Deep Learning Approaches for the Prediction of Protein Functional Sites
Knowing which residues of a protein are important for its function is of paramount importance for understanding the molecular basis of this function and devising ways of modifying it for medical or biotechnological applications. Due to the difficulty in detecting these residues experimentally, predi...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 30; no. 2; p. 214 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1420-3049 1420-3049 |
DOI | 10.3390/molecules30020214 |
Cover
Abstract | Knowing which residues of a protein are important for its function is of paramount importance for understanding the molecular basis of this function and devising ways of modifying it for medical or biotechnological applications. Due to the difficulty in detecting these residues experimentally, prediction methods are essential to cope with the sequence deluge that is filling databases with uncharacterized protein sequences. Deep learning approaches are especially well suited for this task due to the large amounts of protein sequences for training them, the trivial codification of this sequence data to feed into these systems, and the intrinsic sequential nature of the data that makes them suitable for language models. As a consequence, deep learning-based approaches are being applied to the prediction of different types of functional sites and regions in proteins. This review aims to give an overview of the current landscape of methodologies so that interested users can have an idea of which kind of approaches are available for their proteins of interest. We also try to give an idea of how these systems work, as well as explain their limitations and high dependence on the training set so that users are aware of the quality of expected results. |
---|---|
AbstractList | Knowing which residues of a protein are important for its function is of paramount importance for understanding the molecular basis of this function and devising ways of modifying it for medical or biotechnological applications. Due to the difficulty in detecting these residues experimentally, prediction methods are essential to cope with the sequence deluge that is filling databases with uncharacterized protein sequences. Deep learning approaches are especially well suited for this task due to the large amounts of protein sequences for training them, the trivial codification of this sequence data to feed into these systems, and the intrinsic sequential nature of the data that makes them suitable for language models. As a consequence, deep learning-based approaches are being applied to the prediction of different types of functional sites and regions in proteins. This review aims to give an overview of the current landscape of methodologies so that interested users can have an idea of which kind of approaches are available for their proteins of interest. We also try to give an idea of how these systems work, as well as explain their limitations and high dependence on the training set so that users are aware of the quality of expected results. Knowing which residues of a protein are important for its function is of paramount importance for understanding the molecular basis of this function and devising ways of modifying it for medical or biotechnological applications. Due to the difficulty in detecting these residues experimentally, prediction methods are essential to cope with the sequence deluge that is filling databases with uncharacterized protein sequences. Deep learning approaches are especially well suited for this task due to the large amounts of protein sequences for training them, the trivial codification of this sequence data to feed into these systems, and the intrinsic sequential nature of the data that makes them suitable for language models. As a consequence, deep learning-based approaches are being applied to the prediction of different types of functional sites and regions in proteins. This review aims to give an overview of the current landscape of methodologies so that interested users can have an idea of which kind of approaches are available for their proteins of interest. We also try to give an idea of how these systems work, as well as explain their limitations and high dependence on the training set so that users are aware of the quality of expected results.Knowing which residues of a protein are important for its function is of paramount importance for understanding the molecular basis of this function and devising ways of modifying it for medical or biotechnological applications. Due to the difficulty in detecting these residues experimentally, prediction methods are essential to cope with the sequence deluge that is filling databases with uncharacterized protein sequences. Deep learning approaches are especially well suited for this task due to the large amounts of protein sequences for training them, the trivial codification of this sequence data to feed into these systems, and the intrinsic sequential nature of the data that makes them suitable for language models. As a consequence, deep learning-based approaches are being applied to the prediction of different types of functional sites and regions in proteins. This review aims to give an overview of the current landscape of methodologies so that interested users can have an idea of which kind of approaches are available for their proteins of interest. We also try to give an idea of how these systems work, as well as explain their limitations and high dependence on the training set so that users are aware of the quality of expected results. |
Audience | Academic |
Author | Pazos, Florencio Pitarch, Borja |
AuthorAffiliation | Computational Systems Biology Group, National Center for Biotechnology (CNB-CSIC), 28049 Madrid, Spain; borja.pitarch@cnb.csic.es |
AuthorAffiliation_xml | – name: Computational Systems Biology Group, National Center for Biotechnology (CNB-CSIC), 28049 Madrid, Spain; borja.pitarch@cnb.csic.es |
Author_xml | – sequence: 1 givenname: Borja orcidid: 0000-0002-5220-8810 surname: Pitarch fullname: Pitarch, Borja – sequence: 2 givenname: Florencio surname: Pazos fullname: Pazos, Florencio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39860084$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktrGzEQgEVJaR7tD-ilLPTSixO9VtKeikmTNGBoIO1ZyNqRLbMrbaXdQP995TgJdlN0kDTz6RMzzCk6CjEAQh8JPmeswRd97MBOHWSGMcWU8DfohHCKZwzz5mjvfIxOc97gLULqd-iYNUpgrPgJuvkGMFQLMCn4sKrmw5CisWvIlYupGtdQ3SVovR19DFV05RZH8KG6nsJjzHTVvR8hv0dvnekyfHjaz9Cv66ufl99nix83t5fzxczWhI0zZpslbyQRVEqBiXLWMuualjvTWtJiWsuaGtE4ZWrgouaYORCYO8lKVjB2hm533jaajR6S7036o6Px-jEQ00qbNHrbgV4aIUgL3DhJt4LGFqNREoOwFKQqrq871zAte2gthDGZ7kB6mAl-rVfxQRMihawJLYYvT4YUf0-QR937bKHrTIA4Zc1I3ShMBcEF_fwPuolTKv3bUXUx0j1qZUoFPrhYPrZbqZ4rVrqjOCGFOv8PVVYLvbdlRpwv8YMHn_YrfSnxeQ4KQHaATTHnBO4FIVhvZ02_mjX2FxJaxew |
Cites_doi | 10.1016/j.cels.2023.10.006 10.1016/bs.apcsb.2021.12.001 10.1038/s41467-023-39909-0 10.1038/s41422-024-00989-2 10.1016/j.humimm.2021.02.012 10.1371/journal.pcbi.1009818 10.1038/s41592-022-01490-7 10.1038/s41587-021-01156-3 10.1038/s41392-023-01381-z 10.1002/pmic.202300471 10.1016/j.jmb.2016.10.017 10.1126/science.abj8754 10.1038/s41467-024-50955-0 10.26508/lsa.201900429 10.1186/s12859-022-04873-x 10.1038/s41467-021-23303-9 10.1101/2023.10.13.562298 10.1038/s41588-023-01465-0 10.1016/j.sbi.2023.102641 10.1016/j.jocm.2018.07.002 10.1016/j.sbi.2022.102518 10.1371/journal.pcbi.1006718 10.1038/s41580-019-0176-5 10.1093/nar/gkaa1100 10.1186/s13059-019-1835-8 10.1016/j.csbj.2022.04.024 10.1093/bioinformatics/btaa156 10.1038/s41586-021-03819-2 10.1038/s41588-018-0295-5 10.1021/acs.jcim.2c00484 10.3390/ijms23094591 10.1021/acs.jcim.4c00920 10.1371/journal.pcbi.1007129 10.1017/9781108955652 10.1016/j.jmb.2020.166729 10.1093/bioinformatics/bty813 10.1002/9780470015902.a0025587 10.1093/bib/bbv045 10.1038/s41592-024-02354-y 10.1111/j.1365-294X.2012.05538.x 10.1016/j.compbiomed.2024.108079 10.1126/science.abn2100 10.1016/j.molcel.2023.10.039 10.1093/nar/gkac278 10.1016/j.crbiot.2021.01.001 10.1016/j.sbi.2021.05.012 10.1093/nar/gks1067 10.1002/pro.4541 10.1093/nar/gkae412 10.1038/s41592-021-01205-4 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules30020214 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_ba661de4af724f739ce46a870e6c2e78 PMC11767512 A832578411 39860084 10_3390_molecules30020214 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Spanish Ministry of Economy and Competitiveness grantid: PID2022-140047OB-C22 – fundername: Spanish Ministry of Economy and Competitiveness with European Regional Development Fund grantid: PID2022-140047OB-C22 |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 ESTFP PUEGO 5PM |
ID | FETCH-LOGICAL-c513t-3c9b497162776018fcc3cf9d4fadc1d025752a69f8a5e465403fe604f731d0633 |
IEDL.DBID | DOA |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:31:18 EDT 2025 Thu Aug 21 18:40:44 EDT 2025 Fri Sep 05 12:57:42 EDT 2025 Sat Aug 23 12:32:49 EDT 2025 Tue Jun 17 21:57:55 EDT 2025 Tue Jun 10 20:59:06 EDT 2025 Tue May 06 01:31:52 EDT 2025 Tue Jul 01 04:00:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | deep learning protein functional site protein function |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c513t-3c9b497162776018fcc3cf9d4fadc1d025752a69f8a5e465403fe604f731d0633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5220-8810 |
OpenAccessLink | https://doaj.org/article/ba661de4af724f739ce46a870e6c2e78 |
PMID | 39860084 |
PQID | 3159576720 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ba661de4af724f739ce46a870e6c2e78 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11767512 proquest_miscellaneous_3159802610 proquest_journals_3159576720 gale_infotracmisc_A832578411 gale_infotracacademiconefile_A832578411 pubmed_primary_39860084 crossref_primary_10_3390_molecules30020214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Jumper (ref_7) 2021; 596 Harrison (ref_44) 2016; 428 ref_13 Renfrew (ref_24) 2021; 12 Zhou (ref_39) 2024; 52 Hu (ref_1) 2021; 82 Shokralla (ref_2) 2012; 21 ref_19 Teufel (ref_34) 2022; 40 ref_17 ref_15 Pazos (ref_6) 2022; 130 Kaleel (ref_36) 2020; 36 Yang (ref_16) 2023; 8 Wang (ref_18) 2022; 20 Zou (ref_10) 2019; 51 Brandes (ref_41) 2023; 55 Torng (ref_27) 2019; 35 Alwosheel (ref_46) 2018; 28 ref_25 Armenteros (ref_35) 2019; 2 ref_20 Cagiada (ref_42) 2023; 14 Sigrist (ref_22) 2013; 41 ref_29 Li (ref_43) 2024; 64 Tubiana (ref_26) 2022; 19 Baek (ref_8) 2021; 373 Derry (ref_21) 2023; 32 Rauer (ref_4) 2021; 70 Jang (ref_23) 2024; 15 Khakzad (ref_50) 2023; 14 ref_33 ref_32 Walsh (ref_49) 2021; 18 ref_31 Bordin (ref_14) 2023; 83 Thumuluri (ref_37) 2022; 50 Nielsen (ref_30) 2021; 3 Boadu (ref_11) 2024; 12 ref_38 Wang (ref_51) 2022; 377 Chagoyen (ref_5) 2016; 17 Simon (ref_12) 2024; 21 Cheng (ref_40) 2024; 34 Jones (ref_48) 2019; 20 ref_47 ref_45 ref_3 ref_9 Zhu (ref_28) 2022; 62 |
References_xml | – volume: 14 start-page: 925 year: 2023 ident: ref_50 article-title: A New Age in Protein Design Empowered by Deep Learning publication-title: Cell Syst. doi: 10.1016/j.cels.2023.10.006 – volume: 130 start-page: 39 year: 2022 ident: ref_6 article-title: Computational Prediction of Protein Functional Sites-Applications in Biotechnology and Biomedicine publication-title: Adv. Protein. Chem. Struct Biol. doi: 10.1016/bs.apcsb.2021.12.001 – volume: 14 start-page: 4175 year: 2023 ident: ref_42 article-title: Discovering Functionally Important Sites in Proteins publication-title: Nat. Commun. doi: 10.1038/s41467-023-39909-0 – volume: 34 start-page: 630 year: 2024 ident: ref_40 article-title: Zero-Shot Prediction of Mutation Effects with Multimodal Deep Representation Learning Guides Protein Engineering publication-title: Cell Res doi: 10.1038/s41422-024-00989-2 – volume: 82 start-page: 801 year: 2021 ident: ref_1 article-title: Next-Generation Sequencing Technologies: An Overview publication-title: Hum. Immunol. doi: 10.1016/j.humimm.2021.02.012 – ident: ref_15 doi: 10.1371/journal.pcbi.1009818 – volume: 19 start-page: 730 year: 2022 ident: ref_26 article-title: ScanNet: An Interpretable Geometric Deep Learning Model for Structure-Based Protein Binding Site Prediction publication-title: Nat. Methods doi: 10.1038/s41592-022-01490-7 – volume: 40 start-page: 1023 year: 2022 ident: ref_34 article-title: SignalP 6.0 Predicts All Five Types of Signal Peptides Using Protein Language Models publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01156-3 – volume: 8 start-page: 115 year: 2023 ident: ref_16 article-title: AlphaFold2 and Its Applications in the Fields of Biology and Medicine publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-023-01381-z – volume: 12 start-page: 2300471 year: 2024 ident: ref_11 article-title: Deep Learning Methods for Protein Function Prediction publication-title: PROTEOMICS doi: 10.1002/pmic.202300471 – volume: 428 start-page: 4723 year: 2016 ident: ref_44 article-title: Structural Dynamics in Ras and Related Proteins upon Nucleotide Switching publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2016.10.017 – volume: 373 start-page: 871 year: 2021 ident: ref_8 article-title: Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network publication-title: Science doi: 10.1126/science.abj8754 – volume: 15 start-page: 6601 year: 2024 ident: ref_23 article-title: Accurate Prediction of Protein Function Using Statistics-Informed Graph Networks publication-title: Nat. Commun. doi: 10.1038/s41467-024-50955-0 – volume: 2 start-page: e201900429 year: 2019 ident: ref_35 article-title: Detecting Sequence Signals in Targeting Peptides Using Deep Learning publication-title: Life Sci. Alliance doi: 10.26508/lsa.201900429 – ident: ref_20 doi: 10.1186/s12859-022-04873-x – volume: 12 start-page: 3168 year: 2021 ident: ref_24 article-title: Structure-Based Protein Function Prediction Using Graph Convolutional Networks publication-title: Nat. Commun. doi: 10.1038/s41467-021-23303-9 – ident: ref_25 doi: 10.1101/2023.10.13.562298 – volume: 55 start-page: 1512 year: 2023 ident: ref_41 article-title: Genome-Wide Prediction of Disease Variant Effects with a Deep Protein Language Model publication-title: Nat. Genet. doi: 10.1038/s41588-023-01465-0 – ident: ref_33 doi: 10.1016/j.sbi.2023.102641 – volume: 28 start-page: 167 year: 2018 ident: ref_46 article-title: Is Your Dataset Big Enough? Sample Size Requirements When Using Artificial Neural Networks for Discrete Choice Analysis publication-title: J. Choice Model. doi: 10.1016/j.jocm.2018.07.002 – ident: ref_45 – ident: ref_38 doi: 10.1016/j.sbi.2022.102518 – ident: ref_32 doi: 10.1371/journal.pcbi.1006718 – volume: 20 start-page: 659 year: 2019 ident: ref_48 article-title: Setting the Standards for Machine Learning in Biology publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0176-5 – ident: ref_3 doi: 10.1093/nar/gkaa1100 – ident: ref_47 doi: 10.1186/s13059-019-1835-8 – volume: 20 start-page: 1993 year: 2022 ident: ref_18 article-title: Improving the Topology Prediction of α-Helical Transmembrane Proteins with Deep Transfer Learning publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2022.04.024 – volume: 36 start-page: 3343 year: 2020 ident: ref_36 article-title: SCLpred-EMS: Subcellular Localization Prediction of Endomembrane System and Secretory Pathway Proteins by Deep N-to-1 Convolutional Neural Networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa156 – volume: 596 start-page: 583 year: 2021 ident: ref_7 article-title: Highly Accurate Protein Structure Prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 51 start-page: 12 year: 2019 ident: ref_10 article-title: A Primer on Deep Learning in Genomics publication-title: Nat. Genet. doi: 10.1038/s41588-018-0295-5 – volume: 62 start-page: 3331 year: 2022 ident: ref_28 article-title: Leveraging Protein Dynamics to Identify Functional Phosphorylation Sites Using Deep Learning Models publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.2c00484 – ident: ref_17 doi: 10.3390/ijms23094591 – volume: 64 start-page: 5912 year: 2024 ident: ref_43 article-title: EnzyACT: A Novel Deep Learning Method to Predict the Impacts of Single and Multiple Mutations on Enzyme Activity publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.4c00920 – ident: ref_31 doi: 10.1371/journal.pcbi.1007129 – ident: ref_9 doi: 10.1017/9781108955652 – ident: ref_19 doi: 10.1016/j.jmb.2020.166729 – volume: 35 start-page: 1503 year: 2019 ident: ref_27 article-title: High Precision Protein Functional Site Detection Using 3D Convolutional Neural Networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty813 – ident: ref_13 doi: 10.1002/9780470015902.a0025587 – volume: 17 start-page: 255 year: 2016 ident: ref_5 article-title: Practical Analysis of Specificity-Determining Residues in Protein Families publication-title: Brief. Bioinform. doi: 10.1093/bib/bbv045 – volume: 21 start-page: 1422 year: 2024 ident: ref_12 article-title: Language Models for Biological Research: A Primer publication-title: Nat. Methods doi: 10.1038/s41592-024-02354-y – volume: 21 start-page: 1794 year: 2012 ident: ref_2 article-title: Next-Generation Sequencing Technologies for Environmental DNA Research publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2012.05538.x – ident: ref_29 doi: 10.1016/j.compbiomed.2024.108079 – volume: 377 start-page: 387 year: 2022 ident: ref_51 article-title: Scaffolding Protein Functional Sites Using Deep Learning publication-title: Science doi: 10.1126/science.abn2100 – volume: 83 start-page: 3950 year: 2023 ident: ref_14 article-title: Large-Scale Clustering of AlphaFold2 3D Models Shines Light on the Structure and Function of Proteins publication-title: Mol. Cell doi: 10.1016/j.molcel.2023.10.039 – volume: 50 start-page: W228 year: 2022 ident: ref_37 article-title: DeepLoc 2.0: Multi-Label Subcellular Localization Prediction Using Protein Language Models publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac278 – volume: 3 start-page: 6 year: 2021 ident: ref_30 article-title: Prediction of GPI-Anchored Proteins with Pointer Neural Networks publication-title: Curr. Res. Biotechnol. doi: 10.1016/j.crbiot.2021.01.001 – volume: 70 start-page: 108 year: 2021 ident: ref_4 article-title: Computational Approaches to Predict Protein Functional Families and Functional Sites publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2021.05.012 – volume: 41 start-page: D344 year: 2013 ident: ref_22 article-title: New and Continuing Developments at PROSITE publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1067 – volume: 32 start-page: e4541 year: 2023 ident: ref_21 article-title: COLLAPSE: A Representation Learning Framework for Identification and Characterization of Protein Structural Sites publication-title: Protein. Sci. doi: 10.1002/pro.4541 – volume: 52 start-page: W207 year: 2024 ident: ref_39 article-title: DDMut-PPI: Predicting Effects of Mutations on Protein-Protein Interactions Using Graph-Based Deep Learning publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkae412 – volume: 18 start-page: 1122 year: 2021 ident: ref_49 article-title: DOME: Recommendations for Supervised Machine Learning Validation in Biology publication-title: Nat. Methods doi: 10.1038/s41592-021-01205-4 |
SSID | ssj0021415 |
Score | 2.4345703 |
SecondaryResourceType | review_article |
Snippet | Knowing which residues of a protein are important for its function is of paramount importance for understanding the molecular basis of this function and... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 214 |
SubjectTerms | Binding Sites Chatbots Computational Biology - methods Databases, Protein Deep Learning Enzymes Humans Machine learning Mathematical functions Methods Neural networks Neurons protein function protein functional site Proteins Proteins - chemistry Proteins - metabolism Review Sequence Analysis, Protein - methods |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3a9NBeSvrtNi0qFAoFk9WHZfkUtmk3odBSaAO5Ga08SnKIvV1v_n9nbO02JtDLglcySCNp5o0kvwfwAdHaEKXNXRVDzhxS-dIg_eDMGFQYzcDA9_2HPT0z386L87Th1qdrlVufODjqpgu8R36oKe4SNi7V7Gj1J2fVKD5dTRIa9-GBVBRr-Uvxxcku4ZIUncaTTE2p_eH1KDiLvWaQpKSZxKKBsv-uY74Vmaa3Jm-FocU-PE74UczHAX8C97B9Cg-Pt7Jtz-DkC-JKJNrUCzFPnOHYC4KnguCe-LnmwxkeENFFeupY8FIsKMCN-4LiF3W5fw5ni6-_j0_zpJaQh0LqTa5DtTQDIVTJ91xcDEGHWDUm-ibIhrBNWShvq-h8gcyiNtMR7czEUlOp1foF7LVdi69AsFp6g4StKFcylNJ4Sx7dO1l659A7lcGnrd3q1UiKUVMywUau7xg5g89s2V1F5rMe_ujWF3VaHhSyCSc0aHwsFbeoCtRET74EbVBYugw-8rjUvOrI-MGnjweovcxfVc_JMRV8hCozOJjUJOuHafF2ZOu0Wvv639zK4P2umN_kG2gtdjdjHccJK9V5OU6EXZd05SwLE2TgJlNk0udpSXt1OXB5S8lsOlK9_n-73sAjxcLDw97PAext1jf4ltDQZvlumPJ_ARPcCfg priority: 102 providerName: ProQuest |
Title | Deep Learning Approaches for the Prediction of Protein Functional Sites |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39860084 https://www.proquest.com/docview/3159576720 https://www.proquest.com/docview/3159802610 https://pubmed.ncbi.nlm.nih.gov/PMC11767512 https://doaj.org/article/ba661de4af724f739ce46a870e6c2e78 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3S5NBeSr_rNl1UKBQKJpYlS_Jxk2YTCg2hbWBvRiuP2hziDdnN_--M5V3W5NBLLwZbMlhvJM0bSX4D8AnRmBClyV0dQ84aUvlCI12w0BpLjLpX4Pt-Yc6v9Ld5Nd9J9cVnwpI8cALuaOHJg7SofbSljlbVAbXx1MvQhBJt_5tvURebYGoItST5pbSHqSioP7pJqWZxpZgelVKPvFAv1v9wSt7xSePzkjsOaPYMng7MUUzTFz-HPexewOOTTcK2l3D2FfFWDIKpv8V0UAvHlSBiKojoics73pZhU4hlpLslp7oUM3JtaUVQ_CQCunoFV7PTXyfn-ZAnIQ-VVOtchXqheykoyydcXAxBhVi3Ovo2yJZYja1Kb-rofIWsn1aoiKZgNKnUKPUa9rtlh29BcJ70FolVUZSkKZjxhuZy76T1zqF3ZQZfNrg1t0kOo6EwgkFuHoCcwTEju63IStb9A7JvM9i3-Zd9M_jMdml4vBH4wQ-_DdD3snJVM6UpqeLNU5nB4agmoR_GxRvLNsM4XTWK2BxFXLYsMvi4LeY3-exZh8v7VMdxqEp13qSOsG2Sqp3hlAQZuFEXGbV5XNJd_-lVvKVkHR1ZvvsfKL2HJyUnJu7Xhg5hf313jx-ILa0XE3hk55aubnY2gYPj04vLH5N-sPwFtEQWbg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigXxJtAASOBkJCirh9xnANCS8uypQ8h0Up7C15n3HIgWTZbIf4Uv5GZPLaNKnHrZaVdeyVnPJ75xna-j7HXAMb4IExss-Bj4pCK5xrwA0Zag4SgGwa-o2MzPdVfZslsg_3t34Wha5V9TGwCdVF52iPfUZh3ERuncvRh8Ssm1Sg6Xe0lNFq3OIA_v7Fkq9_v7-H8vpFy8ulkdxp3qgKxT4Raxcpnc90QJ6V0H8QG75UPWaGDK7woEAOkiXQmC9YlQGxjIxXAjHRIFbYa2gDFkH9L0xEjrp90dlngCcyG7cmpUtlo52crcAu1IlAmhR7kvkYi4HoiuJIJh7c0r6S9yV12p8OrfNw62D22AeV9trXby8Q9YJ_3ABa8o2k94-OOoxxqjnCYI7zkX5d0GEQOwKuA3yoS2OQTTKjtPiT_hiauH7LTG7HjI7ZZViU8YZzU2QtALIe1mcYSyhnMIM6K1FkLzsqIvevtli9aEo4cixcycn7NyBH7SJZddyT-7OaHanmWd8sRIQLikgK0C6mkEWUeh-gwdoHxElIbsbc0LzmtcjS-d93LCjhe4svKxxgIEzqyFRHbHvRE6_thcz-zeRcd6vzSlyP2at1M_6QbbyVUF20fSwUy9nncOsL6kVRmDQkhRMwOXGTwzMOW8sd5wx0uBLH3CPn0_-N6ybamJ0eH-eH-8cEzdluS6HGz77TNNlfLC3iOSGw1f9G4P2ffb3q9_QNiZkWK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTQJeEN9kDDASCAkpamM7ifMwoW5d2RhUFTBpb5nrnAcPS0rTCfEv8ldxlzhl0STe9lIptSM55_N92Offj7HXAEliXZSEOnM2JAypcK4Af2CoFAhwqkHg-zxNDk_Ux9P4dIP96e7CUFllZxMbQ11UlvbIBxL9LsbGqRgOnC-LmI0n7xc_Q2KQopPWjk7DeJqFYreBG_OXPI7h9y9M5-rdozHO_RshJgff9g9DzzgQ2jiSq1DabK4aUKWUakW0s1ZalxXKmcJGBcYHaSxMkjltYiAksqF0kAyVSyW2JrQ5iu5gK0Wvj4ng1t7BdPZlnf5F6Cvbc1Ups-HgoqW_hVpSyCYi1fOMDYHAdTdxxU_2azivOMXJPXbXR7N81KrffbYB5QN2e78jkXvIPowBFtyDuJ7zkUcwh5pjsMwx-OSzJR0VkXrwyuFTRfSbfILutt2l5F9R6PUjdnIjknzMNsuqhKeME3d7ARjpYeamMMEyCfoXo6PUaA1Gi4C96-SWL1qIjhxTGxJyfk3IAdsjya47Erp280e1PM_9YsUAAqOWApRxqaARZRaHaNCyQWIFpDpgb2lecrIBKHxr_FUGHC-haeUjNJMxHehGAdvp9UTp235zN7O5tx11_k_TA_Zq3UxvUj1cCdVl20dT-ox9nrSKsP4kmemEaBICpnsq0vvmfkv543uDLB5FhO0Tie3_j-slu4VrL_90ND1-xu4IYkRuNqV22OZqeQnPMUxbzV94_efs7KaX3F8zhlBl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Approaches+for+the+Prediction+of+Protein+Functional+Sites&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Pitarch%2C+Borja&rft.au=Pazos%2C+Florencio&rft.date=2025-01-01&rft.pub=MDPI&rft.eissn=1420-3049&rft.volume=30&rft.issue=2&rft_id=info:doi/10.3390%2Fmolecules30020214&rft_id=info%3Apmid%2F39860084&rft.externalDocID=PMC11767512 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |