The effect of meninges on the electric fields in TES and TMS. Numerical modeling with adaptive mesh refinement

When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges – dura, arachnoid, and pia mater – are often neglected due to high computational costs. We investigate the impact of the meningeal layers on the cortical electric field in T...

Full description

Saved in:
Bibliographic Details
Published inBrain stimulation Vol. 15; no. 3; pp. 654 - 663
Main Authors Weise, Konstantin, Wartman, William A., Knösche, Thomas R., Nummenmaa, Aapo R., Makarov, Sergey N.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2022
Elsevier
Subjects
Online AccessGet full text
ISSN1935-861X
1876-4754
1876-4754
DOI10.1016/j.brs.2022.04.009

Cover

Abstract When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges – dura, arachnoid, and pia mater – are often neglected due to high computational costs. We investigate the impact of the meningeal layers on the cortical electric field in TES and TMS while considering the headreco segmentation as the base model. We use T1/T2 MRI data from 16 subjects and apply the boundary element fast multipole method with adaptive mesh refinement, which enables us to accurately solve this problem and establish method convergence at reasonable computational cost. We compare electric fields in the presence and absence of various meninges for two brain areas (M1HAND and DLPFC) and for several distinct TES and TMS setups. Maximum electric fields in the cortex for focal TES consistently increase by approximately 30% on average when the meninges are present in the CSF volume. Their effect on the maximum field can be emulated by reducing the CSF conductivity from 1.65 S/m to approximately 0.85 S/m. In stark contrast to that, the TMS electric fields in the cortex are only weakly affected by the meningeal layers and slightly (∼6%) decrease on average when the meninges are included. Our results quantify the influence of the meninges on the cortical TES and TMS electric fields. Both focal TES and TMS results are very consistent. The focal TES results are also in a good agreement with a prior relevant study. The solver and the mesh generator for the meningeal layers (compatible with SimNIBS) are available online. •The impact of the meningeal layers on the electric field in TES and TMS is investigated.•The boundary element fast multipole method with adaptive mesh refinement is used.•TES fields in the cortex increase by 30% when the meninges are included.•TMS fields decrease by 5% on average when the meninges are included.•The solver, the mesh generator, and an example data set is made publicly available.
AbstractList When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges - dura, arachnoid, and pia mater - are often neglected due to high computational costs.BACKGROUNDWhen modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges - dura, arachnoid, and pia mater - are often neglected due to high computational costs.We investigate the impact of the meningeal layers on the cortical electric field in TES and TMS while considering the headreco segmentation as the base model.OBJECTIVEWe investigate the impact of the meningeal layers on the cortical electric field in TES and TMS while considering the headreco segmentation as the base model.We use T1/T2 MRI data from 16 subjects and apply the boundary element fast multipole method with adaptive mesh refinement, which enables us to accurately solve this problem and establish method convergence at reasonable computational cost. We compare electric fields in the presence and absence of various meninges for two brain areas (M1HAND and DLPFC) and for several distinct TES and TMS setups.METHODWe use T1/T2 MRI data from 16 subjects and apply the boundary element fast multipole method with adaptive mesh refinement, which enables us to accurately solve this problem and establish method convergence at reasonable computational cost. We compare electric fields in the presence and absence of various meninges for two brain areas (M1HAND and DLPFC) and for several distinct TES and TMS setups.Maximum electric fields in the cortex for focal TES consistently increase by approximately 30% on average when the meninges are present in the CSF volume. Their effect on the maximum field can be emulated by reducing the CSF conductivity from 1.65 S/m to approximately 0.85 S/m. In stark contrast to that, the TMS electric fields in the cortex are only weakly affected by the meningeal layers and slightly (∼6%) decrease on average when the meninges are included.RESULTSMaximum electric fields in the cortex for focal TES consistently increase by approximately 30% on average when the meninges are present in the CSF volume. Their effect on the maximum field can be emulated by reducing the CSF conductivity from 1.65 S/m to approximately 0.85 S/m. In stark contrast to that, the TMS electric fields in the cortex are only weakly affected by the meningeal layers and slightly (∼6%) decrease on average when the meninges are included.Our results quantify the influence of the meninges on the cortical TES and TMS electric fields. Both focal TES and TMS results are very consistent. The focal TES results are also in a good agreement with a prior relevant study. The solver and the mesh generator for the meningeal layers (compatible with SimNIBS) are available online.CONCLUSIONOur results quantify the influence of the meninges on the cortical TES and TMS electric fields. Both focal TES and TMS results are very consistent. The focal TES results are also in a good agreement with a prior relevant study. The solver and the mesh generator for the meningeal layers (compatible with SimNIBS) are available online.
When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges – dura, arachnoid, and pia mater – are often neglected due to high computational costs. We investigate the impact of the meningeal layers on the cortical electric field in TES and TMS while considering the headreco segmentation as the base model. We use T1/T2 MRI data from 16 subjects and apply the boundary element fast multipole method with adaptive mesh refinement, which enables us to accurately solve this problem and establish method convergence at reasonable computational cost. We compare electric fields in the presence and absence of various meninges for two brain areas (M1HAND and DLPFC) and for several distinct TES and TMS setups. Maximum electric fields in the cortex for focal TES consistently increase by approximately 30% on average when the meninges are present in the CSF volume. Their effect on the maximum field can be emulated by reducing the CSF conductivity from 1.65 S/m to approximately 0.85 S/m. In stark contrast to that, the TMS electric fields in the cortex are only weakly affected by the meningeal layers and slightly (∼6%) decrease on average when the meninges are included. Our results quantify the influence of the meninges on the cortical TES and TMS electric fields. Both focal TES and TMS results are very consistent. The focal TES results are also in a good agreement with a prior relevant study. The solver and the mesh generator for the meningeal layers (compatible with SimNIBS) are available online. •The impact of the meningeal layers on the electric field in TES and TMS is investigated.•The boundary element fast multipole method with adaptive mesh refinement is used.•TES fields in the cortex increase by 30% when the meninges are included.•TMS fields decrease by 5% on average when the meninges are included.•The solver, the mesh generator, and an example data set is made publicly available.
When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges - dura, arachnoid, and pia mater - are often neglected due to high computational costs. We investigate the impact of the meningeal layers on the cortical electric field in TES and TMS while considering the headreco segmentation as the base model. We use T1/T2 MRI data from 16 subjects and apply the boundary element fast multipole method with adaptive mesh refinement, which enables us to accurately solve this problem and establish method convergence at reasonable computational cost. We compare electric fields in the presence and absence of various meninges for two brain areas (M1 and DLPFC) and for several distinct TES and TMS setups. Maximum electric fields in the cortex for focal TES consistently increase by approximately 30% on average when the meninges are present in the CSF volume. Their effect on the maximum field can be emulated by reducing the CSF conductivity from 1.65 S/m to approximately 0.85 S/m. In stark contrast to that, the TMS electric fields in the cortex are only weakly affected by the meningeal layers and slightly (∼6%) decrease on average when the meninges are included. Our results quantify the influence of the meninges on the cortical TES and TMS electric fields. Both focal TES and TMS results are very consistent. The focal TES results are also in a good agreement with a prior relevant study. The solver and the mesh generator for the meningeal layers (compatible with SimNIBS) are available online.
Background: When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges – dura, arachnoid, and pia mater – are often neglected due to high computational costs. Objective: We investigate the impact of the meningeal layers on the cortical electric field in TES and TMS while considering the headreco segmentation as the base model. Method: We use T1/T2 MRI data from 16 subjects and apply the boundary element fast multipole method with adaptive mesh refinement, which enables us to accurately solve this problem and establish method convergence at reasonable computational cost. We compare electric fields in the presence and absence of various meninges for two brain areas (M1HAND and DLPFC) and for several distinct TES and TMS setups. Results: Maximum electric fields in the cortex for focal TES consistently increase by approximately 30% on average when the meninges are present in the CSF volume. Their effect on the maximum field can be emulated by reducing the CSF conductivity from 1.65 S/m to approximately 0.85 S/m. In stark contrast to that, the TMS electric fields in the cortex are only weakly affected by the meningeal layers and slightly (∼6%) decrease on average when the meninges are included. Conclusion: Our results quantify the influence of the meninges on the cortical TES and TMS electric fields. Both focal TES and TMS results are very consistent. The focal TES results are also in a good agreement with a prior relevant study. The solver and the mesh generator for the meningeal layers (compatible with SimNIBS) are available online.
Author Weise, Konstantin
Makarov, Sergey N.
Knösche, Thomas R.
Wartman, William A.
Nummenmaa, Aapo R.
Author_xml – sequence: 1
  givenname: Konstantin
  orcidid: 0000-0003-1283-2042
  surname: Weise
  fullname: Weise, Konstantin
  email: kweise@cbs.mpg.de, konstantin.weise@tu-ilmenau.de
  organization: Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany
– sequence: 2
  givenname: William A.
  surname: Wartman
  fullname: Wartman, William A.
  email: wawartman@wpi.edu
  organization: Electrical & Computer Engineering Dept., Worcester Polytechnic Institute, Worcester, MA, 01609, USA
– sequence: 3
  givenname: Thomas R.
  surname: Knösche
  fullname: Knösche, Thomas R.
  email: knoesche@cbs.mpg.de
  organization: Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany
– sequence: 4
  givenname: Aapo R.
  surname: Nummenmaa
  fullname: Nummenmaa, Aapo R.
  email: nummenma@nmr.mgh.harvard.edu
  organization: Electrical & Computer Engineering Dept., Worcester Polytechnic Institute, Worcester, MA, 01609, USA
– sequence: 5
  givenname: Sergey N.
  surname: Makarov
  fullname: Makarov, Sergey N.
  email: makarov@wpi.edu, smakarov@mgh.harvard.edu
  organization: Electrical & Computer Engineering Dept., Worcester Polytechnic Institute, Worcester, MA, 01609, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35447379$$D View this record in MEDLINE/PubMed
BookMark eNqNkj9vFDEQxVcoiPyBD0CDXNLcYnvt9VpUKAoQKUCRQ6KzvPY458PrPWxfovv2-LiQIkWg8sjzfk-jeXPaHMU5QtO8JrglmPTv1u2YcksxpS1mLcbyWXNCBtEvmODsqNay44uhJz-Om9Oc1xhzKQfxojnuOGOiE_KkicsVIHAOTEGzQxNEH28gozmisu-E2kjeIOch2Ix8RMuLa6SjRcsv1y36up2gtnVA02whVBbd-bJC2upN8bdQDfMKJXA-QvUuL5vnTocMr-7fs-b7x4vl-efF1bdPl-cfrhaGE1oWTmPcG6k1AQej7N0gQAthKTOjpXKwuJNDZ6SQdBSYW47lMGhqcD_2g-XQnTWXB18767XaJD_ptFOz9urPx5xulE7FmwBq7JzlI_TWDoJRbjR1zGrdS1ZXTAStXvTgtY0bvbvTITwYEqz2Qai1qkGofRAKM1WDqNDbA7RJ868t5KImnw2EoCPM26rtOaOyI1JU6Zt76XacwD6Y_w2pCsRBYNKcc12mMr7o4udYkvbhySnII_J_Jn9_YKDmc-shqWw8RAPWp3oMdYH-SVo-ok29iv2F_ITdP9jfykzetA
CitedBy_id crossref_primary_10_1038_s41598_024_76867_z
crossref_primary_10_1109_TMAG_2023_3334747
crossref_primary_10_56766_ntms_1419119
crossref_primary_10_1162_imag_a_00106
crossref_primary_10_1016_j_biopsych_2023_11_022
crossref_primary_10_1038_s41598_023_45602_5
crossref_primary_10_1088_1361_6560_ad66a9
crossref_primary_10_1073_pnas_2306279120
crossref_primary_10_3389_fnhum_2023_1075741
crossref_primary_10_3390_bioengineering11111071
crossref_primary_10_1016_j_neuroimage_2023_120379
crossref_primary_10_1038_s41380_024_02567_9
crossref_primary_10_1088_1361_6560_ad2638
crossref_primary_10_1016_j_neuroimage_2024_120998
crossref_primary_10_1088_1741_2552_ad625e
Cites_doi 10.1088/1741-2552/ab208d
10.1016/j.softx.2020.100450
10.1016/S0006-3495(03)74750-X
10.1016/j.neuroimage.2021.118437
10.1016/j.neuroimage.2019.116486
10.1088/1741-2552/ab85b3
10.1016/j.neuroimage.2010.07.061
10.1016/j.neuroimage.2021.118654
10.1002/hbm.21479
10.1016/j.brs.2011.10.001
10.1023/B:BRAT.0000006333.93597.9d
10.1016/j.neuroimage.2016.09.011
10.7863/jum.1997.16.11.725
10.1016/j.neuroimage.2021.118097
10.1016/j.neuroimage.2011.06.069
10.1016/j.neuroimage.2012.01.021
10.1109/TBME.2004.827925
10.1016/j.neuroimage.2012.02.018
10.1109/TBME.2018.2813261
10.1016/j.neuroimage.2020.117044
10.1088/1741-2552/ab549d
10.1088/1741-2552/ac17d7
10.1016/j.brs.2019.09.015
10.1016/j.neuroimage.2018.12.053
10.1016/j.brs.2009.03.005
10.1016/j.neuroimage.2006.09.024
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022. Published by Elsevier Inc.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022. Published by Elsevier Inc.
– notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOA
DOI 10.1016/j.brs.2022.04.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1876-4754
EndPage 663
ExternalDocumentID oai_doaj_org_article_b3fd5be6dd87425ca2f4daa694016172
10.1016/j.brs.2022.04.009
35447379
10_1016_j_brs_2022_04_009
S1935861X22000699
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
23N
4.4
457
4G.
4H-
53G
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SSH
SSN
SSZ
T5K
Z5R
~G-
~HD
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
NCXOZ
RIG
AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c512t-fa006c9aa1efeb96f87ea77d24cbd298d03983c9792b705d50988a2c06b68d5e3
IEDL.DBID UNPAY
ISSN 1935-861X
1876-4754
IngestDate Fri Oct 03 12:52:35 EDT 2025
Sun Oct 26 03:59:55 EDT 2025
Sun Sep 28 01:16:34 EDT 2025
Tue Sep 30 00:37:58 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Wed Oct 01 02:51:20 EDT 2025
Fri Feb 23 02:39:44 EST 2024
Tue Oct 14 19:31:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Transcranial electric stimulation
Electric field
Transcranial magnetic stimulation
Segmentation
Head modeling
Meninges
Brain stimulation
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022. Published by Elsevier Inc.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-fa006c9aa1efeb96f87ea77d24cbd298d03983c9792b705d50988a2c06b68d5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1283-2042
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.brainstimjrnl.com/article/S1935861X22000699/pdf
PMID 35447379
PQID 2654293197
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_b3fd5be6dd87425ca2f4daa694016172
unpaywall_primary_10_1016_j_brs_2022_04_009
proquest_miscellaneous_2654293197
pubmed_primary_35447379
crossref_citationtrail_10_1016_j_brs_2022_04_009
crossref_primary_10_1016_j_brs_2022_04_009
elsevier_sciencedirect_doi_10_1016_j_brs_2022_04_009
elsevier_clinicalkey_doi_10_1016_j_brs_2022_04_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Brain stimulation
PublicationTitleAlternate Brain Stimul
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Makarov, Hämäläinen, Okada, Noetscher, Ahveninen, Nummenmaa (bib29) 2020 May 29
Numssen, Zier, Thielscher, Hartwigsen, Knösche, Weise (bib2) 2021 Dec 15; 245
TES & TMS BEM-FMM Solver with Adaptive Mesh Refinement (bib15)
Herwig, Satrapi, Schönfeldt-Lecuona (bib22) 2003 Winter; 16
bib14
Makarov, Wartman, Daneshzand, Fujimoto, Raij, Nummenmaa (bib27) 2020 Apr 1
Gomez, Dannhauer, Koponen, Peterchev (bib26) 2020 Jan-Feb; 13
Datta, Bansal, Diaz, Patel, Reato, Bikson (bib20) 2009; 2
Makarov, Wartman, Noetscher, Fujimoto, Zaidi, Burnham, Daneshzand, Nummenmaa (bib12) 2021 Jul 28; 241
Daneshzand, Makarov, de Lara, Guerin, McNab, Rosen, Hämäläinen, Raij, Nummenmaa (bib28) 2021 Aug 15; 237
Huang, Datta, Bikson, Parra (bib7) 2019 Jul 30; 16
Makarov, Noetscher, Raij, Nummenmaa (bib25) 2018 Mar 7
Weise, Numssen, Thielscher, Hartwigsen, Knösche (bib1) 2020 Apr 1; 209
Puonti, Iglesias, Van Leemput (bib6) 2016; 143
Jiang, Truong, Esmaeilpour, Huang, Badran, Bikson (bib8) 2020 Jan 14; 17
Puonti, Van Leemput, Saturnino, Siebner, Madsen, Thielscher (bib4) 2020 Oct 1; 219
Opitz, Windhoff, Heidemann, Turner, Thielscher (bib9) 2011 Oct 1; 58
Makarov, Golestani Rad, Wartman, Nguyen, Noetscher, Ahveninen, Fujimoto, Weise, Nummenmaa (bib11) 2021 Jul 26
Weise, Poßner, Müller, Gast, Knösche (bib31) 2020; 11
Fischl (bib13) 2012; 62
Bashkatov, Genina, Sinichkin, Kochubey, Lakodina, Tuchin (bib16) 2003 Nov; 85
Peterchev, Wagner, Miranda, Nitsche, Paulus, Lisanby, Pascual-Leone, Bikson (bib3) 2012 Oct; 5
Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss, Della Penna, Feinberg, Glasser, Harel, Heath, Larson-Prior, Marcus, Michalareas, Moeller, Oostenveld, Petersen, Prior, Schlaggar, Smith, Snyder, Xu, Yacoub (bib10) 2012; 62
Kuchiwaki, Inao, Ishii, Ogura, Gu (bib17) 1997 Nov; 16
Wagner, Zahn, Grodzinsky, Pascual-Leone (bib23) 2004 Sep; 51
Windhoff, Opitz, Thielscher (bib5) 2013 Apr; 34
Saturnino, Thielscher, Madsen, Knösche, Weise (bib30) 2019 Mar; 188
Jurcak, Tsuzuki, Dan (bib21) 2007 Feb 15; 34
Fournier, Combès, Roberts, Braga, Prima (bib19) 2011; vol. 7962
Saboori, Sadegh (bib18) 2015; 2015
Thielscher, Opitz, Windhoff (bib24) 2011 Jan 1; 54
Puonti (10.1016/j.brs.2022.04.009_bib6) 2016; 143
Huang (10.1016/j.brs.2022.04.009_bib7) 2019; 16
Fischl (10.1016/j.brs.2022.04.009_bib13) 2012; 62
Wagner (10.1016/j.brs.2022.04.009_bib23) 2004; 51
Datta (10.1016/j.brs.2022.04.009_bib20) 2009; 2
Makarov (10.1016/j.brs.2022.04.009_bib25) 2018
Peterchev (10.1016/j.brs.2022.04.009_bib3) 2012; 5
Makarov (10.1016/j.brs.2022.04.009_bib12) 2021; 241
Saturnino (10.1016/j.brs.2022.04.009_bib30) 2019; 188
Numssen (10.1016/j.brs.2022.04.009_bib2) 2021; 245
Makarov (10.1016/j.brs.2022.04.009_bib27) 2020
Makarov (10.1016/j.brs.2022.04.009_bib11) 2021
Weise (10.1016/j.brs.2022.04.009_bib31) 2020; 11
Jiang (10.1016/j.brs.2022.04.009_bib8) 2020; 17
Jurcak (10.1016/j.brs.2022.04.009_bib21) 2007; 34
Saboori (10.1016/j.brs.2022.04.009_bib18) 2015; 2015
Makarov (10.1016/j.brs.2022.04.009_bib29) 2020
Windhoff (10.1016/j.brs.2022.04.009_bib5) 2013; 34
Weise (10.1016/j.brs.2022.04.009_bib1) 2020; 209
Gomez (10.1016/j.brs.2022.04.009_bib26) 2020; 13
Daneshzand (10.1016/j.brs.2022.04.009_bib28) 2021; 237
Puonti (10.1016/j.brs.2022.04.009_bib4) 2020; 219
Kuchiwaki (10.1016/j.brs.2022.04.009_bib17) 1997; 16
Herwig (10.1016/j.brs.2022.04.009_bib22) 2003; 16
Van Essen (10.1016/j.brs.2022.04.009_bib10) 2012; 62
TES & TMS BEM-FMM Solver with Adaptive Mesh Refinement (10.1016/j.brs.2022.04.009_bib15)
Thielscher (10.1016/j.brs.2022.04.009_bib24) 2011; 54
Opitz (10.1016/j.brs.2022.04.009_bib9) 2011; 58
Bashkatov (10.1016/j.brs.2022.04.009_bib16) 2003; 85
Fournier (10.1016/j.brs.2022.04.009_bib19) 2011; vol. 7962
References_xml – volume: 16
  year: 2019 Jul 30
  ident: bib7
  article-title: Realistic volumetric-approach to simulate transcranial electric stimulation-ROAST-a fully automated open-source pipeline
  publication-title: J Neural Eng
– year: 2021 Jul 26
  ident: bib11
  article-title: Boundary element fast multipole method for modeling electrical brain stimulation with voltage and current electrodes
  publication-title: J Neural Eng
– volume: 2015
  start-page: 279814
  year: 2015
  ident: bib18
  article-title: Histology and morphology of the brain subarachnoid trabeculae
  publication-title: Anat Res Int
– volume: 245
  year: 2021 Dec 15
  ident: bib2
  article-title: Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression
  publication-title: Neuroimage
– year: 2020 Apr 1
  ident: bib27
  article-title: A software toolkit for TMS electric-field modeling with boundary element fast multipole method: an efficient MATLAB implementation
  publication-title: J Neural Eng
– volume: 34
  start-page: 923
  year: 2013 Apr
  end-page: 935
  ident: bib5
  article-title: Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models
  publication-title: Hum Brain Mapp
– year: 2020 May 29
  ident: bib29
  article-title: Boundary element fast multipole method for enhanced modeling of neurophysiological recordings
  publication-title: IEEE Trans Biomed Eng
– volume: 219
  year: 2020 Oct 1
  ident: bib4
  article-title: Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling
  publication-title: Neuroimage
– volume: 209
  year: 2020 Apr 1
  ident: bib1
  article-title: A novel approach to localize cortical TMS effects
  publication-title: Neuroimage
– volume: 2
  start-page: 201
  year: 2009
  end-page: 207
  ident: bib20
  article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad
  publication-title: Brain Stimul
– volume: 58
  start-page: 849
  year: 2011 Oct 1
  end-page: 859
  ident: bib9
  article-title: How the brain tissue shapes the electric field induced by transcranial magnetic stimulation
  publication-title: Neuroimage
– volume: 11
  year: 2020
  ident: bib31
  article-title: Pygpc: a sensitivity and uncertainty analysis toolbox for Python
  publication-title: SoftwareX
– ident: bib15
  article-title: Connectome subject 120111. MATLAB windows/linux code and user's manual. β-Version january 2022
– volume: vol. 7962
  year: 2011
  ident: bib19
  article-title: Mapping the distance between the brain and the inner surface of the skull and their global asymmetries
  publication-title: Image processing
– volume: 16
  start-page: 725
  year: 1997 Nov
  end-page: 730
  ident: bib17
  article-title: Human dural thickness measured by ultrasonographic method: reflection of intracranial pressure
  publication-title: J Ultrasound Med
– volume: 54
  start-page: 234
  year: 2011 Jan 1
  end-page: 243
  ident: bib24
  article-title: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation
  publication-title: Neuroimage
– volume: 241
  start-page: 118437
  year: 2021 Jul 28
  ident: bib12
  article-title: Degree of improving TMS focality through a geometrically stable solution of an inverse TMS problem
  publication-title: Neuroimage
– volume: 143
  start-page: 235
  year: 2016
  end-page: 249
  ident: bib6
  article-title: Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling
  publication-title: Neuroimage
– volume: 13
  start-page: 157
  year: 2020 Jan-Feb
  end-page: 166
  ident: bib26
  article-title: Conditions for numerically accurate TMS electric field simulation
  publication-title: Brain Stimul
– volume: 188
  start-page: 821
  year: 2019 Mar
  end-page: 834
  ident: bib30
  article-title: A principled approach to conductivity uncertainty analysis in electric field calculations
  publication-title: Neuroimage
– volume: 5
  start-page: 435
  year: 2012 Oct
  end-page: 453
  ident: bib3
  article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices
  publication-title: Brain Stimul
– volume: 16
  start-page: 95
  year: 2003 Winter
  end-page: 99
  ident: bib22
  article-title: Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation
  publication-title: Brain Topogr
– volume: 51
  start-page: 1586
  year: 2004 Sep
  end-page: 1598
  ident: bib23
  article-title: Three-dimensional head model simulation of transcranial magnetic stimulation
  publication-title: IEEE Trans Biomed Eng
– volume: 237
  year: 2021 Aug 15
  ident: bib28
  article-title: Rapid computation of TMS-induced E-fields using a dipole-based magnetic stimulation profile approach
  publication-title: Neuroimage
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib13
  article-title: FreeSurfer
  publication-title: NeuroImage.
– volume: 34
  start-page: 1600
  year: 2007 Feb 15
  end-page: 1611
  ident: bib21
  article-title: 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems
  publication-title: Neuroimage
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: bib10
  article-title: The Human Connectome Project: a data acquisition perspective
  publication-title: Neuroimage
– ident: bib14
  article-title: Computational anatomy toolbox (CAT)
– year: 2018 Mar 7
  ident: bib25
  article-title: A quasi-static boundary element approach with fast multipole acceleration for high-resolution bioelectromagnetic models
  publication-title: IEEE Trans Biomed Eng
– volume: 85
  start-page: 3310
  year: 2003 Nov
  end-page: 3318
  ident: bib16
  article-title: Glucose and mannitol diffusion in human dura mater
  publication-title: Biophys J
– volume: 17
  year: 2020 Jan 14
  ident: bib8
  article-title: Enhanced tES and tDCS computational models by meninges emulation
  publication-title: J Neural Eng
– volume: 16
  issue: 5
  year: 2019
  ident: 10.1016/j.brs.2022.04.009_bib7
  article-title: Realistic volumetric-approach to simulate transcranial electric stimulation-ROAST-a fully automated open-source pipeline
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ab208d
– volume: 11
  year: 2020
  ident: 10.1016/j.brs.2022.04.009_bib31
  article-title: Pygpc: a sensitivity and uncertainty analysis toolbox for Python
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2020.100450
– volume: 85
  start-page: 3310
  issue: 5
  year: 2003
  ident: 10.1016/j.brs.2022.04.009_bib16
  article-title: Glucose and mannitol diffusion in human dura mater
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(03)74750-X
– volume: 241
  start-page: 118437
  year: 2021
  ident: 10.1016/j.brs.2022.04.009_bib12
  article-title: Degree of improving TMS focality through a geometrically stable solution of an inverse TMS problem
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118437
– volume: 209
  year: 2020
  ident: 10.1016/j.brs.2022.04.009_bib1
  article-title: A novel approach to localize cortical TMS effects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116486
– year: 2020
  ident: 10.1016/j.brs.2022.04.009_bib27
  article-title: A software toolkit for TMS electric-field modeling with boundary element fast multipole method: an efficient MATLAB implementation
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ab85b3
– volume: 54
  start-page: 234
  issue: 1
  year: 2011
  ident: 10.1016/j.brs.2022.04.009_bib24
  article-title: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.061
– volume: 245
  year: 2021
  ident: 10.1016/j.brs.2022.04.009_bib2
  article-title: Efficient high-resolution TMS mapping of the human motor cortex by nonlinear regression
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118654
– volume: 34
  start-page: 923
  issue: 4
  year: 2013
  ident: 10.1016/j.brs.2022.04.009_bib5
  article-title: Electric field calculations in brain stimulation based on finite elements: an optimized processing pipeline for the generation and usage of accurate individual head models
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21479
– volume: 5
  start-page: 435
  issue: 4
  year: 2012
  ident: 10.1016/j.brs.2022.04.009_bib3
  article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.10.001
– volume: 16
  start-page: 95
  issue: 2
  year: 2003
  ident: 10.1016/j.brs.2022.04.009_bib22
  article-title: Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation
  publication-title: Brain Topogr
  doi: 10.1023/B:BRAT.0000006333.93597.9d
– ident: 10.1016/j.brs.2022.04.009_bib15
– volume: 143
  start-page: 235
  year: 2016
  ident: 10.1016/j.brs.2022.04.009_bib6
  article-title: Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.09.011
– volume: 16
  start-page: 725
  issue: 11
  year: 1997
  ident: 10.1016/j.brs.2022.04.009_bib17
  article-title: Human dural thickness measured by ultrasonographic method: reflection of intracranial pressure
  publication-title: J Ultrasound Med
  doi: 10.7863/jum.1997.16.11.725
– volume: 237
  year: 2021
  ident: 10.1016/j.brs.2022.04.009_bib28
  article-title: Rapid computation of TMS-induced E-fields using a dipole-based magnetic stimulation profile approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118097
– volume: 58
  start-page: 849
  issue: 3
  year: 2011
  ident: 10.1016/j.brs.2022.04.009_bib9
  article-title: How the brain tissue shapes the electric field induced by transcranial magnetic stimulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.069
– volume: 62
  start-page: 774
  issue: 2
  year: 2012
  ident: 10.1016/j.brs.2022.04.009_bib13
  article-title: FreeSurfer
  publication-title: NeuroImage.
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 51
  start-page: 1586
  issue: 9
  year: 2004
  ident: 10.1016/j.brs.2022.04.009_bib23
  article-title: Three-dimensional head model simulation of transcranial magnetic stimulation
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2004.827925
– volume: 62
  start-page: 2222
  issue: 4
  year: 2012
  ident: 10.1016/j.brs.2022.04.009_bib10
  article-title: The Human Connectome Project: a data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– year: 2018
  ident: 10.1016/j.brs.2022.04.009_bib25
  article-title: A quasi-static boundary element approach with fast multipole acceleration for high-resolution bioelectromagnetic models
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2813261
– volume: 219
  year: 2020
  ident: 10.1016/j.brs.2022.04.009_bib4
  article-title: Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117044
– volume: 17
  issue: 1
  year: 2020
  ident: 10.1016/j.brs.2022.04.009_bib8
  article-title: Enhanced tES and tDCS computational models by meninges emulation
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ab549d
– year: 2021
  ident: 10.1016/j.brs.2022.04.009_bib11
  article-title: Boundary element fast multipole method for modeling electrical brain stimulation with voltage and current electrodes
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ac17d7
– volume: 13
  start-page: 157
  issue: 1
  year: 2020
  ident: 10.1016/j.brs.2022.04.009_bib26
  article-title: Conditions for numerically accurate TMS electric field simulation
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2019.09.015
– volume: 188
  start-page: 821
  year: 2019
  ident: 10.1016/j.brs.2022.04.009_bib30
  article-title: A principled approach to conductivity uncertainty analysis in electric field calculations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.12.053
– volume: 2
  start-page: 201
  issue: 4
  year: 2009
  ident: 10.1016/j.brs.2022.04.009_bib20
  article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2009.03.005
– volume: 2015
  start-page: 279814
  year: 2015
  ident: 10.1016/j.brs.2022.04.009_bib18
  article-title: Histology and morphology of the brain subarachnoid trabeculae
  publication-title: Anat Res Int
– volume: 34
  start-page: 1600
  issue: 4
  year: 2007
  ident: 10.1016/j.brs.2022.04.009_bib21
  article-title: 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.024
– volume: vol. 7962
  year: 2011
  ident: 10.1016/j.brs.2022.04.009_bib19
  article-title: Mapping the distance between the brain and the inner surface of the skull and their global asymmetries Medical Imaging 2011: image Processing Medical Imaging 2011
– year: 2020
  ident: 10.1016/j.brs.2022.04.009_bib29
  article-title: Boundary element fast multipole method for enhanced modeling of neurophysiological recordings
  publication-title: IEEE Trans Biomed Eng
SSID ssj0059987
Score 2.397215
Snippet When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges – dura, arachnoid, and pia mater...
When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges - dura, arachnoid, and pia mater...
Background: When modeling transcranial electrical stimulation (TES) and transcranial magnetic stimulation (TMS) in the brain, the meninges – dura, arachnoid,...
SourceID doaj
unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 654
SubjectTerms Brain stimulation
Electric field
Head modeling
Meninges
Segmentation
Transcranial electric stimulation
Transcranial magnetic stimulation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LbtQw0EK9AAcElMfSgoyEOIACjuP4cSyoVYXUXrqV9mY5fohFW--quyvUv2dsJ9EipO6Fa-JxkpnxvDOD0Adiakuss5WjNauYIKTqiAlVHayjQgVQ6ik0cHHJz6_Zj1k72xn1lWrCSnvggrivXRNc23nunAQvrrWGBuaM4YolY0Vk6UukGpypIoNbcCJEySe3leT1bMhn5squ7jb16aY09zhNlYg7Gik37v9LMf1reD5GD7dxZe5-m8ViRxmdPUVPeisSn5S3f4Ye-PgcHZ5E8KBv7vBHnOs6c8D8EEXgBFzKNvAy4BufIiF-jZcRb9KdPAdnbnGuZVvjecTT0ytsosPTi6sv-HJbcjoLnIfmACxOsVtsnFklUQkbrn9i-CowV1Ok8QW6Pjudfj-v-ikLlQVlv6mCgYNnlTG1D75TPEjhjRCOMts5qqQjjZKNVULRTpDWgYUhpaGW8I5L1_rmJTqIy-hfI8yVVTaN8mDBM98wozz3IihrVKi5pRNEBkxr27cgT5MwFnqoNfulgTg6EUcTpoE4E_RpBFmV_hv3Lf6WyDcuTK2z8wVgKN0zlN7HUBNEB-Lr4e9UkKew0fy-J7MRqDddikmyD-z9wF0ajnXK1Zjol1tYlAeJgXwUE_SqsN34WU3LmGgEQH8e-XA_ct78D-QcoUdpy1LxeYwONrdb_xassk33Lh_APxWaMiM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhl7aH0jZ9bF-oUHpocVaWZcs6piEhFJLLbmBvQtajddjYyz4oufS3d0Z-kFBIoEfbGlvWjGfGM59mCPnMTGqZdTZxPBWJkIwlFTMhSYN1XKoARh1DA-cXxdml-LHIF3vkeNgLg7DKXvd3Oj1q6_7MtF_N6aqup7MUU3hFuuBxt4nCTXxCSOxicPhnhHnk8Dshu8xynuDoIbMZMV7VGit2cx6rnSIm8ZZtiiX875iof13QJ-TRrlmZm99mubxllk6fkae9P0mPuik_J3u-eUEOjhr4l76-oV9oRHjG0PkBaUAmaAfgoG2g1x5jIn5D24Zu8UrsiFNbGlFtG1o3dH4yo6ZxdH4-O6QXuy67s6SxfQ7QUoziUuPMCpUm3HDzi8JbgeOKMceX5PL0ZH58lvT9FhILZn-bBAPraJUxqQ--UkUopTdSOi5s5bgqHctUmVklFa8kyx34GmVpuGVFVZQu99krst-0jX9DaKGsstjUQwQvfCaM8oWXQVmjQlpYPiFsWGlt-2Lk2BNjqQfU2ZUG5mhkjmZCA3Mm5OtIsuoqcdw3-DuybxyIRbTjiXb9U_dSpKssuLzyhXOlBNVlDQ_CGVMogX6whEnygfl62KcKmhVuVN_3ZDES3RHkh8g-DdKl4QPHrI1pfLuDQbGlGGhKOSGvO7EbXyvLQeIzCdTfRjl8eHHe_t8U35HHeNShPd-T_e165z-AR7atPsZP7i-sHjHN
  priority: 102
  providerName: Elsevier
Title The effect of meninges on the electric fields in TES and TMS. Numerical modeling with adaptive mesh refinement
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1935861X22000699
https://dx.doi.org/10.1016/j.brs.2022.04.009
https://www.ncbi.nlm.nih.gov/pubmed/35447379
https://www.proquest.com/docview/2654293197
http://www.brainstimjrnl.com/article/S1935861X22000699/pdf
https://doaj.org/article/b3fd5be6dd87425ca2f4daa694016172
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1876-4754
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059987
  issn: 1876-4754
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1876-4754
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059987
  issn: 1876-4754
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1876-4754
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059987
  issn: 1876-4754
  databaseCode: AIKHN
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1876-4754
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059987
  issn: 1876-4754
  databaseCode: .~1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1876-4754
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059987
  issn: 1876-4754
  databaseCode: ACRLP
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1876-4754
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0059987
  issn: 1876-4754
  databaseCode: AKRWK
  dateStart: 20080101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdY-wA88DUG5aMyEuIBlC5xnDh-LGhTAa1CaisN8RD5Ezpat-qH0Hjgb-fsJNWmSZvgMcldEvsu51_uzncIvY5FomKlVaRJQiPK4jiSsbBRYpUmjFtY1L1r4GSYDyb002l2ejmrUvreCKDf87OVmwVjXU_i4SjxUbs8OSVhgwnnh0tt91A7zwCHt1B7MvzS_-r_sOATh-dmdUg5izxPE9IMyV1y5Ut1ExLKnPpkxAuLUqjdf2ltuoo976LbW7cU57_EbHZhPTq-j741u3qqNJSfve1G9tTvq0Ue_2OoD9C9GqbifkX3EN0y7hHa7zv4RZ-f4zc4JI4Gj_w-cqBquMoLwQuL58a7WswaLxze-Cuh0c5U4ZAst8ZTh8dHIyycxuOTUQ8Pt1XQaIZDVx7gxd45jIUWS2-L4YbrHxjmDPCwd2U-RpPjo_GHQVS3cYgUoIlNZAUMQHEhEmON5LktmBGMaUKV1IQXOk55kSrOOJEszjRAmKIQRMW5zAudmfQAtdzCmacI51xx5XuFUGuoSangJjfMciW4TXJFOihu5Fiqusa5b7UxK5tktrMSRF960ZcxLUH0HfR2x7KsCnxcR_zeK8eO0NfmDicWq-9lLbpSplZn0uRaFwwsohLEUi1EzqmH1wxekjSqVTbbX8Fgw42m1z2Z7phqbFRhnpvYXjW6W4Ld8MEg4cxiC0ShUxkYYNZBTyql3g0rzShlKQPudzstv3lynv0T9XN0xx9VuaMvUGuz2pqXgO82sov2en-SLmr3P34eDLvBS9KtP-6_TMJPCQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQeEFAeW15GQhxA6SaOY8fHUrVaoLuX3Up7sxw_StA2We1DqBd-O2PnoVZIrcQ18SSOZzIznvk8g9DHWCU61kZHhiQ0ojyOoyJWLkqcNoQLB0bdhwbGEza6oN_n2XwHnXRnYTysstX9jU4P2rq9MmxXc7gsy-E08Sk8lsxJOG0ixAP0kGaE-x3Y0Z8e55HBfoI3qeUs8sO71GYAeRUrX7KbkFDu1IMSbxinUMP_lo361wfdR3vbaqmuf6vF4oZdOnuCHrcOJT5u5vwU7djqGTo4rmAzfXWNP-EA8Qyx8wNUgVDgBsGBa4evrA-K2DWuK7zxd0JLnFLjAGtb47LCs9MpVpXBs_H0CE-2TXpngUP_HKDFPoyLlVFLrzXhgeufGL4KPFcfdHyOLs5OZyejqG24EGmw-5vIKVhILZRKrLOFYC7nVnFuCNWFISI3cSryVAsuSMHjzICzkeeK6JgVLDeZTV-g3aqu7CuEmdBC-64e1FlqU6qEZZY7oZVwCdNkgOJupaVuq5H7phgL2cHOfklgjvTMkTGVwJwB-tyTLJtSHHcN_urZ1w_0VbTDhXp1KVsxkkXqTFZYZkzOQXdpRRw1SjFBvSPMYZKkY77sDqqCaoUHlXe9mfZEtyT5PrIPnXRJ-MN92kZVtt7CoNBTDFQlH6CXjdj1n5VmlPKUA_WXXg7vX5zD_5vie7Q3mo3P5fm3yY_X6JG_00A_36DdzWpr34J7tinehd_vLxABNPA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4A98DUY5UtGQjyA0iWOY8ePBW2akFYhtZWKeIj8CR2tW_VDaPz1nJ2k2jRpEzwmuUti3-X8y935DqF3qcx0qo1ODMloQnmaJiqVLsmcNoQLB4t6cA2cDdjpmH6ZFJOrWZUq9EYA_Z6fr_wsGutmEo-GWYjasWxC4gYTIY6Wxt1Fe6wAHN5Be-PB1_638IcFnzg8t2hCykUSeNqQZkzuUqtQqpuQWOY0JCNeWpRi7f4ra9N17LmP7m39Ul78lrPZpfXo5CH63u7qqdNQfvW2G9XTf64XefyPoT5CDxqYivs13WN0x_on6KDv4Rd9foHf45g4Gj3yB8iDquE6LwQvHJ7b4Gqxa7zweBOuxEY7U41jstwaTz0eHQ-x9AaPzoY9PNjWQaMZjl15gBcH5zCWRi6DLYYbrn9imDPAw8GV-RSNT45Hn0-Tpo1DogFNbBInYQBaSJlZZ5VgruRWcm4I1coQUZo0F2WuBRdE8bQwAGHKUhKdMsVKU9j8Ger4hbfPEWZCCx16hVBnqc2pFJZZ7oSWwmVMky5KWzlWuqlxHlptzKo2me28AtFXQfRVSisQfRd92LEs6wIfNxF_CsqxIwy1ueOJxepH1YiuUrkzhbLMmJKDRdSSOGqkZIIGeM3hJUmrWlW7_RUMNtxoetOT6Y6pwUY15rmN7W2ruxXYjRAMkt4utkAUO5WBAeZddFgr9W5YeUEpzzlwf9xp-e2T8-KfqF-i--Gozh19hTqb1da-Bny3UW-aD_kvSjBLiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+meninges+on+the+electric+fields+in+TES+and+TMS.+Numerical+modeling+with+adaptive+mesh+refinement&rft.jtitle=Brain+stimulation&rft.au=Weise%2C+Konstantin&rft.au=Wartman%2C+William+A.&rft.au=Kn%C3%B6sche%2C+Thomas+R.&rft.au=Nummenmaa%2C+Aapo+R.&rft.date=2022-05-01&rft.pub=Elsevier+Inc&rft.issn=1935-861X&rft.volume=15&rft.issue=3&rft.spage=654&rft.epage=663&rft_id=info:doi/10.1016%2Fj.brs.2022.04.009&rft.externalDocID=S1935861X22000699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-861X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-861X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-861X&client=summon