Range-dependent Terrain Mapping and Multipath Planning using Cylindrical Coordinates for a Planetary Exploration Rover

This paper presents terrain mapping and path‐planning techniques that are key issues for autonomous mobility of a planetary exploration rover. In this work, a LIDAR (light detection and ranging) sensor is used to obtain geometric information on the terrain. A point cloud of the terrain feature provi...

Full description

Saved in:
Bibliographic Details
Published inJournal of field robotics Vol. 30; no. 4; pp. 536 - 551
Main Authors Ishigami, Genya, Otsuki, Masatsugu, Kubota, Takashi
Format Journal Article
LanguageEnglish
Published Hoboken Blackwell Publishing Ltd 01.07.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1556-4959
1556-4967
1556-4967
DOI10.1002/rob.21462

Cover

Abstract This paper presents terrain mapping and path‐planning techniques that are key issues for autonomous mobility of a planetary exploration rover. In this work, a LIDAR (light detection and ranging) sensor is used to obtain geometric information on the terrain. A point cloud of the terrain feature provided from the LIDAR sensor is usually converted to a digital elevation map. A sector‐shaped reference grid for the conversion process is proposed in this paper, resulting in an elevation map with cylindrical coordinates termed as C2DEM. This conversion approach achieves a range‐dependent resolution for the terrain mapping: a detailed terrain representation near the rover and a sparse representation far from the rover. The path planning utilizes a cost function composed of terrain inclination, terrain roughness, and path length indices, each of which is subject to a weighting factor. The multipath planning developed in this paper first explores possible sets of weighting factors and generates multiple candidate paths. The most feasible path is then determined by a comparative evaluation between the candidate paths. Field experiments with a rover prototype at a Lunar/Martian analog site were performed to confirm the feasibility of the proposed techniques, including the range‐dependent terrain mapping with C2DEM and the multipath‐planning method.
AbstractList This paper presents terrain mapping and path‐planning techniques that are key issues for autonomous mobility of a planetary exploration rover. In this work, a LIDAR (light detection and ranging) sensor is used to obtain geometric information on the terrain. A point cloud of the terrain feature provided from the LIDAR sensor is usually converted to a digital elevation map. A sector‐shaped reference grid for the conversion process is proposed in this paper, resulting in an elevation map with cylindrical coordinates termed as C 2 DEM. This conversion approach achieves a range‐dependent resolution for the terrain mapping: a detailed terrain representation near the rover and a sparse representation far from the rover. The path planning utilizes a cost function composed of terrain inclination, terrain roughness, and path length indices, each of which is subject to a weighting factor. The multipath planning developed in this paper first explores possible sets of weighting factors and generates multiple candidate paths. The most feasible path is then determined by a comparative evaluation between the candidate paths. Field experiments with a rover prototype at a Lunar/Martian analog site were performed to confirm the feasibility of the proposed techniques, including the range‐dependent terrain mapping with C 2 DEM and the multipath‐planning method.
This paper presents terrain mapping and path‐planning techniques that are key issues for autonomous mobility of a planetary exploration rover. In this work, a LIDAR (light detection and ranging) sensor is used to obtain geometric information on the terrain. A point cloud of the terrain feature provided from the LIDAR sensor is usually converted to a digital elevation map. A sector‐shaped reference grid for the conversion process is proposed in this paper, resulting in an elevation map with cylindrical coordinates termed as C2DEM. This conversion approach achieves a range‐dependent resolution for the terrain mapping: a detailed terrain representation near the rover and a sparse representation far from the rover. The path planning utilizes a cost function composed of terrain inclination, terrain roughness, and path length indices, each of which is subject to a weighting factor. The multipath planning developed in this paper first explores possible sets of weighting factors and generates multiple candidate paths. The most feasible path is then determined by a comparative evaluation between the candidate paths. Field experiments with a rover prototype at a Lunar/Martian analog site were performed to confirm the feasibility of the proposed techniques, including the range‐dependent terrain mapping with C2DEM and the multipath‐planning method.
This paper presents terrain mapping and path-planning techniques that are key issues for autonomous mobility of a planetary exploration rover. In this work, a LIDAR (light detection and ranging) sensor is used to obtain geometric information on the terrain. A point cloud of the terrain feature provided from the LIDAR sensor is usually converted to a digital elevation map. A sector-shaped reference grid for the conversion process is proposed in this paper, resulting in an elevation map with cylindrical coordinates termed as C super(2)DEM. This conversion approach achieves a range-dependent resolution for the terrain mapping: a detailed terrain representation near the rover and a sparse representation far from the rover. The path planning utilizes a cost function composed of terrain inclination, terrain roughness, and path length indices, each of which is subject to a weighting factor. The multipath planning developed in this paper first explores possible sets of weighting factors and generates multiple candidate paths. The most feasible path is then determined by a comparative evaluation between the candidate paths. Field experiments with a rover prototype at a Lunar/Martian analog site were performed to confirm the feasibility of the proposed techniques, including the range-dependent terrain mapping with C super(2)DEM and the multipath-planning method.
This paper presents terrain mapping and path-planning techniques that are key issues for autonomous mobility of a planetary exploration rover. In this work, a LIDAR (light detection and ranging) sensor is used to obtain geometric information on the terrain. A point cloud of the terrain feature provided from the LIDAR sensor is usually converted to a digital elevation map. A sector-shaped reference grid for the conversion process is proposed in this paper, resulting in an elevation map with cylindrical coordinates termed as C2DEM. This conversion approach achieves a range-dependent resolution for the terrain mapping: a detailed terrain representation near the rover and a sparse representation far from the rover. The path planning utilizes a cost function composed of terrain inclination, terrain roughness, and path length indices, each of which is subject to a weighting factor. The multipath planning developed in this paper first explores possible sets of weighting factors and generates multiple candidate paths. The most feasible path is then determined by a comparative evaluation between the candidate paths. Field experiments with a rover prototype at a Lunar/Martian analog site were performed to confirm the feasibility of the proposed techniques, including the range-dependent terrain mapping with C2DEM and the multipath-planning method. [PUBLICATION ABSTRACT]
Author Kubota, Takashi
Ishigami, Genya
Otsuki, Masatsugu
Author_xml – sequence: 1
  givenname: Genya
  surname: Ishigami
  fullname: Ishigami, Genya
  email: ishigami@mech.keio.ac.jp
  organization: Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, 223-8522, Yokohama, Japan
– sequence: 2
  givenname: Masatsugu
  surname: Otsuki
  fullname: Otsuki, Masatsugu
  email: otsuki.masatsugu@jaxa.jp
  organization: Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency 3-1-1 Yoshinodai, 252-5210, Sagamihara, Japan
– sequence: 3
  givenname: Takashi
  surname: Kubota
  fullname: Kubota, Takashi
  email: kubota@isas.jaxa.jp
  organization: Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency 3-1-1 Yoshinodai, 252-5210, Sagamihara, Japan
BookMark eNp9kU9P3DAQxaOKSgXKgW9gqZe2UsCOY3tzbFeUIi2lXS2iN2uSTKipsVPbAfbbk-y2HJDKwX80-r3nmee9bMd5h1l2yOgRo7Q4Dr4-Klgpi1fZLhNC5mUl1c7TXVRvsr0Ybygt-awSu9ndEtw15i326Fp0iawwBDCOnEPfG3dNwLXkfLDJ9JB-ke8WnJvKQ5z2-doa1wbTgCVz70NrHCSMpPOBwAbGBGFNTh566wMk4x1Z-jsMb7PXHdiIB3_P_ezyy8lq_jVfXJyezT8t8kYwXuSMoURWlw3WxQyEUApEKQrJxiXKknVVXVOoaiqU4F1LJcUauporrNpWFA3fzz5ufQfXw_oerNV9MLdjT5pRPSWmx8T0JrERfr-F--D_DBiTvjWxQTuN4YeoWckrVUg1kyP67hl644fgxlE041IUnCk1GX7YUk3wMQbsXnz8-BnbmLRJLI3_YV9S3BuL6_9b6-XF53-KfKswMeHDkwLCby0VV0JffTvVPxc_KF2tuF7yR5xPt6w
CitedBy_id crossref_primary_10_1007_s11431_016_9017_6
crossref_primary_10_1109_ACCESS_2020_2984034
crossref_primary_10_1186_s10033_020_00485_9
crossref_primary_10_3390_s19122681
crossref_primary_10_1002_rob_21892
crossref_primary_10_1177_0020294019836127
crossref_primary_10_1002_rob_21700
crossref_primary_10_1109_MRA_2014_2381359
crossref_primary_10_3389_frobt_2022_994437
crossref_primary_10_3390_s150409519
crossref_primary_10_1016_j_cja_2024_103388
crossref_primary_10_20965_jrm_2017_p0838
crossref_primary_10_7210_jrsj_32_408
crossref_primary_10_1177_1729881420911491
crossref_primary_10_1080_01691864_2021_1970020
crossref_primary_10_1080_01691864_2021_1978861
crossref_primary_10_1109_TITS_2024_3508841
Cites_doi 10.1109/ROBOT.1994.351061
10.1002/rob.20184
10.1109/IROS.2008.4651203
10.1109/AERO.2007.352683
10.1177/02783640122067453
10.1007/BF00126401
10.1007/978-3-642-13408-1_19
10.1109/CRV.2007.63
10.1109/MRA.2004.1371614
10.1016/S1474-6670(17)33395-5
10.1007/b94718
10.1109/70.508439
10.1002/rob.20287
10.1007/978-3-642-32060-6_42
10.1007/978-3-642-13408-1_44
10.1016/S0921-8890(03)00004-6
10.1007/s11263-007-0046-z
10.1016/j.robot.2011.03.004
10.14358/PERS.70.1.77
10.1109/ROBOT.2009.5152504
10.1109/ROBOT.2008.4543184
10.14358/PERS.71.10.1129
10.1002/rob.20109
10.1177/02783649922066493
10.1109/IROS.2006.282358
10.1117/12.486764
10.1109/21.148426
10.1109/AERO.2002.1035370
10.1007/978-3-642-03991-1
10.1016/j.pss.2009.09.021
10.4271/972487
ContentType Journal Article
Copyright 2013 Wiley Periodicals, Inc.
Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: 2013 Wiley Periodicals, Inc.
– notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1002/rob.21462
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1556-4967
EndPage 551
ExternalDocumentID oai:zenodo.org:3447561
2989287661
10_1002_rob_21462
ROB21462
ark_67375_WNG_XLQ00TT3_R
Genre article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  funderid: 22800091
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
I-F
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c5132-11e6e1b4ceb28a5577a5452615265441f9bb0a9b05753fd060ebafb37e9dd52c3
IEDL.DBID UNPAY
ISSN 1556-4959
1556-4967
IngestDate Sun Oct 26 03:25:47 EDT 2025
Tue Sep 30 23:15:21 EDT 2025
Wed Aug 13 04:19:38 EDT 2025
Thu Apr 24 23:12:57 EDT 2025
Wed Oct 01 05:12:06 EDT 2025
Wed Jan 22 16:46:32 EST 2025
Tue Sep 09 05:30:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5132-11e6e1b4ceb28a5577a5452615265441f9bb0a9b05753fd060ebafb37e9dd52c3
Notes istex:24460617448E19028AFE119E859618E0352038F2
ArticleID:ROB21462
ark:/67375/WNG-XLQ00TT3-R
Japan Society for the Promotion of Science - No. 22800091
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://zenodo.org/record/3447561
PQID 1365231772
PQPubID 1006410
PageCount 16
ParticipantIDs unpaywall_primary_10_1002_rob_21462
proquest_miscellaneous_1439726786
proquest_journals_1365231772
crossref_primary_10_1002_rob_21462
crossref_citationtrail_10_1002_rob_21462
wiley_primary_10_1002_rob_21462_ROB21462
istex_primary_ark_67375_WNG_XLQ00TT3_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July/August 2013
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: July/August 2013
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Journal of field robotics
PublicationTitleAlternate J. Field Robotics
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Carsten, J., Rankin, A., Ferguson, D., & Stentz, A. (2008). Global planning on the Mars exploration rovers: Software integration and surface testing. Journal of Field Robotics, 26, 337-357.
Rekleitis, I., Bedwani, J.-L., Dupuis, E., Lamarche, T., & Allard, P. (2012). Autonomous over-the-horizon navigation using Lidar data. Autonomous Robots.
Buehler, M., Iagnemma, K., & Singh, S., editors (2005). The 2005 DARPA Grand Challenge: The Great Robot Race, Springer Tracts in Advanced Robotics (STAR) Series, Vol. 36. Berlin, Heidelberg: Springer-Verlag.
Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hahnel, D., Montemerlo, M., Morris, A., Omohundro, Z., Reverte, C., & Whittaker, W. (2004). Autonomous exploration and mapping of abandoned mines. IEEE Robotics & Automation Magazine, 11, 79-91.
Matthies, L., Maimone, M., Johnson, A., Cheng, Y., Willson, R., Villalpando, C., Goldberg, S., & Huertas, A. (2007). Computer vision on Mars. International Journal of Computer Vision.
Barraquand, J., Langlois, B., & Latombe, J. (1992). Numerical potential field techniques for robot path planning. IEEE Transaction on Systems, Man and Cybernetics, 22, 224-241.
Iagnemma, K., & Dubowsky, S. (2004). Mobile robots in rough terrain: Estimation, motion planning, and control with application to planetary rovers. Berlin, Heidelberg: Springer-Verlag.
Volpe, R. (1999). Navigation results from desert field tests of the Rocky 7 Mars rover prototype. The International Journal of Robotics Research, 18(7), 669-683.
Barfoot, T., Furgale, P., Stenning, B., Carle, P., Thomson, L., Osinski, G., Daly, M., & Ghafoor, N. (2011). Field testing of a rover guidance, navigation, and control architecture to support a ground-ice prospecting mission to mars. Robotics and Autonomous Systems, 59, 472-488.
Li, R., Di, K., Matthies, L., Arvidson, R., Folkner, W., & Archinal, B. (2004). Rover localization and landing site mapping technology for the 2003 Mars exploration rover mission. Journal of Photogrammetric Engineering and Remote Sensing, 70, 77-90.
Buehler, M., Iagnemma, K., & Singh, S., editors (2009). The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, Springer Tracts in Advanced Robotics (STAR) Series, Vol. 56. Berlin, Heidelberg: Springer-Verlag.
Ferguson, D., & Stentz, A. (2006). Using interpolation to improve path planning: The field d* algorithm. Journal of Field Robotics, 23, 79-101.
Maimone, M., Cheng, Y., & Matthies, L. (2007). Two years of visual odometry on the Mars exploration rovers. Journal of Field Robotics, 24.
Matthies, L. (1992). Stereo vision for planetary rovers: Stochastic modeling to near real-time implementation. International Journal of Computer Vision, 8, 71-91.
Kavraki, L. E., Svestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transaction on Robotics and Automation, 12, 566-580.
Olson, C., Matthies, L., & Schoppers, M. (2003). Rover navigation using stereo ego-motion. Robotics and Autonomous Systems, 43, 215-229.
Barfoot, T., Furgale, P., Osinski, G., Ghafoor, N., & Williams, K. (2010). Field testing of robotic technologies to support ground ice prospecting in martian polygonal terrain. Planetary and Space Science, 58, 671-681.
Li, R., Squyres, S., Arvidson, R., Archinal, B., Bell, J., Cheng, Y., Crumpler, L., Marais, D. D., Di, K., Ely, T., Golombek, M., Graat, E., Grant, J., Guinn, J., Johnson, A., Greeley, R., Kirk, R., Maimone, M., Matthies, L., Malin, M., Parker, T., Sims, M., Soderblom, L., Thompson, S., Wang, J., Whelley, P., & Xu, F. (2005). Initial results of rover localization and topographic mapping for the 2003 Mars exploration rover mission. Journal of Photogrammetric Engineering & Remote Sensing (Special Issue on Mapping Mars), 71, 1129-1142.
LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. International Journal of Robotics Research, 20.
2010; 58
2012
2011
1998
2009
2008
1997
2007
2006
1995
2005
1994
2004
2011; 59
2003
2002
1996; 12
2001; 20
2009; 56
2004; 11
1992; 8
2004; 70
2006; 23
2000
1999; 18
2008; 26
2005; 71
2013
1992; 22
2007; 24
2003; 43
2005; 36
Buehler M. (e_1_2_8_6_1) 2005
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Rekleitis I. (e_1_2_8_36_1) 2012
e_1_2_8_3_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
Biesiadecki J. (e_1_2_8_5_1) 2006
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_38_1
Iagnemma K. (e_1_2_8_16_1) 2004
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – reference: Buehler, M., Iagnemma, K., & Singh, S., editors (2009). The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, Springer Tracts in Advanced Robotics (STAR) Series, Vol. 56. Berlin, Heidelberg: Springer-Verlag.
– reference: Maimone, M., Cheng, Y., & Matthies, L. (2007). Two years of visual odometry on the Mars exploration rovers. Journal of Field Robotics, 24.
– reference: Matthies, L. (1992). Stereo vision for planetary rovers: Stochastic modeling to near real-time implementation. International Journal of Computer Vision, 8, 71-91.
– reference: Kavraki, L. E., Svestka, P., Latombe, J.-C., & Overmars, M. H. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transaction on Robotics and Automation, 12, 566-580.
– reference: Rekleitis, I., Bedwani, J.-L., Dupuis, E., Lamarche, T., & Allard, P. (2012). Autonomous over-the-horizon navigation using Lidar data. Autonomous Robots.
– reference: Barfoot, T., Furgale, P., Osinski, G., Ghafoor, N., & Williams, K. (2010). Field testing of robotic technologies to support ground ice prospecting in martian polygonal terrain. Planetary and Space Science, 58, 671-681.
– reference: Barfoot, T., Furgale, P., Stenning, B., Carle, P., Thomson, L., Osinski, G., Daly, M., & Ghafoor, N. (2011). Field testing of a rover guidance, navigation, and control architecture to support a ground-ice prospecting mission to mars. Robotics and Autonomous Systems, 59, 472-488.
– reference: Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hahnel, D., Montemerlo, M., Morris, A., Omohundro, Z., Reverte, C., & Whittaker, W. (2004). Autonomous exploration and mapping of abandoned mines. IEEE Robotics & Automation Magazine, 11, 79-91.
– reference: Li, R., Squyres, S., Arvidson, R., Archinal, B., Bell, J., Cheng, Y., Crumpler, L., Marais, D. D., Di, K., Ely, T., Golombek, M., Graat, E., Grant, J., Guinn, J., Johnson, A., Greeley, R., Kirk, R., Maimone, M., Matthies, L., Malin, M., Parker, T., Sims, M., Soderblom, L., Thompson, S., Wang, J., Whelley, P., & Xu, F. (2005). Initial results of rover localization and topographic mapping for the 2003 Mars exploration rover mission. Journal of Photogrammetric Engineering & Remote Sensing (Special Issue on Mapping Mars), 71, 1129-1142.
– reference: LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. International Journal of Robotics Research, 20.
– reference: Barraquand, J., Langlois, B., & Latombe, J. (1992). Numerical potential field techniques for robot path planning. IEEE Transaction on Systems, Man and Cybernetics, 22, 224-241.
– reference: Iagnemma, K., & Dubowsky, S. (2004). Mobile robots in rough terrain: Estimation, motion planning, and control with application to planetary rovers. Berlin, Heidelberg: Springer-Verlag.
– reference: Volpe, R. (1999). Navigation results from desert field tests of the Rocky 7 Mars rover prototype. The International Journal of Robotics Research, 18(7), 669-683.
– reference: Olson, C., Matthies, L., & Schoppers, M. (2003). Rover navigation using stereo ego-motion. Robotics and Autonomous Systems, 43, 215-229.
– reference: Li, R., Di, K., Matthies, L., Arvidson, R., Folkner, W., & Archinal, B. (2004). Rover localization and landing site mapping technology for the 2003 Mars exploration rover mission. Journal of Photogrammetric Engineering and Remote Sensing, 70, 77-90.
– reference: Ferguson, D., & Stentz, A. (2006). Using interpolation to improve path planning: The field d* algorithm. Journal of Field Robotics, 23, 79-101.
– reference: Matthies, L., Maimone, M., Johnson, A., Cheng, Y., Willson, R., Villalpando, C., Goldberg, S., & Huertas, A. (2007). Computer vision on Mars. International Journal of Computer Vision.
– reference: Buehler, M., Iagnemma, K., & Singh, S., editors (2005). The 2005 DARPA Grand Challenge: The Great Robot Race, Springer Tracts in Advanced Robotics (STAR) Series, Vol. 36. Berlin, Heidelberg: Springer-Verlag.
– reference: Carsten, J., Rankin, A., Ferguson, D., & Stentz, A. (2008). Global planning on the Mars exploration rovers: Software integration and surface testing. Journal of Field Robotics, 26, 337-357.
– year: 2011
– volume: 43
  start-page: 215
  year: 2003
  end-page: 229
  article-title: Rover navigation using stereo ego‐motion
  publication-title: Robotics and Autonomous Systems
– volume: 11
  start-page: 79
  year: 2004
  end-page: 91
  article-title: Autonomous exploration and mapping of abandoned mines
  publication-title: IEEE Robotics & Automation Magazine
– year: 2009
– volume: 56
  year: 2009
– volume: 22
  start-page: 224
  year: 1992
  end-page: 241
  article-title: Numerical potential field techniques for robot path planning
  publication-title: IEEE Transaction on Systems, Man and Cybernetics
– year: 2005
– year: 2007
– volume: 71
  start-page: 1129
  year: 2005
  end-page: 1142
  article-title: Initial results of rover localization and topographic mapping for the 2003 Mars exploration rover mission
  publication-title: Journal of Photogrammetric Engineering & Remote Sensing (Special Issue on Mapping Mars)
– year: 2003
– year: 2000
– volume: 20
  year: 2001
  article-title: Randomized kinodynamic planning
  publication-title: International Journal of Robotics Research
– volume: 70
  start-page: 77
  year: 2004
  end-page: 90
  article-title: Rover localization and landing site mapping technology for the 2003 Mars exploration rover mission
  publication-title: Journal of Photogrammetric Engineering and Remote Sensing
– volume: 58
  start-page: 671
  year: 2010
  end-page: 681
  article-title: Field testing of robotic technologies to support ground ice prospecting in martian polygonal terrain
  publication-title: Planetary and Space Science
– volume: 12
  start-page: 566
  year: 1996
  end-page: 580
  article-title: Probabilistic roadmaps for path planning in high‐dimensional configuration spaces
  publication-title: IEEE Transaction on Robotics and Automation
– volume: 59
  start-page: 472
  year: 2011
  end-page: 488
  article-title: Field testing of a rover guidance, navigation, and control architecture to support a ground‐ice prospecting mission to mars
  publication-title: Robotics and Autonomous Systems
– year: 1998
– year: 2012
– start-page: 3310
  year: 1994
  end-page: 3317
– start-page: 425
  year: 1995
  end-page: 432
– year: 2002
– volume: 36
  year: 2005
– volume: 26
  start-page: 337
  year: 2008
  end-page: 357
  article-title: Global planning on the Mars exploration rovers: Software integration and surface testing
  publication-title: Journal of Field Robotics
– year: 2008
– year: 2006
– volume: 8
  start-page: 71
  year: 1992
  end-page: 91
  article-title: Stereo vision for planetary rovers: Stochastic modeling to near real‐time implementation
  publication-title: International Journal of Computer Vision
– year: 2004
– year: 2012
  article-title: Autonomous over‐the‐horizon navigation using Lidar data
  publication-title: Autonomous Robots
– year: 1997
– year: 2007
  article-title: Computer vision on Mars
  publication-title: International Journal of Computer Vision
– volume: 23
  start-page: 79
  year: 2006
  end-page: 101
  article-title: Using interpolation to improve path planning: The field d* algorithm
  publication-title: Journal of Field Robotics
– volume: 24
  year: 2007
  article-title: Two years of visual odometry on the Mars exploration rovers
  publication-title: Journal of Field Robotics
– year: 2013
– volume: 18
  start-page: 669
  issue: 7
  year: 1999
  end-page: 683
  article-title: Navigation results from desert field tests of the Rocky 7 Mars rover prototype
  publication-title: The International Journal of Robotics Research
– ident: e_1_2_8_40_1
  doi: 10.1109/ROBOT.1994.351061
– ident: e_1_2_8_45_1
– ident: e_1_2_8_25_1
  doi: 10.1002/rob.20184
– ident: e_1_2_8_38_1
  doi: 10.1109/IROS.2008.4651203
– ident: e_1_2_8_8_1
  doi: 10.1109/AERO.2007.352683
– ident: e_1_2_8_21_1
  doi: 10.1177/02783640122067453
– ident: e_1_2_8_27_1
  doi: 10.1007/BF00126401
– ident: e_1_2_8_32_1
– ident: e_1_2_8_44_1
– ident: e_1_2_8_13_1
– ident: e_1_2_8_29_1
  doi: 10.1007/978-3-642-13408-1_19
– ident: e_1_2_8_10_1
– ident: e_1_2_8_37_1
  doi: 10.1109/CRV.2007.63
– volume-title: The 2005 DARPA Grand Challenge: The Great Robot Race, Springer Tracts in Advanced Robotics (STAR) Series
  year: 2005
  ident: e_1_2_8_6_1
– ident: e_1_2_8_43_1
  doi: 10.1109/MRA.2004.1371614
– ident: e_1_2_8_24_1
  doi: 10.1016/S1474-6670(17)33395-5
– volume-title: Mobile robots in rough terrain: Estimation, motion planning, and control with application to planetary rovers
  year: 2004
  ident: e_1_2_8_16_1
  doi: 10.1007/b94718
– ident: e_1_2_8_19_1
  doi: 10.1109/70.508439
– ident: e_1_2_8_15_1
– ident: e_1_2_8_9_1
  doi: 10.1002/rob.20287
– ident: e_1_2_8_30_1
  doi: 10.1007/978-3-642-32060-6_42
– ident: e_1_2_8_49_1
  doi: 10.1007/978-3-642-13408-1_44
– ident: e_1_2_8_42_1
– ident: e_1_2_8_31_1
  doi: 10.1016/S0921-8890(03)00004-6
– ident: e_1_2_8_26_1
– ident: e_1_2_8_28_1
  doi: 10.1007/s11263-007-0046-z
– ident: e_1_2_8_34_1
– ident: e_1_2_8_48_1
– ident: e_1_2_8_3_1
  doi: 10.1016/j.robot.2011.03.004
– ident: e_1_2_8_20_1
– ident: e_1_2_8_22_1
  doi: 10.14358/PERS.70.1.77
– ident: e_1_2_8_35_1
  doi: 10.1109/ROBOT.2009.5152504
– ident: e_1_2_8_17_1
– ident: e_1_2_8_51_1
– ident: e_1_2_8_18_1
  doi: 10.1109/ROBOT.2008.4543184
– ident: e_1_2_8_39_1
– ident: e_1_2_8_33_1
– ident: e_1_2_8_23_1
  doi: 10.14358/PERS.71.10.1129
– volume-title: Proceedings of the 2006 IEEE Aerospace Conference
  year: 2006
  ident: e_1_2_8_5_1
– ident: e_1_2_8_11_1
  doi: 10.1002/rob.20109
– ident: e_1_2_8_47_1
  doi: 10.1177/02783649922066493
– ident: e_1_2_8_14_1
  doi: 10.1109/IROS.2006.282358
– ident: e_1_2_8_52_1
  doi: 10.1117/12.486764
– ident: e_1_2_8_41_1
– ident: e_1_2_8_46_1
– ident: e_1_2_8_4_1
  doi: 10.1109/21.148426
– ident: e_1_2_8_12_1
  doi: 10.1109/AERO.2002.1035370
– year: 2012
  ident: e_1_2_8_36_1
  article-title: Autonomous over‐the‐horizon navigation using Lidar data
  publication-title: Autonomous Robots
– ident: e_1_2_8_7_1
  doi: 10.1007/978-3-642-03991-1
– ident: e_1_2_8_2_1
  doi: 10.1016/j.pss.2009.09.021
– ident: e_1_2_8_50_1
  doi: 10.4271/972487
SSID ssj0043895
Score 2.1566808
Snippet This paper presents terrain mapping and path‐planning techniques that are key issues for autonomous mobility of a planetary exploration rover. In this work, a...
This paper presents terrain mapping and path-planning techniques that are key issues for autonomous mobility of a planetary exploration rover. In this work, a...
SourceID unpaywall
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 536
SubjectTerms Cylindrical coordinates
Elevation
Lidar
Representations
Sensors
Studies
Terrain
Terrain mapping
Weighting
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB0hOLQcgLYgDLRaCkJcnPjbWD1BVIqqAqoVRA5Iq117jRCREyWO-DjxE_iN_BJm1rFpKkCImyXPSuv1jPeNd-Y9gE2Fe9KOJy0TkweFCYqbmVEiIlMmQuGGjWNCak4-PAoOTrzfHb8zBT-qXpiSH6L-4UaRob_XFOBCDptPpKGDnmyQKjV9f2030OlUXFNHkai3r7lS_cDEJCCqWIUsp1mPnNiLZmhZryeA5odR3hc3V6LbnYSueu_Zn4ezatZlycllY1TIRnL7H6HjOx9rAebGmJTtlk70CaZU_hlm_2Eq_ALXMTUhPNzdV6K5BWurAclLsENBFA_nTOQp0-28JHLMKjEkRoX156x1gzNLNR0Ja_Uw4b3ICeQyhMxMaGNV4JxZWRKovYXFVF26CCf7P9utA3Ms2mAmPma2pm2rQNnSSzBl3xG-H4ZCy5jbxMOP2CuLpLREJAknullqBZaSIpNuqKI09Z3EXYLpvJerZWBEXu8FwlaecLyUjvxC284skQWIuZxEGrBdvT6ejBnNSVijy0suZofjYnK9mAZ8r037JY3Hc0Zb2gdqCzG4pLq30OenR794589fy2q3XR4bsFY5CR-H_JBTvSCCZcxWDFivb2Ow0gkMrmJvhDYE_xzEB4EBG7VzvTajbe0rL1vw-HhPX6y83XQVPjpa1IOKjtdguhiM1FeEVoX8pmPoEVx5IIM
  priority: 102
  providerName: Wiley-Blackwell
Title Range-dependent Terrain Mapping and Multipath Planning using Cylindrical Coordinates for a Planetary Exploration Rover
URI https://api.istex.fr/ark:/67375/WNG-XLQ00TT3-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.21462
https://www.proquest.com/docview/1365231772
https://www.proquest.com/docview/1439726786
https://zenodo.org/record/3447561
UnpaywallVersion submittedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1556-4967
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0043895
  issn: 1556-4967
  databaseCode: ADMLS
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1556-4967
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1556-4967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0043895
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1VuwfgAJQPESiVCwj1kiVxEqc5tquWCtEFol2xnCw7cSrUVbYKWdHtiZ_Ab-SXdMZJtiyCipulTBLLY2veyDPvAbwyGJP2Qu25mDwYTFCCwk0ylbg6UwYDNr4TU3PyyUgcT8J302i6ATtdL8ylKTEds1f4rSaapaSjBKcvIoTbPehPRh_3v1ge1Ei4CPCT67GIO_Ygj7-p5npAutV8Leb0afku1gDlrUV5rpbf1Wy2DlFtjDm6d92p05SWnA0WtR5kl38QN944_ftwt0WYbL_ZEpuwYcoHcOc33sGHcJFSS8GvHz87CdyajU1FYhHsRBFhwylTZc5scy5JFrNO2ohRmfwpGy4RnOaWXIQN5_j_ryVBVoYAmClrbGpVLVlT4Gd9z1KqFX0Ek6PD8fDYbSUY3CzCPNX1fSOMr8MME_A9FUVxrKwouU-s-oikikRrTyWaUF9Q5J7wjFaFDmKT5HnEs-Ax9Mp5aZ4AIyr6UCjfhIqHOV3gxb5feKoQiKB4ph3Y7Zwks5afnGQyZrJhVuYS_SmtPx14sTI9b0g5_mb02np6ZaGqM6piiyP5efRWTt9_8rzxOJCpA1vdVpDtAf4mqfoPoS_mHg7srB7j0aP7FFzF-QJtCMxxjPbCgZerLXTTjHbt5vq3hUw_HNjB0__64DO4za06B1UPb0GvrhbmOWKkWm9jdpDy7fasXAFdjBDy
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hOFAOLfRDTUvBQFVxyZLvEKkXWEG3sLuoURB7QZadOKhilUXbrAo98RP6G_tLOuNs0i6iqOIWKWPJcWbsN_b4PYD3CtekXU9aJiYPChMUNzejVESmTIXCBRvbhHQ5udcPOqfe0cAfzMHH-i5MxQ_RbLhRZOj5mgKcNqR3_rCGjkeyRbLUOAEveAHmKQSJ4oY8imS9fc2W6gcmpgFRzStkOTtN05nVaIEG9noGai5Oiitx810Mh7PgVa8-h8_gvO53VXRy2ZqUspX-uEPp-NgPW4anU1jK9io_WoE5VTyHpb_ICl_AdUz3EH7d_qx1c0uWqDEpTLCeIJaHCyaKjOkbvaRzzGo9JEa19ResfYNdyzQjCWuPMOf9WhDOZYiamdDGqsROs6oqUDsMi6nA9CWcHh4k7Y451W0wUx-TW9O2VaBs6aWYte8K3w9DoZXMbaLiR_iVR1JaIpIEFd08swJLSZFLN1RRlvlO6r6C-WJUqNfAiL_eC4StPOF4GZ36hbadWyIPEHY5qTRgu_5_PJ2SmpO2xpBXdMwOx8HkejAN2GxMryomj_uMPmgnaCzE-JJK30Kfn_U_8UH3i2UlictjA1ZrL-HTqP_GqWQQ8TImLAZsNK8xXukQBkdxNEEbQoAOQoTAgK3Gux7q0bZ2ln9b8PhkXz-8-X_TdVjsJL0u737uH7-FJ47W-KAa5FWYL8cT9Q6RVinXdED9Blo2JKQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB1VrVToQyk31W2hy0WoL059WzuWeIG0oUAbwEpFXqrVrr2uqkZOlDqi5YlP6Df2S5hZx4YgQIg3S56V1usZ7xnvzDkAzzXuSe1AOTYmDxoTFD-341TGtkqlxg0bx0TUnHzUCw-Og3cDPliAl3UvTMUP0fxwo8gw32sKcD3O8t0frKGTkWqRLDV-gJcCHrepoG8vacijSNabG7ZUHtqYBsQ1r5Dj7TZD53ajJVrYyzmoeWtajOXVFzkczoNXs_t078BJPe-q6OS8NS1VK_36C6Xj_z7YGqzOYCl7VfnRXVjQxT1Y-Yms8D5cJtSHcPPtutbNLVlfT0hhgh1JYnk4ZbLImOnoJZ1jVushMaqtP2WdK5xaZhhJWGeEOe9ZQTiXIWpm0hjrEifNqqpA4zAsoQLTB3Dc3e93DuyZboOdckxubdfVoXZVkGLW3pacR5E0SuYuUfEj_MpjpRwZK4KKfp45oaOVzJUf6TjLuJf6D2GxGBV6HRjx1wehdHUgvSCjU7_IdXNH5iHCLi9VFuzU70-kM1Jz0tYYioqO2RO4mMIspgVPG9NxxeTxO6MXxgkaCzk5p9K3iIvPvTdicPjJcfp9XyQWbNVeImZRfyGoZBDxMiYsFjxpbmO80iEMruJoijaEAD2ECKEFzxrv-tuMdoyz_NlCJB9em4uNfzfdhuWPe11x-Lb3fhNue0big0qQt2CxnEz1IwRapXps4uk70YskKA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB2h5NByKPRLdQvV0lYVFwd_rvGRRqUIlbSNEpGeVrv2OqqIHOQ6gnDiJ_Ab-SXMrO3QoIK4reSxvdrZ1bzRzrwH8EljTNoNlGNj8qAxQfEzO05kbKtEagzY-E5EzclHPX4wDA5H4WgFtppemAudYzpmrvBrTTRDSUcJTpuHCLdb0B72fu79NjyoIbcR4Me3Yx417EGOt1NMVYd0q72lmNOm5TtfApRPZvmpnJ_JyWQZopoYs79226lTlZacdGal6iQXd4gbH5z-OjyrESbbq7bEc1jR-QtY_Yd38CWc96ml4PryqpHALdlAFyQWwY4kETaMmcxTZppzSbKYNdJGjMrkx6w7R3CaGnIR1p3i___kBFkZAmAmjbEuZTFnVYGf8T3rU63oKxjufx10D-xagsFOQsxTbdfVXLsqSDAB35VhGEXSiJK7xKqPSCqLlXJkrAj1-VnqcEcrmSk_0nGahl7iv4ZWPs31G2BERR9w6epAekFKF3iR62aOzDgiKC9RFmw3ThJJzU9OMhkTUTErewL9KYw_LfiwMD2tSDn-Z_TZeHphIYsTqmKLQnHc-yZG3385zmDgi74FG81WEPUB_iuo-g-hL-YeFmwtHuPRo_sUXMXpDG0IzHkY7bkFHxdb6KEZbZvNdb-F6P_4YgZvH_XBd_DUM-ocVD28Aa2ymOlNxEilel-fkhv9vRAJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Range-dependent+Terrain+Mapping+and+Multipath+Planning+using+Cylindrical+Coordinates+for+a+Planetary+Exploration+Rover&rft.jtitle=Journal+of+field+robotics&rft.au=Ishigami%2C+Genya&rft.au=Otsuki%2C+Masatsugu&rft.au=Kubota%2C+Takashi&rft.date=2013-07-01&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=30&rft.issue=4&rft.spage=536&rft.epage=551&rft_id=info:doi/10.1002%2Frob.21462&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon