A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound
Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the identification of plaques that are prone to rupture, and thus for early risk estimation of cardiovascular and cerebrovascular events. Due to...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 21; no. 1; pp. 48 - 55 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2194 2168-2208 |
DOI | 10.1109/JBHI.2016.2631401 |
Cover
Abstract | Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the identification of plaques that are prone to rupture, and thus for early risk estimation of cardiovascular and cerebrovascular events. Due to its low costs and wide availability, carotid ultrasound has the potential to become the modality of choice for plaque characterization in clinical practice. However, its significant image noise, coupled with the small size of the plaques and their complex appearance, makes it difficult for automated techniques to discriminate between the different plaque constituents. In this paper, we propose to address this challenging problem by exploiting the unique capabilities of the emerging deep learning framework. More specifically, and unlike existing works which require a priori definition of specific imaging features or thresholding values, we propose to build a convolutional neural network (CNN) that will automatically extract from the images the information that is optimal for the identification of the different plaque constituents. We used approximately 90 000 patches extracted from a database of images and corresponding expert plaque characterizations to train and to validate the proposed CNN. The results of cross-validation experiments show a correlation of about 0.90 with the clinical assessment for the estimation of lipid core, fibrous cap, and calcified tissue areas, indicating the potential of deep learning for the challenging task of automatic characterization of plaque composition in carotid ultrasound. |
---|---|
AbstractList | Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the identification of plaques that are prone to rupture, and thus for early risk estimation of cardiovascular and cerebrovascular events. Due to its low costs and wide availability, carotid ultrasound has the potential to become the modality of choice for plaque characterization in clinical practice. However, its significant image noise, coupled with the small size of the plaques and their complex appearance, makes it difficult for automated techniques to discriminate between the different plaque constituents. In this paper, we propose to address this challenging problem by exploiting the unique capabilities of the emerging deep learning framework. More specifically, and unlike existing works which require a priori definition of specific imaging features or thresholding values, we propose to build a convolutional neural network that will automatically extract from the images the information that is optimal for the identification of the different plaque constituents. We used approximately 90,000 patches extracted from a database of images and corresponding expert plaque characterizations to train and to validate the proposed convolutional neural network (CNN). The results of cross-validation experiments show a correlation of about 0.90 with the clinical assessment for the estimation of lipid core, fibrous cap, and calcified tissue areas, indicating the potential of deep learning for the challenging task of automatic characterization of plaque composition in carotid ultrasound Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the identification of plaques that are prone to rupture, and thus for early risk estimation of cardiovascular and cerebrovascular events. Due to its low costs and wide availability, carotid ultrasound has the potential to become the modality of choice for plaque characterization in clinical practice. However, its significant image noise, coupled with the small size of the plaques and their complex appearance, makes it difficult for automated techniques to discriminate between the different plaque constituents. In this paper, we propose to address this challenging problem by exploiting the unique capabilities of the emerging deep learning framework. More specifically, and unlike existing works which require a priori definition of specific imaging features or thresholding values, we propose to build a convolutional neural network (CNN) that will automatically extract from the images the information that is optimal for the identification of the different plaque constituents. We used approximately 90 000 patches extracted from a database of images and corresponding expert plaque characterizations to train and to validate the proposed CNN. The results of cross-validation experiments show a correlation of about 0.90 with the clinical assessment for the estimation of lipid core, fibrous cap, and calcified tissue areas, indicating the potential of deep learning for the challenging task of automatic characterization of plaque composition in carotid ultrasound. Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the identification of plaques that are prone to rupture, and thus for early risk estimation of cardiovascular and cerebrovascular events. Due to its low costs and wide availability, carotid ultrasound has the potential to become the modality of choice for plaque characterization in clinical practice. However, its significant image noise, coupled with the small size of the plaques and their complex appearance, makes it difficult for automated techniques to discriminate between the different plaque constituents. In this paper, we propose to address this challenging problem by exploiting the unique capabilities of the emerging deep learning framework. More specifically, and unlike existing works which require a priori definition of specific imaging features or thresholding values, we propose to build a convolutional neural network (CNN) that will automatically extract from the images the information that is optimal for the identification of the different plaque constituents. We used approximately 90 000 patches extracted from a database of images and corresponding expert plaque characterizations to train and to validate the proposed CNN. The results of cross-validation experiments show a correlation of about 0.90 with the clinical assessment for the estimation of lipid core, fibrous cap, and calcified tissue areas, indicating the potential of deep learning for the challenging task of automatic characterization of plaque composition in carotid ultrasound. |
Author | Radeva, Petia Galimzianova, Alfiia Betriu, Angels Fernandez, Elvira del Mar Vila, Maria Rubin, Daniel L. Napel, Sandy Lekadir, Karim Igual, Laura |
AuthorAffiliation | Department of Radiology, Stanford University School of Medicine, USA Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain Department of Radiology, Stanford University School of Medicine, USA, and with the Computer Vision Center (CVC), Barcelona, Spain Department of Mathematics and Computer Science, Universitat de Barcelona, Spain, and with the Computer Vision Center (CVC), Barcelona, Spain Unit for the Detection and Treatment of Atherothrombotic Diseases (UDETMA), Institute of Biomedical Research, Lleida, Spain |
AuthorAffiliation_xml | – name: Department of Mathematics and Computer Science, Universitat de Barcelona, Spain, and with the Computer Vision Center (CVC), Barcelona, Spain – name: Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain – name: Unit for the Detection and Treatment of Atherothrombotic Diseases (UDETMA), Institute of Biomedical Research, Lleida, Spain – name: Department of Radiology, Stanford University School of Medicine, USA, and with the Computer Vision Center (CVC), Barcelona, Spain – name: Department of Radiology, Stanford University School of Medicine, USA |
Author_xml | – sequence: 1 givenname: Karim surname: Lekadir fullname: Lekadir, Karim email: lekadir@gmail.com organization: Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 2 givenname: Alfiia surname: Galimzianova fullname: Galimzianova, Alfiia email: alfiia@stanford.edu organization: Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 3 givenname: Angels surname: Betriu fullname: Betriu, Angels email: angels.betriu.bars@gmail.com organization: Unit for the Detection and Treatment of Atherothrombotic Diseases, Institute of Biomedical Research, Lleida, Spain – sequence: 4 givenname: Maria surname: del Mar Vila fullname: del Mar Vila, Maria email: mariadelmarvila@gmail.com organization: Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain – sequence: 5 givenname: Laura surname: Igual fullname: Igual, Laura email: ligual@ub.edu organization: Department of Mathematics and Computer Science, Universitat de Barcelona 08007, Spain – sequence: 6 givenname: Daniel L. surname: Rubin fullname: Rubin, Daniel L. email: rubin@stanford.edu organization: Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 7 givenname: Elvira surname: Fernandez fullname: Fernandez, Elvira email: efernandez@irblleida.cat organization: Unit for the Detection and Treatment of Atherothrombotic Diseases, Institute of Biomedical Research, Lleida, Spain – sequence: 8 givenname: Petia surname: Radeva fullname: Radeva, Petia email: petia.ivanova@ub.edu organization: Department of Mathematics and Computer Science, Universitat de Barcelona 08007, Spain – sequence: 9 givenname: Sandy surname: Napel fullname: Napel, Sandy email: snapel@stanford.edu organization: Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27893402$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS1UREvpD0BIyBIbNjP4Eb82SEMEtKgCFnRteRKHujj21HaK4NfjzKOCLvDmWtffPTq-5yk4CjFYAJ5jtMQYqTef3p1fLAnCfEk4xQ3Cj8AJwVwuCEHy6HDHqjkGZznfoHpkbSn-BBwTIRVtEDkBbgXbGO6in4qLwXj42U5pW8rPmH7AISa4mkocTXEdbK9NMl2xyf02Mw_jAL96czvZqjJuYnbbrguwNSkW18MrX5LJcQr9M_B4MD7bs309BVcf3n9rzxeXXz5etKvLRccwLQuC1gNSPSaIckaxFKyXct0gI1BPFVJMUcy5lQyrNesJVVRSwwZKm8EIZiQ9BW93uptpPdq-s6E68HqT3GjSLx2N0_--BHetv8c7zYiinJAq8HovkGL9WS56dLmz3ptg45Q1lk3DkeRUVPTVA_QmTqmucaaqfSkUair18m9H91YOKVRA7IAuxZyTHXTnynbB1aDzGiM9R67nyPUcud5HXifxg8mD-P9mXuxmnLX2nheCEaEk_QP9ZrX6 |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1109_TBME_2018_2877577 crossref_primary_10_1109_TBME_2023_3279114 crossref_primary_10_3390_diagnostics14010046 crossref_primary_10_1038_s41598_022_20969_z crossref_primary_10_1097_MCG_0000000000001423 crossref_primary_10_1007_s11883_018_0736_8 crossref_primary_10_1109_JBHI_2020_2991043 crossref_primary_10_1016_j_eng_2018_11_020 crossref_primary_10_2174_0929867331666230821092226 crossref_primary_10_1007_s13735_021_00218_1 crossref_primary_10_3390_s22218201 crossref_primary_10_1016_j_media_2017_07_005 crossref_primary_10_52586_5026 crossref_primary_10_3390_info11020080 crossref_primary_10_3390_s20113243 crossref_primary_10_1016_j_ultrasmedbio_2018_07_027 crossref_primary_10_1016_j_jacr_2019_06_004 crossref_primary_10_1038_s41598_017_15720_y crossref_primary_10_1148_radiol_2018180547 crossref_primary_10_3390_healthcare10122493 crossref_primary_10_1007_s10278_017_9983_4 crossref_primary_10_1007_s11277_022_09864_y crossref_primary_10_1016_j_neunet_2020_10_006 crossref_primary_10_1080_1744666X_2022_2017773 crossref_primary_10_1007_s10462_020_09920_8 crossref_primary_10_1016_j_compbiomed_2020_104043 crossref_primary_10_23736_S0392_9590_19_04267_6 crossref_primary_10_4015_S1016237219500091 crossref_primary_10_1109_JBHI_2020_2968815 crossref_primary_10_3390_diagnostics12051234 crossref_primary_10_2174_1386207326666230306114626 crossref_primary_10_1007_s11227_024_06770_x crossref_primary_10_1007_s11042_018_6005_6 crossref_primary_10_1016_j_irbm_2024_100841 crossref_primary_10_3389_fnagi_2021_828214 crossref_primary_10_1161_CIRCRESAHA_121_318224 crossref_primary_10_1016_j_ymssp_2020_106922 crossref_primary_10_1055_s_0044_1779486 crossref_primary_10_1016_j_artmed_2023_102539 crossref_primary_10_3390_electronics12122750 crossref_primary_10_1007_s12194_017_0406_5 crossref_primary_10_23736_S0392_9590_20_04538_1 crossref_primary_10_1177_0161734620951216 crossref_primary_10_1016_j_compbiomed_2022_106017 crossref_primary_10_3934_mbe_2024138 crossref_primary_10_1055_a_2180_8405 crossref_primary_10_31185_wjcm_65 crossref_primary_10_4329_wjr_v12_i1_1 crossref_primary_10_1007_s00415_022_11315_4 crossref_primary_10_1007_s11063_023_11232_1 crossref_primary_10_4103_aian_aian_483_21 crossref_primary_10_1007_s11831_018_9257_4 crossref_primary_10_1007_s00216_023_04991_2 crossref_primary_10_1155_2022_2014349 crossref_primary_10_3390_biomedicines9070720 crossref_primary_10_1007_s00772_024_01098_5 crossref_primary_10_1155_2022_9288452 crossref_primary_10_1016_j_rec_2019_05_014 crossref_primary_10_3390_jcdd9080268 crossref_primary_10_1016_j_recesp_2019_05_016 crossref_primary_10_1016_j_tcm_2018_06_007 crossref_primary_10_1002_jum_15819 crossref_primary_10_1161_STROKEAHA_120_031295 crossref_primary_10_1007_s00330_022_09324_y crossref_primary_10_1002_uog_21967 crossref_primary_10_3390_biomimetics9080465 crossref_primary_10_1016_j_ijmedinf_2020_104326 crossref_primary_10_1109_JBHI_2022_3182722 crossref_primary_10_1016_j_ejmp_2021_02_007 crossref_primary_10_3389_fnins_2023_1118376 crossref_primary_10_1177_0954411919900720 crossref_primary_10_1007_s00330_022_09024_7 crossref_primary_10_1016_j_imu_2020_100496 crossref_primary_10_1109_ACCESS_2019_2929365 crossref_primary_10_1007_s00261_018_1517_0 crossref_primary_10_1016_j_ins_2020_12_086 crossref_primary_10_1155_2018_5137904 crossref_primary_10_1002_ett_4017 crossref_primary_10_1371_journal_pdig_0000659 crossref_primary_10_1016_j_compbiomed_2020_103958 crossref_primary_10_1016_j_medengphy_2021_09_003 crossref_primary_10_1080_14737175_2021_1951234 crossref_primary_10_1007_s10439_022_03033_9 crossref_primary_10_25046_aj020365 crossref_primary_10_1007_s11517_018_1792_5 crossref_primary_10_1186_s12938_020_00831_x crossref_primary_10_1007_s00521_021_06112_5 crossref_primary_10_1007_s00330_021_07850_9 crossref_primary_10_1007_s11883_019_0788_4 crossref_primary_10_1016_j_ultrasmedbio_2024_12_010 crossref_primary_10_1007_s11883_019_0766_x crossref_primary_10_1053_j_semvascsurg_2023_05_002 crossref_primary_10_1007_s10554_020_02124_9 crossref_primary_10_2174_1573405620666230529112655 crossref_primary_10_1109_RBME_2018_2885714 crossref_primary_10_3390_jcm11133823 crossref_primary_10_4236_jbise_2018_1110022 crossref_primary_10_1080_0952813X_2018_1518999 crossref_primary_10_1155_2021_3425893 crossref_primary_10_2174_1573405619666230306101012 crossref_primary_10_1002_mp_14909 crossref_primary_10_1016_j_compbiomed_2024_109180 crossref_primary_10_1016_j_ejrad_2021_109717 crossref_primary_10_1053_j_semvascsurg_2023_07_001 crossref_primary_10_1111_den_13844 crossref_primary_10_4236_ojmi_2020_101002 crossref_primary_10_1007_s11277_024_11428_1 crossref_primary_10_3174_ajnr_A5488 crossref_primary_10_1097_RMR_0000000000000296 crossref_primary_10_1109_JBHI_2022_3162894 crossref_primary_10_1109_TUFFC_2021_3090461 crossref_primary_10_1590_1678_4324_2023220071 crossref_primary_10_1002_jbio_201900112 crossref_primary_10_1016_S1474_4422_19_30035_3 crossref_primary_10_1002_mrm_27627 crossref_primary_10_1016_j_irbm_2021_07_004 crossref_primary_10_37015_AUDT_2023_230018 crossref_primary_10_2478_jaiscr_2022_0007 |
Cites_doi | 10.1002/mrm.20154 10.1109/TMI.2016.2538465 10.1016/j.ejvs.2005.10.010 10.1161/01.STR.22.3.312 10.1093/eurheartj/ehq189 10.1371/journal.pone.0094840 10.1016/j.mri.2012.03.004 10.1067/mva.2002.122888 10.1038/nature14539 10.1016/j.jacc.2011.02.018 10.1016/j.ccl.2009.09.008 10.1109/JBHI.2014.2386796 10.1159/000229554 10.1002/mrm.20828 10.1186/s12968-014-0053-5 10.1016/j.media.2015.08.001 10.1109/TMI.2016.2535865 10.1109/TMI.2016.2548501 10.1007/s10554-015-0704-0 10.3174/ajnr.A3028 10.1136/hrt.2007.134890 10.1109/TMI.2016.2532122 10.1002/jmri.22886 10.1109/TMI.2016.2528120 10.1159/000371739 10.1016/j.neuroimage.2014.12.061 10.1016/j.cult.2011.08.006 10.1161/ATVBAHA.108.179739 10.1161/01.STR.24.10.1507 10.1007/s10334-015-0495-2 10.1161/01.STR.0000196985.38701.0c 10.7326/0003-4819-153-6-201009210-00272 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
DOI | 10.1109/JBHI.2016.2631401 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 55 |
ExternalDocumentID | PMC5293622 27893402 10_1109_JBHI_2016_2631401 7752798 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: NIH grantid: CA160251; U01 CA187947 funderid: 10.13039/100000002 – fundername: NIH grantid: U01CA142555; 1U01CA190214 funderid: 10.13039/100000002 – fundername: FIS grantid: CP12/03287; RD12/0042/0061 – fundername: REA grantid: 600388 funderid: 10.13039/501100000783 – fundername: ICREA funderid: 10.13039/501100003741 – fundername: NVIDIA funderid: 10.13039/100007065 – fundername: Marie-Curie Actions Program of the European Union grantid: (FP7/2007-2013) – fundername: European Regions Development – fundername: NCI NIH HHS grantid: U01 CA142555 – fundername: NCI NIH HHS grantid: U01 CA187947 – fundername: NCI NIH HHS grantid: R01 CA160251 – fundername: NCI NIH HHS grantid: U01 CA190214 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c513t-20bf09d12036531875d88b40a70d3909593166e8519b5d239383a5f334fa75a83 |
IEDL.DBID | RIE |
ISSN | 2168-2194 |
IngestDate | Thu Aug 21 18:21:45 EDT 2025 Sun Sep 28 12:31:06 EDT 2025 Sun Jun 29 12:37:01 EDT 2025 Mon Jul 21 06:02:53 EDT 2025 Tue Jul 01 02:59:54 EDT 2025 Thu Apr 24 23:00:49 EDT 2025 Wed Aug 27 02:30:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c513t-20bf09d12036531875d88b40a70d3909593166e8519b5d239383a5f334fa75a83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5293622 |
PMID | 27893402 |
PQID | 1865387904 |
PQPubID | 85417 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1109_JBHI_2016_2631401 ieee_primary_7752798 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5293622 crossref_primary_10_1109_JBHI_2016_2631401 pubmed_primary_27893402 proquest_journals_1865387904 proquest_miscellaneous_1844608637 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationTitleAlternate | IEEE J Biomed Health Inform |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | kingma (ref36) 0 ref13 ref12 ref37 ref15 ref31 ref30 ref33 ref32 ref1 ref17 ref16 ref19 ref18 krizhevsky (ref34) 2012; 25 van ’t klooster (ref14) 2012; 33 organisation (ref2) 2011 ref24 ref23 ref26 cri?an (ref20) 2011; 13 ref25 ref22 ref21 clarke (ref11) 2006; 37 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 srivastava (ref35) 2014; 15 yoneyama (ref10) 2016; 32 26960222 - IEEE Trans Med Imaging. 2016 May;35(5):1240-1251 16526020 - Magn Reson Med. 2006 Apr;55(4):790-9 25561598 - IEEE J Biomed Health Inform. 2016 Jan;20(1):256-67 25184808 - J Cardiovasc Magn Reson. 2014 Jul 25;16:53 24762678 - PLoS One. 2014 Apr 24;9(4):e94840 22617149 - Magn Reson Imaging. 2012 Oct;30(8):1068-82 27046893 - IEEE Trans Med Imaging. 2016 May;35(5):1252-1261 25562829 - Neuroimage. 2015 Mar;108:214-24 12042733 - J Vasc Surg. 2002 Jun;35(6):1210-7 21565634 - J Am Coll Cardiol. 2011 May 17;57(20):1961-79 26955021 - IEEE Trans Med Imaging. 2016 May;35(5):1207-1216 26458112 - Med Image Anal. 2015 Dec;26(1):195-202 16339462 - Stroke. 2006 Jan;37(1):93-7 20713770 - Ann Intern Med. 2010 Sep 21;153(6):387-95 26169389 - Int J Cardiovasc Imaging. 2016 Jan;32(1):73-81 20554950 - Arterioscler Thromb Vasc Biol. 2010 Jul;30(7):1282-92 2003301 - Stroke. 1991 Mar;22(3):312-8 26915120 - IEEE Trans Med Imaging. 2016 May;35(5):1322-1331 22132407 - Med Ultrason. 2011 Dec;13(4):326-30 8378954 - Stroke. 1993 Oct;24(10 ):1507-12 17916661 - Heart. 2008 Jan;94(1):34-9 22127812 - J Magn Reson Imaging. 2012 Apr;35(4):812-9 20530503 - Eur Heart J. 2010 Aug;31(16):2041-8 19962047 - Cardiol Clin. 2010 Feb;28(1):1-30 25831989 - Cardiology. 2015;131(1):13-21 19628937 - Cerebrovasc Dis. 2009;28(4):357-64 16427334 - Eur J Vasc Endovasc Surg. 2006 Apr;31(4):373-80 26891484 - IEEE Trans Med Imaging. 2016 May;35(5):1313-21 22442043 - AJNR Am J Neuroradiol. 2012 Sep;33(8):1621-7 26162931 - MAGMA. 2015 Dec;28(6):535-45 26017442 - Nature. 2015 May 28;521(7553):436-44 15334569 - Magn Reson Med. 2004 Sep;52(3):515-23 |
References_xml | – ident: ref18 doi: 10.1002/mrm.20154 – ident: ref27 doi: 10.1109/TMI.2016.2538465 – ident: ref25 doi: 10.1016/j.ejvs.2005.10.010 – ident: ref4 doi: 10.1161/01.STR.22.3.312 – ident: ref9 doi: 10.1093/eurheartj/ehq189 – ident: ref16 doi: 10.1371/journal.pone.0094840 – start-page: 1 year: 0 ident: ref36 article-title: Adam: A method for stochastic optimization publication-title: Proc Int Conf Learn Represent – volume: 25 start-page: 1097 year: 2012 ident: ref34 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv Neural Inf Process Syst – year: 2011 ident: ref2 article-title: WHO: Stroke, cerebrovascular accident publication-title: Stroke – ident: ref17 doi: 10.1016/j.mri.2012.03.004 – ident: ref21 doi: 10.1067/mva.2002.122888 – ident: ref33 doi: 10.1038/nature14539 – ident: ref5 doi: 10.1016/j.jacc.2011.02.018 – ident: ref8 doi: 10.1016/j.ccl.2009.09.008 – ident: ref26 doi: 10.1109/JBHI.2014.2386796 – ident: ref23 doi: 10.1159/000229554 – ident: ref12 doi: 10.1002/mrm.20828 – ident: ref19 doi: 10.1186/s12968-014-0053-5 – ident: ref30 doi: 10.1016/j.media.2015.08.001 – ident: ref29 doi: 10.1109/TMI.2016.2535865 – ident: ref37 doi: 10.1109/TMI.2016.2548501 – volume: 32 start-page: 73 year: 2016 ident: ref10 article-title: In vivo semi-automatic segmentation of multicontrast cardiovascular magnetic resonance for prospective cohort studies on plaque tissue composition: initial experience publication-title: The International Journal of Cardiovascular Imaging doi: 10.1007/s10554-015-0704-0 – volume: 33 start-page: 1621 year: 2012 ident: ref14 article-title: Automated versus manual in vivo segmentation of carotid plaque MRI publication-title: Amer J Neuroradiol doi: 10.3174/ajnr.A3028 – volume: 13 start-page: 326 year: 2011 ident: ref20 article-title: Carotid ultrasound publication-title: Journal of Medical Ultrasonics – ident: ref3 doi: 10.1136/hrt.2007.134890 – ident: ref32 doi: 10.1109/TMI.2016.2532122 – ident: ref13 doi: 10.1002/jmri.22886 – ident: ref31 doi: 10.1109/TMI.2016.2528120 – ident: ref1 doi: 10.1159/000371739 – ident: ref28 doi: 10.1016/j.neuroimage.2014.12.061 – ident: ref24 doi: 10.1016/j.cult.2011.08.006 – ident: ref7 doi: 10.1161/ATVBAHA.108.179739 – ident: ref22 doi: 10.1161/01.STR.24.10.1507 – volume: 15 start-page: 1929 year: 2014 ident: ref35 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref15 doi: 10.1007/s10334-015-0495-2 – volume: 37 start-page: 93 year: 2006 ident: ref11 article-title: Validation of automatically classified magnetic resonance images for carotid plaque compositional analysis publication-title: Stroke doi: 10.1161/01.STR.0000196985.38701.0c – ident: ref6 doi: 10.7326/0003-4819-153-6-201009210-00272 – reference: 25184808 - J Cardiovasc Magn Reson. 2014 Jul 25;16:53 – reference: 22127812 - J Magn Reson Imaging. 2012 Apr;35(4):812-9 – reference: 17916661 - Heart. 2008 Jan;94(1):34-9 – reference: 22442043 - AJNR Am J Neuroradiol. 2012 Sep;33(8):1621-7 – reference: 19628937 - Cerebrovasc Dis. 2009;28(4):357-64 – reference: 2003301 - Stroke. 1991 Mar;22(3):312-8 – reference: 12042733 - J Vasc Surg. 2002 Jun;35(6):1210-7 – reference: 25562829 - Neuroimage. 2015 Mar;108:214-24 – reference: 22617149 - Magn Reson Imaging. 2012 Oct;30(8):1068-82 – reference: 24762678 - PLoS One. 2014 Apr 24;9(4):e94840 – reference: 26891484 - IEEE Trans Med Imaging. 2016 May;35(5):1313-21 – reference: 16526020 - Magn Reson Med. 2006 Apr;55(4):790-9 – reference: 26458112 - Med Image Anal. 2015 Dec;26(1):195-202 – reference: 15334569 - Magn Reson Med. 2004 Sep;52(3):515-23 – reference: 16427334 - Eur J Vasc Endovasc Surg. 2006 Apr;31(4):373-80 – reference: 26960222 - IEEE Trans Med Imaging. 2016 May;35(5):1240-1251 – reference: 26955021 - IEEE Trans Med Imaging. 2016 May;35(5):1207-1216 – reference: 20530503 - Eur Heart J. 2010 Aug;31(16):2041-8 – reference: 20713770 - Ann Intern Med. 2010 Sep 21;153(6):387-95 – reference: 27046893 - IEEE Trans Med Imaging. 2016 May;35(5):1252-1261 – reference: 20554950 - Arterioscler Thromb Vasc Biol. 2010 Jul;30(7):1282-92 – reference: 25831989 - Cardiology. 2015;131(1):13-21 – reference: 19962047 - Cardiol Clin. 2010 Feb;28(1):1-30 – reference: 26162931 - MAGMA. 2015 Dec;28(6):535-45 – reference: 25561598 - IEEE J Biomed Health Inform. 2016 Jan;20(1):256-67 – reference: 8378954 - Stroke. 1993 Oct;24(10 ):1507-12 – reference: 26915120 - IEEE Trans Med Imaging. 2016 May;35(5):1322-1331 – reference: 22132407 - Med Ultrason. 2011 Dec;13(4):326-30 – reference: 26169389 - Int J Cardiovasc Imaging. 2016 Jan;32(1):73-81 – reference: 26017442 - Nature. 2015 May 28;521(7553):436-44 – reference: 21565634 - J Am Coll Cardiol. 2011 May 17;57(20):1961-79 – reference: 16339462 - Stroke. 2006 Jan;37(1):93-7 |
SSID | ssj0000816896 |
Score | 2.5463207 |
Snippet | Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 48 |
SubjectTerms | Artificial neural networks Atherosclerosis Calcification Cardiovascular diseases Carotid Arteries - diagnostic imaging carotid artery Carotid Artery Diseases - diagnostic imaging Cerebrovascular system Composition Constituents convolutional neural networks (CNNs) Deep learning Feature extraction Health risks Humans Image Processing, Computer-Assisted - methods Imaging Lipidomics Lipids Machine learning Neural networks Neural Networks (Computer) plaque composition Plaque, Atherosclerotic - diagnostic imaging Plaques Rupture Tissues Ultrasonic imaging Ultrasonography - methods Ultrasound |
Title | A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound |
URI | https://ieeexplore.ieee.org/document/7752798 https://www.ncbi.nlm.nih.gov/pubmed/27893402 https://www.proquest.com/docview/1865387904 https://www.proquest.com/docview/1844608637 https://pubmed.ncbi.nlm.nih.gov/PMC5293622 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SHEovfaUPt2lRoadSb2zrfdwuDdvAlh66kJuRLZkuWezS2Dnk11cjy6YJofRkgcZGYmaseekbgA-ysQabWaXGOZay3LJUN0ymuVDcMW2oDj2WNt_EesvOL_jFAXya78I450LxmVvgMOTybVcPGCo7lZIXUqtDOJRSj3e15nhKaCAR2nEVfpB6RWQxiZln-vT88_or1nGJRSEo-hQIAiz9Wc1iPGU6kUKLlfuszbtFk3-dQmePYTOtfyw-uVwMfbWob-5AO_7vBp_Ao2iOkuUoP0_hwLXP4MEmJtyPYbckq669jvLpKRHMIzxC9TjxJi9ZDn0XgF_JakZ_Hi93kq4h3_fGb5HgfyfWh5FdS7DOpN9Zst37XV5ha6fnsD378mO1TmN3hrTmOe29elVNpm2OmUyvyN7vsUpVLDMys1QHwONcCOctOl1xi0hrihreUMoaI7lR9AUctV3rXgFxtUNHVBiVG0al1bbxXlhFmTCF5nWWQDZxqKwjdDl20NiXwYXJdIn8LZG_ZeRvAh_nV36NuB3_Ij5GXsyEkQ0JnExiUEbNvipz5XerpM5YAu_naa-TmGgxresGpPFOtvcVqUzg5Sg187cnqUtA3pKnmQDxvm_PtLufAfebe9NMFMXr-1f7Bh4WaHKE8NAJHPW_B_fWG0x99S5oyh-4PQ8E |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgEXXuURKGAkTohsk9iO7eOyotqWbsWhK_UWObGjrlglVZtw4NfjcZyIVhXiFEuZRBnNTDwvfwPwSdRG4zCrWFvLYpYaFquaiTjNJbdMaar8jKXVab5cs-Nzfr4DX6azMNZa33xmZ7j0tXzTVj2myg6E4JlQ8h7c5y6qEMNprSmj4kdI-IFcmVvEzhRZKGOmiTo4_ro8wk6ufJblFKMKhAEWbrdmIaMy7kl-yMpd_ubttsm_9qHDJ7AaORjaT37O-q6cVb9vgTv-L4tP4XFwSMl80KBnsGOb5_BgFUrue7CZk0Xb_Aoa6igRzsNffP84cU4vmfdd66FfyWLCfx6Od5K2Jj-22rFI8M8TOsTIpiHYadJtDFlvHZfXONzpBawPv50tlnGYzxBXPKWdM7CyTpRJsZbpTNlFPkbKkiVaJIYqD3mc5rl1Pp0quUGsNUk1rylltRZcS_oSdpu2sa-B2MpiKJprmWpGhVGmdnFYSVmuM8WrJIJklFBRBfBynKGxLXwQk6gC5VugfIsg3wg-T49cDsgd_yLeQ1lMhEEMEeyPalAE274uUum4lUIlLIKP021nlVhq0Y1te6RxYbaLFqmI4NWgNdO7R62LQNzQp4kAEb9v3mk2Fx75mzvnLM-yN3d_7Qd4uDxbnRQnR6ff38KjDB0Qnyzah93uqrfvnPvUle-91fwBFBgSVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Convolutional+Neural+Network+for+Automatic+Characterization+of+Plaque+Composition+in+Carotid+Ultrasound&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Lekadir%2C+Karim&rft.au=Galimzianova%2C+Alfiia&rft.au=Betriu%2C+Angels&rft.au=Del+Mar+Vila%2C+Maria&rft.date=2017-01-01&rft.eissn=2168-2208&rft.volume=21&rft.issue=1&rft.spage=48&rft.epage=55&rft_id=info:doi/10.1109%2FJBHI.2016.2631401&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |