The effect of meninges on the electric fields in TES and TMS. Numerical modeling with adaptive mesh refinement
When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges – dura, arachnoid, and pia mater – are often neglected due to high computational costs. We investigate the impact of the meningeal layers on the cortical electric field in T...
Saved in:
| Published in | Brain stimulation Vol. 15; no. 3; pp. 654 - 663 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.05.2022
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1935-861X 1876-4754 1876-4754 |
| DOI | 10.1016/j.brs.2022.04.009 |
Cover
| Abstract | When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges – dura, arachnoid, and pia mater – are often neglected due to high computational costs.
We investigate the impact of the meningeal layers on the cortical electric field in TES and TMS while considering the headreco segmentation as the base model.
We use T1/T2 MRI data from 16 subjects and apply the boundary element fast multipole method with adaptive mesh refinement, which enables us to accurately solve this problem and establish method convergence at reasonable computational cost. We compare electric fields in the presence and absence of various meninges for two brain areas (M1HAND and DLPFC) and for several distinct TES and TMS setups.
Maximum electric fields in the cortex for focal TES consistently increase by approximately 30% on average when the meninges are present in the CSF volume. Their effect on the maximum field can be emulated by reducing the CSF conductivity from 1.65 S/m to approximately 0.85 S/m. In stark contrast to that, the TMS electric fields in the cortex are only weakly affected by the meningeal layers and slightly (∼6%) decrease on average when the meninges are included.
Our results quantify the influence of the meninges on the cortical TES and TMS electric fields. Both focal TES and TMS results are very consistent. The focal TES results are also in a good agreement with a prior relevant study. The solver and the mesh generator for the meningeal layers (compatible with SimNIBS) are available online.
•The impact of the meningeal layers on the electric field in TES and TMS is investigated.•The boundary element fast multipole method with adaptive mesh refinement is used.•TES fields in the cortex increase by 30% when the meninges are included.•TMS fields decrease by 5% on average when the meninges are included.•The solver, the mesh generator, and an example data set is made publicly available. |
|---|---|
| AbstractList | When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges - dura, arachnoid, and pia mater - are often neglected due to high computational costs.BACKGROUNDWhen modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges - dura, arachnoid, and pia mater - are often neglected due to high computational costs.We investigate the impact of the meningeal layers on the cortical electric field in TES and TMS while considering the headreco segmentation as the base model.OBJECTIVEWe investigate the impact of the meningeal layers on the cortical electric field in TES and TMS while considering the headreco segmentation as the base model.We use T1/T2 MRI data from 16 subjects and apply the boundary element fast multipole method with adaptive mesh refinement, which enables us to accurately solve this problem and establish method convergence at reasonable computational cost. We compare electric fields in the presence and absence of various meninges for two brain areas (M1HAND and DLPFC) and for several distinct TES and TMS setups.METHODWe use T1/T2 MRI data from 16 subjects and apply the boundary element fast multipole method with adaptive mesh refinement, which enables us to accurately solve this problem and establish method convergence at reasonable computational cost. We compare electric fields in the presence and absence of various meninges for two brain areas (M1HAND and DLPFC) and for several distinct TES and TMS setups.Maximum electric fields in the cortex for focal TES consistently increase by approximately 30% on average when the meninges are present in the CSF volume. Their effect on the maximum field can be emulated by reducing the CSF conductivity from 1.65 S/m to approximately 0.85 S/m. In stark contrast to that, the TMS electric fields in the cortex are only weakly affected by the meningeal layers and slightly (∼6%) decrease on average when the meninges are included.RESULTSMaximum electric fields in the cortex for focal TES consistently increase by approximately 30% on average when the meninges are present in the CSF volume. Their effect on the maximum field can be emulated by reducing the CSF conductivity from 1.65 S/m to approximately 0.85 S/m. In stark contrast to that, the TMS electric fields in the cortex are only weakly affected by the meningeal layers and slightly (∼6%) decrease on average when the meninges are included.Our results quantify the influence of the meninges on the cortical TES and TMS electric fields. Both focal TES and TMS results are very consistent. The focal TES results are also in a good agreement with a prior relevant study. The solver and the mesh generator for the meningeal layers (compatible with SimNIBS) are available online.CONCLUSIONOur results quantify the influence of the meninges on the cortical TES and TMS electric fields. Both focal TES and TMS results are very consistent. The focal TES results are also in a good agreement with a prior relevant study. The solver and the mesh generator for the meningeal layers (compatible with SimNIBS) are available online. When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges – dura, arachnoid, and pia mater – are often neglected due to high computational costs. We investigate the impact of the meningeal layers on the cortical electric field in TES and TMS while considering the headreco segmentation as the base model. We use T1/T2 MRI data from 16 subjects and apply the boundary element fast multipole method with adaptive mesh refinement, which enables us to accurately solve this problem and establish method convergence at reasonable computational cost. We compare electric fields in the presence and absence of various meninges for two brain areas (M1HAND and DLPFC) and for several distinct TES and TMS setups. Maximum electric fields in the cortex for focal TES consistently increase by approximately 30% on average when the meninges are present in the CSF volume. Their effect on the maximum field can be emulated by reducing the CSF conductivity from 1.65 S/m to approximately 0.85 S/m. In stark contrast to that, the TMS electric fields in the cortex are only weakly affected by the meningeal layers and slightly (∼6%) decrease on average when the meninges are included. Our results quantify the influence of the meninges on the cortical TES and TMS electric fields. Both focal TES and TMS results are very consistent. The focal TES results are also in a good agreement with a prior relevant study. The solver and the mesh generator for the meningeal layers (compatible with SimNIBS) are available online. •The impact of the meningeal layers on the electric field in TES and TMS is investigated.•The boundary element fast multipole method with adaptive mesh refinement is used.•TES fields in the cortex increase by 30% when the meninges are included.•TMS fields decrease by 5% on average when the meninges are included.•The solver, the mesh generator, and an example data set is made publicly available. When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges - dura, arachnoid, and pia mater - are often neglected due to high computational costs. We investigate the impact of the meningeal layers on the cortical electric field in TES and TMS while considering the headreco segmentation as the base model. We use T1/T2 MRI data from 16 subjects and apply the boundary element fast multipole method with adaptive mesh refinement, which enables us to accurately solve this problem and establish method convergence at reasonable computational cost. We compare electric fields in the presence and absence of various meninges for two brain areas (M1 and DLPFC) and for several distinct TES and TMS setups. Maximum electric fields in the cortex for focal TES consistently increase by approximately 30% on average when the meninges are present in the CSF volume. Their effect on the maximum field can be emulated by reducing the CSF conductivity from 1.65 S/m to approximately 0.85 S/m. In stark contrast to that, the TMS electric fields in the cortex are only weakly affected by the meningeal layers and slightly (∼6%) decrease on average when the meninges are included. Our results quantify the influence of the meninges on the cortical TES and TMS electric fields. Both focal TES and TMS results are very consistent. The focal TES results are also in a good agreement with a prior relevant study. The solver and the mesh generator for the meningeal layers (compatible with SimNIBS) are available online. Background: When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges – dura, arachnoid, and pia mater – are often neglected due to high computational costs. Objective: We investigate the impact of the meningeal layers on the cortical electric field in TES and TMS while considering the headreco segmentation as the base model. Method: We use T1/T2 MRI data from 16 subjects and apply the boundary element fast multipole method with adaptive mesh refinement, which enables us to accurately solve this problem and establish method convergence at reasonable computational cost. We compare electric fields in the presence and absence of various meninges for two brain areas (M1HAND and DLPFC) and for several distinct TES and TMS setups. Results: Maximum electric fields in the cortex for focal TES consistently increase by approximately 30% on average when the meninges are present in the CSF volume. Their effect on the maximum field can be emulated by reducing the CSF conductivity from 1.65 S/m to approximately 0.85 S/m. In stark contrast to that, the TMS electric fields in the cortex are only weakly affected by the meningeal layers and slightly (∼6%) decrease on average when the meninges are included. Conclusion: Our results quantify the influence of the meninges on the cortical TES and TMS electric fields. Both focal TES and TMS results are very consistent. The focal TES results are also in a good agreement with a prior relevant study. The solver and the mesh generator for the meningeal layers (compatible with SimNIBS) are available online. |
| Author | Weise, Konstantin Makarov, Sergey N. Knösche, Thomas R. Wartman, William A. Nummenmaa, Aapo R. |
| Author_xml | – sequence: 1 givenname: Konstantin orcidid: 0000-0003-1283-2042 surname: Weise fullname: Weise, Konstantin email: kweise@cbs.mpg.de, konstantin.weise@tu-ilmenau.de organization: Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany – sequence: 2 givenname: William A. surname: Wartman fullname: Wartman, William A. email: wawartman@wpi.edu organization: Electrical & Computer Engineering Dept., Worcester Polytechnic Institute, Worcester, MA, 01609, USA – sequence: 3 givenname: Thomas R. surname: Knösche fullname: Knösche, Thomas R. email: knoesche@cbs.mpg.de organization: Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany – sequence: 4 givenname: Aapo R. surname: Nummenmaa fullname: Nummenmaa, Aapo R. email: nummenma@nmr.mgh.harvard.edu organization: Electrical & Computer Engineering Dept., Worcester Polytechnic Institute, Worcester, MA, 01609, USA – sequence: 5 givenname: Sergey N. surname: Makarov fullname: Makarov, Sergey N. email: makarov@wpi.edu, smakarov@mgh.harvard.edu organization: Electrical & Computer Engineering Dept., Worcester Polytechnic Institute, Worcester, MA, 01609, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35447379$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkj9vFDEQxVcoiPyBD0CDXNLcYnvt9VpUKAoQKUCRQ6KzvPY458PrPWxfovv2-LiQIkWg8sjzfk-jeXPaHMU5QtO8JrglmPTv1u2YcksxpS1mLcbyWXNCBtEvmODsqNay44uhJz-Om9Oc1xhzKQfxojnuOGOiE_KkicsVIHAOTEGzQxNEH28gozmisu-E2kjeIOch2Ix8RMuLa6SjRcsv1y36up2gtnVA02whVBbd-bJC2upN8bdQDfMKJXA-QvUuL5vnTocMr-7fs-b7x4vl-efF1bdPl-cfrhaGE1oWTmPcG6k1AQej7N0gQAthKTOjpXKwuJNDZ6SQdBSYW47lMGhqcD_2g-XQnTWXB18767XaJD_ptFOz9urPx5xulE7FmwBq7JzlI_TWDoJRbjR1zGrdS1ZXTAStXvTgtY0bvbvTITwYEqz2Qai1qkGofRAKM1WDqNDbA7RJ868t5KImnw2EoCPM26rtOaOyI1JU6Zt76XacwD6Y_w2pCsRBYNKcc12mMr7o4udYkvbhySnII_J_Jn9_YKDmc-shqWw8RAPWp3oMdYH-SVo-ok29iv2F_ITdP9jfykzetA |
| CitedBy_id | crossref_primary_10_1038_s41598_024_76867_z crossref_primary_10_1109_TMAG_2023_3334747 crossref_primary_10_56766_ntms_1419119 crossref_primary_10_1162_imag_a_00106 crossref_primary_10_1016_j_biopsych_2023_11_022 crossref_primary_10_1038_s41598_023_45602_5 crossref_primary_10_1088_1361_6560_ad66a9 crossref_primary_10_1073_pnas_2306279120 crossref_primary_10_3389_fnhum_2023_1075741 crossref_primary_10_3390_bioengineering11111071 crossref_primary_10_1016_j_neuroimage_2023_120379 crossref_primary_10_1038_s41380_024_02567_9 crossref_primary_10_1088_1361_6560_ad2638 crossref_primary_10_1016_j_neuroimage_2024_120998 crossref_primary_10_1088_1741_2552_ad625e |
| Cites_doi | 10.1088/1741-2552/ab208d 10.1016/j.softx.2020.100450 10.1016/S0006-3495(03)74750-X 10.1016/j.neuroimage.2021.118437 10.1016/j.neuroimage.2019.116486 10.1088/1741-2552/ab85b3 10.1016/j.neuroimage.2010.07.061 10.1016/j.neuroimage.2021.118654 10.1002/hbm.21479 10.1016/j.brs.2011.10.001 10.1023/B:BRAT.0000006333.93597.9d 10.1016/j.neuroimage.2016.09.011 10.7863/jum.1997.16.11.725 10.1016/j.neuroimage.2021.118097 10.1016/j.neuroimage.2011.06.069 10.1016/j.neuroimage.2012.01.021 10.1109/TBME.2004.827925 10.1016/j.neuroimage.2012.02.018 10.1109/TBME.2018.2813261 10.1016/j.neuroimage.2020.117044 10.1088/1741-2552/ab549d 10.1088/1741-2552/ac17d7 10.1016/j.brs.2019.09.015 10.1016/j.neuroimage.2018.12.053 10.1016/j.brs.2009.03.005 10.1016/j.neuroimage.2006.09.024 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors Copyright © 2022. Published by Elsevier Inc. Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022. Published by Elsevier Inc. – notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 ADTOC UNPAY DOA |
| DOI | 10.1016/j.brs.2022.04.009 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1876-4754 |
| EndPage | 663 |
| ExternalDocumentID | oai_doaj_org_article_b3fd5be6dd87425ca2f4daa694016172 10.1016/j.brs.2022.04.009 35447379 10_1016_j_brs_2022_04_009 S1935861X22000699 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1~. 1~5 23N 4.4 457 4G. 4H- 53G 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABIVO ABJNI ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SEL SES SSH SSN SSZ T5K Z5R ~G- ~HD 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW LCYCR NCXOZ RIG AAYXX CITATION NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c512t-fa006c9aa1efeb96f87ea77d24cbd298d03983c9792b705d50988a2c06b68d5e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1935-861X 1876-4754 |
| IngestDate | Fri Oct 03 12:52:35 EDT 2025 Sun Oct 26 03:59:55 EDT 2025 Sun Sep 28 01:16:34 EDT 2025 Tue Sep 30 00:37:58 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Wed Oct 01 02:51:20 EDT 2025 Fri Feb 23 02:39:44 EST 2024 Tue Oct 14 19:31:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Transcranial electric stimulation Electric field Transcranial magnetic stimulation Segmentation Head modeling Meninges Brain stimulation |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022. Published by Elsevier Inc. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c512t-fa006c9aa1efeb96f87ea77d24cbd298d03983c9792b705d50988a2c06b68d5e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1283-2042 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.brainstimjrnl.com/article/S1935861X22000699/pdf |
| PMID | 35447379 |
| PQID | 2654293197 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b3fd5be6dd87425ca2f4daa694016172 unpaywall_primary_10_1016_j_brs_2022_04_009 proquest_miscellaneous_2654293197 pubmed_primary_35447379 crossref_citationtrail_10_1016_j_brs_2022_04_009 crossref_primary_10_1016_j_brs_2022_04_009 elsevier_sciencedirect_doi_10_1016_j_brs_2022_04_009 elsevier_clinicalkey_doi_10_1016_j_brs_2022_04_009 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Brain stimulation |
| PublicationTitleAlternate | Brain Stimul |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Makarov, Hämäläinen, Okada, Noetscher, Ahveninen, Nummenmaa (bib29) 2020 May 29 Numssen, Zier, Thielscher, Hartwigsen, Knösche, Weise (bib2) 2021 Dec 15; 245 TES & TMS BEM-FMM Solver with Adaptive Mesh Refinement (bib15) Herwig, Satrapi, Schönfeldt-Lecuona (bib22) 2003 Winter; 16 bib14 Makarov, Wartman, Daneshzand, Fujimoto, Raij, Nummenmaa (bib27) 2020 Apr 1 Gomez, Dannhauer, Koponen, Peterchev (bib26) 2020 Jan-Feb; 13 Datta, Bansal, Diaz, Patel, Reato, Bikson (bib20) 2009; 2 Makarov, Wartman, Noetscher, Fujimoto, Zaidi, Burnham, Daneshzand, Nummenmaa (bib12) 2021 Jul 28; 241 Daneshzand, Makarov, de Lara, Guerin, McNab, Rosen, Hämäläinen, Raij, Nummenmaa (bib28) 2021 Aug 15; 237 Huang, Datta, Bikson, Parra (bib7) 2019 Jul 30; 16 Makarov, Noetscher, Raij, Nummenmaa (bib25) 2018 Mar 7 Weise, Numssen, Thielscher, Hartwigsen, Knösche (bib1) 2020 Apr 1; 209 Puonti, Iglesias, Van Leemput (bib6) 2016; 143 Jiang, Truong, Esmaeilpour, Huang, Badran, Bikson (bib8) 2020 Jan 14; 17 Puonti, Van Leemput, Saturnino, Siebner, Madsen, Thielscher (bib4) 2020 Oct 1; 219 Opitz, Windhoff, Heidemann, Turner, Thielscher (bib9) 2011 Oct 1; 58 Makarov, Golestani Rad, Wartman, Nguyen, Noetscher, Ahveninen, Fujimoto, Weise, Nummenmaa (bib11) 2021 Jul 26 Weise, Poßner, Müller, Gast, Knösche (bib31) 2020; 11 Fischl (bib13) 2012; 62 Bashkatov, Genina, Sinichkin, Kochubey, Lakodina, Tuchin (bib16) 2003 Nov; 85 Peterchev, Wagner, Miranda, Nitsche, Paulus, Lisanby, Pascual-Leone, Bikson (bib3) 2012 Oct; 5 Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss, Della Penna, Feinberg, Glasser, Harel, Heath, Larson-Prior, Marcus, Michalareas, Moeller, Oostenveld, Petersen, Prior, Schlaggar, Smith, Snyder, Xu, Yacoub (bib10) 2012; 62 Kuchiwaki, Inao, Ishii, Ogura, Gu (bib17) 1997 Nov; 16 Wagner, Zahn, Grodzinsky, Pascual-Leone (bib23) 2004 Sep; 51 Windhoff, Opitz, Thielscher (bib5) 2013 Apr; 34 Saturnino, Thielscher, Madsen, Knösche, Weise (bib30) 2019 Mar; 188 Jurcak, Tsuzuki, Dan (bib21) 2007 Feb 15; 34 Fournier, Combès, Roberts, Braga, Prima (bib19) 2011; vol. 7962 Saboori, Sadegh (bib18) 2015; 2015 Thielscher, Opitz, Windhoff (bib24) 2011 Jan 1; 54 Puonti (10.1016/j.brs.2022.04.009_bib6) 2016; 143 Huang (10.1016/j.brs.2022.04.009_bib7) 2019; 16 Fischl (10.1016/j.brs.2022.04.009_bib13) 2012; 62 Wagner (10.1016/j.brs.2022.04.009_bib23) 2004; 51 Datta (10.1016/j.brs.2022.04.009_bib20) 2009; 2 Makarov (10.1016/j.brs.2022.04.009_bib25) 2018 Peterchev (10.1016/j.brs.2022.04.009_bib3) 2012; 5 Makarov (10.1016/j.brs.2022.04.009_bib12) 2021; 241 Saturnino (10.1016/j.brs.2022.04.009_bib30) 2019; 188 Numssen (10.1016/j.brs.2022.04.009_bib2) 2021; 245 Makarov (10.1016/j.brs.2022.04.009_bib27) 2020 Makarov (10.1016/j.brs.2022.04.009_bib11) 2021 Weise (10.1016/j.brs.2022.04.009_bib31) 2020; 11 Jiang (10.1016/j.brs.2022.04.009_bib8) 2020; 17 Jurcak (10.1016/j.brs.2022.04.009_bib21) 2007; 34 Saboori (10.1016/j.brs.2022.04.009_bib18) 2015; 2015 Makarov (10.1016/j.brs.2022.04.009_bib29) 2020 Windhoff (10.1016/j.brs.2022.04.009_bib5) 2013; 34 Weise (10.1016/j.brs.2022.04.009_bib1) 2020; 209 Gomez (10.1016/j.brs.2022.04.009_bib26) 2020; 13 Daneshzand (10.1016/j.brs.2022.04.009_bib28) 2021; 237 Puonti (10.1016/j.brs.2022.04.009_bib4) 2020; 219 Kuchiwaki (10.1016/j.brs.2022.04.009_bib17) 1997; 16 Herwig (10.1016/j.brs.2022.04.009_bib22) 2003; 16 Van Essen (10.1016/j.brs.2022.04.009_bib10) 2012; 62 TES & TMS BEM-FMM Solver with Adaptive Mesh Refinement (10.1016/j.brs.2022.04.009_bib15) Thielscher (10.1016/j.brs.2022.04.009_bib24) 2011; 54 Opitz (10.1016/j.brs.2022.04.009_bib9) 2011; 58 Bashkatov (10.1016/j.brs.2022.04.009_bib16) 2003; 85 Fournier (10.1016/j.brs.2022.04.009_bib19) 2011; vol. 7962 |
| References_xml | – volume: 16 year: 2019 Jul 30 ident: bib7 article-title: Realistic volumetric-approach to simulate transcranial electric stimulation-ROAST-a fully automated open-source pipeline publication-title: J Neural Eng – year: 2021 Jul 26 ident: bib11 article-title: Boundary element fast multipole method for modeling electrical brain stimulation with voltage and current electrodes publication-title: J Neural Eng – volume: 2015 start-page: 279814 year: 2015 ident: bib18 article-title: Histology and morphology of the brain subarachnoid trabeculae publication-title: Anat Res Int – volume: 245 year: 2021 Dec 15 ident: bib2 article-title: Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression publication-title: Neuroimage – year: 2020 Apr 1 ident: bib27 article-title: A software toolkit for TMS electric-field modeling with boundary element fast multipole method: an efficient MATLAB implementation publication-title: J Neural Eng – volume: 34 start-page: 923 year: 2013 Apr end-page: 935 ident: bib5 article-title: Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models publication-title: Hum Brain Mapp – year: 2020 May 29 ident: bib29 article-title: Boundary element fast multipole method for enhanced modeling of neurophysiological recordings publication-title: IEEE Trans Biomed Eng – volume: 219 year: 2020 Oct 1 ident: bib4 article-title: Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling publication-title: Neuroimage – volume: 209 year: 2020 Apr 1 ident: bib1 article-title: A novel approach to localize cortical TMS effects publication-title: Neuroimage – volume: 2 start-page: 201 year: 2009 end-page: 207 ident: bib20 article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad publication-title: Brain Stimul – volume: 58 start-page: 849 year: 2011 Oct 1 end-page: 859 ident: bib9 article-title: How the brain tissue shapes the electric field induced by transcranial magnetic stimulation publication-title: Neuroimage – volume: 11 year: 2020 ident: bib31 article-title: Pygpc: a sensitivity and uncertainty analysis toolbox for Python publication-title: SoftwareX – ident: bib15 article-title: Connectome subject 120111. MATLAB windows/linux code and user's manual. β-Version january 2022 – volume: vol. 7962 year: 2011 ident: bib19 article-title: Mapping the distance between the brain and the inner surface of the skull and their global asymmetries publication-title: Image processing – volume: 16 start-page: 725 year: 1997 Nov end-page: 730 ident: bib17 article-title: Human dural thickness measured by ultrasonographic method: reflection of intracranial pressure publication-title: J Ultrasound Med – volume: 54 start-page: 234 year: 2011 Jan 1 end-page: 243 ident: bib24 article-title: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation publication-title: Neuroimage – volume: 241 start-page: 118437 year: 2021 Jul 28 ident: bib12 article-title: Degree of improving TMS focality through a geometrically stable solution of an inverse TMS problem publication-title: Neuroimage – volume: 143 start-page: 235 year: 2016 end-page: 249 ident: bib6 article-title: Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling publication-title: Neuroimage – volume: 13 start-page: 157 year: 2020 Jan-Feb end-page: 166 ident: bib26 article-title: Conditions for numerically accurate TMS electric field simulation publication-title: Brain Stimul – volume: 188 start-page: 821 year: 2019 Mar end-page: 834 ident: bib30 article-title: A principled approach to conductivity uncertainty analysis in electric field calculations publication-title: Neuroimage – volume: 5 start-page: 435 year: 2012 Oct end-page: 453 ident: bib3 article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices publication-title: Brain Stimul – volume: 16 start-page: 95 year: 2003 Winter end-page: 99 ident: bib22 article-title: Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation publication-title: Brain Topogr – volume: 51 start-page: 1586 year: 2004 Sep end-page: 1598 ident: bib23 article-title: Three-dimensional head model simulation of transcranial magnetic stimulation publication-title: IEEE Trans Biomed Eng – volume: 237 year: 2021 Aug 15 ident: bib28 article-title: Rapid computation of TMS-induced E-fields using a dipole-based magnetic stimulation profile approach publication-title: Neuroimage – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: bib13 article-title: FreeSurfer publication-title: NeuroImage. – volume: 34 start-page: 1600 year: 2007 Feb 15 end-page: 1611 ident: bib21 article-title: 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems publication-title: Neuroimage – volume: 62 start-page: 2222 year: 2012 end-page: 2231 ident: bib10 article-title: The Human Connectome Project: a data acquisition perspective publication-title: Neuroimage – ident: bib14 article-title: Computational anatomy toolbox (CAT) – year: 2018 Mar 7 ident: bib25 article-title: A quasi-static boundary element approach with fast multipole acceleration for high-resolution bioelectromagnetic models publication-title: IEEE Trans Biomed Eng – volume: 85 start-page: 3310 year: 2003 Nov end-page: 3318 ident: bib16 article-title: Glucose and mannitol diffusion in human dura mater publication-title: Biophys J – volume: 17 year: 2020 Jan 14 ident: bib8 article-title: Enhanced tES and tDCS computational models by meninges emulation publication-title: J Neural Eng – volume: 16 issue: 5 year: 2019 ident: 10.1016/j.brs.2022.04.009_bib7 article-title: Realistic volumetric-approach to simulate transcranial electric stimulation-ROAST-a fully automated open-source pipeline publication-title: J Neural Eng doi: 10.1088/1741-2552/ab208d – volume: 11 year: 2020 ident: 10.1016/j.brs.2022.04.009_bib31 article-title: Pygpc: a sensitivity and uncertainty analysis toolbox for Python publication-title: SoftwareX doi: 10.1016/j.softx.2020.100450 – volume: 85 start-page: 3310 issue: 5 year: 2003 ident: 10.1016/j.brs.2022.04.009_bib16 article-title: Glucose and mannitol diffusion in human dura mater publication-title: Biophys J doi: 10.1016/S0006-3495(03)74750-X – volume: 241 start-page: 118437 year: 2021 ident: 10.1016/j.brs.2022.04.009_bib12 article-title: Degree of improving TMS focality through a geometrically stable solution of an inverse TMS problem publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118437 – volume: 209 year: 2020 ident: 10.1016/j.brs.2022.04.009_bib1 article-title: A novel approach to localize cortical TMS effects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116486 – year: 2020 ident: 10.1016/j.brs.2022.04.009_bib27 article-title: A software toolkit for TMS electric-field modeling with boundary element fast multipole method: an efficient MATLAB implementation publication-title: J Neural Eng doi: 10.1088/1741-2552/ab85b3 – volume: 54 start-page: 234 issue: 1 year: 2011 ident: 10.1016/j.brs.2022.04.009_bib24 article-title: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.061 – volume: 245 year: 2021 ident: 10.1016/j.brs.2022.04.009_bib2 article-title: Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118654 – volume: 34 start-page: 923 issue: 4 year: 2013 ident: 10.1016/j.brs.2022.04.009_bib5 article-title: Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models publication-title: Hum Brain Mapp doi: 10.1002/hbm.21479 – volume: 5 start-page: 435 issue: 4 year: 2012 ident: 10.1016/j.brs.2022.04.009_bib3 article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices publication-title: Brain Stimul doi: 10.1016/j.brs.2011.10.001 – volume: 16 start-page: 95 issue: 2 year: 2003 ident: 10.1016/j.brs.2022.04.009_bib22 article-title: Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation publication-title: Brain Topogr doi: 10.1023/B:BRAT.0000006333.93597.9d – ident: 10.1016/j.brs.2022.04.009_bib15 – volume: 143 start-page: 235 year: 2016 ident: 10.1016/j.brs.2022.04.009_bib6 article-title: Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.09.011 – volume: 16 start-page: 725 issue: 11 year: 1997 ident: 10.1016/j.brs.2022.04.009_bib17 article-title: Human dural thickness measured by ultrasonographic method: reflection of intracranial pressure publication-title: J Ultrasound Med doi: 10.7863/jum.1997.16.11.725 – volume: 237 year: 2021 ident: 10.1016/j.brs.2022.04.009_bib28 article-title: Rapid computation of TMS-induced E-fields using a dipole-based magnetic stimulation profile approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118097 – volume: 58 start-page: 849 issue: 3 year: 2011 ident: 10.1016/j.brs.2022.04.009_bib9 article-title: How the brain tissue shapes the electric field induced by transcranial magnetic stimulation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.069 – volume: 62 start-page: 774 issue: 2 year: 2012 ident: 10.1016/j.brs.2022.04.009_bib13 article-title: FreeSurfer publication-title: NeuroImage. doi: 10.1016/j.neuroimage.2012.01.021 – volume: 51 start-page: 1586 issue: 9 year: 2004 ident: 10.1016/j.brs.2022.04.009_bib23 article-title: Three-dimensional head model simulation of transcranial magnetic stimulation publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2004.827925 – volume: 62 start-page: 2222 issue: 4 year: 2012 ident: 10.1016/j.brs.2022.04.009_bib10 article-title: The Human Connectome Project: a data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – year: 2018 ident: 10.1016/j.brs.2022.04.009_bib25 article-title: A quasi-static boundary element approach with fast multipole acceleration for high-resolution bioelectromagnetic models publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2813261 – volume: 219 year: 2020 ident: 10.1016/j.brs.2022.04.009_bib4 article-title: Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117044 – volume: 17 issue: 1 year: 2020 ident: 10.1016/j.brs.2022.04.009_bib8 article-title: Enhanced tES and tDCS computational models by meninges emulation publication-title: J Neural Eng doi: 10.1088/1741-2552/ab549d – year: 2021 ident: 10.1016/j.brs.2022.04.009_bib11 article-title: Boundary element fast multipole method for modeling electrical brain stimulation with voltage and current electrodes publication-title: J Neural Eng doi: 10.1088/1741-2552/ac17d7 – volume: 13 start-page: 157 issue: 1 year: 2020 ident: 10.1016/j.brs.2022.04.009_bib26 article-title: Conditions for numerically accurate TMS electric field simulation publication-title: Brain Stimul doi: 10.1016/j.brs.2019.09.015 – volume: 188 start-page: 821 year: 2019 ident: 10.1016/j.brs.2022.04.009_bib30 article-title: A principled approach to conductivity uncertainty analysis in electric field calculations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.12.053 – volume: 2 start-page: 201 issue: 4 year: 2009 ident: 10.1016/j.brs.2022.04.009_bib20 article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad publication-title: Brain Stimul doi: 10.1016/j.brs.2009.03.005 – volume: 2015 start-page: 279814 year: 2015 ident: 10.1016/j.brs.2022.04.009_bib18 article-title: Histology and morphology of the brain subarachnoid trabeculae publication-title: Anat Res Int – volume: 34 start-page: 1600 issue: 4 year: 2007 ident: 10.1016/j.brs.2022.04.009_bib21 article-title: 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.024 – volume: vol. 7962 year: 2011 ident: 10.1016/j.brs.2022.04.009_bib19 article-title: Mapping the distance between the brain and the inner surface of the skull and their global asymmetries Medical Imaging 2011: image Processing Medical Imaging 2011 – year: 2020 ident: 10.1016/j.brs.2022.04.009_bib29 article-title: Boundary element fast multipole method for enhanced modeling of neurophysiological recordings publication-title: IEEE Trans Biomed Eng |
| SSID | ssj0059987 |
| Score | 2.397215 |
| Snippet | When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges – dura, arachnoid, and pia mater... When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges - dura, arachnoid, and pia mater... Background: When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges – dura, arachnoid,... |
| SourceID | doaj unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 654 |
| SubjectTerms | Brain stimulation Electric field Head modeling Meninges Segmentation Transcranial electric stimulation Transcranial magnetic stimulation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LbtQw0EK9AAcElMfSgoyEOIACjuP4cSyoVYXUXrqV9mY5fohFW--quyvUv2dsJ9EipO6Fa-JxkpnxvDOD0Adiakuss5WjNauYIKTqiAlVHayjQgVQ6ik0cHHJz6_Zj1k72xn1lWrCSnvggrivXRNc23nunAQvrrWGBuaM4YolY0Vk6UukGpypIoNbcCJEySe3leT1bMhn5squ7jb16aY09zhNlYg7Gik37v9LMf1reD5GD7dxZe5-m8ViRxmdPUVPeisSn5S3f4Ye-PgcHZ5E8KBv7vBHnOs6c8D8EEXgBFzKNvAy4BufIiF-jZcRb9KdPAdnbnGuZVvjecTT0ytsosPTi6sv-HJbcjoLnIfmACxOsVtsnFklUQkbrn9i-CowV1Ok8QW6Pjudfj-v-ikLlQVlv6mCgYNnlTG1D75TPEjhjRCOMts5qqQjjZKNVULRTpDWgYUhpaGW8I5L1_rmJTqIy-hfI8yVVTaN8mDBM98wozz3IihrVKi5pRNEBkxr27cgT5MwFnqoNfulgTg6EUcTpoE4E_RpBFmV_hv3Lf6WyDcuTK2z8wVgKN0zlN7HUBNEB-Lr4e9UkKew0fy-J7MRqDddikmyD-z9wF0ajnXK1Zjol1tYlAeJgXwUE_SqsN34WU3LmGgEQH8e-XA_ct78D-QcoUdpy1LxeYwONrdb_xassk33Lh_APxWaMiM priority: 102 providerName: Directory of Open Access Journals – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhl7aH0jZ9bF-oUHpocVaWZcs6piEhFJLLbmBvQtajddjYyz4oufS3d0Z-kFBIoEfbGlvWjGfGM59mCPnMTGqZdTZxPBWJkIwlFTMhSYN1XKoARh1DA-cXxdml-LHIF3vkeNgLg7DKXvd3Oj1q6_7MtF_N6aqup7MUU3hFuuBxt4nCTXxCSOxicPhnhHnk8Dshu8xynuDoIbMZMV7VGit2cx6rnSIm8ZZtiiX875iof13QJ-TRrlmZm99mubxllk6fkae9P0mPuik_J3u-eUEOjhr4l76-oV9oRHjG0PkBaUAmaAfgoG2g1x5jIn5D24Zu8UrsiFNbGlFtG1o3dH4yo6ZxdH4-O6QXuy67s6SxfQ7QUoziUuPMCpUm3HDzi8JbgeOKMceX5PL0ZH58lvT9FhILZn-bBAPraJUxqQ--UkUopTdSOi5s5bgqHctUmVklFa8kyx34GmVpuGVFVZQu99krst-0jX9DaKGsstjUQwQvfCaM8oWXQVmjQlpYPiFsWGlt-2Lk2BNjqQfU2ZUG5mhkjmZCA3Mm5OtIsuoqcdw3-DuybxyIRbTjiXb9U_dSpKssuLzyhXOlBNVlDQ_CGVMogX6whEnygfl62KcKmhVuVN_3ZDES3RHkh8g-DdKl4QPHrI1pfLuDQbGlGGhKOSGvO7EbXyvLQeIzCdTfRjl8eHHe_t8U35HHeNShPd-T_e165z-AR7atPsZP7i-sHjHN priority: 102 providerName: Elsevier |
| Title | The effect of meninges on the electric fields in TES and TMS. Numerical modeling with adaptive mesh refinement |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1935861X22000699 https://dx.doi.org/10.1016/j.brs.2022.04.009 https://www.ncbi.nlm.nih.gov/pubmed/35447379 https://www.proquest.com/docview/2654293197 http://www.brainstimjrnl.com/article/S1935861X22000699/pdf https://doaj.org/article/b3fd5be6dd87425ca2f4daa694016172 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1876-4754 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059987 issn: 1876-4754 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1876-4754 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059987 issn: 1876-4754 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1876-4754 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059987 issn: 1876-4754 databaseCode: AIKHN dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1876-4754 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059987 issn: 1876-4754 databaseCode: .~1 dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1876-4754 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059987 issn: 1876-4754 databaseCode: ACRLP dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1876-4754 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0059987 issn: 1876-4754 databaseCode: AKRWK dateStart: 20080101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdY-wA88DUG5aMyEuIBlC5xnDh-LGhTAa1CaisN8RD5Ezpat-qH0Hjgb-fsJNWmSZvgMcldEvsu51_uzncIvY5FomKlVaRJQiPK4jiSsbBRYpUmjFtY1L1r4GSYDyb002l2ejmrUvreCKDf87OVmwVjXU_i4SjxUbs8OSVhgwnnh0tt91A7zwCHt1B7MvzS_-r_sOATh-dmdUg5izxPE9IMyV1y5Ut1ExLKnPpkxAuLUqjdf2ltuoo976LbW7cU57_EbHZhPTq-j741u3qqNJSfve1G9tTvq0Ue_2OoD9C9GqbifkX3EN0y7hHa7zv4RZ-f4zc4JI4Gj_w-cqBquMoLwQuL58a7WswaLxze-Cuh0c5U4ZAst8ZTh8dHIyycxuOTUQ8Pt1XQaIZDVx7gxd45jIUWS2-L4YbrHxjmDPCwd2U-RpPjo_GHQVS3cYgUoIlNZAUMQHEhEmON5LktmBGMaUKV1IQXOk55kSrOOJEszjRAmKIQRMW5zAudmfQAtdzCmacI51xx5XuFUGuoSangJjfMciW4TXJFOihu5Fiqusa5b7UxK5tktrMSRF960ZcxLUH0HfR2x7KsCnxcR_zeK8eO0NfmDicWq-9lLbpSplZn0uRaFwwsohLEUi1EzqmH1wxekjSqVTbbX8Fgw42m1z2Z7phqbFRhnpvYXjW6W4Ld8MEg4cxiC0ShUxkYYNZBTyql3g0rzShlKQPudzstv3lynv0T9XN0xx9VuaMvUGuz2pqXgO82sov2en-SLmr3P34eDLvBS9KtP-6_TMJPCQ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQeEFAeW15GQhxA6SaOY8fHUrVaoLuX3Up7sxw_StA2We1DqBd-O2PnoVZIrcQ18SSOZzIznvk8g9DHWCU61kZHhiQ0ojyOoyJWLkqcNoQLB0bdhwbGEza6oN_n2XwHnXRnYTysstX9jU4P2rq9MmxXc7gsy-E08Sk8lsxJOG0ixAP0kGaE-x3Y0Z8e55HBfoI3qeUs8sO71GYAeRUrX7KbkFDu1IMSbxinUMP_lo361wfdR3vbaqmuf6vF4oZdOnuCHrcOJT5u5vwU7djqGTo4rmAzfXWNP-EA8Qyx8wNUgVDgBsGBa4evrA-K2DWuK7zxd0JLnFLjAGtb47LCs9MpVpXBs_H0CE-2TXpngUP_HKDFPoyLlVFLrzXhgeufGL4KPFcfdHyOLs5OZyejqG24EGmw-5vIKVhILZRKrLOFYC7nVnFuCNWFISI3cSryVAsuSMHjzICzkeeK6JgVLDeZTV-g3aqu7CuEmdBC-64e1FlqU6qEZZY7oZVwCdNkgOJupaVuq5H7phgL2cHOfklgjvTMkTGVwJwB-tyTLJtSHHcN_urZ1w_0VbTDhXp1KVsxkkXqTFZYZkzOQXdpRRw1SjFBvSPMYZKkY77sDqqCaoUHlXe9mfZEtyT5PrIPnXRJ-MN92kZVtt7CoNBTDFQlH6CXjdj1n5VmlPKUA_WXXg7vX5zD_5vie7Q3mo3P5fm3yY_X6JG_00A_36DdzWpr34J7tinehd_vLxABNPA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4A98DUY5UtGQjyA0iWOY8ePBW2akFYhtZWKeIj8CR2tW_VDaPz1nJ2k2jRpEzwmuUti3-X8y935DqF3qcx0qo1ODMloQnmaJiqVLsmcNoQLB4t6cA2cDdjpmH6ZFJOrWZUq9EYA_Z6fr_wsGutmEo-GWYjasWxC4gYTIY6Wxt1Fe6wAHN5Be-PB1_638IcFnzg8t2hCykUSeNqQZkzuUqtQqpuQWOY0JCNeWpRi7f4ra9N17LmP7m39Ul78lrPZpfXo5CH63u7qqdNQfvW2G9XTf64XefyPoT5CDxqYivs13WN0x_on6KDv4Rd9foHf45g4Gj3yB8iDquE6LwQvHJ7b4Gqxa7zweBOuxEY7U41jstwaTz0eHQ-x9AaPzoY9PNjWQaMZjl15gBcH5zCWRi6DLYYbrn9imDPAw8GV-RSNT45Hn0-Tpo1DogFNbBInYQBaSJlZZ5VgruRWcm4I1coQUZo0F2WuBRdE8bQwAGHKUhKdMsVKU9j8Ger4hbfPEWZCCx16hVBnqc2pFJZZ7oSWwmVMky5KWzlWuqlxHlptzKo2me28AtFXQfRVSisQfRd92LEs6wIfNxF_CsqxIwy1ueOJxepH1YiuUrkzhbLMmJKDRdSSOGqkZIIGeM3hJUmrWlW7_RUMNtxoetOT6Y6pwUY15rmN7W2ruxXYjRAMkt4utkAUO5WBAeZddFgr9W5YeUEpzzlwf9xp-e2T8-KfqF-i--Gozh19hTqb1da-Bny3UW-aD_kvSjBLiA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+meninges+on+the+electric+fields+in+TES+and+TMS.+Numerical+modeling+with+adaptive+mesh+refinement&rft.jtitle=Brain+stimulation&rft.au=Weise%2C+Konstantin&rft.au=Wartman%2C+William+A.&rft.au=Kn%C3%B6sche%2C+Thomas+R.&rft.au=Nummenmaa%2C+Aapo+R.&rft.date=2022-05-01&rft.pub=Elsevier+Inc&rft.issn=1935-861X&rft.volume=15&rft.issue=3&rft.spage=654&rft.epage=663&rft_id=info:doi/10.1016%2Fj.brs.2022.04.009&rft.externalDocID=S1935861X22000699 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-861X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-861X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-861X&client=summon |