AP-1 Transcription Factors Mediate BDNF-Positive Feedback Loop in Cortical Neurons

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, regulates both survival and differentiation of several neuronal populations in the nervous system during development, as well as synaptic plasticity in the adult brain. BDNF exerts its biological functions through its rec...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 36; no. 4; pp. 1290 - 1305
Main Authors Tuvikene, Jürgen, Pruunsild, Priit, Orav, Ester, Esvald, Eli-Eelika, Timmusk, Tõnis
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 27.01.2016
Subjects
Online AccessGet full text
ISSN0270-6474
1529-2401
1529-2401
DOI10.1523/JNEUROSCI.3360-15.2016

Cover

Abstract Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, regulates both survival and differentiation of several neuronal populations in the nervous system during development, as well as synaptic plasticity in the adult brain. BDNF exerts its biological functions through its receptor TrkB. Although the regulation of BDNF transcription by neuronal activity has been widely studied, little is known about TrkB signaling-dependent expression of BDNF . Using rat primary cortical neuron cultures, we show that the BDNF gene is a subject to an extensive autoregulatory loop, where TrkB signaling upregulates the expression of all major BDNF transcripts, mainly through activating MAPK pathways. Investigating the mechanisms behind this autoregulation, we found that AP-1 transcription factors, comprising Jun and Fos family members, participate in the induction of BDNF exon I, III, and VI transcripts. AP-1 transcription factors directly upregulate the expression of exon I transcripts by binding two novel AP-1 cis -elements in promoter I. Moreover, our results show that the effect of AP-1 proteins on the activity of rat BDNF promoters III and VI is indirect, because AP-1 proteins were not detected to bind the respective promoter regions by chromatin immunoprecipitation (ChIP). Collectively, we describe an extensive positive feedback system in BDNF regulation, adding a new layer to the elaborate control of BDNF gene expression. SIGNIFICANCE STATEMENT Here, we show for the first time that in rat primary cortical neurons the expression of all major BDNF transcripts (exon I, II, III, IV, VI, and IXa transcripts) is upregulated in response to TrkB signaling, and that AP-1 transcription factors participate in the induction of exon I, III, and VI transcripts. Moreover, we have described two novel functional AP-1 cis -elements in BDNF promoter I, responsible for the activation of the promoter in response to TrkB signaling. Our results indicate the existence of a positive feedback loop for obtaining sufficient BDNF levels necessary for various TrkB signaling-dependent physiological outcomes in neurons.
AbstractList Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, regulates both survival and differentiation of several neuronal populations in the nervous system during development, as well as synaptic plasticity in the adult brain. BDNF exerts its biological functions through its receptor TrkB. Although the regulation of BDNF transcription by neuronal activity has been widely studied, little is known about TrkB signaling-dependent expression of BDNF. Using rat primary cortical neuron cultures, we show that the BDNF gene is a subject to an extensive autoregulatory loop, where TrkB signaling upregulates the expression of all major BDNF transcripts, mainly through activating MAPK pathways. Investigating the mechanisms behind this autoregulation, we found that AP-1 transcription factors, comprising Jun and Fos family members, participate in the induction of BDNF exon I, III, and VI transcripts. AP-1 transcription factors directly upregulate the expression of exon I transcripts by binding two novel AP-1 cis-elements in promoter I. Moreover, our results show that the effect of AP-1 proteins on the activity of rat BDNF promoters III and VI is indirect, because AP-1 proteins were not detected to bind the respective promoter regions by chromatin immunoprecipitation (ChIP). Collectively, we describe an extensive positive feedback system in BDNF regulation, adding a new layer to the elaborate control of BDNF gene expression. SIGNIFICANCE STATEMENT Here, we show for the first time that in rat primary cortical neurons the expression of all major BDNF transcripts (exon I, II, III, IV, VI, and IXa transcripts) is upregulated in response to TrkB signaling, and that AP-1 transcription factors participate in the induction of exon I, III, and VI transcripts. Moreover, we have described two novel functional AP-1 cis-elements in BDNF promoter I, responsible for the activation of the promoter in response to TrkB signaling. Our results indicate the existence of a positive feedback loop for obtaining sufficient BDNF levels necessary for various TrkB signaling-dependent physiological outcomes in neurons.
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, regulates both survival and differentiation of several neuronal populations in the nervous system during development, as well as synaptic plasticity in the adult brain. BDNF exerts its biological functions through its receptor TrkB. Although the regulation of BDNF transcription by neuronal activity has been widely studied, little is known about TrkB signaling-dependent expression of BDNF . Using rat primary cortical neuron cultures, we show that the BDNF gene is a subject to an extensive autoregulatory loop, where TrkB signaling upregulates the expression of all major BDNF transcripts, mainly through activating MAPK pathways. Investigating the mechanisms behind this autoregulation, we found that AP-1 transcription factors, comprising Jun and Fos family members, participate in the induction of BDNF exon I, III, and VI transcripts. AP-1 transcription factors directly upregulate the expression of exon I transcripts by binding two novel AP-1 cis -elements in promoter I. Moreover, our results show that the effect of AP-1 proteins on the activity of rat BDNF promoters III and VI is indirect, because AP-1 proteins were not detected to bind the respective promoter regions by chromatin immunoprecipitation (ChIP). Collectively, we describe an extensive positive feedback system in BDNF regulation, adding a new layer to the elaborate control of BDNF gene expression. SIGNIFICANCE STATEMENT Here, we show for the first time that in rat primary cortical neurons the expression of all major BDNF transcripts (exon I, II, III, IV, VI, and IXa transcripts) is upregulated in response to TrkB signaling, and that AP-1 transcription factors participate in the induction of exon I, III, and VI transcripts. Moreover, we have described two novel functional AP-1 cis -elements in BDNF promoter I, responsible for the activation of the promoter in response to TrkB signaling. Our results indicate the existence of a positive feedback loop for obtaining sufficient BDNF levels necessary for various TrkB signaling-dependent physiological outcomes in neurons.
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, regulates both survival and differentiation of several neuronal populations in the nervous system during development, as well as synaptic plasticity in the adult brain. BDNF exerts its biological functions through its receptor TrkB. Although the regulation of BDNF transcription by neuronal activity has been widely studied, little is known about TrkB signaling-dependent expression of BDNF. Using rat primary cortical neuron cultures, we show that the BDNF gene is a subject to an extensive autoregulatory loop, where TrkB signaling upregulates the expression of all major BDNF transcripts, mainly through activating MAPK pathways. Investigating the mechanisms behind this autoregulation, we found that AP-1 transcription factors, comprising Jun and Fos family members, participate in the induction of BDNF exon I, III, and VI transcripts. AP-1 transcription factors directly upregulate the expression of exon I transcripts by binding two novel AP-1 cis-elements in promoter I. Moreover, our results show that the effect of AP-1 proteins on the activity of rat BDNF promoters III and VI is indirect, because AP-1 proteins were not detected to bind the respective promoter regions by chromatin immunoprecipitation (ChIP). Collectively, we describe an extensive positive feedback system in BDNF regulation, adding a new layer to the elaborate control of BDNF gene expression.
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, regulates both survival and differentiation of several neuronal populations in the nervous system during development, as well as synaptic plasticity in the adult brain. BDNF exerts its biological functions through its receptor TrkB. Although the regulation of BDNF transcription by neuronal activity has been widely studied, little is known about TrkB signaling-dependent expression of BDNF. Using rat primary cortical neuron cultures, we show that the BDNF gene is a subject to an extensive autoregulatory loop, where TrkB signaling upregulates the expression of all major BDNF transcripts, mainly through activating MAPK pathways. Investigating the mechanisms behind this autoregulation, we found that AP-1 transcription factors, comprising Jun and Fos family members, participate in the induction of BDNF exon I, III, and VI transcripts. AP-1 transcription factors directly upregulate the expression of exon I transcripts by binding two novel AP-1 cis-elements in promoter I. Moreover, our results show that the effect of AP-1 proteins on the activity of rat BDNF promoters III and VI is indirect, because AP-1 proteins were not detected to bind the respective promoter regions by chromatin immunoprecipitation (ChIP). Collectively, we describe an extensive positive feedback system in BDNF regulation, adding a new layer to the elaborate control of BDNF gene expression. Here, we show for the first time that in rat primary cortical neurons the expression of all major BDNF transcripts (exon I, II, III, IV, VI, and IXa transcripts) is upregulated in response to TrkB signaling, and that AP-1 transcription factors participate in the induction of exon I, III, and VI transcripts. Moreover, we have described two novel functional AP-1 cis-elements in BDNF promoter I, responsible for the activation of the promoter in response to TrkB signaling. Our results indicate the existence of a positive feedback loop for obtaining sufficient BDNF levels necessary for various TrkB signaling-dependent physiological outcomes in neurons.
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, regulates both survival and differentiation of several neuronal populations in the nervous system during development, as well as synaptic plasticity in the adult brain. BDNF exerts its biological functions through its receptor TrkB. Although the regulation of BDNF transcription by neuronal activity has been widely studied, little is known about TrkB signaling-dependent expression of BDNF. Using rat primary cortical neuron cultures, we show that the BDNF gene is a subject to an extensive autoregulatory loop, where TrkB signaling upregulates the expression of all major BDNF transcripts, mainly through activating MAPK pathways. Investigating the mechanisms behind this autoregulation, we found that AP-1 transcription factors, comprising Jun and Fos family members, participate in the induction of BDNF exon I, III, and VI transcripts. AP-1 transcription factors directly upregulate the expression of exon I transcripts by binding two novel AP-1 cis-elements in promoter I. Moreover, our results show that the effect of AP-1 proteins on the activity of rat BDNF promoters III and VI is indirect, because AP-1 proteins were not detected to bind the respective promoter regions by chromatin immunoprecipitation (ChIP). Collectively, we describe an extensive positive feedback system in BDNF regulation, adding a new layer to the elaborate control of BDNF gene expression.SIGNIFICANCE STATEMENTHere, we show for the first time that in rat primary cortical neurons the expression of all major BDNF transcripts (exon I, II, III, IV, VI, and IXa transcripts) is upregulated in response to TrkB signaling, and that AP-1 transcription factors participate in the induction of exon I, III, and VI transcripts. Moreover, we have described two novel functional AP-1 cis-elements in BDNF promoter I, responsible for the activation of the promoter in response to TrkB signaling. Our results indicate the existence of a positive feedback loop for obtaining sufficient BDNF levels necessary for various TrkB signaling-dependent physiological outcomes in neurons.
Author Orav, Ester
Timmusk, Tõnis
Pruunsild, Priit
Tuvikene, Jürgen
Esvald, Eli-Eelika
Author_xml – sequence: 1
  givenname: Jürgen
  surname: Tuvikene
  fullname: Tuvikene, Jürgen
– sequence: 2
  givenname: Priit
  surname: Pruunsild
  fullname: Pruunsild, Priit
– sequence: 3
  givenname: Ester
  surname: Orav
  fullname: Orav, Ester
– sequence: 4
  givenname: Eli-Eelika
  surname: Esvald
  fullname: Esvald, Eli-Eelika
– sequence: 5
  givenname: Tõnis
  surname: Timmusk
  fullname: Timmusk, Tõnis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26818516$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUtFAR3Rb-QpUjlyx-cfwRCSGVpQtFy7Yq7dlynBdwydqpnS3qvyfRlgLlACdLfjOjmXnvgOz54JGQI6Bz4AV79XF9cnVx9nlxOmdM0Bz4vKAgnpDZOK3yoqSwR2a0kDQXpSz3yUFK15RSSUE-I_uFUKA4iBm5OD7PIbuMxicbXT-44LOlsUOIKfuEjTMDZm_frZf5eUhucLeYLRGb2thv2SqEPnM-W4Q4OGu6bI3bGHx6Tp62pkv44v49JFfLk8vFh3x19v50cbzKLQc25KwUbSOtpMgZa-pGMSOgUQ0ohkUtrGw5yLJqFeXUKFoLrCm2wBGUxVYCOyRyp7v1vbn7brpO99FtTLzTQPXUkr72k6VknZ5aGv_01NLIfLNj9tt6g41FP0Tzix2M039OvPuqv4RbLQQtFZSjwMt7gRhutpgGvXHJYtcZj2GbNEihuKgoq_4HCiWvuJxUj3639eDn57ZGgNgB7BgqRWz_CvxwFo8Dv35EtG4w07LHeK77F_0Hqcm9ow
CitedBy_id crossref_primary_10_3389_fphar_2018_01143
crossref_primary_10_1016_j_neuroscience_2018_12_012
crossref_primary_10_1002_glia_23238
crossref_primary_10_1021_acsptsci_0c00065
crossref_primary_10_1016_j_phymed_2023_155332
crossref_primary_10_1016_j_pharep_2019_03_005
crossref_primary_10_1111_ejn_16575
crossref_primary_10_3390_ijms21093079
crossref_primary_10_1038_s41467_020_15287_9
crossref_primary_10_1016_j_gendis_2019_01_001
crossref_primary_10_1038_s41380_020_0767_8
crossref_primary_10_1016_j_ebiom_2020_102993
crossref_primary_10_1016_j_gene_2019_144277
crossref_primary_10_1007_s12192_018_0935_9
crossref_primary_10_1038_s41401_019_0334_5
crossref_primary_10_1186_s13041_017_0295_x
crossref_primary_10_1021_acs_molpharmaceut_1c00057
crossref_primary_10_1111_jnc_15732
crossref_primary_10_1038_s41386_023_01717_x
crossref_primary_10_3892_mmr_2021_12328
crossref_primary_10_1016_j_bbrc_2019_04_084
crossref_primary_10_1016_j_jbc_2024_107411
crossref_primary_10_1016_j_mcn_2018_06_007
crossref_primary_10_1111_cas_14227
crossref_primary_10_3389_fpsyt_2020_514658
crossref_primary_10_1080_1028415X_2021_1940429
crossref_primary_10_1073_pnas_2419818122
crossref_primary_10_1371_journal_pbio_3001563
crossref_primary_10_1523_JNEUROSCI_0367_19_2019
crossref_primary_10_1016_j_ejphar_2019_02_003
crossref_primary_10_1016_j_celrep_2017_10_100
crossref_primary_10_15252_msb_202110473
crossref_primary_10_1523_JNEUROSCI_0313_24_2025
crossref_primary_10_1039_D1FO04087A
crossref_primary_10_1016_j_bbr_2025_115540
crossref_primary_10_3389_fncir_2021_785603
crossref_primary_10_1371_journal_pbio_3000826
crossref_primary_10_3389_fpsyt_2017_00144
crossref_primary_10_7554_eLife_79863
crossref_primary_10_1038_ncomms14819
crossref_primary_10_3389_fnmol_2018_00325
crossref_primary_10_1038_s41380_020_00922_0
crossref_primary_10_1002_glia_24463
crossref_primary_10_1007_s12035_018_1302_7
crossref_primary_10_1093_nar_gkae1317
crossref_primary_10_1038_s41598_019_43069_x
crossref_primary_10_1002_nep3_73
crossref_primary_10_1016_j_cej_2020_127295
crossref_primary_10_1111_jnc_14917
crossref_primary_10_1016_j_aquatox_2019_01_009
crossref_primary_10_1002_hipo_23600
crossref_primary_10_1523_JNEUROSCI_2535_21_2022
crossref_primary_10_1002_wrna_1713
crossref_primary_10_1101_lm_042044_116
crossref_primary_10_1093_toxsci_kfy051
crossref_primary_10_1016_j_ab_2019_113556
crossref_primary_10_1007_s12640_022_00599_z
crossref_primary_10_1007_s12031_020_01645_1
crossref_primary_10_1016_j_smrv_2022_101738
crossref_primary_10_1126_sciadv_adj4452
crossref_primary_10_1186_s12864_019_6033_2
crossref_primary_10_1038_mp_2017_61
crossref_primary_10_7554_eLife_65161
crossref_primary_10_3390_ijms22116071
crossref_primary_10_3389_fnmol_2018_00260
crossref_primary_10_1016_j_envint_2019_105193
Cites_doi 10.1111/j.1471-4159.2007.04851.x
10.1111/j.1460-9568.2006.04687.x
10.1126/science.7907431
10.1016/S0896-6273(00)81010-7
10.1111/j.1471-4159.2005.03200.x
10.1016/0896-6273(93)90335-O
10.1038/ng859
10.1128/MCB.00008-13
10.1038/374450a0
10.1016/S0303-7207(00)00412-3
10.1111/jnc.13124
10.1523/JNEUROSCI.21-07-02256.2001
10.1111/j.1460-9568.2009.06898.x
10.1002/jnr.21139
10.1007/s00432-003-0418-x
10.1007/978-3-642-45106-5_4
10.1021/bi802068s
10.1098/rstb.2006.1894
10.1139/O10-138
10.1016/S0960-9822(95)00144-8
10.1523/JNEUROSCI.0324-14.2014
10.1523/JNEUROSCI.4540-10.2011
10.1016/S0028-3908(03)00148-5
10.1186/1471-2288-2-8
10.1038/nrc3653
10.1016/S0955-0674(97)80068-3
10.1073/pnas.1115907108
10.1016/j.brainres.2006.03.049
10.1074/jbc.272.30.18586
10.1101/lm.3.5.402
10.1111/j.1749-6632.1993.tb32277.x
10.1016/0896-6273(90)90106-P
10.1016/S0165-0173(98)00018-6
10.1016/0306-4522(94)90242-9
10.1038/nrc1209
10.1016/j.neuint.2009.01.006
10.1146/annurev.neuro.24.1.677
10.1016/0092-8674(88)90147-X
10.1016/j.ab.2008.04.036
10.1097/00001648-199001000-00010
10.1038/nrn1726
10.1124/pr.111.005108
10.1038/sj.onc.1204383
10.1152/physrev.00017.2008
10.1016/j.ygcen.2010.09.020
10.1016/j.neulet.2006.02.063
10.1158/1535-7163.MCT-09-0036
10.1242/dev.00826
10.1016/j.brainres.2008.06.022
10.1523/JNEUROSCI.16-23-07428.1996
10.1016/0092-8674(87)90612-X
10.1046/j.1471-4159.1996.66062279.x
10.1523/JNEUROSCI.4682-14.2015
10.1016/0092-8674(87)90611-8
10.1073/pnas.95.16.9614
10.1101/lm.54603
10.1016/j.pneurobio.2006.03.006
10.1073/pnas.191352298
10.1101/gad.841400
10.1038/sj.onc.1204385
10.1002/jnr.23010
10.1016/j.neuron.2008.09.002
10.1523/JNEUROSCI.21-02-00434.2001
10.1073/pnas.90.19.8802
10.1073/pnas.90.14.6439
10.1002/hipo.22100
10.1523/JNEUROSCI.4554-11.2011
10.1073/pnas.91.15.7360
10.1016/j.ygeno.2007.05.004
10.1523/JNEUROSCI.14-11-06402.1994
10.1378/chest.11-0523
10.1007/s10571-010-9544-6
ContentType Journal Article
Copyright Copyright © 2016 the authors 0270-6474/16/361290-16$15.00/0.
Copyright © 2016 the authors 0270-6474/16/361290-16$15.00/0 2016
Copyright_xml – notice: Copyright © 2016 the authors 0270-6474/16/361290-16$15.00/0.
– notice: Copyright © 2016 the authors 0270-6474/16/361290-16$15.00/0 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
ADTOC
UNPAY
DOI 10.1523/JNEUROSCI.3360-15.2016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
CrossRef
Neurosciences Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 1305
ExternalDocumentID 10.1523/jneurosci.3360-15.2016
PMC6604814
26818516
10_1523_JNEUROSCI_3360_15_2016
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
AFCFT
AFHIN
AFOSN
AIZTS
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
7TK
5PM
.GJ
1CY
3O-
ADTOC
ADXHL
AETEA
AFFNX
AI.
MVM
UNPAY
VH1
YYP
ZGI
ZXP
ID FETCH-LOGICAL-c513t-346fd7c70e533dbd83a61d8d183e2b6c7f51749f8050a80b6eb0ef15e18cef713
IEDL.DBID UNPAY
ISSN 0270-6474
1529-2401
IngestDate Tue Aug 19 19:13:34 EDT 2025
Tue Sep 30 16:43:39 EDT 2025
Thu Sep 04 16:12:17 EDT 2025
Wed Aug 20 00:38:49 EDT 2025
Wed Feb 19 02:27:25 EST 2025
Wed Oct 01 04:26:47 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords BDNF-positive feedback loop
Jun
TrkB
Fos
AP-1
BDNF autoregulation
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
Copyright © 2016 the authors 0270-6474/16/361290-16$15.00/0.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-346fd7c70e533dbd83a61d8d183e2b6c7f51749f8050a80b6eb0ef15e18cef713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: J.T., P.P., and T.T. designed research; J.T., P.P., E.O., and E.-E.E. performed research; J.T., P.P., E.O., E.-E.E., and T.T. analyzed data; J.T., P.P., and T.T. wrote the paper.
P. Pruunsild's present address: Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, 69120 Heidelberg, Germany.
E. Orav's present address: Neuroscience Center and Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.jneurosci.org/content/jneuro/36/4/1290.full.pdf
PMID 26818516
PQID 1761459574
PQPubID 23479
PageCount 16
ParticipantIDs unpaywall_primary_10_1523_jneurosci_3360_15_2016
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6604814
proquest_miscellaneous_1768569039
proquest_miscellaneous_1761459574
pubmed_primary_26818516
crossref_primary_10_1523_JNEUROSCI_3360_15_2016
crossref_citationtrail_10_1523_JNEUROSCI_3360_15_2016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-27
2016-Jan-27
20160127
PublicationDateYYYYMMDD 2016-01-27
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2016
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References Cavanaugh (2023041803170137000_36.4.1290.11) 2001; 21
2023041803170137000_36.4.1290.17
2023041803170137000_36.4.1290.18
2023041803170137000_36.4.1290.9
2023041803170137000_36.4.1290.15
2023041803170137000_36.4.1290.59
2023041803170137000_36.4.1290.16
2023041803170137000_36.4.1290.13
Gaiddon (2023041803170137000_36.4.1290.20) 1996; 66
2023041803170137000_36.4.1290.57
2023041803170137000_36.4.1290.14
2023041803170137000_36.4.1290.58
2023041803170137000_36.4.1290.55
2023041803170137000_36.4.1290.12
2023041803170137000_36.4.1290.56
2023041803170137000_36.4.1290.53
2023041803170137000_36.4.1290.10
2023041803170137000_36.4.1290.54
2023041803170137000_36.4.1290.51
2023041803170137000_36.4.1290.52
2023041803170137000_36.4.1290.50
2023041803170137000_36.4.1290.3
2023041803170137000_36.4.1290.2
2023041803170137000_36.4.1290.1
2023041803170137000_36.4.1290.7
2023041803170137000_36.4.1290.6
2023041803170137000_36.4.1290.5
2023041803170137000_36.4.1290.4
2023041803170137000_36.4.1290.48
2023041803170137000_36.4.1290.49
2023041803170137000_36.4.1290.46
2023041803170137000_36.4.1290.47
2023041803170137000_36.4.1290.44
2023041803170137000_36.4.1290.45
2023041803170137000_36.4.1290.42
2023041803170137000_36.4.1290.43
2023041803170137000_36.4.1290.40
2023041803170137000_36.4.1290.41
Girgert (2023041803170137000_36.4.1290.22) 2003; 129
Lauterborn (2023041803170137000_36.4.1290.39) 1996; 16
2023041803170137000_36.4.1290.37
2023041803170137000_36.4.1290.38
2023041803170137000_36.4.1290.35
2023041803170137000_36.4.1290.36
2023041803170137000_36.4.1290.33
2023041803170137000_36.4.1290.34
2023041803170137000_36.4.1290.31
2023041803170137000_36.4.1290.32
2023041803170137000_36.4.1290.73
2023041803170137000_36.4.1290.30
2023041803170137000_36.4.1290.71
2023041803170137000_36.4.1290.72
2023041803170137000_36.4.1290.70
Basarsky (2023041803170137000_36.4.1290.8) 1994; 14
2023041803170137000_36.4.1290.19
2023041803170137000_36.4.1290.28
Ho (2023041803170137000_36.4.1290.29) 2002; 62
2023041803170137000_36.4.1290.26
Hansen (2023041803170137000_36.4.1290.27) 2001; 21
2023041803170137000_36.4.1290.24
2023041803170137000_36.4.1290.68
2023041803170137000_36.4.1290.25
2023041803170137000_36.4.1290.69
2023041803170137000_36.4.1290.66
2023041803170137000_36.4.1290.23
2023041803170137000_36.4.1290.67
2023041803170137000_36.4.1290.64
2023041803170137000_36.4.1290.21
2023041803170137000_36.4.1290.65
2023041803170137000_36.4.1290.62
2023041803170137000_36.4.1290.63
2023041803170137000_36.4.1290.60
2023041803170137000_36.4.1290.61
References_xml – ident: 2023041803170137000_36.4.1290.71
  doi: 10.1111/j.1471-4159.2007.04851.x
– ident: 2023041803170137000_36.4.1290.68
  doi: 10.1111/j.1460-9568.2006.04687.x
– ident: 2023041803170137000_36.4.1290.21
  doi: 10.1126/science.7907431
– ident: 2023041803170137000_36.4.1290.61
  doi: 10.1016/S0896-6273(00)81010-7
– ident: 2023041803170137000_36.4.1290.31
  doi: 10.1111/j.1471-4159.2005.03200.x
– ident: 2023041803170137000_36.4.1290.63
  doi: 10.1016/0896-6273(93)90335-O
– ident: 2023041803170137000_36.4.1290.72
  doi: 10.1038/ng859
– ident: 2023041803170137000_36.4.1290.38
  doi: 10.1128/MCB.00008-13
– ident: 2023041803170137000_36.4.1290.1
  doi: 10.1038/374450a0
– ident: 2023041803170137000_36.4.1290.25
  doi: 10.1016/S0303-7207(00)00412-3
– ident: 2023041803170137000_36.4.1290.35
  doi: 10.1111/jnc.13124
– volume: 21
  start-page: 2256
  year: 2001
  ident: 2023041803170137000_36.4.1290.27
  article-title: Multiple distinct signal pathways, including an autocrine neurotrophic mechanism, contribute to the survival-promoting effect of depolarization on spiral ganglion neurons in vitro
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-07-02256.2001
– ident: 2023041803170137000_36.4.1290.32
  doi: 10.1111/j.1460-9568.2009.06898.x
– ident: 2023041803170137000_36.4.1290.2
  doi: 10.1002/jnr.21139
– volume: 129
  start-page: 227
  year: 2003
  ident: 2023041803170137000_36.4.1290.22
  article-title: Farnesyltransferase inhibitor FTI-277 prevents autocrine growth stimulation of neuroblastoma by BDNF
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-003-0418-x
– volume: 62
  start-page: 6462
  year: 2002
  ident: 2023041803170137000_36.4.1290.29
  article-title: Resistance to chemotherapy mediated by TrkB in neuroblastomas
  publication-title: Cancer Res
– ident: 2023041803170137000_36.4.1290.67
  doi: 10.1007/978-3-642-45106-5_4
– ident: 2023041803170137000_36.4.1290.57
  doi: 10.1021/bi802068s
– ident: 2023041803170137000_36.4.1290.54
  doi: 10.1098/rstb.2006.1894
– ident: 2023041803170137000_36.4.1290.49
  doi: 10.1139/O10-138
– ident: 2023041803170137000_36.4.1290.16
  doi: 10.1016/S0960-9822(95)00144-8
– ident: 2023041803170137000_36.4.1290.7
  doi: 10.1523/JNEUROSCI.0324-14.2014
– ident: 2023041803170137000_36.4.1290.51
  doi: 10.1523/JNEUROSCI.4540-10.2011
– ident: 2023041803170137000_36.4.1290.45
  doi: 10.1016/S0028-3908(03)00148-5
– ident: 2023041803170137000_36.4.1290.19
  doi: 10.1186/1471-2288-2-8
– ident: 2023041803170137000_36.4.1290.47
  doi: 10.1038/nrc3653
– ident: 2023041803170137000_36.4.1290.33
  doi: 10.1016/S0955-0674(97)80068-3
– ident: 2023041803170137000_36.4.1290.12
  doi: 10.1073/pnas.1115907108
– ident: 2023041803170137000_36.4.1290.13
  doi: 10.1016/j.brainres.2006.03.049
– ident: 2023041803170137000_36.4.1290.46
  doi: 10.1074/jbc.272.30.18586
– ident: 2023041803170137000_36.4.1290.24
  doi: 10.1101/lm.3.5.402
– ident: 2023041803170137000_36.4.1290.52
  doi: 10.1111/j.1749-6632.1993.tb32277.x
– ident: 2023041803170137000_36.4.1290.59
  doi: 10.1016/0896-6273(90)90106-P
– ident: 2023041803170137000_36.4.1290.28
  doi: 10.1016/S0165-0173(98)00018-6
– ident: 2023041803170137000_36.4.1290.64
  doi: 10.1016/0306-4522(94)90242-9
– ident: 2023041803170137000_36.4.1290.18
  doi: 10.1038/nrc1209
– ident: 2023041803170137000_36.4.1290.73
  doi: 10.1016/j.neuint.2009.01.006
– ident: 2023041803170137000_36.4.1290.30
  doi: 10.1146/annurev.neuro.24.1.677
– ident: 2023041803170137000_36.4.1290.26
  doi: 10.1016/0092-8674(88)90147-X
– ident: 2023041803170137000_36.4.1290.69
  doi: 10.1016/j.ab.2008.04.036
– ident: 2023041803170137000_36.4.1290.55
  doi: 10.1097/00001648-199001000-00010
– ident: 2023041803170137000_36.4.1290.42
  doi: 10.1038/nrn1726
– ident: 2023041803170137000_36.4.1290.5
  doi: 10.1124/pr.111.005108
– ident: 2023041803170137000_36.4.1290.58
  doi: 10.1038/sj.onc.1204383
– ident: 2023041803170137000_36.4.1290.3
  doi: 10.1152/physrev.00017.2008
– ident: 2023041803170137000_36.4.1290.37
  doi: 10.1016/j.ygcen.2010.09.020
– ident: 2023041803170137000_36.4.1290.17
  doi: 10.1016/j.neulet.2006.02.063
– ident: 2023041803170137000_36.4.1290.62
  doi: 10.1158/1535-7163.MCT-09-0036
– ident: 2023041803170137000_36.4.1290.70
  doi: 10.1242/dev.00826
– ident: 2023041803170137000_36.4.1290.15
  doi: 10.1016/j.brainres.2008.06.022
– volume: 16
  start-page: 7428
  year: 1996
  ident: 2023041803170137000_36.4.1290.39
  article-title: Differential effects of protein synthesis inhibition on the activity-dependent expression of BDNF transcripts: evidence for immediate-early gene responses from specific promoters
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-23-07428.1996
– ident: 2023041803170137000_36.4.1290.40
  doi: 10.1016/0092-8674(87)90612-X
– volume: 66
  start-page: 2279
  year: 1996
  ident: 2023041803170137000_36.4.1290.20
  article-title: Brain-derived neurotrophic factor stimulates AP-1 and cyclic AMP-responsive element dependent transcriptional activity in central nervous system neurons
  publication-title: J Neurochem
  doi: 10.1046/j.1471-4159.1996.66062279.x
– ident: 2023041803170137000_36.4.1290.65
  doi: 10.1523/JNEUROSCI.4682-14.2015
– ident: 2023041803170137000_36.4.1290.4
  doi: 10.1016/0092-8674(87)90611-8
– ident: 2023041803170137000_36.4.1290.36
  doi: 10.1073/pnas.95.16.9614
– ident: 2023041803170137000_36.4.1290.41
  doi: 10.1101/lm.54603
– ident: 2023041803170137000_36.4.1290.53
  doi: 10.1016/j.pneurobio.2006.03.006
– ident: 2023041803170137000_36.4.1290.66
  doi: 10.1073/pnas.191352298
– ident: 2023041803170137000_36.4.1290.10
  doi: 10.1101/gad.841400
– ident: 2023041803170137000_36.4.1290.14
  doi: 10.1038/sj.onc.1204385
– ident: 2023041803170137000_36.4.1290.56
  doi: 10.1002/jnr.23010
– ident: 2023041803170137000_36.4.1290.23
  doi: 10.1016/j.neuron.2008.09.002
– volume: 21
  start-page: 434
  year: 2001
  ident: 2023041803170137000_36.4.1290.11
  article-title: Differential regulation of mitogen-activated protein kinases ERK1/2 and ERK5 by neurotrophins, neuronal activity, and cAMP in neurons
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.21-02-00434.2001
– ident: 2023041803170137000_36.4.1290.43
  doi: 10.1073/pnas.90.19.8802
– ident: 2023041803170137000_36.4.1290.44
  doi: 10.1073/pnas.90.14.6439
– ident: 2023041803170137000_36.4.1290.6
  doi: 10.1002/hipo.22100
– ident: 2023041803170137000_36.4.1290.9
  doi: 10.1523/JNEUROSCI.4554-11.2011
– ident: 2023041803170137000_36.4.1290.48
  doi: 10.1073/pnas.91.15.7360
– ident: 2023041803170137000_36.4.1290.50
  doi: 10.1016/j.ygeno.2007.05.004
– volume: 14
  start-page: 6402
  year: 1994
  ident: 2023041803170137000_36.4.1290.8
  article-title: Hippocampal synaptogenesis in cell culture: developmental time course of synapse formation, calcium influx, and synaptic protein distribution
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.14-11-06402.1994
– ident: 2023041803170137000_36.4.1290.60
  doi: 10.1378/chest.11-0523
– ident: 2023041803170137000_36.4.1290.34
  doi: 10.1007/s10571-010-9544-6
SSID ssj0007017
Score 2.4757802
Snippet Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, regulates both survival and differentiation of several neuronal populations in...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1290
SubjectTerms Animals
Brain-Derived Neurotrophic Factor - genetics
Brain-Derived Neurotrophic Factor - metabolism
Cells, Cultured
Cerebral Cortex - cytology
Embryo, Mammalian
Enzyme Inhibitors - pharmacology
Female
Hippocampus - cytology
Humans
Hypoxanthine Phosphoribosyltransferase - genetics
Hypoxanthine Phosphoribosyltransferase - metabolism
Male
Neurons - physiology
Promoter Regions, Genetic - genetics
Promoter Regions, Genetic - physiology
Proto-Oncogene Proteins c-fos - metabolism
Proto-Oncogene Proteins c-jun - metabolism
Rats
Rats, Sprague-Dawley
Receptor, trkB - metabolism
Signal Transduction - genetics
Transcription Factor AP-1 - genetics
Transcription Factor AP-1 - metabolism
Title AP-1 Transcription Factors Mediate BDNF-Positive Feedback Loop in Cortical Neurons
URI https://www.ncbi.nlm.nih.gov/pubmed/26818516
https://www.proquest.com/docview/1761459574
https://www.proquest.com/docview/1768569039
https://pubmed.ncbi.nlm.nih.gov/PMC6604814
https://www.jneurosci.org/content/jneuro/36/4/1290.full.pdf
UnpaywallVersion publishedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1529-2401
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007017
  issn: 1529-2401
  databaseCode: KQ8
  dateStart: 19810101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1529-2401
  dateEnd: 20250403
  omitProxy: true
  ssIdentifier: ssj0007017
  issn: 1529-2401
  databaseCode: DIK
  dateStart: 19810101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1529-2401
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007017
  issn: 1529-2401
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1529-2401
  dateEnd: 20250403
  omitProxy: true
  ssIdentifier: ssj0007017
  issn: 1529-2401
  databaseCode: RPM
  dateStart: 19810101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa27oEnbgNWBJOREG9p7PoSRzyVQjQGq8ql0pCQIttxxFhJqq0FjV_PsZMUSiUQvDqxjo7O8bn7M0KPWclKZyxYP8p05BGwImM0iZzyPbTSgs_1t5FPJvJoxo9PxekOetrdhfFjlZ87KMfQyfcj22B_42Y1ZjLmsS-eDHx9erAoyl20J313qYf2ZpPp6EOoqiSQFPGAwQwOKvQQaHs_GDKv-CcFxiSJqPAzXnLTNW3Fm9tjk9dW1UJffdPz-S8-KbuBPnbcNKMo54PV0gzs99-AHv-T3Zvoehur4lGjXLfQjqtuo_1RBXn6lyv8BIfp0VCW30dvR9OI4uD5OjuEs-YtH3wSngNx-NnzSRZNw5TYV4cz8JtG23P8uq4X-KzC4_oiFNZxAAypLu-gWfbi_fgoat9riKygbBkxLssisQlxEEMWplBMS1qoAqyGGxppk9LDYqelIoJoRYx0hriSCkeVdSVky3dRr6ord4AwBJIQ5xDqCml5Ygqt-NDwItXCCul40keiE1VuWzBz_6bGPPdJDYg4P574Uch345e5FzGs5V7EfRSv9y0aOI-_7njUaUIOJ8-3U3Tl6tVlThMIbUQqEv7Hf5SQKWFpH91rtGdNdyh9sOQpJBt6tf7BI39vfqnOPgUEcNB3rijQJWsN3GJnrVYb7Nz_9y0PUG95sXIPIfhamkO0--qNOmyP2g9juDF1
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA5r98Enb-ulohJBfJtO0lxmBp9qdVgXtxS1sIIw5DbsunWm7LbK-us9yVy0FhR9zUw4HM7JuecLQs9YyUqnDVg_ylTkEbAirRWJXOp7aKUBn-tvIx_P5OGCH52Ikz30orsL48cqP3dQjqGT70e2wf7GzWrMZMxjXzwZ-fr0aGXLa2hf-u7SAO0vZvPJx1BVSSAp4gGDGRxU6CHQ9n4wZF7xTwqMSRJR4We85LZr2ok3d8cmr2-qlbr6ppbLX3xSfhN96rhpRlHOR5u1HpnvvwE9_ie7t9CNNlbFk0a5bqM9V91BB5MK8vQvV_g5DtOjoSx_gN5N5hHFwfN1dgjnzVs--Dg8B-Lwy1ezPJqHKbGvDufgN7Uy5_htXa_wWYWn9UUorOMAGFJd3kWL_PWH6WHUvtcQGUHZOmJcljYxCXEQQ1ptU6YktakFq-HGWpqk9LDYWZkSQVRKtHSauJIKR1PjSsiW76FBVVfuAcIQSEKcQ6iz0vBEW5XyseY2U8II6XgyRKITVWFaMHP_psay8EkNiLg4mvlRyPfTN4UXMawVXsRDFPf7Vg2cx193PO00oYCT59spqnL15rKgCYQ2IhMJ_-M_qZAZYdkQ3W-0p6c7lj5Y8hSSLb3qf_DI39tfqrPTgAAO-s5TCnRJr4E77PRqtcXOw3_f8ggN1hcb9xiCr7V-0h6yH0CmMIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AP-1+Transcription+Factors+Mediate+BDNF-Positive+Feedback+Loop+in+Cortical+Neurons&rft.jtitle=The+Journal+of+neuroscience&rft.au=Tuvikene%2C+J%C3%BCrgen&rft.au=Pruunsild%2C+Priit&rft.au=Orav%2C+Ester&rft.au=Esvald%2C+Eli-Eelika&rft.date=2016-01-27&rft.pub=Society+for+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=36&rft.issue=4&rft.spage=1290&rft.epage=1305&rft_id=info:doi/10.1523%2FJNEUROSCI.3360-15.2016&rft_id=info%3Apmid%2F26818516&rft.externalDocID=PMC6604814
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon