A Systematic Literature Review of the Successors of “NeuroEvolution of Augmenting Topologies”
NeuroEvolution (NE) refers to a family of methods for optimizing Artificial Neural Networks (ANNs) using Evolutionary Computation (EC) algorithms. NeuroEvolution of Augmenting Topologies (NEAT) is considered one of the most influential algorithms in the field. Eighteen years after its invention, a p...
Saved in:
| Published in | Evolutionary computation Vol. 29; no. 1; pp. 1 - 73 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
One Rogers Street, Cambridge, MA 02142-1209, USA
MIT Press
01.03.2021
MIT Press Journals, The |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-6560 1530-9304 1530-9304 |
| DOI | 10.1162/evco_a_00282 |
Cover
| Abstract | NeuroEvolution (NE) refers to a family of methods for optimizing Artificial Neural Networks (ANNs) using Evolutionary Computation (EC) algorithms. NeuroEvolution of Augmenting Topologies (NEAT) is considered one of the most influential algorithms in the field. Eighteen years after its invention, a plethora of methods have been proposed that extend NEAT in different aspects. In this article, we present a systematic literature review (SLR) to list and categorize the methods succeeding NEAT. Our review protocol identified 232 papers by merging the findings of two major electronic databases. Applying criteria that determine the paper's relevance and assess its quality, resulted in 61 methods that are presented in this article. Our review article proposes a new categorization scheme of NEAT's successors into three clusters. NEAT-based methods are categorized based on 1) whether they consider issues specific to the search space or the fitness landscape, 2) whether they combine principles from NE and another domain, or 3) the particular properties of the evolved ANNs. The clustering supports researchers 1) understanding the current state of the art that will enable them, 2) exploring new research directions or 3) benchmarking their proposed method to the state of the art, if they are interested in comparing, and 4) positioning themselves in the domain or 5) selecting a method that is most appropriate for their problem. |
|---|---|
| AbstractList | NeuroEvolution (NE) refers to a family of methods for optimizing Artificial Neural Networks (ANNs) using Evolutionary Computation (EC) algorithms. NeuroEvolution of Augmenting Topologies (NEAT) is considered one of the most influential algorithms in the field. Eighteen years after its invention, a plethora of methods have been proposed that extend NEAT in different aspects. In this article, we present a systematic literature review (SLR) to list and categorize the methods succeeding NEAT. Our review protocol identified 232 papers by merging the findings of two major electronic databases. Applying criteria that determine the paper's relevance and assess its quality, resulted in 61 methods that are presented in this article. Our review article proposes a new categorization scheme of NEAT's successors into three clusters. NEAT-based methods are categorized based on 1) whether they consider issues specific to the search space or the fitness landscape, 2) whether they combine principles from NE and another domain, or 3) the particular properties of the evolved ANNs. The clustering supports researchers 1) understanding the current state of the art that will enable them, 2) exploring new research directions or 3) benchmarking their proposed method to the state of the art, if they are interested in comparing, and 4) positioning themselves in the domain or 5) selecting a method that is most appropriate for their problem.NeuroEvolution (NE) refers to a family of methods for optimizing Artificial Neural Networks (ANNs) using Evolutionary Computation (EC) algorithms. NeuroEvolution of Augmenting Topologies (NEAT) is considered one of the most influential algorithms in the field. Eighteen years after its invention, a plethora of methods have been proposed that extend NEAT in different aspects. In this article, we present a systematic literature review (SLR) to list and categorize the methods succeeding NEAT. Our review protocol identified 232 papers by merging the findings of two major electronic databases. Applying criteria that determine the paper's relevance and assess its quality, resulted in 61 methods that are presented in this article. Our review article proposes a new categorization scheme of NEAT's successors into three clusters. NEAT-based methods are categorized based on 1) whether they consider issues specific to the search space or the fitness landscape, 2) whether they combine principles from NE and another domain, or 3) the particular properties of the evolved ANNs. The clustering supports researchers 1) understanding the current state of the art that will enable them, 2) exploring new research directions or 3) benchmarking their proposed method to the state of the art, if they are interested in comparing, and 4) positioning themselves in the domain or 5) selecting a method that is most appropriate for their problem. NeuroEvolution (NE) refers to a family of methods for optimizing Artificial Neural Networks (ANNs) using Evolutionary Computation (EC) algorithms. NeuroEvolution of Augmenting Topologies (NEAT) is considered one of the most influential algorithms in the field. Eighteen years after its invention, a plethora of methods have been proposed that extend NEAT in different aspects. In this article, we present a systematic literature review (SLR) to list and categorize the methods succeeding NEAT. Our review protocol identified 232 papers by merging the findings of two major electronic databases. Applying criteria that determine the paper's relevance and assess its quality, resulted in 61 methods that are presented in this article. Our review article proposes a new categorization scheme of NEAT's successors into three clusters. NEAT-based methods are categorized based on 1) whether they consider issues specific to the search space or the fitness landscape, 2) whether they combine principles from NE and another domain, or 3) the particular properties of the evolved ANNs. The clustering supports researchers 1) understanding the current state of the art that will enable them, 2) exploring new research directions or 3) benchmarking their proposed method to the state of the art, if they are interested in comparing, and 4) positioning themselves in the domain or 5) selecting a method that is most appropriate for their problem. |
| Author | Papavasileiou, Evgenia Jansen, Bart Cornelis, Jan |
| Author_xml | – sequence: 1 givenname: Evgenia surname: Papavasileiou fullname: Papavasileiou, Evgenia – sequence: 2 givenname: Jan surname: Cornelis fullname: Cornelis, Jan organization: Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, B-1050, Belgium jpcornel@etrovub.be – sequence: 3 givenname: Bart surname: Jansen fullname: Jansen, Bart email: bjansen@etrovub.be |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33151100$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstqFUEQhhuJmIvuXMuAGxeOVt_msvMQ4gUOCiaumz49NccOM9NjX044rvIgycvlSZzhRInBgKtqiu__q-qnD8ne4AYk5DmFN5QW7C1ujFNaAbCKPSIHVHLIaw5ib3pDwfNCFrBPDkM4B6CcAX1C9jmnklKAA6IX2ek2ROx1tCZb2ohex-Qx-4obixeZa7P4HbPTZAyG4HyYOzeXV58xeXeycV2K1g1zc5HWPQ7RDuvszI2uc2uL4eby-il53Oou4LPbekS-vT85O_6YL798-HS8WOZGUh5z3dKCihWUhaYtrRhA3QhZrUzVcMoMCtEiLXnDNNZ1WbYl54IbKVu5ErqUDT8i-c43DaPeXuiuU6O3vfZbRUHNUam7UU38qx0_evcjYYiqt8Fg1-kBXQqKCVnW5SQTE_ryHnrukh-maxSral5LAWI2fHFLpVWPzZ_pv8OeALYDjHcheGyVsVHP-UWvbffQmq_vif7vqt7e2fIB9N0_0BnZsNpSNf2hQoBiwOikVlCrn3b82-IXPw_FwA |
| CitedBy_id | crossref_primary_10_1016_j_triboint_2024_110429 crossref_primary_10_1115_1_4065823 crossref_primary_10_1007_s12136_024_00619_x crossref_primary_10_1017_dsj_2021_25 crossref_primary_10_1016_j_neucom_2022_01_099 crossref_primary_10_3233_ICA_230707 crossref_primary_10_1016_j_asoc_2024_112120 crossref_primary_10_1038_s41526_023_00252_9 crossref_primary_10_1515_nanoph_2022_0197 crossref_primary_10_1080_10447318_2023_2181125 crossref_primary_10_1371_journal_pone_0307084 crossref_primary_10_1145_3628430 crossref_primary_10_1016_j_asoc_2023_111209 crossref_primary_10_3390_app14062542 crossref_primary_10_1007_s11277_024_11112_4 crossref_primary_10_2514_1_G008112 crossref_primary_10_1115_1_4063392 crossref_primary_10_2139_ssrn_4123761 crossref_primary_10_1162_artl_a_00389 crossref_primary_10_1016_j_biosystems_2022_104686 crossref_primary_10_1126_science_adp7478 crossref_primary_10_1016_j_asoc_2023_110767 crossref_primary_10_1016_j_asoc_2021_108375 crossref_primary_10_1016_j_ijleo_2022_170417 crossref_primary_10_1007_s12530_023_09510_3 crossref_primary_10_1007_s42979_022_01064_6 |
| Cites_doi | 10.1007/BF00114726 10.1145/3205455.3205536 10.1073/pnas.0503610102 10.1073/pnas.83.5.1271 10.1007/978-3-642-40643-0_14 10.1145/2576768.2598232 10.1145/2463372.2463461 10.1109/AIPR.2011.6176352 10.1007/s10710-007-9028-8 10.1007/s12065-009-0018-z 10.1145/2330163.2330286 10.1109/SSCI.2017.8285328 10.1109/TEVC.2014.2326863 10.1145/2001576.2001776 10.1109/IROS.2011.6094509 10.1016/S0022-2836(72)80039-1 10.1142/S0129065793000171 10.1145/3205455.3205459 10.1109/ICINFA.2006.374100 10.1109/TEVC.2005.856210 10.1109/4235.996017 10.1016/B978-0-12-815480-9.00015-3 10.1109/TCIAIG.2010.2052102 10.1007/978-3-540-24855-2_7 10.1016/0167-8191(90)90086-O 10.1109/TEVC.2010.2104157 10.1162/106365600568086 10.1038/nature14422 10.1145/2001576.2001606 10.1080/09540099550039228 10.1007/978-3-030-16692-2_33 10.1007/978-3-642-32922-7_7 10.1145/2330163.2330241 10.1109/IJCNN.2017.7966390 10.1093/comjnl/7.4.308 10.1145/3071178.3071275 10.1109/TEVC.2011.2150755 10.1162/EVCO_a_00141 10.1109/eScience.2017.14 10.1109/TRA.2003.814502 10.1007/978-1-4419-7747-2_8 10.1145/1143997.1144202 10.1109/5.726791 10.1162/EVCO_a_00025 10.1016/S0096-3003(97)10005-4 10.1007/s00500-012-0960-z 10.1098/rspb.2012.2863 10.1162/106365602320169811 10.1162/EVCO_a_00048 10.1145/3067695.3076002 10.1145/1276958.1277158 10.1016/j.neucom.2008.12.009 10.1145/3205651.3205792 10.1162/ARTL_a_00071 10.1109/CEC.2009.4983271 10.1162/artl.2009.15.2.15202 10.1145/2576768.2598369 10.1007/978-1-4471-1599-1_63 10.1145/1143997.1144058 10.1016/j.neunet.2009.03.001 10.1142/S1469026803000914 10.1016/j.sigpro.2007.05.015 10.1109/CEC.2010.5585926 10.1142/S0219720017500093 10.1038/nature03689 10.1162/EVCO_a_00181 10.1109/CIG.2008.5035643 10.1109/TCIAIG.2012.2188528 10.1007/978-3-319-31153-1_12 10.1007/s11063-015-9426-5 10.1109/CIG.2007.368115 10.1109/TSMCB.2010.2091955 10.1109/TCIAIG.2009.2038365 10.1007/978-3-540-88908-3 10.1145/3321707.3321746 10.1007/s00521-014-1761-3 10.1109/5.784219 10.1109/TEVC.2017.2704781 10.7748/ns.24.50.47.s49 10.1162/LEON_a_01332 10.1016/j.artmed.2013.07.002 10.1109/SBRN.2008.12 10.1145/1068009.1068251 10.1007/978-3-642-55337-0_5 10.1073/pnas.0601602103 10.1007/978-3-642-15193-4_50 10.1007/978-3-642-34413-8_39 10.1145/3321707.3321799 10.1145/1389095.1389256 10.1109/ICAC.2004.1301349 10.1007/978-0-387-45528-0 10.1145/1143997.1144252 10.1007/BF00114722 10.1109/WACV.2015.71 10.1007/BF01411376 10.1145/1068009.1068210 10.1016/j.infsof.2011.09.002 10.1609/aimag.v34i2.2475 10.1145/2463372.2463459 10.1007/978-3-642-29066-4_1 10.1007/s12064-008-0029-9 10.1109/CEC.2009.4983289 10.1109/CIG.2008.5035636 10.1109/CEC.2017.7969376 10.1038/s42256-018-0006-z 10.1145/3205455.3205476 10.1145/2001576.2001775 10.1007/978-3-540-74769-7_12 10.1145/2739480.2754664 10.1007/s10458-014-9268-y 10.1007/978-3-319-68759-9_39 10.1007/978-3-319-77538-8_45 10.1146/annurev.ge.16.120182.002201 10.1162/106365601750190398 10.1145/2739480.2754731 10.1029/JD094iD06p08549 10.1007/978-3-319-63004-5_4 10.1007/11613022_4 10.1007/s12065-007-0002-4 10.1109/IJCNN.2012.6252826 10.1007/978-3-319-77538-8_50 10.1177/105971239700500305 10.1109/72.265959 |
| ContentType | Journal Article |
| Copyright | Copyright MIT Press Journals, The 2021 |
| Copyright_xml | – notice: Copyright MIT Press Journals, The 2021 |
| DBID | AAYXX CITATION NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 ADTOC UNPAY |
| DOI | 10.1162/evco_a_00282 |
| DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1530-9304 |
| EndPage | 73 |
| ExternalDocumentID | 10.1162/evco_a_00282 33151100 10_1162_evco_a_00282 evco_a_00282.pdf |
| Genre | Journal Article |
| GroupedDBID | --- .4S .DC 0R~ 36B 4.4 53G 5GY 5VS 6IK AAJGR AAKMM AALFJ AALMD AAYFX ABDBF ABGDV ABMYL ABQDU ACATF ACM ACVLL ADHRN ADL ADPZR AEBYY AENEX AENSD AFWIH AFWXC AIKLT AIYWX ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF AZFZN BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EAP EAS EBC EBD EBS ECS EDO EMB EMK EMOBN EPL EST ESX F5P FEDTE FNEHJ GUFHI HGAVV HZ~ I-F I07 IPLJI JAVBF MCG MINIK O9- OCL P2P PK0 RMI SV3 TUS W7O ZWS AAYXX ABAZT ABJNI ABVLG ACUHS AEFXT AEJOY AKRVB CAG CITATION COF EJD LHSKQ AAYOK NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c513t-af1614b076a1f182009d458bc8d312ce44fe173d2ae9977f73343c55f5b4a75d3 |
| IEDL.DBID | UNPAY |
| ISSN | 1063-6560 1530-9304 |
| IngestDate | Tue Aug 19 21:11:34 EDT 2025 Thu Jul 10 18:12:01 EDT 2025 Mon Jun 30 04:33:41 EDT 2025 Thu Apr 03 07:08:19 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Wed Oct 01 02:01:34 EDT 2025 Mon Mar 11 05:41:10 EDT 2024 Tue Mar 01 17:17:37 EST 2022 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | artificial neural networks genetic algorithms encoding topology evolution systematic literature review NeuroEvolution |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c513t-af1614b076a1f182009d458bc8d312ce44fe173d2ae9977f73343c55f5b4a75d3 |
| Notes | Spring, 2021 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://direct.mit.edu/evco/article-pdf/29/1/1/1888486/evco_a_00282.pdf |
| PMID | 33151100 |
| PQID | 2893954042 |
| PQPubID | 2047842 |
| PageCount | 73 |
| ParticipantIDs | crossref_citationtrail_10_1162_evco_a_00282 unpaywall_primary_10_1162_evco_a_00282 mit_journals_evcov29i1_304640_2021_11_09_zip_evco_a_00282 proquest_miscellaneous_2457971624 pubmed_primary_33151100 crossref_primary_10_1162_evco_a_00282 mit_journals_10_1162_evco_a_00282 proquest_journals_2893954042 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | One Rogers Street, Cambridge, MA 02142-1209, USA |
| PublicationPlace_xml | – name: One Rogers Street, Cambridge, MA 02142-1209, USA – name: United States – name: Cambridge |
| PublicationTitle | Evolutionary computation |
| PublicationTitleAlternate | Evol Comput |
| PublicationYear | 2021 |
| Publisher | MIT Press MIT Press Journals, The |
| Publisher_xml | – name: MIT Press – name: MIT Press Journals, The |
| References | B20 Whiteson S. (B173) 2006; 7 B21 B22 Boyan J. A. (B8) 1995 B24 B25 B26 B28 B29 B159 B156 B155 B152 B151 James D. (B64) 2004 de Jong E. D (B27) 2004; 2 Ihara K. (B60) 2017 Montana D. J. (B94) 1989; 1 B30 B31 D'Silva T. (B36) 2005 B33 Sboev A. (B126) 2018 B34 B35 Tan M. (B157) 2014 B37 B38 B39 Stanley K. O. (B148) 2002 B167 B168 B2 B3 B166 B4 B5 B164 B6 B161 Risi S. (B124) 2015 B162 B9 B160 Stanley K. O. (B145) 2006 Gomez F. J. (B46) 1999; 99 B40 B41 B42 B43 B44 Stanley K. O. (B150) 2004 B47 B48 B49 B176 B177 B174 Mangasarian O. L. (B84) 1990 B175 B172 B170 Chatzidimitriou K. C. (B13) 2013 Kalyanakrishnan S. (B65) 2006 B50 B51 B52 B53 B54 Clune J. (B17) 2009 B57 Watson J. D (B171) 2004 B58 B59 B107 B105 B106 Wright R. (B178) 2009 B103 B104 B102 B100 B183 B184 B181 B182 Purdie N. (B112) 1992; 38 B61 B63 Prechelt L. P. (B108) 1994 B66 B67 B69 B118 B119 B117 B114 B115 B113 B110 B111 Sohn H. (B137) 2001 Pugh J. K. (B109) 2016 Inden B. (B62) 2012 Gomez F. (B45) 2008; 9 Keele S. (B68) 2007 B70 B71 B72 B73 Moriarty D. E. (B96) 1995; 7 Nadkarni J. (B101) 2018 B74 Maley C. C (B83) 1999; 2 B75 B76 Trujillo L. (B165) 2016 B77 B78 B79 Xu L. (B180) 1988 B129 B127 Wright R. (B179) 2012 B128 B125 B123 B121 B122 B120 B81 B82 B85 Chidambaran S. (B15) 2018 B86 B87 B88 B89 B138 Sutton R. S. (B154) 1998; 1 Horn J. (B56) 1995; 3 B136 Box G. E. (B7) 2015 Stone P. (B153) 2005 B134 B135 B132 B133 Stanley K. O (B139) 2006 B130 B131 B90 B91 B92 B93 B95 B97 B10 B98 B11 B99 B12 B14 Thrun S. B. (B163) 1991 B16 B18 Ding S. (B32) 2013 Rawal A. (B116) 2016 B19 B149 Hemmingway P. (B55) 2009; 4 B147 B146 B143 B144 B141 B142 B140 Tarapore D. (B158) 2016 Wang G. (B169) 2013 Auerbach J. E. (B1) 2010 Liu Y. (B80) 1996 D'Ambrosio D. B. (B23) 2014 |
| References_xml | – start-page: 21:63 year: 2004 ident: B150 publication-title: Journal of Artificial Intelligence Research – ident: B135 doi: 10.1007/BF00114726 – ident: B164 – ident: B105 doi: 10.1145/3205455.3205536 – ident: B67 doi: 10.1073/pnas.0503610102 – ident: B26 doi: 10.1073/pnas.83.5.1271 – ident: B39 doi: 10.1007/978-3-642-40643-0_14 – ident: B59 doi: 10.1145/2576768.2598232 – ident: B98 doi: 10.1145/2463372.2463461 – ident: B115 doi: 10.1109/AIPR.2011.6176352 – ident: B140 doi: 10.1007/s10710-007-9028-8 – ident: B156 doi: 10.1007/s12065-009-0018-z – ident: B81 doi: 10.1145/2330163.2330286 – ident: B104 doi: 10.1109/SSCI.2017.8285328 – ident: B33 doi: 10.1109/TEVC.2014.2326863 – start-page: 151 volume-title: AIIDE year: 2006 ident: B145 – ident: B167 doi: 10.1145/2001576.2001776 – ident: B24 doi: 10.1109/IROS.2011.6094509 – year: 1990 ident: B84 publication-title: Cancer diagnosis via linear programming – ident: B131 doi: 10.1016/S0022-2836(72)80039-1 – ident: B181 doi: 10.1142/S0129065793000171 – volume-title: Time series analysis: Forecasting and control year: 2015 ident: B7 – ident: B128 doi: 10.1145/3205455.3205459 – ident: B129 – ident: B14 doi: 10.1109/ICINFA.2006.374100 – ident: B142 doi: 10.1109/TEVC.2005.856210 – ident: B28 doi: 10.1109/4235.996017 – ident: B92 doi: 10.1016/B978-0-12-815480-9.00015-3 – ident: B12 doi: 10.1109/TCIAIG.2010.2052102 – ident: B119 doi: 10.1007/978-3-540-24855-2_7 – year: 2015 ident: B124 publication-title: IEEE Transactions on Computational Intelligence and AI in Games – start-page: 28:24 year: 2012 ident: B62 publication-title: Neural Networks – ident: B176 doi: 10.1016/0167-8191(90)90086-O – ident: B19 doi: 10.1109/TEVC.2010.2104157 – ident: B107 doi: 10.1162/106365600568086 – ident: B21 doi: 10.1038/nature14422 – ident: B79 doi: 10.1145/2001576.2001606 – volume: 7 start-page: 195 issue: 3 year: 1995 ident: B96 publication-title: Connection Science doi: 10.1080/09540099550039228 – ident: B37 doi: 10.1007/978-3-030-16692-2_33 – ident: B69 – ident: B35 doi: 10.1007/978-3-642-32922-7_7 – ident: B34 doi: 10.1145/2330163.2330241 – volume: 38 start-page: 1645 issue: 9 year: 1992 ident: B112 publication-title: Clinical Chemistry – ident: B134 doi: 10.1109/IJCNN.2017.7966390 – start-page: 369 year: 1995 ident: B8 publication-title: Advances in neural information processing systems – ident: B102 doi: 10.1093/comjnl/7.4.308 – start-page: 39 volume-title: AIIDE year: 2005 ident: B36 – ident: B50 doi: 10.1145/3071178.3071275 – ident: B71 doi: 10.1109/TEVC.2011.2150755 – ident: B147 – year: 1994 ident: B108 publication-title: A set of neural network benchmark problems and benchmarking rules – ident: B133 doi: 10.1162/EVCO_a_00141 – ident: B29 doi: 10.1109/eScience.2017.14 – ident: B57 doi: 10.1109/TRA.2003.814502 – ident: B127 doi: 10.1007/978-1-4419-7747-2_8 – ident: B159 doi: 10.1145/1143997.1144202 – volume: 4 year: 2009 ident: B55 publication-title: Hayward Medical Communications – ident: B76 doi: 10.1109/5.726791 – ident: B78 doi: 10.1162/EVCO_a_00025 – ident: B183 doi: 10.1016/S0096-3003(97)10005-4 – ident: B63 doi: 10.1007/s00500-012-0960-z – start-page: 103:184 year: 2018 ident: B101 publication-title: Expert Systems with Applications – start-page: 1 year: 2013 ident: B32 publication-title: Artificial Intelligence Review – year: 2018 ident: B15 publication-title: ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference – ident: B18 doi: 10.1098/rspb.2012.2863 – ident: B149 doi: 10.1162/106365602320169811 – start-page: 451 volume-title: Artificial Life XII: Proceedings of the Twelfth International Conference on the Synthesis and Simulation of Living Systems year: 2010 ident: B1 – volume: 99 start-page: 1356 year: 1999 ident: B46 publication-title: IJCAI – ident: B146 – ident: B100 doi: 10.1162/EVCO_a_00048 – ident: B30 doi: 10.1145/3067695.3076002 – ident: B41 doi: 10.1145/1276958.1277158 – ident: B51 doi: 10.1016/j.neucom.2008.12.009 – ident: B31 doi: 10.1145/3205651.3205792 – start-page: 492 volume-title: International Conference on Network-Based Information Systems year: 2017 ident: B60 – ident: B121 doi: 10.1162/ARTL_a_00071 – ident: B11 doi: 10.1109/CEC.2009.4983271 – volume: 2 start-page: 2341 year: 2004 ident: B27 publication-title: Congress on Evolutionary Computation – ident: B144 doi: 10.1162/artl.2009.15.2.15202 – ident: B123 doi: 10.1145/2576768.2598369 – ident: B44 doi: 10.1007/978-1-4471-1599-1_63 – ident: B93 doi: 10.1145/1143997.1144058 – start-page: 84 volume-title: International Conference on Agents and Artificial Intelligence year: 2009 ident: B178 – ident: B70 doi: 10.1016/j.neunet.2009.03.001 – ident: B99 – ident: B138 doi: 10.1142/S1469026803000914 – start-page: 333:21 year: 2016 ident: B165 publication-title: Information Sciences – ident: B75 doi: 10.1016/j.sigpro.2007.05.015 – ident: B49 doi: 10.1109/CEC.2010.5585926 – ident: B48 doi: 10.1142/S0219720017500093 – ident: B58 doi: 10.1038/nature03689 – ident: B130 doi: 10.1162/EVCO_a_00181 – start-page: 13:CIN year: 2014 ident: B157 publication-title: Cancer Informatics – start-page: 3:54 year: 1996 ident: B80 publication-title: Chinese Journal of Advanced Software Research – year: 2001 ident: B137 publication-title: Novelty detection under changing environmental conditions – ident: B4 doi: 10.1109/CIG.2008.5035643 – ident: B3 – ident: B66 doi: 10.1109/TCIAIG.2012.2188528 – ident: B177 – ident: B132 doi: 10.1007/978-3-319-31153-1_12 – ident: B125 – ident: B10 doi: 10.1007/s11063-015-9426-5 – start-page: 173 year: 2016 ident: B158 publication-title: Proceedings of the Genetic and Evolutionary Computation Conference – start-page: 54:50 year: 2013 ident: B169 publication-title: Computers & Geosciences – start-page: 134 volume-title: European Conference on Artificial Life year: 2009 ident: B17 – ident: B118 doi: 10.1109/CIG.2007.368115 – ident: B151 doi: 10.1109/TSMCB.2010.2091955 – ident: B54 doi: 10.1109/TCIAIG.2009.2038365 – ident: B77 – ident: B9 doi: 10.1007/978-3-540-88908-3 – volume: 1 start-page: 762 year: 1989 ident: B94 publication-title: Proceedings of the 11th International Joint Conference on Artificial Intelligence – ident: B20 doi: 10.1145/3321707.3321746 – ident: B152 doi: 10.1007/s00521-014-1761-3 – ident: B182 doi: 10.1109/5.784219 – ident: B22 doi: 10.1109/TEVC.2017.2704781 – ident: B5 doi: 10.7748/ns.24.50.47.s49 – ident: B136 – ident: B141 doi: 10.1162/LEON_a_01332 – year: 2007 ident: B68 publication-title: Guidelines for performing systematic literature reviews in software engineering – ident: B155 doi: 10.1016/j.artmed.2013.07.002 – year: 2012 ident: B179 publication-title: Embedded incremental feature selection for reinforcement learning – ident: B91 doi: 10.1109/SBRN.2008.12 – ident: B161 doi: 10.1145/1068009.1068251 – start-page: 159 year: 2014 ident: B23 publication-title: Growing adaptive machines doi: 10.1007/978-3-642-55337-0_5 – ident: B103 doi: 10.1073/pnas.0601602103 – ident: B120 doi: 10.1007/978-3-642-15193-4_50 – ident: B40 – ident: B73 doi: 10.1007/978-3-642-34413-8_39 – start-page: 93 year: 2005 ident: B153 publication-title: Robot Soccer World Cup – ident: B170 doi: 10.1145/3321707.3321799 – ident: B25 doi: 10.1145/1389095.1389256 – ident: B168 doi: 10.1109/ICAC.2004.1301349 – ident: B6 doi: 10.1007/978-0-387-45528-0 – volume-title: Molecular biology of the gene year: 2004 ident: B171 – start-page: 37 volume-title: Proceedings of the AAAI Fall Symposium on Developmental Systems year: 2006 ident: B139 – volume: 9 start-page: 937 year: 2008 ident: B45 publication-title: Journal of Machine Learning Research – ident: B174 doi: 10.1145/1143997.1144252 – ident: B97 doi: 10.1007/BF00114722 – ident: B166 doi: 10.1109/WACV.2015.71 – ident: B113 doi: 10.1007/BF01411376 – ident: B175 doi: 10.1145/1068009.1068210 – ident: B72 – year: 1991 ident: B163 publication-title: The monk's problems—A performance comparison of different learning algorithms – ident: B172 doi: 10.1016/j.infsof.2011.09.002 – ident: B42 doi: 10.1609/aimag.v34i2.2475 – ident: B111 doi: 10.1145/2463372.2463459 – ident: B86 doi: 10.1007/978-3-642-29066-4_1 – volume: 7 start-page: 877 year: 2006 ident: B173 publication-title: Journal of Machine Learning Research – ident: B61 doi: 10.1007/s12064-008-0029-9 – ident: B16 doi: 10.1109/CEC.2009.4983289 – volume: 2 start-page: 1336 year: 1999 ident: B83 publication-title: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) – start-page: 3:40 year: 2016 ident: B109 publication-title: Frontiers in Robotics and AI – ident: B117 doi: 10.1109/CIG.2008.5035636 – volume-title: Proceedings of Genetic and Evolutionary Computation Conference year: 2004 ident: B64 – ident: B87 doi: 10.1109/CEC.2017.7969376 – ident: B47 – start-page: 145:488 year: 2018 ident: B126 publication-title: Procedia Computer Science – ident: B143 doi: 10.1038/s42256-018-0006-z – ident: B88 doi: 10.1145/3205455.3205476 – start-page: 706 volume-title: Ninth International Conference on Pattern Recognition year: 1988 ident: B180 – ident: B2 doi: 10.1145/2001576.2001775 – ident: B184 doi: 10.1007/978-3-540-74769-7_12 – volume: 1 year: 1998 ident: B154 publication-title: Reinforcement learning: An introduction – ident: B110 doi: 10.1145/2739480.2754664 – ident: B82 doi: 10.1007/s10458-014-9268-y – ident: B106 doi: 10.1007/978-3-319-68759-9_39 – start-page: 242 volume-title: Proceedings of Genetic and Evolutionary Computation Conference (GECCO) year: 2002 ident: B148 – ident: B74 doi: 10.1007/978-3-319-77538-8_45 – ident: B114 doi: 10.1146/annurev.ge.16.120182.002201 – start-page: 103:198 year: 2013 ident: B13 publication-title: Neurocomputing – ident: B52 doi: 10.1162/106365601750190398 – ident: B90 doi: 10.1145/2739480.2754731 – ident: B162 doi: 10.1029/JD094iD06p08549 – ident: B53 doi: 10.1007/978-3-319-63004-5_4 – volume: 3 start-page: 243 year: 1995 ident: B56 publication-title: Foundations of genetic algorithms – ident: B160 doi: 10.1007/11613022_4 – ident: B38 doi: 10.1007/s12065-007-0002-4 – start-page: 501 volume-title: Proceedings of the Genetic and Evolutionary Computation Conference year: 2016 ident: B116 – ident: B95 – ident: B122 doi: 10.1109/IJCNN.2012.6252826 – ident: B89 doi: 10.1007/978-3-319-77538-8_50 – start-page: 72 year: 2006 ident: B65 publication-title: Robot Soccer World Cup – ident: B43 doi: 10.1177/105971239700500305 – ident: B85 doi: 10.1109/72.265959 |
| SSID | ssj0013201 |
| Score | 2.5223944 |
| Snippet | NeuroEvolution (NE) refers to a family of methods for optimizing Artificial Neural Networks (ANNs) using Evolutionary Computation (EC) algorithms.... |
| SourceID | unpaywall proquest pubmed crossref mit |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Artificial neural networks Clustering encoding Evolutionary algorithms Evolutionary computation genetic algorithms Literature reviews NeuroEvolution Quality assessment State of the art systematic literature review Systematic review Topology topology evolution |
| Title | A Systematic Literature Review of the Successors of “NeuroEvolution of Augmenting Topologies” |
| URI | https://direct.mit.edu/evco/article/doi/10.1162/evco_a_00282 https://www.ncbi.nlm.nih.gov/pubmed/33151100 https://www.proquest.com/docview/2893954042 https://www.proquest.com/docview/2457971624 https://direct.mit.edu/evco/article-pdf/29/1/1/1888486/evco_a_00282.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1530-9304 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0013201 issn: 1063-6560 databaseCode: ABDBF dateStart: 19960301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB61yQF6oFAoBEplJOCCnNj7sL3HFBoqBBVSG6mcVut9lIhgR20cRE_9IfDn-kvY9YukoogD8m13du3Zl7_RzH4D8BylsUYykD5BBPuEMuOnFMe-jlESaiITHLrbyB8Oo4MxeXdCT9bgbXMXpjrI-18nVRSNXsh8UI-hP1NmgNggdI813EgSlfVc8NJy6Nv6dehG1ILyDnTHhx-Hn0pfZ4T9qL4vTHHgM2vBNyHwEVrpYuXntG4_4k-4cwNuFdlMfP8mptOlf9FoEz43WlQhKF_6xTzty4trBI__Qc27cKfGq96wanUP1nS2BZtNLgivPhq2YGOJ2PA-iKF31FJEe-9b6mavckV4ufEs8PSOijJdY3527kquLn-UVCH7i3o7uMJhcVoGNGWn3nGVz8Ga9leXPx_AeLR__PrAr5M5-JKGeO4LY7ElSYM4EqFxrPEBU4QmqUwUDpHUhBgdxlghoZnFpCbGmGBJqaEpETFVeBs6WZ7pR-AZpJLUWjaKSEMU0Qw7Xrok1koxhQXpwatmFrmsmc5dwo0pLy2eCPHl8ezBi1Z6VjF83CD3zE4Xr7f4-Q0ybEXG1S0Qm4TcOaBJwJGFVLYZDxi_mMyutd1pltrvDqw5jJkF1cS9vq22J4Bz64hM54WVITQuicCs4g-rJdoqgrFFdGEQ9OBlu2b_quXjfxV8AredMlU43g505meFfmrx2Tzdhe5w783eaLfeg78ANiw5ZQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELba7QF6oFAoLBQUJOCCvJv4kcTHFWqpEFRI7UrlZDl-lBVLsmo3i-ipPwT-XH8J47zYrSjigHKzx07Gr3yjGX-D0AuSJZboUGNGGMWMC4czThNsE5JGlumURv428ofD-GDM3p3wkzX0tr0LUx_kg6-TOorGLnQxbMYQz4wbEjGM_AOGG0vjql4qWVkOA6hfRxsxB1DeQxvjw4-jT5WvM6Y4bu4LcxpiARZ8GwIfk5UuVn5O6_ARf8Kdm-hWmc_U929qOl36F-1voc-tFnUIypdBOc8G-uIaweN_UPMuutPg1WBUt7qH1my-jbbaXBBBczRso80lYsP7SI2Co44iOnjfUTcHtSsiKFwAwDM4Kqt0jcXZuS-5uvxRUYXsLZrt4AtH5WkV0JSfBsd1Pgcw7a8ufz5A4_294zcHuEnmgDWP6BwrB9iSZWESq8h51vhQGMbTTKeGRkRbxpyNEmqIsgIwqUsoZVRz7njGVMIN3UG9vMjtIxQ4YtIMLBvDtGOGWUE9L12aWGOEoYr10et2FqVumM59wo2prCyemMjl8eyjl530rGb4uEHuOUyXbLb4-Q0yYkXG1y2ImETSO6BZKAlAKmgmQyEvJrNrbXfbpfa7AzCHqQBQzfzru2o4AbxbR-W2KEGG8aQiAgPFH9ZLtFOEUkB0URj20atuzf5Vy8f_KvgE3fbK1OF4u6g3PyvtU8Bn8-xZs_d-AXN1N_M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Literature+Review+of+the+Successors+of+%E2%80%9CNeuroEvolution+of+Augmenting+Topologies%E2%80%9D&rft.jtitle=Evolutionary+computation&rft.au=Papavasileiou%2C+Evgenia&rft.au=Cornelis%2C+Jan&rft.au=Jansen%2C+Bart&rft.date=2021-03-01&rft.pub=MIT+Press&rft.eissn=1530-9304&rft.volume=29&rft.issue=1&rft.spage=1&rft.epage=73&rft_id=info:doi/10.1162%2Fevco_a_00282&rft.externalDBID=n%2Fa&rft.externalDocID=evco_a_00282.pdf |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6560&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6560&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6560&client=summon |