On the role of the optimization algorithm of RapidArc® volumetric modulated arc therapy on plan quality and efficiency

Purpose: The RapidArc volumetric modulated arc therapy (VMAT) planning process is based on a core engine, the so-called progressive resolution optimizer (PRO). This is the optimization algorithm used to determine the combination of field shapes, segment weights (with dose rate and gantry speed varia...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 38; no. 11; pp. 5844 - 5856
Main Authors Vanetti, Eugenio, Nicolini, Giorgia, Nord, Janne, Peltola, Jarkko, Clivio, Alessandro, Fogliata, Antonella, Cozzi, Luca
Format Journal Article
LanguageEnglish
Published United States American Association of Physicists in Medicine 01.11.2011
Subjects
Online AccessGet full text
ISSN0094-2405
2473-4209
DOI10.1118/1.3641866

Cover

Abstract Purpose: The RapidArc volumetric modulated arc therapy (VMAT) planning process is based on a core engine, the so-called progressive resolution optimizer (PRO). This is the optimization algorithm used to determine the combination of field shapes, segment weights (with dose rate and gantry speed variations), which best approximate the desired dose distribution in the inverse planning problem. A study was performed to assess the behavior of two versions of PRO. These two versions mostly differ in the way continuous variables describing the modulated arc are sampled into discrete control points, in the planning efficiency and in the presence of some new features. The analysis aimed to assess (i) plan quality, (ii) technical delivery aspects, (iii) agreement between delivery and calculations, and (iv) planning efficiency of the two versions. Methods: RapidArc plans were generated for four groups of patients (five patients each): anal canal, advanced lung, head and neck, and multiple brain metastases and were designed to test different levels of planning complexity and anatomical features. Plans from optimization with PRO2 (first generation of RapidArc optimizer) were compared against PRO3 (second generation of the algorithm). Additional plans were optimized with PRO3 using new features: the jaw tracking, the intermediate dose and the air cavity correction options. Results: Results showed that (i) plan quality was generally improved with PRO3 and, although not for all parameters, some of the scored indices showed a macroscopic improvement with PRO3. (ii) PRO3 optimization leads to simpler patterns of the dynamic parameters particularly for dose rate. (iii) No differences were observed between the two algorithms in terms of pretreatment quality assurance measurements and (iv) PRO3 optimization was generally faster, with a time reduction of a factor approximately 3.5 with respect to PRO2. Conclusions: These results indicate that PRO3 is either clinically beneficial or neutral in terms of dosimetric quality while it showed significant advantages in speed and technical aspects.
AbstractList Purpose: The RapidArc volumetric modulated arc therapy (VMAT) planning process is based on a core engine, the so-called progressive resolution optimizer (PRO). This is the optimization algorithm used to determine the combination of field shapes, segment weights (with dose rate and gantry speed variations), which best approximate the desired dose distribution in the inverse planning problem. A study was performed to assess the behavior of two versions of PRO. These two versions mostly differ in the way continuous variables describing the modulated arc are sampled into discrete control points, in the planning efficiency and in the presence of some new features. The analysis aimed to assess (i) plan quality, (ii) technical delivery aspects, (iii) agreement between delivery and calculations, and (iv) planning efficiency of the two versions. Methods: RapidArc plans were generated for four groups of patients (five patients each): anal canal, advanced lung, head and neck, and multiple brain metastases and were designed to test different levels of planning complexity and anatomical features. Plans from optimization with PRO2 (first generation of RapidArc optimizer) were compared against PRO3 (second generation of the algorithm). Additional plans were optimized with PRO3 using new features: the jaw tracking, the intermediate dose and the air cavity correction options. Results: Results showed that (i) plan quality was generally improved with PRO3 and, although not for all parameters, some of the scored indices showed a macroscopic improvement with PRO3. (ii) PRO3 optimization leads to simpler patterns of the dynamic parameters particularly for dose rate. (iii) No differences were observed between the two algorithms in terms of pretreatment quality assurance measurements and (iv) PRO3 optimization was generally faster, with a time reduction of a factor approximately 3.5 with respect to PRO2. Conclusions: These results indicate that PRO3 is either clinically beneficial or neutral in terms of dosimetric quality while it showed significant advantages in speed and technical aspects.
The RapidArc volumetric modulated arc therapy (VMAT) planning process is based on a core engine, the so-called progressive resolution optimizer (PRO). This is the optimization algorithm used to determine the combination of field shapes, segment weights (with dose rate and gantry speed variations), which best approximate the desired dose distribution in the inverse planning problem. A study was performed to assess the behavior of two versions of PRO. These two versions mostly differ in the way continuous variables describing the modulated arc are sampled into discrete control points, in the planning efficiency and in the presence of some new features. The analysis aimed to assess (i) plan quality, (ii) technical delivery aspects, (iii) agreement between delivery and calculations, and (iv) planning efficiency of the two versions. RapidArc plans were generated for four groups of patients (five patients each): anal canal, advanced lung, head and neck, and multiple brain metastases and were designed to test different levels of planning complexity and anatomical features. Plans from optimization with PRO2 (first generation of RapidArc optimizer) were compared against PRO3 (second generation of the algorithm). Additional plans were optimized with PRO3 using new features: the jaw tracking, the intermediate dose and the air cavity correction options. Results showed that (i) plan quality was generally improved with PRO3 and, although not for all parameters, some of the scored indices showed a macroscopic improvement with PRO3. (ii) PRO3 optimization leads to simpler patterns of the dynamic parameters particularly for dose rate. (iii) No differences were observed between the two algorithms in terms of pretreatment quality assurance measurements and (iv) PRO3 optimization was generally faster, with a time reduction of a factor approximately 3.5 with respect to PRO2. These results indicate that PRO3 is either clinically beneficial or neutral in terms of dosimetric quality while it showed significant advantages in speed and technical aspects.
The RapidArc volumetric modulated arc therapy (VMAT) planning process is based on a core engine, the so-called progressive resolution optimizer (PRO). This is the optimization algorithm used to determine the combination of field shapes, segment weights (with dose rate and gantry speed variations), which best approximate the desired dose distribution in the inverse planning problem. A study was performed to assess the behavior of two versions of PRO. These two versions mostly differ in the way continuous variables describing the modulated arc are sampled into discrete control points, in the planning efficiency and in the presence of some new features. The analysis aimed to assess (i) plan quality, (ii) technical delivery aspects, (iii) agreement between delivery and calculations, and (iv) planning efficiency of the two versions.PURPOSEThe RapidArc volumetric modulated arc therapy (VMAT) planning process is based on a core engine, the so-called progressive resolution optimizer (PRO). This is the optimization algorithm used to determine the combination of field shapes, segment weights (with dose rate and gantry speed variations), which best approximate the desired dose distribution in the inverse planning problem. A study was performed to assess the behavior of two versions of PRO. These two versions mostly differ in the way continuous variables describing the modulated arc are sampled into discrete control points, in the planning efficiency and in the presence of some new features. The analysis aimed to assess (i) plan quality, (ii) technical delivery aspects, (iii) agreement between delivery and calculations, and (iv) planning efficiency of the two versions.RapidArc plans were generated for four groups of patients (five patients each): anal canal, advanced lung, head and neck, and multiple brain metastases and were designed to test different levels of planning complexity and anatomical features. Plans from optimization with PRO2 (first generation of RapidArc optimizer) were compared against PRO3 (second generation of the algorithm). Additional plans were optimized with PRO3 using new features: the jaw tracking, the intermediate dose and the air cavity correction options.METHODSRapidArc plans were generated for four groups of patients (five patients each): anal canal, advanced lung, head and neck, and multiple brain metastases and were designed to test different levels of planning complexity and anatomical features. Plans from optimization with PRO2 (first generation of RapidArc optimizer) were compared against PRO3 (second generation of the algorithm). Additional plans were optimized with PRO3 using new features: the jaw tracking, the intermediate dose and the air cavity correction options.Results showed that (i) plan quality was generally improved with PRO3 and, although not for all parameters, some of the scored indices showed a macroscopic improvement with PRO3. (ii) PRO3 optimization leads to simpler patterns of the dynamic parameters particularly for dose rate. (iii) No differences were observed between the two algorithms in terms of pretreatment quality assurance measurements and (iv) PRO3 optimization was generally faster, with a time reduction of a factor approximately 3.5 with respect to PRO2.RESULTSResults showed that (i) plan quality was generally improved with PRO3 and, although not for all parameters, some of the scored indices showed a macroscopic improvement with PRO3. (ii) PRO3 optimization leads to simpler patterns of the dynamic parameters particularly for dose rate. (iii) No differences were observed between the two algorithms in terms of pretreatment quality assurance measurements and (iv) PRO3 optimization was generally faster, with a time reduction of a factor approximately 3.5 with respect to PRO2.These results indicate that PRO3 is either clinically beneficial or neutral in terms of dosimetric quality while it showed significant advantages in speed and technical aspects.CONCLUSIONSThese results indicate that PRO3 is either clinically beneficial or neutral in terms of dosimetric quality while it showed significant advantages in speed and technical aspects.
Author Vanetti, Eugenio
Cozzi, Luca
Fogliata, Antonella
Nicolini, Giorgia
Nord, Janne
Peltola, Jarkko
Clivio, Alessandro
Author_xml – sequence: 1
  givenname: Eugenio
  surname: Vanetti
  fullname: Vanetti, Eugenio
  organization: Oncology Institute of Southern Switzerland, Medical Physics Unit, CH-6500 Bellinzona, Switzerland
– sequence: 2
  givenname: Giorgia
  surname: Nicolini
  fullname: Nicolini, Giorgia
  email: giorgia.nicolini@eoc.ch
  organization: Oncology Institute of Southern Switzerland, Medical Physics Unit, CH-6500 Bellinzona, Switzerland
– sequence: 3
  givenname: Janne
  surname: Nord
  fullname: Nord, Janne
  organization: Varian Medical Systems, SF-00270 Helsinki, Finland
– sequence: 4
  givenname: Jarkko
  surname: Peltola
  fullname: Peltola, Jarkko
  organization: Varian Medical Systems, SF-00270 Helsinki, Finland
– sequence: 5
  givenname: Alessandro
  surname: Clivio
  fullname: Clivio, Alessandro
  organization: Oncology Institute of Southern Switzerland, Medical Physics Unit, CH-6500 Bellinzona, Switzerland
– sequence: 6
  givenname: Antonella
  surname: Fogliata
  fullname: Fogliata, Antonella
  organization: Oncology Institute of Southern Switzerland, Medical Physics Unit, CH-6500 Bellinzona, Switzerland
– sequence: 7
  givenname: Luca
  surname: Cozzi
  fullname: Cozzi, Luca
  organization: Oncology Institute of Southern Switzerland, Medical Physics Unit, CH-6500 Bellinzona, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22047348$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1qHSEUhaUkNCdpL_oCxbvSwiTqqDNzUwihP4GUU0p7LY6jjcUZJ-okTB4qD5Eni-cPStvTK7f4rbW3ex2Dg8EPGoBXGJ1ijOszfFpyimvOn4EFoVVZUIKaA7BAqKEFoYgdgeMYfyGEeMnQc3BECMoYrRfgbjnAdK1h8E5Db9a1H5Pt7b1M1g9Qup8-2HTdr16_ydF250E9PsBb76Zep2AV7H03OZl0B2VQK4cgxxlm7ejkAG8m6WyaoRw6qI2xyupBzS_AoZEu6pfb8wT8-Pjh-8Xn4mr56fLi_KpQDJe84HVTc6QNMa1BzBhuGG5YW0nddZJ2jVRcVqxqScs510xWjSF1viDUUoYZKU_Am43vGPzNpGMSvY1KuzyZ9lMUDSIlpSUrM_l6S05trzsxBtvLMIvdrjJwtgFU8DEGbYSyab2kFKR1AiOxSkNgsU0jK97-odiZ_ostNuyddXreD4ovX7f8-w0fd1Ps1ywHkVMRq4yFN-vaZ4N3-wxuffit4diZ_8F_f-UJYVvKPA
CODEN MPHYA6
CitedBy_id crossref_primary_10_1186_s13014_015_0382_z
crossref_primary_10_1088_1361_6560_ac1b1c
crossref_primary_10_1118_1_4908224
crossref_primary_10_18632_oncotarget_7743
crossref_primary_10_1118_1_4768159
crossref_primary_10_1002_mp_15389
crossref_primary_10_1016_j_ejmp_2018_09_010
crossref_primary_10_1016_j_rpor_2015_10_004
crossref_primary_10_1002_acm2_12721
crossref_primary_10_1118_1_4960000
crossref_primary_10_1002_acm2_13931
crossref_primary_10_1016_j_meddos_2020_03_004
crossref_primary_10_1002_acm2_13415
crossref_primary_10_3109_0284186X_2014_934968
crossref_primary_10_1120_jacmp_v17i5_6252
crossref_primary_10_1120_jacmp_v16i6_5810
crossref_primary_10_1016_j_ejmp_2018_12_034
crossref_primary_10_1002_jmrs_22
crossref_primary_10_1120_jacmp_v15i2_4625
crossref_primary_10_1186_1748_717X_9_193
crossref_primary_10_1120_jacmp_v17i2_4989
crossref_primary_10_1016_j_zemedi_2015_05_002
crossref_primary_10_1016_j_ejmp_2016_05_056
crossref_primary_10_1016_j_ejmp_2013_08_142
crossref_primary_10_1186_s12885_019_6259_z
crossref_primary_10_1259_bjr_20120543
crossref_primary_10_1002_acm2_13233
crossref_primary_10_14319_ijcto_0204_17
crossref_primary_10_1016_j_prro_2018_05_006
crossref_primary_10_1016_j_rpor_2016_09_002
crossref_primary_10_1016_j_ejmp_2017_01_016
crossref_primary_10_1186_1748_717X_9_153
crossref_primary_10_1259_bjr_20140698
crossref_primary_10_1016_j_meddos_2019_04_004
crossref_primary_10_1120_jacmp_v14i6_4382
crossref_primary_10_1186_s13014_015_0388_6
crossref_primary_10_22399_ijcesen_626510
crossref_primary_10_1016_j_ejmp_2015_07_143
crossref_primary_10_3171_2016_7_GKS16881
crossref_primary_10_1016_j_meddos_2017_10_003
crossref_primary_10_1016_j_meddos_2016_10_004
crossref_primary_10_1016_j_ijrobp_2015_08_049
crossref_primary_10_3109_07357907_2014_889705
crossref_primary_10_18632_oncotarget_12279
crossref_primary_10_14316_pmp_2018_29_4_106
crossref_primary_10_1016_j_orhc_2019_04_003
crossref_primary_10_1055_s_0039_1693523
crossref_primary_10_1016_j_meddos_2014_04_002
crossref_primary_10_1002_acm2_12355
crossref_primary_10_1016_j_radphyschem_2013_03_019
crossref_primary_10_1002_acm2_12038
crossref_primary_10_1002_acm2_12313
crossref_primary_10_3109_0284186X_2012_689853
crossref_primary_10_1002_acm2_12237
crossref_primary_10_1120_jacmp_v15i5_4843
crossref_primary_10_1016_j_jmir_2020_04_003
crossref_primary_10_1016_j_canrad_2012_05_013
crossref_primary_10_1186_1748_717X_8_140
crossref_primary_10_1186_s13014_018_1050_x
crossref_primary_10_1038_s41598_024_57644_4
crossref_primary_10_1120_jacmp_v14i3_4114
Cites_doi 10.1016/j.radonc.2009.05.020
10.1088/0031-9155/56/6/022
10.1016/j.radonc.2010.09.027
10.1088/0031-9155/54/8/L03
10.1088/0031-9155/56/8/015
10.1016/j.radonc.2008.12.020
10.1088/0031-9155/50/8/010
10.1186/1748-717X-2-42
10.1186/1748-717X-3-24
10.1016/j.ijrobp.2009.03.029
10.1016/j.ijrobp.2009.10.005
10.1088/0031-9155/54/9/N03
10.1118/1.2818738
10.1016/j.ijrobp.2009.05.035
10.1080/02841860802266748
10.1016/j.radonc.2008.12.008
10.1016/j.ijrobp.2008.12.076
10.1118/1.598248
10.1118/1.3528214
10.1016/j.radonc.2008.07.021
10.1016/j.ijrobp.2008.12.033
10.1186/1748-717X-5-94
10.1118/1.3567146
10.1016/j.ijrobp.2009.07.1677
10.1088/0031-9155/55/3/002
10.1016/j.radonc.2008.06.013
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2011 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2011 American Association of Physicists in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1118/1.3641866
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 5856
ExternalDocumentID 22047348
10_1118_1_3641866
MP1866
Genre article
Journal Article
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAHQN
AAIPD
AAMNL
AAYCA
ABDPE
AFWVQ
AITYG
ALVPJ
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c5136-689860ef2fbf05ff6f5195b7aedda4d9ac6a757b2b666e5a79f282b600b451523
ISSN 0094-2405
IngestDate Thu Sep 04 19:50:35 EDT 2025
Thu Apr 03 06:59:13 EDT 2025
Wed Oct 01 03:17:56 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Wed Jan 22 16:25:11 EST 2025
Fri Jun 21 00:20:00 EDT 2024
Fri Jun 21 00:28:31 EDT 2024
Sun Jul 14 10:05:20 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords progressive resolution algorithm
volumetric modulated arc therapy
RapidArc
Language English
License 0094-2405/2011/38(11)/5844/13/$30.00
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5136-689860ef2fbf05ff6f5195b7aedda4d9ac6a757b2b666e5a79f282b600b451523
Notes Author to whom correspondence should be addressed. Electronic mail
giorgia.nicolini@eoc.ch
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22047348
PQID 902344353
PQPubID 23479
PageCount 13
ParticipantIDs pubmed_primary_22047348
proquest_miscellaneous_902344353
crossref_primary_10_1118_1_3641866
crossref_citationtrail_10_1118_1_3641866
wiley_primary_10_1118_1_3641866_MP1866
scitation_primary_10_1118_1_3641866On_the_role_of_the_o
scitation_primary_10_1118_1_3641866
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2011
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: November 2011
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2011
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Bignardi, Cozzi, Fogliata, Lattuada, Mancosu, Navarria, Urso, Vigorito, Scorsetti (c2) 2009; 75
Lagerwaard, Elles, van der Hoorn, Verbakel, Haasbeek, Slotman, Senan (c20) 2009; 75
Clivio, Fogliata, Franzetti, Nicolini, Vanetti, Wyttenbach, Cozzi (c3) 2009; 92
Vassiliev, Wareing, McGhee, Failla, Salehpour, Mourtada (c16) 2010; 55
Low, Harms, Mutic, Purdy (c23) 1998; 25
Vanetti, Nicolini, Clivio, Fogliata, Cozzi (c14) 2009; 54
Nicolini, Vanetti, Clivio, Fogliata, Korreman, Bocanek, Cozzi (c22) 2008; 3
Pardo Montero, Fenwich (c26) 2011; 56
Otto (c1) 2008; 35
Otto (c12) 2009; 54
Vanetti, Clivio, Nicolini, Fogliata, Ghosh, Agarwal, Upreti, Budrukkar, Murthy, Deshpande, Shrivastava, Dinshaw, Cozzi (c8) 2009; 92
Fogliata, Clivio, Nicolini, Vanetti, Cozzi (c5) 2008; 89
Verbakel, Senan, Cuijpers, Slotman, Lagerwaard (c9) 2009; 93
Ong, Verbakel, Cuijpers, Slotman, Lagerwaard, Senan (c15) 2010; 97
Scorsetti, Navarria, Mancosu, Alongi, Castiglioni, Cavina, Cozzi, Fogliata, Pentimalli, Tozzi, Santoro (c21) 2010; 5
Yoo, Wu, Lee, Yin (c11) 2010; 76
Nicolini, Clivio, Cozzi, Fogliata, Vanetti (c13) 2011; 38
Mayo, Ding, Addesa, Kadish, Fitzgerald, Moser (c19) 2010; 78
Nicolini, Fogliata, Vanetti, Clivio, Ammazzalorso, Cozzi (c25) 2007; 2
Cozzi, Dinshaw, Shrivastava, Mahantshetty, Engineer, Deshpande, Jamema, Vanetti, Clivio, Nicolini, Fogliata (c4) 2008; 89
Bush, Gagne, Zavgorodni, Ansbacher, Beckham (c18) 2011; 38
Ulmer, Pyyry, Kaissl (c24) 2005; 50
Kjær-Kristoffersen, Ohlhues, Medin, Korreman (c6) 2008; 48
Fogliata, Nicolini, Clivio, Vanetti, Mancosu, Cozzi (c17) 2011; 56
Lagerwaard, Meijer, van del Hoorn, Verbakel, Slotman, Senan (c7) 2009; 74
Verbakel, Cuijpers, Hoffmans, Bieker, Slotman (c10) 2009; 74
Cozzi, L.; Dinshaw, K.; Shrivastava, S.; Mahantshetty, U.; Engineer, R.; Deshpande, D.; Jamema, S.; Vanetti, E.; Clivio, A.; Nicolini, G.; Fogliata, A. 2008; 89
Verbakel, W.; Senan, S.; Cuijpers, J.; Slotman, B.; Lagerwaard, F. 2009; 93
Verbakel, W.; Cuijpers, J.; Hoffmans, D.; Bieker, M.; Slotman, B. 2009; 74
Pardo Montero, J.; Fenwich, J. 2011; 56
Vanetti, E.; Nicolini, G.; Clivio, A.; Fogliata, A.; Cozzi, L. 2009; 54
Fogliata, A.; Nicolini, G.; Clivio, A.; Vanetti, E.; Mancosu, P.; Cozzi, L. 2011; 56
Fogliata, A.; Clivio, A.; Nicolini, G.; Vanetti, E.; Cozzi, L. 2008; 89
Vassiliev, O.; Wareing, T.; McGhee, J.; Failla, G.; Salehpour, M.; Mourtada, F. 2010; 55
Vanetti, E.; Clivio, A.; Nicolini, G.; Fogliata, A.; Ghosh, S.; Agarwal, J.; Upreti, R.; Budrukkar, A.; Murthy, V.; Deshpande, D.; Shrivastava, S.; Dinshaw, K.; Cozzi, L. 2009; 92
Nicolini, G.; Fogliata, A.; Vanetti, E.; Clivio, A.; Ammazzalorso, F.; Cozzi, L. 2007; 2
Bignardi, M.; Cozzi, L.; Fogliata, A.; Lattuada, P.; Mancosu, P.; Navarria, P.; Urso, G.; Vigorito, S.; Scorsetti, M. 2009; 75
Clivio, A.; Fogliata, A.; Franzetti, A.; Nicolini, G.; Vanetti, E.; Wyttenbach, R.; Cozzi, L. 2009; 92
Nicolini, G.; Vanetti, E.; Clivio, A.; Fogliata, A.; Korreman, S.; Bocanek, J.; Cozzi, L. 2008; 3
Otto, K. 2009; 54
Ong, C.; Verbakel, W.; Cuijpers, J.; Slotman, B.; Lagerwaard, F.; Senan, S. 2010; 97
Scorsetti, M.; Navarria, P.; Mancosu, P.; Alongi, F.; Castiglioni, S.; Cavina, R.; Cozzi, L.; Fogliata, A.; Pentimalli, S.; Tozzi, A.; Santoro, A. 2010; 5
Lagerwaard, F.; Meijer, O.; van del Hoorn, E.; Verbakel, W.; Slotman, B.; Senan, S. 2009; 74
Otto, K. 2008; 35
Bush, K.; Gagne, I.; Zavgorodni, S.; Ansbacher, W.; Beckham, W. 2011; 38
Kjær-Kristoffersen, F.; Ohlhues, L.; Medin, J.; Korreman, S. 2008; 48
Lagerwaard, F.; Elles, D.; van der Hoorn, P.; Verbakel, W.; Haasbeek, C.; Slotman, B.; Senan, S. 2009; 75
Ulmer, W.; Pyyry, J.; Kaissl, W. 2005; 50
Yoo, S.; Wu, J.; Lee, R.; Yin, F. 2010; 76
Low, D.; Harms, W.; Mutic, S.; Purdy, J. 1998; 25
Nicolini, G.; Clivio, A.; Cozzi, L.; Fogliata, A.; Vanetti, E. 2011; 38
Mayo, C.; Ding, L.; Addesa, A.; Kadish, S.; Fitzgerald, T.; Moser, R. 2010; 78
2010; 78
2010; 55
2010; 76
2010; 97
2009; 74
2009; 54
2009; 75
2009; 92
2009; 93
2008; 48
2008; 89
2008; 35
2011; 56
2008; 3
2007; 2
2005; 50
2011; 38
2010; 5
1998; 25
e_1_2_6_10_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 38
  start-page: 2208
  year: 2011
  ident: c18
  article-title: Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations
  publication-title: Med. Phys.
– volume: 97
  start-page: 437
  year: 2010
  ident: c15
  article-title: Stereotactic radiotherapy for peripheral lung tumors: A comparison of volumetric modulated arc therapy with 3 other delivery techniques
  publication-title: Radiother. Oncol.
– volume: 89
  start-page: 254
  year: 2008
  ident: c5
  article-title: Intensity modulation with photons for benign intracranial tumours: A planning comparison of volumetric single arc, helical arc and fixed gantry techniques
  publication-title: Radiother. Oncol.
– volume: 35
  start-page: 310
  year: 2008
  ident: c1
  article-title: Volumetric modulated arc therapy: IMRT in a single arc
  publication-title: Med. Phys.
– volume: 75
  start-page: 253
  year: 2009
  ident: c20
  article-title: Whole brain radiotherapy with simultaneous integrated boost to multiple brain metastases using volumetric modulated arc therapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 54
  start-page: L37
  year: 2009
  ident: c12
  article-title: Letter to the editor on single arc IMRT
  publication-title: Phys. Med. Biol.
– volume: 74
  start-page: 610
  year: 2009
  ident: c7
  article-title: Volumetric modulated arc radiotherapy for vestibular schwannomas
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 5
  start-page: 94
  year: 2010
  ident: c21
  article-title: Large volume unresectable locally advanced non small cell lung cancer: acute toxicity and initial outcome results with RapidArc
  publication-title: Radiat. Oncol.
– volume: 2
  start-page: 42
  year: 2007
  ident: c25
  article-title: What is an acceptably smoothed fluence? Dosimetric and delivery considerations for dynamic sliding window IMRT?
  publication-title: Radiat. Oncol.
– volume: 92
  start-page: 118
  year: 2009
  ident: c3
  article-title: Volumetric-modulated arc radiotherapy for carcinomas of the anal canal: A treatment planning comparison with fixed field IMRT
  publication-title: Radiother. Oncol.
– volume: 38
  start-page: 264
  year: 2011
  ident: c13
  article-title: On the impact of dose rate variation upon RapidArc implementation of volumetric modulated arc therapy
  publication-title: Med. Phys.
– volume: 3
  start-page: 24
  year: 2008
  ident: c22
  article-title: The GLAaS algorithm for portal dosimetry and quality assurance of RapidArc, an intensity modulated rotational therapy
  publication-title: Radiat. Oncol.
– volume: 92
  start-page: 111
  year: 2009
  ident: c8
  article-title: Volumetric modulated arc radiotherapy for carcinomas of the oro-pharynx, hypo-pharynx and larynx: A treatment planning comparison with fixed field IMRT
  publication-title: Radiother. Oncol.
– volume: 93
  start-page: 122
  year: 2009
  ident: c9
  article-title: Rapid delivery of stereotactic radiotherapy for peripheral lung tumors using volumetric intensity modulated arcs
  publication-title: Radiother. Oncol.
– volume: 78
  start-page: 1457
  year: 2010
  ident: c19
  article-title: Initial experience with volumetric IMRT (RapidARc) for intracranial stereotactic radiosurgery
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 75
  start-page: 1570
  year: 2009
  ident: c2
  article-title: Critical appraisal of volumetric modulated arc therapy in stereotactic body radiation therapy for metastases to abdominal lymph nodes
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 54
  start-page: N157
  year: 2009
  ident: c14
  article-title: The impact of treatment couch modeling on RapidArc
  publication-title: Phys Med. Biol.
– volume: 55
  start-page: 581
  year: 2010
  ident: c16
  article-title: Validation of a new grid based Boltzmann equation solver for dose calculation in radiotherapy with photon beams
  publication-title: Phys. Med. Biol.
– volume: 56
  start-page: 1879
  year: 2011
  ident: c17
  article-title: Dosimetric validation of the Acuros XB advanced dose calculation algorithm: fundamental characterization in water
  publication-title: Phys. Med. Biol.
– volume: 56
  start-page: 2569
  year: 2011
  ident: c26
  article-title: The effect of different control point sampling sequences on convergence of VMAT inverse planning
  publication-title: Phys. Med. Biol.
– volume: 89
  start-page: 180
  year: 2008
  ident: c4
  article-title: A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy
  publication-title: Radiother. Oncol.
– volume: 48
  start-page: 227
  year: 2008
  ident: c6
  article-title: RapidArc volumetric modulated therapy planning for prostate cancer patients
  publication-title: Acta Oncol.
– volume: 76
  start-page: 935
  year: 2010
  ident: c11
  article-title: Radiotherapy treatment plans with RapidArc for prostate cancer involving seminal vesicles and lymph nodes
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 74
  start-page: 252
  year: 2009
  ident: c10
  article-title: Volumetric intensity modulated arc therapy versus conventional IMRT in head and neck cancer: A comparative planning and dosimetric study
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 50
  start-page: 1767
  year: 2005
  ident: c24
  article-title: 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations
  publication-title: Phys. Med. Biol.
– volume: 25
  start-page: 656
  year: 1998
  ident: c23
  article-title: A technique for quantitative evaluation of dose distributions
  publication-title: Med. Phys.
– volume: 93
  start-page: 122-124
  year: 2009
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2009.05.020
– volume: 56
  start-page: 1879-1904
  year: 2011
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/6/022
– volume: 97
  start-page: 437-442
  year: 2010
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2010.09.027
– volume: 54
  start-page: L37-41
  year: 2009
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/8/L03
– volume: 56
  start-page: 2569-2583
  year: 2011
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/8/015
– volume: 92
  start-page: 118-124
  year: 2009
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2008.12.020
– volume: 50
  start-page: 1767-1790
  year: 2005
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/50/8/010
– volume: 2
  start-page: 42
  year: 2007
  publication-title: Radiat. Oncol.
  doi: 10.1186/1748-717X-2-42
– volume: 3
  start-page: 24
  year: 2008
  publication-title: Radiat. Oncol.
  doi: 10.1186/1748-717X-3-24
– volume: 75
  start-page: 253-259
  year: 2009
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2009.03.029
– volume: 78
  start-page: 1457-1466
  year: 2010
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2009.10.005
– volume: 54
  start-page: N157-N166
  year: 2009
  publication-title: Phys Med. Biol.
  doi: 10.1088/0031-9155/54/9/N03
– volume: 35
  start-page: 310-317
  year: 2008
  publication-title: Med. Phys.
  doi: 10.1118/1.2818738
– volume: 75
  start-page: 1570-1577
  year: 2009
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2009.05.035
– volume: 48
  start-page: 227-232
  year: 2008
  publication-title: Acta Oncol.
  doi: 10.1080/02841860802266748
– volume: 92
  start-page: 111-117
  year: 2009
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2008.12.008
– volume: 74
  start-page: 610-615
  year: 2009
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2008.12.076
– volume: 25
  start-page: 656-661
  year: 1998
  publication-title: Med. Phys.
  doi: 10.1118/1.598248
– volume: 38
  start-page: 264-271
  year: 2011
  publication-title: Med. Phys.
  doi: 10.1118/1.3528214
– volume: 89
  start-page: 254-262
  year: 2008
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2008.07.021
– volume: 74
  start-page: 252-259
  year: 2009
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2008.12.033
– volume: 5
  start-page: 94
  year: 2010
  publication-title: Radiat. Oncol.
  doi: 10.1186/1748-717X-5-94
– volume: 38
  start-page: 2208-2221
  year: 2011
  publication-title: Med. Phys.
  doi: 10.1118/1.3567146
– volume: 76
  start-page: 935-942
  year: 2010
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2009.07.1677
– volume: 55
  start-page: 581-598
  year: 2010
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/55/3/002
– volume: 89
  start-page: 180-191
  year: 2008
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2008.06.013
– volume: 78
  start-page: 1457
  year: 2010
  end-page: 1466
  article-title: Initial experience with volumetric IMRT (RapidARc) for intracranial stereotactic radiosurgery
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 3
  start-page: 24
  year: 2008
  article-title: The GLAaS algorithm for portal dosimetry and quality assurance of RapidArc, an intensity modulated rotational therapy
  publication-title: Radiat. Oncol.
– volume: 92
  start-page: 111
  year: 2009
  end-page: 117
  article-title: Volumetric modulated arc radiotherapy for carcinomas of the oro‐pharynx, hypo‐pharynx and larynx: A treatment planning comparison with fixed field IMRT
  publication-title: Radiother. Oncol.
– volume: 97
  start-page: 437
  year: 2010
  end-page: 442
  article-title: Stereotactic radiotherapy for peripheral lung tumors: A comparison of volumetric modulated arc therapy with 3 other delivery techniques
  publication-title: Radiother. Oncol.
– volume: 35
  start-page: 310
  year: 2008
  end-page: 317
  article-title: Volumetric modulated arc therapy: IMRT in a single arc
  publication-title: Med. Phys.
– volume: 89
  start-page: 254
  year: 2008
  end-page: 262
  article-title: Intensity modulation with photons for benign intracranial tumours: A planning comparison of volumetric single arc, helical arc and fixed gantry techniques
  publication-title: Radiother. Oncol.
– volume: 54
  start-page: L37
  year: 2009
  end-page: 41
  article-title: Letter to the editor on single arc IMRT
  publication-title: Phys. Med. Biol.
– volume: 89
  start-page: 180
  year: 2008
  end-page: 191
  article-title: A treatment planning study comparing volumetric arc modulation with RapidArc and fixed field IMRT for cervix uteri radiotherapy
  publication-title: Radiother. Oncol.
– volume: 92
  start-page: 118
  year: 2009
  end-page: 124
  article-title: Volumetric‐modulated arc radiotherapy for carcinomas of the anal canal: A treatment planning comparison with fixed field IMRT
  publication-title: Radiother. Oncol.
– volume: 74
  start-page: 610
  year: 2009
  end-page: 615
  article-title: Volumetric modulated arc radiotherapy for vestibular schwannomas
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 5
  start-page: 94
  year: 2010
  article-title: Large volume unresectable locally advanced non small cell lung cancer: acute toxicity and initial outcome results with RapidArc
  publication-title: Radiat. Oncol.
– volume: 75
  start-page: 253
  year: 2009
  end-page: 259
  article-title: Whole brain radiotherapy with simultaneous integrated boost to multiple brain metastases using volumetric modulated arc therapy
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 76
  start-page: 935
  year: 2010
  end-page: 942
  article-title: Radiotherapy treatment plans with RapidArc for prostate cancer involving seminal vesicles and lymph nodes
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 2
  start-page: 42
  year: 2007
  article-title: What is an acceptably smoothed fluence? Dosimetric and delivery considerations for dynamic sliding window IMRT?
  publication-title: Radiat. Oncol.
– volume: 56
  start-page: 2569
  year: 2011
  end-page: 2583
  article-title: The effect of different control point sampling sequences on convergence of VMAT inverse planning
  publication-title: Phys. Med. Biol.
– volume: 75
  start-page: 1570
  year: 2009
  end-page: 1577
  article-title: Critical appraisal of volumetric modulated arc therapy in stereotactic body radiation therapy for metastases to abdominal lymph nodes
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 74
  start-page: 252
  year: 2009
  end-page: 259
  article-title: Volumetric intensity modulated arc therapy versus conventional IMRT in head and neck cancer: A comparative planning and dosimetric study
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
– volume: 54
  start-page: N157
  year: 2009
  end-page: N166
  article-title: The impact of treatment couch modeling on RapidArc
  publication-title: Phys Med. Biol.
– volume: 56
  start-page: 1879
  year: 2011
  end-page: 1904
  article-title: Dosimetric validation of the Acuros XB advanced dose calculation algorithm: fundamental characterization in water
  publication-title: Phys. Med. Biol.
– volume: 55
  start-page: 581
  year: 2010
  end-page: 598
  article-title: Validation of a new grid based Boltzmann equation solver for dose calculation in radiotherapy with photon beams
  publication-title: Phys. Med. Biol.
– volume: 25
  start-page: 656
  year: 1998
  end-page: 661
  article-title: A technique for quantitative evaluation of dose distributions
  publication-title: Med. Phys.
– volume: 50
  start-page: 1767
  year: 2005
  end-page: 1790
  article-title: 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations
  publication-title: Phys. Med. Biol.
– volume: 93
  start-page: 122
  year: 2009
  end-page: 124
  article-title: Rapid delivery of stereotactic radiotherapy for peripheral lung tumors using volumetric intensity modulated arcs
  publication-title: Radiother. Oncol.
– volume: 38
  start-page: 2208
  year: 2011
  end-page: 2221
  article-title: Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations
  publication-title: Med. Phys.
– volume: 38
  start-page: 264
  year: 2011
  end-page: 271
  article-title: On the impact of dose rate variation upon RapidArc implementation of volumetric modulated arc therapy
  publication-title: Med. Phys.
– volume: 48
  start-page: 227
  year: 2008
  end-page: 232
  article-title: RapidArc volumetric modulated therapy planning for prostate cancer patients
  publication-title: Acta Oncol.
– ident: e_1_2_6_24_1
  doi: 10.1118/1.598248
– ident: e_1_2_6_9_1
  doi: 10.1016/j.radonc.2008.12.008
– ident: e_1_2_6_15_1
  doi: 10.1088/0031-9155/54/9/N03
– ident: e_1_2_6_18_1
  doi: 10.1088/0031-9155/56/6/022
– ident: e_1_2_6_23_1
  doi: 10.1186/1748-717X-3-24
– ident: e_1_2_6_12_1
  doi: 10.1016/j.ijrobp.2009.07.1677
– ident: e_1_2_6_26_1
  doi: 10.1186/1748-717X-2-42
– ident: e_1_2_6_19_1
  doi: 10.1118/1.3567146
– ident: e_1_2_6_5_1
  doi: 10.1016/j.radonc.2008.06.013
– ident: e_1_2_6_21_1
  doi: 10.1016/j.ijrobp.2009.03.029
– ident: e_1_2_6_7_1
  doi: 10.1080/02841860802266748
– ident: e_1_2_6_11_1
  doi: 10.1016/j.ijrobp.2008.12.033
– ident: e_1_2_6_16_1
  doi: 10.1016/j.radonc.2010.09.027
– ident: e_1_2_6_6_1
  doi: 10.1016/j.radonc.2008.07.021
– ident: e_1_2_6_14_1
  doi: 10.1118/1.3528214
– ident: e_1_2_6_17_1
  doi: 10.1088/0031-9155/55/3/002
– ident: e_1_2_6_25_1
  doi: 10.1088/0031-9155/50/8/010
– ident: e_1_2_6_3_1
  doi: 10.1016/j.ijrobp.2009.05.035
– ident: e_1_2_6_27_1
  doi: 10.1088/0031-9155/56/8/015
– ident: e_1_2_6_2_1
  doi: 10.1118/1.2818738
– ident: e_1_2_6_20_1
  doi: 10.1016/j.ijrobp.2009.10.005
– ident: e_1_2_6_22_1
  doi: 10.1186/1748-717X-5-94
– ident: e_1_2_6_10_1
  doi: 10.1016/j.radonc.2009.05.020
– ident: e_1_2_6_8_1
  doi: 10.1016/j.ijrobp.2008.12.076
– ident: e_1_2_6_13_1
  doi: 10.1088/0031-9155/54/8/L03
– ident: e_1_2_6_4_1
  doi: 10.1016/j.radonc.2008.12.020
SSID ssj0006350
Score 2.2838595
Snippet Purpose: The RapidArc volumetric modulated arc therapy (VMAT) planning process is based on a core engine, the so-called progressive resolution optimizer (PRO)....
Purpose: The RapidArc volumetric modulated arc therapy (VMAT) planning process is based on a core engine, the so‐called progressive resolution optimizer (PRO)....
The RapidArc volumetric modulated arc therapy (VMAT) planning process is based on a core engine, the so-called progressive resolution optimizer (PRO). This is...
SourceID proquest
pubmed
crossref
wiley
scitation
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5844
SubjectTerms Algorithms
Anatomy
Brain
Cancer
Dose‐volume analysis
dosimetry
Humans
Information and communication theory
inverse problems
Iteration theory
Lungs
medical computing
Multileaf collimators
Neoplasms - pathology
Neoplasms - radiotherapy
optimisation
Optimization
Photons
progressive resolution algorithm
Quality assurance
Quality Control
radiation therapy
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy Planning, Computer-Assisted - standards
RapidArc
Therapeutics
tumours
volumetric modulated arc therapy
Title On the role of the optimization algorithm of RapidArc® volumetric modulated arc therapy on plan quality and efficiency
URI http://dx.doi.org/10.1118/1.3641866
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.3641866
https://www.ncbi.nlm.nih.gov/pubmed/22047348
https://www.proquest.com/docview/902344353
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2473-4209
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0006350
  issn: 0094-2405
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ24PCMat3GQBQ5OqjMRxbo_VKEwTXSexob1FdmKPal1StSkCfhFP_Ah-GefEaZqKDo29pK4Tu6nP5-NzfC4m5LWPSemYcCwnSqTFg1BaUoTKSiOP6TTiKZMYjTw48PeO-f6Jd9Jq_Wx4Lc0LuZP8WBtXchWqQh3QFaNk_4OydadQAWWgL1yBwnC9FI2H2YqHIJZzYAHnVWxlV4xPc1D-v5yXKUfEZJT2pkl3a5dt9fpdw5cwQT8eh4OneIHsiZH7JiTrO5oRJmOY_ibu0uRpUmXGCQzXbEq1C2uP2SYp93ExtlqYUz_qrYbPIlOFcR_oz-FPGRcwYxVJ8PCg8taHUT49HdWrxUHlfL8vsqUHwKEaF6CTm_rp2Vne3LxA77mVzYvaKtXAYun7Z3Z1ZkXpEzxoehlUfDziaBcy9nBV1jEeuBZndtTk7W7YxLDT4NQgePHGqg9ak3_BioJREs6O63PMDXiNbDBYP-w22ei9G3z8VK_6ILiZcKfqzaosVtD8bd14Vfb5S6G5TW6C2GM8MFZ1pVLYObpL7lRaCu0ZyN0jLZVtkhuLEdok183Qze6Tb8OMAmAoYpDmuiw3MUhrDOLdBQbp7190iT9a448C_miFPwqNEX-0wh8F_NEl_h6Q4_f9o909qzrNw0o8x_UtP4xC31aaaaltT2tfY2IjGQiVpoKnkUh8EXiBZBI0auWJINIshC-2LTkI3cx9SNpZnqnHhIaeSlwgtxaYmwkUL8wjJzwXGIyWtq86ZHsxzvFiQPHElXFsVN4wduKKJB3ysn50YvK7rHuILogVA_dFkxpMmHw-iyMQeTloHG6HPDJErHthzOb4eh3yqqbqv34iuMRTwywGGsRI0jjXZTlf2__XfLpsFU9S3SFvSjxd3Hc8OMSPJ1d-kafk1nKKPyPtYjpXz0FiL-SLarL8AVIU7zM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+role+of+the+optimization+algorithm+of+RapidArc+%C2%AE+volumetric+modulated+arc+therapy+on+plan+quality+and+efficiency&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Vanetti%2C+Eugenio&rft.au=Nicolini%2C+Giorgia&rft.au=Nord%2C+Janne&rft.au=Peltola%2C+Jarkko&rft.date=2011-11-01&rft.pub=American+Association+of+Physicists+in+Medicine&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=38&rft.issue=11&rft.spage=5844&rft.epage=5856&rft_id=info:doi/10.1118%2F1.3641866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon