Bacteria colonization in tumor microenvironment creates a favorable niche for immunogenic chemotherapy

The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combin...

Full description

Saved in:
Bibliographic Details
Published inEMBO molecular medicine Vol. 16; no. 2; pp. 416 - 428
Main Authors Lim, See-Khai, Lin, Wen-Ching, Huang, Sin-Wei, Pan, Yi-Chung, Hu, Che-Wei, Mou, Chung-Yuan, Hu, Che-Ming Jack, Mou, Kurt Yun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.02.2024
Springer Nature
Subjects
Online AccessGet full text
ISSN1757-4684
1757-4676
1757-4684
DOI10.1038/s44321-023-00022-w

Cover

Abstract The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME. Synopsis Oxaliplatin, an immunogenic chemotherapeutic synergizes with bacteria cancer therapy for tumor eradication. The synergy was mediated by the ability of the combinations to alter the pro-tumoral immune milieu and impose a strong differential selective pressure to outcompete the tumor cells. Bacteria monotherapy exhibits moderate anticancer efficacy due to its limited ability to outcompete tumor cells in the tumor microenvironment. The addition of chemotherapy acts as a selective factor against tumor survival and enhances the efficacy of bacteria cancer therapy. The addition of immunogenic chemotherapy with bacteria treatment significantly enhances tumor-infiltrating T cells and leads to a long-lasting tumor remission. Oxaliplatin, an immunogenic chemotherapeutic synergizes with bacteria cancer therapy for tumor eradication. The synergy was mediated by the ability of the combinations to alter the pro-tumoral immune milieu and impose a strong differential selective pressure to outcompete the tumor cells.
AbstractList The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME.
The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME. Oxaliplatin, an immunogenic chemotherapeutic synergizes with bacteria cancer therapy for tumor eradication. The synergy was mediated by the ability of the combinations to alter the pro-tumoral immune milieu and impose a strong differential selective pressure to outcompete the tumor cells. Bacteria monotherapy exhibits moderate anticancer efficacy due to its limited ability to outcompete tumor cells in the tumor microenvironment.The addition of chemotherapy acts as a selective factor against tumor survival and enhances the efficacy of bacteria cancer therapy.The addition of immunogenic chemotherapy with bacteria treatment significantly enhances tumor-infiltrating T cells and leads to a long-lasting tumor remission. Oxaliplatin, an immunogenic chemotherapeutic synergizes with bacteria cancer therapy for tumor eradication. The synergy was mediated by the ability of the combinations to alter the pro-tumoral immune milieu and impose a strong differential selective pressure to outcompete the tumor cells.
The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME. Synopsis Oxaliplatin, an immunogenic chemotherapeutic synergizes with bacteria cancer therapy for tumor eradication. The synergy was mediated by the ability of the combinations to alter the pro-tumoral immune milieu and impose a strong differential selective pressure to outcompete the tumor cells. Bacteria monotherapy exhibits moderate anticancer efficacy due to its limited ability to outcompete tumor cells in the tumor microenvironment. The addition of chemotherapy acts as a selective factor against tumor survival and enhances the efficacy of bacteria cancer therapy. The addition of immunogenic chemotherapy with bacteria treatment significantly enhances tumor-infiltrating T cells and leads to a long-lasting tumor remission. Oxaliplatin, an immunogenic chemotherapeutic synergizes with bacteria cancer therapy for tumor eradication. The synergy was mediated by the ability of the combinations to alter the pro-tumoral immune milieu and impose a strong differential selective pressure to outcompete the tumor cells.
The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME.The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME.
Abstract The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME.
Author Lin, Wen-Ching
Huang, Sin-Wei
Hu, Che-Wei
Pan, Yi-Chung
Mou, Chung-Yuan
Mou, Kurt Yun
Lim, See-Khai
Hu, Che-Ming Jack
Author_xml – sequence: 1
  givenname: See-Khai
  surname: Lim
  fullname: Lim, See-Khai
  organization: Institute of Biomedical Sciences, Academia Sinica
– sequence: 2
  givenname: Wen-Ching
  surname: Lin
  fullname: Lin, Wen-Ching
  organization: Institute of Biomedical Sciences, Academia Sinica
– sequence: 3
  givenname: Sin-Wei
  surname: Huang
  fullname: Huang, Sin-Wei
  organization: Institute of Biomedical Sciences, Academia Sinica
– sequence: 4
  givenname: Yi-Chung
  surname: Pan
  fullname: Pan, Yi-Chung
  organization: Institute of Biomedical Sciences, Academia Sinica
– sequence: 5
  givenname: Che-Wei
  orcidid: 0000-0001-6044-2386
  surname: Hu
  fullname: Hu, Che-Wei
  organization: Institute of Biomedical Sciences, Academia Sinica
– sequence: 6
  givenname: Chung-Yuan
  surname: Mou
  fullname: Mou, Chung-Yuan
  organization: Department of Chemistry, National Taiwan University
– sequence: 7
  givenname: Che-Ming Jack
  orcidid: 0000-0002-0988-7029
  surname: Hu
  fullname: Hu, Che-Ming Jack
  email: chu@ibms.sinica.edu.tw
  organization: Institute of Biomedical Sciences, Academia Sinica
– sequence: 8
  givenname: Kurt Yun
  orcidid: 0000-0001-5423-9031
  surname: Mou
  fullname: Mou, Kurt Yun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38225455$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARfcAPsEBZsgn4bWeFoOJRqRIbWFs3zs2MR4k92MlU5esxkxa1LLqydX0euj7nvDoJMWBVvabkHSXcvM9CcEYbwnhDCGGsuXlWnVEtdSOUEScP7qfVec47QpRU1LyoTrlhTAopz6rhE7gZk4faxTEG_xtmH0PtQz0vU0z15F2KGA4-xTBhmGuXEGbMNdQDHGKCbsQ6eLfFeihwP01LiBssk7rMpjhvMcH-9mX1fIAx46u786L6-eXzj8tvzfX3r1eXH68bJymfG0bJAEgHw_qWOKpa3Xe6ZRw7I5ABFaRlgkulOeHAdUc6aZhqZUfBmVZ1_KK6WnX7CDu7T36CdGsjeHscxLSxkGbvRrRcCSEc0p7x8hVMQOdAK6c6wqSSpi9aH1at_dJN2LuyfYLxkejjl-C3dhMPlhLTaqp1UXh7p5DirwXzbCefHY4jBIxLtqylUmpCuSrQNw_N_rncJ1UAZgWUPHJOOFjn52NYxduPxdT-LYVdS2FLKeyxFPamUNl_1Hv1J0l8JeUCDhtMdheXFEp4T7H-AED_y24
CitedBy_id crossref_primary_10_1002_adma_202405075
crossref_primary_10_7554_eLife_90798
crossref_primary_10_3390_cancers16223810
crossref_primary_10_1152_ajpcell_00201_2024
crossref_primary_10_7554_eLife_90798_3
Cites_doi 10.3390/cancers12071760
10.1186/s12935-019-0771-8
10.1371/journal.pone.0180034
10.1126/science.1240527
10.1038/onc.2009.356
10.3390/toxins12040241
10.1186/s12929-019-0568-z
10.1016/j.ijpharm.2021.120931
10.3390/ijms22136995
10.1021/acs.molpharmaceut.0c00961
10.1016/j.tranon.2021.101202
10.1186/s12916-020-01817-1
10.1038/cdd.2011.75
10.1084/jem.20110919
10.1038/nrc1074
10.3390/ijms22179451
10.1016/j.cub.2012.08.008
10.1016/j.adro.2018.08.018
10.4049/jimmunol.166.5.3476
10.1016/j.semcancer.2022.03.014
10.15252/embj.2021108389
10.1038/nm1523
10.1038/s41416-018-0327-z
10.1186/s12943-017-0707-7
10.5001/omj.2014.107
10.1111/j.1462-5822.2008.01122.x
10.1007/s10147-014-0719-x
10.1038/s41598-022-26105-1
10.1371/journal.pone.0160882
10.1073/pnas.091093398
10.3747/co.v18i1.708
10.18632/oncotarget.17973
10.1038/205918a0
10.1038/srep14554
10.1371/journal.pone.0030806
10.1002/cac2.12316
10.1080/2162402X.2018.1424676
10.3389/fphar.2020.00343
10.1158/0008-5472.CAN-09-3690
10.1016/j.canlet.2019.10.020
10.1186/s13045-022-01282-8
10.1158/0008-5472.CAN-07-2984
10.1016/j.ymthe.2022.04.008
10.1016/j.jconrel.2023.02.001
10.3389/fimmu.2018.02456
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1038/s44321-023-00022-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1757-4684
EndPage 428
ExternalDocumentID oai_doaj_org_article_36444ce1d2354524abca76c6b025658d
PMC10897177
38225455
10_1038_s44321_023_00022_w
Genre Journal Article
GrantInformation_xml – fundername: National Science and Technology Council (NSTC)
  grantid: 110-2113-M-001-064-MY3
  funderid: http://dx.doi.org/10.13039/100020595
– fundername: Academia Sinica (AS)
  grantid: AS-CDA-108-L07
  funderid: http://dx.doi.org/10.13039/501100001869
– fundername: National Science and Technology Council (NSTC)
  grantid: 110-2113-M-001-064-MY3
– fundername: Academia Sinica (AS)
  grantid: AS-CDA-108-L07
GroupedDBID ---
0R~
1OC
24P
4.4
53G
5DZ
5GY
5VS
7X7
8-0
8-1
8AO
8FE
8FH
8FI
8FJ
AAHHS
AAJSJ
AAZKR
ABOCM
ABUWG
ACCFJ
ACCMX
ACGFO
ACGFS
ACPRK
ACXQS
ADBBV
ADKYN
ADPDF
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFBPY
AFKRA
AHMBA
AIAGR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
C6C
CCPQU
D-9
DIK
DU5
EBD
EBLON
EBS
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HK~
HMCUK
HYE
HZ~
IAO
IHR
KQ8
LH4
LK8
M48
M7P
M~E
NNB
O9-
OIG
OK1
OVD
OVEED
P2P
PIMPY
PQQKQ
PROAC
RHF
RHI
RNS
ROL
RPM
SV3
TEORI
UKHRP
WIN
XV2
AASML
AAYXX
CITATION
NAO
PHGZM
PHGZT
PQGLB
PUEGO
31~
ADRAZ
AFZJQ
ALUQN
CGR
CUY
CVF
ECM
EIF
EJD
GODZA
H13
ITC
LW6
NPM
7X8
5PM
ID FETCH-LOGICAL-c513t-210fae1f82d90c1697db7923eb84e2a1409243567303a37b0b582695b1ac896b3
IEDL.DBID DOA
ISSN 1757-4684
1757-4676
IngestDate Wed Aug 27 01:18:35 EDT 2025
Tue Sep 30 17:10:05 EDT 2025
Thu Sep 04 19:04:16 EDT 2025
Thu Apr 03 07:08:24 EDT 2025
Wed Oct 01 02:36:23 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Fri Feb 21 02:42:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Oxaliplatin; TME Remodeling
Bacteria Cancer Therapy
Differential Stress Resistance
Immunotherapy
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the data associated with this article, unless otherwise stated in a credit line to the data, but does not extend to the graphical or creative elements of illustrations, charts, or figures. This waiver removes legal barriers to the re-use and mining of research data. According to standard scholarly practice, it is recommended to provide appropriate citation and attribution whenever technically possible.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-210fae1f82d90c1697db7923eb84e2a1409243567303a37b0b582695b1ac896b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5423-9031
0000-0001-6044-2386
0000-0002-0988-7029
OpenAccessLink https://doaj.org/article/36444ce1d2354524abca76c6b025658d
PMID 38225455
PQID 2915570136
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_36444ce1d2354524abca76c6b025658d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10897177
proquest_miscellaneous_2915570136
pubmed_primary_38225455
crossref_citationtrail_10_1038_s44321_023_00022_w
crossref_primary_10_1038_s44321_023_00022_w
springer_journals_10_1038_s44321_023_00022_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-15
PublicationDateYYYYMMDD 2024-02-15
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Germany
PublicationTitle EMBO molecular medicine
PublicationTitleAbbrev EMBO Mol Med
PublicationTitleAlternate EMBO Mol Med
PublicationYear 2024
Publisher Nature Publishing Group UK
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature
References Cupp, Cariolou, Tzoulaki, Aune, Evangelou, Berlanga-Taylor (CR7) 2020; 18
Westphal, Leschner, Jablonska, Loessner, Weiss (CR43) 2008; 68
Rao, Chen, Li, Xiao, Fu, Zeng, Cai, Xie (CR32) 2012; 7
Hosseini-Giv, Bahrami, Matin (CR15) 2021; 606
Groza, Gehrig, Kudela, Holcmann, Pirker, Dinhof, Schueffl, Sramko, Hoebart, Alioglu (CR13) 2018; 7
Mackay (CR24) 1965; 205
Lehouritis, Cummins, Stanton, Murphy, McCarthy, Reid, Urbaniak, Byrne, Tangney (CR20) 2015; 5
Salamone, Giordano, Trevani, Gamberale, Vermeulen, Schettinni, Geffner (CR33) 2001; 166
Tokumaru, Oshi, Murthy, Tian, Yan, Angarita, Nagahashi, Matsuhashi, Futamura, Yoshida (CR37) 2021; 11
Geering, Simon (CR11) 2011; 18
Zhou, Kang, Chen, Wang, Liu, Zeng, Yu (CR46) 2020; 11
Hu, Chang, Liu, Yu, Mou (CR16) 2022; 30
Weibel, Stritzker, Eck, Goebel, Szalay (CR42) 2008; 10
Wang, Qiu, Li, Wang, Yi (CR41) 2018; 9
Lan, Liu, Liu, Wang, Guan, Du, Jin (CR19) 2021; 18
Carlson, Flickinger, Snook (CR3) 2020; 12
Deb, Wu, Coker, Harimoto, Huang, Danino (CR8) 2022; 12
Mooney, Cleland (CR25) 2001; 98
Iida, Dzutsev, Stewart, Smith, Bouladoux, Weingarten, Molina, Salcedo, Back, Cramer (CR17) 2013; 342
Giraldo, Sanchez-Salas, Peske, Vano, Becht, Petitprez, Validire, Ingels, Cathelineau, Fridman (CR12) 2019; 120
Chen, Song (CR4) 2022; 42
Liu, Xie, Xiong, Liu, Qiu, Zhu, Mao, Yu, Wang (CR22) 2020; 469
Tesniere, Schlemmer, Boige, Kepp, Martins, Ghiringhelli, Aymeric, Michaud, Apetoh, Barault (CR35) 2010; 29
Obeid, Tesniere, Ghiringhelli, Fimia, Apetoh, Perfettini, Castedo, Mignot, Panaretakis, Casares (CR29) 2007; 13
Fu, Song, Zhou, Shi, Liu, Shi, Gao, Wang, Ding, Fan (CR9) 2019; 19
Nandi, Behar (CR27) 2011; 208
Ocana, Nieto-Jimenez, Pandiella, Templeton (CR30) 2017; 16
Kim, Park, Choi, Kang, Lee, Lee, Shin, Park (CR18) 2023; 355
Li, Zheng, Wang, Xu, Zhang (CR21) 2021; 14
Vincent, Mignot, Chalmin, Ladoire, Bruchard, Chevriaux, Martin, Apetoh, Rebe, Ghiringhelli (CR40) 2010; 70
Murphy, Rettedal, Lehouritis, Devoy, Tangney (CR26) 2017; 12
Vendramin, Litchfield, Swanton (CR39) 2021; 40
Yamamura, Tsuchikawa, Miyauchi, Takeuchi, Wada, Kuwatani, Kyogoku, Kuroda, Maki, Shichinohe (CR45) 2015; 20
Chen, Song, Du, Gong, Chang, Zou (CR5) 2019; 26
Longley, Harkin, Johnston (CR23) 2003; 3
Tormoen, Crittenden, Gough (CR38) 2018; 3
Alcindor, Beauger (CR1) 2011; 18
Tie, Tang, Wei, Wei (CR36) 2022; 15
Cornel, Mimpen, Nierkens (CR6) 2020; 12
Ramos, Sadeghi, Tabatabaeian (CR31) 2021; 22
Yamamoto, Zhao, Hiroshima, Zhang, Shurell, Eilber, Bouvet, Noda, Hoffman (CR44) 2016; 11
Sanchez Alvarado (CR34) 2012; 22
Gaikwad, Agrawal, Kaushik, Ramachandran, Srivastava (CR10) 2022; 86
Boutilier, Elsawa (CR2) 2021; 22
Guo, Li, Guo, Liu, Wu, Wang, Shi, Pang, Cao (CR14) 2017; 8
Naveed, Aslam, Ahmad (CR28) 2014; 29
AM Cornel (22_CR6) 2020; 12
S Gaikwad (22_CR10) 2022; 86
X Wang (22_CR41) 2018; 9
K Westphal (22_CR43) 2008; 68
AJ Boutilier (22_CR2) 2021; 22
M Yamamoto (22_CR44) 2016; 11
JS Kim (22_CR18) 2023; 355
D Deb (22_CR8) 2022; 12
N Hosseini-Giv (22_CR15) 2021; 606
HA Mooney (22_CR25) 2001; 98
Y Tokumaru (22_CR37) 2021; 11
A Sanchez Alvarado (22_CR34) 2012; 22
D Groza (22_CR13) 2018; 7
A Tesniere (22_CR35) 2010; 29
X Chen (22_CR4) 2022; 42
B Nandi (22_CR27) 2011; 208
M Obeid (22_CR29) 2007; 13
RD Carlson (22_CR3) 2020; 12
A Ocana (22_CR30) 2017; 16
T Alcindor (22_CR1) 2011; 18
MA Cupp (22_CR7) 2020; 18
CW Hu (22_CR16) 2022; 30
C Murphy (22_CR26) 2017; 12
HL Rao (22_CR32) 2012; 7
H Lan (22_CR19) 2021; 18
Z Liu (22_CR22) 2020; 469
B Guo (22_CR14) 2017; 8
G Salamone (22_CR33) 2001; 166
S Naveed (22_CR28) 2014; 29
J Vincent (22_CR40) 2010; 70
S Weibel (22_CR42) 2008; 10
Y Tie (22_CR36) 2022; 15
Y Chen (22_CR5) 2019; 26
DB Longley (22_CR23) 2003; 3
J Zhou (22_CR46) 2020; 11
A Ramos (22_CR31) 2021; 22
B Geering (22_CR11) 2011; 18
NA Giraldo (22_CR12) 2019; 120
Y Yamamura (22_CR45) 2015; 20
P Lehouritis (22_CR20) 2015; 5
XT Fu (22_CR9) 2019; 19
F Li (22_CR21) 2021; 14
N Iida (22_CR17) 2013; 342
R Vendramin (22_CR39) 2021; 40
WD Mackay (22_CR24) 1965; 205
GW Tormoen (22_CR38) 2018; 3
References_xml – volume: 12
  start-page: 1760
  issue: 7
  year: 2020
  ident: CR6
  article-title: MHC class I downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy
  publication-title: Cancers
  doi: 10.3390/cancers12071760
– volume: 19
  year: 2019
  ident: CR9
  article-title: Tumor-associated macrophages modulate resistance to oxaliplatin via inducing autophagy in hepatocellular carcinoma
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-019-0771-8
– volume: 12
  start-page: e0180034
  issue: 6
  year: 2017
  ident: CR26
  article-title: Intratumoural production of TNFα by bacteria mediates cancer therapy
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0180034
– volume: 342
  start-page: 967
  issue: 6161
  year: 2013
  end-page: 970
  ident: CR17
  article-title: Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment
  publication-title: Science
  doi: 10.1126/science.1240527
– volume: 29
  start-page: 482
  issue: 4
  year: 2010
  end-page: 491
  ident: CR35
  article-title: Immunogenic death of colon cancer cells treated with oxaliplatin
  publication-title: Oncogene
  doi: 10.1038/onc.2009.356
– volume: 12
  start-page: 241
  issue: 4
  year: 2020
  ident: CR3
  article-title: Talkin’ toxins: from Coley’s to modern cancer immunotherapy
  publication-title: Toxins
  doi: 10.3390/toxins12040241
– volume: 26
  start-page: 78
  issue: 1
  year: 2019
  ident: CR5
  article-title: Tumor-associated macrophages: an accomplice in solid tumor progression
  publication-title: J Biomed Sci
  doi: 10.1186/s12929-019-0568-z
– volume: 606
  start-page: 120931
  year: 2021
  ident: CR15
  article-title: Application of bacterial directed enzyme prodrug therapy as a targeted chemotherapy approach in a mouse model of breast cancer
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2021.120931
– volume: 22
  start-page: 6995
  issue: 13
  year: 2021
  ident: CR2
  article-title: Macrophage polarization states in the tumor microenvironment
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22136995
– volume: 18
  start-page: 1026
  issue: 3
  year: 2021
  end-page: 1037
  ident: CR19
  article-title: Tumor-associated macrophages promote oxaliplatin resistance via METTL3-mediated m(6)A of TRAF5 and necroptosis in colorectal cancer
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.0c00961
– volume: 14
  start-page: 101202
  issue: 11
  year: 2021
  ident: CR21
  article-title: Macrophage polarization synergizes with oxaliplatin in lung cancer immunotherapy via enhanced tumor cell phagocytosis
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2021.101202
– volume: 18
  issue: 1
  year: 2020
  ident: CR7
  article-title: Neutrophil to lymphocyte ratio and cancer prognosis: an umbrella review of systematic reviews and meta-analyses of observational studies
  publication-title: BMC Med
  doi: 10.1186/s12916-020-01817-1
– volume: 18
  start-page: 1457
  issue: 9
  year: 2011
  end-page: 1469
  ident: CR11
  article-title: Peculiarities of cell death mechanisms in neutrophils
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2011.75
– volume: 208
  start-page: 2251
  issue: 11
  year: 2011
  end-page: 2262
  ident: CR27
  article-title: Regulation of neutrophils by interferon-gamma limits lung inflammation during tuberculosis infection
  publication-title: J Exp Med
  doi: 10.1084/jem.20110919
– volume: 3
  start-page: 330
  issue: 5
  year: 2003
  end-page: 338
  ident: CR23
  article-title: 5-Fluorouracil: mechanisms of action and clinical strategies
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1074
– volume: 22
  start-page: 9451
  issue: 17
  year: 2021
  ident: CR31
  article-title: Battling chemoresistance in cancer: root causes and strategies to uproot them
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22179451
– volume: 22
  start-page: R772
  issue: 17
  year: 2012
  end-page: 778
  ident: CR34
  article-title: Cellular hyperproliferation and cancer as evolutionary variables
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2012.08.008
– volume: 3
  start-page: 520
  issue: 4
  year: 2018
  end-page: 526
  ident: CR38
  article-title: Role of the immunosuppressive microenvironment in immunotherapy
  publication-title: Adv Radiat Oncol
  doi: 10.1016/j.adro.2018.08.018
– volume: 166
  start-page: 3476
  issue: 5
  year: 2001
  end-page: 3483
  ident: CR33
  article-title: Promotion of neutrophil apoptosis by TNF-alpha
  publication-title: J Immunol
  doi: 10.4049/jimmunol.166.5.3476
– volume: 11
  start-page: 5743
  issue: 11
  year: 2021
  end-page: 5755
  ident: CR37
  article-title: Low intratumoral genetic neutrophil-to-lymphocyte ratio (NLR) is associated with favorable tumor immune microenvironment and with survival in triple negative breast cancer (TNBC)
  publication-title: Am J Cancer Res
– volume: 86
  start-page: 137
  issue: Pt 3
  year: 2022
  end-page: 150
  ident: CR10
  article-title: Immune checkpoint proteins: Signaling mechanisms and molecular interactions in cancer immunotherapy
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2022.03.014
– volume: 40
  start-page: e108389
  issue: 18
  year: 2021
  ident: CR39
  article-title: Cancer evolution: Darwin and beyond
  publication-title: EMBO J
  doi: 10.15252/embj.2021108389
– volume: 13
  start-page: 54
  issue: 1
  year: 2007
  end-page: 61
  ident: CR29
  article-title: Calreticulin exposure dictates the immunogenicity of cancer cell death
  publication-title: Nat Med
  doi: 10.1038/nm1523
– volume: 120
  start-page: 45
  issue: 1
  year: 2019
  end-page: 53
  ident: CR12
  article-title: The clinical role of the TME in solid cancer
  publication-title: Br J Cancer
  doi: 10.1038/s41416-018-0327-z
– volume: 16
  issue: 1
  year: 2017
  ident: CR30
  article-title: Neutrophils in cancer: prognostic role and therapeutic strategies
  publication-title: Mol Cancer
  doi: 10.1186/s12943-017-0707-7
– volume: 29
  start-page: 391
  issue: 6
  year: 2014
  end-page: 398
  ident: CR28
  article-title: Starvation based differential chemotherapy: a novel approach for cancer treatment
  publication-title: Oman Med J
  doi: 10.5001/omj.2014.107
– volume: 10
  start-page: 1235
  issue: 6
  year: 2008
  end-page: 1248
  ident: CR42
  article-title: Colonization of experimental murine breast tumours by Escherichia coli K-12 significantly alters the tumour microenvironment
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2008.01122.x
– volume: 20
  start-page: 386
  issue: 2
  year: 2015
  end-page: 394
  ident: CR45
  article-title: The key role of calreticulin in immunomodulation induced by chemotherapeutic agents
  publication-title: Int J Clin Oncol
  doi: 10.1007/s10147-014-0719-x
– volume: 12
  issue: 1
  year: 2022
  ident: CR8
  article-title: Design of combination therapy for engineered bacterial therapeutics in non-small cell lung cancer
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-26105-1
– volume: 11
  start-page: e0160882
  issue: 8
  year: 2016
  ident: CR44
  article-title: Efficacy of tumor-targeting salmonella A1-R on a melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse model
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0160882
– volume: 98
  start-page: 5446
  issue: 10
  year: 2001
  end-page: 5451
  ident: CR25
  article-title: The evolutionary impact of invasive species
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.091093398
– volume: 18
  start-page: 18
  issue: 1
  year: 2011
  end-page: 25
  ident: CR1
  article-title: Oxaliplatin: a review in the era of molecularly targeted therapy
  publication-title: Curr Oncol
  doi: 10.3747/co.v18i1.708
– volume: 8
  start-page: 44465
  issue: 27
  year: 2017
  end-page: 44476
  ident: CR14
  article-title: M2 tumor-associated macrophages produce interleukin-17 to suppress oxaliplatin-induced apoptosis in hepatocellular carcinoma
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17973
– volume: 205
  start-page: 918
  issue: 4974
  year: 1965
  end-page: 919
  ident: CR24
  article-title: Role of splenomegaly in tumour-bearing mice
  publication-title: Nature
  doi: 10.1038/205918a0
– volume: 5
  year: 2015
  ident: CR20
  article-title: Local bacteria affect the efficacy of chemotherapeutic drugs
  publication-title: Sci Rep
  doi: 10.1038/srep14554
– volume: 7
  start-page: e30806
  issue: 1
  year: 2012
  ident: CR32
  article-title: Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients’ adverse prognosis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030806
– volume: 42
  start-page: 587
  issue: 7
  year: 2022
  end-page: 608
  ident: CR4
  article-title: The theory of tumor ecosystem
  publication-title: Cancer Commun
  doi: 10.1002/cac2.12316
– volume: 7
  start-page: e1424676
  issue: 5
  year: 2018
  ident: CR13
  article-title: Bacterial ghosts as adjuvant to oxaliplatin chemotherapy in colorectal carcinomatosis
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2018.1424676
– volume: 11
  start-page: 343
  year: 2020
  ident: CR46
  article-title: The drug-resistance mechanisms of five platinum-based antitumor agents
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2020.00343
– volume: 70
  start-page: 3052
  issue: 8
  year: 2010
  end-page: 3061
  ident: CR40
  article-title: 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-3690
– volume: 469
  start-page: 173
  year: 2020
  end-page: 185
  ident: CR22
  article-title: TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2019.10.020
– volume: 15
  start-page: 61
  issue: 1
  year: 2022
  ident: CR36
  article-title: Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-022-01282-8
– volume: 68
  start-page: 2952
  issue: 8
  year: 2008
  end-page: 2960
  ident: CR43
  article-title: Containment of tumor-colonizing bacteria by host neutrophils
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-2984
– volume: 30
  start-page: 2522
  issue: 7
  year: 2022
  end-page: 2536
  ident: CR16
  article-title: Development of a TNF-alpha-mediated Trojan Horse for bacteria-based cancer therapy
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2022.04.008
– volume: 355
  start-page: 199
  year: 2023
  end-page: 210
  ident: CR18
  article-title: ECM-targeting bacteria enhance chemotherapeutic drug efficacy by lowering IFP in tumor mouse models
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2023.02.001
– volume: 9
  start-page: 2456
  year: 2018
  ident: CR41
  article-title: Understanding the multifaceted role of neutrophils in cancer and autoimmune diseases
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.02456
– volume: 11
  start-page: 343
  year: 2020
  ident: 22_CR46
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2020.00343
– volume: 15
  start-page: 61
  issue: 1
  year: 2022
  ident: 22_CR36
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-022-01282-8
– volume: 20
  start-page: 386
  issue: 2
  year: 2015
  ident: 22_CR45
  publication-title: Int J Clin Oncol
  doi: 10.1007/s10147-014-0719-x
– volume: 3
  start-page: 330
  issue: 5
  year: 2003
  ident: 22_CR23
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1074
– volume: 355
  start-page: 199
  year: 2023
  ident: 22_CR18
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2023.02.001
– volume: 18
  issue: 1
  year: 2020
  ident: 22_CR7
  publication-title: BMC Med
  doi: 10.1186/s12916-020-01817-1
– volume: 18
  start-page: 1457
  issue: 9
  year: 2011
  ident: 22_CR11
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2011.75
– volume: 12
  start-page: e0180034
  issue: 6
  year: 2017
  ident: 22_CR26
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0180034
– volume: 7
  start-page: e30806
  issue: 1
  year: 2012
  ident: 22_CR32
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030806
– volume: 29
  start-page: 391
  issue: 6
  year: 2014
  ident: 22_CR28
  publication-title: Oman Med J
  doi: 10.5001/omj.2014.107
– volume: 342
  start-page: 967
  issue: 6161
  year: 2013
  ident: 22_CR17
  publication-title: Science
  doi: 10.1126/science.1240527
– volume: 12
  start-page: 241
  issue: 4
  year: 2020
  ident: 22_CR3
  publication-title: Toxins
  doi: 10.3390/toxins12040241
– volume: 7
  start-page: e1424676
  issue: 5
  year: 2018
  ident: 22_CR13
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2018.1424676
– volume: 9
  start-page: 2456
  year: 2018
  ident: 22_CR41
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.02456
– volume: 42
  start-page: 587
  issue: 7
  year: 2022
  ident: 22_CR4
  publication-title: Cancer Commun
  doi: 10.1002/cac2.12316
– volume: 30
  start-page: 2522
  issue: 7
  year: 2022
  ident: 22_CR16
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2022.04.008
– volume: 205
  start-page: 918
  issue: 4974
  year: 1965
  ident: 22_CR24
  publication-title: Nature
  doi: 10.1038/205918a0
– volume: 98
  start-page: 5446
  issue: 10
  year: 2001
  ident: 22_CR25
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.091093398
– volume: 19
  year: 2019
  ident: 22_CR9
  publication-title: Cancer Cell Int
  doi: 10.1186/s12935-019-0771-8
– volume: 29
  start-page: 482
  issue: 4
  year: 2010
  ident: 22_CR35
  publication-title: Oncogene
  doi: 10.1038/onc.2009.356
– volume: 120
  start-page: 45
  issue: 1
  year: 2019
  ident: 22_CR12
  publication-title: Br J Cancer
  doi: 10.1038/s41416-018-0327-z
– volume: 13
  start-page: 54
  issue: 1
  year: 2007
  ident: 22_CR29
  publication-title: Nat Med
  doi: 10.1038/nm1523
– volume: 5
  year: 2015
  ident: 22_CR20
  publication-title: Sci Rep
  doi: 10.1038/srep14554
– volume: 40
  start-page: e108389
  issue: 18
  year: 2021
  ident: 22_CR39
  publication-title: EMBO J
  doi: 10.15252/embj.2021108389
– volume: 68
  start-page: 2952
  issue: 8
  year: 2008
  ident: 22_CR43
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-2984
– volume: 11
  start-page: 5743
  issue: 11
  year: 2021
  ident: 22_CR37
  publication-title: Am J Cancer Res
– volume: 208
  start-page: 2251
  issue: 11
  year: 2011
  ident: 22_CR27
  publication-title: J Exp Med
  doi: 10.1084/jem.20110919
– volume: 22
  start-page: 6995
  issue: 13
  year: 2021
  ident: 22_CR2
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22136995
– volume: 606
  start-page: 120931
  year: 2021
  ident: 22_CR15
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2021.120931
– volume: 14
  start-page: 101202
  issue: 11
  year: 2021
  ident: 22_CR21
  publication-title: Transl Oncol
  doi: 10.1016/j.tranon.2021.101202
– volume: 18
  start-page: 1026
  issue: 3
  year: 2021
  ident: 22_CR19
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.0c00961
– volume: 469
  start-page: 173
  year: 2020
  ident: 22_CR22
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2019.10.020
– volume: 166
  start-page: 3476
  issue: 5
  year: 2001
  ident: 22_CR33
  publication-title: J Immunol
  doi: 10.4049/jimmunol.166.5.3476
– volume: 70
  start-page: 3052
  issue: 8
  year: 2010
  ident: 22_CR40
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-3690
– volume: 22
  start-page: 9451
  issue: 17
  year: 2021
  ident: 22_CR31
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22179451
– volume: 11
  start-page: e0160882
  issue: 8
  year: 2016
  ident: 22_CR44
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0160882
– volume: 12
  issue: 1
  year: 2022
  ident: 22_CR8
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-26105-1
– volume: 12
  start-page: 1760
  issue: 7
  year: 2020
  ident: 22_CR6
  publication-title: Cancers
  doi: 10.3390/cancers12071760
– volume: 3
  start-page: 520
  issue: 4
  year: 2018
  ident: 22_CR38
  publication-title: Adv Radiat Oncol
  doi: 10.1016/j.adro.2018.08.018
– volume: 16
  issue: 1
  year: 2017
  ident: 22_CR30
  publication-title: Mol Cancer
  doi: 10.1186/s12943-017-0707-7
– volume: 10
  start-page: 1235
  issue: 6
  year: 2008
  ident: 22_CR42
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2008.01122.x
– volume: 86
  start-page: 137
  issue: Pt 3
  year: 2022
  ident: 22_CR10
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2022.03.014
– volume: 22
  start-page: R772
  issue: 17
  year: 2012
  ident: 22_CR34
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2012.08.008
– volume: 18
  start-page: 18
  issue: 1
  year: 2011
  ident: 22_CR1
  publication-title: Curr Oncol
  doi: 10.3747/co.v18i1.708
– volume: 26
  start-page: 78
  issue: 1
  year: 2019
  ident: 22_CR5
  publication-title: J Biomed Sci
  doi: 10.1186/s12929-019-0568-z
– volume: 8
  start-page: 44465
  issue: 27
  year: 2017
  ident: 22_CR14
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.17973
SSID ssj0065618
Score 2.4168983
Snippet The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often...
Abstract The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 416
SubjectTerms Animals
Antineoplastic Agents - therapeutic use
Bacteria Cancer Therapy
Biomedical and Life Sciences
Biomedicine
Cell Line, Tumor
Differential Stress Resistance
EMBO03
EMBO19
EMBO23
Immunotherapy
Immunotherapy - methods
Mice
Molecular Medicine
Neoplasms - drug therapy
Oxaliplatin - therapeutic use
Oxaliplatin; TME Remodeling
T-Lymphocytes, Cytotoxic
Tumor Microenvironment
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VIlAvCMorvGQkbhBYP5I4B4QooqqQlhMr9WbZjkNX2k1gHy3775lxkhULq564OnESe2bibzQz3wC8whPABs-r1OtKpKq0ZWqVztJ6VAmikyuKigqFx1_zs4n6cp6dH8DQ7qjfwOVe1476SU0Ws7e_fm4-oMG_70rG9bulUlKgUyxkGvlc0qsbcBNPJkFaPlbbqAJCF677wpn983YOp8jhvw94_ps_-VcQNZ5Np3fhTg8q2cdOC-7BQWiO4VbXZnJzDLfHfQD9PtQnHTuzZcRWPRRhsmnDVut5u2Bzys_7o_iNRVAZlsyy2l6iurhZYA2ljzJEu2xK1SUt6uDUMxyb9-VcmwcwOf387dNZ2rdaSH3G5SpFx6-2gddaVOXI87wsKkfMgsFpFYQlViyBwCrH_4G0snAjl6FfUmaOW6_L3MmHcNi0TXgMrK4R81TKBakRnbja5haNvPalDcSckyfAhz02vuchp3YYMxPj4VKbTi4G5WKiXMxVAq-3c350LBzX3n1CotveSQzacaBdfDe9QRqJQFD5wCshqc26ss7bIve5IxCY6SqBl4PgDVochVFsE9r10gii1C-I6y6BR50ibF8lEW_h47IE9I6K7HzL7pVmehFZvflIl-hbFwm8GbTJDOZwzWKf_I_FPoUjgWCNstF59gwOV4t1eI5ga-VeRAv6DYaQJeI
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIhAXBOWV8pCRuEFEbCeOc6QrqgqpnKjUm-VXYKVuUu2Dqv--M06yYqGqxDWxEyczY3-jmfkG4AOeADZ6HnKvg8jLxja5LXWVt0UQRCdX14EKhU-_q5Oz8tt5db4HYqqFSUn7idIybdNTdtjnVVlKgY6vkHnibMmv7sF9XUtOaXwzNZt2X4QnXI_FMYXUt8zbOYAST_9t4PLfHMm_AqXp_Dl-Ao9H4Mi-DEt9CnuxO4AHQyvJ6wN4eDoGyZ9BezQwMFtGjNRToSWbd2y9WfRLtqAcvD8K3FgCjnHFLGvtb1QJdxFZRymiDBEtm1MFSY96NvcMry3Gkq3r53B2_PXH7CQf2ynkvuJynaNz19rIWy1CU3iumjo4Yg-MTpdRWGK-EgieFNq8tLJ2havQ92gqx63XjXLyBex3fRdfAWtbxDWhdFFqRCCutcqiIbe-sZHYcVQGfPrHxo9c49Ty4sKkmLfUZpCLQbmYJBdzlcHH7ZzLgWnjztFHJLrtSGLJThf65U8zao2RCPZKH3kQklqpl9Z5WyuvHAG9SocM3k-CN2hVFCqxXew3KyOINr8mPrsMXg6KsH2VREyFj6sy0DsqsrOW3Tvd_Fdi7uaFbtB_rjP4NGmTGfeM1R0fe_h_w1_DI4HQi3LLefUG9tfLTXyL0Gnt3iVbuQGasRP-
  priority: 102
  providerName: Springer Nature
Title Bacteria colonization in tumor microenvironment creates a favorable niche for immunogenic chemotherapy
URI https://link.springer.com/article/10.1038/s44321-023-00022-w
https://www.ncbi.nlm.nih.gov/pubmed/38225455
https://www.proquest.com/docview/2915570136
https://pubmed.ncbi.nlm.nih.gov/PMC10897177
https://doaj.org/article/36444ce1d2354524abca76c6b025658d
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: NAO
  dateStart: 20210901
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: 7X7
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: BENPR
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 20250731
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: M48
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: AAJSJ
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: C6C
  dateStart: 20210901
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: AVUZU
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEIgXNAaMAKuMxBtEiz-SOI9ttWmq1AkBk_pm2Y4jKq0pWlum_ffc5aNaYdpeeEkkx_nynX2_k-9-B_AJLYANnpex16WIVWGL2CqdxlVSCqKTy_OSEoWn59nZhZrM0tmtUl8UE9bSA7cDdyzRYCsfeCkklcNW1nmbZz5zZKxTXdLqi2asd6baNRhBCtddikwi9fFKKSnQbRYybhhf4usdM9Sw9d8FMf-NlPxru7SxQqf78KKDj2zYfvZLeBTqA3jaFpS8OYBn026r_BVUo5aH2TLipe7TLdm8ZuvNYnnFFhSJdyvNjTXwMayYZZX9jYrhLgOrKVCUIa5lc8ojWaK2zT3DtkWXuHXzGi5OT36Mz-KuqELsUy7XMbp4lQ280qIsEs-zIi8dcQgGp1UQlvivBEKoDGe-tDJ3iUvRAylSx63XRebkG9irl3V4C6yqEN2UygWpEYe4ymYWp3PlCxuIIyeLgPdjbHzHOE6FLy5Ns_MttWnlYlAuppGLuY7g8_aeXy3fxr29RyS6bU_iym4aUINMp0HmIQ2K4GMveINzizZMbB2Wm5URRJ6fE6tdBIetImxfJRFZ4ePSCPSOiux8y-6Vev6z4e_miS7Qi84j-NJrk-lWjtU9P_vuf_zse3guEJZR3DlPP8De-moTjhBWrd0AHuezfABPhsPJ9wmeRyfnX79h6zgbD5rZhcep0n8AyiEjbA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiiXCsortICRuEFEbOfhHOmq1QLdnlqpN8t2nLJSN6n2QdV_z4yTrFioKnFN7MTJzNjfaGa-AfiIJ4DxjlexU5WI09KUsUlVFtdJJYhOrigqKhSenObj8_T7RXaxBWKohQlJ-4HSMmzTQ3bYl0WaSoGOr5Bx4GyJbx7AQ4XHHzlco3w07L4IT7jqi2MSqe6Yt3EABZ7-u8DlvzmSfwVKw_lz_BR2e-DIvnZLfQZbvtmDR10ryds9eDzpg-TPoT7sGJgNI0bqodCSTRu2XM3aOZtRDt4fBW4sAEe_YIbV5heqhL3yrKEUUYaIlk2pgqRFPZs6htdmfcnW7Qs4Pz46G43jvp1C7DIulzE6d7XxvFaiKhPH87KoLLEHeqtSLwwxXwkETznavDSysInN0PcoM8uNU2Vu5UvYbtrGvwZW14hrqtR6SSKwtckNGnLtSuOJHSePgA__WLuea5xaXlzpEPOWSndy0SgXHeSibyL4tJ5z3TFt3Dv6kES3Hkks2eFCO7_UvdZoiWAvdZ5XQlIr9dRYZ4rc5ZaAXqaqCD4MgtdoVRQqMY1vVwstiDa_ID67CF51irB-lURMhY_LIlAbKrKxls07zfRnYO7miSrRfy4i-Dxok-73jMU9H_vm_4a_h53x2eREn3w7_bEPTwTCMMoz59kBbC_nK_8WYdTSvgt28xu9ORbt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiouCMorPI3EDUJjO3GcIy2syqMVByr1ZvkJK3WTah9U_feMnWTFQlWJa2InTmbG_kYz8w3AazwBtLfU5VY6lpeNbnJdyioPhWORTq6uXSwUPjoWhyfl59PqdAvEWAuTkvYTpWXapsfssL1FWXKGji_jeeJsyS_enbtwA27KGk0kBmnFwbgDI0ShciiQKbi8Yu7GIZS4-q8CmP_mSf4VLE1n0OQu3BnAI3nfL_cebPl2F2717SQvd2HnaAiU34ew37MwaxJZqcdiSzJtyXI16-ZkFvPw_ihyIwk8-gXRJOhfqBbmzJM2pokSRLVkGqtIOtS1qSV4bTaUbV0-gJPJx-8Hh_nQUiG3FeXLHB28oD0NkrmmsFQ0tTORQdAbWXqmI_sVQwAl0O655rUpTIX-R1MZqq1shOEPYbvtWv8YSAiIbVxpPJeIQkzQQqMxB9toHxlyRAZ0_MfKDnzjse3FmUpxby5VLxeFclFJLuoigzfrOec928a1o_ej6NYjI1N2utDNf6hBcxRHwFdaTx3jsZ16qY3VtbDCRLBXSZfBq1HwCi0rhkt067vVQrFInV9HTrsMHvWKsH4VR1yFj6sykBsqsrGWzTvt9Gdi76aFbNCHrjN4O2qTGvaNxTUf--T_hr-EnW8fJurrp-MvT-E2QyQWU81p9Qy2l_OVf45IamleJLP5DcR0F_8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacteria+colonization+in+tumor+microenvironment+creates+a+favorable+niche+for+immunogenic+chemotherapy&rft.jtitle=EMBO+molecular+medicine&rft.au=See-Khai+Lim&rft.au=Wen-Ching+Lin&rft.au=Sin-Wei+Huang&rft.au=Yi-Chung+Pan&rft.date=2024-02-15&rft.pub=Springer+Nature&rft.eissn=1757-4684&rft.volume=16&rft.issue=2&rft.spage=416&rft.epage=428&rft_id=info:doi/10.1038%2Fs44321-023-00022-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_36444ce1d2354524abca76c6b025658d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4684&client=summon