An optimal monotone contention resolution scheme for bipartite matchings via a polyhedral viewpoint
Relaxation and rounding approaches became a standard and extremely versatile tool for constrained submodular function maximization. One of the most common rounding techniques in this context are contention resolution schemes. Such schemes round a fractional point by first rounding each coordinate in...
Saved in:
| Published in | Mathematical programming Vol. 191; no. 2; pp. 795 - 845 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2022
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0025-5610 1436-4646 1436-4646 |
| DOI | 10.1007/s10107-020-01570-6 |
Cover
| Abstract | Relaxation and rounding approaches became a standard and extremely versatile tool for constrained submodular function maximization. One of the most common rounding techniques in this context are contention resolution schemes. Such schemes round a fractional point by first rounding each coordinate independently, and then dropping some elements to reach a feasible set. Also the second step, where elements are dropped, is typically randomized. This leads to an additional source of randomization within the procedure, which can complicate the analysis. We suggest a different, polyhedral viewpoint to design contention resolution schemes, which avoids to deal explicitly with the randomization in the second step. This is achieved by focusing on the marginals of a dropping procedure. Apart from avoiding one source of randomization, our viewpoint allows for employing polyhedral techniques. Both can significantly simplify the construction and analysis of contention resolution schemes. We show how, through our framework, one can obtain an optimal monotone contention resolution scheme for bipartite matchings, which has a balancedness of 0.4762. So far, only very few results are known about optimality of monotone contention resolution schemes. Our contention resolution scheme for the bipartite case also improves the lower bound on the correlation gap for bipartite matchings. Furthermore, we derive a monotone contention resolution scheme for matchings that significantly improves over the previously best one. More precisely, we obtain a balancedness of 0.4326, improving on a prior 0.1997-balanced scheme. At the same time, our scheme implies that the currently best lower bound on the correlation gap for matchings is not tight. Our results lead to improved approximation factors for various constrained submodular function maximization problems over a combination of matching constraints with further constraints. |
|---|---|
| AbstractList | Relaxation and rounding approaches became a standard and extremely versatile tool for constrained submodular function maximization. One of the most common rounding techniques in this context are contention resolution schemes. Such schemes round a fractional point by first rounding each coordinate independently, and then dropping some elements to reach a feasible set. Also the second step, where elements are dropped, is typically randomized. This leads to an additional source of randomization within the procedure, which can complicate the analysis. We suggest a different, polyhedral viewpoint to design contention resolution schemes, which avoids to deal explicitly with the randomization in the second step. This is achieved by focusing on the marginals of a dropping procedure. Apart from avoiding one source of randomization, our viewpoint allows for employing polyhedral techniques. Both can significantly simplify the construction and analysis of contention resolution schemes. We show how, through our framework, one can obtain an optimal monotone contention resolution scheme for bipartite matchings, which has a balancedness of 0.4762. So far, only very few results are known about optimality of monotone contention resolution schemes. Our contention resolution scheme for the bipartite case also improves the lower bound on the correlation gap for bipartite matchings. Furthermore, we derive a monotone contention resolution scheme for matchings that significantly improves over the previously best one. More precisely, we obtain a balancedness of 0.4326, improving on a prior 0.1997-balanced scheme. At the same time, our scheme implies that the currently best lower bound on the correlation gap for matchings is not tight. Our results lead to improved approximation factors for various constrained submodular function maximization problems over a combination of matching constraints with further constraints. Relaxation and rounding approaches became a standard and extremely versatile tool for constrained submodular function maximization. One of the most common rounding techniques in this context are contention resolution schemes. Such schemes round a fractional point by first rounding each coordinate independently, and then dropping some elements to reach a feasible set. Also the second step, where elements are dropped, is typically randomized. This leads to an additional source of randomization within the procedure, which can complicate the analysis. We suggest a different, polyhedral viewpoint to design contention resolution schemes, which avoids to deal explicitly with the randomization in the second step. This is achieved by focusing on the marginals of a dropping procedure. Apart from avoiding one source of randomization, our viewpoint allows for employing polyhedral techniques. Both can significantly simplify the construction and analysis of contention resolution schemes. We show how, through our framework, one can obtain an optimal monotone contention resolution scheme for bipartite matchings, which has a balancedness of 0.4762. So far, only very few results are known about optimality of monotone contention resolution schemes. Our contention resolution scheme for the bipartite case also improves the lower bound on the correlation gap for bipartite matchings. Furthermore, we derive a monotone contention resolution scheme for matchings that significantly improves over the previously best one. More precisely, we obtain a balancedness of 0.4326, improving on a prior 0.1997-balanced scheme. At the same time, our scheme implies that the currently best lower bound on the correlation gap for matchings is not tight. Our results lead to improved approximation factors for various constrained submodular function maximization problems over a combination of matching constraints with further constraints.Relaxation and rounding approaches became a standard and extremely versatile tool for constrained submodular function maximization. One of the most common rounding techniques in this context are contention resolution schemes. Such schemes round a fractional point by first rounding each coordinate independently, and then dropping some elements to reach a feasible set. Also the second step, where elements are dropped, is typically randomized. This leads to an additional source of randomization within the procedure, which can complicate the analysis. We suggest a different, polyhedral viewpoint to design contention resolution schemes, which avoids to deal explicitly with the randomization in the second step. This is achieved by focusing on the marginals of a dropping procedure. Apart from avoiding one source of randomization, our viewpoint allows for employing polyhedral techniques. Both can significantly simplify the construction and analysis of contention resolution schemes. We show how, through our framework, one can obtain an optimal monotone contention resolution scheme for bipartite matchings, which has a balancedness of 0.4762. So far, only very few results are known about optimality of monotone contention resolution schemes. Our contention resolution scheme for the bipartite case also improves the lower bound on the correlation gap for bipartite matchings. Furthermore, we derive a monotone contention resolution scheme for matchings that significantly improves over the previously best one. More precisely, we obtain a balancedness of 0.4326, improving on a prior 0.1997-balanced scheme. At the same time, our scheme implies that the currently best lower bound on the correlation gap for matchings is not tight. Our results lead to improved approximation factors for various constrained submodular function maximization problems over a combination of matching constraints with further constraints. |
| Audience | Academic |
| Author | Bruggmann, Simon Zenklusen, Rico |
| Author_xml | – sequence: 1 givenname: Simon orcidid: 0000-0002-1800-7118 surname: Bruggmann fullname: Bruggmann, Simon email: simon.bruggmann@ifor.math.ethz.ch organization: ETH Zurich – sequence: 2 givenname: Rico surname: Zenklusen fullname: Zenklusen, Rico organization: ETH Zurich |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35250094$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAQtVAR3Rb-AAcUiQuXlHGc2M4FaVXxJVXiAmfLcSa7rhI72M5W--_xdpcCPVTIB488772ZeeMLcua8Q0JeU7iiAOJ9pEBBlFBBCbQRUPJnZEVrxsua1_yMrACqpmw4hXNyEeMtAFAm5QtyzpqqAWjrFTFrV_g52UmPxeSdT7lEYbxL6JL1rggY_bjch9FsccJi8KHo7KxDsgmLSSeztW4Ti53VhS5mP-632Icst7N4N3vr0kvyfNBjxFen-5L8-PTx-_WX8ubb56_X65vSNJSlshV1JyrGJIAUutJtJZqacqNBIqLs2s7U0PW66Wqes0NPsesHQJOjgfUtuyTsqLu4We_v9DiqOeTJwl5RUAfL1NEylS1T95Ypnlkfjqx56SbsTR48d__A9NqqfzPObtXG75SUnImWZYF3J4Hgfy4Yk5psNDiO2qFfoqo441IKAU2Gvn0EvfVLcNmUA4rKltb8IHh1RG30iMq6wee6Jp8eJ5t3g4PN72sBrK2FbCAT3vw9wkPvv9ecAdURYIKPMeDwf8bIRyRjkz58hdyOHZ-mnjYRcx23wfBnzidYvwCGNN2Q |
| CitedBy_id | crossref_primary_10_1007_s10107_024_02178_w crossref_primary_10_1287_opre_2023_0339 crossref_primary_10_1002_rsa_21086 crossref_primary_10_1287_moor_2022_0256 crossref_primary_10_1287_moor_2023_1388 |
| Cites_doi | 10.1016/j.geb.2005.02.006 10.1017/CBO9780511802256 10.1137/110839655 10.1287/moor.1100.0463 10.1007/978-3-642-17572-5_20 10.1287/moor.2013.0592 10.1137/080733991 10.1137/090779346 10.1201/9781351236423-42 10.1137/110832318 10.1023/B:JOCO.0000038913.96607.c2 10.1109/SFCS.1981.21 10.1007/978-3-642-23719-5_66 10.1137/1.9781611973082.83 10.1109/FOCS.2018.00080 10.1109/FOCS.2007.29 10.1109/FOCS.2016.34 10.1007/978-3-662-56039-6 10.1007/BFb0121195 10.1145/1374376.1374389 10.1109/FOCS.2010.60 10.1016/0166-218X(84)90003-9 10.1109/FOCS.2011.46 10.1287/moor.2018.0965 10.1145/1993636.1993740 10.1137/1.9781611973105.25 10.1145/1367497.1367524 10.1287/moor.3.3.177 10.1145/1386790.1386805 10.1007/978-3-642-22006-7_29 10.1145/1386790.1386802 10.1137/090750020 10.1137/1.9781611974331.ch72 10.1287/opre.1110.1011 10.1007/978-3-642-36694-9_18 10.1145/1536414.1536459 10.1016/S0167-6377(03)00062-2 10.1007/BF01588971 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. COPYRIGHT 2022 Springer The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY |
| DOI | 10.1007/s10107-020-01570-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| EndPage | 845 |
| ExternalDocumentID | 10.1007/s10107-020-01570-6 PMC8863793 A703947850 35250094 10_1007_s10107_020_01570_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Swiss National Science Foundation grantid: 200021_165866 – fundername: ; grantid: 200021_165866 |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO NPM 7SC 8FD JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c513t-974b723380087a2a9275416ca08eee8b9bc40bda5b462a9fd1ebdf0ecfd1f3d93 |
| IEDL.DBID | C6C |
| ISSN | 0025-5610 1436-4646 |
| IngestDate | Sun Oct 26 04:00:04 EDT 2025 Thu Aug 21 17:47:58 EDT 2025 Wed Oct 01 14:10:23 EDT 2025 Thu Sep 25 00:45:45 EDT 2025 Mon Oct 20 16:52:01 EDT 2025 Thu Apr 03 06:54:00 EDT 2025 Wed Oct 01 02:58:28 EDT 2025 Thu Apr 24 23:05:51 EDT 2025 Fri Feb 21 02:47:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | 68W20 Submodular function maximization Approximation algorithms 90C27 68W25 Contention resolution schemes |
| Language | English |
| License | The Author(s) 2020. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c513t-974b723380087a2a9275416ca08eee8b9bc40bda5b462a9fd1ebdf0ecfd1f3d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1800-7118 |
| OpenAccessLink | https://doi.org/10.1007/s10107-020-01570-6 |
| PMID | 35250094 |
| PQID | 2631891463 |
| PQPubID | 25307 |
| PageCount | 51 |
| ParticipantIDs | unpaywall_primary_10_1007_s10107_020_01570_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8863793 proquest_miscellaneous_2636887705 proquest_journals_2631891463 gale_infotracacademiconefile_A703947850 pubmed_primary_35250094 crossref_primary_10_1007_s10107_020_01570_6 crossref_citationtrail_10_1007_s10107_020_01570_6 springer_journals_10_1007_s10107_020_01570_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Netherlands – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationTitleAlternate | Math Program |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
| References | GuptaARothASchoenebeckGTalwarKSaberiAConstrained non-monotone submodular maximization: offline and secretary algorithmsInternet and Network Economics2010BerlinSpringer24625710.1007/978-3-642-17572-5_20 Feldman, M.: Maximization problems with submodular objective functions. Ph.D. thesis, Computer Science Department, Technion—Israel Institute of Technology, Israel (2013) Buchbinder, N., Feldman, M.: Constrained submodular maximization via a non-symmetric technique (2016). https://arxiv.org/abs/1611.03253 Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 323–332 (2009) BruggmannSZenklusenRSubmodular maximization through the lens of linear programmingMath. Oper. Res.201944412211244403244010.1287/moor.2018.0965 Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 575–584 (2010) SchrijverACombinatorial Optimization, Polyhedra and Efficiency2003BerlinSpringer1041.90001 Guruganesh, G., Lee, E.: Understanding the correlation gap for matchings. In: Proceedings of the 37th Annual IARCS Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pp. 32:1–32:15 (2017) Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 461–471 (2007) Adamczyk, M.: Non-negative submodular stochastic probing via stochastic contention resolution schemes (2015). https://arxiv.org/abs/1508.07771 ChekuriCVondrákJZenklusenRSubmodular function maximization via the multilinear relaxation and contention resolution schemesSIAM J. Comput.201443618311879328128710.1137/110839655 SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper. Res. Lett.20043214143201710710.1016/S0167-6377(03)00062-2 Karp, R.M., Sipser, M.: Maximum matching in sparse random graphs. In: Proceedings of the 22nd Annual Symposium on Foundations of Computer Science (SFCS), pp. 364–375 (1981) Gupta, A., Nagarajan, V.: A stochastic probing problem with applications. In: Proceedings of the 16th Conference on Integer Programming and Combinatorial Optimization (IPCO), pp. 205–216 (2013) KorteBVygenJCombinatorial Optimization, Theory and Algorithms20186BerlinSpringer10.1007/978-3-662-56039-6 Wei, K., Iyer, R., Bilmes, J.: Fast multi-stage submodular maximization. In: Proceedings of the 31st International Conference on Machine Learning (ICML), pp. 1494–1502 (2014) ConfortiMCornuéjolsGSubmodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theoremDiscrete Appl. Math.19847325127473689010.1016/0166-218X(84)90003-9 Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC), pp. 783–792 (2011) Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 67–74 (2008) Oveis Gharan, S., Vondrák, J.: Submodular maximization by simulated annealing. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1098–1116 (2011) Feldman, M., Naor, J.S., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 570–579 (2011) FisherMLNemhauserGLWolseyLAAn analysis of approximations for maximizing submodular set functions—IIMath. Program. Study19788738751036910.1007/BFb0121195 Adamczyk, M., Włodarczyk, M.: Random Order Contention Resolution Schemes. In: Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 790–801 (2018) LehmannBLehmannDNisanNCombinatorial auctions with decreasing marginal utilitiesGames Econ. Behav.2006552270296222181210.1016/j.geb.2005.02.006 Mirzasoleiman, B., Karbasi, A., Sarkar, R., Krause, A.: Distributed submodular maximization: Identifying representative elements in massive data. In: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS), pp. 2049–2057 (2013) AgeevAASviridenkoMPipage rounding: a new method of constructing algorithms with proven performance guaranteeJ. Combin. Optim.200483307328209226310.1023/B:JOCO.0000038913.96607.c2 Buchbinder, N., Feldman, M.: Submodular functions maximization problems. In: T.F. Gonzalez (ed.) Handbook of Approximation Algorithms and Metaheuristics, vol. 1, second edn., chap. 42, pp. 753–788. Chapman & Hall/CRC (2018) Cygan, M., Grandoni, F., Mastrolilli, M.: How to sell hyperedges: The hypermatching assignment problem. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 342–351 (2013) Feldman, M., Harshaw, C., Karbasi, A.: Greed is good: near-optimal submodular maximization via greedy optimization. In: Proceedings of the 30th Annual Conference on Learning Theory (COLT), pp. 758–784 (2017) AgrawalSDingYSaberiAYeYPrice of correlations in stochastic optimizationOper. Res.2012601150162291166410.1287/opre.1110.1011 Balcan, M.F., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In: Proceedings of the 9th ACM Conference on Electronic Commerce (EC), pp. 50–59 (2008) Mirrokni, V., Schapira, M., Vondrák, J.: Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions. In: Proceedings of the 9th ACM Conference on Electronic Commerce (EC), pp. 70–77 (2008) Lee, E. and Singla, S.: Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities. In: Proceedings of the 26th Annual European Symposium on Algorithms (ESA), pp. 57:1–57:14 (2018) Feldman, M., Naor, J.S., Schwartz, R.: Nonmonotone submodular maximization via a structural continuous greedy algorithm. In: Proceedings of the 38th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 342–353 (2011) Feldman, M., Naor, J.S., Schwartz, R., Ward, J.: Improved approximations for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-exchange systems. In: Proceedings of the 19th Annual European Symposium on Algorithms (ESA), pp. 784–798 (2011) LeeJMirrokniVSNagarajanVSviridenkoMMaximizing nonmonotone submodular functions under matroid or knapsack constraintsSIAM J. Discrete Math.201023420532078259497110.1137/090750020 SchrijverATheory of Linear and Integer Programming1998New YorkWiley0970.90052 VondrákJSymmetry and approximability of submodular maximization problemsSIAM J. Comput.2013421265304303312910.1137/110832318 Ward, J.: A (k+3)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k+3)/2$$\end{document}-approximation algorithm for monotone submodular k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-set packing and general k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-exchange systems. In: Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 42–53 (2012) van der VaartAWAsymptotic Statistics1998CambridgeCambridge University Press10.1017/CBO9780511802256 CălinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.201140617401766286319310.1137/080733991 Ene, A., Nguye^~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\hat{\rm e\it }}$$\end{document}n, H.L.: Constrained submodular maximization: Beyond 1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/e$$\end{document}. In: Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 248–257 (2016) LeeJSviridenkoMVondrákJSubmodular maximization over multiple matroids via generalized exchange propertiesMath. Oper. Res.2010354795806277751510.1287/moor.1100.0463 Hartline, J., Mirrokni, V.S., Sundararajan, M.: Optimal marketing strategies over social networks. In: Proceedings of the 17th International World Wide Web Conference (WWW), pp. 189–198 (2008) NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions—IMath. Program.197814126529450386610.1007/BF01588971 Feldman, M., Svensson, O., Zenklusen, R.: Online contention resolution schemes. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1014–1033 (2016) Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding for matroid polytopes and applications (2009). https://arxiv.org/abs/0909.4348 NemhauserGLWolseyLABest algorithms for approximating the maximum of a submodular set functionMath. 1570_CR22 1570_CR21 1570_CR24 G Călinescu (1570_CR9) 2011; 40 1570_CR23 A Kulik (1570_CR32) 2013; 38 1570_CR26 1570_CR28 1570_CR8 1570_CR7 1570_CR29 1570_CR5 J Lee (1570_CR36) 2010; 35 1570_CR2 1570_CR1 J Lee (1570_CR35) 2010; 23 A Schrijver (1570_CR44) 2003 1570_CR20 1570_CR11 1570_CR10 1570_CR12 1570_CR15 1570_CR17 1570_CR16 1570_CR19 GL Nemhauser (1570_CR41) 1978; 14 B Lehmann (1570_CR37) 2006; 55 GL Nemhauser (1570_CR40) 1978; 3 AA Ageev (1570_CR3) 2004; 8 1570_CR50 C Chekuri (1570_CR13) 2014; 43 M Conforti (1570_CR14) 1984; 7 A Schrijver (1570_CR43) 1998 1570_CR47 ML Fisher (1570_CR25) 1978; 8 1570_CR49 S Bruggmann (1570_CR6) 2019; 44 S Agrawal (1570_CR4) 2012; 60 1570_CR42 1570_CR33 U Feige (1570_CR18) 2011; 40 1570_CR34 1570_CR39 AW van der Vaart (1570_CR46) 1998 1570_CR38 M Sviridenko (1570_CR45) 2004; 32 B Korte (1570_CR31) 2018 A Gupta (1570_CR27) 2010 1570_CR30 J Vondrák (1570_CR48) 2013; 42 |
| References_xml | – reference: Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Non-monotone submodular maximization under matroid and knapsack constraints. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 323–332 (2009) – reference: Feldman, M., Svensson, O., Zenklusen, R.: Online contention resolution schemes. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1014–1033 (2016) – reference: LeeJSviridenkoMVondrákJSubmodular maximization over multiple matroids via generalized exchange propertiesMath. Oper. Res.2010354795806277751510.1287/moor.1100.0463 – reference: Feldman, M., Naor, J.S., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 570–579 (2011) – reference: ChekuriCVondrákJZenklusenRSubmodular function maximization via the multilinear relaxation and contention resolution schemesSIAM J. Comput.201443618311879328128710.1137/110839655 – reference: Hartline, J., Mirrokni, V.S., Sundararajan, M.: Optimal marketing strategies over social networks. In: Proceedings of the 17th International World Wide Web Conference (WWW), pp. 189–198 (2008) – reference: Ene, A., Nguye^~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\hat{\rm e\it }}$$\end{document}n, H.L.: Constrained submodular maximization: Beyond 1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/e$$\end{document}. In: Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 248–257 (2016) – reference: NemhauserGLWolseyLABest algorithms for approximating the maximum of a submodular set functionMath. Oper. Res.19783317718850665610.1287/moor.3.3.177 – reference: Feldman, M.: Maximization problems with submodular objective functions. Ph.D. thesis, Computer Science Department, Technion—Israel Institute of Technology, Israel (2013) – reference: van der VaartAWAsymptotic Statistics1998CambridgeCambridge University Press10.1017/CBO9780511802256 – reference: Mirrokni, V., Schapira, M., Vondrák, J.: Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions. In: Proceedings of the 9th ACM Conference on Electronic Commerce (EC), pp. 70–77 (2008) – reference: Wei, K., Iyer, R., Bilmes, J.: Fast multi-stage submodular maximization. In: Proceedings of the 31st International Conference on Machine Learning (ICML), pp. 1494–1502 (2014) – reference: Adamczyk, M., Włodarczyk, M.: Random Order Contention Resolution Schemes. In: Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 790–801 (2018) – reference: LeeJMirrokniVSNagarajanVSviridenkoMMaximizing nonmonotone submodular functions under matroid or knapsack constraintsSIAM J. Discrete Math.201023420532078259497110.1137/090750020 – reference: Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 67–74 (2008) – reference: VondrákJSymmetry and approximability of submodular maximization problemsSIAM J. Comput.2013421265304303312910.1137/110832318 – reference: Buchbinder, N., Feldman, M.: Submodular functions maximization problems. In: T.F. Gonzalez (ed.) Handbook of Approximation Algorithms and Metaheuristics, vol. 1, second edn., chap. 42, pp. 753–788. Chapman & Hall/CRC (2018) – reference: Guruganesh, G., Lee, E.: Understanding the correlation gap for matchings. In: Proceedings of the 37th Annual IARCS Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pp. 32:1–32:15 (2017) – reference: SchrijverACombinatorial Optimization, Polyhedra and Efficiency2003BerlinSpringer1041.90001 – reference: Cygan, M., Grandoni, F., Mastrolilli, M.: How to sell hyperedges: The hypermatching assignment problem. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 342–351 (2013) – reference: CălinescuGChekuriCPálMVondrákJMaximizing a monotone submodular function subject to a matroid constraintSIAM J. Comput.201140617401766286319310.1137/080733991 – reference: Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 575–584 (2010) – reference: Feldman, M., Harshaw, C., Karbasi, A.: Greed is good: near-optimal submodular maximization via greedy optimization. In: Proceedings of the 30th Annual Conference on Learning Theory (COLT), pp. 758–784 (2017) – reference: BruggmannSZenklusenRSubmodular maximization through the lens of linear programmingMath. Oper. Res.201944412211244403244010.1287/moor.2018.0965 – reference: Balcan, M.F., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In: Proceedings of the 9th ACM Conference on Electronic Commerce (EC), pp. 50–59 (2008) – reference: Ward, J.: A (k+3)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k+3)/2$$\end{document}-approximation algorithm for monotone submodular k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-set packing and general k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-exchange systems. In: Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 42–53 (2012) – reference: Feldman, M., Naor, J.S., Schwartz, R.: Nonmonotone submodular maximization via a structural continuous greedy algorithm. In: Proceedings of the 38th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 342–353 (2011) – reference: SviridenkoMA note on maximizing a submodular set function subject to a knapsack constraintOper. Res. Lett.20043214143201710710.1016/S0167-6377(03)00062-2 – reference: Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding for matroid polytopes and applications (2009). https://arxiv.org/abs/0909.4348 – reference: AgrawalSDingYSaberiAYeYPrice of correlations in stochastic optimizationOper. Res.2012601150162291166410.1287/opre.1110.1011 – reference: Feldman, M., Naor, J.S., Schwartz, R., Ward, J.: Improved approximations for k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-exchange systems. In: Proceedings of the 19th Annual European Symposium on Algorithms (ESA), pp. 784–798 (2011) – reference: KorteBVygenJCombinatorial Optimization, Theory and Algorithms20186BerlinSpringer10.1007/978-3-662-56039-6 – reference: FisherMLNemhauserGLWolseyLAAn analysis of approximations for maximizing submodular set functions—IIMath. Program. Study19788738751036910.1007/BFb0121195 – reference: NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions—IMath. Program.197814126529450386610.1007/BF01588971 – reference: AgeevAASviridenkoMPipage rounding: a new method of constructing algorithms with proven performance guaranteeJ. Combin. Optim.200483307328209226310.1023/B:JOCO.0000038913.96607.c2 – reference: SchrijverATheory of Linear and Integer Programming1998New YorkWiley0970.90052 – reference: Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC), pp. 783–792 (2011) – reference: ConfortiMCornuéjolsGSubmodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theoremDiscrete Appl. Math.19847325127473689010.1016/0166-218X(84)90003-9 – reference: Karp, R.M., Sipser, M.: Maximum matching in sparse random graphs. In: Proceedings of the 22nd Annual Symposium on Foundations of Computer Science (SFCS), pp. 364–375 (1981) – reference: Adamczyk, M.: Non-negative submodular stochastic probing via stochastic contention resolution schemes (2015). https://arxiv.org/abs/1508.07771 – reference: FeigeUMirrokniVSVondrákJMaximizing non-monotone submodular functionsSIAM J. Comput.201140411331153282531210.1137/090779346 – reference: Mirzasoleiman, B., Karbasi, A., Sarkar, R., Krause, A.: Distributed submodular maximization: Identifying representative elements in massive data. In: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS), pp. 2049–2057 (2013) – reference: LehmannBLehmannDNisanNCombinatorial auctions with decreasing marginal utilitiesGames Econ. Behav.2006552270296222181210.1016/j.geb.2005.02.006 – reference: Gupta, A., Nagarajan, V.: A stochastic probing problem with applications. In: Proceedings of the 16th Conference on Integer Programming and Combinatorial Optimization (IPCO), pp. 205–216 (2013) – reference: Lee, E. and Singla, S.: Optimal Online Contention Resolution Schemes via Ex-Ante Prophet Inequalities. In: Proceedings of the 26th Annual European Symposium on Algorithms (ESA), pp. 57:1–57:14 (2018) – reference: Buchbinder, N., Feldman, M.: Constrained submodular maximization via a non-symmetric technique (2016). https://arxiv.org/abs/1611.03253 – reference: KulikAShachnaiHTamirTApproximations for monotone and non-monotone submodular maximization with knapsack constraintsMath. Oper. Res.2013384729739312591610.1287/moor.2013.0592 – reference: GuptaARothASchoenebeckGTalwarKSaberiAConstrained non-monotone submodular maximization: offline and secretary algorithmsInternet and Network Economics2010BerlinSpringer24625710.1007/978-3-642-17572-5_20 – reference: Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 461–471 (2007) – reference: Oveis Gharan, S., Vondrák, J.: Submodular maximization by simulated annealing. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1098–1116 (2011) – volume: 55 start-page: 270 issue: 2 year: 2006 ident: 1570_CR37 publication-title: Games Econ. Behav. doi: 10.1016/j.geb.2005.02.006 – volume-title: Asymptotic Statistics year: 1998 ident: 1570_CR46 doi: 10.1017/CBO9780511802256 – volume: 43 start-page: 1831 issue: 6 year: 2014 ident: 1570_CR13 publication-title: SIAM J. Comput. doi: 10.1137/110839655 – volume: 35 start-page: 795 issue: 4 year: 2010 ident: 1570_CR36 publication-title: Math. Oper. Res. doi: 10.1287/moor.1100.0463 – start-page: 246 volume-title: Internet and Network Economics year: 2010 ident: 1570_CR27 doi: 10.1007/978-3-642-17572-5_20 – ident: 1570_CR28 – volume: 38 start-page: 729 issue: 4 year: 2013 ident: 1570_CR32 publication-title: Math. Oper. Res. doi: 10.1287/moor.2013.0592 – volume: 40 start-page: 1740 issue: 6 year: 2011 ident: 1570_CR9 publication-title: SIAM J. Comput. doi: 10.1137/080733991 – volume: 40 start-page: 1133 issue: 4 year: 2011 ident: 1570_CR18 publication-title: SIAM J. Comput. doi: 10.1137/090779346 – volume-title: Theory of Linear and Integer Programming year: 1998 ident: 1570_CR43 – ident: 1570_CR50 – ident: 1570_CR7 – ident: 1570_CR8 doi: 10.1201/9781351236423-42 – volume: 42 start-page: 265 issue: 1 year: 2013 ident: 1570_CR48 publication-title: SIAM J. Comput. doi: 10.1137/110832318 – volume: 8 start-page: 307 issue: 3 year: 2004 ident: 1570_CR3 publication-title: J. Combin. Optim. doi: 10.1023/B:JOCO.0000038913.96607.c2 – ident: 1570_CR30 doi: 10.1109/SFCS.1981.21 – ident: 1570_CR10 – ident: 1570_CR23 doi: 10.1007/978-3-642-23719-5_66 – ident: 1570_CR42 doi: 10.1137/1.9781611973082.83 – ident: 1570_CR2 doi: 10.1109/FOCS.2018.00080 – ident: 1570_CR17 doi: 10.1109/FOCS.2007.29 – ident: 1570_CR16 doi: 10.1109/FOCS.2016.34 – volume-title: Combinatorial Optimization, Theory and Algorithms year: 2018 ident: 1570_CR31 doi: 10.1007/978-3-662-56039-6 – volume: 8 start-page: 73 year: 1978 ident: 1570_CR25 publication-title: Math. Program. Study doi: 10.1007/BFb0121195 – volume-title: Combinatorial Optimization, Polyhedra and Efficiency year: 2003 ident: 1570_CR44 – ident: 1570_CR20 – ident: 1570_CR47 doi: 10.1145/1374376.1374389 – ident: 1570_CR11 doi: 10.1109/FOCS.2010.60 – volume: 7 start-page: 251 issue: 3 year: 1984 ident: 1570_CR14 publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(84)90003-9 – ident: 1570_CR22 doi: 10.1109/FOCS.2011.46 – volume: 44 start-page: 1221 issue: 4 year: 2019 ident: 1570_CR6 publication-title: Math. Oper. Res. doi: 10.1287/moor.2018.0965 – ident: 1570_CR12 doi: 10.1145/1993636.1993740 – ident: 1570_CR15 doi: 10.1137/1.9781611973105.25 – ident: 1570_CR49 – ident: 1570_CR29 doi: 10.1145/1367497.1367524 – volume: 3 start-page: 177 issue: 3 year: 1978 ident: 1570_CR40 publication-title: Math. Oper. Res. doi: 10.1287/moor.3.3.177 – ident: 1570_CR33 – ident: 1570_CR38 doi: 10.1145/1386790.1386805 – ident: 1570_CR39 – ident: 1570_CR1 – ident: 1570_CR21 doi: 10.1007/978-3-642-22006-7_29 – ident: 1570_CR5 doi: 10.1145/1386790.1386802 – volume: 23 start-page: 2053 issue: 4 year: 2010 ident: 1570_CR35 publication-title: SIAM J. Discrete Math. doi: 10.1137/090750020 – ident: 1570_CR24 doi: 10.1137/1.9781611974331.ch72 – volume: 60 start-page: 150 issue: 1 year: 2012 ident: 1570_CR4 publication-title: Oper. Res. doi: 10.1287/opre.1110.1011 – ident: 1570_CR26 doi: 10.1007/978-3-642-36694-9_18 – ident: 1570_CR34 doi: 10.1145/1536414.1536459 – ident: 1570_CR19 – volume: 32 start-page: 41 issue: 1 year: 2004 ident: 1570_CR45 publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(03)00062-2 – volume: 14 start-page: 265 issue: 1 year: 1978 ident: 1570_CR41 publication-title: Math. Program. doi: 10.1007/BF01588971 |
| SSID | ssj0001388 |
| Score | 2.4097645 |
| Snippet | Relaxation and rounding approaches became a standard and extremely versatile tool for constrained submodular function maximization. One of the most common... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 795 |
| SubjectTerms | Calculus of Variations and Optimal Control; Optimization Combinatorics Constraints Full Length Paper Lower bounds Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics of Computing Maximization Numerical Analysis Optimization Randomization Rounding Theoretical |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6N7gH2wG9YYCAjIfHA0iV2YiePFTBNSJt4oNJ4iuzE1iq6JKLp0PjruUuTrK3QBOKtkS-uc_l8vovvPgO8dRptHC-Ub4PQ-ZFywjcpEV46rax0RsaWPuifnsmTafT5PD7fgY99LUyb7d5vSa5qGoilqWyO6sIdrRW-hfSJjVNSVawwABpj8x3YlTF65CPYnZ59mXzrT2slF6EtMhLSj2Qku9qZP3e0sT5tW-m1ZWo7hXLYR92Du8uy1tc_9Xy-tlQdPwDbP-QqQ-X7eNmYcf5ri__xf7XwEO53viybrMD3CHZs-Rj21hgO8ep0oIVdPIF8UrIKbdQl3oXwr4gInHX_ifhgGPp3M4Fh0G0vLUOXmplZTfhuLMN-2tTPBbuaaaZZXc2vL2yBmmG0w1FXs7J5CtPjT18_nPjdKQ9-Hoei8TGgMYpjpEzseJrrlKsYvcRcB4m1NjGpyaPAFDo2kcRWV4TWFC6wOf5yokjFMxiVONx9YCGKKRGatFAcYadSbqQKEu2UELk23IOwf7dZ3lGg00kc8-yGvJlUmqFKs1almfTg_XBPvSIAuVX6HUEmI-uAPee6K3LA8RHPVjZBA5tGKokDDw56VGWd2VhkXKKJTXHxEh68GZpxwtMuji5ttWxlJK4MKog9eL4C4TAw4ralXFEP1AY8BwEiE99sKWcXLal4kkiBttqDwx53N8O67XkPB7D_hXpe_Jv4S7jHqdqkTZI_gFHzY2lfoQ_YmNfdFP8NJyxSYQ priority: 102 providerName: Unpaywall |
| Title | An optimal monotone contention resolution scheme for bipartite matchings via a polyhedral viewpoint |
| URI | https://link.springer.com/article/10.1007/s10107-020-01570-6 https://www.ncbi.nlm.nih.gov/pubmed/35250094 https://www.proquest.com/docview/2631891463 https://www.proquest.com/docview/2636887705 https://pubmed.ncbi.nlm.nih.gov/PMC8863793 https://link.springer.com/content/pdf/10.1007/s10107-020-01570-6.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 191 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1436-4646 dateEnd: 20241028 omitProxy: true ssIdentifier: ssj0001388 issn: 1436-4646 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Business Source Ultimate customDbUrl: eissn: 1436-4646 dateEnd: 20241028 omitProxy: false ssIdentifier: ssj0001388 issn: 1436-4646 databaseCode: AKVCP dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 1436-4646 databaseCode: AFBBN dateStart: 19711201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 1436-4646 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001388 issn: 1436-4646 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_B9gB7QIyPEdgmIyHxwCLFdmInj9lYN4E28UCl7SmyE0er1CURTUH777lL06ytpgle-mXHuubO95G7-xngU2lQx4lC-y7gpR_qUvo2IcDL0minSqsiRw_0Ly7V-Tj8dhVd9TA51Auzkb-nFjdOD9MElU9FGkOdp7CNRkp1iVl1MmhdLuN4eTwr-QR9g8zDa6wZoU1VvGKLNuskh2TpDjybV425-2Om0xV7NHoJL3pHkqULzu_CE1e9gp0VeEH8djFgss5eQ55WrEYFcYtXoezVhMLNqFJ9UfDIMO7uxZBhxOtuHUN_ltlJQ8LVOobrdHWXM_Z7YphhTT29u3EFUswovdDUk6p9A-PR6c-Tc78_YsHPIy5bH6MJqwWGqQRNZ4RJhI7QRctNEDvnYpvYPAxsYSIbKhwtC-5sUQYux0-lLBL5FrYqJPcdMI7TtOQ2KbRAnutEWKWD2JRaytxY4QFf3vMs7_HH6RiMaXaPnEx8ypBPWcenTHnwZbimWaBvPDr7M7Eyo62JK-em7zBA-gjkKktRuyWhjqPAg_0lt7N-z84ylCkeJ2g5pAcfh2HcbZRCMZWr590chWpZB5EHewvhGAgjYFkq1PRAr4nNMIGQvNdHqslNh-gdx0qiovTgaClg92Q99n-PBiH8h9vz_v9W_wDPBbV6dBXq-7DV_pq7A3TAWnsI2-nx1-MRvZ9dfz897HYivo5Fir-NL3-k138BBLgrew |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH6C7jB24PdYYICRkDiwTImdxMmxQhuFrTut0jhZduJoFV0SrSlo_PW8lyZZW6GJ3VrZseyXz5_94vc-A3zMNXIcz6RrPT93A5kL1yQkeJlraaPcRKGlD_rjs2g0Cb5fhBdtUti8i3bvjiQbpl5JdvPpsxqnQKpQotPzELYCdFD4ALaGX3-cHPUM7Is47q5qpf1Bmyzz71bWFqRNWl5ZlzZjJvuD0x3YXhSVvvmtZ7OVten4CUy6US1DUn4eLmpzmP7ZEHy877CfwuN2s8qGS3Q9gwe2eA47KxKG-G_c677OX0A6LFiJJHSFTyG-S1L6ZhQNvwyqZOjbt1Bn6FXbK8twz8zMtCIA15ZhO01s55z9mmqmWVXObi5thpZgdIRRldOifgmT46PzLyO3vcbBTUNf1C56LEZydIVJ_k5znXAZ4jYw1V5srY1NYtLAM5kOTRBhaZ751mS5Z1P8lYssEbswKLC7e8B8rCaFb5JMcsSVTLiJpBfrXAqRasMd8Lt3qdJW45yu2pipW3VmMqdCc6rGnCpy4HP_TLVU-Liz9ieCiKLpjy2nus1iwP6RkJYaIoMmgYxDz4H9DkWq5YW54hFyaIKrk3DgQ1-MM5qOaXRhy0VTJ0Lql17owKsl6PqOkXgtBYM6INfg2FcgtfD1kmJ62aiGx3EkkIwdOOhwdtutu8Z70IP7P8zz-n6tv4ft0fn4VJ1-Ozt5A484pZY0EfH7MKivF_Ytbvhq866d338Bpw1J0g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkYAeEK9CoICRkDjQqImd2MlxtbAqj1YcqNSbZSe2utI2idgsqP-emWyS7laoglsiO9bEM56HPfMZ4J03qON4qUIXxT5MlBehzQnw0hvlpLcydbShf3wij06TL2fp2UYVf5ftPhxJrmsaCKWpag-b0h9uFL7FtMXGKakqVRgA3YY7CVo3usNgKqejLo5Flg2XtpKn0JfN_H2MLdN0XUFvWKjr2ZPjEeou3FtVjbn8bRaLDSs1ewgPeveSTdby8Ahuueox7G6ADuLb8YjUunwCxaRiNaqNC_wKJbImbG7WTwayjGE03gsnwzjYXTiGXi6z84ZErnUMx-myMZfs19www5p6cXnuSqSY0aFDU8-r9imczj79mB6F_cULYZHGog0xxrCKY_BKgHWGm5yrFB23wkSZcy6zuS2SyJYmtYnEVl_GzpY-cgU-eVHmYg92KiT3ObAYuykR27xUHCVB5dxKFWXGKyEKY3kA8TDnuuhRyelyjIW-wlMmPmnkk-74pGUAH8ZvmjUmx4293xMrNS1YHLkwfd0B0kfQV3qCOi9PVJZGAewP3Nb9Sl5qLlHr5WhPRABvx2Zcg3SwYipXr7o-EpW1itIAnq2FYySM4GYpfTMAtSU2YwfC995uqebnHc53lkmB6jOAg0HArsi66X8PRiH8h-l58X-jv4G73z_O9LfPJ19fwn1OtSBdCvs-7LQ_V-4Vemitfd0twj_TDzES |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6N7gH2wG9YYCAjIfHA0iV2YiePFTBNSJt4oNJ4iuzE1iq6JKLp0PjruUuTrK3QBOKtkS-uc_l8vovvPgO8dRptHC-Ub4PQ-ZFywjcpEV46rax0RsaWPuifnsmTafT5PD7fgY99LUyb7d5vSa5qGoilqWyO6sIdrRW-hfSJjVNSVawwABpj8x3YlTF65CPYnZ59mXzrT2slF6EtMhLSj2Qku9qZP3e0sT5tW-m1ZWo7hXLYR92Du8uy1tc_9Xy-tlQdPwDbP-QqQ-X7eNmYcf5ri__xf7XwEO53viybrMD3CHZs-Rj21hgO8ep0oIVdPIF8UrIKbdQl3oXwr4gInHX_ifhgGPp3M4Fh0G0vLUOXmplZTfhuLMN-2tTPBbuaaaZZXc2vL2yBmmG0w1FXs7J5CtPjT18_nPjdKQ9-Hoei8TGgMYpjpEzseJrrlKsYvcRcB4m1NjGpyaPAFDo2kcRWV4TWFC6wOf5yokjFMxiVONx9YCGKKRGatFAcYadSbqQKEu2UELk23IOwf7dZ3lGg00kc8-yGvJlUmqFKs1almfTg_XBPvSIAuVX6HUEmI-uAPee6K3LA8RHPVjZBA5tGKokDDw56VGWd2VhkXKKJTXHxEh68GZpxwtMuji5ttWxlJK4MKog9eL4C4TAw4ralXFEP1AY8BwEiE99sKWcXLal4kkiBttqDwx53N8O67XkPB7D_hXpe_Jv4S7jHqdqkTZI_gFHzY2lfoQ_YmNfdFP8NJyxSYQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimal+monotone+contention+resolution+scheme+for+bipartite+matchings+via+a+polyhedral+viewpoint&rft.jtitle=Mathematical+programming&rft.au=Bruggmann%2C+Simon&rft.au=Zenklusen%2C+Rico&rft.date=2022-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=191&rft.issue=2&rft.spage=795&rft.epage=845&rft_id=info:doi/10.1007%2Fs10107-020-01570-6&rft_id=info%3Apmid%2F35250094&rft.externalDocID=PMC8863793 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |