Using machine learning to predict the risk of developing hypertensive disorders of pregnancy using a contemporary nulliparous cohort

Hypertensive disorders of pregnancy (HDP) are significant drivers of maternal and neonatal morbidity and mortality. Current management strategies include early identification and initiation of risk mitigating interventions facilitated by a rules-based checklist. Advanced analytic techniques, such as...

Full description

Saved in:
Bibliographic Details
Published inAJOG global reports Vol. 4; no. 4; p. 100386
Main Authors Schor, Jonathan S., Kadambi, Adesh, Fulcher, Isabel, Venkatesh, Kartik K., Clapp, Mark A., Ebrahim, Senan, Ebrahim, Ali, Wen, Timothy
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2666-5778
2666-5778
DOI10.1016/j.xagr.2024.100386

Cover

Abstract Hypertensive disorders of pregnancy (HDP) are significant drivers of maternal and neonatal morbidity and mortality. Current management strategies include early identification and initiation of risk mitigating interventions facilitated by a rules-based checklist. Advanced analytic techniques, such as machine learning, can potentially offer improved and refined predictive capabilities. To develop and internally validate a machine learning prediction model for hypertensive disorders of pregnancy (HDP) when initiating prenatal care. We developed a prediction model using data from the prospective multisite cohort Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) among low-risk individuals without a prior history of aspirin utilization for preeclampsia prevention. The primary outcome was the development of HDP. Random forest modeling was utilized to develop predictive models. Recursive feature elimination (RFE) was employed to create a reduced model for each outcome. Area under the curve (AUC), 95% confidence intervals (CI), and calibration curves were utilized to assess discrimination and accuracy. Sensitivity analyses were conducted to compare the sensitivity and specificity of the reduced model compared to existing risk factor-based algorithms. Of 9,124 assessed low risk nulliparous individuals, 21% (n=1,927) developed HDP. The prediction model for HDP had satisfactory discrimination with an AUC of 0.73 (95% CI: 0.70, 0.75). After RFE, a parsimonious reduced model with 30 features was created with an AUC of 0.71 (95% CI: 0.68, 0.74). Variables included in the model after RFE included body mass index at the first study visit, pre-pregnancy weight, first trimester complete blood count results, and maximum systolic blood pressure at the first visit. Calibration curves for all models revealed relatively stable agreement between predicted and observed probabilities. Sensitivity analysis noted superior sensitivity (AUC 0.80 vs 0.65) and specificity (0.65 vs 0.53) of the model compared to traditional risk factor-based algorithms. In cohort of low-risk nulliparous pregnant individuals, a prediction model may accurately predict HDP diagnosis at the time of initiating prenatal care and aid employment of close interval monitoring and prophylactic measures earlier in pregnancy.
AbstractList Hypertensive disorders of pregnancy (HDP) are significant drivers of maternal and neonatal morbidity and mortality. Current management strategies include early identification and initiation of risk mitigating interventions facilitated by a rules-based checklist. Advanced analytic techniques, such as machine learning, can potentially offer improved and refined predictive capabilities. To develop and internally validate a machine learning prediction model for hypertensive disorders of pregnancy (HDP) when initiating prenatal care. We developed a prediction model using data from the prospective multisite cohort Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) among low-risk individuals without a prior history of aspirin utilization for preeclampsia prevention. The primary outcome was the development of HDP. Random forest modeling was utilized to develop predictive models. Recursive feature elimination (RFE) was employed to create a reduced model for each outcome. Area under the curve (AUC), 95% confidence intervals (CI), and calibration curves were utilized to assess discrimination and accuracy. Sensitivity analyses were conducted to compare the sensitivity and specificity of the reduced model compared to existing risk factor-based algorithms. Of 9,124 assessed low risk nulliparous individuals, 21% (n=1,927) developed HDP. The prediction model for HDP had satisfactory discrimination with an AUC of 0.73 (95% CI: 0.70, 0.75). After RFE, a parsimonious reduced model with 30 features was created with an AUC of 0.71 (95% CI: 0.68, 0.74). Variables included in the model after RFE included body mass index at the first study visit, pre-pregnancy weight, first trimester complete blood count results, and maximum systolic blood pressure at the first visit. Calibration curves for all models revealed relatively stable agreement between predicted and observed probabilities. Sensitivity analysis noted superior sensitivity (AUC 0.80 vs 0.65) and specificity (0.65 vs 0.53) of the model compared to traditional risk factor-based algorithms. In cohort of low-risk nulliparous pregnant individuals, a prediction model may accurately predict HDP diagnosis at the time of initiating prenatal care and aid employment of close interval monitoring and prophylactic measures earlier in pregnancy.
Hypertensive disorders of pregnancy (HDP) are significant drivers of maternal and neonatal morbidity and mortality. Current management strategies include early identification and initiation of risk mitigating interventions facilitated by a rules-based checklist. Advanced analytic techniques, such as machine learning, can potentially offer improved and refined predictive capabilities.BackgroundHypertensive disorders of pregnancy (HDP) are significant drivers of maternal and neonatal morbidity and mortality. Current management strategies include early identification and initiation of risk mitigating interventions facilitated by a rules-based checklist. Advanced analytic techniques, such as machine learning, can potentially offer improved and refined predictive capabilities.To develop and internally validate a machine learning prediction model for hypertensive disorders of pregnancy (HDP) when initiating prenatal care.ObjectiveTo develop and internally validate a machine learning prediction model for hypertensive disorders of pregnancy (HDP) when initiating prenatal care.We developed a prediction model using data from the prospective multisite cohort Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) among low-risk individuals without a prior history of aspirin utilization for preeclampsia prevention. The primary outcome was the development of HDP. Random forest modeling was utilized to develop predictive models. Recursive feature elimination (RFE) was employed to create a reduced model for each outcome. Area under the curve (AUC), 95% confidence intervals (CI), and calibration curves were utilized to assess discrimination and accuracy. Sensitivity analyses were conducted to compare the sensitivity and specificity of the reduced model compared to existing risk factor-based algorithms.Study DesignWe developed a prediction model using data from the prospective multisite cohort Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) among low-risk individuals without a prior history of aspirin utilization for preeclampsia prevention. The primary outcome was the development of HDP. Random forest modeling was utilized to develop predictive models. Recursive feature elimination (RFE) was employed to create a reduced model for each outcome. Area under the curve (AUC), 95% confidence intervals (CI), and calibration curves were utilized to assess discrimination and accuracy. Sensitivity analyses were conducted to compare the sensitivity and specificity of the reduced model compared to existing risk factor-based algorithms.Of 9,124 assessed low risk nulliparous individuals, 21% (n=1,927) developed HDP. The prediction model for HDP had satisfactory discrimination with an AUC of 0.73 (95% CI: 0.70, 0.75). After RFE, a parsimonious reduced model with 30 features was created with an AUC of 0.71 (95% CI: 0.68, 0.74). Variables included in the model after RFE included body mass index at the first study visit, pre-pregnancy weight, first trimester complete blood count results, and maximum systolic blood pressure at the first visit. Calibration curves for all models revealed relatively stable agreement between predicted and observed probabilities. Sensitivity analysis noted superior sensitivity (AUC 0.80 vs 0.65) and specificity (0.65 vs 0.53) of the model compared to traditional risk factor-based algorithms.ResultsOf 9,124 assessed low risk nulliparous individuals, 21% (n=1,927) developed HDP. The prediction model for HDP had satisfactory discrimination with an AUC of 0.73 (95% CI: 0.70, 0.75). After RFE, a parsimonious reduced model with 30 features was created with an AUC of 0.71 (95% CI: 0.68, 0.74). Variables included in the model after RFE included body mass index at the first study visit, pre-pregnancy weight, first trimester complete blood count results, and maximum systolic blood pressure at the first visit. Calibration curves for all models revealed relatively stable agreement between predicted and observed probabilities. Sensitivity analysis noted superior sensitivity (AUC 0.80 vs 0.65) and specificity (0.65 vs 0.53) of the model compared to traditional risk factor-based algorithms.In cohort of low-risk nulliparous pregnant individuals, a prediction model may accurately predict HDP diagnosis at the time of initiating prenatal care and aid employment of close interval monitoring and prophylactic measures earlier in pregnancy.ConclusionIn cohort of low-risk nulliparous pregnant individuals, a prediction model may accurately predict HDP diagnosis at the time of initiating prenatal care and aid employment of close interval monitoring and prophylactic measures earlier in pregnancy.
AJOG AT A GLANCEA.Why was the study conducted?-This study was conducted to develop and internally validate a machine learning prediction model for predicting hypertensive disorders of pregnancy (HDP) in the first trimester using features typically ascertained by the first prenatal care visit found in a publicly available data set. B.What are the key findings?-In a low-risk nulliparous pregnancy cohort, a prediction model for hypertensive disorders of pregnancy may accurately predict HDP diagnosis at the time of initiating prenatal care with satisfactory discrimination, an area under the receiver operator curve (AUC) of 0.73 (95% CI: 0.70, 0.75). -A reduced parsimonious model developed using recursive feature elimination exhibits similar discriminatory capability (AUC: 0.71, 95% CI: 0.68, 0.74). -Sensitivity analyses noted an improved sensitivity and specificity in predicting HDP when utilizing this model over traditional risk factors analysis. C.What does this study add to what is already known?-The prediction of hypertensive disorders of pregnancy early in pregnancy using a machine learning approach derived from publicly available data is feasible with satisfactory discrimination and superior sensitivity and specificity when compared to current risk-based algorithms. -Implementation of this algorithm could potentially identify more patients at risk for HDP and by extension, could benefit from preeclampsia prevention strategies.
ArticleNumber 100386
Author Venkatesh, Kartik K.
Schor, Jonathan S.
Fulcher, Isabel
Wen, Timothy
Clapp, Mark A.
Ebrahim, Senan
Kadambi, Adesh
Ebrahim, Ali
Author_xml – sequence: 1
  givenname: Jonathan S.
  surname: Schor
  fullname: Schor, Jonathan S.
  organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen)
– sequence: 2
  givenname: Adesh
  surname: Kadambi
  fullname: Kadambi, Adesh
  organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen)
– sequence: 3
  givenname: Isabel
  surname: Fulcher
  fullname: Fulcher, Isabel
  organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen)
– sequence: 4
  givenname: Kartik K.
  surname: Venkatesh
  fullname: Venkatesh, Kartik K.
  organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen)
– sequence: 5
  givenname: Mark A.
  surname: Clapp
  fullname: Clapp, Mark A.
  organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen)
– sequence: 6
  givenname: Senan
  surname: Ebrahim
  fullname: Ebrahim, Senan
  organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen)
– sequence: 7
  givenname: Ali
  surname: Ebrahim
  fullname: Ebrahim, Ali
  organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen)
– sequence: 8
  givenname: Timothy
  surname: Wen
  fullname: Wen, Timothy
  email: timothy.wen2@ucsf.edu
  organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39385801$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQtVARLaV_gAPykcsu_kicBCEqVPElVeIAPVteZ7Lx1msH21nInR-OQwoUJD5OtmbeezPzZu6jI-cdIPSQkjUlVDzZrT-rbVgzwoocILwWd9AJE0Ksyqqqj279j9FZjDtCCCspZ6S-h455w-uyJvQEfbmKxm3xXuneOMAWVHBzIHk8BGiNTjj1gIOJ19h3uIUDWD_MiH4aICRw0RwAtyb60EKIMygTt045PeHxm7jC2rsE-8EHFSbsRmvNoIIfY070PqQH6G6nbISzm_cUXb16-eHizery3eu3Fy8uVzp3nlblpuFVU5SkooQ1JVUt75q6I6yibccpKVShKs00LSrBqIBNWzVKdAUoAMFVx08RX3RHN6jpk7JWDsHsc1OSEjnbKndytlXOtsrF1sw6X1jDuNlDq8GloH4yvTLy14wzvdz6g6S0EIyUPCs8vlEI_uMIMcm9iRqsVQ6yC5JTWpJGcMYy9NHtYj-qfN9YBrAFoIOPMUD3fyM8W0iQ3T0YCDJqA07nBQfQSbbe_J3-_De6tsYZrew1TBB3fgwu701SGZkk8v18evPlsSJfXU2qLPD0zwL_qv4V9Ozrtg
Cites_doi 10.1097/AOG.0000000000004224
10.1016/j.ajog.2019.11.1247
10.1056/NEJMoa1704559
10.1016/j.ebiom.2020.102710
10.1038/s41598-022-14632-w
10.1038/ajh.2008.20
10.1056/NEJMoa1800566
10.1016/S0140-6736(10)60279-6
10.1016/j.ajog.2016.02.016
10.1016/j.ajog.2021.10.038
10.1097/AOG.0000000000001805
10.1097/AOG.0000000000000696
10.1161/JAHA.119.013092
10.1016/j.jacc.2022.03.383
10.1109/LSP.2014.2337313
10.1053/j.semperi.2009.02.010
10.1161/JAHA.118.009382
10.1016/j.ajog.2020.07.009
10.1111/1471-0528.17038
10.1016/j.ajog.2015.11.016
10.1097/AOG.0000000000002708
10.1016/j.ajog.2015.01.019
10.1016/j.ajog.2017.11.561
10.1371/journal.pone.0225716
10.1101/2021.08.24.21262142
10.1097/MED.0000000000000679
10.1136/bmj.b2255
10.1371/journal.pone.0221202
10.1056/NEJMra2109523
10.1016/S0140-6736(09)60736-4
10.2307/2531595
10.7326/M14-1884
10.1016/j.preghy.2021.10.006
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.xagr.2024.100386
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2666-5778
EndPage 100386
ExternalDocumentID 10.1016/j.xagr.2024.100386
PMC11462053
39385801
10_1016_j_xagr_2024_100386
S2666577824000807
1_s2_0_S2666577824000807
Genre Journal Article
GrantInformation_xml – fundername: Clinical and Translational Science Institutes
  grantid: UL1TR001108; UL1TR000153
– fundername: Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
  grantid: U10 HD063036; U10 HD063072; U10 HD063047; U10 HD063037; U10 HD063041; U10 HD063020; U10 HD063046; U10 HD063048; U10 HD063053
GroupedDBID .1-
.FO
0R~
AAEDW
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
RPM
Z5R
6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c513t-5b93794507102951ad3f98f0271df3104a4a7c2c1476216ebd79a6f4eaee63af3
IEDL.DBID UNPAY
ISSN 2666-5778
IngestDate Sun Oct 26 04:09:06 EDT 2025
Thu Aug 21 18:35:45 EDT 2025
Thu Oct 02 12:09:28 EDT 2025
Mon Jul 21 05:39:34 EDT 2025
Tue Jul 01 01:57:17 EDT 2025
Sat Dec 21 15:58:54 EST 2024
Tue Feb 25 19:58:28 EST 2025
Tue Aug 26 16:34:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Risk prediction
Hypertensive disorders of pregnancy
Machine learning
machine learning
risk prediction
Language English
License This is an open access article under the CC BY-NC-ND license.
2024 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-5b93794507102951ad3f98f0271df3104a4a7c2c1476216ebd79a6f4eaee63af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.xagr.2024.100386
PMID 39385801
PQID 3115096322
PQPubID 23479
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_xagr_2024_100386
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11462053
proquest_miscellaneous_3115096322
pubmed_primary_39385801
crossref_primary_10_1016_j_xagr_2024_100386
elsevier_sciencedirect_doi_10_1016_j_xagr_2024_100386
elsevier_clinicalkeyesjournals_1_s2_0_S2666577824000807
elsevier_clinicalkey_doi_10_1016_j_xagr_2024_100386
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle AJOG global reports
PublicationTitleAlternate AJOG Glob Rep
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Magee, Nicolaides, Von Dadelszen (bib0004) 2022; 386
Ying, Catov, Ouyang (bib0039) 2018; 7
Gibson, Hameed (bib0008) 2020; 223
Facco, Parker, Reddy (bib0022) 2017; 129
Fernández-Delgado, Cernadas, Barro, Amorim (bib0026) 2014; 15
Sutton, Anachebe, Lee, Skanes (bib0041) 2021; 137
Hernández-Díaz, Toh, Cnattingius (bib0042) 2009; 338
Goretsky A, Dmitrienko A, Tang I, et al. Data preparation of the nuMoM2b dataset. medRxiv. 2021.
Van, Drake (bib0029) 2009; 10
Hoffman, Ma, Roberts (bib0018) 2021; 3
Gallo, Wright, Casanova, Campanero, Nicolaides (bib0017) 2016; 214
Grobman, Rice, Reddy (bib0040) 2018; 379
Rolnik, Wright, Poon (bib0012) 2017; 377
(bib0030) 2018; 132
Wright, Wright, Nicolaides (bib0037) 2020; 223
DeLong, DeLong, Clarke-Pearson (bib0028) 1988
Wright, Wright, Tan, Nicolaides (bib0038) 2022; 226
Steegers, Von Dadelszen, Duvekot, Pijnenborg (bib0003) 2010; 376
LeFevre (bib0010) 2014; 161
Li, Shen, Yang (bib0031) 2021; 26
Sandström, Snowden, Höijer, Bottai, Wikström (bib0036) 2019; 14
Levine, Ky, Chirinos (bib0005) 2022; 79
Haas, Parker, Wing (bib0020) 2015; 212
Bertini, Salas, Chabert, Sobrevia, Pardo (bib0032) 2021; 9
Loef, Wong, Janssen (bib0025) 2022; 12
Marić, Tsur, Aghaeepour (bib0034) 2020; 2
Sun, Xu (bib0027) 2014; 21
Espinoza, Vidaeff, Pettker, Simhan (bib0009) 2019; 133
(bib0015) 2021
Tsiakkas, Saiid, Wright, Wright, Nicolaides (bib0016) 2016; 215
Haas, Parker, Marsh (bib0021) 2019; 8
Clapp, McCoy (bib0019) 2021; 28
Ma'ayeh, Constantine (bib0011) 2020; 25
Koopmans, Bijlenga, Groen (bib0014) 2009; 374
Duley (bib0001) 2009; 33
Harmon, Huang, Umbach (bib0002) 2015; 125
Wen, Schmidt, Sobhani (bib0006) 2022; 129
Jhee, Lee, Park (bib0033) 2019; 14
Roberge, Bujold, Nicolaides (bib0013) 2018; 218
Wallis, Saftlas, Hsia, Atrash (bib0007) 2008; 21
Parmar, Katariya, Patel (bib0024) 2019
Sufriyana, Wu, Su (bib0035) 2020; 54
Wallis (10.1016/j.xagr.2024.100386_bib0007) 2008; 21
Roberge (10.1016/j.xagr.2024.100386_bib0013) 2018; 218
Tsiakkas (10.1016/j.xagr.2024.100386_bib0016) 2016; 215
DeLong (10.1016/j.xagr.2024.100386_bib0028) 1988
Ying (10.1016/j.xagr.2024.100386_bib0039) 2018; 7
Wright (10.1016/j.xagr.2024.100386_bib0038) 2022; 226
Clapp (10.1016/j.xagr.2024.100386_bib0019) 2021; 28
Sutton (10.1016/j.xagr.2024.100386_bib0041) 2021; 137
Koopmans (10.1016/j.xagr.2024.100386_bib0014) 2009; 374
Haas (10.1016/j.xagr.2024.100386_bib0020) 2015; 212
Facco (10.1016/j.xagr.2024.100386_bib0022) 2017; 129
Levine (10.1016/j.xagr.2024.100386_bib0005) 2022; 79
Hernández-Díaz (10.1016/j.xagr.2024.100386_bib0042) 2009; 338
Li (10.1016/j.xagr.2024.100386_bib0031) 2021; 26
Harmon (10.1016/j.xagr.2024.100386_bib0002) 2015; 125
Grobman (10.1016/j.xagr.2024.100386_bib0040) 2018; 379
Haas (10.1016/j.xagr.2024.100386_bib0021) 2019; 8
Magee (10.1016/j.xagr.2024.100386_bib0004) 2022; 386
10.1016/j.xagr.2024.100386_bib0023
Loef (10.1016/j.xagr.2024.100386_bib0025) 2022; 12
Sufriyana (10.1016/j.xagr.2024.100386_bib0035) 2020; 54
Wen (10.1016/j.xagr.2024.100386_bib0006) 2022; 129
Gibson (10.1016/j.xagr.2024.100386_bib0008) 2020; 223
Jhee (10.1016/j.xagr.2024.100386_bib0033) 2019; 14
Ma'ayeh (10.1016/j.xagr.2024.100386_bib0011) 2020; 25
Gallo (10.1016/j.xagr.2024.100386_bib0017) 2016; 214
Bertini (10.1016/j.xagr.2024.100386_bib0032) 2021; 9
Steegers (10.1016/j.xagr.2024.100386_bib0003) 2010; 376
Fernández-Delgado (10.1016/j.xagr.2024.100386_bib0026) 2014; 15
(10.1016/j.xagr.2024.100386_bib0030) 2018; 132
Marić (10.1016/j.xagr.2024.100386_bib0034) 2020; 2
Sandström (10.1016/j.xagr.2024.100386_bib0036) 2019; 14
(10.1016/j.xagr.2024.100386_bib0015) 2021
LeFevre (10.1016/j.xagr.2024.100386_bib0010) 2014; 161
Rolnik (10.1016/j.xagr.2024.100386_bib0012) 2017; 377
Espinoza (10.1016/j.xagr.2024.100386_bib0009) 2019; 133
Parmar (10.1016/j.xagr.2024.100386_bib0024) 2019
Hoffman (10.1016/j.xagr.2024.100386_bib0018) 2021; 3
Sun (10.1016/j.xagr.2024.100386_bib0027) 2014; 21
Wright (10.1016/j.xagr.2024.100386_bib0037) 2020; 223
Duley (10.1016/j.xagr.2024.100386_bib0001) 2009; 33
Van (10.1016/j.xagr.2024.100386_bib0029) 2009; 10
References_xml – start-page: 758
  year: 2019
  end-page: 763
  ident: bib0024
  article-title: A review on random forest: An ensemble classifier. In International conference on intelligent data communication technologies and internet of things (ICICI) 2018
– volume: 79
  start-page: 2401
  year: 2022
  end-page: 2411
  ident: bib0005
  article-title: Prospective evaluation of cardiovascular risk 10 years after a hypertensive disorder of pregnancy
  publication-title: J Am Coll Cardiol
– volume: 377
  start-page: 613
  year: 2017
  end-page: 622
  ident: bib0012
  article-title: Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia
  publication-title: New Engl J. Med
– volume: 12
  start-page: 10372
  year: 2022
  ident: bib0025
  article-title: Using random forest to identify longitudinal predictors of health in a 30-year cohort study
  publication-title: Sci Rep
– volume: 386
  start-page: 1817
  year: 2022
  end-page: 1832
  ident: bib0004
  article-title: Preeclampsia
  publication-title: N Engl J Med
– volume: 218
  start-page: 287
  year: 2018
  end-page: 293.e1
  ident: bib0013
  article-title: Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis
  publication-title: Am J Obstetr Gynecol
– volume: 223
  start-page: B18
  year: 2020
  end-page: B21
  ident: bib0008
  article-title: Society for maternal-fetal medicine special statement: checklist for postpartum discharge of women with hypertensive disorders
  publication-title: Am J Obstetr Gynecol
– volume: 25
  start-page: 111123
  year: 2020
  ident: bib0011
  article-title: Prevention of preeclampsia
  publication-title: Semin Fetal Neonatal Med
– volume: 129
  start-page: 1050
  year: 2022
  end-page: 1060
  ident: bib0006
  article-title: Trends and outcomes for deliveries with hypertensive disorders of pregnancy from 2000 to 2018: a repeated cross-sectional study
  publication-title: BJOG: Int J Obstetr Gynaecol
– volume: 376
  start-page: 631
  year: 2010
  end-page: 644
  ident: bib0003
  article-title: Pre-eclampsia
  publication-title: The Lancet
– volume: 374
  start-page: 979
  year: 2009
  end-page: 988
  ident: bib0014
  article-title: Induction of labour versus expectant monitoring for gestational hypertension or mild pre-eclampsia after 36 weeks' gestation (HYPITAT): a multicentre, open-label randomised controlled trial
  publication-title: The Lancet
– year: 2021
  ident: bib0015
  article-title: Low-dose aspirin use for the prevention of preeclampsia and related morbidity and mortality
– volume: 26
  start-page: 102
  year: 2021
  end-page: 109
  ident: bib0031
  article-title: Novel electronic health records applied for prediction of pre-eclampsia: machine-learning algorithms
  publication-title: Pregnancy Hypertension
– volume: 9
  year: 2021
  ident: bib0032
  article-title: Using machine learning to predict complications in pregnancy: a systematic review
  publication-title: Front Bioeng Biotechnol
– volume: 14
  year: 2019
  ident: bib0036
  article-title: Clinical risk assessment in early pregnancy for preeclampsia in nulliparous women: A population based cohort study
  publication-title: PloS one
– volume: 161
  start-page: 819
  year: 2014
  end-page: 826
  ident: bib0010
  article-title: Low-dose aspirin use for the prevention of morbidity and mortality from preeclampsia: US Preventive Services Task Force recommendation statement
  publication-title: Ann Internal Med
– volume: 10
  year: 2009
  ident: bib0029
  article-title: Python 3 reference manual
  publication-title: Scotts Valley, CA: CreateSpace
– volume: 14
  year: 2019
  ident: bib0033
  article-title: Prediction model development of late-onset preeclampsia using machine learning-based methods
  publication-title: PLoS One
– volume: 8
  year: 2019
  ident: bib0021
  article-title: Association of adverse pregnancy outcomes with hypertension 2 to 7 years postpartum
  publication-title: J Am Heart Assoc
– volume: 215
  start-page: 87.e1
  year: 2016
  end-page: 87.e17
  ident: bib0016
  article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 30–34 weeks’ gestation
  publication-title: Am J Obstetr Gynecol
– volume: 132
  start-page: e44
  year: 2018
  end-page: e52
  ident: bib0030
  article-title: Low-dose aspirin use during pregnancy. ACOG Committee Opinion No. 743
  publication-title: Obstet Gynecol.
– volume: 129
  start-page: 31
  year: 2017
  ident: bib0022
  article-title: Association between sleep-disordered breathing and hypertensive disorders of pregnancy and gestational diabetes mellitus
  publication-title: Obstetr Gynecol
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  ident: bib0026
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J Machine Learning Res
– volume: 2
  year: 2020
  ident: bib0034
  article-title: Early prediction of preeclampsia via machine learning
  publication-title: Am J Obstetr Gynecol MFM
– volume: 7
  year: 2018
  ident: bib0039
  article-title: Hypertensive disorders of pregnancy and future maternal cardiovascular risk
  publication-title: J Am Heart Assoc
– volume: 28
  start-page: 553
  year: 2021
  end-page: 557
  ident: bib0019
  article-title: The potential of big data for obstetrics discovery
  publication-title: Curr Opin Endocrinol Diabetes Obes
– volume: 214
  start-page: 619.e1
  year: 2016
  end-page: 619.e17
  ident: bib0017
  article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 19–24 weeks’ gestation
  publication-title: Am J Obstetr Gynecol
– volume: 3
  year: 2021
  ident: bib0018
  article-title: A machine learning algorithm for predicting maternal readmission for hypertensive disorders of pregnancy
  publication-title: Am J Obstetr Gynecol MFM
– volume: 21
  start-page: 521
  year: 2008
  end-page: 526
  ident: bib0007
  article-title: Secular trends in the rates of preeclampsia, eclampsia, and gestational hypertension, United States, 1987–2004
  publication-title: Am J Hypertens
– volume: 133
  start-page: E1
  year: 2019
  end-page: E25
  ident: bib0009
  article-title: Gestational hypertension and preeclampsia
  publication-title: Obstetr Gynecol
– volume: 212
  start-page: 539.e1
  year: 2015
  end-page: 539.e24
  ident: bib0020
  article-title: A description of the methods of the Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be (nuMoM2b)
  publication-title: Am J Obstetr Gynecol
– volume: 21
  start-page: 1389
  year: 2014
  end-page: 1393
  ident: bib0027
  article-title: Fast implementation of DeLong's algorithm for comparing the areas under correlated receiver operating characteristic curves
  publication-title: IEEE Signal Proc Lett
– volume: 226
  start-page: S1120
  year: 2022
  end-page: S1125
  ident: bib0038
  article-title: When to give aspirin to prevent preeclampsia: application of Bayesian decision theory
  publication-title: Am J Obstetr Gynecol
– volume: 379
  start-page: 513
  year: 2018
  end-page: 523
  ident: bib0040
  article-title: Labor induction versus expectant management in low-risk nulliparous women
  publication-title: New Engl J Med
– volume: 54
  year: 2020
  ident: bib0035
  article-title: Artificial intelligence-assisted prediction of preeclampsia: Development and external validation of a nationwide health insurance dataset of the BPJS Kesehatan in Indonesia
  publication-title: EBioMedicine
– volume: 33
  start-page: 130
  year: 2009
  end-page: 137
  ident: bib0001
  article-title: The global impact of pre-eclampsia and eclampsia
  publication-title: Semin Perinatol
– volume: 125
  start-page: 628
  year: 2015
  ident: bib0002
  article-title: Risk of fetal death with preeclampsia
  publication-title: Obstetr Gynecol
– start-page: 837
  year: 1988
  end-page: 845
  ident: bib0028
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
– volume: 338
  year: 2009
  ident: bib0042
  article-title: Risk of pre-eclampsia in first and subsequent pregnancies: prospective cohort study
  publication-title: Bmj
– volume: 223
  start-page: 12
  year: 2020
  end-page: 23.e7
  ident: bib0037
  article-title: The competing risk approach for prediction of preeclampsia
  publication-title: Am J Obstetr Gynecol
– reference: Goretsky A, Dmitrienko A, Tang I, et al. Data preparation of the nuMoM2b dataset. medRxiv. 2021.
– volume: 137
  start-page: 225
  year: 2021
  end-page: 233
  ident: bib0041
  article-title: Racial and Ethnic Disparities in Reproductive Health Services and Outcomes, 2020
  publication-title: Obstet Gynecol
– volume: 137
  start-page: 225
  issue: 2
  year: 2021
  ident: 10.1016/j.xagr.2024.100386_bib0041
  article-title: Racial and Ethnic Disparities in Reproductive Health Services and Outcomes, 2020
  publication-title: Obstet Gynecol
  doi: 10.1097/AOG.0000000000004224
– volume: 223
  start-page: 12
  issue: 1
  year: 2020
  ident: 10.1016/j.xagr.2024.100386_bib0037
  article-title: The competing risk approach for prediction of preeclampsia
  publication-title: Am J Obstetr Gynecol
  doi: 10.1016/j.ajog.2019.11.1247
– volume: 377
  start-page: 613
  issue: 7
  year: 2017
  ident: 10.1016/j.xagr.2024.100386_bib0012
  article-title: Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia
  publication-title: New Engl J. Med
  doi: 10.1056/NEJMoa1704559
– volume: 54
  year: 2020
  ident: 10.1016/j.xagr.2024.100386_bib0035
  article-title: Artificial intelligence-assisted prediction of preeclampsia: Development and external validation of a nationwide health insurance dataset of the BPJS Kesehatan in Indonesia
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.102710
– volume: 12
  start-page: 10372
  issue: 1
  year: 2022
  ident: 10.1016/j.xagr.2024.100386_bib0025
  article-title: Using random forest to identify longitudinal predictors of health in a 30-year cohort study
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-14632-w
– volume: 21
  start-page: 521
  issue: 5
  year: 2008
  ident: 10.1016/j.xagr.2024.100386_bib0007
  article-title: Secular trends in the rates of preeclampsia, eclampsia, and gestational hypertension, United States, 1987–2004
  publication-title: Am J Hypertens
  doi: 10.1038/ajh.2008.20
– volume: 379
  start-page: 513
  issue: 6
  year: 2018
  ident: 10.1016/j.xagr.2024.100386_bib0040
  article-title: Labor induction versus expectant management in low-risk nulliparous women
  publication-title: New Engl J Med
  doi: 10.1056/NEJMoa1800566
– volume: 376
  start-page: 631
  issue: 9741
  year: 2010
  ident: 10.1016/j.xagr.2024.100386_bib0003
  article-title: Pre-eclampsia
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(10)60279-6
– volume: 215
  start-page: 87.e1
  issue: 1
  year: 2016
  ident: 10.1016/j.xagr.2024.100386_bib0016
  article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 30–34 weeks’ gestation
  publication-title: Am J Obstetr Gynecol
  doi: 10.1016/j.ajog.2016.02.016
– volume: 226
  start-page: S1120
  issue: 2
  year: 2022
  ident: 10.1016/j.xagr.2024.100386_bib0038
  article-title: When to give aspirin to prevent preeclampsia: application of Bayesian decision theory
  publication-title: Am J Obstetr Gynecol
  doi: 10.1016/j.ajog.2021.10.038
– volume: 129
  start-page: 31
  issue: 1
  year: 2017
  ident: 10.1016/j.xagr.2024.100386_bib0022
  article-title: Association between sleep-disordered breathing and hypertensive disorders of pregnancy and gestational diabetes mellitus
  publication-title: Obstetr Gynecol
  doi: 10.1097/AOG.0000000000001805
– volume: 125
  start-page: 628
  issue: 3
  year: 2015
  ident: 10.1016/j.xagr.2024.100386_bib0002
  article-title: Risk of fetal death with preeclampsia
  publication-title: Obstetr Gynecol
  doi: 10.1097/AOG.0000000000000696
– volume: 8
  issue: 19
  year: 2019
  ident: 10.1016/j.xagr.2024.100386_bib0021
  article-title: Association of adverse pregnancy outcomes with hypertension 2 to 7 years postpartum
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.119.013092
– volume: 79
  start-page: 2401
  issue: 24
  year: 2022
  ident: 10.1016/j.xagr.2024.100386_bib0005
  article-title: Prospective evaluation of cardiovascular risk 10 years after a hypertensive disorder of pregnancy
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2022.03.383
– volume: 21
  start-page: 1389
  issue: 11
  year: 2014
  ident: 10.1016/j.xagr.2024.100386_bib0027
  article-title: Fast implementation of DeLong's algorithm for comparing the areas under correlated receiver operating characteristic curves
  publication-title: IEEE Signal Proc Lett
  doi: 10.1109/LSP.2014.2337313
– volume: 33
  start-page: 130
  issue: 3
  year: 2009
  ident: 10.1016/j.xagr.2024.100386_bib0001
  article-title: The global impact of pre-eclampsia and eclampsia
  publication-title: Semin Perinatol
  doi: 10.1053/j.semperi.2009.02.010
– volume: 10
  year: 2009
  ident: 10.1016/j.xagr.2024.100386_bib0029
  article-title: Python 3 reference manual
  publication-title: Scotts Valley, CA: CreateSpace
– volume: 7
  issue: 17
  year: 2018
  ident: 10.1016/j.xagr.2024.100386_bib0039
  article-title: Hypertensive disorders of pregnancy and future maternal cardiovascular risk
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.118.009382
– volume: 15
  start-page: 3133
  issue: 1
  year: 2014
  ident: 10.1016/j.xagr.2024.100386_bib0026
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J Machine Learning Res
– volume: 223
  start-page: B18
  issue: 4
  year: 2020
  ident: 10.1016/j.xagr.2024.100386_bib0008
  article-title: Society for maternal-fetal medicine special statement: checklist for postpartum discharge of women with hypertensive disorders
  publication-title: Am J Obstetr Gynecol
  doi: 10.1016/j.ajog.2020.07.009
– volume: 133
  start-page: E1
  issue: 1
  year: 2019
  ident: 10.1016/j.xagr.2024.100386_bib0009
  article-title: Gestational hypertension and preeclampsia
  publication-title: Obstetr Gynecol
– volume: 129
  start-page: 1050
  issue: 7
  year: 2022
  ident: 10.1016/j.xagr.2024.100386_bib0006
  article-title: Trends and outcomes for deliveries with hypertensive disorders of pregnancy from 2000 to 2018: a repeated cross-sectional study
  publication-title: BJOG: Int J Obstetr Gynaecol
  doi: 10.1111/1471-0528.17038
– volume: 214
  start-page: 619.e1
  issue: 5
  year: 2016
  ident: 10.1016/j.xagr.2024.100386_bib0017
  article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 19–24 weeks’ gestation
  publication-title: Am J Obstetr Gynecol
  doi: 10.1016/j.ajog.2015.11.016
– volume: 132
  start-page: e44
  year: 2018
  ident: 10.1016/j.xagr.2024.100386_bib0030
  article-title: Low-dose aspirin use during pregnancy. ACOG Committee Opinion No. 743
  publication-title: Obstet Gynecol.
  doi: 10.1097/AOG.0000000000002708
– volume: 212
  start-page: 539.e1
  issue: 4
  year: 2015
  ident: 10.1016/j.xagr.2024.100386_bib0020
  article-title: A description of the methods of the Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be (nuMoM2b)
  publication-title: Am J Obstetr Gynecol
  doi: 10.1016/j.ajog.2015.01.019
– volume: 218
  start-page: 287
  issue: 3
  year: 2018
  ident: 10.1016/j.xagr.2024.100386_bib0013
  article-title: Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis
  publication-title: Am J Obstetr Gynecol
  doi: 10.1016/j.ajog.2017.11.561
– start-page: 758
  year: 2019
  ident: 10.1016/j.xagr.2024.100386_bib0024
– volume: 14
  issue: 11
  year: 2019
  ident: 10.1016/j.xagr.2024.100386_bib0036
  article-title: Clinical risk assessment in early pregnancy for preeclampsia in nulliparous women: A population based cohort study
  publication-title: PloS one
  doi: 10.1371/journal.pone.0225716
– volume: 25
  start-page: 111123
  issue: 5
  year: 2020
  ident: 10.1016/j.xagr.2024.100386_bib0011
  article-title: Prevention of preeclampsia
  publication-title: Semin Fetal Neonatal Med
– ident: 10.1016/j.xagr.2024.100386_bib0023
  doi: 10.1101/2021.08.24.21262142
– volume: 3
  issue: 1
  year: 2021
  ident: 10.1016/j.xagr.2024.100386_bib0018
  article-title: A machine learning algorithm for predicting maternal readmission for hypertensive disorders of pregnancy
  publication-title: Am J Obstetr Gynecol MFM
– volume: 28
  start-page: 553
  issue: 6
  year: 2021
  ident: 10.1016/j.xagr.2024.100386_bib0019
  article-title: The potential of big data for obstetrics discovery
  publication-title: Curr Opin Endocrinol Diabetes Obes
  doi: 10.1097/MED.0000000000000679
– volume: 9
  year: 2021
  ident: 10.1016/j.xagr.2024.100386_bib0032
  article-title: Using machine learning to predict complications in pregnancy: a systematic review
  publication-title: Front Bioeng Biotechnol
– volume: 338
  year: 2009
  ident: 10.1016/j.xagr.2024.100386_bib0042
  article-title: Risk of pre-eclampsia in first and subsequent pregnancies: prospective cohort study
  publication-title: Bmj
  doi: 10.1136/bmj.b2255
– volume: 14
  issue: 8
  year: 2019
  ident: 10.1016/j.xagr.2024.100386_bib0033
  article-title: Prediction model development of late-onset preeclampsia using machine learning-based methods
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0221202
– volume: 386
  start-page: 1817
  issue: 19
  year: 2022
  ident: 10.1016/j.xagr.2024.100386_bib0004
  article-title: Preeclampsia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra2109523
– volume: 374
  start-page: 979
  issue: 9694
  year: 2009
  ident: 10.1016/j.xagr.2024.100386_bib0014
  article-title: Induction of labour versus expectant monitoring for gestational hypertension or mild pre-eclampsia after 36 weeks' gestation (HYPITAT): a multicentre, open-label randomised controlled trial
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(09)60736-4
– start-page: 837
  year: 1988
  ident: 10.1016/j.xagr.2024.100386_bib0028
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 2
  issue: 2
  year: 2020
  ident: 10.1016/j.xagr.2024.100386_bib0034
  article-title: Early prediction of preeclampsia via machine learning
  publication-title: Am J Obstetr Gynecol MFM
– volume: 161
  start-page: 819
  issue: 11
  year: 2014
  ident: 10.1016/j.xagr.2024.100386_bib0010
  article-title: Low-dose aspirin use for the prevention of morbidity and mortality from preeclampsia: US Preventive Services Task Force recommendation statement
  publication-title: Ann Internal Med
  doi: 10.7326/M14-1884
– year: 2021
  ident: 10.1016/j.xagr.2024.100386_bib0015
– volume: 26
  start-page: 102
  year: 2021
  ident: 10.1016/j.xagr.2024.100386_bib0031
  article-title: Novel electronic health records applied for prediction of pre-eclampsia: machine-learning algorithms
  publication-title: Pregnancy Hypertension
  doi: 10.1016/j.preghy.2021.10.006
SSID ssj0002513208
Score 2.282591
Snippet Hypertensive disorders of pregnancy (HDP) are significant drivers of maternal and neonatal morbidity and mortality. Current management strategies include early...
AJOG AT A GLANCEA.Why was the study conducted?-This study was conducted to develop and internally validate a machine learning prediction model for predicting...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 100386
SubjectTerms Hypertensive disorders of pregnancy
Machine learning
Obstetrics and Gynecology
Original Research
Risk prediction
Title Using machine learning to predict the risk of developing hypertensive disorders of pregnancy using a contemporary nulliparous cohort
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2666577824000807
https://www.clinicalkey.es/playcontent/1-s2.0-S2666577824000807
https://dx.doi.org/10.1016/j.xagr.2024.100386
https://www.ncbi.nlm.nih.gov/pubmed/39385801
https://www.proquest.com/docview/3115096322
https://pubmed.ncbi.nlm.nih.gov/PMC11462053
https://doi.org/10.1016/j.xagr.2024.100386
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 2666-5778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513208
  issn: 2666-5778
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-5778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513208
  issn: 2666-5778
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2666-5778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513208
  issn: 2666-5778
  databaseCode: AKRWK
  dateStart: 20210201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2666-5778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513208
  issn: 2666-5778
  databaseCode: RPM
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9lAuPASF8Fi5EjdIlcROnBwrRFUhUSHRlcrJchJn-yK7ykNQzvxwZhxn6dJCy3EVT7IZjz2fMzPfALwOqlyaMgn8sMhLHz0-rjl0nD6C0cgEKJPYriUfD5L9mfhwFB85mhyqhVmL39s8rO96TrydkaCAPk-Tu7CRxIi7J7AxO_i0-4W6xyEG92MpU1cVc73g3zzPVWR5NUFys6-X-uKbPj-_5H32HgxtjFpLWkhJJ2c7fZfvFD_-oHS83Ys9hPsOhLLdwWoewR1TP4afNnuAfbXZlYa5dhJz1i3YsqFwTscQLDLKRWeLiv2utmLHeJZtXCY8Kx2dZ0uDUHBOjB4XrLc316y4xIbFaopELXWz6FtGnXqb7gnM9t4fvtv3XY8Gv4hD3vlxjvgmE7FFKojWdMmrLK3wsBuWFUJHoYWWRVSEAnfdMDF5KTOdVMJoYxKuK74Fk3pRm2fAJDUN5pGu0IEKWehMGskREIVRmXKRSQ_ejPOnlgMVhxpz1E4VaVORNtWgTQ_4OMVqLDLFbVHhPPxTSl4nZVq3slsVqjZSgfpMNkcmRzm4iLrx38UrSQdeBlBy4xO3R_tTuLIpXKNrg3pXxIOEB0zccT14Otjj6r15RgHdIPQgXbPU1QBiDV-_Up8cW_ZwKkOPcOv14O3KqG-hz-f_N_wF3KNfQ9XmS5h0TW9eIXzr8qn97DG139Wmbg3_Ao8TQ_8
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9kAvBQS0KbQyEjdIlcROnBwr1NWqEhUSrFROlpM4W8qSXeWhPs78cGYSZ-nSAuUYxZPHeOz5rJn5BuCNV6TS5JHn-lmau-jxcc2h43QRjAbGQ5mo61ry4SSaTMXxaXhqaXKoFmYtft_lYV3qGfF2BoIC-jyOHsJGFCLuHsHG9OTj4RfqHocY3A2ljG1VzN2Cf_I8t5Hl7QTJR2251FcXej6_4X3Gj_s2RnVHWkhJJ98O2iY9yK5_o3S83489gS0LQtlhbzVP4YEpn8GPLnuAfe-yKw2z7SRmrFmwZUXhnIYhWGSUi84WBftVbcXO8Cxb2Ux4lls6z5oGoeCMGD2uWNs9XLPsBhsWKykStdTVoq0ZdeqtmucwHR99fj9xbY8GNwt93rhhivgmEWGHVBCt6ZwXSVzgYdfPC4SOQgstsyDzBe66fmTSXCY6KoTRxkRcF_wFjMpFaXaASWoazANdoAMVMtOJNJIjIPKDPOYikQ68HeZPLXsqDjXkqJ0r0qYibapemw7wYYrVUGSK26LCefirlLxLytR2ZdfKV3WgPPWJbI5MjnJwEXXj14UrSQteelDyzze-HuxP4cqmcI0uDepdEQ8SHjBxx3Vgu7fH1X_zhAK6nu9AvGapqwHEGr5-p_x61rGHUxl6gFuvA-9WRn0Pfe7-3_CXsElXfdXmKxg1VWv2EL416b5dtz8BcHpB-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+machine+learning+to+predict+the+risk+of+developing+hypertensive+disorders+of+pregnancy+using+a+contemporary+nulliparous+cohort&rft.jtitle=AJOG+global+reports&rft.au=Schor%2C+Jonathan+S&rft.au=Kadambi%2C+Adesh&rft.au=Fulcher%2C+Isabel&rft.au=Venkatesh%2C+Kartik+K&rft.date=2024-11-01&rft.eissn=2666-5778&rft.volume=4&rft.issue=4&rft.spage=100386&rft_id=info:doi/10.1016%2Fj.xagr.2024.100386&rft_id=info%3Apmid%2F39385801&rft.externalDocID=39385801
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-5778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-5778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-5778&client=summon