Adverse Listening Conditions and Memory Load Drive a Common Alpha Oscillatory Network
How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8–13 Hz) during retention of items in working memory are often interpreted to reflect increased demands on storage and inhibition. We hypothesized that auditory signal degradation poses an addi...
Saved in:
Published in | The Journal of neuroscience Vol. 32; no. 36; pp. 12376 - 12383 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
05.09.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0270-6474 1529-2401 1529-2401 |
DOI | 10.1523/JNEUROSCI.4908-11.2012 |
Cover
Abstract | How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8–13 Hz) during retention of items in working memory are often interpreted to reflect increased demands on storage and inhibition. We hypothesized that auditory signal degradation poses an additional challenge to human listeners partly because it draws on the same neural mechanisms. In an adapted Sternberg paradigm, auditory memory load and acoustic degradation were parametrically varied and the magnetoencephalographic response was analyzed in the time–frequency domain. Notably, during the stimulus-free delay interval, alpha power monotonically increased at central–parietal sensors as functions of memory load (higher alpha power with more memory load) and of acoustic degradation (also higher alpha power with more severe acoustic degradation). This alpha effect was superadditive when highest load was combined with most severe degradation. Moreover, alpha oscillatory dynamics during stimulus-free delay were predictive of response times to the probe item. Source localization of alpha power during stimulus-free delay indicated that alpha generators in right parietal, cingulate, supramarginal, and superior temporal cortex were sensitive to combined memory load and acoustic degradation. In summary, both challenges of memory load and acoustic degradation increase activity in a common alpha-frequency network. The results set the stage for future studies on how chronic or acute degradations of sensory input affect mechanisms of executive control. |
---|---|
AbstractList | How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8-13 Hz) during retention of items in working memory are often interpreted to reflect increased demands on storage and inhibition. We hypothesized that auditory signal degradation poses an additional challenge to human listeners partly because it draws on the same neural mechanisms. In an adapted Sternberg paradigm, auditory memory load and acoustic degradation were parametrically varied and the magnetoencephalographic response was analyzed in the time-frequency domain. Notably, during the stimulus-free delay interval, alpha power monotonically increased at central-parietal sensors as functions of memory load (higher alpha power with more memory load) and of acoustic degradation (also higher alpha power with more severe acoustic degradation). This alpha effect was superadditive when highest load was combined with most severe degradation. Moreover, alpha oscillatory dynamics during stimulus-free delay were predictive of response times to the probe item. Source localization of alpha power during stimulus-free delay indicated that alpha generators in right parietal, cingulate, supramarginal, and superior temporal cortex were sensitive to combined memory load and acoustic degradation. In summary, both challenges of memory load and acoustic degradation increase activity in a common alpha-frequency network. The results set the stage for future studies on how chronic or acute degradations of sensory input affect mechanisms of executive control. How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8-13 Hz) during retention of items in working memory are often interpreted to reflect increased demands on storage and inhibition. We hypothesized that auditory signal degradation poses an additional challenge to human listeners partly because it draws on the same neural mechanisms. In an adapted Sternberg paradigm, auditory memory load and acoustic degradation were parametrically varied and the magnetoencephalographic response was analyzed in the time-frequency domain. Notably, during the stimulus-free delay interval, alpha power monotonically increased at central-parietal sensors as functions of memory load (higher alpha power with more memory load) and of acoustic degradation (also higher alpha power with more severe acoustic degradation). This alpha effect was superadditive when highest load was combined with most severe degradation. Moreover, alpha oscillatory dynamics during stimulus-free delay were predictive of response times to the probe item. Source localization of alpha power during stimulus-free delay indicated that alpha generators in right parietal, cingulate, supramarginal, and superior temporal cortex were sensitive to combined memory load and acoustic degradation. In summary, both challenges of memory load and acoustic degradation increase activity in a common alpha-frequency network. The results set the stage for future studies on how chronic or acute degradations of sensory input affect mechanisms of executive control.How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8-13 Hz) during retention of items in working memory are often interpreted to reflect increased demands on storage and inhibition. We hypothesized that auditory signal degradation poses an additional challenge to human listeners partly because it draws on the same neural mechanisms. In an adapted Sternberg paradigm, auditory memory load and acoustic degradation were parametrically varied and the magnetoencephalographic response was analyzed in the time-frequency domain. Notably, during the stimulus-free delay interval, alpha power monotonically increased at central-parietal sensors as functions of memory load (higher alpha power with more memory load) and of acoustic degradation (also higher alpha power with more severe acoustic degradation). This alpha effect was superadditive when highest load was combined with most severe degradation. Moreover, alpha oscillatory dynamics during stimulus-free delay were predictive of response times to the probe item. Source localization of alpha power during stimulus-free delay indicated that alpha generators in right parietal, cingulate, supramarginal, and superior temporal cortex were sensitive to combined memory load and acoustic degradation. In summary, both challenges of memory load and acoustic degradation increase activity in a common alpha-frequency network. The results set the stage for future studies on how chronic or acute degradations of sensory input affect mechanisms of executive control. |
Author | Hellbernd, Nele Maess, Burkhard Wöstmann, Malte Wilsch, Anna Obleser, Jonas |
Author_xml | – sequence: 1 givenname: Jonas surname: Obleser fullname: Obleser, Jonas – sequence: 2 givenname: Malte surname: Wöstmann fullname: Wöstmann, Malte – sequence: 3 givenname: Nele surname: Hellbernd fullname: Hellbernd, Nele – sequence: 4 givenname: Anna surname: Wilsch fullname: Wilsch, Anna – sequence: 5 givenname: Burkhard surname: Maess fullname: Maess, Burkhard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22956828$$D View this record in MEDLINE/PubMed |
BookMark | eNqNklFv0zAUhS00xLrBX5jyyEs6XyexHQkhVWXAUFkloM-W49xuHold7LRT__0cdQwYD_DkB3_n-pxzfUKOnHdIyBnQKVSsOP90dbH6svw6v5yWNZU5wJRRYM_IJN3WOSspHJEJZYLmvBTlMTmJ8ZZSKiiIF-SYsbrikskJWc3aHYaI2cLGAZ1119ncu9YO1ruYaddmn7H3YZ8tvG6zd8HuMNMJ6Xvvslm3udHZMhrbdXoYqSsc7nz4_pI8X-su4quH85Ss3l98m3_MF8sPl_PZIjcVFEPeoKxrasqWN7IomDGV4VBhXbUNrw3UpgQpENdNu2Ylk9gkvBSCN1ByKQQUp0Qc5m7dRu_vdNepTbC9DnsFVI1FqVuH2-CTRTUWpQDUWFRSvj0oN9umx9agG4L-pfbaqj9vnL1R136nOGfAKpkGvH4YEPyPLcZB9TYaTEU49NuYHq-AQ_L7HygtJAfKWJHQs99tPfr5ubAE8ANgUqgYcP1X4Mef8TTwmydCYwc9rjnFs92_5Peyvb9D |
CitedBy_id | crossref_primary_10_1007_s10548_024_01064_0 crossref_primary_10_1016_j_neuroimage_2016_11_062 crossref_primary_10_3389_fnhum_2016_00538 crossref_primary_10_1016_j_bandl_2016_09_008 crossref_primary_10_1177_2331216519886722 crossref_primary_10_1177_23312165221130656 crossref_primary_10_1016_j_neuroimage_2023_119883 crossref_primary_10_1111_ejn_13855 crossref_primary_10_1016_j_biopsycho_2018_05_018 crossref_primary_10_1111_psyp_13877 crossref_primary_10_1080_14992027_2021_1899314 crossref_primary_10_1111_ejn_15477 crossref_primary_10_1080_23273798_2016_1262051 crossref_primary_10_3389_fpsyg_2018_00678 crossref_primary_10_3389_fpsyg_2018_00679 crossref_primary_10_1097_AUD_0000000000000295 crossref_primary_10_1016_j_neuroimage_2017_08_040 crossref_primary_10_1016_j_neuroimage_2014_11_050 crossref_primary_10_3389_fnins_2022_915349 crossref_primary_10_1016_j_clinph_2015_02_055 crossref_primary_10_1016_j_neuropsychologia_2024_108968 crossref_primary_10_1097_AUD_0000000000000697 crossref_primary_10_1097_AUD_0000000000000856 crossref_primary_10_3389_fnins_2014_00137 crossref_primary_10_1016_j_neuroimage_2015_04_038 crossref_primary_10_1523_JNEUROSCI_2181_22_2023 crossref_primary_10_1016_j_heares_2013_07_009 crossref_primary_10_3758_s13414_019_01727_2 crossref_primary_10_1111_ejn_15365 crossref_primary_10_1162_imag_a_00130 crossref_primary_10_1080_14992027_2020_1853262 crossref_primary_10_1177_23312165231205107 crossref_primary_10_1016_j_neuroimage_2020_116882 crossref_primary_10_1055_s_0043_1767669 crossref_primary_10_1162_jocn_a_00761 crossref_primary_10_1016_j_neuroimage_2018_10_085 crossref_primary_10_1016_j_bandl_2018_09_005 crossref_primary_10_1016_j_brainres_2015_06_038 crossref_primary_10_7554_eLife_55508 crossref_primary_10_1002_hbm_23877 crossref_primary_10_3389_fnhum_2014_00350 crossref_primary_10_1044_2018_JSLHR_H_ASCC7_18_0142 crossref_primary_10_1121_1_5057114 crossref_primary_10_1111_psyp_12968 crossref_primary_10_1093_cercor_bhx074 crossref_primary_10_1177_23312165241262517 crossref_primary_10_1111_ejn_13759 crossref_primary_10_1371_journal_pbio_3001713 crossref_primary_10_1016_j_jneuroling_2019_04_002 crossref_primary_10_3389_fpsyg_2016_00678 crossref_primary_10_1016_j_heares_2024_109167 crossref_primary_10_1093_cercor_bhu004 crossref_primary_10_1177_2331216520948410 crossref_primary_10_1080_25742442_2021_1903293 crossref_primary_10_1080_25742442_2023_2218239 crossref_primary_10_1109_JSEN_2023_3260000 crossref_primary_10_1177_23312165231222098 crossref_primary_10_1055_s_0043_1766105 crossref_primary_10_1121_10_0020539 crossref_primary_10_1162_jocn_a_01301 crossref_primary_10_3390_cancers13112593 crossref_primary_10_1097_AUD_0000000000000396 crossref_primary_10_1097_AUD_0000000000000312 crossref_primary_10_1152_jn_00042_2023 crossref_primary_10_3389_fnins_2022_790057 crossref_primary_10_1016_j_neuroimage_2023_120026 crossref_primary_10_3389_fpsyg_2015_00177 crossref_primary_10_3389_fpsyg_2015_01147 crossref_primary_10_1016_j_heares_2018_05_003 crossref_primary_10_3389_fnhum_2022_1043499 crossref_primary_10_1162_jocn_a_02249 crossref_primary_10_1016_j_bandl_2019_02_001 crossref_primary_10_1038_ncomms15801 crossref_primary_10_1080_14992027_2018_1551631 crossref_primary_10_21053_ceo_2018_00052 crossref_primary_10_1016_j_neuropsychologia_2016_12_003 crossref_primary_10_3389_fnhum_2019_00033 crossref_primary_10_1371_journal_pone_0254162 crossref_primary_10_1097_AUD_0000000000001138 crossref_primary_10_3389_fnhum_2019_00150 crossref_primary_10_1371_journal_pone_0288461 crossref_primary_10_1523_JNEUROSCI_0583_21_2021 crossref_primary_10_7874_jao_2017_00136 crossref_primary_10_1093_cercor_bhac094 crossref_primary_10_3389_fpsyg_2022_967260 crossref_primary_10_1016_j_neuropsychologia_2023_108494 crossref_primary_10_1111_ejn_14226 crossref_primary_10_1016_j_jneumeth_2024_110348 crossref_primary_10_1016_j_neuroimage_2018_10_057 crossref_primary_10_3389_fnbeh_2015_00111 crossref_primary_10_1097_AUD_0000000000000494 crossref_primary_10_1097_AUD_0000000000001464 crossref_primary_10_1016_j_neuroimage_2024_120787 crossref_primary_10_1523_JNEUROSCI_3250_14_2015 crossref_primary_10_1016_j_neuroimage_2024_120546 crossref_primary_10_3389_fnagi_2022_806439 crossref_primary_10_5112_jjlp_65_154 crossref_primary_10_1016_j_nlm_2019_107098 crossref_primary_10_1177_2331216517706396 crossref_primary_10_3389_fpsyg_2016_00745 crossref_primary_10_1097_AUD_0000000000001508 crossref_primary_10_3390_brainsci13071084 crossref_primary_10_1016_j_bandl_2015_06_005 crossref_primary_10_1111_ejn_14753 crossref_primary_10_1044_2018_JSLHR_H_17_0396 crossref_primary_10_1093_cercor_bhz263 crossref_primary_10_1016_j_cortex_2020_06_007 crossref_primary_10_1093_cercor_bhaa400 crossref_primary_10_1016_j_ijporl_2017_05_006 crossref_primary_10_1016_j_bbr_2020_113102 crossref_primary_10_1016_j_brainres_2015_10_035 crossref_primary_10_1016_j_bandl_2016_01_003 crossref_primary_10_1016_j_heares_2019_04_011 crossref_primary_10_1097_AUD_0000000000000302 crossref_primary_10_3389_fnhum_2022_905837 crossref_primary_10_3389_fnhum_2014_00577 crossref_primary_10_1080_14992027_2018_1431696 crossref_primary_10_1016_j_neuroimage_2014_04_005 crossref_primary_10_1177_23312165221129407 crossref_primary_10_1093_cercor_bht113 crossref_primary_10_1371_journal_pbio_2000812 crossref_primary_10_1523_JNEUROSCI_2674_15_2015 crossref_primary_10_1111_ejn_16140 crossref_primary_10_1080_25742442_2024_2395217 crossref_primary_10_1155_2021_8840452 crossref_primary_10_1016_j_clinph_2024_10_017 crossref_primary_10_1016_j_bandl_2021_104996 crossref_primary_10_1002_hbm_23987 crossref_primary_10_1016_j_neuroimage_2022_119580 crossref_primary_10_1002_hbm_26572 crossref_primary_10_1111_psyp_12413 crossref_primary_10_1016_j_nlm_2017_05_007 crossref_primary_10_3389_fnins_2015_00068 crossref_primary_10_1016_j_neuropsychologia_2013_09_012 crossref_primary_10_1162_jocn_a_01071 crossref_primary_10_1523_JNEUROSCI_0589_24_2024 crossref_primary_10_1371_journal_pone_0307158 crossref_primary_10_1177_23312165211014437 crossref_primary_10_1097_AUD_0000000000001050 crossref_primary_10_1162_jocn_a_00389 crossref_primary_10_1016_j_brainres_2015_10_054 crossref_primary_10_3389_fpsyg_2018_00184 crossref_primary_10_1097_AUD_0000000000001211 |
Cites_doi | 10.3766/jaaa.22.3.4 10.1121/1.428215 10.1126/science.153.3736.652 10.1109/TBME.2006.873752 10.1523/JNEUROSCI.4040-09.2010 10.1002/hbm.20842 10.1093/brain/123.12.2400 10.1016/j.neuroimage.2006.02.002 10.1088/0031-9155/48/22/002 10.1162/jocn.2008.20501 10.1097/00001756-199812010-00030 10.1177/1084713808325306 10.1523/JNEUROSCI.23-29-09541.2003 10.1523/JNEUROSCI.4663-06.2007 10.3389/fpsyg.2011.00073 10.1016/j.mri.2004.10.010 10.1121/1.2216725 10.1023/B:BRAT.0000032864.93890.f9 10.1016/j.neuroimage.2009.11.008 10.1126/science.270.5234.303 10.1523/JNEUROSCI.0412-09.2009 10.3389/fpsyg.2011.00154 10.1093/cercor/12.8.877 10.1093/cercor/bhl145 10.3389/fnhum.2011.00112 10.1097/00003446-200002000-00010 10.1080/17470218.2010.492621 10.1093/cercor/bhr325 10.1121/1.412282 10.1152/jn.00425.2001 10.3389/fnhum.2012.00127 10.1038/362342a0 10.1016/j.neuroimage.2011.06.092 10.1152/jn.00873.2007 10.1121/1.413112 10.1016/j.tics.2008.09.005 10.1016/j.brainres.2010.09.070 10.1155/2011/156869 10.1016/j.neuron.2010.12.027 10.1016/j.jneumeth.2007.03.024 10.1097/00003446-200110000-00007 10.1080/14640746808400158 10.1016/S1053-8119(03)00286-6 10.1523/JNEUROSCI.1290-08.2008 10.3389/fnhum.2010.00186 10.1016/j.brainresrev.2006.06.003 10.1016/S1364-6613(00)01704-6 10.1073/pnas.98.2.694 10.1111/j.0963-7214.2005.00356.x 10.1093/schbul/sbr107 10.1080/14992020500243893 10.1523/JNEUROSCI.3631-09.2010 10.1523/JNEUROSCI.23-08-03423.2003 10.1523/JNEUROSCI.1004-10.2010 10.1016/j.tics.2006.09.002 10.1177/108471380601000103 10.1006/nimg.2001.0978 10.1016/j.brainres.2006.08.066 10.1093/cercor/bhg086 |
ContentType | Journal Article |
Copyright | Copyright © 2012 the authors 0270-6474/12/3212376-08$15.00/0 2012 |
Copyright_xml | – notice: Copyright © 2012 the authors 0270-6474/12/3212376-08$15.00/0 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QG 7TK 5PM ADTOC UNPAY |
DOI | 10.1523/JNEUROSCI.4908-11.2012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Animal Behavior Abstracts Neurosciences Abstracts PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts Animal Behavior Abstracts |
DatabaseTitleList | Neurosciences Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 12383 |
ExternalDocumentID | 10.1523/jneurosci.4908-11.2012 PMC6621258 22956828 10_1523_JNEUROSCI_4908_11_2012 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 3O- 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B MVM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK AFCFT AFHIN AFOSN AIZTS CGR CUY CVF ECM EIF NPM RHF 7X8 7QG 7TK 5PM .GJ 1CY ADTOC ADXHL AFFNX AI. UNPAY VH1 YYP ZGI ZXP |
ID | FETCH-LOGICAL-c513t-be8990c4d6b8332cc5c615e95db69c19c4187eefbdf2428eb8994776b14687713 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Wed Aug 20 00:15:19 EDT 2025 Thu Aug 21 17:56:56 EDT 2025 Thu Sep 04 17:14:03 EDT 2025 Fri Sep 05 05:48:20 EDT 2025 Wed Feb 19 02:34:41 EST 2025 Thu Apr 24 23:04:20 EDT 2025 Wed Oct 01 04:26:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c513t-be8990c4d6b8332cc5c615e95db69c19c4187eefbdf2428eb8994776b14687713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 Author contributions: J.O. designed research; J.O., M.W., N.H., A.W., and B.M. performed research; J.O., M.W., N.H., A.W., and B.M. analyzed data; J.O., A.W., and B.M. wrote the paper. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/32/36/12376.full.pdf |
PMID | 22956828 |
PQID | 1038610223 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | unpaywall_primary_10_1523_jneurosci_4908_11_2012 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6621258 proquest_miscellaneous_1551619948 proquest_miscellaneous_1038610223 pubmed_primary_22956828 crossref_primary_10_1523_JNEUROSCI_4908_11_2012 crossref_citationtrail_10_1523_JNEUROSCI_4908_11_2012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-05 2012-Sep-05 20120905 |
PublicationDateYYYYMMDD | 2012-09-05 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2012 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041303583120000_32.36.12376.46 2023041303583120000_32.36.12376.45 2023041303583120000_32.36.12376.48 2023041303583120000_32.36.12376.47 2023041303583120000_32.36.12376.49 2023041303583120000_32.36.12376.40 2023041303583120000_32.36.12376.42 2023041303583120000_32.36.12376.41 Reas (2023041303583120000_32.36.12376.44) 2011; 5 2023041303583120000_32.36.12376.43 Jacquemot (2023041303583120000_32.36.12376.19) 2003; 23 2023041303583120000_32.36.12376.35 2023041303583120000_32.36.12376.34 2023041303583120000_32.36.12376.37 2023041303583120000_32.36.12376.36 2023041303583120000_32.36.12376.39 2023041303583120000_32.36.12376.38 2023041303583120000_32.36.12376.33 2023041303583120000_32.36.12376.32 2023041303583120000_32.36.12376.1 2023041303583120000_32.36.12376.2 2023041303583120000_32.36.12376.3 2023041303583120000_32.36.12376.4 2023041303583120000_32.36.12376.5 Davis (2023041303583120000_32.36.12376.6) 2003; 23 2023041303583120000_32.36.12376.7 2023041303583120000_32.36.12376.24 2023041303583120000_32.36.12376.8 2023041303583120000_32.36.12376.23 2023041303583120000_32.36.12376.9 2023041303583120000_32.36.12376.26 2023041303583120000_32.36.12376.25 2023041303583120000_32.36.12376.28 2023041303583120000_32.36.12376.27 Nenert (2023041303583120000_32.36.12376.31) 2012; 6 2023041303583120000_32.36.12376.29 2023041303583120000_32.36.12376.20 2023041303583120000_32.36.12376.22 2023041303583120000_32.36.12376.21 Miller (2023041303583120000_32.36.12376.30) 2002; 87 2023041303583120000_32.36.12376.13 2023041303583120000_32.36.12376.57 2023041303583120000_32.36.12376.12 2023041303583120000_32.36.12376.56 2023041303583120000_32.36.12376.15 2023041303583120000_32.36.12376.59 2023041303583120000_32.36.12376.14 2023041303583120000_32.36.12376.58 2023041303583120000_32.36.12376.17 2023041303583120000_32.36.12376.16 2023041303583120000_32.36.12376.18 2023041303583120000_32.36.12376.51 2023041303583120000_32.36.12376.50 2023041303583120000_32.36.12376.53 2023041303583120000_32.36.12376.52 2023041303583120000_32.36.12376.11 2023041303583120000_32.36.12376.55 2023041303583120000_32.36.12376.10 2023041303583120000_32.36.12376.54 |
References_xml | – ident: 2023041303583120000_32.36.12376.46 doi: 10.3766/jaaa.22.3.4 – ident: 2023041303583120000_32.36.12376.45 doi: 10.1121/1.428215 – ident: 2023041303583120000_32.36.12376.55 doi: 10.1126/science.153.3736.652 – ident: 2023041303583120000_32.36.12376.5 doi: 10.1109/TBME.2006.873752 – ident: 2023041303583120000_32.36.12376.9 doi: 10.1523/JNEUROSCI.4040-09.2010 – ident: 2023041303583120000_32.36.12376.14 doi: 10.1002/hbm.20842 – ident: 2023041303583120000_32.36.12376.49 doi: 10.1093/brain/123.12.2400 – ident: 2023041303583120000_32.36.12376.25 doi: 10.1016/j.neuroimage.2006.02.002 – ident: 2023041303583120000_32.36.12376.32 doi: 10.1088/0031-9155/48/22/002 – ident: 2023041303583120000_32.36.12376.3 doi: 10.1162/jocn.2008.20501 – ident: 2023041303583120000_32.36.12376.12 doi: 10.1097/00001756-199812010-00030 – ident: 2023041303583120000_32.36.12376.54 doi: 10.1177/1084713808325306 – volume: 23 start-page: 9541 year: 2003 ident: 2023041303583120000_32.36.12376.19 article-title: Phonological grammar shapes the auditory cortex: a functional magnetic resonance imaging study publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-29-09541.2003 – ident: 2023041303583120000_32.36.12376.35 doi: 10.1523/JNEUROSCI.4663-06.2007 – ident: 2023041303583120000_32.36.12376.58 doi: 10.3389/fpsyg.2011.00073 – ident: 2023041303583120000_32.36.12376.27 doi: 10.1016/j.mri.2004.10.010 – ident: 2023041303583120000_32.36.12376.50 doi: 10.1121/1.2216725 – ident: 2023041303583120000_32.36.12376.56 doi: 10.1023/B:BRAT.0000032864.93890.f9 – ident: 2023041303583120000_32.36.12376.1 doi: 10.1016/j.neuroimage.2009.11.008 – ident: 2023041303583120000_32.36.12376.52 doi: 10.1126/science.270.5234.303 – ident: 2023041303583120000_32.36.12376.15 doi: 10.1523/JNEUROSCI.0412-09.2009 – ident: 2023041303583120000_32.36.12376.11 doi: 10.3389/fpsyg.2011.00154 – ident: 2023041303583120000_32.36.12376.21 doi: 10.1093/cercor/12.8.877 – ident: 2023041303583120000_32.36.12376.29 doi: 10.1093/cercor/bhl145 – volume: 5 start-page: 112 year: 2011 ident: 2023041303583120000_32.36.12376.44 article-title: Search-related suppression of hippocampus and default network activity during associative memory retrieval publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2011.00112 – ident: 2023041303583120000_32.36.12376.42 doi: 10.1097/00003446-200002000-00010 – ident: 2023041303583120000_32.36.12376.16 doi: 10.1080/17470218.2010.492621 – ident: 2023041303583120000_32.36.12376.34 doi: 10.1093/cercor/bhr325 – ident: 2023041303583120000_32.36.12376.40 doi: 10.1121/1.412282 – volume: 87 start-page: 653 year: 2002 ident: 2023041303583120000_32.36.12376.30 article-title: Neural noise can explain expansive, power-law nonlinearities in neural response functions publication-title: J Neurophysiol doi: 10.1152/jn.00425.2001 – volume: 6 start-page: 127 year: 2012 ident: 2023041303583120000_32.36.12376.31 article-title: Modulations of ongoing alpha oscillations predict successful short-term visual memory encoding publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2012.00127 – ident: 2023041303583120000_32.36.12376.38 doi: 10.1038/362342a0 – ident: 2023041303583120000_32.36.12376.48 doi: 10.1016/j.neuroimage.2011.06.092 – ident: 2023041303583120000_32.36.12376.8 doi: 10.1152/jn.00873.2007 – ident: 2023041303583120000_32.36.12376.7 doi: 10.1121/1.413112 – ident: 2023041303583120000_32.36.12376.33 doi: 10.1016/j.tics.2008.09.005 – ident: 2023041303583120000_32.36.12376.41 doi: 10.1016/j.brainres.2010.09.070 – ident: 2023041303583120000_32.36.12376.37 doi: 10.1155/2011/156869 – ident: 2023041303583120000_32.36.12376.17 doi: 10.1016/j.neuron.2010.12.027 – ident: 2023041303583120000_32.36.12376.28 doi: 10.1016/j.jneumeth.2007.03.024 – ident: 2023041303583120000_32.36.12376.10 doi: 10.1097/00003446-200110000-00007 – ident: 2023041303583120000_32.36.12376.43 doi: 10.1080/14640746808400158 – ident: 2023041303583120000_32.36.12376.24 doi: 10.1016/S1053-8119(03)00286-6 – ident: 2023041303583120000_32.36.12376.36 doi: 10.1523/JNEUROSCI.1290-08.2008 – ident: 2023041303583120000_32.36.12376.20 doi: 10.3389/fnhum.2010.00186 – ident: 2023041303583120000_32.36.12376.23 doi: 10.1016/j.brainresrev.2006.06.003 – ident: 2023041303583120000_32.36.12376.51 doi: 10.1016/S1364-6613(00)01704-6 – ident: 2023041303583120000_32.36.12376.13 doi: 10.1073/pnas.98.2.694 – ident: 2023041303583120000_32.36.12376.59 doi: 10.1111/j.0963-7214.2005.00356.x – ident: 2023041303583120000_32.36.12376.2 doi: 10.1093/schbul/sbr107 – ident: 2023041303583120000_32.36.12376.4 doi: 10.1080/14992020500243893 – ident: 2023041303583120000_32.36.12376.22 doi: 10.1523/JNEUROSCI.3631-09.2010 – volume: 23 start-page: 3423 year: 2003 ident: 2023041303583120000_32.36.12376.6 article-title: Hierarchical processing in spoken language comprehension publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-08-03423.2003 – ident: 2023041303583120000_32.36.12376.47 doi: 10.1523/JNEUROSCI.1004-10.2010 – ident: 2023041303583120000_32.36.12376.18 doi: 10.1016/j.tics.2006.09.002 – ident: 2023041303583120000_32.36.12376.39 doi: 10.1177/108471380601000103 – ident: 2023041303583120000_32.36.12376.57 doi: 10.1006/nimg.2001.0978 – ident: 2023041303583120000_32.36.12376.26 doi: 10.1016/j.brainres.2006.08.066 – ident: 2023041303583120000_32.36.12376.53 doi: 10.1093/cercor/bhg086 |
SSID | ssj0007017 |
Score | 2.4885612 |
Snippet | How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8–13 Hz) during retention of items in working memory... How does acoustic degradation affect the neural mechanisms of working memory? Enhanced alpha oscillations (8-13 Hz) during retention of items in working memory... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 12376 |
SubjectTerms | Acoustic Stimulation - methods Adult Alpha Rhythm - physiology Auditory Perception - physiology Female Humans Male Memory, Short-Term - physiology Nerve Net - physiology Reaction Time - physiology Young Adult |
Title | Adverse Listening Conditions and Memory Load Drive a Common Alpha Oscillatory Network |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22956828 https://www.proquest.com/docview/1038610223 https://www.proquest.com/docview/1551619948 https://pubmed.ncbi.nlm.nih.gov/PMC6621258 https://www.jneurosci.org/content/jneuro/32/36/12376.full.pdf |
UnpaywallVersion | publishedVersion |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1529-2401 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007017 issn: 1529-2401 databaseCode: KQ8 dateStart: 19810101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1529-2401 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0007017 issn: 1529-2401 databaseCode: DIK dateStart: 19810101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1529-2401 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007017 issn: 1529-2401 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1529-2401 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0007017 issn: 1529-2401 databaseCode: RPM dateStart: 19810101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB1BWcAGFQo0FNAgAZvIbfwa28s2KipFDQJa0Z01Ho9Fke1EtSMU_oof4Zu4d2b8UsJzY0Xx2I5zjsd37uNcQl4E0vVt7kQWZ05meSyNLDAjfIs7XpDB-0myCAucz2bs5MI7vfQvexFTrC6pk33xbWNdyf-gCt8Brlgl-w_ItieFL-Az4AtbQBi2f4Wx6qZcyXGOWJW6fBZD0Cq5DT3iBebRrsb5nKfj9BqThDgmkRcI-fT45ZE9Ri1LYIIKtZc6Jbxvr3aVY8pm7alftoR4l-Sy0sCjK7610T9hDP6IVXVh-jCfYWS-873mqK6l3dozmXchoqu80u2pUNu575TA7I7ImujotDQTqaMiN3Z_pu08mctG98TMmzYm52yc0X2lLHE6w8TGj9M3-xiotGxc2ev06x7Mi0LhjA3KWWhKzoda2s2um-SWEzCGHS_evu_U5QOYnkwVOVz2YPNFUT7anGZoy6wtUNbzbG8vywVffeV53jNizrfJXYMkPdRUukduyPI-2TksAf9iRV9RlQ-sAi075INhF23ZRTt2UWAX1eyiyC6q2EU51eyiP77THrOoYdYDcvH6-Hx6YpkOHJbwbbe2EgnL8YnwUpaErusI4QuwgGXkpwmLhB0Jzw4DKbMkzcDUC2UCw70gYAkW9AWB7T4kW-W8lLuEcpk5YC-lgmfSSyWHNwkMkSJMIldETI6I3_yXsTDy9NglJY9xmQpwxC0cMcIBS9cY4RiRg_a4hRZo-eMRzxuoYphLMUDGSzlfVjE2C2DoAnF_MwYjyyioHY7IIw1ve92GFyMSDIBvB6CW-3BPefVZaboDGWGpAUdOWoqs3c6X5iEf3M7jX_6MPXKnezafkK36eimfggldJ88U738CCezGGw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adverse+listening+conditions+and+memory+load+drive+a+common+%CE%B1+oscillatory+network&rft.jtitle=The+Journal+of+neuroscience&rft.au=Obleser%2C+Jonas&rft.au=W%C3%B6stmann%2C+Malte&rft.au=Hellbernd%2C+Nele&rft.au=Wilsch%2C+Anna&rft.date=2012-09-05&rft.eissn=1529-2401&rft.volume=32&rft.issue=36&rft.spage=12376&rft_id=info:doi/10.1523%2FJNEUROSCI.4908-11.2012&rft_id=info%3Apmid%2F22956828&rft.externalDocID=22956828 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |