A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound

Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the identification of plaques that are prone to rupture, and thus for early risk estimation of cardiovascular and cerebrovascular events. Due to...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 21; no. 1; pp. 48 - 55
Main Authors Lekadir, Karim, Galimzianova, Alfiia, Betriu, Angels, del Mar Vila, Maria, Igual, Laura, Rubin, Daniel L., Fernandez, Elvira, Radeva, Petia, Napel, Sandy
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
DOI10.1109/JBHI.2016.2631401

Cover

Abstract Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the identification of plaques that are prone to rupture, and thus for early risk estimation of cardiovascular and cerebrovascular events. Due to its low costs and wide availability, carotid ultrasound has the potential to become the modality of choice for plaque characterization in clinical practice. However, its significant image noise, coupled with the small size of the plaques and their complex appearance, makes it difficult for automated techniques to discriminate between the different plaque constituents. In this paper, we propose to address this challenging problem by exploiting the unique capabilities of the emerging deep learning framework. More specifically, and unlike existing works which require a priori definition of specific imaging features or thresholding values, we propose to build a convolutional neural network (CNN) that will automatically extract from the images the information that is optimal for the identification of the different plaque constituents. We used approximately 90 000 patches extracted from a database of images and corresponding expert plaque characterizations to train and to validate the proposed CNN. The results of cross-validation experiments show a correlation of about 0.90 with the clinical assessment for the estimation of lipid core, fibrous cap, and calcified tissue areas, indicating the potential of deep learning for the challenging task of automatic characterization of plaque composition in carotid ultrasound.
AbstractList Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the identification of plaques that are prone to rupture, and thus for early risk estimation of cardiovascular and cerebrovascular events. Due to its low costs and wide availability, carotid ultrasound has the potential to become the modality of choice for plaque characterization in clinical practice. However, its significant image noise, coupled with the small size of the plaques and their complex appearance, makes it difficult for automated techniques to discriminate between the different plaque constituents. In this paper, we propose to address this challenging problem by exploiting the unique capabilities of the emerging deep learning framework. More specifically, and unlike existing works which require a priori definition of specific imaging features or thresholding values, we propose to build a convolutional neural network that will automatically extract from the images the information that is optimal for the identification of the different plaque constituents. We used approximately 90,000 patches extracted from a database of images and corresponding expert plaque characterizations to train and to validate the proposed convolutional neural network (CNN). The results of cross-validation experiments show a correlation of about 0.90 with the clinical assessment for the estimation of lipid core, fibrous cap, and calcified tissue areas, indicating the potential of deep learning for the challenging task of automatic characterization of plaque composition in carotid ultrasound
Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the identification of plaques that are prone to rupture, and thus for early risk estimation of cardiovascular and cerebrovascular events. Due to its low costs and wide availability, carotid ultrasound has the potential to become the modality of choice for plaque characterization in clinical practice. However, its significant image noise, coupled with the small size of the plaques and their complex appearance, makes it difficult for automated techniques to discriminate between the different plaque constituents. In this paper, we propose to address this challenging problem by exploiting the unique capabilities of the emerging deep learning framework. More specifically, and unlike existing works which require a priori definition of specific imaging features or thresholding values, we propose to build a convolutional neural network (CNN) that will automatically extract from the images the information that is optimal for the identification of the different plaque constituents. We used approximately 90 000 patches extracted from a database of images and corresponding expert plaque characterizations to train and to validate the proposed CNN. The results of cross-validation experiments show a correlation of about 0.90 with the clinical assessment for the estimation of lipid core, fibrous cap, and calcified tissue areas, indicating the potential of deep learning for the challenging task of automatic characterization of plaque composition in carotid ultrasound.
Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the identification of plaques that are prone to rupture, and thus for early risk estimation of cardiovascular and cerebrovascular events. Due to its low costs and wide availability, carotid ultrasound has the potential to become the modality of choice for plaque characterization in clinical practice. However, its significant image noise, coupled with the small size of the plaques and their complex appearance, makes it difficult for automated techniques to discriminate between the different plaque constituents. In this paper, we propose to address this challenging problem by exploiting the unique capabilities of the emerging deep learning framework. More specifically, and unlike existing works which require a priori definition of specific imaging features or thresholding values, we propose to build a convolutional neural network (CNN) that will automatically extract from the images the information that is optimal for the identification of the different plaque constituents. We used approximately 90 000 patches extracted from a database of images and corresponding expert plaque characterizations to train and to validate the proposed CNN. The results of cross-validation experiments show a correlation of about 0.90 with the clinical assessment for the estimation of lipid core, fibrous cap, and calcified tissue areas, indicating the potential of deep learning for the challenging task of automatic characterization of plaque composition in carotid ultrasound.
Author Radeva, Petia
Galimzianova, Alfiia
Betriu, Angels
Fernandez, Elvira
del Mar Vila, Maria
Rubin, Daniel L.
Napel, Sandy
Lekadir, Karim
Igual, Laura
AuthorAffiliation Department of Radiology, Stanford University School of Medicine, USA
Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
Department of Radiology, Stanford University School of Medicine, USA, and with the Computer Vision Center (CVC), Barcelona, Spain
Department of Mathematics and Computer Science, Universitat de Barcelona, Spain, and with the Computer Vision Center (CVC), Barcelona, Spain
Unit for the Detection and Treatment of Atherothrombotic Diseases (UDETMA), Institute of Biomedical Research, Lleida, Spain
AuthorAffiliation_xml – name: Department of Mathematics and Computer Science, Universitat de Barcelona, Spain, and with the Computer Vision Center (CVC), Barcelona, Spain
– name: Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
– name: Unit for the Detection and Treatment of Atherothrombotic Diseases (UDETMA), Institute of Biomedical Research, Lleida, Spain
– name: Department of Radiology, Stanford University School of Medicine, USA, and with the Computer Vision Center (CVC), Barcelona, Spain
– name: Department of Radiology, Stanford University School of Medicine, USA
Author_xml – sequence: 1
  givenname: Karim
  surname: Lekadir
  fullname: Lekadir, Karim
  email: lekadir@gmail.com
  organization: Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
– sequence: 2
  givenname: Alfiia
  surname: Galimzianova
  fullname: Galimzianova, Alfiia
  email: alfiia@stanford.edu
  organization: Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
– sequence: 3
  givenname: Angels
  surname: Betriu
  fullname: Betriu, Angels
  email: angels.betriu.bars@gmail.com
  organization: Unit for the Detection and Treatment of Atherothrombotic Diseases, Institute of Biomedical Research, Lleida, Spain
– sequence: 4
  givenname: Maria
  surname: del Mar Vila
  fullname: del Mar Vila, Maria
  email: mariadelmarvila@gmail.com
  organization: Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute, Barcelona, Spain
– sequence: 5
  givenname: Laura
  surname: Igual
  fullname: Igual, Laura
  email: ligual@ub.edu
  organization: Department of Mathematics and Computer Science, Universitat de Barcelona 08007, Spain
– sequence: 6
  givenname: Daniel L.
  surname: Rubin
  fullname: Rubin, Daniel L.
  email: rubin@stanford.edu
  organization: Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
– sequence: 7
  givenname: Elvira
  surname: Fernandez
  fullname: Fernandez, Elvira
  email: efernandez@irblleida.cat
  organization: Unit for the Detection and Treatment of Atherothrombotic Diseases, Institute of Biomedical Research, Lleida, Spain
– sequence: 8
  givenname: Petia
  surname: Radeva
  fullname: Radeva, Petia
  email: petia.ivanova@ub.edu
  organization: Department of Mathematics and Computer Science, Universitat de Barcelona 08007, Spain
– sequence: 9
  givenname: Sandy
  surname: Napel
  fullname: Napel, Sandy
  email: snapel@stanford.edu
  organization: Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27893402$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1UREvpD0BIyBIbNjP4Eb82SEMEtKgCFnRteRKHujj21HaK4NfjzKOCLvDmWtffPTq-5yk4CjFYAJ5jtMQYqTef3p1fLAnCfEk4xQ3Cj8AJwVwuCEHy6HDHqjkGZznfoHpkbSn-BBwTIRVtEDkBbgXbGO6in4qLwXj42U5pW8rPmH7AISa4mkocTXEdbK9NMl2xyf02Mw_jAL96czvZqjJuYnbbrguwNSkW18MrX5LJcQr9M_B4MD7bs309BVcf3n9rzxeXXz5etKvLRccwLQuC1gNSPSaIckaxFKyXct0gI1BPFVJMUcy5lQyrNesJVVRSwwZKm8EIZiQ9BW93uptpPdq-s6E68HqT3GjSLx2N0_--BHetv8c7zYiinJAq8HovkGL9WS56dLmz3ptg45Q1lk3DkeRUVPTVA_QmTqmucaaqfSkUair18m9H91YOKVRA7IAuxZyTHXTnynbB1aDzGiM9R67nyPUcud5HXifxg8mD-P9mXuxmnLX2nheCEaEk_QP9ZrX6
CODEN IJBHA9
CitedBy_id crossref_primary_10_1109_TBME_2018_2877577
crossref_primary_10_1109_TBME_2023_3279114
crossref_primary_10_3390_diagnostics14010046
crossref_primary_10_1038_s41598_022_20969_z
crossref_primary_10_1097_MCG_0000000000001423
crossref_primary_10_1007_s11883_018_0736_8
crossref_primary_10_1109_JBHI_2020_2991043
crossref_primary_10_1016_j_eng_2018_11_020
crossref_primary_10_2174_0929867331666230821092226
crossref_primary_10_1007_s13735_021_00218_1
crossref_primary_10_3390_s22218201
crossref_primary_10_1016_j_media_2017_07_005
crossref_primary_10_52586_5026
crossref_primary_10_3390_info11020080
crossref_primary_10_3390_s20113243
crossref_primary_10_1016_j_ultrasmedbio_2018_07_027
crossref_primary_10_1016_j_jacr_2019_06_004
crossref_primary_10_1038_s41598_017_15720_y
crossref_primary_10_1148_radiol_2018180547
crossref_primary_10_3390_healthcare10122493
crossref_primary_10_1007_s10278_017_9983_4
crossref_primary_10_1007_s11277_022_09864_y
crossref_primary_10_1016_j_neunet_2020_10_006
crossref_primary_10_1080_1744666X_2022_2017773
crossref_primary_10_1007_s10462_020_09920_8
crossref_primary_10_1016_j_compbiomed_2020_104043
crossref_primary_10_23736_S0392_9590_19_04267_6
crossref_primary_10_4015_S1016237219500091
crossref_primary_10_1109_JBHI_2020_2968815
crossref_primary_10_3390_diagnostics12051234
crossref_primary_10_2174_1386207326666230306114626
crossref_primary_10_1007_s11227_024_06770_x
crossref_primary_10_1007_s11042_018_6005_6
crossref_primary_10_1016_j_irbm_2024_100841
crossref_primary_10_3389_fnagi_2021_828214
crossref_primary_10_1161_CIRCRESAHA_121_318224
crossref_primary_10_1016_j_ymssp_2020_106922
crossref_primary_10_1055_s_0044_1779486
crossref_primary_10_1016_j_artmed_2023_102539
crossref_primary_10_3390_electronics12122750
crossref_primary_10_1007_s12194_017_0406_5
crossref_primary_10_23736_S0392_9590_20_04538_1
crossref_primary_10_1177_0161734620951216
crossref_primary_10_1016_j_compbiomed_2022_106017
crossref_primary_10_3934_mbe_2024138
crossref_primary_10_1055_a_2180_8405
crossref_primary_10_31185_wjcm_65
crossref_primary_10_4329_wjr_v12_i1_1
crossref_primary_10_1007_s00415_022_11315_4
crossref_primary_10_1007_s11063_023_11232_1
crossref_primary_10_4103_aian_aian_483_21
crossref_primary_10_1007_s11831_018_9257_4
crossref_primary_10_1007_s00216_023_04991_2
crossref_primary_10_1155_2022_2014349
crossref_primary_10_3390_biomedicines9070720
crossref_primary_10_1007_s00772_024_01098_5
crossref_primary_10_1155_2022_9288452
crossref_primary_10_1016_j_rec_2019_05_014
crossref_primary_10_3390_jcdd9080268
crossref_primary_10_1016_j_recesp_2019_05_016
crossref_primary_10_1016_j_tcm_2018_06_007
crossref_primary_10_1002_jum_15819
crossref_primary_10_1161_STROKEAHA_120_031295
crossref_primary_10_1007_s00330_022_09324_y
crossref_primary_10_1002_uog_21967
crossref_primary_10_3390_biomimetics9080465
crossref_primary_10_1016_j_ijmedinf_2020_104326
crossref_primary_10_1109_JBHI_2022_3182722
crossref_primary_10_1016_j_ejmp_2021_02_007
crossref_primary_10_3389_fnins_2023_1118376
crossref_primary_10_1177_0954411919900720
crossref_primary_10_1007_s00330_022_09024_7
crossref_primary_10_1016_j_imu_2020_100496
crossref_primary_10_1109_ACCESS_2019_2929365
crossref_primary_10_1007_s00261_018_1517_0
crossref_primary_10_1016_j_ins_2020_12_086
crossref_primary_10_1155_2018_5137904
crossref_primary_10_1002_ett_4017
crossref_primary_10_1371_journal_pdig_0000659
crossref_primary_10_1016_j_compbiomed_2020_103958
crossref_primary_10_1016_j_medengphy_2021_09_003
crossref_primary_10_1080_14737175_2021_1951234
crossref_primary_10_1007_s10439_022_03033_9
crossref_primary_10_25046_aj020365
crossref_primary_10_1007_s11517_018_1792_5
crossref_primary_10_1186_s12938_020_00831_x
crossref_primary_10_1007_s00521_021_06112_5
crossref_primary_10_1007_s00330_021_07850_9
crossref_primary_10_1007_s11883_019_0788_4
crossref_primary_10_1016_j_ultrasmedbio_2024_12_010
crossref_primary_10_1007_s11883_019_0766_x
crossref_primary_10_1053_j_semvascsurg_2023_05_002
crossref_primary_10_1007_s10554_020_02124_9
crossref_primary_10_2174_1573405620666230529112655
crossref_primary_10_1109_RBME_2018_2885714
crossref_primary_10_3390_jcm11133823
crossref_primary_10_4236_jbise_2018_1110022
crossref_primary_10_1080_0952813X_2018_1518999
crossref_primary_10_1155_2021_3425893
crossref_primary_10_2174_1573405619666230306101012
crossref_primary_10_1002_mp_14909
crossref_primary_10_1016_j_compbiomed_2024_109180
crossref_primary_10_1016_j_ejrad_2021_109717
crossref_primary_10_1053_j_semvascsurg_2023_07_001
crossref_primary_10_1111_den_13844
crossref_primary_10_4236_ojmi_2020_101002
crossref_primary_10_1007_s11277_024_11428_1
crossref_primary_10_3174_ajnr_A5488
crossref_primary_10_1097_RMR_0000000000000296
crossref_primary_10_1109_JBHI_2022_3162894
crossref_primary_10_1109_TUFFC_2021_3090461
crossref_primary_10_1590_1678_4324_2023220071
crossref_primary_10_1002_jbio_201900112
crossref_primary_10_1016_S1474_4422_19_30035_3
crossref_primary_10_1002_mrm_27627
crossref_primary_10_1016_j_irbm_2021_07_004
crossref_primary_10_37015_AUDT_2023_230018
crossref_primary_10_2478_jaiscr_2022_0007
Cites_doi 10.1002/mrm.20154
10.1109/TMI.2016.2538465
10.1016/j.ejvs.2005.10.010
10.1161/01.STR.22.3.312
10.1093/eurheartj/ehq189
10.1371/journal.pone.0094840
10.1016/j.mri.2012.03.004
10.1067/mva.2002.122888
10.1038/nature14539
10.1016/j.jacc.2011.02.018
10.1016/j.ccl.2009.09.008
10.1109/JBHI.2014.2386796
10.1159/000229554
10.1002/mrm.20828
10.1186/s12968-014-0053-5
10.1016/j.media.2015.08.001
10.1109/TMI.2016.2535865
10.1109/TMI.2016.2548501
10.1007/s10554-015-0704-0
10.3174/ajnr.A3028
10.1136/hrt.2007.134890
10.1109/TMI.2016.2532122
10.1002/jmri.22886
10.1109/TMI.2016.2528120
10.1159/000371739
10.1016/j.neuroimage.2014.12.061
10.1016/j.cult.2011.08.006
10.1161/ATVBAHA.108.179739
10.1161/01.STR.24.10.1507
10.1007/s10334-015-0495-2
10.1161/01.STR.0000196985.38701.0c
10.7326/0003-4819-153-6-201009210-00272
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/JBHI.2016.2631401
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 55
ExternalDocumentID PMC5293622
27893402
10_1109_JBHI_2016_2631401
7752798
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NIH
  grantid: CA160251; U01 CA187947
  funderid: 10.13039/100000002
– fundername: NIH
  grantid: U01CA142555; 1U01CA190214
  funderid: 10.13039/100000002
– fundername: FIS
  grantid: CP12/03287; RD12/0042/0061
– fundername: REA
  grantid: 600388
  funderid: 10.13039/501100000783
– fundername: ICREA
  funderid: 10.13039/501100003741
– fundername: NVIDIA
  funderid: 10.13039/100007065
– fundername: Marie-Curie Actions Program of the European Union
  grantid: (FP7/2007-2013)
– fundername: European Regions Development
– fundername: NCI NIH HHS
  grantid: U01 CA142555
– fundername: NCI NIH HHS
  grantid: U01 CA187947
– fundername: NCI NIH HHS
  grantid: R01 CA160251
– fundername: NCI NIH HHS
  grantid: U01 CA190214
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c513t-20bf09d12036531875d88b40a70d3909593166e8519b5d239383a5f334fa75a83
IEDL.DBID RIE
ISSN 2168-2194
IngestDate Thu Aug 21 18:21:45 EDT 2025
Sun Sep 28 12:31:06 EDT 2025
Sun Jun 29 12:37:01 EDT 2025
Mon Jul 21 06:02:53 EDT 2025
Tue Jul 01 02:59:54 EDT 2025
Thu Apr 24 23:00:49 EDT 2025
Wed Aug 27 02:30:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c513t-20bf09d12036531875d88b40a70d3909593166e8519b5d239383a5f334fa75a83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5293622
PMID 27893402
PQID 1865387904
PQPubID 85417
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_JBHI_2016_2631401
ieee_primary_7752798
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5293622
crossref_primary_10_1109_JBHI_2016_2631401
pubmed_primary_27893402
proquest_journals_1865387904
proquest_miscellaneous_1844608637
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References kingma (ref36) 0
ref13
ref12
ref37
ref15
ref31
ref30
ref33
ref32
ref1
ref17
ref16
ref19
ref18
krizhevsky (ref34) 2012; 25
van ’t klooster (ref14) 2012; 33
organisation (ref2) 2011
ref24
ref23
ref26
cri?an (ref20) 2011; 13
ref25
ref22
ref21
clarke (ref11) 2006; 37
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
srivastava (ref35) 2014; 15
yoneyama (ref10) 2016; 32
26960222 - IEEE Trans Med Imaging. 2016 May;35(5):1240-1251
16526020 - Magn Reson Med. 2006 Apr;55(4):790-9
25561598 - IEEE J Biomed Health Inform. 2016 Jan;20(1):256-67
25184808 - J Cardiovasc Magn Reson. 2014 Jul 25;16:53
24762678 - PLoS One. 2014 Apr 24;9(4):e94840
22617149 - Magn Reson Imaging. 2012 Oct;30(8):1068-82
27046893 - IEEE Trans Med Imaging. 2016 May;35(5):1252-1261
25562829 - Neuroimage. 2015 Mar;108:214-24
12042733 - J Vasc Surg. 2002 Jun;35(6):1210-7
21565634 - J Am Coll Cardiol. 2011 May 17;57(20):1961-79
26955021 - IEEE Trans Med Imaging. 2016 May;35(5):1207-1216
26458112 - Med Image Anal. 2015 Dec;26(1):195-202
16339462 - Stroke. 2006 Jan;37(1):93-7
20713770 - Ann Intern Med. 2010 Sep 21;153(6):387-95
26169389 - Int J Cardiovasc Imaging. 2016 Jan;32(1):73-81
20554950 - Arterioscler Thromb Vasc Biol. 2010 Jul;30(7):1282-92
2003301 - Stroke. 1991 Mar;22(3):312-8
26915120 - IEEE Trans Med Imaging. 2016 May;35(5):1322-1331
22132407 - Med Ultrason. 2011 Dec;13(4):326-30
8378954 - Stroke. 1993 Oct;24(10 ):1507-12
17916661 - Heart. 2008 Jan;94(1):34-9
22127812 - J Magn Reson Imaging. 2012 Apr;35(4):812-9
20530503 - Eur Heart J. 2010 Aug;31(16):2041-8
19962047 - Cardiol Clin. 2010 Feb;28(1):1-30
25831989 - Cardiology. 2015;131(1):13-21
19628937 - Cerebrovasc Dis. 2009;28(4):357-64
16427334 - Eur J Vasc Endovasc Surg. 2006 Apr;31(4):373-80
26891484 - IEEE Trans Med Imaging. 2016 May;35(5):1313-21
22442043 - AJNR Am J Neuroradiol. 2012 Sep;33(8):1621-7
26162931 - MAGMA. 2015 Dec;28(6):535-45
26017442 - Nature. 2015 May 28;521(7553):436-44
15334569 - Magn Reson Med. 2004 Sep;52(3):515-23
References_xml – ident: ref18
  doi: 10.1002/mrm.20154
– ident: ref27
  doi: 10.1109/TMI.2016.2538465
– ident: ref25
  doi: 10.1016/j.ejvs.2005.10.010
– ident: ref4
  doi: 10.1161/01.STR.22.3.312
– ident: ref9
  doi: 10.1093/eurheartj/ehq189
– ident: ref16
  doi: 10.1371/journal.pone.0094840
– start-page: 1
  year: 0
  ident: ref36
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
– volume: 25
  start-page: 1097
  year: 2012
  ident: ref34
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv Neural Inf Process Syst
– year: 2011
  ident: ref2
  article-title: WHO: Stroke, cerebrovascular accident
  publication-title: Stroke
– ident: ref17
  doi: 10.1016/j.mri.2012.03.004
– ident: ref21
  doi: 10.1067/mva.2002.122888
– ident: ref33
  doi: 10.1038/nature14539
– ident: ref5
  doi: 10.1016/j.jacc.2011.02.018
– ident: ref8
  doi: 10.1016/j.ccl.2009.09.008
– ident: ref26
  doi: 10.1109/JBHI.2014.2386796
– ident: ref23
  doi: 10.1159/000229554
– ident: ref12
  doi: 10.1002/mrm.20828
– ident: ref19
  doi: 10.1186/s12968-014-0053-5
– ident: ref30
  doi: 10.1016/j.media.2015.08.001
– ident: ref29
  doi: 10.1109/TMI.2016.2535865
– ident: ref37
  doi: 10.1109/TMI.2016.2548501
– volume: 32
  start-page: 73
  year: 2016
  ident: ref10
  article-title: In vivo semi-automatic segmentation of multicontrast cardiovascular magnetic resonance for prospective cohort studies on plaque tissue composition: initial experience
  publication-title: The International Journal of Cardiovascular Imaging
  doi: 10.1007/s10554-015-0704-0
– volume: 33
  start-page: 1621
  year: 2012
  ident: ref14
  article-title: Automated versus manual in vivo segmentation of carotid plaque MRI
  publication-title: Amer J Neuroradiol
  doi: 10.3174/ajnr.A3028
– volume: 13
  start-page: 326
  year: 2011
  ident: ref20
  article-title: Carotid ultrasound
  publication-title: Journal of Medical Ultrasonics
– ident: ref3
  doi: 10.1136/hrt.2007.134890
– ident: ref32
  doi: 10.1109/TMI.2016.2532122
– ident: ref13
  doi: 10.1002/jmri.22886
– ident: ref31
  doi: 10.1109/TMI.2016.2528120
– ident: ref1
  doi: 10.1159/000371739
– ident: ref28
  doi: 10.1016/j.neuroimage.2014.12.061
– ident: ref24
  doi: 10.1016/j.cult.2011.08.006
– ident: ref7
  doi: 10.1161/ATVBAHA.108.179739
– ident: ref22
  doi: 10.1161/01.STR.24.10.1507
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref35
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref15
  doi: 10.1007/s10334-015-0495-2
– volume: 37
  start-page: 93
  year: 2006
  ident: ref11
  article-title: Validation of automatically classified magnetic resonance images for carotid plaque compositional analysis
  publication-title: Stroke
  doi: 10.1161/01.STR.0000196985.38701.0c
– ident: ref6
  doi: 10.7326/0003-4819-153-6-201009210-00272
– reference: 25184808 - J Cardiovasc Magn Reson. 2014 Jul 25;16:53
– reference: 22127812 - J Magn Reson Imaging. 2012 Apr;35(4):812-9
– reference: 17916661 - Heart. 2008 Jan;94(1):34-9
– reference: 22442043 - AJNR Am J Neuroradiol. 2012 Sep;33(8):1621-7
– reference: 19628937 - Cerebrovasc Dis. 2009;28(4):357-64
– reference: 2003301 - Stroke. 1991 Mar;22(3):312-8
– reference: 12042733 - J Vasc Surg. 2002 Jun;35(6):1210-7
– reference: 25562829 - Neuroimage. 2015 Mar;108:214-24
– reference: 22617149 - Magn Reson Imaging. 2012 Oct;30(8):1068-82
– reference: 24762678 - PLoS One. 2014 Apr 24;9(4):e94840
– reference: 26891484 - IEEE Trans Med Imaging. 2016 May;35(5):1313-21
– reference: 16526020 - Magn Reson Med. 2006 Apr;55(4):790-9
– reference: 26458112 - Med Image Anal. 2015 Dec;26(1):195-202
– reference: 15334569 - Magn Reson Med. 2004 Sep;52(3):515-23
– reference: 16427334 - Eur J Vasc Endovasc Surg. 2006 Apr;31(4):373-80
– reference: 26960222 - IEEE Trans Med Imaging. 2016 May;35(5):1240-1251
– reference: 26955021 - IEEE Trans Med Imaging. 2016 May;35(5):1207-1216
– reference: 20530503 - Eur Heart J. 2010 Aug;31(16):2041-8
– reference: 20713770 - Ann Intern Med. 2010 Sep 21;153(6):387-95
– reference: 27046893 - IEEE Trans Med Imaging. 2016 May;35(5):1252-1261
– reference: 20554950 - Arterioscler Thromb Vasc Biol. 2010 Jul;30(7):1282-92
– reference: 25831989 - Cardiology. 2015;131(1):13-21
– reference: 19962047 - Cardiol Clin. 2010 Feb;28(1):1-30
– reference: 26162931 - MAGMA. 2015 Dec;28(6):535-45
– reference: 25561598 - IEEE J Biomed Health Inform. 2016 Jan;20(1):256-67
– reference: 8378954 - Stroke. 1993 Oct;24(10 ):1507-12
– reference: 26915120 - IEEE Trans Med Imaging. 2016 May;35(5):1322-1331
– reference: 22132407 - Med Ultrason. 2011 Dec;13(4):326-30
– reference: 26169389 - Int J Cardiovasc Imaging. 2016 Jan;32(1):73-81
– reference: 26017442 - Nature. 2015 May 28;521(7553):436-44
– reference: 21565634 - J Am Coll Cardiol. 2011 May 17;57(20):1961-79
– reference: 16339462 - Stroke. 2006 Jan;37(1):93-7
SSID ssj0000816896
Score 2.5463207
Snippet Characterization of carotid plaque composition, more specifically the amount of lipid core, fibrous tissue, and calcified tissue, is an important task for the...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 48
SubjectTerms Artificial neural networks
Atherosclerosis
Calcification
Cardiovascular diseases
Carotid Arteries - diagnostic imaging
carotid artery
Carotid Artery Diseases - diagnostic imaging
Cerebrovascular system
Composition
Constituents
convolutional neural networks (CNNs)
Deep learning
Feature extraction
Health risks
Humans
Image Processing, Computer-Assisted - methods
Imaging
Lipidomics
Lipids
Machine learning
Neural networks
Neural Networks (Computer)
plaque composition
Plaque, Atherosclerotic - diagnostic imaging
Plaques
Rupture
Tissues
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
Title A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound
URI https://ieeexplore.ieee.org/document/7752798
https://www.ncbi.nlm.nih.gov/pubmed/27893402
https://www.proquest.com/docview/1865387904
https://www.proquest.com/docview/1844608637
https://pubmed.ncbi.nlm.nih.gov/PMC5293622
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SHEovfaUPt2lRoadSb2zrfdwuDdvAlh66kJuRLZkuWezS2Dnk11cjy6YJofRkgcZGYmaseekbgA-ysQabWaXGOZay3LJUN0ymuVDcMW2oDj2WNt_EesvOL_jFAXya78I450LxmVvgMOTybVcPGCo7lZIXUqtDOJRSj3e15nhKaCAR2nEVfpB6RWQxiZln-vT88_or1nGJRSEo-hQIAiz9Wc1iPGU6kUKLlfuszbtFk3-dQmePYTOtfyw-uVwMfbWob-5AO_7vBp_Ao2iOkuUoP0_hwLXP4MEmJtyPYbckq669jvLpKRHMIzxC9TjxJi9ZDn0XgF_JakZ_Hi93kq4h3_fGb5HgfyfWh5FdS7DOpN9Zst37XV5ha6fnsD378mO1TmN3hrTmOe29elVNpm2OmUyvyN7vsUpVLDMys1QHwONcCOctOl1xi0hrihreUMoaI7lR9AUctV3rXgFxtUNHVBiVG0al1bbxXlhFmTCF5nWWQDZxqKwjdDl20NiXwYXJdIn8LZG_ZeRvAh_nV36NuB3_Ij5GXsyEkQ0JnExiUEbNvipz5XerpM5YAu_naa-TmGgxresGpPFOtvcVqUzg5Sg187cnqUtA3pKnmQDxvm_PtLufAfebe9NMFMXr-1f7Bh4WaHKE8NAJHPW_B_fWG0x99S5oyh-4PQ8E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgEXXuURKGAkTohsk9iO7eOyotqWbsWhK_UWObGjrlglVZtw4NfjcZyIVhXiFEuZRBnNTDwvfwPwSdRG4zCrWFvLYpYaFquaiTjNJbdMaar8jKXVab5cs-Nzfr4DX6azMNZa33xmZ7j0tXzTVj2myg6E4JlQ8h7c5y6qEMNprSmj4kdI-IFcmVvEzhRZKGOmiTo4_ro8wk6ufJblFKMKhAEWbrdmIaMy7kl-yMpd_ubttsm_9qHDJ7AaORjaT37O-q6cVb9vgTv-L4tP4XFwSMl80KBnsGOb5_BgFUrue7CZk0Xb_Aoa6igRzsNffP84cU4vmfdd66FfyWLCfx6Od5K2Jj-22rFI8M8TOsTIpiHYadJtDFlvHZfXONzpBawPv50tlnGYzxBXPKWdM7CyTpRJsZbpTNlFPkbKkiVaJIYqD3mc5rl1Pp0quUGsNUk1rylltRZcS_oSdpu2sa-B2MpiKJprmWpGhVGmdnFYSVmuM8WrJIJklFBRBfBynKGxLXwQk6gC5VugfIsg3wg-T49cDsgd_yLeQ1lMhEEMEeyPalAE274uUum4lUIlLIKP021nlVhq0Y1te6RxYbaLFqmI4NWgNdO7R62LQNzQp4kAEb9v3mk2Fx75mzvnLM-yN3d_7Qd4uDxbnRQnR6ff38KjDB0Qnyzah93uqrfvnPvUle-91fwBFBgSVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Convolutional+Neural+Network+for+Automatic+Characterization+of+Plaque+Composition+in+Carotid+Ultrasound&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Lekadir%2C+Karim&rft.au=Galimzianova%2C+Alfiia&rft.au=Betriu%2C+Angels&rft.au=Del+Mar+Vila%2C+Maria&rft.date=2017-01-01&rft.eissn=2168-2208&rft.volume=21&rft.issue=1&rft.spage=48&rft.epage=55&rft_id=info:doi/10.1109%2FJBHI.2016.2631401&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon