Bacteria colonization in tumor microenvironment creates a favorable niche for immunogenic chemotherapy
The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combin...
Saved in:
Published in | EMBO molecular medicine Vol. 16; no. 2; pp. 416 - 428 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.02.2024
Springer Nature |
Subjects | |
Online Access | Get full text |
ISSN | 1757-4684 1757-4676 1757-4684 |
DOI | 10.1038/s44321-023-00022-w |
Cover
Abstract | The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME.
Synopsis
Oxaliplatin, an immunogenic chemotherapeutic synergizes with bacteria cancer therapy for tumor eradication. The synergy was mediated by the ability of the combinations to alter the pro-tumoral immune milieu and impose a strong differential selective pressure to outcompete the tumor cells.
Bacteria monotherapy exhibits moderate anticancer efficacy due to its limited ability to outcompete tumor cells in the tumor microenvironment.
The addition of chemotherapy acts as a selective factor against tumor survival and enhances the efficacy of bacteria cancer therapy.
The addition of immunogenic chemotherapy with bacteria treatment significantly enhances tumor-infiltrating T cells and leads to a long-lasting tumor remission.
Oxaliplatin, an immunogenic chemotherapeutic synergizes with bacteria cancer therapy for tumor eradication. The synergy was mediated by the ability of the combinations to alter the pro-tumoral immune milieu and impose a strong differential selective pressure to outcompete the tumor cells. |
---|---|
AbstractList | The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME. The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME. Oxaliplatin, an immunogenic chemotherapeutic synergizes with bacteria cancer therapy for tumor eradication. The synergy was mediated by the ability of the combinations to alter the pro-tumoral immune milieu and impose a strong differential selective pressure to outcompete the tumor cells. Bacteria monotherapy exhibits moderate anticancer efficacy due to its limited ability to outcompete tumor cells in the tumor microenvironment.The addition of chemotherapy acts as a selective factor against tumor survival and enhances the efficacy of bacteria cancer therapy.The addition of immunogenic chemotherapy with bacteria treatment significantly enhances tumor-infiltrating T cells and leads to a long-lasting tumor remission. Oxaliplatin, an immunogenic chemotherapeutic synergizes with bacteria cancer therapy for tumor eradication. The synergy was mediated by the ability of the combinations to alter the pro-tumoral immune milieu and impose a strong differential selective pressure to outcompete the tumor cells. The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME. Synopsis Oxaliplatin, an immunogenic chemotherapeutic synergizes with bacteria cancer therapy for tumor eradication. The synergy was mediated by the ability of the combinations to alter the pro-tumoral immune milieu and impose a strong differential selective pressure to outcompete the tumor cells. Bacteria monotherapy exhibits moderate anticancer efficacy due to its limited ability to outcompete tumor cells in the tumor microenvironment. The addition of chemotherapy acts as a selective factor against tumor survival and enhances the efficacy of bacteria cancer therapy. The addition of immunogenic chemotherapy with bacteria treatment significantly enhances tumor-infiltrating T cells and leads to a long-lasting tumor remission. Oxaliplatin, an immunogenic chemotherapeutic synergizes with bacteria cancer therapy for tumor eradication. The synergy was mediated by the ability of the combinations to alter the pro-tumoral immune milieu and impose a strong differential selective pressure to outcompete the tumor cells. The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME.The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME. Abstract The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often inadequate in reversing the cancer cell dominance in the TME. In this work, we introduce bacteria as a foreign species to the TME and explore combinatorial treatment strategies to alter DSP for tumor eradication. We show that cancer-selective chemotherapeutic agents and fasting can provide a strong selection pressure against tumor growth in the presence of bacteria. Moreover, we show that an immunogenic drug (oxaliplatin), but not a non-immunogenic one (5-FU), synergizes with the bacteria to activate both the innate and adaptive immunity in the TME, resulting in complete tumor remission and a sustained anti-tumor immunological memory in mice. The combination of oxaliplatin and bacteria greatly enhances the co-stimulatory and antigen-presenting molecules on antigen-presenting cells, which in turn bridge the cytotoxic T cells for cancer-cell killing. Our findings indicate that rational combination of bacterial therapy and immunogenic chemotherapy can promote anticancer immunity against the immunosuppressive TME. |
Author | Lin, Wen-Ching Huang, Sin-Wei Hu, Che-Wei Pan, Yi-Chung Mou, Chung-Yuan Mou, Kurt Yun Lim, See-Khai Hu, Che-Ming Jack |
Author_xml | – sequence: 1 givenname: See-Khai surname: Lim fullname: Lim, See-Khai organization: Institute of Biomedical Sciences, Academia Sinica – sequence: 2 givenname: Wen-Ching surname: Lin fullname: Lin, Wen-Ching organization: Institute of Biomedical Sciences, Academia Sinica – sequence: 3 givenname: Sin-Wei surname: Huang fullname: Huang, Sin-Wei organization: Institute of Biomedical Sciences, Academia Sinica – sequence: 4 givenname: Yi-Chung surname: Pan fullname: Pan, Yi-Chung organization: Institute of Biomedical Sciences, Academia Sinica – sequence: 5 givenname: Che-Wei orcidid: 0000-0001-6044-2386 surname: Hu fullname: Hu, Che-Wei organization: Institute of Biomedical Sciences, Academia Sinica – sequence: 6 givenname: Chung-Yuan surname: Mou fullname: Mou, Chung-Yuan organization: Department of Chemistry, National Taiwan University – sequence: 7 givenname: Che-Ming Jack orcidid: 0000-0002-0988-7029 surname: Hu fullname: Hu, Che-Ming Jack email: chu@ibms.sinica.edu.tw organization: Institute of Biomedical Sciences, Academia Sinica – sequence: 8 givenname: Kurt Yun orcidid: 0000-0001-5423-9031 surname: Mou fullname: Mou, Kurt Yun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38225455$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUjVARfcAPsEBZsgn4bWeFoOJRqRIbWFs3zs2MR4k92MlU5esxkxa1LLqydX0euj7nvDoJMWBVvabkHSXcvM9CcEYbwnhDCGGsuXlWnVEtdSOUEScP7qfVec47QpRU1LyoTrlhTAopz6rhE7gZk4faxTEG_xtmH0PtQz0vU0z15F2KGA4-xTBhmGuXEGbMNdQDHGKCbsQ6eLfFeihwP01LiBssk7rMpjhvMcH-9mX1fIAx46u786L6-eXzj8tvzfX3r1eXH68bJymfG0bJAEgHw_qWOKpa3Xe6ZRw7I5ABFaRlgkulOeHAdUc6aZhqZUfBmVZ1_KK6WnX7CDu7T36CdGsjeHscxLSxkGbvRrRcCSEc0p7x8hVMQOdAK6c6wqSSpi9aH1at_dJN2LuyfYLxkejjl-C3dhMPlhLTaqp1UXh7p5DirwXzbCefHY4jBIxLtqylUmpCuSrQNw_N_rncJ1UAZgWUPHJOOFjn52NYxduPxdT-LYVdS2FLKeyxFPamUNl_1Hv1J0l8JeUCDhtMdheXFEp4T7H-AED_y24 |
CitedBy_id | crossref_primary_10_1002_adma_202405075 crossref_primary_10_7554_eLife_90798 crossref_primary_10_3390_cancers16223810 crossref_primary_10_1152_ajpcell_00201_2024 crossref_primary_10_7554_eLife_90798_3 |
Cites_doi | 10.3390/cancers12071760 10.1186/s12935-019-0771-8 10.1371/journal.pone.0180034 10.1126/science.1240527 10.1038/onc.2009.356 10.3390/toxins12040241 10.1186/s12929-019-0568-z 10.1016/j.ijpharm.2021.120931 10.3390/ijms22136995 10.1021/acs.molpharmaceut.0c00961 10.1016/j.tranon.2021.101202 10.1186/s12916-020-01817-1 10.1038/cdd.2011.75 10.1084/jem.20110919 10.1038/nrc1074 10.3390/ijms22179451 10.1016/j.cub.2012.08.008 10.1016/j.adro.2018.08.018 10.4049/jimmunol.166.5.3476 10.1016/j.semcancer.2022.03.014 10.15252/embj.2021108389 10.1038/nm1523 10.1038/s41416-018-0327-z 10.1186/s12943-017-0707-7 10.5001/omj.2014.107 10.1111/j.1462-5822.2008.01122.x 10.1007/s10147-014-0719-x 10.1038/s41598-022-26105-1 10.1371/journal.pone.0160882 10.1073/pnas.091093398 10.3747/co.v18i1.708 10.18632/oncotarget.17973 10.1038/205918a0 10.1038/srep14554 10.1371/journal.pone.0030806 10.1002/cac2.12316 10.1080/2162402X.2018.1424676 10.3389/fphar.2020.00343 10.1158/0008-5472.CAN-09-3690 10.1016/j.canlet.2019.10.020 10.1186/s13045-022-01282-8 10.1158/0008-5472.CAN-07-2984 10.1016/j.ymthe.2022.04.008 10.1016/j.jconrel.2023.02.001 10.3389/fimmu.2018.02456 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1038/s44321-023-00022-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1757-4684 |
EndPage | 428 |
ExternalDocumentID | oai_doaj_org_article_36444ce1d2354524abca76c6b025658d PMC10897177 38225455 10_1038_s44321_023_00022_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science and Technology Council (NSTC) grantid: 110-2113-M-001-064-MY3 funderid: http://dx.doi.org/10.13039/100020595 – fundername: Academia Sinica (AS) grantid: AS-CDA-108-L07 funderid: http://dx.doi.org/10.13039/501100001869 – fundername: National Science and Technology Council (NSTC) grantid: 110-2113-M-001-064-MY3 – fundername: Academia Sinica (AS) grantid: AS-CDA-108-L07 |
GroupedDBID | --- 0R~ 1OC 24P 4.4 53G 5DZ 5GY 5VS 7X7 8-0 8-1 8AO 8FE 8FH 8FI 8FJ AAHHS AAJSJ AAZKR ABOCM ABUWG ACCFJ ACCMX ACGFO ACGFS ACPRK ACXQS ADBBV ADKYN ADPDF ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFBPY AFKRA AHMBA AIAGR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BTFSW BVXVI C6C CCPQU D-9 DIK DU5 EBD EBLON EBS EMOBN F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HK~ HMCUK HYE HZ~ IAO IHR KQ8 LH4 LK8 M48 M7P M~E NNB O9- OIG OK1 OVD OVEED P2P PIMPY PQQKQ PROAC RHF RHI RNS ROL RPM SV3 TEORI UKHRP WIN XV2 AASML AAYXX CITATION NAO PHGZM PHGZT PQGLB PUEGO 31~ ADRAZ AFZJQ ALUQN CGR CUY CVF ECM EIF EJD GODZA H13 ITC LW6 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c513t-210fae1f82d90c1697db7923eb84e2a1409243567303a37b0b582695b1ac896b3 |
IEDL.DBID | DOA |
ISSN | 1757-4684 1757-4676 |
IngestDate | Wed Aug 27 01:18:35 EDT 2025 Tue Sep 30 17:10:05 EDT 2025 Thu Sep 04 19:04:16 EDT 2025 Thu Apr 03 07:08:24 EDT 2025 Wed Oct 01 02:36:23 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 Fri Feb 21 02:42:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Oxaliplatin; TME Remodeling Bacteria Cancer Therapy Differential Stress Resistance Immunotherapy |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the data associated with this article, unless otherwise stated in a credit line to the data, but does not extend to the graphical or creative elements of illustrations, charts, or figures. This waiver removes legal barriers to the re-use and mining of research data. According to standard scholarly practice, it is recommended to provide appropriate citation and attribution whenever technically possible. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c513t-210fae1f82d90c1697db7923eb84e2a1409243567303a37b0b582695b1ac896b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5423-9031 0000-0001-6044-2386 0000-0002-0988-7029 |
OpenAccessLink | https://doaj.org/article/36444ce1d2354524abca76c6b025658d |
PMID | 38225455 |
PQID | 2915570136 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_36444ce1d2354524abca76c6b025658d pubmedcentral_primary_oai_pubmedcentral_nih_gov_10897177 proquest_miscellaneous_2915570136 pubmed_primary_38225455 crossref_citationtrail_10_1038_s44321_023_00022_w crossref_primary_10_1038_s44321_023_00022_w springer_journals_10_1038_s44321_023_00022_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-15 |
PublicationDateYYYYMMDD | 2024-02-15 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Germany |
PublicationTitle | EMBO molecular medicine |
PublicationTitleAbbrev | EMBO Mol Med |
PublicationTitleAlternate | EMBO Mol Med |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Springer Nature |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature |
References | Cupp, Cariolou, Tzoulaki, Aune, Evangelou, Berlanga-Taylor (CR7) 2020; 18 Westphal, Leschner, Jablonska, Loessner, Weiss (CR43) 2008; 68 Rao, Chen, Li, Xiao, Fu, Zeng, Cai, Xie (CR32) 2012; 7 Hosseini-Giv, Bahrami, Matin (CR15) 2021; 606 Groza, Gehrig, Kudela, Holcmann, Pirker, Dinhof, Schueffl, Sramko, Hoebart, Alioglu (CR13) 2018; 7 Mackay (CR24) 1965; 205 Lehouritis, Cummins, Stanton, Murphy, McCarthy, Reid, Urbaniak, Byrne, Tangney (CR20) 2015; 5 Salamone, Giordano, Trevani, Gamberale, Vermeulen, Schettinni, Geffner (CR33) 2001; 166 Tokumaru, Oshi, Murthy, Tian, Yan, Angarita, Nagahashi, Matsuhashi, Futamura, Yoshida (CR37) 2021; 11 Geering, Simon (CR11) 2011; 18 Zhou, Kang, Chen, Wang, Liu, Zeng, Yu (CR46) 2020; 11 Hu, Chang, Liu, Yu, Mou (CR16) 2022; 30 Weibel, Stritzker, Eck, Goebel, Szalay (CR42) 2008; 10 Wang, Qiu, Li, Wang, Yi (CR41) 2018; 9 Lan, Liu, Liu, Wang, Guan, Du, Jin (CR19) 2021; 18 Carlson, Flickinger, Snook (CR3) 2020; 12 Deb, Wu, Coker, Harimoto, Huang, Danino (CR8) 2022; 12 Mooney, Cleland (CR25) 2001; 98 Iida, Dzutsev, Stewart, Smith, Bouladoux, Weingarten, Molina, Salcedo, Back, Cramer (CR17) 2013; 342 Giraldo, Sanchez-Salas, Peske, Vano, Becht, Petitprez, Validire, Ingels, Cathelineau, Fridman (CR12) 2019; 120 Chen, Song (CR4) 2022; 42 Liu, Xie, Xiong, Liu, Qiu, Zhu, Mao, Yu, Wang (CR22) 2020; 469 Tesniere, Schlemmer, Boige, Kepp, Martins, Ghiringhelli, Aymeric, Michaud, Apetoh, Barault (CR35) 2010; 29 Obeid, Tesniere, Ghiringhelli, Fimia, Apetoh, Perfettini, Castedo, Mignot, Panaretakis, Casares (CR29) 2007; 13 Fu, Song, Zhou, Shi, Liu, Shi, Gao, Wang, Ding, Fan (CR9) 2019; 19 Nandi, Behar (CR27) 2011; 208 Ocana, Nieto-Jimenez, Pandiella, Templeton (CR30) 2017; 16 Kim, Park, Choi, Kang, Lee, Lee, Shin, Park (CR18) 2023; 355 Li, Zheng, Wang, Xu, Zhang (CR21) 2021; 14 Vincent, Mignot, Chalmin, Ladoire, Bruchard, Chevriaux, Martin, Apetoh, Rebe, Ghiringhelli (CR40) 2010; 70 Murphy, Rettedal, Lehouritis, Devoy, Tangney (CR26) 2017; 12 Vendramin, Litchfield, Swanton (CR39) 2021; 40 Yamamura, Tsuchikawa, Miyauchi, Takeuchi, Wada, Kuwatani, Kyogoku, Kuroda, Maki, Shichinohe (CR45) 2015; 20 Chen, Song, Du, Gong, Chang, Zou (CR5) 2019; 26 Longley, Harkin, Johnston (CR23) 2003; 3 Tormoen, Crittenden, Gough (CR38) 2018; 3 Alcindor, Beauger (CR1) 2011; 18 Tie, Tang, Wei, Wei (CR36) 2022; 15 Cornel, Mimpen, Nierkens (CR6) 2020; 12 Ramos, Sadeghi, Tabatabaeian (CR31) 2021; 22 Yamamoto, Zhao, Hiroshima, Zhang, Shurell, Eilber, Bouvet, Noda, Hoffman (CR44) 2016; 11 Sanchez Alvarado (CR34) 2012; 22 Gaikwad, Agrawal, Kaushik, Ramachandran, Srivastava (CR10) 2022; 86 Boutilier, Elsawa (CR2) 2021; 22 Guo, Li, Guo, Liu, Wu, Wang, Shi, Pang, Cao (CR14) 2017; 8 Naveed, Aslam, Ahmad (CR28) 2014; 29 AM Cornel (22_CR6) 2020; 12 S Gaikwad (22_CR10) 2022; 86 X Wang (22_CR41) 2018; 9 K Westphal (22_CR43) 2008; 68 AJ Boutilier (22_CR2) 2021; 22 M Yamamoto (22_CR44) 2016; 11 JS Kim (22_CR18) 2023; 355 D Deb (22_CR8) 2022; 12 N Hosseini-Giv (22_CR15) 2021; 606 HA Mooney (22_CR25) 2001; 98 Y Tokumaru (22_CR37) 2021; 11 A Sanchez Alvarado (22_CR34) 2012; 22 D Groza (22_CR13) 2018; 7 A Tesniere (22_CR35) 2010; 29 X Chen (22_CR4) 2022; 42 B Nandi (22_CR27) 2011; 208 M Obeid (22_CR29) 2007; 13 RD Carlson (22_CR3) 2020; 12 A Ocana (22_CR30) 2017; 16 T Alcindor (22_CR1) 2011; 18 MA Cupp (22_CR7) 2020; 18 CW Hu (22_CR16) 2022; 30 C Murphy (22_CR26) 2017; 12 HL Rao (22_CR32) 2012; 7 H Lan (22_CR19) 2021; 18 Z Liu (22_CR22) 2020; 469 B Guo (22_CR14) 2017; 8 G Salamone (22_CR33) 2001; 166 S Naveed (22_CR28) 2014; 29 J Vincent (22_CR40) 2010; 70 S Weibel (22_CR42) 2008; 10 Y Tie (22_CR36) 2022; 15 Y Chen (22_CR5) 2019; 26 DB Longley (22_CR23) 2003; 3 J Zhou (22_CR46) 2020; 11 A Ramos (22_CR31) 2021; 22 B Geering (22_CR11) 2011; 18 NA Giraldo (22_CR12) 2019; 120 Y Yamamura (22_CR45) 2015; 20 P Lehouritis (22_CR20) 2015; 5 XT Fu (22_CR9) 2019; 19 F Li (22_CR21) 2021; 14 N Iida (22_CR17) 2013; 342 R Vendramin (22_CR39) 2021; 40 WD Mackay (22_CR24) 1965; 205 GW Tormoen (22_CR38) 2018; 3 |
References_xml | – volume: 12 start-page: 1760 issue: 7 year: 2020 ident: CR6 article-title: MHC class I downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy publication-title: Cancers doi: 10.3390/cancers12071760 – volume: 19 year: 2019 ident: CR9 article-title: Tumor-associated macrophages modulate resistance to oxaliplatin via inducing autophagy in hepatocellular carcinoma publication-title: Cancer Cell Int doi: 10.1186/s12935-019-0771-8 – volume: 12 start-page: e0180034 issue: 6 year: 2017 ident: CR26 article-title: Intratumoural production of TNFα by bacteria mediates cancer therapy publication-title: PLoS ONE doi: 10.1371/journal.pone.0180034 – volume: 342 start-page: 967 issue: 6161 year: 2013 end-page: 970 ident: CR17 article-title: Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment publication-title: Science doi: 10.1126/science.1240527 – volume: 29 start-page: 482 issue: 4 year: 2010 end-page: 491 ident: CR35 article-title: Immunogenic death of colon cancer cells treated with oxaliplatin publication-title: Oncogene doi: 10.1038/onc.2009.356 – volume: 12 start-page: 241 issue: 4 year: 2020 ident: CR3 article-title: Talkin’ toxins: from Coley’s to modern cancer immunotherapy publication-title: Toxins doi: 10.3390/toxins12040241 – volume: 26 start-page: 78 issue: 1 year: 2019 ident: CR5 article-title: Tumor-associated macrophages: an accomplice in solid tumor progression publication-title: J Biomed Sci doi: 10.1186/s12929-019-0568-z – volume: 606 start-page: 120931 year: 2021 ident: CR15 article-title: Application of bacterial directed enzyme prodrug therapy as a targeted chemotherapy approach in a mouse model of breast cancer publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2021.120931 – volume: 22 start-page: 6995 issue: 13 year: 2021 ident: CR2 article-title: Macrophage polarization states in the tumor microenvironment publication-title: Int J Mol Sci doi: 10.3390/ijms22136995 – volume: 18 start-page: 1026 issue: 3 year: 2021 end-page: 1037 ident: CR19 article-title: Tumor-associated macrophages promote oxaliplatin resistance via METTL3-mediated m(6)A of TRAF5 and necroptosis in colorectal cancer publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.0c00961 – volume: 14 start-page: 101202 issue: 11 year: 2021 ident: CR21 article-title: Macrophage polarization synergizes with oxaliplatin in lung cancer immunotherapy via enhanced tumor cell phagocytosis publication-title: Transl Oncol doi: 10.1016/j.tranon.2021.101202 – volume: 18 issue: 1 year: 2020 ident: CR7 article-title: Neutrophil to lymphocyte ratio and cancer prognosis: an umbrella review of systematic reviews and meta-analyses of observational studies publication-title: BMC Med doi: 10.1186/s12916-020-01817-1 – volume: 18 start-page: 1457 issue: 9 year: 2011 end-page: 1469 ident: CR11 article-title: Peculiarities of cell death mechanisms in neutrophils publication-title: Cell Death Differ doi: 10.1038/cdd.2011.75 – volume: 208 start-page: 2251 issue: 11 year: 2011 end-page: 2262 ident: CR27 article-title: Regulation of neutrophils by interferon-gamma limits lung inflammation during tuberculosis infection publication-title: J Exp Med doi: 10.1084/jem.20110919 – volume: 3 start-page: 330 issue: 5 year: 2003 end-page: 338 ident: CR23 article-title: 5-Fluorouracil: mechanisms of action and clinical strategies publication-title: Nat Rev Cancer doi: 10.1038/nrc1074 – volume: 22 start-page: 9451 issue: 17 year: 2021 ident: CR31 article-title: Battling chemoresistance in cancer: root causes and strategies to uproot them publication-title: Int J Mol Sci doi: 10.3390/ijms22179451 – volume: 22 start-page: R772 issue: 17 year: 2012 end-page: 778 ident: CR34 article-title: Cellular hyperproliferation and cancer as evolutionary variables publication-title: Curr Biol doi: 10.1016/j.cub.2012.08.008 – volume: 3 start-page: 520 issue: 4 year: 2018 end-page: 526 ident: CR38 article-title: Role of the immunosuppressive microenvironment in immunotherapy publication-title: Adv Radiat Oncol doi: 10.1016/j.adro.2018.08.018 – volume: 166 start-page: 3476 issue: 5 year: 2001 end-page: 3483 ident: CR33 article-title: Promotion of neutrophil apoptosis by TNF-alpha publication-title: J Immunol doi: 10.4049/jimmunol.166.5.3476 – volume: 11 start-page: 5743 issue: 11 year: 2021 end-page: 5755 ident: CR37 article-title: Low intratumoral genetic neutrophil-to-lymphocyte ratio (NLR) is associated with favorable tumor immune microenvironment and with survival in triple negative breast cancer (TNBC) publication-title: Am J Cancer Res – volume: 86 start-page: 137 issue: Pt 3 year: 2022 end-page: 150 ident: CR10 article-title: Immune checkpoint proteins: Signaling mechanisms and molecular interactions in cancer immunotherapy publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2022.03.014 – volume: 40 start-page: e108389 issue: 18 year: 2021 ident: CR39 article-title: Cancer evolution: Darwin and beyond publication-title: EMBO J doi: 10.15252/embj.2021108389 – volume: 13 start-page: 54 issue: 1 year: 2007 end-page: 61 ident: CR29 article-title: Calreticulin exposure dictates the immunogenicity of cancer cell death publication-title: Nat Med doi: 10.1038/nm1523 – volume: 120 start-page: 45 issue: 1 year: 2019 end-page: 53 ident: CR12 article-title: The clinical role of the TME in solid cancer publication-title: Br J Cancer doi: 10.1038/s41416-018-0327-z – volume: 16 issue: 1 year: 2017 ident: CR30 article-title: Neutrophils in cancer: prognostic role and therapeutic strategies publication-title: Mol Cancer doi: 10.1186/s12943-017-0707-7 – volume: 29 start-page: 391 issue: 6 year: 2014 end-page: 398 ident: CR28 article-title: Starvation based differential chemotherapy: a novel approach for cancer treatment publication-title: Oman Med J doi: 10.5001/omj.2014.107 – volume: 10 start-page: 1235 issue: 6 year: 2008 end-page: 1248 ident: CR42 article-title: Colonization of experimental murine breast tumours by Escherichia coli K-12 significantly alters the tumour microenvironment publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2008.01122.x – volume: 20 start-page: 386 issue: 2 year: 2015 end-page: 394 ident: CR45 article-title: The key role of calreticulin in immunomodulation induced by chemotherapeutic agents publication-title: Int J Clin Oncol doi: 10.1007/s10147-014-0719-x – volume: 12 issue: 1 year: 2022 ident: CR8 article-title: Design of combination therapy for engineered bacterial therapeutics in non-small cell lung cancer publication-title: Sci Rep doi: 10.1038/s41598-022-26105-1 – volume: 11 start-page: e0160882 issue: 8 year: 2016 ident: CR44 article-title: Efficacy of tumor-targeting salmonella A1-R on a melanoma patient-derived orthotopic xenograft (PDOX) nude-mouse model publication-title: PLoS ONE doi: 10.1371/journal.pone.0160882 – volume: 98 start-page: 5446 issue: 10 year: 2001 end-page: 5451 ident: CR25 article-title: The evolutionary impact of invasive species publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.091093398 – volume: 18 start-page: 18 issue: 1 year: 2011 end-page: 25 ident: CR1 article-title: Oxaliplatin: a review in the era of molecularly targeted therapy publication-title: Curr Oncol doi: 10.3747/co.v18i1.708 – volume: 8 start-page: 44465 issue: 27 year: 2017 end-page: 44476 ident: CR14 article-title: M2 tumor-associated macrophages produce interleukin-17 to suppress oxaliplatin-induced apoptosis in hepatocellular carcinoma publication-title: Oncotarget doi: 10.18632/oncotarget.17973 – volume: 205 start-page: 918 issue: 4974 year: 1965 end-page: 919 ident: CR24 article-title: Role of splenomegaly in tumour-bearing mice publication-title: Nature doi: 10.1038/205918a0 – volume: 5 year: 2015 ident: CR20 article-title: Local bacteria affect the efficacy of chemotherapeutic drugs publication-title: Sci Rep doi: 10.1038/srep14554 – volume: 7 start-page: e30806 issue: 1 year: 2012 ident: CR32 article-title: Increased intratumoral neutrophil in colorectal carcinomas correlates closely with malignant phenotype and predicts patients’ adverse prognosis publication-title: PLoS ONE doi: 10.1371/journal.pone.0030806 – volume: 42 start-page: 587 issue: 7 year: 2022 end-page: 608 ident: CR4 article-title: The theory of tumor ecosystem publication-title: Cancer Commun doi: 10.1002/cac2.12316 – volume: 7 start-page: e1424676 issue: 5 year: 2018 ident: CR13 article-title: Bacterial ghosts as adjuvant to oxaliplatin chemotherapy in colorectal carcinomatosis publication-title: OncoImmunology doi: 10.1080/2162402X.2018.1424676 – volume: 11 start-page: 343 year: 2020 ident: CR46 article-title: The drug-resistance mechanisms of five platinum-based antitumor agents publication-title: Front Pharmacol doi: 10.3389/fphar.2020.00343 – volume: 70 start-page: 3052 issue: 8 year: 2010 end-page: 3061 ident: CR40 article-title: 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-3690 – volume: 469 start-page: 173 year: 2020 end-page: 185 ident: CR22 article-title: TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages publication-title: Cancer Lett doi: 10.1016/j.canlet.2019.10.020 – volume: 15 start-page: 61 issue: 1 year: 2022 ident: CR36 article-title: Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets publication-title: J Hematol Oncol doi: 10.1186/s13045-022-01282-8 – volume: 68 start-page: 2952 issue: 8 year: 2008 end-page: 2960 ident: CR43 article-title: Containment of tumor-colonizing bacteria by host neutrophils publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-2984 – volume: 30 start-page: 2522 issue: 7 year: 2022 end-page: 2536 ident: CR16 article-title: Development of a TNF-alpha-mediated Trojan Horse for bacteria-based cancer therapy publication-title: Mol Ther doi: 10.1016/j.ymthe.2022.04.008 – volume: 355 start-page: 199 year: 2023 end-page: 210 ident: CR18 article-title: ECM-targeting bacteria enhance chemotherapeutic drug efficacy by lowering IFP in tumor mouse models publication-title: J Control Release doi: 10.1016/j.jconrel.2023.02.001 – volume: 9 start-page: 2456 year: 2018 ident: CR41 article-title: Understanding the multifaceted role of neutrophils in cancer and autoimmune diseases publication-title: Front Immunol doi: 10.3389/fimmu.2018.02456 – volume: 11 start-page: 343 year: 2020 ident: 22_CR46 publication-title: Front Pharmacol doi: 10.3389/fphar.2020.00343 – volume: 15 start-page: 61 issue: 1 year: 2022 ident: 22_CR36 publication-title: J Hematol Oncol doi: 10.1186/s13045-022-01282-8 – volume: 20 start-page: 386 issue: 2 year: 2015 ident: 22_CR45 publication-title: Int J Clin Oncol doi: 10.1007/s10147-014-0719-x – volume: 3 start-page: 330 issue: 5 year: 2003 ident: 22_CR23 publication-title: Nat Rev Cancer doi: 10.1038/nrc1074 – volume: 355 start-page: 199 year: 2023 ident: 22_CR18 publication-title: J Control Release doi: 10.1016/j.jconrel.2023.02.001 – volume: 18 issue: 1 year: 2020 ident: 22_CR7 publication-title: BMC Med doi: 10.1186/s12916-020-01817-1 – volume: 18 start-page: 1457 issue: 9 year: 2011 ident: 22_CR11 publication-title: Cell Death Differ doi: 10.1038/cdd.2011.75 – volume: 12 start-page: e0180034 issue: 6 year: 2017 ident: 22_CR26 publication-title: PLoS ONE doi: 10.1371/journal.pone.0180034 – volume: 7 start-page: e30806 issue: 1 year: 2012 ident: 22_CR32 publication-title: PLoS ONE doi: 10.1371/journal.pone.0030806 – volume: 29 start-page: 391 issue: 6 year: 2014 ident: 22_CR28 publication-title: Oman Med J doi: 10.5001/omj.2014.107 – volume: 342 start-page: 967 issue: 6161 year: 2013 ident: 22_CR17 publication-title: Science doi: 10.1126/science.1240527 – volume: 12 start-page: 241 issue: 4 year: 2020 ident: 22_CR3 publication-title: Toxins doi: 10.3390/toxins12040241 – volume: 7 start-page: e1424676 issue: 5 year: 2018 ident: 22_CR13 publication-title: OncoImmunology doi: 10.1080/2162402X.2018.1424676 – volume: 9 start-page: 2456 year: 2018 ident: 22_CR41 publication-title: Front Immunol doi: 10.3389/fimmu.2018.02456 – volume: 42 start-page: 587 issue: 7 year: 2022 ident: 22_CR4 publication-title: Cancer Commun doi: 10.1002/cac2.12316 – volume: 30 start-page: 2522 issue: 7 year: 2022 ident: 22_CR16 publication-title: Mol Ther doi: 10.1016/j.ymthe.2022.04.008 – volume: 205 start-page: 918 issue: 4974 year: 1965 ident: 22_CR24 publication-title: Nature doi: 10.1038/205918a0 – volume: 98 start-page: 5446 issue: 10 year: 2001 ident: 22_CR25 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.091093398 – volume: 19 year: 2019 ident: 22_CR9 publication-title: Cancer Cell Int doi: 10.1186/s12935-019-0771-8 – volume: 29 start-page: 482 issue: 4 year: 2010 ident: 22_CR35 publication-title: Oncogene doi: 10.1038/onc.2009.356 – volume: 120 start-page: 45 issue: 1 year: 2019 ident: 22_CR12 publication-title: Br J Cancer doi: 10.1038/s41416-018-0327-z – volume: 13 start-page: 54 issue: 1 year: 2007 ident: 22_CR29 publication-title: Nat Med doi: 10.1038/nm1523 – volume: 5 year: 2015 ident: 22_CR20 publication-title: Sci Rep doi: 10.1038/srep14554 – volume: 40 start-page: e108389 issue: 18 year: 2021 ident: 22_CR39 publication-title: EMBO J doi: 10.15252/embj.2021108389 – volume: 68 start-page: 2952 issue: 8 year: 2008 ident: 22_CR43 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-2984 – volume: 11 start-page: 5743 issue: 11 year: 2021 ident: 22_CR37 publication-title: Am J Cancer Res – volume: 208 start-page: 2251 issue: 11 year: 2011 ident: 22_CR27 publication-title: J Exp Med doi: 10.1084/jem.20110919 – volume: 22 start-page: 6995 issue: 13 year: 2021 ident: 22_CR2 publication-title: Int J Mol Sci doi: 10.3390/ijms22136995 – volume: 606 start-page: 120931 year: 2021 ident: 22_CR15 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2021.120931 – volume: 14 start-page: 101202 issue: 11 year: 2021 ident: 22_CR21 publication-title: Transl Oncol doi: 10.1016/j.tranon.2021.101202 – volume: 18 start-page: 1026 issue: 3 year: 2021 ident: 22_CR19 publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.0c00961 – volume: 469 start-page: 173 year: 2020 ident: 22_CR22 publication-title: Cancer Lett doi: 10.1016/j.canlet.2019.10.020 – volume: 166 start-page: 3476 issue: 5 year: 2001 ident: 22_CR33 publication-title: J Immunol doi: 10.4049/jimmunol.166.5.3476 – volume: 70 start-page: 3052 issue: 8 year: 2010 ident: 22_CR40 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-3690 – volume: 22 start-page: 9451 issue: 17 year: 2021 ident: 22_CR31 publication-title: Int J Mol Sci doi: 10.3390/ijms22179451 – volume: 11 start-page: e0160882 issue: 8 year: 2016 ident: 22_CR44 publication-title: PLoS ONE doi: 10.1371/journal.pone.0160882 – volume: 12 issue: 1 year: 2022 ident: 22_CR8 publication-title: Sci Rep doi: 10.1038/s41598-022-26105-1 – volume: 12 start-page: 1760 issue: 7 year: 2020 ident: 22_CR6 publication-title: Cancers doi: 10.3390/cancers12071760 – volume: 3 start-page: 520 issue: 4 year: 2018 ident: 22_CR38 publication-title: Adv Radiat Oncol doi: 10.1016/j.adro.2018.08.018 – volume: 16 issue: 1 year: 2017 ident: 22_CR30 publication-title: Mol Cancer doi: 10.1186/s12943-017-0707-7 – volume: 10 start-page: 1235 issue: 6 year: 2008 ident: 22_CR42 publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2008.01122.x – volume: 86 start-page: 137 issue: Pt 3 year: 2022 ident: 22_CR10 publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2022.03.014 – volume: 22 start-page: R772 issue: 17 year: 2012 ident: 22_CR34 publication-title: Curr Biol doi: 10.1016/j.cub.2012.08.008 – volume: 18 start-page: 18 issue: 1 year: 2011 ident: 22_CR1 publication-title: Curr Oncol doi: 10.3747/co.v18i1.708 – volume: 26 start-page: 78 issue: 1 year: 2019 ident: 22_CR5 publication-title: J Biomed Sci doi: 10.1186/s12929-019-0568-z – volume: 8 start-page: 44465 issue: 27 year: 2017 ident: 22_CR14 publication-title: Oncotarget doi: 10.18632/oncotarget.17973 |
SSID | ssj0065618 |
Score | 2.4168983 |
Snippet | The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is often... Abstract The tumor microenvironment (TME) presents differential selective pressure (DSP) that favors the growth of cancer cells, and monovalent therapy is... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 416 |
SubjectTerms | Animals Antineoplastic Agents - therapeutic use Bacteria Cancer Therapy Biomedical and Life Sciences Biomedicine Cell Line, Tumor Differential Stress Resistance EMBO03 EMBO19 EMBO23 Immunotherapy Immunotherapy - methods Mice Molecular Medicine Neoplasms - drug therapy Oxaliplatin - therapeutic use Oxaliplatin; TME Remodeling T-Lymphocytes, Cytotoxic Tumor Microenvironment |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VIlAvCMorvGQkbhBYP5I4B4QooqqQlhMr9WbZjkNX2k1gHy3775lxkhULq564OnESe2bibzQz3wC8whPABs-r1OtKpKq0ZWqVztJ6VAmikyuKigqFx1_zs4n6cp6dH8DQ7qjfwOVe1476SU0Ws7e_fm4-oMG_70rG9bulUlKgUyxkGvlc0qsbcBNPJkFaPlbbqAJCF677wpn983YOp8jhvw94_ps_-VcQNZ5Np3fhTg8q2cdOC-7BQWiO4VbXZnJzDLfHfQD9PtQnHTuzZcRWPRRhsmnDVut5u2Bzys_7o_iNRVAZlsyy2l6iurhZYA2ljzJEu2xK1SUt6uDUMxyb9-VcmwcwOf387dNZ2rdaSH3G5SpFx6-2gddaVOXI87wsKkfMgsFpFYQlViyBwCrH_4G0snAjl6FfUmaOW6_L3MmHcNi0TXgMrK4R81TKBakRnbja5haNvPalDcSckyfAhz02vuchp3YYMxPj4VKbTi4G5WKiXMxVAq-3c350LBzX3n1CotveSQzacaBdfDe9QRqJQFD5wCshqc26ss7bIve5IxCY6SqBl4PgDVochVFsE9r10gii1C-I6y6BR50ibF8lEW_h47IE9I6K7HzL7pVmehFZvflIl-hbFwm8GbTJDOZwzWKf_I_FPoUjgWCNstF59gwOV4t1eI5ga-VeRAv6DYaQJeI priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIhAXBOWV8pCRuEFEbCeOc6QrqgqpnKjUm-VXYKVuUu2Dqv--M06yYqGqxDWxEyczY3-jmfkG4AOeADZ6HnKvg8jLxja5LXWVt0UQRCdX14EKhU-_q5Oz8tt5db4HYqqFSUn7idIybdNTdtjnVVlKgY6vkHnibMmv7sF9XUtOaXwzNZt2X4QnXI_FMYXUt8zbOYAST_9t4PLfHMm_AqXp_Dl-Ao9H4Mi-DEt9CnuxO4AHQyvJ6wN4eDoGyZ9BezQwMFtGjNRToSWbd2y9WfRLtqAcvD8K3FgCjnHFLGvtb1QJdxFZRymiDBEtm1MFSY96NvcMry3Gkq3r53B2_PXH7CQf2ynkvuJynaNz19rIWy1CU3iumjo4Yg-MTpdRWGK-EgieFNq8tLJ2havQ92gqx63XjXLyBex3fRdfAWtbxDWhdFFqRCCutcqiIbe-sZHYcVQGfPrHxo9c49Ty4sKkmLfUZpCLQbmYJBdzlcHH7ZzLgWnjztFHJLrtSGLJThf65U8zao2RCPZKH3kQklqpl9Z5WyuvHAG9SocM3k-CN2hVFCqxXew3KyOINr8mPrsMXg6KsH2VREyFj6sy0DsqsrOW3Tvd_Fdi7uaFbtB_rjP4NGmTGfeM1R0fe_h_w1_DI4HQi3LLefUG9tfLTXyL0Gnt3iVbuQGasRP- priority: 102 providerName: Springer Nature |
Title | Bacteria colonization in tumor microenvironment creates a favorable niche for immunogenic chemotherapy |
URI | https://link.springer.com/article/10.1038/s44321-023-00022-w https://www.ncbi.nlm.nih.gov/pubmed/38225455 https://www.proquest.com/docview/2915570136 https://pubmed.ncbi.nlm.nih.gov/PMC10897177 https://doaj.org/article/36444ce1d2354524abca76c6b025658d |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1757-4684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065618 issn: 1757-4684 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1757-4684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065618 issn: 1757-4684 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1757-4684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065618 issn: 1757-4684 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1757-4684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065618 issn: 1757-4684 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1757-4684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065618 issn: 1757-4684 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 1757-4684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065618 issn: 1757-4684 databaseCode: NAO dateStart: 20210901 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1757-4684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065618 issn: 1757-4684 databaseCode: 7X7 dateStart: 20090401 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1757-4684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065618 issn: 1757-4684 databaseCode: BENPR dateStart: 20090401 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1757-4684 dateEnd: 20250731 omitProxy: true ssIdentifier: ssj0065618 issn: 1757-4684 databaseCode: M48 dateStart: 20090401 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1757-4684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065618 issn: 1757-4684 databaseCode: AAJSJ dateStart: 20090401 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1757-4684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065618 issn: 1757-4684 databaseCode: C6C dateStart: 20210901 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1757-4684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065618 issn: 1757-4684 databaseCode: AVUZU dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEIgXNAaMAKuMxBtEiz-SOI9ttWmq1AkBk_pm2Y4jKq0pWlum_ffc5aNaYdpeeEkkx_nynX2_k-9-B_AJLYANnpex16WIVWGL2CqdxlVSCqKTy_OSEoWn59nZhZrM0tmtUl8UE9bSA7cDdyzRYCsfeCkklcNW1nmbZz5zZKxTXdLqi2asd6baNRhBCtddikwi9fFKKSnQbRYybhhf4usdM9Sw9d8FMf-NlPxru7SxQqf78KKDj2zYfvZLeBTqA3jaFpS8OYBn026r_BVUo5aH2TLipe7TLdm8ZuvNYnnFFhSJdyvNjTXwMayYZZX9jYrhLgOrKVCUIa5lc8ojWaK2zT3DtkWXuHXzGi5OT36Mz-KuqELsUy7XMbp4lQ280qIsEs-zIi8dcQgGp1UQlvivBEKoDGe-tDJ3iUvRAylSx63XRebkG9irl3V4C6yqEN2UygWpEYe4ymYWp3PlCxuIIyeLgPdjbHzHOE6FLy5Ns_MttWnlYlAuppGLuY7g8_aeXy3fxr29RyS6bU_iym4aUINMp0HmIQ2K4GMveINzizZMbB2Wm5URRJ6fE6tdBIetImxfJRFZ4ePSCPSOiux8y-6Vev6z4e_miS7Qi84j-NJrk-lWjtU9P_vuf_zse3guEJZR3DlPP8De-moTjhBWrd0AHuezfABPhsPJ9wmeRyfnX79h6zgbD5rZhcep0n8AyiEjbA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiiXCsortICRuEFEbOfhHOmq1QLdnlqpN8t2nLJSN6n2QdV_z4yTrFioKnFN7MTJzNjfaGa-AfiIJ4DxjlexU5WI09KUsUlVFtdJJYhOrigqKhSenObj8_T7RXaxBWKohQlJ-4HSMmzTQ3bYl0WaSoGOr5Bx4GyJbx7AQ4XHHzlco3w07L4IT7jqi2MSqe6Yt3EABZ7-u8DlvzmSfwVKw_lz_BR2e-DIvnZLfQZbvtmDR10ryds9eDzpg-TPoT7sGJgNI0bqodCSTRu2XM3aOZtRDt4fBW4sAEe_YIbV5heqhL3yrKEUUYaIlk2pgqRFPZs6htdmfcnW7Qs4Pz46G43jvp1C7DIulzE6d7XxvFaiKhPH87KoLLEHeqtSLwwxXwkETznavDSysInN0PcoM8uNU2Vu5UvYbtrGvwZW14hrqtR6SSKwtckNGnLtSuOJHSePgA__WLuea5xaXlzpEPOWSndy0SgXHeSibyL4tJ5z3TFt3Dv6kES3Hkks2eFCO7_UvdZoiWAvdZ5XQlIr9dRYZ4rc5ZaAXqaqCD4MgtdoVRQqMY1vVwstiDa_ID67CF51irB-lURMhY_LIlAbKrKxls07zfRnYO7miSrRfy4i-Dxok-73jMU9H_vm_4a_h53x2eREn3w7_bEPTwTCMMoz59kBbC_nK_8WYdTSvgt28xu9ORbt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiouCMorPI3EDUJjO3GcIy2syqMVByr1ZvkJK3WTah9U_feMnWTFQlWJa2InTmbG_kYz8w3AazwBtLfU5VY6lpeNbnJdyioPhWORTq6uXSwUPjoWhyfl59PqdAvEWAuTkvYTpWXapsfssL1FWXKGji_jeeJsyS_enbtwA27KGk0kBmnFwbgDI0ShciiQKbi8Yu7GIZS4-q8CmP_mSf4VLE1n0OQu3BnAI3nfL_cebPl2F2717SQvd2HnaAiU34ew37MwaxJZqcdiSzJtyXI16-ZkFvPw_ihyIwk8-gXRJOhfqBbmzJM2pokSRLVkGqtIOtS1qSV4bTaUbV0-gJPJx-8Hh_nQUiG3FeXLHB28oD0NkrmmsFQ0tTORQdAbWXqmI_sVQwAl0O655rUpTIX-R1MZqq1shOEPYbvtWv8YSAiIbVxpPJeIQkzQQqMxB9toHxlyRAZ0_MfKDnzjse3FmUpxby5VLxeFclFJLuoigzfrOec928a1o_ej6NYjI1N2utDNf6hBcxRHwFdaTx3jsZ16qY3VtbDCRLBXSZfBq1HwCi0rhkt067vVQrFInV9HTrsMHvWKsH4VR1yFj6sykBsqsrGWzTvt9Gdi76aFbNCHrjN4O2qTGvaNxTUf--T_hr-EnW8fJurrp-MvT-E2QyQWU81p9Qy2l_OVf45IamleJLP5DcR0F_8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacteria+colonization+in+tumor+microenvironment+creates+a+favorable+niche+for+immunogenic+chemotherapy&rft.jtitle=EMBO+molecular+medicine&rft.au=See-Khai+Lim&rft.au=Wen-Ching+Lin&rft.au=Sin-Wei+Huang&rft.au=Yi-Chung+Pan&rft.date=2024-02-15&rft.pub=Springer+Nature&rft.eissn=1757-4684&rft.volume=16&rft.issue=2&rft.spage=416&rft.epage=428&rft_id=info:doi/10.1038%2Fs44321-023-00022-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_36444ce1d2354524abca76c6b025658d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4684&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4684&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4684&client=summon |