Deep Learning Approaches for the Prediction of Protein Functional Sites

Knowing which residues of a protein are important for its function is of paramount importance for understanding the molecular basis of this function and devising ways of modifying it for medical or biotechnological applications. Due to the difficulty in detecting these residues experimentally, predi...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 30; no. 2; p. 214
Main Authors Pitarch, Borja, Pazos, Florencio
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2025
MDPI
Subjects
Online AccessGet full text
ISSN1420-3049
1420-3049
DOI10.3390/molecules30020214

Cover

Abstract Knowing which residues of a protein are important for its function is of paramount importance for understanding the molecular basis of this function and devising ways of modifying it for medical or biotechnological applications. Due to the difficulty in detecting these residues experimentally, prediction methods are essential to cope with the sequence deluge that is filling databases with uncharacterized protein sequences. Deep learning approaches are especially well suited for this task due to the large amounts of protein sequences for training them, the trivial codification of this sequence data to feed into these systems, and the intrinsic sequential nature of the data that makes them suitable for language models. As a consequence, deep learning-based approaches are being applied to the prediction of different types of functional sites and regions in proteins. This review aims to give an overview of the current landscape of methodologies so that interested users can have an idea of which kind of approaches are available for their proteins of interest. We also try to give an idea of how these systems work, as well as explain their limitations and high dependence on the training set so that users are aware of the quality of expected results.
AbstractList Knowing which residues of a protein are important for its function is of paramount importance for understanding the molecular basis of this function and devising ways of modifying it for medical or biotechnological applications. Due to the difficulty in detecting these residues experimentally, prediction methods are essential to cope with the sequence deluge that is filling databases with uncharacterized protein sequences. Deep learning approaches are especially well suited for this task due to the large amounts of protein sequences for training them, the trivial codification of this sequence data to feed into these systems, and the intrinsic sequential nature of the data that makes them suitable for language models. As a consequence, deep learning-based approaches are being applied to the prediction of different types of functional sites and regions in proteins. This review aims to give an overview of the current landscape of methodologies so that interested users can have an idea of which kind of approaches are available for their proteins of interest. We also try to give an idea of how these systems work, as well as explain their limitations and high dependence on the training set so that users are aware of the quality of expected results.
Knowing which residues of a protein are important for its function is of paramount importance for understanding the molecular basis of this function and devising ways of modifying it for medical or biotechnological applications. Due to the difficulty in detecting these residues experimentally, prediction methods are essential to cope with the sequence deluge that is filling databases with uncharacterized protein sequences. Deep learning approaches are especially well suited for this task due to the large amounts of protein sequences for training them, the trivial codification of this sequence data to feed into these systems, and the intrinsic sequential nature of the data that makes them suitable for language models. As a consequence, deep learning-based approaches are being applied to the prediction of different types of functional sites and regions in proteins. This review aims to give an overview of the current landscape of methodologies so that interested users can have an idea of which kind of approaches are available for their proteins of interest. We also try to give an idea of how these systems work, as well as explain their limitations and high dependence on the training set so that users are aware of the quality of expected results.Knowing which residues of a protein are important for its function is of paramount importance for understanding the molecular basis of this function and devising ways of modifying it for medical or biotechnological applications. Due to the difficulty in detecting these residues experimentally, prediction methods are essential to cope with the sequence deluge that is filling databases with uncharacterized protein sequences. Deep learning approaches are especially well suited for this task due to the large amounts of protein sequences for training them, the trivial codification of this sequence data to feed into these systems, and the intrinsic sequential nature of the data that makes them suitable for language models. As a consequence, deep learning-based approaches are being applied to the prediction of different types of functional sites and regions in proteins. This review aims to give an overview of the current landscape of methodologies so that interested users can have an idea of which kind of approaches are available for their proteins of interest. We also try to give an idea of how these systems work, as well as explain their limitations and high dependence on the training set so that users are aware of the quality of expected results.
Audience Academic
Author Pazos, Florencio
Pitarch, Borja
AuthorAffiliation Computational Systems Biology Group, National Center for Biotechnology (CNB-CSIC), 28049 Madrid, Spain; borja.pitarch@cnb.csic.es
AuthorAffiliation_xml – name: Computational Systems Biology Group, National Center for Biotechnology (CNB-CSIC), 28049 Madrid, Spain; borja.pitarch@cnb.csic.es
Author_xml – sequence: 1
  givenname: Borja
  orcidid: 0000-0002-5220-8810
  surname: Pitarch
  fullname: Pitarch, Borja
– sequence: 2
  givenname: Florencio
  surname: Pazos
  fullname: Pazos, Florencio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39860084$$D View this record in MEDLINE/PubMed
BookMark eNptkktrGzEQgEVJaR7tD-ilLPTSixO9VtKeikmTNGBoIO1ZyNqRLbMrbaXdQP995TgJdlN0kDTz6RMzzCk6CjEAQh8JPmeswRd97MBOHWSGMcWU8DfohHCKZwzz5mjvfIxOc97gLULqd-iYNUpgrPgJuvkGMFQLMCn4sKrmw5CisWvIlYupGtdQ3SVovR19DFV05RZH8KG6nsJjzHTVvR8hv0dvnekyfHjaz9Cv66ufl99nix83t5fzxczWhI0zZpslbyQRVEqBiXLWMuualjvTWtJiWsuaGtE4ZWrgouaYORCYO8lKVjB2hm533jaajR6S7036o6Px-jEQ00qbNHrbgV4aIUgL3DhJt4LGFqNREoOwFKQqrq871zAte2gthDGZ7kB6mAl-rVfxQRMihawJLYYvT4YUf0-QR937bKHrTIA4Zc1I3ShMBcEF_fwPuolTKv3bUXUx0j1qZUoFPrhYPrZbqZ4rVrqjOCGFOv8PVVYLvbdlRpwv8YMHn_YrfSnxeQ4KQHaATTHnBO4FIVhvZ02_mjX2FxJaxew
Cites_doi 10.1016/j.cels.2023.10.006
10.1016/bs.apcsb.2021.12.001
10.1038/s41467-023-39909-0
10.1038/s41422-024-00989-2
10.1016/j.humimm.2021.02.012
10.1371/journal.pcbi.1009818
10.1038/s41592-022-01490-7
10.1038/s41587-021-01156-3
10.1038/s41392-023-01381-z
10.1002/pmic.202300471
10.1016/j.jmb.2016.10.017
10.1126/science.abj8754
10.1038/s41467-024-50955-0
10.26508/lsa.201900429
10.1186/s12859-022-04873-x
10.1038/s41467-021-23303-9
10.1101/2023.10.13.562298
10.1038/s41588-023-01465-0
10.1016/j.sbi.2023.102641
10.1016/j.jocm.2018.07.002
10.1016/j.sbi.2022.102518
10.1371/journal.pcbi.1006718
10.1038/s41580-019-0176-5
10.1093/nar/gkaa1100
10.1186/s13059-019-1835-8
10.1016/j.csbj.2022.04.024
10.1093/bioinformatics/btaa156
10.1038/s41586-021-03819-2
10.1038/s41588-018-0295-5
10.1021/acs.jcim.2c00484
10.3390/ijms23094591
10.1021/acs.jcim.4c00920
10.1371/journal.pcbi.1007129
10.1017/9781108955652
10.1016/j.jmb.2020.166729
10.1093/bioinformatics/bty813
10.1002/9780470015902.a0025587
10.1093/bib/bbv045
10.1038/s41592-024-02354-y
10.1111/j.1365-294X.2012.05538.x
10.1016/j.compbiomed.2024.108079
10.1126/science.abn2100
10.1016/j.molcel.2023.10.039
10.1093/nar/gkac278
10.1016/j.crbiot.2021.01.001
10.1016/j.sbi.2021.05.012
10.1093/nar/gks1067
10.1002/pro.4541
10.1093/nar/gkae412
10.1038/s41592-021-01205-4
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules30020214
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
MEDLINE
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_ba661de4af724f739ce46a870e6c2e78
PMC11767512
A832578411
39860084
10_3390_molecules30020214
Genre Journal Article
Review
GrantInformation_xml – fundername: Spanish Ministry of Economy and Competitiveness
  grantid: PID2022-140047OB-C22
– fundername: Spanish Ministry of Economy and Competitiveness with European Regional Development Fund
  grantid: PID2022-140047OB-C22
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
ESTFP
PUEGO
5PM
ID FETCH-LOGICAL-c513t-3c9b497162776018fcc3cf9d4fadc1d025752a69f8a5e465403fe604f731d0633
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:31:18 EDT 2025
Thu Aug 21 18:40:44 EDT 2025
Fri Sep 05 12:57:42 EDT 2025
Sat Aug 23 12:32:49 EDT 2025
Tue Jun 17 21:57:55 EDT 2025
Tue Jun 10 20:59:06 EDT 2025
Tue May 06 01:31:52 EDT 2025
Tue Jul 01 04:00:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
protein functional site
protein function
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-3c9b497162776018fcc3cf9d4fadc1d025752a69f8a5e465403fe604f731d0633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5220-8810
OpenAccessLink https://doaj.org/article/ba661de4af724f739ce46a870e6c2e78
PMID 39860084
PQID 3159576720
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_ba661de4af724f739ce46a870e6c2e78
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11767512
proquest_miscellaneous_3159802610
proquest_journals_3159576720
gale_infotracmisc_A832578411
gale_infotracacademiconefile_A832578411
pubmed_primary_39860084
crossref_primary_10_3390_molecules30020214
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Jumper (ref_7) 2021; 596
Harrison (ref_44) 2016; 428
ref_13
Renfrew (ref_24) 2021; 12
Zhou (ref_39) 2024; 52
Hu (ref_1) 2021; 82
Shokralla (ref_2) 2012; 21
ref_19
Teufel (ref_34) 2022; 40
ref_17
ref_15
Pazos (ref_6) 2022; 130
Kaleel (ref_36) 2020; 36
Yang (ref_16) 2023; 8
Wang (ref_18) 2022; 20
Zou (ref_10) 2019; 51
Brandes (ref_41) 2023; 55
Torng (ref_27) 2019; 35
Alwosheel (ref_46) 2018; 28
ref_25
Armenteros (ref_35) 2019; 2
ref_20
Cagiada (ref_42) 2023; 14
Sigrist (ref_22) 2013; 41
ref_29
Li (ref_43) 2024; 64
Tubiana (ref_26) 2022; 19
Baek (ref_8) 2021; 373
Derry (ref_21) 2023; 32
Rauer (ref_4) 2021; 70
Jang (ref_23) 2024; 15
Khakzad (ref_50) 2023; 14
ref_33
ref_32
Walsh (ref_49) 2021; 18
ref_31
Bordin (ref_14) 2023; 83
Thumuluri (ref_37) 2022; 50
Nielsen (ref_30) 2021; 3
Boadu (ref_11) 2024; 12
ref_38
Wang (ref_51) 2022; 377
Chagoyen (ref_5) 2016; 17
Simon (ref_12) 2024; 21
Cheng (ref_40) 2024; 34
Jones (ref_48) 2019; 20
ref_47
ref_45
ref_3
ref_9
Zhu (ref_28) 2022; 62
References_xml – volume: 14
  start-page: 925
  year: 2023
  ident: ref_50
  article-title: A New Age in Protein Design Empowered by Deep Learning
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2023.10.006
– volume: 130
  start-page: 39
  year: 2022
  ident: ref_6
  article-title: Computational Prediction of Protein Functional Sites-Applications in Biotechnology and Biomedicine
  publication-title: Adv. Protein. Chem. Struct Biol.
  doi: 10.1016/bs.apcsb.2021.12.001
– volume: 14
  start-page: 4175
  year: 2023
  ident: ref_42
  article-title: Discovering Functionally Important Sites in Proteins
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39909-0
– volume: 34
  start-page: 630
  year: 2024
  ident: ref_40
  article-title: Zero-Shot Prediction of Mutation Effects with Multimodal Deep Representation Learning Guides Protein Engineering
  publication-title: Cell Res
  doi: 10.1038/s41422-024-00989-2
– volume: 82
  start-page: 801
  year: 2021
  ident: ref_1
  article-title: Next-Generation Sequencing Technologies: An Overview
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2021.02.012
– ident: ref_15
  doi: 10.1371/journal.pcbi.1009818
– volume: 19
  start-page: 730
  year: 2022
  ident: ref_26
  article-title: ScanNet: An Interpretable Geometric Deep Learning Model for Structure-Based Protein Binding Site Prediction
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01490-7
– volume: 40
  start-page: 1023
  year: 2022
  ident: ref_34
  article-title: SignalP 6.0 Predicts All Five Types of Signal Peptides Using Protein Language Models
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01156-3
– volume: 8
  start-page: 115
  year: 2023
  ident: ref_16
  article-title: AlphaFold2 and Its Applications in the Fields of Biology and Medicine
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-023-01381-z
– volume: 12
  start-page: 2300471
  year: 2024
  ident: ref_11
  article-title: Deep Learning Methods for Protein Function Prediction
  publication-title: PROTEOMICS
  doi: 10.1002/pmic.202300471
– volume: 428
  start-page: 4723
  year: 2016
  ident: ref_44
  article-title: Structural Dynamics in Ras and Related Proteins upon Nucleotide Switching
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2016.10.017
– volume: 373
  start-page: 871
  year: 2021
  ident: ref_8
  article-title: Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network
  publication-title: Science
  doi: 10.1126/science.abj8754
– volume: 15
  start-page: 6601
  year: 2024
  ident: ref_23
  article-title: Accurate Prediction of Protein Function Using Statistics-Informed Graph Networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-50955-0
– volume: 2
  start-page: e201900429
  year: 2019
  ident: ref_35
  article-title: Detecting Sequence Signals in Targeting Peptides Using Deep Learning
  publication-title: Life Sci. Alliance
  doi: 10.26508/lsa.201900429
– ident: ref_20
  doi: 10.1186/s12859-022-04873-x
– volume: 12
  start-page: 3168
  year: 2021
  ident: ref_24
  article-title: Structure-Based Protein Function Prediction Using Graph Convolutional Networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23303-9
– ident: ref_25
  doi: 10.1101/2023.10.13.562298
– volume: 55
  start-page: 1512
  year: 2023
  ident: ref_41
  article-title: Genome-Wide Prediction of Disease Variant Effects with a Deep Protein Language Model
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-023-01465-0
– ident: ref_33
  doi: 10.1016/j.sbi.2023.102641
– volume: 28
  start-page: 167
  year: 2018
  ident: ref_46
  article-title: Is Your Dataset Big Enough? Sample Size Requirements When Using Artificial Neural Networks for Discrete Choice Analysis
  publication-title: J. Choice Model.
  doi: 10.1016/j.jocm.2018.07.002
– ident: ref_45
– ident: ref_38
  doi: 10.1016/j.sbi.2022.102518
– ident: ref_32
  doi: 10.1371/journal.pcbi.1006718
– volume: 20
  start-page: 659
  year: 2019
  ident: ref_48
  article-title: Setting the Standards for Machine Learning in Biology
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0176-5
– ident: ref_3
  doi: 10.1093/nar/gkaa1100
– ident: ref_47
  doi: 10.1186/s13059-019-1835-8
– volume: 20
  start-page: 1993
  year: 2022
  ident: ref_18
  article-title: Improving the Topology Prediction of α-Helical Transmembrane Proteins with Deep Transfer Learning
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2022.04.024
– volume: 36
  start-page: 3343
  year: 2020
  ident: ref_36
  article-title: SCLpred-EMS: Subcellular Localization Prediction of Endomembrane System and Secretory Pathway Proteins by Deep N-to-1 Convolutional Neural Networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa156
– volume: 596
  start-page: 583
  year: 2021
  ident: ref_7
  article-title: Highly Accurate Protein Structure Prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 51
  start-page: 12
  year: 2019
  ident: ref_10
  article-title: A Primer on Deep Learning in Genomics
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0295-5
– volume: 62
  start-page: 3331
  year: 2022
  ident: ref_28
  article-title: Leveraging Protein Dynamics to Identify Functional Phosphorylation Sites Using Deep Learning Models
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.2c00484
– ident: ref_17
  doi: 10.3390/ijms23094591
– volume: 64
  start-page: 5912
  year: 2024
  ident: ref_43
  article-title: EnzyACT: A Novel Deep Learning Method to Predict the Impacts of Single and Multiple Mutations on Enzyme Activity
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.4c00920
– ident: ref_31
  doi: 10.1371/journal.pcbi.1007129
– ident: ref_9
  doi: 10.1017/9781108955652
– ident: ref_19
  doi: 10.1016/j.jmb.2020.166729
– volume: 35
  start-page: 1503
  year: 2019
  ident: ref_27
  article-title: High Precision Protein Functional Site Detection Using 3D Convolutional Neural Networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty813
– ident: ref_13
  doi: 10.1002/9780470015902.a0025587
– volume: 17
  start-page: 255
  year: 2016
  ident: ref_5
  article-title: Practical Analysis of Specificity-Determining Residues in Protein Families
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbv045
– volume: 21
  start-page: 1422
  year: 2024
  ident: ref_12
  article-title: Language Models for Biological Research: A Primer
  publication-title: Nat. Methods
  doi: 10.1038/s41592-024-02354-y
– volume: 21
  start-page: 1794
  year: 2012
  ident: ref_2
  article-title: Next-Generation Sequencing Technologies for Environmental DNA Research
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2012.05538.x
– ident: ref_29
  doi: 10.1016/j.compbiomed.2024.108079
– volume: 377
  start-page: 387
  year: 2022
  ident: ref_51
  article-title: Scaffolding Protein Functional Sites Using Deep Learning
  publication-title: Science
  doi: 10.1126/science.abn2100
– volume: 83
  start-page: 3950
  year: 2023
  ident: ref_14
  article-title: Large-Scale Clustering of AlphaFold2 3D Models Shines Light on the Structure and Function of Proteins
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2023.10.039
– volume: 50
  start-page: W228
  year: 2022
  ident: ref_37
  article-title: DeepLoc 2.0: Multi-Label Subcellular Localization Prediction Using Protein Language Models
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac278
– volume: 3
  start-page: 6
  year: 2021
  ident: ref_30
  article-title: Prediction of GPI-Anchored Proteins with Pointer Neural Networks
  publication-title: Curr. Res. Biotechnol.
  doi: 10.1016/j.crbiot.2021.01.001
– volume: 70
  start-page: 108
  year: 2021
  ident: ref_4
  article-title: Computational Approaches to Predict Protein Functional Families and Functional Sites
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2021.05.012
– volume: 41
  start-page: D344
  year: 2013
  ident: ref_22
  article-title: New and Continuing Developments at PROSITE
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1067
– volume: 32
  start-page: e4541
  year: 2023
  ident: ref_21
  article-title: COLLAPSE: A Representation Learning Framework for Identification and Characterization of Protein Structural Sites
  publication-title: Protein. Sci.
  doi: 10.1002/pro.4541
– volume: 52
  start-page: W207
  year: 2024
  ident: ref_39
  article-title: DDMut-PPI: Predicting Effects of Mutations on Protein-Protein Interactions Using Graph-Based Deep Learning
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkae412
– volume: 18
  start-page: 1122
  year: 2021
  ident: ref_49
  article-title: DOME: Recommendations for Supervised Machine Learning Validation in Biology
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01205-4
SSID ssj0021415
Score 2.4345703
SecondaryResourceType review_article
Snippet Knowing which residues of a protein are important for its function is of paramount importance for understanding the molecular basis of this function and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 214
SubjectTerms Binding Sites
Chatbots
Computational Biology - methods
Databases, Protein
Deep Learning
Enzymes
Humans
Machine learning
Mathematical functions
Methods
Neural networks
Neurons
protein function
protein functional site
Proteins
Proteins - chemistry
Proteins - metabolism
Review
Sequence Analysis, Protein - methods
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3a9NBeSvrtNi0qFAoFk9WHZfkUtmk3odBSaAO5Ga08SnKIvV1v_n9nbO02JtDLglcySCNp5o0kvwfwAdHaEKXNXRVDzhxS-dIg_eDMGFQYzcDA9_2HPT0z386L87Th1qdrlVufODjqpgu8R36oKe4SNi7V7Gj1J2fVKD5dTRIa9-GBVBRr-Uvxxcku4ZIUncaTTE2p_eH1KDiLvWaQpKSZxKKBsv-uY74Vmaa3Jm-FocU-PE74UczHAX8C97B9Cg-Pt7Jtz-DkC-JKJNrUCzFPnOHYC4KnguCe-LnmwxkeENFFeupY8FIsKMCN-4LiF3W5fw5ni6-_j0_zpJaQh0LqTa5DtTQDIVTJ91xcDEGHWDUm-ibIhrBNWShvq-h8gcyiNtMR7czEUlOp1foF7LVdi69AsFp6g4StKFcylNJ4Sx7dO1l659A7lcGnrd3q1UiKUVMywUau7xg5g89s2V1F5rMe_ujWF3VaHhSyCSc0aHwsFbeoCtRET74EbVBYugw-8rjUvOrI-MGnjweovcxfVc_JMRV8hCozOJjUJOuHafF2ZOu0Wvv639zK4P2umN_kG2gtdjdjHccJK9V5OU6EXZd05SwLE2TgJlNk0udpSXt1OXB5S8lsOlK9_n-73sAjxcLDw97PAext1jf4ltDQZvlumPJ_ARPcCfg
  priority: 102
  providerName: ProQuest
Title Deep Learning Approaches for the Prediction of Protein Functional Sites
URI https://www.ncbi.nlm.nih.gov/pubmed/39860084
https://www.proquest.com/docview/3159576720
https://www.proquest.com/docview/3159802610
https://pubmed.ncbi.nlm.nih.gov/PMC11767512
https://doaj.org/article/ba661de4af724f739ce46a870e6c2e78
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3S5NBeSr_rNl1UKBQKJpYlS_Jxk2YTCg2hbWBvRiuP2hziDdnN_--M5V3W5NBLLwZbMlhvJM0bSX4D8AnRmBClyV0dQ84aUvlCI12w0BpLjLpX4Pt-Yc6v9Ld5Nd9J9cVnwpI8cALuaOHJg7SofbSljlbVAbXx1MvQhBJt_5tvURebYGoItST5pbSHqSioP7pJqWZxpZgelVKPvFAv1v9wSt7xSePzkjsOaPYMng7MUUzTFz-HPexewOOTTcK2l3D2FfFWDIKpv8V0UAvHlSBiKojoics73pZhU4hlpLslp7oUM3JtaUVQ_CQCunoFV7PTXyfn-ZAnIQ-VVOtchXqheykoyydcXAxBhVi3Ovo2yJZYja1Kb-rofIWsn1aoiKZgNKnUKPUa9rtlh29BcJ70FolVUZSkKZjxhuZy76T1zqF3ZQZfNrg1t0kOo6EwgkFuHoCcwTEju63IStb9A7JvM9i3-Zd9M_jMdml4vBH4wQ-_DdD3snJVM6UpqeLNU5nB4agmoR_GxRvLNsM4XTWK2BxFXLYsMvi4LeY3-exZh8v7VMdxqEp13qSOsG2Sqp3hlAQZuFEXGbV5XNJd_-lVvKVkHR1ZvvsfKL2HJyUnJu7Xhg5hf313jx-ILa0XE3hk55aubnY2gYPj04vLH5N-sPwFtEQWbg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigXxJtAASOBkJCirh9xnANCS8uypQ8h0Up7C15n3HIgWTZbIf4Uv5GZPLaNKnHrZaVdeyVnPJ75xna-j7HXAMb4IExss-Bj4pCK5xrwA0Zag4SgGwa-o2MzPdVfZslsg_3t34Wha5V9TGwCdVF52iPfUZh3ERuncvRh8Ssm1Sg6Xe0lNFq3OIA_v7Fkq9_v7-H8vpFy8ulkdxp3qgKxT4Raxcpnc90QJ6V0H8QG75UPWaGDK7woEAOkiXQmC9YlQGxjIxXAjHRIFbYa2gDFkH9L0xEjrp90dlngCcyG7cmpUtlo52crcAu1IlAmhR7kvkYi4HoiuJIJh7c0r6S9yV12p8OrfNw62D22AeV9trXby8Q9YJ_3ABa8o2k94-OOoxxqjnCYI7zkX5d0GEQOwKuA3yoS2OQTTKjtPiT_hiauH7LTG7HjI7ZZViU8YZzU2QtALIe1mcYSyhnMIM6K1FkLzsqIvevtli9aEo4cixcycn7NyBH7SJZddyT-7OaHanmWd8sRIQLikgK0C6mkEWUeh-gwdoHxElIbsbc0LzmtcjS-d93LCjhe4svKxxgIEzqyFRHbHvRE6_thcz-zeRcd6vzSlyP2at1M_6QbbyVUF20fSwUy9nncOsL6kVRmDQkhRMwOXGTwzMOW8sd5wx0uBLH3CPn0_-N6ybamJ0eH-eH-8cEzdluS6HGz77TNNlfLC3iOSGw1f9G4P2ffb3q9_QNiZkWK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTQJeEN9kDDASCAkpamM7ifMwoW5d2RhUFTBpb5nrnAcPS0rTCfEv8ldxlzhl0STe9lIptSM55_N92Offj7HXAEliXZSEOnM2JAypcK4Af2CoFAhwqkHg-zxNDk_Ux9P4dIP96e7CUFllZxMbQ11UlvbIBxL9LsbGqRgOnC-LmI0n7xc_Q2KQopPWjk7DeJqFYreBG_OXPI7h9y9M5-rdozHO_RshJgff9g9DzzgQ2jiSq1DabK4aUKWUakW0s1ZalxXKmcJGBcYHaSxMkjltYiAksqF0kAyVSyW2JrQ5iu5gK0Wvj4ng1t7BdPZlnf5F6Cvbc1Ups-HgoqW_hVpSyCYi1fOMDYHAdTdxxU_2azivOMXJPXbXR7N81KrffbYB5QN2e78jkXvIPowBFtyDuJ7zkUcwh5pjsMwx-OSzJR0VkXrwyuFTRfSbfILutt2l5F9R6PUjdnIjknzMNsuqhKeME3d7ARjpYeamMMEyCfoXo6PUaA1Gi4C96-SWL1qIjhxTGxJyfk3IAdsjya47Erp280e1PM_9YsUAAqOWApRxqaARZRaHaNCyQWIFpDpgb2lecrIBKHxr_FUGHC-haeUjNJMxHehGAdvp9UTp235zN7O5tx11_k_TA_Zq3UxvUj1cCdVl20dT-ox9nrSKsP4kmemEaBICpnsq0vvmfkv543uDLB5FhO0Tie3_j-slu4VrL_90ND1-xu4IYkRuNqV22OZqeQnPMUxbzV94_efs7KaX3F8zhlBl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Approaches+for+the+Prediction+of+Protein+Functional+Sites&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Pitarch%2C+Borja&rft.au=Pazos%2C+Florencio&rft.date=2025-01-01&rft.pub=MDPI&rft.eissn=1420-3049&rft.volume=30&rft.issue=2&rft_id=info:doi/10.3390%2Fmolecules30020214&rft_id=info%3Apmid%2F39860084&rft.externalDocID=PMC11767512
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon