An optimal monotone contention resolution scheme for bipartite matchings via a polyhedral viewpoint

Relaxation and rounding approaches became a standard and extremely versatile tool for constrained submodular function maximization. One of the most common rounding techniques in this context are contention resolution schemes. Such schemes round a fractional point by first rounding each coordinate in...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 191; no. 2; pp. 795 - 845
Main Authors Bruggmann, Simon, Zenklusen, Rico
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
1436-4646
DOI10.1007/s10107-020-01570-6

Cover

Abstract Relaxation and rounding approaches became a standard and extremely versatile tool for constrained submodular function maximization. One of the most common rounding techniques in this context are contention resolution schemes. Such schemes round a fractional point by first rounding each coordinate independently, and then dropping some elements to reach a feasible set. Also the second step, where elements are dropped, is typically randomized. This leads to an additional source of randomization within the procedure, which can complicate the analysis. We suggest a different, polyhedral viewpoint to design contention resolution schemes, which avoids to deal explicitly with the randomization in the second step. This is achieved by focusing on the marginals of a dropping procedure. Apart from avoiding one source of randomization, our viewpoint allows for employing polyhedral techniques. Both can significantly simplify the construction and analysis of contention resolution schemes. We show how, through our framework, one can obtain an optimal monotone contention resolution scheme for bipartite matchings, which has a balancedness of 0.4762. So far, only very few results are known about optimality of monotone contention resolution schemes. Our contention resolution scheme for the bipartite case also improves the lower bound on the correlation gap for bipartite matchings. Furthermore, we derive a monotone contention resolution scheme for matchings that significantly improves over the previously best one. More precisely, we obtain a balancedness of 0.4326, improving on a prior 0.1997-balanced scheme. At the same time, our scheme implies that the currently best lower bound on the correlation gap for matchings is not tight. Our results lead to improved approximation factors for various constrained submodular function maximization problems over a combination of matching constraints with further constraints.
AbstractList Relaxation and rounding approaches became a standard and extremely versatile tool for constrained submodular function maximization. One of the most common rounding techniques in this context are contention resolution schemes. Such schemes round a fractional point by first rounding each coordinate independently, and then dropping some elements to reach a feasible set. Also the second step, where elements are dropped, is typically randomized. This leads to an additional source of randomization within the procedure, which can complicate the analysis. We suggest a different, polyhedral viewpoint to design contention resolution schemes, which avoids to deal explicitly with the randomization in the second step. This is achieved by focusing on the marginals of a dropping procedure. Apart from avoiding one source of randomization, our viewpoint allows for employing polyhedral techniques. Both can significantly simplify the construction and analysis of contention resolution schemes. We show how, through our framework, one can obtain an optimal monotone contention resolution scheme for bipartite matchings, which has a balancedness of 0.4762. So far, only very few results are known about optimality of monotone contention resolution schemes. Our contention resolution scheme for the bipartite case also improves the lower bound on the correlation gap for bipartite matchings. Furthermore, we derive a monotone contention resolution scheme for matchings that significantly improves over the previously best one. More precisely, we obtain a balancedness of 0.4326, improving on a prior 0.1997-balanced scheme. At the same time, our scheme implies that the currently best lower bound on the correlation gap for matchings is not tight. Our results lead to improved approximation factors for various constrained submodular function maximization problems over a combination of matching constraints with further constraints.
Relaxation and rounding approaches became a standard and extremely versatile tool for constrained submodular function maximization. One of the most common rounding techniques in this context are contention resolution schemes. Such schemes round a fractional point by first rounding each coordinate independently, and then dropping some elements to reach a feasible set. Also the second step, where elements are dropped, is typically randomized. This leads to an additional source of randomization within the procedure, which can complicate the analysis. We suggest a different, polyhedral viewpoint to design contention resolution schemes, which avoids to deal explicitly with the randomization in the second step. This is achieved by focusing on the marginals of a dropping procedure. Apart from avoiding one source of randomization, our viewpoint allows for employing polyhedral techniques. Both can significantly simplify the construction and analysis of contention resolution schemes. We show how, through our framework, one can obtain an optimal monotone contention resolution scheme for bipartite matchings, which has a balancedness of 0.4762. So far, only very few results are known about optimality of monotone contention resolution schemes. Our contention resolution scheme for the bipartite case also improves the lower bound on the correlation gap for bipartite matchings. Furthermore, we derive a monotone contention resolution scheme for matchings that significantly improves over the previously best one. More precisely, we obtain a balancedness of 0.4326, improving on a prior 0.1997-balanced scheme. At the same time, our scheme implies that the currently best lower bound on the correlation gap for matchings is not tight. Our results lead to improved approximation factors for various constrained submodular function maximization problems over a combination of matching constraints with further constraints.Relaxation and rounding approaches became a standard and extremely versatile tool for constrained submodular function maximization. One of the most common rounding techniques in this context are contention resolution schemes. Such schemes round a fractional point by first rounding each coordinate independently, and then dropping some elements to reach a feasible set. Also the second step, where elements are dropped, is typically randomized. This leads to an additional source of randomization within the procedure, which can complicate the analysis. We suggest a different, polyhedral viewpoint to design contention resolution schemes, which avoids to deal explicitly with the randomization in the second step. This is achieved by focusing on the marginals of a dropping procedure. Apart from avoiding one source of randomization, our viewpoint allows for employing polyhedral techniques. Both can significantly simplify the construction and analysis of contention resolution schemes. We show how, through our framework, one can obtain an optimal monotone contention resolution scheme for bipartite matchings, which has a balancedness of 0.4762. So far, only very few results are known about optimality of monotone contention resolution schemes. Our contention resolution scheme for the bipartite case also improves the lower bound on the correlation gap for bipartite matchings. Furthermore, we derive a monotone contention resolution scheme for matchings that significantly improves over the previously best one. More precisely, we obtain a balancedness of 0.4326, improving on a prior 0.1997-balanced scheme. At the same time, our scheme implies that the currently best lower bound on the correlation gap for matchings is not tight. Our results lead to improved approximation factors for various constrained submodular function maximization problems over a combination of matching constraints with further constraints.
Audience Academic
Author Bruggmann, Simon
Zenklusen, Rico
Author_xml – sequence: 1
  givenname: Simon
  orcidid: 0000-0002-1800-7118
  surname: Bruggmann
  fullname: Bruggmann, Simon
  email: simon.bruggmann@ifor.math.ethz.ch
  organization: ETH Zurich
– sequence: 2
  givenname: Rico
  surname: Zenklusen
  fullname: Zenklusen, Rico
  organization: ETH Zurich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35250094$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQtVAR3Rb-AAcUiQuXlHGc2M4FaVXxJVXiAmfLcSa7rhI72M5W--_xdpcCPVTIB488772ZeeMLcua8Q0JeU7iiAOJ9pEBBlFBBCbQRUPJnZEVrxsua1_yMrACqpmw4hXNyEeMtAFAm5QtyzpqqAWjrFTFrV_g52UmPxeSdT7lEYbxL6JL1rggY_bjch9FsccJi8KHo7KxDsgmLSSeztW4Ti53VhS5mP-632Icst7N4N3vr0kvyfNBjxFen-5L8-PTx-_WX8ubb56_X65vSNJSlshV1JyrGJIAUutJtJZqacqNBIqLs2s7U0PW66Wqes0NPsesHQJOjgfUtuyTsqLu4We_v9DiqOeTJwl5RUAfL1NEylS1T95Ypnlkfjqx56SbsTR48d__A9NqqfzPObtXG75SUnImWZYF3J4Hgfy4Yk5psNDiO2qFfoqo441IKAU2Gvn0EvfVLcNmUA4rKltb8IHh1RG30iMq6wee6Jp8eJ5t3g4PN72sBrK2FbCAT3vw9wkPvv9ecAdURYIKPMeDwf8bIRyRjkz58hdyOHZ-mnjYRcx23wfBnzidYvwCGNN2Q
CitedBy_id crossref_primary_10_1007_s10107_024_02178_w
crossref_primary_10_1287_opre_2023_0339
crossref_primary_10_1002_rsa_21086
crossref_primary_10_1287_moor_2022_0256
crossref_primary_10_1287_moor_2023_1388
Cites_doi 10.1016/j.geb.2005.02.006
10.1017/CBO9780511802256
10.1137/110839655
10.1287/moor.1100.0463
10.1007/978-3-642-17572-5_20
10.1287/moor.2013.0592
10.1137/080733991
10.1137/090779346
10.1201/9781351236423-42
10.1137/110832318
10.1023/B:JOCO.0000038913.96607.c2
10.1109/SFCS.1981.21
10.1007/978-3-642-23719-5_66
10.1137/1.9781611973082.83
10.1109/FOCS.2018.00080
10.1109/FOCS.2007.29
10.1109/FOCS.2016.34
10.1007/978-3-662-56039-6
10.1007/BFb0121195
10.1145/1374376.1374389
10.1109/FOCS.2010.60
10.1016/0166-218X(84)90003-9
10.1109/FOCS.2011.46
10.1287/moor.2018.0965
10.1145/1993636.1993740
10.1137/1.9781611973105.25
10.1145/1367497.1367524
10.1287/moor.3.3.177
10.1145/1386790.1386805
10.1007/978-3-642-22006-7_29
10.1145/1386790.1386802
10.1137/090750020
10.1137/1.9781611974331.ch72
10.1287/opre.1110.1011
10.1007/978-3-642-36694-9_18
10.1145/1536414.1536459
10.1016/S0167-6377(03)00062-2
10.1007/BF01588971
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020.
COPYRIGHT 2022 Springer
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020.
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s10107-020-01570-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic

PubMed
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 845
ExternalDocumentID 10.1007/s10107-020-01570-6
PMC8863793
A703947850
35250094
10_1007_s10107_020_01570_6
Genre Journal Article
GrantInformation_xml – fundername: Swiss National Science Foundation
  grantid: 200021_165866
– fundername: ;
  grantid: 200021_165866
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c513t-974b723380087a2a9275416ca08eee8b9bc40bda5b462a9fd1ebdf0ecfd1f3d93
IEDL.DBID C6C
ISSN 0025-5610
1436-4646
IngestDate Sun Oct 26 04:00:04 EDT 2025
Thu Aug 21 17:47:58 EDT 2025
Wed Oct 01 14:10:23 EDT 2025
Thu Sep 25 00:45:45 EDT 2025
Mon Oct 20 16:52:01 EDT 2025
Thu Apr 03 06:54:00 EDT 2025
Wed Oct 01 02:58:28 EDT 2025
Thu Apr 24 23:05:51 EDT 2025
Fri Feb 21 02:47:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 68W20
Submodular function maximization
Approximation algorithms
90C27
68W25
Contention resolution schemes
Language English
License The Author(s) 2020.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-974b723380087a2a9275416ca08eee8b9bc40bda5b462a9fd1ebdf0ecfd1f3d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1800-7118
OpenAccessLink https://doi.org/10.1007/s10107-020-01570-6
PMID 35250094
PQID 2631891463
PQPubID 25307
PageCount 51
ParticipantIDs unpaywall_primary_10_1007_s10107_020_01570_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8863793
proquest_miscellaneous_2636887705
proquest_journals_2631891463
gale_infotracacademiconefile_A703947850
pubmed_primary_35250094
crossref_primary_10_1007_s10107_020_01570_6
crossref_citationtrail_10_1007_s10107_020_01570_6
springer_journals_10_1007_s10107_020_01570_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Netherlands
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationTitleAlternate Math Program
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References GuptaARothASchoenebeckGTalwarKSaberiAConstrained non-monotone submodular maximization: offline and secretary algorithmsInternet and Network Economics2010BerlinSpringer24625710.1007/978-3-642-17572-5_20
Feldman, M.: Maximization problems with submodular objective functions. Ph.D. thesis, Computer Science Department, Technion—Israel Institute of Technology, Israel (2013)
Buchbinder, N., Feldman, M.: Constrained submodular maximization via a non-symmetric technique (2016). https://arxiv.org/abs/1611.03253
Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 323–332 (2009)
BruggmannSZenklusenRSubmodular maximization through the lens of linear programmingMath. Oper. Res.201944412211244403244010.1287/moor.2018.0965
Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 575–584 (2010)
SchrijverACombinatorial Optimization, Polyhedra and Efficiency2003BerlinSpringer1041.90001
Guruganesh, G., Lee, E.: Understanding the correlation gap for matchings. In: Proceedings of the 37th Annual IARCS Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pp. 32:1–32:15 (2017)
Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 461–471 (2007)
Adamczyk, M.: Non-negative submodular stochastic probing via stochastic contention resolution schemes (2015). https://arxiv.org/abs/1508.07771
ChekuriCVondrákJZenklusenRSubmodular function maximization via the multilinear relaxation and contention resolution schemesSIAM J. Comput.201443618311879328128710.1137/110839655
SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper. Res. Lett.20043214143201710710.1016/S0167-6377(03)00062-2
Karp, R.M., Sipser, M.: Maximum matching in sparse random graphs. In: Proceedings of the 22nd Annual Symposium on Foundations of Computer Science (SFCS), pp. 364–375 (1981)
Gupta, A., Nagarajan, V.: A stochastic probing problem with applications. In: Proceedings of the 16th Conference on Integer Programming and Combinatorial Optimization (IPCO), pp. 205–216 (2013)
KorteBVygenJCombinatorial Optimization, Theory and Algorithms20186BerlinSpringer10.1007/978-3-662-56039-6
Wei, K., Iyer, R., Bilmes, J.: Fast multi-stage submodular maximization. In: Proceedings of the 31st International Conference on Machine Learning (ICML), pp. 1494–1502 (2014)
ConfortiMCornuéjolsGSubmodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theoremDiscrete Appl. Math.19847325127473689010.1016/0166-218X(84)90003-9
Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC), pp. 783–792 (2011)
Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 67–74 (2008)
Oveis Gharan, S., Vondrák, J.: Submodular maximization by simulated annealing. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1098–1116 (2011)
Feldman, M., Naor, J.S., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 570–579 (2011)
FisherMLNemhauserGLWolseyLAAn analysis of approximations for maximizing submodular set functions—IIMath. Program. Study19788738751036910.1007/BFb0121195
Adamczyk, M., Włodarczyk, M.: Random Order Contention Resolution Schemes. In: Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 790–801 (2018)
LehmannBLehmannDNisanNCombinatorial auctions with decreasing marginal utilitiesGames Econ. Behav.2006552270296222181210.1016/j.geb.2005.02.006
Mirzasoleiman, B., Karbasi, A., Sarkar, R., Krause, A.: Distributed submodular maximization: Identifying representative elements in massive data. In: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS), pp. 2049–2057 (2013)
AgeevAASviridenkoMPipage rounding: a new method of constructing algorithms with proven performance guaranteeJ. Combin. Optim.200483307328209226310.1023/B:JOCO.0000038913.96607.c2
Buchbinder, N., Feldman, M.: Submodular functions maximization problems. In: T.F. Gonzalez (ed.) Handbook of Approximation Algorithms and Metaheuristics, vol. 1, second edn., chap. 42, pp. 753–788. Chapman & Hall/CRC (2018)
Cygan, M., Grandoni, F., Mastrolilli, M.: How to sell hyperedges: The hypermatching assignment problem. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 342–351 (2013)
Feldman, M., Harshaw, C., Karbasi, A.: Greed is good: near-optimal submodular maximization via greedy optimization. In: Proceedings of the 30th Annual Conference on Learning Theory (COLT), pp. 758–784 (2017)
AgrawalSDingYSaberiAYeYPrice of correlations in stochastic optimizationOper. Res.2012601150162291166410.1287/opre.1110.1011
Balcan, M.F., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In: Proceedings of the 9th ACM Conference on Electronic Commerce (EC), pp. 50–59 (2008)
Mirrokni, V., Schapira, M., Vondrák, J.: Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions. In: Proceedings of the 9th ACM Conference on Electronic Commerce (EC), pp. 70–77 (2008)
Lee, E. and Singla, S.: Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities. In: Proceedings of the 26th Annual European Symposium on Algorithms (ESA), pp. 57:1–57:14 (2018)
Feldman, M., Naor, J.S., Schwartz, R.: Nonmonotone submodular maximization via a structural continuous greedy algorithm. In: Proceedings of the 38th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 342–353 (2011)
Feldman, M., Naor, J.S., Schwartz, R., Ward, J.: Improved approximations for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-exchange systems. In: Proceedings of the 19th Annual European Symposium on Algorithms (ESA), pp. 784–798 (2011)
LeeJMirrokniVSNagarajanVSviridenkoMMaximizing nonmonotone submodular functions under matroid or knapsack constraintsSIAM J. Discrete Math.201023420532078259497110.1137/090750020
SchrijverATheory of Linear and Integer Programming1998New YorkWiley0970.90052
VondrákJSymmetry and approximability of submodular maximization problemsSIAM J. Comput.2013421265304303312910.1137/110832318
Ward, J.: A (k+3)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k+3)/2$$\end{document}-approximation algorithm for monotone submodular k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-set packing and general k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-exchange systems. In: Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 42–53 (2012)
van der VaartAWAsymptotic Statistics1998CambridgeCambridge University Press10.1017/CBO9780511802256
CălinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.201140617401766286319310.1137/080733991
Ene, A., Nguye^~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\hat{\rm e\it }}$$\end{document}n, H.L.: Constrained submodular maximization: Beyond 1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/e$$\end{document}. In: Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 248–257 (2016)
LeeJSviridenkoMVondrákJSubmodular maximization over multiple matroids via generalized exchange propertiesMath. Oper. Res.2010354795806277751510.1287/moor.1100.0463
Hartline, J., Mirrokni, V.S., Sundararajan, M.: Optimal marketing strategies over social networks. In: Proceedings of the 17th International World Wide Web Conference (WWW), pp. 189–198 (2008)
NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions—IMath. Program.197814126529450386610.1007/BF01588971
Feldman, M., Svensson, O., Zenklusen, R.: Online contention resolution schemes. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1014–1033 (2016)
Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding for matroid polytopes and applications (2009). https://arxiv.org/abs/0909.4348
NemhauserGLWolseyLABest algorithms for approximating the maximum of a submodular set functionMath.
1570_CR22
1570_CR21
1570_CR24
G Călinescu (1570_CR9) 2011; 40
1570_CR23
A Kulik (1570_CR32) 2013; 38
1570_CR26
1570_CR28
1570_CR8
1570_CR7
1570_CR29
1570_CR5
J Lee (1570_CR36) 2010; 35
1570_CR2
1570_CR1
J Lee (1570_CR35) 2010; 23
A Schrijver (1570_CR44) 2003
1570_CR20
1570_CR11
1570_CR10
1570_CR12
1570_CR15
1570_CR17
1570_CR16
1570_CR19
GL Nemhauser (1570_CR41) 1978; 14
B Lehmann (1570_CR37) 2006; 55
GL Nemhauser (1570_CR40) 1978; 3
AA Ageev (1570_CR3) 2004; 8
1570_CR50
C Chekuri (1570_CR13) 2014; 43
M Conforti (1570_CR14) 1984; 7
A Schrijver (1570_CR43) 1998
1570_CR47
ML Fisher (1570_CR25) 1978; 8
1570_CR49
S Bruggmann (1570_CR6) 2019; 44
S Agrawal (1570_CR4) 2012; 60
1570_CR42
1570_CR33
U Feige (1570_CR18) 2011; 40
1570_CR34
1570_CR39
AW van der Vaart (1570_CR46) 1998
1570_CR38
M Sviridenko (1570_CR45) 2004; 32
B Korte (1570_CR31) 2018
A Gupta (1570_CR27) 2010
1570_CR30
J Vondrák (1570_CR48) 2013; 42
References_xml – reference: Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 323–332 (2009)
– reference: Feldman, M., Svensson, O., Zenklusen, R.: Online contention resolution schemes. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1014–1033 (2016)
– reference: LeeJSviridenkoMVondrákJSubmodular maximization over multiple matroids via generalized exchange propertiesMath. Oper. Res.2010354795806277751510.1287/moor.1100.0463
– reference: Feldman, M., Naor, J.S., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 570–579 (2011)
– reference: ChekuriCVondrákJZenklusenRSubmodular function maximization via the multilinear relaxation and contention resolution schemesSIAM J. Comput.201443618311879328128710.1137/110839655
– reference: Hartline, J., Mirrokni, V.S., Sundararajan, M.: Optimal marketing strategies over social networks. In: Proceedings of the 17th International World Wide Web Conference (WWW), pp. 189–198 (2008)
– reference: Ene, A., Nguye^~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\hat{\rm e\it }}$$\end{document}n, H.L.: Constrained submodular maximization: Beyond 1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/e$$\end{document}. In: Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 248–257 (2016)
– reference: NemhauserGLWolseyLABest algorithms for approximating the maximum of a submodular set functionMath. Oper. Res.19783317718850665610.1287/moor.3.3.177
– reference: Feldman, M.: Maximization problems with submodular objective functions. Ph.D. thesis, Computer Science Department, Technion—Israel Institute of Technology, Israel (2013)
– reference: van der VaartAWAsymptotic Statistics1998CambridgeCambridge University Press10.1017/CBO9780511802256
– reference: Mirrokni, V., Schapira, M., Vondrák, J.: Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions. In: Proceedings of the 9th ACM Conference on Electronic Commerce (EC), pp. 70–77 (2008)
– reference: Wei, K., Iyer, R., Bilmes, J.: Fast multi-stage submodular maximization. In: Proceedings of the 31st International Conference on Machine Learning (ICML), pp. 1494–1502 (2014)
– reference: Adamczyk, M., Włodarczyk, M.: Random Order Contention Resolution Schemes. In: Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 790–801 (2018)
– reference: LeeJMirrokniVSNagarajanVSviridenkoMMaximizing nonmonotone submodular functions under matroid or knapsack constraintsSIAM J. Discrete Math.201023420532078259497110.1137/090750020
– reference: Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 67–74 (2008)
– reference: VondrákJSymmetry and approximability of submodular maximization problemsSIAM J. Comput.2013421265304303312910.1137/110832318
– reference: Buchbinder, N., Feldman, M.: Submodular functions maximization problems. In: T.F. Gonzalez (ed.) Handbook of Approximation Algorithms and Metaheuristics, vol. 1, second edn., chap. 42, pp. 753–788. Chapman & Hall/CRC (2018)
– reference: Guruganesh, G., Lee, E.: Understanding the correlation gap for matchings. In: Proceedings of the 37th Annual IARCS Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pp. 32:1–32:15 (2017)
– reference: SchrijverACombinatorial Optimization, Polyhedra and Efficiency2003BerlinSpringer1041.90001
– reference: Cygan, M., Grandoni, F., Mastrolilli, M.: How to sell hyperedges: The hypermatching assignment problem. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 342–351 (2013)
– reference: CălinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.201140617401766286319310.1137/080733991
– reference: Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 575–584 (2010)
– reference: Feldman, M., Harshaw, C., Karbasi, A.: Greed is good: near-optimal submodular maximization via greedy optimization. In: Proceedings of the 30th Annual Conference on Learning Theory (COLT), pp. 758–784 (2017)
– reference: BruggmannSZenklusenRSubmodular maximization through the lens of linear programmingMath. Oper. Res.201944412211244403244010.1287/moor.2018.0965
– reference: Balcan, M.F., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In: Proceedings of the 9th ACM Conference on Electronic Commerce (EC), pp. 50–59 (2008)
– reference: Ward, J.: A (k+3)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k+3)/2$$\end{document}-approximation algorithm for monotone submodular k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-set packing and general k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-exchange systems. In: Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 42–53 (2012)
– reference: Feldman, M., Naor, J.S., Schwartz, R.: Nonmonotone submodular maximization via a structural continuous greedy algorithm. In: Proceedings of the 38th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 342–353 (2011)
– reference: SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper. Res. Lett.20043214143201710710.1016/S0167-6377(03)00062-2
– reference: Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding for matroid polytopes and applications (2009). https://arxiv.org/abs/0909.4348
– reference: AgrawalSDingYSaberiAYeYPrice of correlations in stochastic optimizationOper. Res.2012601150162291166410.1287/opre.1110.1011
– reference: Feldman, M., Naor, J.S., Schwartz, R., Ward, J.: Improved approximations for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-exchange systems. In: Proceedings of the 19th Annual European Symposium on Algorithms (ESA), pp. 784–798 (2011)
– reference: KorteBVygenJCombinatorial Optimization, Theory and Algorithms20186BerlinSpringer10.1007/978-3-662-56039-6
– reference: FisherMLNemhauserGLWolseyLAAn analysis of approximations for maximizing submodular set functions—IIMath. Program. Study19788738751036910.1007/BFb0121195
– reference: NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions—IMath. Program.197814126529450386610.1007/BF01588971
– reference: AgeevAASviridenkoMPipage rounding: a new method of constructing algorithms with proven performance guaranteeJ. Combin. Optim.200483307328209226310.1023/B:JOCO.0000038913.96607.c2
– reference: SchrijverATheory of Linear and Integer Programming1998New YorkWiley0970.90052
– reference: Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC), pp. 783–792 (2011)
– reference: ConfortiMCornuéjolsGSubmodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theoremDiscrete Appl. Math.19847325127473689010.1016/0166-218X(84)90003-9
– reference: Karp, R.M., Sipser, M.: Maximum matching in sparse random graphs. In: Proceedings of the 22nd Annual Symposium on Foundations of Computer Science (SFCS), pp. 364–375 (1981)
– reference: Adamczyk, M.: Non-negative submodular stochastic probing via stochastic contention resolution schemes (2015). https://arxiv.org/abs/1508.07771
– reference: FeigeUMirrokniVSVondrákJMaximizing non-monotone submodular functionsSIAM J. Comput.201140411331153282531210.1137/090779346
– reference: Mirzasoleiman, B., Karbasi, A., Sarkar, R., Krause, A.: Distributed submodular maximization: Identifying representative elements in massive data. In: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS), pp. 2049–2057 (2013)
– reference: LehmannBLehmannDNisanNCombinatorial auctions with decreasing marginal utilitiesGames Econ. Behav.2006552270296222181210.1016/j.geb.2005.02.006
– reference: Gupta, A., Nagarajan, V.: A stochastic probing problem with applications. In: Proceedings of the 16th Conference on Integer Programming and Combinatorial Optimization (IPCO), pp. 205–216 (2013)
– reference: Lee, E. and Singla, S.: Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities. In: Proceedings of the 26th Annual European Symposium on Algorithms (ESA), pp. 57:1–57:14 (2018)
– reference: Buchbinder, N., Feldman, M.: Constrained submodular maximization via a non-symmetric technique (2016). https://arxiv.org/abs/1611.03253
– reference: KulikAShachnaiHTamirTApproximations for monotone and non-monotone submodular maximization with knapsack constraintsMath. Oper. Res.2013384729739312591610.1287/moor.2013.0592
– reference: GuptaARothASchoenebeckGTalwarKSaberiAConstrained non-monotone submodular maximization: offline and secretary algorithmsInternet and Network Economics2010BerlinSpringer24625710.1007/978-3-642-17572-5_20
– reference: Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 461–471 (2007)
– reference: Oveis Gharan, S., Vondrák, J.: Submodular maximization by simulated annealing. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1098–1116 (2011)
– volume: 55
  start-page: 270
  issue: 2
  year: 2006
  ident: 1570_CR37
  publication-title: Games Econ. Behav.
  doi: 10.1016/j.geb.2005.02.006
– volume-title: Asymptotic Statistics
  year: 1998
  ident: 1570_CR46
  doi: 10.1017/CBO9780511802256
– volume: 43
  start-page: 1831
  issue: 6
  year: 2014
  ident: 1570_CR13
  publication-title: SIAM J. Comput.
  doi: 10.1137/110839655
– volume: 35
  start-page: 795
  issue: 4
  year: 2010
  ident: 1570_CR36
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1100.0463
– start-page: 246
  volume-title: Internet and Network Economics
  year: 2010
  ident: 1570_CR27
  doi: 10.1007/978-3-642-17572-5_20
– ident: 1570_CR28
– volume: 38
  start-page: 729
  issue: 4
  year: 2013
  ident: 1570_CR32
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2013.0592
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  ident: 1570_CR9
  publication-title: SIAM J. Comput.
  doi: 10.1137/080733991
– volume: 40
  start-page: 1133
  issue: 4
  year: 2011
  ident: 1570_CR18
  publication-title: SIAM J. Comput.
  doi: 10.1137/090779346
– volume-title: Theory of Linear and Integer Programming
  year: 1998
  ident: 1570_CR43
– ident: 1570_CR50
– ident: 1570_CR7
– ident: 1570_CR8
  doi: 10.1201/9781351236423-42
– volume: 42
  start-page: 265
  issue: 1
  year: 2013
  ident: 1570_CR48
  publication-title: SIAM J. Comput.
  doi: 10.1137/110832318
– volume: 8
  start-page: 307
  issue: 3
  year: 2004
  ident: 1570_CR3
  publication-title: J. Combin. Optim.
  doi: 10.1023/B:JOCO.0000038913.96607.c2
– ident: 1570_CR30
  doi: 10.1109/SFCS.1981.21
– ident: 1570_CR10
– ident: 1570_CR23
  doi: 10.1007/978-3-642-23719-5_66
– ident: 1570_CR42
  doi: 10.1137/1.9781611973082.83
– ident: 1570_CR2
  doi: 10.1109/FOCS.2018.00080
– ident: 1570_CR17
  doi: 10.1109/FOCS.2007.29
– ident: 1570_CR16
  doi: 10.1109/FOCS.2016.34
– volume-title: Combinatorial Optimization, Theory and Algorithms
  year: 2018
  ident: 1570_CR31
  doi: 10.1007/978-3-662-56039-6
– volume: 8
  start-page: 73
  year: 1978
  ident: 1570_CR25
  publication-title: Math. Program. Study
  doi: 10.1007/BFb0121195
– volume-title: Combinatorial Optimization, Polyhedra and Efficiency
  year: 2003
  ident: 1570_CR44
– ident: 1570_CR20
– ident: 1570_CR47
  doi: 10.1145/1374376.1374389
– ident: 1570_CR11
  doi: 10.1109/FOCS.2010.60
– volume: 7
  start-page: 251
  issue: 3
  year: 1984
  ident: 1570_CR14
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(84)90003-9
– ident: 1570_CR22
  doi: 10.1109/FOCS.2011.46
– volume: 44
  start-page: 1221
  issue: 4
  year: 2019
  ident: 1570_CR6
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2018.0965
– ident: 1570_CR12
  doi: 10.1145/1993636.1993740
– ident: 1570_CR15
  doi: 10.1137/1.9781611973105.25
– ident: 1570_CR49
– ident: 1570_CR29
  doi: 10.1145/1367497.1367524
– volume: 3
  start-page: 177
  issue: 3
  year: 1978
  ident: 1570_CR40
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.3.3.177
– ident: 1570_CR33
– ident: 1570_CR38
  doi: 10.1145/1386790.1386805
– ident: 1570_CR39
– ident: 1570_CR1
– ident: 1570_CR21
  doi: 10.1007/978-3-642-22006-7_29
– ident: 1570_CR5
  doi: 10.1145/1386790.1386802
– volume: 23
  start-page: 2053
  issue: 4
  year: 2010
  ident: 1570_CR35
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/090750020
– ident: 1570_CR24
  doi: 10.1137/1.9781611974331.ch72
– volume: 60
  start-page: 150
  issue: 1
  year: 2012
  ident: 1570_CR4
  publication-title: Oper. Res.
  doi: 10.1287/opre.1110.1011
– ident: 1570_CR26
  doi: 10.1007/978-3-642-36694-9_18
– ident: 1570_CR34
  doi: 10.1145/1536414.1536459
– ident: 1570_CR19
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  ident: 1570_CR45
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(03)00062-2
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: 1570_CR41
  publication-title: Math. Program.
  doi: 10.1007/BF01588971
SSID ssj0001388
Score 2.4097645
Snippet Relaxation and rounding approaches became a standard and extremely versatile tool for constrained submodular function maximization. One of the most common...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 795
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Combinatorics
Constraints
Full Length Paper
Lower bounds
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Maximization
Numerical Analysis
Optimization
Randomization
Rounding
Theoretical
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6N7gH2wG9YYCAjIfHA0iV2YiePFTBNSJt4oNJ4iuzE1iq6JKLp0PjruUuTrK3QBOKtkS-uc_l8vovvPgO8dRptHC-Ub4PQ-ZFywjcpEV46rax0RsaWPuifnsmTafT5PD7fgY99LUyb7d5vSa5qGoilqWyO6sIdrRW-hfSJjVNSVawwABpj8x3YlTF65CPYnZ59mXzrT2slF6EtMhLSj2Qku9qZP3e0sT5tW-m1ZWo7hXLYR92Du8uy1tc_9Xy-tlQdPwDbP-QqQ-X7eNmYcf5ri__xf7XwEO53viybrMD3CHZs-Rj21hgO8ep0oIVdPIF8UrIKbdQl3oXwr4gInHX_ifhgGPp3M4Fh0G0vLUOXmplZTfhuLMN-2tTPBbuaaaZZXc2vL2yBmmG0w1FXs7J5CtPjT18_nPjdKQ9-Hoei8TGgMYpjpEzseJrrlKsYvcRcB4m1NjGpyaPAFDo2kcRWV4TWFC6wOf5yokjFMxiVONx9YCGKKRGatFAcYadSbqQKEu2UELk23IOwf7dZ3lGg00kc8-yGvJlUmqFKs1almfTg_XBPvSIAuVX6HUEmI-uAPee6K3LA8RHPVjZBA5tGKokDDw56VGWd2VhkXKKJTXHxEh68GZpxwtMuji5ttWxlJK4MKog9eL4C4TAw4ralXFEP1AY8BwEiE99sKWcXLal4kkiBttqDwx53N8O67XkPB7D_hXpe_Jv4S7jHqdqkTZI_gFHzY2lfoQ_YmNfdFP8NJyxSYQ
  priority: 102
  providerName: Unpaywall
Title An optimal monotone contention resolution scheme for bipartite matchings via a polyhedral viewpoint
URI https://link.springer.com/article/10.1007/s10107-020-01570-6
https://www.ncbi.nlm.nih.gov/pubmed/35250094
https://www.proquest.com/docview/2631891463
https://www.proquest.com/docview/2636887705
https://pubmed.ncbi.nlm.nih.gov/PMC8863793
https://link.springer.com/content/pdf/10.1007/s10107-020-01570-6.pdf
UnpaywallVersion publishedVersion
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1436-4646
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Business Source Ultimate
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241028
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: AKVCP
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: AFBBN
  dateStart: 19711201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 1436-4646
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_B9gB7QIyPEdgmIyHxwCLFdmInj9lYN4E28UCl7SmyE0er1CURTUH777lL06ytpgle-mXHuubO95G7-xngU2lQx4lC-y7gpR_qUvo2IcDL0minSqsiRw_0Ly7V-Tj8dhVd9TA51Auzkb-nFjdOD9MElU9FGkOdp7CNRkp1iVl1MmhdLuN4eTwr-QR9g8zDa6wZoU1VvGKLNuskh2TpDjybV425-2Om0xV7NHoJL3pHkqULzu_CE1e9gp0VeEH8djFgss5eQ55WrEYFcYtXoezVhMLNqFJ9UfDIMO7uxZBhxOtuHUN_ltlJQ8LVOobrdHWXM_Z7YphhTT29u3EFUswovdDUk6p9A-PR6c-Tc78_YsHPIy5bH6MJqwWGqQRNZ4RJhI7QRctNEDvnYpvYPAxsYSIbKhwtC-5sUQYux0-lLBL5FrYqJPcdMI7TtOQ2KbRAnutEWKWD2JRaytxY4QFf3vMs7_HH6RiMaXaPnEx8ypBPWcenTHnwZbimWaBvPDr7M7Eyo62JK-em7zBA-gjkKktRuyWhjqPAg_0lt7N-z84ylCkeJ2g5pAcfh2HcbZRCMZWr590chWpZB5EHewvhGAgjYFkq1PRAr4nNMIGQvNdHqslNh-gdx0qiovTgaClg92Q99n-PBiH8h9vz_v9W_wDPBbV6dBXq-7DV_pq7A3TAWnsI2-nx1-MRvZ9dfz897HYivo5Fir-NL3-k138BBLgrew
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH6C7jB24PdYYICRkDiwTImdxMmxQhuFrTut0jhZduJoFV0SrSlo_PW8lyZZW6GJ3VrZseyXz5_94vc-A3zMNXIcz6RrPT93A5kL1yQkeJlraaPcRKGlD_rjs2g0Cb5fhBdtUti8i3bvjiQbpl5JdvPpsxqnQKpQotPzELYCdFD4ALaGX3-cHPUM7Is47q5qpf1Bmyzz71bWFqRNWl5ZlzZjJvuD0x3YXhSVvvmtZ7OVten4CUy6US1DUn4eLmpzmP7ZEHy877CfwuN2s8qGS3Q9gwe2eA47KxKG-G_c677OX0A6LFiJJHSFTyG-S1L6ZhQNvwyqZOjbt1Bn6FXbK8twz8zMtCIA15ZhO01s55z9mmqmWVXObi5thpZgdIRRldOifgmT46PzLyO3vcbBTUNf1C56LEZydIVJ_k5znXAZ4jYw1V5srY1NYtLAM5kOTRBhaZ751mS5Z1P8lYssEbswKLC7e8B8rCaFb5JMcsSVTLiJpBfrXAqRasMd8Lt3qdJW45yu2pipW3VmMqdCc6rGnCpy4HP_TLVU-Liz9ieCiKLpjy2nus1iwP6RkJYaIoMmgYxDz4H9DkWq5YW54hFyaIKrk3DgQ1-MM5qOaXRhy0VTJ0Lql17owKsl6PqOkXgtBYM6INfg2FcgtfD1kmJ62aiGx3EkkIwdOOhwdtutu8Z70IP7P8zz-n6tv4ft0fn4VJ1-Ozt5A484pZY0EfH7MKivF_Ytbvhq866d338Bpw1J0g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkYAeEK9CoICRkDjQqImd2MlxtbAqj1YcqNSbZSe2utI2idgsqP-emWyS7laoglsiO9bEM56HPfMZ4J03qON4qUIXxT5MlBehzQnw0hvlpLcydbShf3wij06TL2fp2UYVf5ftPhxJrmsaCKWpag-b0h9uFL7FtMXGKakqVRgA3YY7CVo3usNgKqejLo5Flg2XtpKn0JfN_H2MLdN0XUFvWKjr2ZPjEeou3FtVjbn8bRaLDSs1ewgPeveSTdby8Ahuueox7G6ADuLb8YjUunwCxaRiNaqNC_wKJbImbG7WTwayjGE03gsnwzjYXTiGXi6z84ZErnUMx-myMZfs19www5p6cXnuSqSY0aFDU8-r9imczj79mB6F_cULYZHGog0xxrCKY_BKgHWGm5yrFB23wkSZcy6zuS2SyJYmtYnEVl_GzpY-cgU-eVHmYg92KiT3ObAYuykR27xUHCVB5dxKFWXGKyEKY3kA8TDnuuhRyelyjIW-wlMmPmnkk-74pGUAH8ZvmjUmx4293xMrNS1YHLkwfd0B0kfQV3qCOi9PVJZGAewP3Nb9Sl5qLlHr5WhPRABvx2Zcg3SwYipXr7o-EpW1itIAnq2FYySM4GYpfTMAtSU2YwfC995uqebnHc53lkmB6jOAg0HArsi66X8PRiH8h-l58X-jv4G73z_O9LfPJ19fwn1OtSBdCvs-7LQ_V-4Vemitfd0twj_TDzES
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6N7gH2wG9YYCAjIfHA0iV2YiePFTBNSJt4oNJ4iuzE1iq6JKLp0PjruUuTrK3QBOKtkS-uc_l8vovvPgO8dRptHC-Ub4PQ-ZFywjcpEV46rax0RsaWPuifnsmTafT5PD7fgY99LUyb7d5vSa5qGoilqWyO6sIdrRW-hfSJjVNSVawwABpj8x3YlTF65CPYnZ59mXzrT2slF6EtMhLSj2Qku9qZP3e0sT5tW-m1ZWo7hXLYR92Du8uy1tc_9Xy-tlQdPwDbP-QqQ-X7eNmYcf5ri__xf7XwEO53viybrMD3CHZs-Rj21hgO8ep0oIVdPIF8UrIKbdQl3oXwr4gInHX_ifhgGPp3M4Fh0G0vLUOXmplZTfhuLMN-2tTPBbuaaaZZXc2vL2yBmmG0w1FXs7J5CtPjT18_nPjdKQ9-Hoei8TGgMYpjpEzseJrrlKsYvcRcB4m1NjGpyaPAFDo2kcRWV4TWFC6wOf5yokjFMxiVONx9YCGKKRGatFAcYadSbqQKEu2UELk23IOwf7dZ3lGg00kc8-yGvJlUmqFKs1almfTg_XBPvSIAuVX6HUEmI-uAPee6K3LA8RHPVjZBA5tGKokDDw56VGWd2VhkXKKJTXHxEh68GZpxwtMuji5ttWxlJK4MKog9eL4C4TAw4ralXFEP1AY8BwEiE99sKWcXLal4kkiBttqDwx53N8O67XkPB7D_hXpe_Jv4S7jHqdqkTZI_gFHzY2lfoQ_YmNfdFP8NJyxSYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimal+monotone+contention+resolution+scheme+for+bipartite+matchings+via+a+polyhedral+viewpoint&rft.jtitle=Mathematical+programming&rft.au=Bruggmann%2C+Simon&rft.au=Zenklusen%2C+Rico&rft.date=2022-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=191&rft.issue=2&rft.spage=795&rft.epage=845&rft_id=info:doi/10.1007%2Fs10107-020-01570-6&rft_id=info%3Apmid%2F35250094&rft.externalDocID=PMC8863793
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon