Using machine learning to predict the risk of developing hypertensive disorders of pregnancy using a contemporary nulliparous cohort
Hypertensive disorders of pregnancy (HDP) are significant drivers of maternal and neonatal morbidity and mortality. Current management strategies include early identification and initiation of risk mitigating interventions facilitated by a rules-based checklist. Advanced analytic techniques, such as...
Saved in:
| Published in | AJOG global reports Vol. 4; no. 4; p. 100386 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.11.2024
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2666-5778 2666-5778 |
| DOI | 10.1016/j.xagr.2024.100386 |
Cover
| Abstract | Hypertensive disorders of pregnancy (HDP) are significant drivers of maternal and neonatal morbidity and mortality. Current management strategies include early identification and initiation of risk mitigating interventions facilitated by a rules-based checklist. Advanced analytic techniques, such as machine learning, can potentially offer improved and refined predictive capabilities.
To develop and internally validate a machine learning prediction model for hypertensive disorders of pregnancy (HDP) when initiating prenatal care.
We developed a prediction model using data from the prospective multisite cohort Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) among low-risk individuals without a prior history of aspirin utilization for preeclampsia prevention. The primary outcome was the development of HDP. Random forest modeling was utilized to develop predictive models. Recursive feature elimination (RFE) was employed to create a reduced model for each outcome. Area under the curve (AUC), 95% confidence intervals (CI), and calibration curves were utilized to assess discrimination and accuracy. Sensitivity analyses were conducted to compare the sensitivity and specificity of the reduced model compared to existing risk factor-based algorithms.
Of 9,124 assessed low risk nulliparous individuals, 21% (n=1,927) developed HDP. The prediction model for HDP had satisfactory discrimination with an AUC of 0.73 (95% CI: 0.70, 0.75). After RFE, a parsimonious reduced model with 30 features was created with an AUC of 0.71 (95% CI: 0.68, 0.74). Variables included in the model after RFE included body mass index at the first study visit, pre-pregnancy weight, first trimester complete blood count results, and maximum systolic blood pressure at the first visit. Calibration curves for all models revealed relatively stable agreement between predicted and observed probabilities. Sensitivity analysis noted superior sensitivity (AUC 0.80 vs 0.65) and specificity (0.65 vs 0.53) of the model compared to traditional risk factor-based algorithms.
In cohort of low-risk nulliparous pregnant individuals, a prediction model may accurately predict HDP diagnosis at the time of initiating prenatal care and aid employment of close interval monitoring and prophylactic measures earlier in pregnancy. |
|---|---|
| AbstractList | Hypertensive disorders of pregnancy (HDP) are significant drivers of maternal and neonatal morbidity and mortality. Current management strategies include early identification and initiation of risk mitigating interventions facilitated by a rules-based checklist. Advanced analytic techniques, such as machine learning, can potentially offer improved and refined predictive capabilities.
To develop and internally validate a machine learning prediction model for hypertensive disorders of pregnancy (HDP) when initiating prenatal care.
We developed a prediction model using data from the prospective multisite cohort Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) among low-risk individuals without a prior history of aspirin utilization for preeclampsia prevention. The primary outcome was the development of HDP. Random forest modeling was utilized to develop predictive models. Recursive feature elimination (RFE) was employed to create a reduced model for each outcome. Area under the curve (AUC), 95% confidence intervals (CI), and calibration curves were utilized to assess discrimination and accuracy. Sensitivity analyses were conducted to compare the sensitivity and specificity of the reduced model compared to existing risk factor-based algorithms.
Of 9,124 assessed low risk nulliparous individuals, 21% (n=1,927) developed HDP. The prediction model for HDP had satisfactory discrimination with an AUC of 0.73 (95% CI: 0.70, 0.75). After RFE, a parsimonious reduced model with 30 features was created with an AUC of 0.71 (95% CI: 0.68, 0.74). Variables included in the model after RFE included body mass index at the first study visit, pre-pregnancy weight, first trimester complete blood count results, and maximum systolic blood pressure at the first visit. Calibration curves for all models revealed relatively stable agreement between predicted and observed probabilities. Sensitivity analysis noted superior sensitivity (AUC 0.80 vs 0.65) and specificity (0.65 vs 0.53) of the model compared to traditional risk factor-based algorithms.
In cohort of low-risk nulliparous pregnant individuals, a prediction model may accurately predict HDP diagnosis at the time of initiating prenatal care and aid employment of close interval monitoring and prophylactic measures earlier in pregnancy. Hypertensive disorders of pregnancy (HDP) are significant drivers of maternal and neonatal morbidity and mortality. Current management strategies include early identification and initiation of risk mitigating interventions facilitated by a rules-based checklist. Advanced analytic techniques, such as machine learning, can potentially offer improved and refined predictive capabilities.BackgroundHypertensive disorders of pregnancy (HDP) are significant drivers of maternal and neonatal morbidity and mortality. Current management strategies include early identification and initiation of risk mitigating interventions facilitated by a rules-based checklist. Advanced analytic techniques, such as machine learning, can potentially offer improved and refined predictive capabilities.To develop and internally validate a machine learning prediction model for hypertensive disorders of pregnancy (HDP) when initiating prenatal care.ObjectiveTo develop and internally validate a machine learning prediction model for hypertensive disorders of pregnancy (HDP) when initiating prenatal care.We developed a prediction model using data from the prospective multisite cohort Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) among low-risk individuals without a prior history of aspirin utilization for preeclampsia prevention. The primary outcome was the development of HDP. Random forest modeling was utilized to develop predictive models. Recursive feature elimination (RFE) was employed to create a reduced model for each outcome. Area under the curve (AUC), 95% confidence intervals (CI), and calibration curves were utilized to assess discrimination and accuracy. Sensitivity analyses were conducted to compare the sensitivity and specificity of the reduced model compared to existing risk factor-based algorithms.Study DesignWe developed a prediction model using data from the prospective multisite cohort Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) among low-risk individuals without a prior history of aspirin utilization for preeclampsia prevention. The primary outcome was the development of HDP. Random forest modeling was utilized to develop predictive models. Recursive feature elimination (RFE) was employed to create a reduced model for each outcome. Area under the curve (AUC), 95% confidence intervals (CI), and calibration curves were utilized to assess discrimination and accuracy. Sensitivity analyses were conducted to compare the sensitivity and specificity of the reduced model compared to existing risk factor-based algorithms.Of 9,124 assessed low risk nulliparous individuals, 21% (n=1,927) developed HDP. The prediction model for HDP had satisfactory discrimination with an AUC of 0.73 (95% CI: 0.70, 0.75). After RFE, a parsimonious reduced model with 30 features was created with an AUC of 0.71 (95% CI: 0.68, 0.74). Variables included in the model after RFE included body mass index at the first study visit, pre-pregnancy weight, first trimester complete blood count results, and maximum systolic blood pressure at the first visit. Calibration curves for all models revealed relatively stable agreement between predicted and observed probabilities. Sensitivity analysis noted superior sensitivity (AUC 0.80 vs 0.65) and specificity (0.65 vs 0.53) of the model compared to traditional risk factor-based algorithms.ResultsOf 9,124 assessed low risk nulliparous individuals, 21% (n=1,927) developed HDP. The prediction model for HDP had satisfactory discrimination with an AUC of 0.73 (95% CI: 0.70, 0.75). After RFE, a parsimonious reduced model with 30 features was created with an AUC of 0.71 (95% CI: 0.68, 0.74). Variables included in the model after RFE included body mass index at the first study visit, pre-pregnancy weight, first trimester complete blood count results, and maximum systolic blood pressure at the first visit. Calibration curves for all models revealed relatively stable agreement between predicted and observed probabilities. Sensitivity analysis noted superior sensitivity (AUC 0.80 vs 0.65) and specificity (0.65 vs 0.53) of the model compared to traditional risk factor-based algorithms.In cohort of low-risk nulliparous pregnant individuals, a prediction model may accurately predict HDP diagnosis at the time of initiating prenatal care and aid employment of close interval monitoring and prophylactic measures earlier in pregnancy.ConclusionIn cohort of low-risk nulliparous pregnant individuals, a prediction model may accurately predict HDP diagnosis at the time of initiating prenatal care and aid employment of close interval monitoring and prophylactic measures earlier in pregnancy. AJOG AT A GLANCEA.Why was the study conducted?-This study was conducted to develop and internally validate a machine learning prediction model for predicting hypertensive disorders of pregnancy (HDP) in the first trimester using features typically ascertained by the first prenatal care visit found in a publicly available data set. B.What are the key findings?-In a low-risk nulliparous pregnancy cohort, a prediction model for hypertensive disorders of pregnancy may accurately predict HDP diagnosis at the time of initiating prenatal care with satisfactory discrimination, an area under the receiver operator curve (AUC) of 0.73 (95% CI: 0.70, 0.75). -A reduced parsimonious model developed using recursive feature elimination exhibits similar discriminatory capability (AUC: 0.71, 95% CI: 0.68, 0.74). -Sensitivity analyses noted an improved sensitivity and specificity in predicting HDP when utilizing this model over traditional risk factors analysis. C.What does this study add to what is already known?-The prediction of hypertensive disorders of pregnancy early in pregnancy using a machine learning approach derived from publicly available data is feasible with satisfactory discrimination and superior sensitivity and specificity when compared to current risk-based algorithms. -Implementation of this algorithm could potentially identify more patients at risk for HDP and by extension, could benefit from preeclampsia prevention strategies. |
| ArticleNumber | 100386 |
| Author | Venkatesh, Kartik K. Schor, Jonathan S. Fulcher, Isabel Wen, Timothy Clapp, Mark A. Ebrahim, Senan Kadambi, Adesh Ebrahim, Ali |
| Author_xml | – sequence: 1 givenname: Jonathan S. surname: Schor fullname: Schor, Jonathan S. organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen) – sequence: 2 givenname: Adesh surname: Kadambi fullname: Kadambi, Adesh organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen) – sequence: 3 givenname: Isabel surname: Fulcher fullname: Fulcher, Isabel organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen) – sequence: 4 givenname: Kartik K. surname: Venkatesh fullname: Venkatesh, Kartik K. organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen) – sequence: 5 givenname: Mark A. surname: Clapp fullname: Clapp, Mark A. organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen) – sequence: 6 givenname: Senan surname: Ebrahim fullname: Ebrahim, Senan organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen) – sequence: 7 givenname: Ali surname: Ebrahim fullname: Ebrahim, Ali organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen) – sequence: 8 givenname: Timothy surname: Wen fullname: Wen, Timothy email: timothy.wen2@ucsf.edu organization: Delfina Care Inc, San Francisco, CA, USA (Schor, Kadambi, Fulcher, Venkatesh, Clapp, Ebrahim, Ebrahim and Wen) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39385801$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAQtVARLaV_gAPykcsu_kicBCEqVPElVeIAPVteZ7Lx1msH21nInR-OQwoUJD5OtmbeezPzZu6jI-cdIPSQkjUlVDzZrT-rbVgzwoocILwWd9AJE0Ksyqqqj279j9FZjDtCCCspZ6S-h455w-uyJvQEfbmKxm3xXuneOMAWVHBzIHk8BGiNTjj1gIOJ19h3uIUDWD_MiH4aICRw0RwAtyb60EKIMygTt045PeHxm7jC2rsE-8EHFSbsRmvNoIIfY070PqQH6G6nbISzm_cUXb16-eHizery3eu3Fy8uVzp3nlblpuFVU5SkooQ1JVUt75q6I6yibccpKVShKs00LSrBqIBNWzVKdAUoAMFVx08RX3RHN6jpk7JWDsHsc1OSEjnbKndytlXOtsrF1sw6X1jDuNlDq8GloH4yvTLy14wzvdz6g6S0EIyUPCs8vlEI_uMIMcm9iRqsVQ6yC5JTWpJGcMYy9NHtYj-qfN9YBrAFoIOPMUD3fyM8W0iQ3T0YCDJqA07nBQfQSbbe_J3-_De6tsYZrew1TBB3fgwu701SGZkk8v18evPlsSJfXU2qLPD0zwL_qv4V9Ozrtg |
| Cites_doi | 10.1097/AOG.0000000000004224 10.1016/j.ajog.2019.11.1247 10.1056/NEJMoa1704559 10.1016/j.ebiom.2020.102710 10.1038/s41598-022-14632-w 10.1038/ajh.2008.20 10.1056/NEJMoa1800566 10.1016/S0140-6736(10)60279-6 10.1016/j.ajog.2016.02.016 10.1016/j.ajog.2021.10.038 10.1097/AOG.0000000000001805 10.1097/AOG.0000000000000696 10.1161/JAHA.119.013092 10.1016/j.jacc.2022.03.383 10.1109/LSP.2014.2337313 10.1053/j.semperi.2009.02.010 10.1161/JAHA.118.009382 10.1016/j.ajog.2020.07.009 10.1111/1471-0528.17038 10.1016/j.ajog.2015.11.016 10.1097/AOG.0000000000002708 10.1016/j.ajog.2015.01.019 10.1016/j.ajog.2017.11.561 10.1371/journal.pone.0225716 10.1101/2021.08.24.21262142 10.1097/MED.0000000000000679 10.1136/bmj.b2255 10.1371/journal.pone.0221202 10.1056/NEJMra2109523 10.1016/S0140-6736(09)60736-4 10.2307/2531595 10.7326/M14-1884 10.1016/j.preghy.2021.10.006 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors 2024 The Authors. 2024 The Authors 2024 |
| Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. – notice: 2024 The Authors 2024 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.xagr.2024.100386 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2666-5778 |
| EndPage | 100386 |
| ExternalDocumentID | 10.1016/j.xagr.2024.100386 PMC11462053 39385801 10_1016_j_xagr_2024_100386 S2666577824000807 1_s2_0_S2666577824000807 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Clinical and Translational Science Institutes grantid: UL1TR001108; UL1TR000153 – fundername: Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) grantid: U10 HD063036; U10 HD063072; U10 HD063047; U10 HD063037; U10 HD063041; U10 HD063020; U10 HD063046; U10 HD063048; U10 HD063053 |
| GroupedDBID | .1- .FO 0R~ AAEDW AALRI AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AFRHN AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP EBS FDB GROUPED_DOAJ M~E OK1 ROL RPM Z5R 6I. AAFTH AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c513t-5b93794507102951ad3f98f0271df3104a4a7c2c1476216ebd79a6f4eaee63af3 |
| IEDL.DBID | UNPAY |
| ISSN | 2666-5778 |
| IngestDate | Sun Oct 26 04:09:06 EDT 2025 Thu Aug 21 18:35:45 EDT 2025 Thu Oct 02 12:09:28 EDT 2025 Mon Jul 21 05:39:34 EDT 2025 Tue Jul 01 01:57:17 EDT 2025 Sat Dec 21 15:58:54 EST 2024 Tue Feb 25 19:58:28 EST 2025 Tue Aug 26 16:34:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Risk prediction Hypertensive disorders of pregnancy Machine learning machine learning risk prediction |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c513t-5b93794507102951ad3f98f0271df3104a4a7c2c1476216ebd79a6f4eaee63af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.xagr.2024.100386 |
| PMID | 39385801 |
| PQID | 3115096322 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1016_j_xagr_2024_100386 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11462053 proquest_miscellaneous_3115096322 pubmed_primary_39385801 crossref_primary_10_1016_j_xagr_2024_100386 elsevier_sciencedirect_doi_10_1016_j_xagr_2024_100386 elsevier_clinicalkeyesjournals_1_s2_0_S2666577824000807 elsevier_clinicalkey_doi_10_1016_j_xagr_2024_100386 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | AJOG global reports |
| PublicationTitleAlternate | AJOG Glob Rep |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Magee, Nicolaides, Von Dadelszen (bib0004) 2022; 386 Ying, Catov, Ouyang (bib0039) 2018; 7 Gibson, Hameed (bib0008) 2020; 223 Facco, Parker, Reddy (bib0022) 2017; 129 Fernández-Delgado, Cernadas, Barro, Amorim (bib0026) 2014; 15 Sutton, Anachebe, Lee, Skanes (bib0041) 2021; 137 Hernández-Díaz, Toh, Cnattingius (bib0042) 2009; 338 Goretsky A, Dmitrienko A, Tang I, et al. Data preparation of the nuMoM2b dataset. medRxiv. 2021. Van, Drake (bib0029) 2009; 10 Hoffman, Ma, Roberts (bib0018) 2021; 3 Gallo, Wright, Casanova, Campanero, Nicolaides (bib0017) 2016; 214 Grobman, Rice, Reddy (bib0040) 2018; 379 Rolnik, Wright, Poon (bib0012) 2017; 377 (bib0030) 2018; 132 Wright, Wright, Nicolaides (bib0037) 2020; 223 DeLong, DeLong, Clarke-Pearson (bib0028) 1988 Wright, Wright, Tan, Nicolaides (bib0038) 2022; 226 Steegers, Von Dadelszen, Duvekot, Pijnenborg (bib0003) 2010; 376 LeFevre (bib0010) 2014; 161 Li, Shen, Yang (bib0031) 2021; 26 Sandström, Snowden, Höijer, Bottai, Wikström (bib0036) 2019; 14 Levine, Ky, Chirinos (bib0005) 2022; 79 Haas, Parker, Wing (bib0020) 2015; 212 Bertini, Salas, Chabert, Sobrevia, Pardo (bib0032) 2021; 9 Loef, Wong, Janssen (bib0025) 2022; 12 Marić, Tsur, Aghaeepour (bib0034) 2020; 2 Sun, Xu (bib0027) 2014; 21 Espinoza, Vidaeff, Pettker, Simhan (bib0009) 2019; 133 (bib0015) 2021 Tsiakkas, Saiid, Wright, Wright, Nicolaides (bib0016) 2016; 215 Haas, Parker, Marsh (bib0021) 2019; 8 Clapp, McCoy (bib0019) 2021; 28 Ma'ayeh, Constantine (bib0011) 2020; 25 Koopmans, Bijlenga, Groen (bib0014) 2009; 374 Duley (bib0001) 2009; 33 Harmon, Huang, Umbach (bib0002) 2015; 125 Wen, Schmidt, Sobhani (bib0006) 2022; 129 Jhee, Lee, Park (bib0033) 2019; 14 Roberge, Bujold, Nicolaides (bib0013) 2018; 218 Wallis, Saftlas, Hsia, Atrash (bib0007) 2008; 21 Parmar, Katariya, Patel (bib0024) 2019 Sufriyana, Wu, Su (bib0035) 2020; 54 Wallis (10.1016/j.xagr.2024.100386_bib0007) 2008; 21 Roberge (10.1016/j.xagr.2024.100386_bib0013) 2018; 218 Tsiakkas (10.1016/j.xagr.2024.100386_bib0016) 2016; 215 DeLong (10.1016/j.xagr.2024.100386_bib0028) 1988 Ying (10.1016/j.xagr.2024.100386_bib0039) 2018; 7 Wright (10.1016/j.xagr.2024.100386_bib0038) 2022; 226 Clapp (10.1016/j.xagr.2024.100386_bib0019) 2021; 28 Sutton (10.1016/j.xagr.2024.100386_bib0041) 2021; 137 Koopmans (10.1016/j.xagr.2024.100386_bib0014) 2009; 374 Haas (10.1016/j.xagr.2024.100386_bib0020) 2015; 212 Facco (10.1016/j.xagr.2024.100386_bib0022) 2017; 129 Levine (10.1016/j.xagr.2024.100386_bib0005) 2022; 79 Hernández-Díaz (10.1016/j.xagr.2024.100386_bib0042) 2009; 338 Li (10.1016/j.xagr.2024.100386_bib0031) 2021; 26 Harmon (10.1016/j.xagr.2024.100386_bib0002) 2015; 125 Grobman (10.1016/j.xagr.2024.100386_bib0040) 2018; 379 Haas (10.1016/j.xagr.2024.100386_bib0021) 2019; 8 Magee (10.1016/j.xagr.2024.100386_bib0004) 2022; 386 10.1016/j.xagr.2024.100386_bib0023 Loef (10.1016/j.xagr.2024.100386_bib0025) 2022; 12 Sufriyana (10.1016/j.xagr.2024.100386_bib0035) 2020; 54 Wen (10.1016/j.xagr.2024.100386_bib0006) 2022; 129 Gibson (10.1016/j.xagr.2024.100386_bib0008) 2020; 223 Jhee (10.1016/j.xagr.2024.100386_bib0033) 2019; 14 Ma'ayeh (10.1016/j.xagr.2024.100386_bib0011) 2020; 25 Gallo (10.1016/j.xagr.2024.100386_bib0017) 2016; 214 Bertini (10.1016/j.xagr.2024.100386_bib0032) 2021; 9 Steegers (10.1016/j.xagr.2024.100386_bib0003) 2010; 376 Fernández-Delgado (10.1016/j.xagr.2024.100386_bib0026) 2014; 15 (10.1016/j.xagr.2024.100386_bib0030) 2018; 132 Marić (10.1016/j.xagr.2024.100386_bib0034) 2020; 2 Sandström (10.1016/j.xagr.2024.100386_bib0036) 2019; 14 (10.1016/j.xagr.2024.100386_bib0015) 2021 LeFevre (10.1016/j.xagr.2024.100386_bib0010) 2014; 161 Rolnik (10.1016/j.xagr.2024.100386_bib0012) 2017; 377 Espinoza (10.1016/j.xagr.2024.100386_bib0009) 2019; 133 Parmar (10.1016/j.xagr.2024.100386_bib0024) 2019 Hoffman (10.1016/j.xagr.2024.100386_bib0018) 2021; 3 Sun (10.1016/j.xagr.2024.100386_bib0027) 2014; 21 Wright (10.1016/j.xagr.2024.100386_bib0037) 2020; 223 Duley (10.1016/j.xagr.2024.100386_bib0001) 2009; 33 Van (10.1016/j.xagr.2024.100386_bib0029) 2009; 10 |
| References_xml | – start-page: 758 year: 2019 end-page: 763 ident: bib0024 article-title: A review on random forest: An ensemble classifier. In International conference on intelligent data communication technologies and internet of things (ICICI) 2018 – volume: 79 start-page: 2401 year: 2022 end-page: 2411 ident: bib0005 article-title: Prospective evaluation of cardiovascular risk 10 years after a hypertensive disorder of pregnancy publication-title: J Am Coll Cardiol – volume: 377 start-page: 613 year: 2017 end-page: 622 ident: bib0012 article-title: Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia publication-title: New Engl J. Med – volume: 12 start-page: 10372 year: 2022 ident: bib0025 article-title: Using random forest to identify longitudinal predictors of health in a 30-year cohort study publication-title: Sci Rep – volume: 386 start-page: 1817 year: 2022 end-page: 1832 ident: bib0004 article-title: Preeclampsia publication-title: N Engl J Med – volume: 218 start-page: 287 year: 2018 end-page: 293.e1 ident: bib0013 article-title: Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis publication-title: Am J Obstetr Gynecol – volume: 223 start-page: B18 year: 2020 end-page: B21 ident: bib0008 article-title: Society for maternal-fetal medicine special statement: checklist for postpartum discharge of women with hypertensive disorders publication-title: Am J Obstetr Gynecol – volume: 25 start-page: 111123 year: 2020 ident: bib0011 article-title: Prevention of preeclampsia publication-title: Semin Fetal Neonatal Med – volume: 129 start-page: 1050 year: 2022 end-page: 1060 ident: bib0006 article-title: Trends and outcomes for deliveries with hypertensive disorders of pregnancy from 2000 to 2018: a repeated cross-sectional study publication-title: BJOG: Int J Obstetr Gynaecol – volume: 376 start-page: 631 year: 2010 end-page: 644 ident: bib0003 article-title: Pre-eclampsia publication-title: The Lancet – volume: 374 start-page: 979 year: 2009 end-page: 988 ident: bib0014 article-title: Induction of labour versus expectant monitoring for gestational hypertension or mild pre-eclampsia after 36 weeks' gestation (HYPITAT): a multicentre, open-label randomised controlled trial publication-title: The Lancet – year: 2021 ident: bib0015 article-title: Low-dose aspirin use for the prevention of preeclampsia and related morbidity and mortality – volume: 26 start-page: 102 year: 2021 end-page: 109 ident: bib0031 article-title: Novel electronic health records applied for prediction of pre-eclampsia: machine-learning algorithms publication-title: Pregnancy Hypertension – volume: 9 year: 2021 ident: bib0032 article-title: Using machine learning to predict complications in pregnancy: a systematic review publication-title: Front Bioeng Biotechnol – volume: 14 year: 2019 ident: bib0036 article-title: Clinical risk assessment in early pregnancy for preeclampsia in nulliparous women: A population based cohort study publication-title: PloS one – volume: 161 start-page: 819 year: 2014 end-page: 826 ident: bib0010 article-title: Low-dose aspirin use for the prevention of morbidity and mortality from preeclampsia: US Preventive Services Task Force recommendation statement publication-title: Ann Internal Med – volume: 10 year: 2009 ident: bib0029 article-title: Python 3 reference manual publication-title: Scotts Valley, CA: CreateSpace – volume: 14 year: 2019 ident: bib0033 article-title: Prediction model development of late-onset preeclampsia using machine learning-based methods publication-title: PLoS One – volume: 8 year: 2019 ident: bib0021 article-title: Association of adverse pregnancy outcomes with hypertension 2 to 7 years postpartum publication-title: J Am Heart Assoc – volume: 215 start-page: 87.e1 year: 2016 end-page: 87.e17 ident: bib0016 article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 30–34 weeks’ gestation publication-title: Am J Obstetr Gynecol – volume: 132 start-page: e44 year: 2018 end-page: e52 ident: bib0030 article-title: Low-dose aspirin use during pregnancy. ACOG Committee Opinion No. 743 publication-title: Obstet Gynecol. – volume: 129 start-page: 31 year: 2017 ident: bib0022 article-title: Association between sleep-disordered breathing and hypertensive disorders of pregnancy and gestational diabetes mellitus publication-title: Obstetr Gynecol – volume: 15 start-page: 3133 year: 2014 end-page: 3181 ident: bib0026 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J Machine Learning Res – volume: 2 year: 2020 ident: bib0034 article-title: Early prediction of preeclampsia via machine learning publication-title: Am J Obstetr Gynecol MFM – volume: 7 year: 2018 ident: bib0039 article-title: Hypertensive disorders of pregnancy and future maternal cardiovascular risk publication-title: J Am Heart Assoc – volume: 28 start-page: 553 year: 2021 end-page: 557 ident: bib0019 article-title: The potential of big data for obstetrics discovery publication-title: Curr Opin Endocrinol Diabetes Obes – volume: 214 start-page: 619.e1 year: 2016 end-page: 619.e17 ident: bib0017 article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 19–24 weeks’ gestation publication-title: Am J Obstetr Gynecol – volume: 3 year: 2021 ident: bib0018 article-title: A machine learning algorithm for predicting maternal readmission for hypertensive disorders of pregnancy publication-title: Am J Obstetr Gynecol MFM – volume: 21 start-page: 521 year: 2008 end-page: 526 ident: bib0007 article-title: Secular trends in the rates of preeclampsia, eclampsia, and gestational hypertension, United States, 1987–2004 publication-title: Am J Hypertens – volume: 133 start-page: E1 year: 2019 end-page: E25 ident: bib0009 article-title: Gestational hypertension and preeclampsia publication-title: Obstetr Gynecol – volume: 212 start-page: 539.e1 year: 2015 end-page: 539.e24 ident: bib0020 article-title: A description of the methods of the Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be (nuMoM2b) publication-title: Am J Obstetr Gynecol – volume: 21 start-page: 1389 year: 2014 end-page: 1393 ident: bib0027 article-title: Fast implementation of DeLong's algorithm for comparing the areas under correlated receiver operating characteristic curves publication-title: IEEE Signal Proc Lett – volume: 226 start-page: S1120 year: 2022 end-page: S1125 ident: bib0038 article-title: When to give aspirin to prevent preeclampsia: application of Bayesian decision theory publication-title: Am J Obstetr Gynecol – volume: 379 start-page: 513 year: 2018 end-page: 523 ident: bib0040 article-title: Labor induction versus expectant management in low-risk nulliparous women publication-title: New Engl J Med – volume: 54 year: 2020 ident: bib0035 article-title: Artificial intelligence-assisted prediction of preeclampsia: Development and external validation of a nationwide health insurance dataset of the BPJS Kesehatan in Indonesia publication-title: EBioMedicine – volume: 33 start-page: 130 year: 2009 end-page: 137 ident: bib0001 article-title: The global impact of pre-eclampsia and eclampsia publication-title: Semin Perinatol – volume: 125 start-page: 628 year: 2015 ident: bib0002 article-title: Risk of fetal death with preeclampsia publication-title: Obstetr Gynecol – start-page: 837 year: 1988 end-page: 845 ident: bib0028 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics – volume: 338 year: 2009 ident: bib0042 article-title: Risk of pre-eclampsia in first and subsequent pregnancies: prospective cohort study publication-title: Bmj – volume: 223 start-page: 12 year: 2020 end-page: 23.e7 ident: bib0037 article-title: The competing risk approach for prediction of preeclampsia publication-title: Am J Obstetr Gynecol – reference: Goretsky A, Dmitrienko A, Tang I, et al. Data preparation of the nuMoM2b dataset. medRxiv. 2021. – volume: 137 start-page: 225 year: 2021 end-page: 233 ident: bib0041 article-title: Racial and Ethnic Disparities in Reproductive Health Services and Outcomes, 2020 publication-title: Obstet Gynecol – volume: 137 start-page: 225 issue: 2 year: 2021 ident: 10.1016/j.xagr.2024.100386_bib0041 article-title: Racial and Ethnic Disparities in Reproductive Health Services and Outcomes, 2020 publication-title: Obstet Gynecol doi: 10.1097/AOG.0000000000004224 – volume: 223 start-page: 12 issue: 1 year: 2020 ident: 10.1016/j.xagr.2024.100386_bib0037 article-title: The competing risk approach for prediction of preeclampsia publication-title: Am J Obstetr Gynecol doi: 10.1016/j.ajog.2019.11.1247 – volume: 377 start-page: 613 issue: 7 year: 2017 ident: 10.1016/j.xagr.2024.100386_bib0012 article-title: Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia publication-title: New Engl J. Med doi: 10.1056/NEJMoa1704559 – volume: 54 year: 2020 ident: 10.1016/j.xagr.2024.100386_bib0035 article-title: Artificial intelligence-assisted prediction of preeclampsia: Development and external validation of a nationwide health insurance dataset of the BPJS Kesehatan in Indonesia publication-title: EBioMedicine doi: 10.1016/j.ebiom.2020.102710 – volume: 12 start-page: 10372 issue: 1 year: 2022 ident: 10.1016/j.xagr.2024.100386_bib0025 article-title: Using random forest to identify longitudinal predictors of health in a 30-year cohort study publication-title: Sci Rep doi: 10.1038/s41598-022-14632-w – volume: 21 start-page: 521 issue: 5 year: 2008 ident: 10.1016/j.xagr.2024.100386_bib0007 article-title: Secular trends in the rates of preeclampsia, eclampsia, and gestational hypertension, United States, 1987–2004 publication-title: Am J Hypertens doi: 10.1038/ajh.2008.20 – volume: 379 start-page: 513 issue: 6 year: 2018 ident: 10.1016/j.xagr.2024.100386_bib0040 article-title: Labor induction versus expectant management in low-risk nulliparous women publication-title: New Engl J Med doi: 10.1056/NEJMoa1800566 – volume: 376 start-page: 631 issue: 9741 year: 2010 ident: 10.1016/j.xagr.2024.100386_bib0003 article-title: Pre-eclampsia publication-title: The Lancet doi: 10.1016/S0140-6736(10)60279-6 – volume: 215 start-page: 87.e1 issue: 1 year: 2016 ident: 10.1016/j.xagr.2024.100386_bib0016 article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 30–34 weeks’ gestation publication-title: Am J Obstetr Gynecol doi: 10.1016/j.ajog.2016.02.016 – volume: 226 start-page: S1120 issue: 2 year: 2022 ident: 10.1016/j.xagr.2024.100386_bib0038 article-title: When to give aspirin to prevent preeclampsia: application of Bayesian decision theory publication-title: Am J Obstetr Gynecol doi: 10.1016/j.ajog.2021.10.038 – volume: 129 start-page: 31 issue: 1 year: 2017 ident: 10.1016/j.xagr.2024.100386_bib0022 article-title: Association between sleep-disordered breathing and hypertensive disorders of pregnancy and gestational diabetes mellitus publication-title: Obstetr Gynecol doi: 10.1097/AOG.0000000000001805 – volume: 125 start-page: 628 issue: 3 year: 2015 ident: 10.1016/j.xagr.2024.100386_bib0002 article-title: Risk of fetal death with preeclampsia publication-title: Obstetr Gynecol doi: 10.1097/AOG.0000000000000696 – volume: 8 issue: 19 year: 2019 ident: 10.1016/j.xagr.2024.100386_bib0021 article-title: Association of adverse pregnancy outcomes with hypertension 2 to 7 years postpartum publication-title: J Am Heart Assoc doi: 10.1161/JAHA.119.013092 – volume: 79 start-page: 2401 issue: 24 year: 2022 ident: 10.1016/j.xagr.2024.100386_bib0005 article-title: Prospective evaluation of cardiovascular risk 10 years after a hypertensive disorder of pregnancy publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2022.03.383 – volume: 21 start-page: 1389 issue: 11 year: 2014 ident: 10.1016/j.xagr.2024.100386_bib0027 article-title: Fast implementation of DeLong's algorithm for comparing the areas under correlated receiver operating characteristic curves publication-title: IEEE Signal Proc Lett doi: 10.1109/LSP.2014.2337313 – volume: 33 start-page: 130 issue: 3 year: 2009 ident: 10.1016/j.xagr.2024.100386_bib0001 article-title: The global impact of pre-eclampsia and eclampsia publication-title: Semin Perinatol doi: 10.1053/j.semperi.2009.02.010 – volume: 10 year: 2009 ident: 10.1016/j.xagr.2024.100386_bib0029 article-title: Python 3 reference manual publication-title: Scotts Valley, CA: CreateSpace – volume: 7 issue: 17 year: 2018 ident: 10.1016/j.xagr.2024.100386_bib0039 article-title: Hypertensive disorders of pregnancy and future maternal cardiovascular risk publication-title: J Am Heart Assoc doi: 10.1161/JAHA.118.009382 – volume: 15 start-page: 3133 issue: 1 year: 2014 ident: 10.1016/j.xagr.2024.100386_bib0026 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J Machine Learning Res – volume: 223 start-page: B18 issue: 4 year: 2020 ident: 10.1016/j.xagr.2024.100386_bib0008 article-title: Society for maternal-fetal medicine special statement: checklist for postpartum discharge of women with hypertensive disorders publication-title: Am J Obstetr Gynecol doi: 10.1016/j.ajog.2020.07.009 – volume: 133 start-page: E1 issue: 1 year: 2019 ident: 10.1016/j.xagr.2024.100386_bib0009 article-title: Gestational hypertension and preeclampsia publication-title: Obstetr Gynecol – volume: 129 start-page: 1050 issue: 7 year: 2022 ident: 10.1016/j.xagr.2024.100386_bib0006 article-title: Trends and outcomes for deliveries with hypertensive disorders of pregnancy from 2000 to 2018: a repeated cross-sectional study publication-title: BJOG: Int J Obstetr Gynaecol doi: 10.1111/1471-0528.17038 – volume: 214 start-page: 619.e1 issue: 5 year: 2016 ident: 10.1016/j.xagr.2024.100386_bib0017 article-title: Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 19–24 weeks’ gestation publication-title: Am J Obstetr Gynecol doi: 10.1016/j.ajog.2015.11.016 – volume: 132 start-page: e44 year: 2018 ident: 10.1016/j.xagr.2024.100386_bib0030 article-title: Low-dose aspirin use during pregnancy. ACOG Committee Opinion No. 743 publication-title: Obstet Gynecol. doi: 10.1097/AOG.0000000000002708 – volume: 212 start-page: 539.e1 issue: 4 year: 2015 ident: 10.1016/j.xagr.2024.100386_bib0020 article-title: A description of the methods of the Nulliparous Pregnancy Outcomes Study: monitoring mothers-to-be (nuMoM2b) publication-title: Am J Obstetr Gynecol doi: 10.1016/j.ajog.2015.01.019 – volume: 218 start-page: 287 issue: 3 year: 2018 ident: 10.1016/j.xagr.2024.100386_bib0013 article-title: Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis publication-title: Am J Obstetr Gynecol doi: 10.1016/j.ajog.2017.11.561 – start-page: 758 year: 2019 ident: 10.1016/j.xagr.2024.100386_bib0024 – volume: 14 issue: 11 year: 2019 ident: 10.1016/j.xagr.2024.100386_bib0036 article-title: Clinical risk assessment in early pregnancy for preeclampsia in nulliparous women: A population based cohort study publication-title: PloS one doi: 10.1371/journal.pone.0225716 – volume: 25 start-page: 111123 issue: 5 year: 2020 ident: 10.1016/j.xagr.2024.100386_bib0011 article-title: Prevention of preeclampsia publication-title: Semin Fetal Neonatal Med – ident: 10.1016/j.xagr.2024.100386_bib0023 doi: 10.1101/2021.08.24.21262142 – volume: 3 issue: 1 year: 2021 ident: 10.1016/j.xagr.2024.100386_bib0018 article-title: A machine learning algorithm for predicting maternal readmission for hypertensive disorders of pregnancy publication-title: Am J Obstetr Gynecol MFM – volume: 28 start-page: 553 issue: 6 year: 2021 ident: 10.1016/j.xagr.2024.100386_bib0019 article-title: The potential of big data for obstetrics discovery publication-title: Curr Opin Endocrinol Diabetes Obes doi: 10.1097/MED.0000000000000679 – volume: 9 year: 2021 ident: 10.1016/j.xagr.2024.100386_bib0032 article-title: Using machine learning to predict complications in pregnancy: a systematic review publication-title: Front Bioeng Biotechnol – volume: 338 year: 2009 ident: 10.1016/j.xagr.2024.100386_bib0042 article-title: Risk of pre-eclampsia in first and subsequent pregnancies: prospective cohort study publication-title: Bmj doi: 10.1136/bmj.b2255 – volume: 14 issue: 8 year: 2019 ident: 10.1016/j.xagr.2024.100386_bib0033 article-title: Prediction model development of late-onset preeclampsia using machine learning-based methods publication-title: PLoS One doi: 10.1371/journal.pone.0221202 – volume: 386 start-page: 1817 issue: 19 year: 2022 ident: 10.1016/j.xagr.2024.100386_bib0004 article-title: Preeclampsia publication-title: N Engl J Med doi: 10.1056/NEJMra2109523 – volume: 374 start-page: 979 issue: 9694 year: 2009 ident: 10.1016/j.xagr.2024.100386_bib0014 article-title: Induction of labour versus expectant monitoring for gestational hypertension or mild pre-eclampsia after 36 weeks' gestation (HYPITAT): a multicentre, open-label randomised controlled trial publication-title: The Lancet doi: 10.1016/S0140-6736(09)60736-4 – start-page: 837 year: 1988 ident: 10.1016/j.xagr.2024.100386_bib0028 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 2 issue: 2 year: 2020 ident: 10.1016/j.xagr.2024.100386_bib0034 article-title: Early prediction of preeclampsia via machine learning publication-title: Am J Obstetr Gynecol MFM – volume: 161 start-page: 819 issue: 11 year: 2014 ident: 10.1016/j.xagr.2024.100386_bib0010 article-title: Low-dose aspirin use for the prevention of morbidity and mortality from preeclampsia: US Preventive Services Task Force recommendation statement publication-title: Ann Internal Med doi: 10.7326/M14-1884 – year: 2021 ident: 10.1016/j.xagr.2024.100386_bib0015 – volume: 26 start-page: 102 year: 2021 ident: 10.1016/j.xagr.2024.100386_bib0031 article-title: Novel electronic health records applied for prediction of pre-eclampsia: machine-learning algorithms publication-title: Pregnancy Hypertension doi: 10.1016/j.preghy.2021.10.006 |
| SSID | ssj0002513208 |
| Score | 2.282591 |
| Snippet | Hypertensive disorders of pregnancy (HDP) are significant drivers of maternal and neonatal morbidity and mortality. Current management strategies include early... AJOG AT A GLANCEA.Why was the study conducted?-This study was conducted to develop and internally validate a machine learning prediction model for predicting... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 100386 |
| SubjectTerms | Hypertensive disorders of pregnancy Machine learning Obstetrics and Gynecology Original Research Risk prediction |
| Title | Using machine learning to predict the risk of developing hypertensive disorders of pregnancy using a contemporary nulliparous cohort |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2666577824000807 https://www.clinicalkey.es/playcontent/1-s2.0-S2666577824000807 https://dx.doi.org/10.1016/j.xagr.2024.100386 https://www.ncbi.nlm.nih.gov/pubmed/39385801 https://www.proquest.com/docview/3115096322 https://pubmed.ncbi.nlm.nih.gov/PMC11462053 https://doi.org/10.1016/j.xagr.2024.100386 |
| UnpaywallVersion | publishedVersion |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Openly Available Collection - DOAJ customDbUrl: eissn: 2666-5778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513208 issn: 2666-5778 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2666-5778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513208 issn: 2666-5778 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2666-5778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513208 issn: 2666-5778 databaseCode: AKRWK dateStart: 20210201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2666-5778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002513208 issn: 2666-5778 databaseCode: RPM dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9lAuPASF8Fi5EjdIlcROnBwrRFUhUSHRlcrJchJn-yK7ykNQzvxwZhxn6dJCy3EVT7IZjz2fMzPfALwOqlyaMgn8sMhLHz0-rjl0nD6C0cgEKJPYriUfD5L9mfhwFB85mhyqhVmL39s8rO96TrydkaCAPk-Tu7CRxIi7J7AxO_i0-4W6xyEG92MpU1cVc73g3zzPVWR5NUFys6-X-uKbPj-_5H32HgxtjFpLWkhJJ2c7fZfvFD_-oHS83Ys9hPsOhLLdwWoewR1TP4afNnuAfbXZlYa5dhJz1i3YsqFwTscQLDLKRWeLiv2utmLHeJZtXCY8Kx2dZ0uDUHBOjB4XrLc316y4xIbFaopELXWz6FtGnXqb7gnM9t4fvtv3XY8Gv4hD3vlxjvgmE7FFKojWdMmrLK3wsBuWFUJHoYWWRVSEAnfdMDF5KTOdVMJoYxKuK74Fk3pRm2fAJDUN5pGu0IEKWehMGskREIVRmXKRSQ_ejPOnlgMVhxpz1E4VaVORNtWgTQ_4OMVqLDLFbVHhPPxTSl4nZVq3slsVqjZSgfpMNkcmRzm4iLrx38UrSQdeBlBy4xO3R_tTuLIpXKNrg3pXxIOEB0zccT14Otjj6r15RgHdIPQgXbPU1QBiDV-_Up8cW_ZwKkOPcOv14O3KqG-hz-f_N_wF3KNfQ9XmS5h0TW9eIXzr8qn97DG139Wmbg3_Ao8TQ_8 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9kAvBQS0KbQyEjdIlcROnBwr1NWqEhUSrFROlpM4W8qSXeWhPs78cGYSZ-nSAuUYxZPHeOz5rJn5BuCNV6TS5JHn-lmau-jxcc2h43QRjAbGQ5mo61ry4SSaTMXxaXhqaXKoFmYtft_lYV3qGfF2BoIC-jyOHsJGFCLuHsHG9OTj4RfqHocY3A2ljG1VzN2Cf_I8t5Hl7QTJR2251FcXej6_4X3Gj_s2RnVHWkhJJ98O2iY9yK5_o3S83489gS0LQtlhbzVP4YEpn8GPLnuAfe-yKw2z7SRmrFmwZUXhnIYhWGSUi84WBftVbcXO8Cxb2Ux4lls6z5oGoeCMGD2uWNs9XLPsBhsWKykStdTVoq0ZdeqtmucwHR99fj9xbY8GNwt93rhhivgmEWGHVBCt6ZwXSVzgYdfPC4SOQgstsyDzBe66fmTSXCY6KoTRxkRcF_wFjMpFaXaASWoazANdoAMVMtOJNJIjIPKDPOYikQ68HeZPLXsqDjXkqJ0r0qYibapemw7wYYrVUGSK26LCefirlLxLytR2ZdfKV3WgPPWJbI5MjnJwEXXj14UrSQteelDyzze-HuxP4cqmcI0uDepdEQ8SHjBxx3Vgu7fH1X_zhAK6nu9AvGapqwHEGr5-p_x61rGHUxl6gFuvA-9WRn0Pfe7-3_CXsElXfdXmKxg1VWv2EL416b5dtz8BcHpB-g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+machine+learning+to+predict+the+risk+of+developing+hypertensive+disorders+of+pregnancy+using+a+contemporary+nulliparous+cohort&rft.jtitle=AJOG+global+reports&rft.au=Schor%2C+Jonathan+S&rft.au=Kadambi%2C+Adesh&rft.au=Fulcher%2C+Isabel&rft.au=Venkatesh%2C+Kartik+K&rft.date=2024-11-01&rft.eissn=2666-5778&rft.volume=4&rft.issue=4&rft.spage=100386&rft_id=info:doi/10.1016%2Fj.xagr.2024.100386&rft_id=info%3Apmid%2F39385801&rft.externalDocID=39385801 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-5778&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-5778&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-5778&client=summon |