A Systematic Literature Review of the Successors of “NeuroEvolution of Augmenting Topologies”

NeuroEvolution (NE) refers to a family of methods for optimizing Artificial Neural Networks (ANNs) using Evolutionary Computation (EC) algorithms. NeuroEvolution of Augmenting Topologies (NEAT) is considered one of the most influential algorithms in the field. Eighteen years after its invention, a p...

Full description

Saved in:
Bibliographic Details
Published inEvolutionary computation Vol. 29; no. 1; pp. 1 - 73
Main Authors Papavasileiou, Evgenia, Cornelis, Jan, Jansen, Bart
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.03.2021
MIT Press Journals, The
Subjects
Online AccessGet full text
ISSN1063-6560
1530-9304
1530-9304
DOI10.1162/evco_a_00282

Cover

Abstract NeuroEvolution (NE) refers to a family of methods for optimizing Artificial Neural Networks (ANNs) using Evolutionary Computation (EC) algorithms. NeuroEvolution of Augmenting Topologies (NEAT) is considered one of the most influential algorithms in the field. Eighteen years after its invention, a plethora of methods have been proposed that extend NEAT in different aspects. In this article, we present a systematic literature review (SLR) to list and categorize the methods succeeding NEAT. Our review protocol identified 232 papers by merging the findings of two major electronic databases. Applying criteria that determine the paper's relevance and assess its quality, resulted in 61 methods that are presented in this article. Our review article proposes a new categorization scheme of NEAT's successors into three clusters. NEAT-based methods are categorized based on 1) whether they consider issues specific to the search space or the fitness landscape, 2) whether they combine principles from NE and another domain, or 3) the particular properties of the evolved ANNs. The clustering supports researchers 1) understanding the current state of the art that will enable them, 2) exploring new research directions or 3) benchmarking their proposed method to the state of the art, if they are interested in comparing, and 4) positioning themselves in the domain or 5) selecting a method that is most appropriate for their problem.
AbstractList NeuroEvolution (NE) refers to a family of methods for optimizing Artificial Neural Networks (ANNs) using Evolutionary Computation (EC) algorithms. NeuroEvolution of Augmenting Topologies (NEAT) is considered one of the most influential algorithms in the field. Eighteen years after its invention, a plethora of methods have been proposed that extend NEAT in different aspects. In this article, we present a systematic literature review (SLR) to list and categorize the methods succeeding NEAT. Our review protocol identified 232 papers by merging the findings of two major electronic databases. Applying criteria that determine the paper's relevance and assess its quality, resulted in 61 methods that are presented in this article. Our review article proposes a new categorization scheme of NEAT's successors into three clusters. NEAT-based methods are categorized based on 1) whether they consider issues specific to the search space or the fitness landscape, 2) whether they combine principles from NE and another domain, or 3) the particular properties of the evolved ANNs. The clustering supports researchers 1) understanding the current state of the art that will enable them, 2) exploring new research directions or 3) benchmarking their proposed method to the state of the art, if they are interested in comparing, and 4) positioning themselves in the domain or 5) selecting a method that is most appropriate for their problem.NeuroEvolution (NE) refers to a family of methods for optimizing Artificial Neural Networks (ANNs) using Evolutionary Computation (EC) algorithms. NeuroEvolution of Augmenting Topologies (NEAT) is considered one of the most influential algorithms in the field. Eighteen years after its invention, a plethora of methods have been proposed that extend NEAT in different aspects. In this article, we present a systematic literature review (SLR) to list and categorize the methods succeeding NEAT. Our review protocol identified 232 papers by merging the findings of two major electronic databases. Applying criteria that determine the paper's relevance and assess its quality, resulted in 61 methods that are presented in this article. Our review article proposes a new categorization scheme of NEAT's successors into three clusters. NEAT-based methods are categorized based on 1) whether they consider issues specific to the search space or the fitness landscape, 2) whether they combine principles from NE and another domain, or 3) the particular properties of the evolved ANNs. The clustering supports researchers 1) understanding the current state of the art that will enable them, 2) exploring new research directions or 3) benchmarking their proposed method to the state of the art, if they are interested in comparing, and 4) positioning themselves in the domain or 5) selecting a method that is most appropriate for their problem.
NeuroEvolution (NE) refers to a family of methods for optimizing Artificial Neural Networks (ANNs) using Evolutionary Computation (EC) algorithms. NeuroEvolution of Augmenting Topologies (NEAT) is considered one of the most influential algorithms in the field. Eighteen years after its invention, a plethora of methods have been proposed that extend NEAT in different aspects. In this article, we present a systematic literature review (SLR) to list and categorize the methods succeeding NEAT. Our review protocol identified 232 papers by merging the findings of two major electronic databases. Applying criteria that determine the paper's relevance and assess its quality, resulted in 61 methods that are presented in this article. Our review article proposes a new categorization scheme of NEAT's successors into three clusters. NEAT-based methods are categorized based on 1) whether they consider issues specific to the search space or the fitness landscape, 2) whether they combine principles from NE and another domain, or 3) the particular properties of the evolved ANNs. The clustering supports researchers 1) understanding the current state of the art that will enable them, 2) exploring new research directions or 3) benchmarking their proposed method to the state of the art, if they are interested in comparing, and 4) positioning themselves in the domain or 5) selecting a method that is most appropriate for their problem.
Author Papavasileiou, Evgenia
Jansen, Bart
Cornelis, Jan
Author_xml – sequence: 1
  givenname: Evgenia
  surname: Papavasileiou
  fullname: Papavasileiou, Evgenia
– sequence: 2
  givenname: Jan
  surname: Cornelis
  fullname: Cornelis, Jan
  organization: Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, B-1050, Belgium jpcornel@etrovub.be
– sequence: 3
  givenname: Bart
  surname: Jansen
  fullname: Jansen, Bart
  email: bjansen@etrovub.be
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33151100$$D View this record in MEDLINE/PubMed
BookMark eNqNkstqFUEQhhuJmIvuXMuAGxeOVt_msvMQ4gUOCiaumz49NccOM9NjX044rvIgycvlSZzhRInBgKtqiu__q-qnD8ne4AYk5DmFN5QW7C1ujFNaAbCKPSIHVHLIaw5ib3pDwfNCFrBPDkM4B6CcAX1C9jmnklKAA6IX2ek2ROx1tCZb2ohex-Qx-4obixeZa7P4HbPTZAyG4HyYOzeXV58xeXeycV2K1g1zc5HWPQ7RDuvszI2uc2uL4eby-il53Oou4LPbekS-vT85O_6YL798-HS8WOZGUh5z3dKCihWUhaYtrRhA3QhZrUzVcMoMCtEiLXnDNNZ1WbYl54IbKVu5ErqUDT8i-c43DaPeXuiuU6O3vfZbRUHNUam7UU38qx0_evcjYYiqt8Fg1-kBXQqKCVnW5SQTE_ryHnrukh-maxSral5LAWI2fHFLpVWPzZ_pv8OeALYDjHcheGyVsVHP-UWvbffQmq_vif7vqt7e2fIB9N0_0BnZsNpSNf2hQoBiwOikVlCrn3b82-IXPw_FwA
CitedBy_id crossref_primary_10_1016_j_triboint_2024_110429
crossref_primary_10_1115_1_4065823
crossref_primary_10_1007_s12136_024_00619_x
crossref_primary_10_1017_dsj_2021_25
crossref_primary_10_1016_j_neucom_2022_01_099
crossref_primary_10_3233_ICA_230707
crossref_primary_10_1016_j_asoc_2024_112120
crossref_primary_10_1038_s41526_023_00252_9
crossref_primary_10_1515_nanoph_2022_0197
crossref_primary_10_1080_10447318_2023_2181125
crossref_primary_10_1371_journal_pone_0307084
crossref_primary_10_1145_3628430
crossref_primary_10_1016_j_asoc_2023_111209
crossref_primary_10_3390_app14062542
crossref_primary_10_1007_s11277_024_11112_4
crossref_primary_10_2514_1_G008112
crossref_primary_10_1115_1_4063392
crossref_primary_10_2139_ssrn_4123761
crossref_primary_10_1162_artl_a_00389
crossref_primary_10_1016_j_biosystems_2022_104686
crossref_primary_10_1126_science_adp7478
crossref_primary_10_1016_j_asoc_2023_110767
crossref_primary_10_1016_j_asoc_2021_108375
crossref_primary_10_1016_j_ijleo_2022_170417
crossref_primary_10_1007_s12530_023_09510_3
crossref_primary_10_1007_s42979_022_01064_6
Cites_doi 10.1007/BF00114726
10.1145/3205455.3205536
10.1073/pnas.0503610102
10.1073/pnas.83.5.1271
10.1007/978-3-642-40643-0_14
10.1145/2576768.2598232
10.1145/2463372.2463461
10.1109/AIPR.2011.6176352
10.1007/s10710-007-9028-8
10.1007/s12065-009-0018-z
10.1145/2330163.2330286
10.1109/SSCI.2017.8285328
10.1109/TEVC.2014.2326863
10.1145/2001576.2001776
10.1109/IROS.2011.6094509
10.1016/S0022-2836(72)80039-1
10.1142/S0129065793000171
10.1145/3205455.3205459
10.1109/ICINFA.2006.374100
10.1109/TEVC.2005.856210
10.1109/4235.996017
10.1016/B978-0-12-815480-9.00015-3
10.1109/TCIAIG.2010.2052102
10.1007/978-3-540-24855-2_7
10.1016/0167-8191(90)90086-O
10.1109/TEVC.2010.2104157
10.1162/106365600568086
10.1038/nature14422
10.1145/2001576.2001606
10.1080/09540099550039228
10.1007/978-3-030-16692-2_33
10.1007/978-3-642-32922-7_7
10.1145/2330163.2330241
10.1109/IJCNN.2017.7966390
10.1093/comjnl/7.4.308
10.1145/3071178.3071275
10.1109/TEVC.2011.2150755
10.1162/EVCO_a_00141
10.1109/eScience.2017.14
10.1109/TRA.2003.814502
10.1007/978-1-4419-7747-2_8
10.1145/1143997.1144202
10.1109/5.726791
10.1162/EVCO_a_00025
10.1016/S0096-3003(97)10005-4
10.1007/s00500-012-0960-z
10.1098/rspb.2012.2863
10.1162/106365602320169811
10.1162/EVCO_a_00048
10.1145/3067695.3076002
10.1145/1276958.1277158
10.1016/j.neucom.2008.12.009
10.1145/3205651.3205792
10.1162/ARTL_a_00071
10.1109/CEC.2009.4983271
10.1162/artl.2009.15.2.15202
10.1145/2576768.2598369
10.1007/978-1-4471-1599-1_63
10.1145/1143997.1144058
10.1016/j.neunet.2009.03.001
10.1142/S1469026803000914
10.1016/j.sigpro.2007.05.015
10.1109/CEC.2010.5585926
10.1142/S0219720017500093
10.1038/nature03689
10.1162/EVCO_a_00181
10.1109/CIG.2008.5035643
10.1109/TCIAIG.2012.2188528
10.1007/978-3-319-31153-1_12
10.1007/s11063-015-9426-5
10.1109/CIG.2007.368115
10.1109/TSMCB.2010.2091955
10.1109/TCIAIG.2009.2038365
10.1007/978-3-540-88908-3
10.1145/3321707.3321746
10.1007/s00521-014-1761-3
10.1109/5.784219
10.1109/TEVC.2017.2704781
10.7748/ns.24.50.47.s49
10.1162/LEON_a_01332
10.1016/j.artmed.2013.07.002
10.1109/SBRN.2008.12
10.1145/1068009.1068251
10.1007/978-3-642-55337-0_5
10.1073/pnas.0601602103
10.1007/978-3-642-15193-4_50
10.1007/978-3-642-34413-8_39
10.1145/3321707.3321799
10.1145/1389095.1389256
10.1109/ICAC.2004.1301349
10.1007/978-0-387-45528-0
10.1145/1143997.1144252
10.1007/BF00114722
10.1109/WACV.2015.71
10.1007/BF01411376
10.1145/1068009.1068210
10.1016/j.infsof.2011.09.002
10.1609/aimag.v34i2.2475
10.1145/2463372.2463459
10.1007/978-3-642-29066-4_1
10.1007/s12064-008-0029-9
10.1109/CEC.2009.4983289
10.1109/CIG.2008.5035636
10.1109/CEC.2017.7969376
10.1038/s42256-018-0006-z
10.1145/3205455.3205476
10.1145/2001576.2001775
10.1007/978-3-540-74769-7_12
10.1145/2739480.2754664
10.1007/s10458-014-9268-y
10.1007/978-3-319-68759-9_39
10.1007/978-3-319-77538-8_45
10.1146/annurev.ge.16.120182.002201
10.1162/106365601750190398
10.1145/2739480.2754731
10.1029/JD094iD06p08549
10.1007/978-3-319-63004-5_4
10.1007/11613022_4
10.1007/s12065-007-0002-4
10.1109/IJCNN.2012.6252826
10.1007/978-3-319-77538-8_50
10.1177/105971239700500305
10.1109/72.265959
ContentType Journal Article
Copyright Copyright MIT Press Journals, The 2021
Copyright_xml – notice: Copyright MIT Press Journals, The 2021
DBID AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
ADTOC
UNPAY
DOI 10.1162/evco_a_00282
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1530-9304
EndPage 73
ExternalDocumentID 10.1162/evco_a_00282
33151100
10_1162_evco_a_00282
evco_a_00282.pdf
Genre Journal Article
GroupedDBID ---
.4S
.DC
0R~
36B
4.4
53G
5GY
5VS
6IK
AAJGR
AAKMM
AALFJ
AALMD
AAYFX
ABDBF
ABGDV
ABMYL
ABQDU
ACATF
ACM
ACVLL
ADHRN
ADL
ADPZR
AEBYY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
AIYWX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
AZFZN
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EAP
EAS
EBC
EBD
EBS
ECS
EDO
EMB
EMK
EMOBN
EPL
EST
ESX
F5P
FEDTE
FNEHJ
GUFHI
HGAVV
HZ~
I-F
I07
IPLJI
JAVBF
MCG
MINIK
O9-
OCL
P2P
PK0
RMI
SV3
TUS
W7O
ZWS
AAYXX
ABAZT
ABJNI
ABVLG
ACUHS
AEFXT
AEJOY
AKRVB
CAG
CITATION
COF
EJD
LHSKQ
AAYOK
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c513t-af1614b076a1f182009d458bc8d312ce44fe173d2ae9977f73343c55f5b4a75d3
IEDL.DBID UNPAY
ISSN 1063-6560
1530-9304
IngestDate Tue Aug 19 21:11:34 EDT 2025
Thu Jul 10 18:12:01 EDT 2025
Mon Jun 30 04:33:41 EDT 2025
Thu Apr 03 07:08:19 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Wed Oct 01 02:01:34 EDT 2025
Mon Mar 11 05:41:10 EDT 2024
Tue Mar 01 17:17:37 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords artificial neural networks
genetic algorithms
encoding
topology evolution
systematic literature review
NeuroEvolution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-af1614b076a1f182009d458bc8d312ce44fe173d2ae9977f73343c55f5b4a75d3
Notes Spring, 2021
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://direct.mit.edu/evco/article-pdf/29/1/1/1888486/evco_a_00282.pdf
PMID 33151100
PQID 2893954042
PQPubID 2047842
PageCount 73
ParticipantIDs crossref_citationtrail_10_1162_evco_a_00282
unpaywall_primary_10_1162_evco_a_00282
mit_journals_evcov29i1_304640_2021_11_09_zip_evco_a_00282
proquest_miscellaneous_2457971624
pubmed_primary_33151100
crossref_primary_10_1162_evco_a_00282
mit_journals_10_1162_evco_a_00282
proquest_journals_2893954042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace One Rogers Street, Cambridge, MA 02142-1209, USA
PublicationPlace_xml – name: One Rogers Street, Cambridge, MA 02142-1209, USA
– name: United States
– name: Cambridge
PublicationTitle Evolutionary computation
PublicationTitleAlternate Evol Comput
PublicationYear 2021
Publisher MIT Press
MIT Press Journals, The
Publisher_xml – name: MIT Press
– name: MIT Press Journals, The
References B20
Whiteson S. (B173) 2006; 7
B21
B22
Boyan J. A. (B8) 1995
B24
B25
B26
B28
B29
B159
B156
B155
B152
B151
James D. (B64) 2004
de Jong E. D (B27) 2004; 2
Ihara K. (B60) 2017
Montana D. J. (B94) 1989; 1
B30
B31
D'Silva T. (B36) 2005
B33
Sboev A. (B126) 2018
B34
B35
Tan M. (B157) 2014
B37
B38
B39
Stanley K. O. (B148) 2002
B167
B168
B2
B3
B166
B4
B5
B164
B6
B161
Risi S. (B124) 2015
B162
B9
B160
Stanley K. O. (B145) 2006
Gomez F. J. (B46) 1999; 99
B40
B41
B42
B43
B44
Stanley K. O. (B150) 2004
B47
B48
B49
B176
B177
B174
Mangasarian O. L. (B84) 1990
B175
B172
B170
Chatzidimitriou K. C. (B13) 2013
Kalyanakrishnan S. (B65) 2006
B50
B51
B52
B53
B54
Clune J. (B17) 2009
B57
Watson J. D (B171) 2004
B58
B59
B107
B105
B106
Wright R. (B178) 2009
B103
B104
B102
B100
B183
B184
B181
B182
Purdie N. (B112) 1992; 38
B61
B63
Prechelt L. P. (B108) 1994
B66
B67
B69
B118
B119
B117
B114
B115
B113
B110
B111
Sohn H. (B137) 2001
Pugh J. K. (B109) 2016
Inden B. (B62) 2012
Gomez F. (B45) 2008; 9
Keele S. (B68) 2007
B70
B71
B72
B73
Moriarty D. E. (B96) 1995; 7
Nadkarni J. (B101) 2018
B74
Maley C. C (B83) 1999; 2
B75
B76
Trujillo L. (B165) 2016
B77
B78
B79
Xu L. (B180) 1988
B129
B127
Wright R. (B179) 2012
B128
B125
B123
B121
B122
B120
B81
B82
B85
Chidambaran S. (B15) 2018
B86
B87
B88
B89
B138
Sutton R. S. (B154) 1998; 1
Horn J. (B56) 1995; 3
B136
Box G. E. (B7) 2015
Stone P. (B153) 2005
B134
B135
B132
B133
Stanley K. O (B139) 2006
B130
B131
B90
B91
B92
B93
B95
B97
B10
B98
B11
B99
B12
B14
Thrun S. B. (B163) 1991
B16
B18
Ding S. (B32) 2013
Rawal A. (B116) 2016
B19
B149
Hemmingway P. (B55) 2009; 4
B147
B146
B143
B144
B141
B142
B140
Tarapore D. (B158) 2016
Wang G. (B169) 2013
Auerbach J. E. (B1) 2010
Liu Y. (B80) 1996
D'Ambrosio D. B. (B23) 2014
References_xml – start-page: 21:63
  year: 2004
  ident: B150
  publication-title: Journal of Artificial Intelligence Research
– ident: B135
  doi: 10.1007/BF00114726
– ident: B164
– ident: B105
  doi: 10.1145/3205455.3205536
– ident: B67
  doi: 10.1073/pnas.0503610102
– ident: B26
  doi: 10.1073/pnas.83.5.1271
– ident: B39
  doi: 10.1007/978-3-642-40643-0_14
– ident: B59
  doi: 10.1145/2576768.2598232
– ident: B98
  doi: 10.1145/2463372.2463461
– ident: B115
  doi: 10.1109/AIPR.2011.6176352
– ident: B140
  doi: 10.1007/s10710-007-9028-8
– ident: B156
  doi: 10.1007/s12065-009-0018-z
– ident: B81
  doi: 10.1145/2330163.2330286
– ident: B104
  doi: 10.1109/SSCI.2017.8285328
– ident: B33
  doi: 10.1109/TEVC.2014.2326863
– start-page: 151
  volume-title: AIIDE
  year: 2006
  ident: B145
– ident: B167
  doi: 10.1145/2001576.2001776
– ident: B24
  doi: 10.1109/IROS.2011.6094509
– year: 1990
  ident: B84
  publication-title: Cancer diagnosis via linear programming
– ident: B131
  doi: 10.1016/S0022-2836(72)80039-1
– ident: B181
  doi: 10.1142/S0129065793000171
– volume-title: Time series analysis: Forecasting and control
  year: 2015
  ident: B7
– ident: B128
  doi: 10.1145/3205455.3205459
– ident: B129
– ident: B14
  doi: 10.1109/ICINFA.2006.374100
– ident: B142
  doi: 10.1109/TEVC.2005.856210
– ident: B28
  doi: 10.1109/4235.996017
– ident: B92
  doi: 10.1016/B978-0-12-815480-9.00015-3
– ident: B12
  doi: 10.1109/TCIAIG.2010.2052102
– ident: B119
  doi: 10.1007/978-3-540-24855-2_7
– year: 2015
  ident: B124
  publication-title: IEEE Transactions on Computational Intelligence and AI in Games
– start-page: 28:24
  year: 2012
  ident: B62
  publication-title: Neural Networks
– ident: B176
  doi: 10.1016/0167-8191(90)90086-O
– ident: B19
  doi: 10.1109/TEVC.2010.2104157
– ident: B107
  doi: 10.1162/106365600568086
– ident: B21
  doi: 10.1038/nature14422
– ident: B79
  doi: 10.1145/2001576.2001606
– volume: 7
  start-page: 195
  issue: 3
  year: 1995
  ident: B96
  publication-title: Connection Science
  doi: 10.1080/09540099550039228
– ident: B37
  doi: 10.1007/978-3-030-16692-2_33
– ident: B69
– ident: B35
  doi: 10.1007/978-3-642-32922-7_7
– ident: B34
  doi: 10.1145/2330163.2330241
– volume: 38
  start-page: 1645
  issue: 9
  year: 1992
  ident: B112
  publication-title: Clinical Chemistry
– ident: B134
  doi: 10.1109/IJCNN.2017.7966390
– start-page: 369
  year: 1995
  ident: B8
  publication-title: Advances in neural information processing systems
– ident: B102
  doi: 10.1093/comjnl/7.4.308
– start-page: 39
  volume-title: AIIDE
  year: 2005
  ident: B36
– ident: B50
  doi: 10.1145/3071178.3071275
– ident: B71
  doi: 10.1109/TEVC.2011.2150755
– ident: B147
– year: 1994
  ident: B108
  publication-title: A set of neural network benchmark problems and benchmarking rules
– ident: B133
  doi: 10.1162/EVCO_a_00141
– ident: B29
  doi: 10.1109/eScience.2017.14
– ident: B57
  doi: 10.1109/TRA.2003.814502
– ident: B127
  doi: 10.1007/978-1-4419-7747-2_8
– ident: B159
  doi: 10.1145/1143997.1144202
– volume: 4
  year: 2009
  ident: B55
  publication-title: Hayward Medical Communications
– ident: B76
  doi: 10.1109/5.726791
– ident: B78
  doi: 10.1162/EVCO_a_00025
– ident: B183
  doi: 10.1016/S0096-3003(97)10005-4
– ident: B63
  doi: 10.1007/s00500-012-0960-z
– start-page: 103:184
  year: 2018
  ident: B101
  publication-title: Expert Systems with Applications
– start-page: 1
  year: 2013
  ident: B32
  publication-title: Artificial Intelligence Review
– year: 2018
  ident: B15
  publication-title: ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
– ident: B18
  doi: 10.1098/rspb.2012.2863
– ident: B149
  doi: 10.1162/106365602320169811
– start-page: 451
  volume-title: Artificial Life XII: Proceedings of the Twelfth International Conference on the Synthesis and Simulation of Living Systems
  year: 2010
  ident: B1
– volume: 99
  start-page: 1356
  year: 1999
  ident: B46
  publication-title: IJCAI
– ident: B146
– ident: B100
  doi: 10.1162/EVCO_a_00048
– ident: B30
  doi: 10.1145/3067695.3076002
– ident: B41
  doi: 10.1145/1276958.1277158
– ident: B51
  doi: 10.1016/j.neucom.2008.12.009
– ident: B31
  doi: 10.1145/3205651.3205792
– start-page: 492
  volume-title: International Conference on Network-Based Information Systems
  year: 2017
  ident: B60
– ident: B121
  doi: 10.1162/ARTL_a_00071
– ident: B11
  doi: 10.1109/CEC.2009.4983271
– volume: 2
  start-page: 2341
  year: 2004
  ident: B27
  publication-title: Congress on Evolutionary Computation
– ident: B144
  doi: 10.1162/artl.2009.15.2.15202
– ident: B123
  doi: 10.1145/2576768.2598369
– ident: B44
  doi: 10.1007/978-1-4471-1599-1_63
– ident: B93
  doi: 10.1145/1143997.1144058
– start-page: 84
  volume-title: International Conference on Agents and Artificial Intelligence
  year: 2009
  ident: B178
– ident: B70
  doi: 10.1016/j.neunet.2009.03.001
– ident: B99
– ident: B138
  doi: 10.1142/S1469026803000914
– start-page: 333:21
  year: 2016
  ident: B165
  publication-title: Information Sciences
– ident: B75
  doi: 10.1016/j.sigpro.2007.05.015
– ident: B49
  doi: 10.1109/CEC.2010.5585926
– ident: B48
  doi: 10.1142/S0219720017500093
– ident: B58
  doi: 10.1038/nature03689
– ident: B130
  doi: 10.1162/EVCO_a_00181
– start-page: 13:CIN
  year: 2014
  ident: B157
  publication-title: Cancer Informatics
– start-page: 3:54
  year: 1996
  ident: B80
  publication-title: Chinese Journal of Advanced Software Research
– year: 2001
  ident: B137
  publication-title: Novelty detection under changing environmental conditions
– ident: B4
  doi: 10.1109/CIG.2008.5035643
– ident: B3
– ident: B66
  doi: 10.1109/TCIAIG.2012.2188528
– ident: B177
– ident: B132
  doi: 10.1007/978-3-319-31153-1_12
– ident: B125
– ident: B10
  doi: 10.1007/s11063-015-9426-5
– start-page: 173
  year: 2016
  ident: B158
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference
– start-page: 54:50
  year: 2013
  ident: B169
  publication-title: Computers & Geosciences
– start-page: 134
  volume-title: European Conference on Artificial Life
  year: 2009
  ident: B17
– ident: B118
  doi: 10.1109/CIG.2007.368115
– ident: B151
  doi: 10.1109/TSMCB.2010.2091955
– ident: B54
  doi: 10.1109/TCIAIG.2009.2038365
– ident: B77
– ident: B9
  doi: 10.1007/978-3-540-88908-3
– volume: 1
  start-page: 762
  year: 1989
  ident: B94
  publication-title: Proceedings of the 11th International Joint Conference on Artificial Intelligence
– ident: B20
  doi: 10.1145/3321707.3321746
– ident: B152
  doi: 10.1007/s00521-014-1761-3
– ident: B182
  doi: 10.1109/5.784219
– ident: B22
  doi: 10.1109/TEVC.2017.2704781
– ident: B5
  doi: 10.7748/ns.24.50.47.s49
– ident: B136
– ident: B141
  doi: 10.1162/LEON_a_01332
– year: 2007
  ident: B68
  publication-title: Guidelines for performing systematic literature reviews in software engineering
– ident: B155
  doi: 10.1016/j.artmed.2013.07.002
– year: 2012
  ident: B179
  publication-title: Embedded incremental feature selection for reinforcement learning
– ident: B91
  doi: 10.1109/SBRN.2008.12
– ident: B161
  doi: 10.1145/1068009.1068251
– start-page: 159
  year: 2014
  ident: B23
  publication-title: Growing adaptive machines
  doi: 10.1007/978-3-642-55337-0_5
– ident: B103
  doi: 10.1073/pnas.0601602103
– ident: B120
  doi: 10.1007/978-3-642-15193-4_50
– ident: B40
– ident: B73
  doi: 10.1007/978-3-642-34413-8_39
– start-page: 93
  year: 2005
  ident: B153
  publication-title: Robot Soccer World Cup
– ident: B170
  doi: 10.1145/3321707.3321799
– ident: B25
  doi: 10.1145/1389095.1389256
– ident: B168
  doi: 10.1109/ICAC.2004.1301349
– ident: B6
  doi: 10.1007/978-0-387-45528-0
– volume-title: Molecular biology of the gene
  year: 2004
  ident: B171
– start-page: 37
  volume-title: Proceedings of the AAAI Fall Symposium on Developmental Systems
  year: 2006
  ident: B139
– volume: 9
  start-page: 937
  year: 2008
  ident: B45
  publication-title: Journal of Machine Learning Research
– ident: B174
  doi: 10.1145/1143997.1144252
– ident: B97
  doi: 10.1007/BF00114722
– ident: B166
  doi: 10.1109/WACV.2015.71
– ident: B113
  doi: 10.1007/BF01411376
– ident: B175
  doi: 10.1145/1068009.1068210
– ident: B72
– year: 1991
  ident: B163
  publication-title: The monk's problems—A performance comparison of different learning algorithms
– ident: B172
  doi: 10.1016/j.infsof.2011.09.002
– ident: B42
  doi: 10.1609/aimag.v34i2.2475
– ident: B111
  doi: 10.1145/2463372.2463459
– ident: B86
  doi: 10.1007/978-3-642-29066-4_1
– volume: 7
  start-page: 877
  year: 2006
  ident: B173
  publication-title: Journal of Machine Learning Research
– ident: B61
  doi: 10.1007/s12064-008-0029-9
– ident: B16
  doi: 10.1109/CEC.2009.4983289
– volume: 2
  start-page: 1336
  year: 1999
  ident: B83
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO)
– start-page: 3:40
  year: 2016
  ident: B109
  publication-title: Frontiers in Robotics and AI
– ident: B117
  doi: 10.1109/CIG.2008.5035636
– volume-title: Proceedings of Genetic and Evolutionary Computation Conference
  year: 2004
  ident: B64
– ident: B87
  doi: 10.1109/CEC.2017.7969376
– ident: B47
– start-page: 145:488
  year: 2018
  ident: B126
  publication-title: Procedia Computer Science
– ident: B143
  doi: 10.1038/s42256-018-0006-z
– ident: B88
  doi: 10.1145/3205455.3205476
– start-page: 706
  volume-title: Ninth International Conference on Pattern Recognition
  year: 1988
  ident: B180
– ident: B2
  doi: 10.1145/2001576.2001775
– ident: B184
  doi: 10.1007/978-3-540-74769-7_12
– volume: 1
  year: 1998
  ident: B154
  publication-title: Reinforcement learning: An introduction
– ident: B110
  doi: 10.1145/2739480.2754664
– ident: B82
  doi: 10.1007/s10458-014-9268-y
– ident: B106
  doi: 10.1007/978-3-319-68759-9_39
– start-page: 242
  volume-title: Proceedings of Genetic and Evolutionary Computation Conference (GECCO)
  year: 2002
  ident: B148
– ident: B74
  doi: 10.1007/978-3-319-77538-8_45
– ident: B114
  doi: 10.1146/annurev.ge.16.120182.002201
– start-page: 103:198
  year: 2013
  ident: B13
  publication-title: Neurocomputing
– ident: B52
  doi: 10.1162/106365601750190398
– ident: B90
  doi: 10.1145/2739480.2754731
– ident: B162
  doi: 10.1029/JD094iD06p08549
– ident: B53
  doi: 10.1007/978-3-319-63004-5_4
– volume: 3
  start-page: 243
  year: 1995
  ident: B56
  publication-title: Foundations of genetic algorithms
– ident: B160
  doi: 10.1007/11613022_4
– ident: B38
  doi: 10.1007/s12065-007-0002-4
– start-page: 501
  volume-title: Proceedings of the Genetic and Evolutionary Computation Conference
  year: 2016
  ident: B116
– ident: B95
– ident: B122
  doi: 10.1109/IJCNN.2012.6252826
– ident: B89
  doi: 10.1007/978-3-319-77538-8_50
– start-page: 72
  year: 2006
  ident: B65
  publication-title: Robot Soccer World Cup
– ident: B43
  doi: 10.1177/105971239700500305
– ident: B85
  doi: 10.1109/72.265959
SSID ssj0013201
Score 2.5223944
Snippet NeuroEvolution (NE) refers to a family of methods for optimizing Artificial Neural Networks (ANNs) using Evolutionary Computation (EC) algorithms....
SourceID unpaywall
proquest
pubmed
crossref
mit
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial neural networks
Clustering
encoding
Evolutionary algorithms
Evolutionary computation
genetic algorithms
Literature reviews
NeuroEvolution
Quality assessment
State of the art
systematic literature review
Systematic review
Topology
topology evolution
Title A Systematic Literature Review of the Successors of “NeuroEvolution of Augmenting Topologies”
URI https://direct.mit.edu/evco/article/doi/10.1162/evco_a_00282
https://www.ncbi.nlm.nih.gov/pubmed/33151100
https://www.proquest.com/docview/2893954042
https://www.proquest.com/docview/2457971624
https://direct.mit.edu/evco/article-pdf/29/1/1/1888486/evco_a_00282.pdf
UnpaywallVersion publishedVersion
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1530-9304
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0013201
  issn: 1063-6560
  databaseCode: ABDBF
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB61yQF6oFAoBEplJOCCnNj7sL3HFBoqBBVSG6mcVut9lIhgR20cRE_9IfDn-kvY9YukoogD8m13du3Zl7_RzH4D8BylsUYykD5BBPuEMuOnFMe-jlESaiITHLrbyB8Oo4MxeXdCT9bgbXMXpjrI-18nVRSNXsh8UI-hP1NmgNggdI813EgSlfVc8NJy6Nv6dehG1ILyDnTHhx-Hn0pfZ4T9qL4vTHHgM2vBNyHwEVrpYuXntG4_4k-4cwNuFdlMfP8mptOlf9FoEz43WlQhKF_6xTzty4trBI__Qc27cKfGq96wanUP1nS2BZtNLgivPhq2YGOJ2PA-iKF31FJEe-9b6mavckV4ufEs8PSOijJdY3527kquLn-UVCH7i3o7uMJhcVoGNGWn3nGVz8Ga9leXPx_AeLR__PrAr5M5-JKGeO4LY7ElSYM4EqFxrPEBU4QmqUwUDpHUhBgdxlghoZnFpCbGmGBJqaEpETFVeBs6WZ7pR-AZpJLUWjaKSEMU0Qw7Xrok1koxhQXpwatmFrmsmc5dwo0pLy2eCPHl8ezBi1Z6VjF83CD3zE4Xr7f4-Q0ybEXG1S0Qm4TcOaBJwJGFVLYZDxi_mMyutd1pltrvDqw5jJkF1cS9vq22J4Bz64hM54WVITQuicCs4g-rJdoqgrFFdGEQ9OBlu2b_quXjfxV8AredMlU43g505meFfmrx2Tzdhe5w783eaLfeg78ANiw5ZQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELba7QF6oFAoLBQUJOCCvJv4kcTHFWqpEFRI7UrlZDl-lBVLsmo3i-ipPwT-XH8J47zYrSjigHKzx07Gr3yjGX-D0AuSJZboUGNGGMWMC4czThNsE5JGlumURv428ofD-GDM3p3wkzX0tr0LUx_kg6-TOorGLnQxbMYQz4wbEjGM_AOGG0vjql4qWVkOA6hfRxsxB1DeQxvjw4-jT5WvM6Y4bu4LcxpiARZ8GwIfk5UuVn5O6_ARf8Kdm-hWmc_U929qOl36F-1voc-tFnUIypdBOc8G-uIaweN_UPMuutPg1WBUt7qH1my-jbbaXBBBczRso80lYsP7SI2Co44iOnjfUTcHtSsiKFwAwDM4Kqt0jcXZuS-5uvxRUYXsLZrt4AtH5WkV0JSfBsd1Pgcw7a8ufz5A4_294zcHuEnmgDWP6BwrB9iSZWESq8h51vhQGMbTTKeGRkRbxpyNEmqIsgIwqUsoZVRz7njGVMIN3UG9vMjtIxQ4YtIMLBvDtGOGWUE9L12aWGOEoYr10et2FqVumM59wo2prCyemMjl8eyjl530rGb4uEHuOUyXbLb4-Q0yYkXG1y2ImETSO6BZKAlAKmgmQyEvJrNrbXfbpfa7AzCHqQBQzfzru2o4AbxbR-W2KEGG8aQiAgPFH9ZLtFOEUkB0URj20atuzf5Vy8f_KvgE3fbK1OF4u6g3PyvtU8Bn8-xZs_d-AXN1N_M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Literature+Review+of+the+Successors+of+%E2%80%9CNeuroEvolution+of+Augmenting+Topologies%E2%80%9D&rft.jtitle=Evolutionary+computation&rft.au=Papavasileiou%2C+Evgenia&rft.au=Cornelis%2C+Jan&rft.au=Jansen%2C+Bart&rft.date=2021-03-01&rft.pub=MIT+Press&rft.eissn=1530-9304&rft.volume=29&rft.issue=1&rft.spage=1&rft.epage=73&rft_id=info:doi/10.1162%2Fevco_a_00282&rft.externalDBID=n%2Fa&rft.externalDocID=evco_a_00282.pdf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6560&client=summon