: Phonological grammar shapes the auditory cortex: a functional magnetic resonance imaging study
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-29-09541.2003
– ident: 2023041303583120000_32.36.12376.35
  doi: 10.1523/JNEUROSCI.4663-06.2007
– ident: 2023041303583120000_32.36.12376.58
  doi: 10.3389/fpsyg.2011.00073
– ident: 2023041303583120000_32.36.12376.27
  doi: 10.1016/j.mri.2004.10.010
– ident: 2023041303583120000_32.36.12376.50
  doi: 10.1121/1.2216725
– ident: 2023041303583120000_32.36.12376.56
  doi: 10.1023/B:BRAT.0000032864.93890.f9
– ident: 2023041303583120000_32.36.12376.1
  doi: 10.1016/j.neuroimage.2009.11.008
– ident: 2023041303583120000_32.36.12376.52
  doi: 10.1126/science.270.5234.303
– ident: 2023041303583120000_32.36.12376.15
  doi: 10.1523/JNEUROSCI.0412-09.2009
– ident: 2023041303583120000_32.36.12376.11
  doi: 10.3389/fpsyg.2011.00154
– ident: 2023041303583120000_32.36.12376.21
  doi: 10.1093/cercor/12.8.877
– ident: 2023041303583120000_32.36.12376.29
  doi: 10.1093/cercor/bhl145
– volume: 5
  start-page: 112
  year: 2011
  ident: 2023041303583120000_32.36.12376.44
  article-title: Search-related suppression of hippocampus and default network activity during associative memory retrieval
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2011.00112
– ident: 2023041303583120000_32.36.12376.42
  doi: 10.1097/00003446-200002000-00010
– ident: 2023041303583120000_32.36.12376.16
  doi: 10.1080/17470218.2010.492621
– ident: 2023041303583120000_32.36.12376.34
  doi: 10.1093/cercor/bhr325
– ident: 2023041303583120000_32.36.12376.40
  doi: 10.1121/1.412282
– volume: 87
  start-page: 653
  year: 2002
  ident: 2023041303583120000_32.36.12376.30
  article-title: Neural noise can explain expansive, power-law nonlinearities in neural response functions
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00425.2001
– volume: 6
  start-page: 127
  year: 2012
  ident: 2023041303583120000_32.36.12376.31
  article-title: Modulations of ongoing alpha oscillations predict successful short-term visual memory encoding
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2012.00127
– ident: 2023041303583120000_32.36.12376.38
  doi: 10.1038/362342a0
– ident: 2023041303583120000_32.36.12376.48
  doi: 10.1016/j.neuroimage.2011.06.092
– ident: 2023041303583120000_32.36.12376.8
  doi: 10.1152/jn.00873.2007
– ident: 2023041303583120000_32.36.12376.7
  doi: 10.1121/1.413112
– ident: 2023041303583120000_32.36.12376.33
  doi: 10.1016/j.tics.2008.09.005
– ident: 2023041303583120000_32.36.12376.41
  doi: 10.1016/j.brainres.2010.09.070
– ident: 2023041303583120000_32.36.12376.37
  doi: 10.1155/2011/156869
– ident: 2023041303583120000_32.36.12376.17
  doi: 10.1016/j.neuron.2010.12.027
– ident: 2023041303583120000_32.36.12376.28
  doi: 10.1016/j.jneumeth.2007.03.024
– ident: 2023041303583120000_32.36.12376.10
  doi: 10.1097/00003446-200110000-00007
– ident: 2023041303583120000_32.36.12376.43
  doi: 10.1080/14640746808400158
– ident: 2023041303583120000_32.36.12376.24
  doi: 10.1016/S1053-8119(03)00286-6
– ident: 2023041303583120000_32.36.12376.36
  doi: 10.1523/JNEUROSCI.1290-08.2008
– ident: 2023041303583120000_32.36.12376.20
  doi: 10.3389/fnhum.2010.00186
– ident: 2023041303583120000_32.36.12376.23
  doi: 10.1016/j.brainresrev.2006.06.003
– ident: 2023041303583120000_32.36.12376.51
  doi: 10.1016/S1364-6613(00)01704-6
– ident: 2023041303583120000_32.36.12376.13
  doi: 10.1073/pnas.98.2.694
– ident: 2023041303583120000_32.36.12376.59
  doi: 10.1111/j.0963-7214.2005.00356.x
– ident: 2023041303583120000_32.36.12376.2
  doi: 10.1093/schbul/sbr107
– ident: 2023041303583120000_32.36.12376.4
  doi: 10.1080/14992020500243893
– ident: 2023041303583120000_32.36.12376.22
  doi: 10.1523/JNEUROSCI.3631-09.2010
– volume: 23
  start-page: 3423
  year: 2003
  ident: 2023041303583120000_32.36.12376.6
  article-title: Hierarchical processing in spoken language comprehension
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-08-03423.2003
– ident: 2023041303583120000_32.36.12376.47
  doi: 10.1523/JNEUROSCI.1004-10.2010
– ident: 2023041303583120000_32.36.12376.18
  doi: 10.1016/j.tics.2006.09.002
– ident: 2023041303583120000_32.36.12376.39
  doi: 10.1177/108471380601000103
– ident: 2023041303583120000_32.36.12376.57
  doi: 10.1006/nimg.2001.0978
– ident: 2023041303583120000_32.36.12376.26
  doi: 10.1016/j.brainres.2006.08.066
– ident: 2023041303583120000_32.36.12376.53
  doi: 10.1093/cercor/bhg086
SSID ssj0007017
Score 2.4885612
Snippet How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8–13 Hz) during retention of items in working memory...
How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8-13 Hz) during retention of items in working memory...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 12376
SubjectTerms Acoustic Stimulation - methods
Adult
Alpha Rhythm - physiology
Auditory Perception - physiology
Female
Humans
Male
Memory, Short-Term - physiology
Nerve Net - physiology
Reaction Time - physiology
Young Adult
Title Adverse Listening Conditions and Memory Load Drive a Common Alpha Oscillatory Network
URI https://www.ncbi.nlm.nih.gov/pubmed/22956828
https://www.proquest.com/docview/1038610223
https://www.proquest.com/docview/1551619948
https://pubmed.ncbi.nlm.nih.gov/PMC6621258
https://www.jneurosci.org/content/jneuro/32/36/12376.full.pdf
UnpaywallVersion publishedVersion
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1529-2401
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007017
  issn: 1529-2401
  databaseCode: KQ8
  dateStart: 19810101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1529-2401
  dateEnd: 20250401
  omitProxy: true
  ssIdentifier: ssj0007017
  issn: 1529-2401
  databaseCode: DIK
  dateStart: 19810101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1529-2401
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007017
  issn: 1529-2401
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1529-2401
  dateEnd: 20250401
  omitProxy: true
  ssIdentifier: ssj0007017
  issn: 1529-2401
  databaseCode: RPM
  dateStart: 19810101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB1BWcAGFQo0FNAgAZvIbfwa28s2KipFDQJa0Z01Ho9Fke1EtSMU_oof4Zu4d2b8UsJzY0Xx2I5zjsd37uNcQl4E0vVt7kQWZ05meSyNLDAjfIs7XpDB-0myCAucz2bs5MI7vfQvexFTrC6pk33xbWNdyf-gCt8Brlgl-w_ItieFL-Az4AtbQBi2f4Wx6qZcyXGOWJW6fBZD0Cq5DT3iBebRrsb5nKfj9BqThDgmkRcI-fT45ZE9Ri1LYIIKtZc6Jbxvr3aVY8pm7alftoR4l-Sy0sCjK7610T9hDP6IVXVh-jCfYWS-873mqK6l3dozmXchoqu80u2pUNu575TA7I7ImujotDQTqaMiN3Z_pu08mctG98TMmzYm52yc0X2lLHE6w8TGj9M3-xiotGxc2ev06x7Mi0LhjA3KWWhKzoda2s2um-SWEzCGHS_evu_U5QOYnkwVOVz2YPNFUT7anGZoy6wtUNbzbG8vywVffeV53jNizrfJXYMkPdRUukduyPI-2TksAf9iRV9RlQ-sAi075INhF23ZRTt2UWAX1eyiyC6q2EU51eyiP77THrOoYdYDcvH6-Hx6YpkOHJbwbbe2EgnL8YnwUpaErusI4QuwgGXkpwmLhB0Jzw4DKbMkzcDUC2UCw70gYAkW9AWB7T4kW-W8lLuEcpk5YC-lgmfSSyWHNwkMkSJMIldETI6I3_yXsTDy9NglJY9xmQpwxC0cMcIBS9cY4RiRg_a4hRZo-eMRzxuoYphLMUDGSzlfVjE2C2DoAnF_MwYjyyioHY7IIw1ve92GFyMSDIBvB6CW-3BPefVZaboDGWGpAUdOWoqs3c6X5iEf3M7jX_6MPXKnezafkK36eimfggldJ88U738CCezGGw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adverse+listening+conditions+and+memory+load+drive+a+common+%CE%B1+oscillatory+network&rft.jtitle=The+Journal+of+neuroscience&rft.au=Obleser%2C+Jonas&rft.au=W%C3%B6stmann%2C+Malte&rft.au=Hellbernd%2C+Nele&rft.au=Wilsch%2C+Anna&rft.date=2012-09-05&rft.eissn=1529-2401&rft.volume=32&rft.issue=36&rft.spage=12376&rft_id=info:doi/10.1523%2FJNEUROSCI.4908-11.2012&rft_id=info%3Apmid%2F22956828&rft.externalDocID=22956828
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon