Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials
Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been report...
Saved in:
Published in | Nature communications Vol. 8; no. 1; pp. 14956 - 8 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.04.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/ncomms14956 |
Cover
Abstract | Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In
2
Se
3
and other III
2
-VI
3
van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In
2
Se
3
/graphene, exhibiting a tunable Schottky barrier, and In
2
Se
3
/WSe
2
, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.
The development of devices based on 2D materials beyond graphene benefits from identifying compounds with diverse functional properties. Here, the authors predict computationally that 2D In
2
Se
3
and related materials are room temperature ferroelectrics with both in- and out-of-plane polarization. |
---|---|
AbstractList | Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In
2
Se
3
and other III
2
-VI
3
van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In
2
Se
3
/graphene, exhibiting a tunable Schottky barrier, and In
2
Se
3
/WSe
2
, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.
The development of devices based on 2D materials beyond graphene benefits from identifying compounds with diverse functional properties. Here, the authors predict computationally that 2D In
2
Se
3
and related materials are room temperature ferroelectrics with both in- and out-of-plane polarization. Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. Lastly, these findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications. Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2 Se3 and other III2 -VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2 Se3 /graphene, exhibiting a tunable Schottky barrier, and In2 Se3 /WSe2 , showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications. Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications. The development of devices based on 2D materials beyond graphene benefits from identifying compounds with diverse functional properties. Here, the authors predict computationally that 2D In2Se3and related materials are room temperature ferroelectrics with both in- and out-of-plane polarization. Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In 2 Se 3 and other III 2 -VI 3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In 2 Se 3 /graphene, exhibiting a tunable Schottky barrier, and In 2 Se 3 /WSe 2 , showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications. |
ArticleNumber | 14956 |
Author | Wang, Zhe Zhang, Zhenyu Zhu, Jianbao Xiao, Di Zhu, Wenguang Ding, Wenjun Gao, Yanfei Gu, Yi |
Author_xml | – sequence: 1 givenname: Wenjun surname: Ding fullname: Ding, Wenjun organization: Department of Physics, University of Science and Technology of China, International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China – sequence: 2 givenname: Jianbao surname: Zhu fullname: Zhu, Jianbao organization: Department of Physics, University of Science and Technology of China, International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Beijing Computational Science Research Center – sequence: 3 givenname: Zhe surname: Wang fullname: Wang, Zhe organization: Department of Physics, University of Science and Technology of China, International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China – sequence: 4 givenname: Yanfei orcidid: 0000-0003-2082-857X surname: Gao fullname: Gao, Yanfei organization: Department of Materials Science and Engineering, University of Tennessee, Materials Science and Technology Division, Oak Ridge National Laboratory – sequence: 5 givenname: Di surname: Xiao fullname: Xiao, Di organization: Department of Physics, Carnegie Mellon University – sequence: 6 givenname: Yi surname: Gu fullname: Gu, Yi organization: Department of Physics and Astronomy, Washington State University – sequence: 7 givenname: Zhenyu surname: Zhang fullname: Zhang, Zhenyu organization: International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China – sequence: 8 givenname: Wenguang surname: Zhu fullname: Zhu, Wenguang email: wgzhu@ustc.edu.cn organization: Department of Physics, University of Science and Technology of China, International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China |
BackLink | https://www.osti.gov/servlets/purl/1489368$$D View this record in Osti.gov |
BookMark | eNp1kt9rFDEQxxep2Fr75D8Q9EXQ1c3PS14EKVUXCgr-egy57OQu525Sk70W_3unvSLXonmZZPKZb2Ym87g5SDlB0zyl3Wvacf0m-TxNlQoj1YPmiHWCtnTB-MHe_rA5qXXT4eKGaiEeNYdMc71gTB41Pz8XGKKfY04kBxLTXGKq0ZP5KrdDnAAPObmRBCglwwgeAV8RJH1iX4ATlwaS5zUU0vc9a7_3nFy6RAZ0_HBurGRyM5SIuyfNw4AGTm7tcfPt_dnX04_t-acP_em789ZLyuY2LLxR2oCnjmNhWgEoYI4Jx3QwEIJbSjMIKTrtPRdcKs-1DMC9CG6hOD9u-p3ukN3GXpQ4ufLbZhftjSOXlXVljn4Eq4I2y6Ao5UyKoRs0eCYZNwEo7QAAtd7utC62ywkGD9ggN94RvXuT4tqu8qWVmJNiBgWe7QRynaOtPs7g1z6nhJ20VGjDlUboxe0rJf_aQp3tFKuHcXQJ8rZaqrU0ggm2QPT5PXSTtwV_6IYSWnW8E0i93FG-5FoLhL8Z085eD47dGxyk6T0a03TXM4ElxfE_Ma92MRWV0wrKXh7_wP8AzhvW0g |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2020_145817 crossref_primary_10_1021_acsanm_9b00840 crossref_primary_10_1016_j_apsusc_2023_157642 crossref_primary_10_1021_acs_jpclett_2c03169 crossref_primary_10_1007_s11432_019_2642_6 crossref_primary_10_1021_acs_jpclett_2c03160 crossref_primary_10_1021_acsnano_0c08483 crossref_primary_10_1021_acs_chemrev_4c00631 crossref_primary_10_1039_D3CP00371J crossref_primary_10_1021_acsaelm_4c01623 crossref_primary_10_1103_PhysRevB_96_235415 crossref_primary_10_1039_C9MH01109A crossref_primary_10_7498_aps_71_20220349 crossref_primary_10_1021_acs_chemrev_4c00628 crossref_primary_10_1021_acs_nanolett_7b02198 crossref_primary_10_1103_PhysRevB_109_035421 crossref_primary_10_1103_PhysRevB_107_165140 crossref_primary_10_1038_s41467_024_52062_6 crossref_primary_10_1039_D0CP04208K crossref_primary_10_1039_D4SC00067F crossref_primary_10_1103_PhysRevB_111_085417 crossref_primary_10_1002_adma_202105190 crossref_primary_10_1007_s11433_022_2000_y crossref_primary_10_1016_j_apsusc_2023_156557 crossref_primary_10_1002_adma_202203849 crossref_primary_10_1039_C9NR10207H crossref_primary_10_1103_PhysRevB_107_L121402 crossref_primary_10_1039_D3NR02216A crossref_primary_10_1088_1674_4926_44_1_011002 crossref_primary_10_1002_aelm_201900089 crossref_primary_10_1021_acs_nanolett_4c05369 crossref_primary_10_1039_D0NR01475C crossref_primary_10_1016_j_nanoen_2021_105786 crossref_primary_10_1039_D3CP03798C crossref_primary_10_1007_s11432_022_3695_1 crossref_primary_10_1103_PhysRevB_108_165430 crossref_primary_10_1021_acsnano_3c01311 crossref_primary_10_1016_j_physe_2022_115256 crossref_primary_10_1103_PhysRevB_108_085432 crossref_primary_10_1103_PhysRevB_107_235307 crossref_primary_10_1002_adfm_202409281 crossref_primary_10_1038_s41524_022_00737_3 crossref_primary_10_1002_aelm_202000061 crossref_primary_10_1002_adma_202007503 crossref_primary_10_1021_acs_jpcc_2c02466 crossref_primary_10_1103_PhysRevLett_126_057601 crossref_primary_10_1016_j_jmmm_2022_170297 crossref_primary_10_1063_1_5123487 crossref_primary_10_1088_1361_648X_ab4d60 crossref_primary_10_1103_PhysRevB_108_245416 crossref_primary_10_1093_nsr_nwz169 crossref_primary_10_1002_adfm_202400218 crossref_primary_10_1039_C8CP04200D crossref_primary_10_1016_j_mseb_2022_115829 crossref_primary_10_1021_acs_nanolett_3c04869 crossref_primary_10_1039_D3CP02466K crossref_primary_10_1021_acs_jpcc_1c02804 crossref_primary_10_1038_s41524_022_00748_0 crossref_primary_10_1103_PhysRevMaterials_4_124604 crossref_primary_10_1016_j_physe_2024_116093 crossref_primary_10_1039_D1NR00318F crossref_primary_10_1063_1_5131039 crossref_primary_10_1063_5_0159398 crossref_primary_10_1021_acsaelm_2c01755 crossref_primary_10_1021_jacs_8b06475 crossref_primary_10_1063_5_0196731 crossref_primary_10_1016_j_mattod_2018_03_003 crossref_primary_10_1002_adma_202416595 crossref_primary_10_1016_j_apsusc_2021_149024 crossref_primary_10_1063_5_0146081 crossref_primary_10_1016_j_commatsci_2021_110688 crossref_primary_10_1021_acs_nanolett_3c03787 crossref_primary_10_1063_5_0154934 crossref_primary_10_1088_1361_648X_acd906 crossref_primary_10_1021_acs_nanolett_2c02802 crossref_primary_10_1021_acsaelm_1c00855 crossref_primary_10_1039_C9CP06966F crossref_primary_10_1002_ange_202015622 crossref_primary_10_1016_j_nanoen_2024_109551 crossref_primary_10_1063_5_0035745 crossref_primary_10_1038_s41524_023_01193_3 crossref_primary_10_1038_s41699_022_00298_5 crossref_primary_10_1002_anie_202316306 crossref_primary_10_1021_acsaelm_2c00419 crossref_primary_10_1021_acsnano_7b07436 crossref_primary_10_1021_acsami_0c13799 crossref_primary_10_1002_lpor_202200429 crossref_primary_10_1016_j_ijhydene_2024_10_315 crossref_primary_10_1103_PhysRevLett_133_126801 crossref_primary_10_1021_acs_nanolett_3c00047 crossref_primary_10_1103_PhysRevLett_123_067601 crossref_primary_10_1039_D3TC04392D crossref_primary_10_1021_acsnano_2c11925 crossref_primary_10_1002_adfm_202205468 crossref_primary_10_1002_ijch_202100112 crossref_primary_10_1038_s41524_022_00728_4 crossref_primary_10_1016_j_apsusc_2022_154032 crossref_primary_10_1016_j_matdes_2023_111799 crossref_primary_10_1063_5_0116445 crossref_primary_10_1039_D1MA00643F crossref_primary_10_1063_5_0035515 crossref_primary_10_1063_5_0056695 crossref_primary_10_1063_5_0158281 crossref_primary_10_1088_1361_648X_ada65a crossref_primary_10_1021_acs_nanolett_4c05165 crossref_primary_10_1103_PhysRevB_108_L060501 crossref_primary_10_1002_ange_202424058 crossref_primary_10_1063_5_0021395 crossref_primary_10_1063_5_0197848 crossref_primary_10_1103_PhysRevB_102_054441 crossref_primary_10_1016_j_apcata_2022_118975 crossref_primary_10_1002_advs_202406242 crossref_primary_10_1039_D2CP01864K crossref_primary_10_1038_s41524_024_01368_6 crossref_primary_10_1063_5_0172353 crossref_primary_10_1039_D2MH01362B crossref_primary_10_1021_acsnano_3c05711 crossref_primary_10_1063_5_0067352 crossref_primary_10_1002_adfm_202304139 crossref_primary_10_1039_D1NH00402F crossref_primary_10_1002_adfm_201901420 crossref_primary_10_1103_PhysRevApplied_10_024043 crossref_primary_10_1063_5_0131838 crossref_primary_10_1021_acs_chemrev_1c00735 crossref_primary_10_1109_TED_2024_3411576 crossref_primary_10_34133_2019_2763704 crossref_primary_10_1063_5_0035764 crossref_primary_10_1103_PhysRevB_103_075436 crossref_primary_10_1016_j_apsusc_2022_156201 crossref_primary_10_1063_5_0217753 crossref_primary_10_1063_5_0200098 crossref_primary_10_1063_5_0001795 crossref_primary_10_1021_acsami_1c21848 crossref_primary_10_1063_1_5038037 crossref_primary_10_1038_s41467_021_23882_7 crossref_primary_10_1103_PhysRevB_109_205409 crossref_primary_10_1103_PhysRevB_101_184426 crossref_primary_10_1007_s40843_019_1212_x crossref_primary_10_1103_PhysRevB_110_144404 crossref_primary_10_1039_D4CP02985B crossref_primary_10_1002_sus2_189 crossref_primary_10_1088_2631_7990_ad2e13 crossref_primary_10_1007_s13391_023_00439_y crossref_primary_10_1039_D3MH01266B crossref_primary_10_1038_s41524_024_01288_5 crossref_primary_10_1016_j_nxmate_2024_100368 crossref_primary_10_1021_acs_inorgchem_3c02057 crossref_primary_10_1038_s41699_020_00162_4 crossref_primary_10_1016_j_ssc_2023_115175 crossref_primary_10_1002_pssr_202100241 crossref_primary_10_1021_acsaelm_4c00136 crossref_primary_10_1038_s41467_020_19779_6 crossref_primary_10_1109_TED_2024_3514816 crossref_primary_10_1021_acsnano_0c03869 crossref_primary_10_1002_anie_202300302 crossref_primary_10_1016_j_rinp_2023_106831 crossref_primary_10_1021_acsnano_1c03836 crossref_primary_10_1103_PhysRevB_100_235445 crossref_primary_10_1021_acsnano_8b09058 crossref_primary_10_1002_adfm_202009999 crossref_primary_10_3390_solids5010004 crossref_primary_10_1103_PhysRevApplied_15_024057 crossref_primary_10_1063_5_0190609 crossref_primary_10_1103_PhysRevB_101_014105 crossref_primary_10_1039_D3MH02006A crossref_primary_10_1016_j_jallcom_2024_178077 crossref_primary_10_1038_s41467_022_34104_z crossref_primary_10_1039_D3CP04408D crossref_primary_10_7498_aps_67_20180483 crossref_primary_10_1016_j_commatsci_2025_113823 crossref_primary_10_1038_s41467_022_33617_x crossref_primary_10_1073_pnas_2115703118 crossref_primary_10_1021_acsami_0c19768 crossref_primary_10_1103_PhysRevB_105_094101 crossref_primary_10_1103_PhysRevB_110_L161408 crossref_primary_10_1103_PhysRevB_103_125414 crossref_primary_10_7498_aps_70_20211158 crossref_primary_10_1021_acsnano_2c09267 crossref_primary_10_1021_jacs_8b12102 crossref_primary_10_1016_j_jcat_2024_115699 crossref_primary_10_1021_acsanm_2c00990 crossref_primary_10_1002_smll_202407729 crossref_primary_10_1002_aelm_202101406 crossref_primary_10_1007_s11467_020_0987_z crossref_primary_10_1007_s11432_019_1474_3 crossref_primary_10_1088_2053_1583_ac1ada crossref_primary_10_1038_s41524_023_01005_8 crossref_primary_10_1002_advs_202404436 crossref_primary_10_1021_acs_chemrev_3c00618 crossref_primary_10_1021_acsanm_9b01745 crossref_primary_10_1002_adfm_202308129 crossref_primary_10_1038_s41524_023_00972_2 crossref_primary_10_1038_s41467_023_44642_9 crossref_primary_10_1039_D1TA02645C crossref_primary_10_1016_j_apsusc_2021_150871 crossref_primary_10_1103_PhysRevMaterials_3_111401 crossref_primary_10_1103_PhysRevLett_128_067601 crossref_primary_10_1039_D0MH01863E crossref_primary_10_1039_D4TC03457K crossref_primary_10_1038_s41524_022_00953_x crossref_primary_10_1002_adma_202305044 crossref_primary_10_1103_PhysRevB_103_125426 crossref_primary_10_1021_acsami_8b18582 crossref_primary_10_1103_PhysRevB_105_075402 crossref_primary_10_1016_j_seppur_2021_119355 crossref_primary_10_1103_PhysRevB_106_224108 crossref_primary_10_1063_5_0117355 crossref_primary_10_1016_j_mtcomm_2022_103409 crossref_primary_10_1088_1361_6463_adb9f9 crossref_primary_10_1088_1361_648X_ab87d0 crossref_primary_10_1002_adfm_202310438 crossref_primary_10_3390_coatings12020122 crossref_primary_10_1103_PhysRevB_110_085110 crossref_primary_10_1021_acs_chemmater_1c04245 crossref_primary_10_1039_C9NR02265A crossref_primary_10_1016_j_mtcomm_2024_108891 crossref_primary_10_1021_acsnano_3c09250 crossref_primary_10_1016_j_cossms_2024_101178 crossref_primary_10_1088_1361_648X_ac145c crossref_primary_10_1021_acs_nanolett_3c03160 crossref_primary_10_1016_j_mtphys_2024_101607 crossref_primary_10_1021_acs_nanolett_4c02041 crossref_primary_10_1039_D0TC03872E crossref_primary_10_1016_j_apsusc_2023_157215 crossref_primary_10_1016_j_commatsci_2024_113575 crossref_primary_10_1039_D3CP02428H crossref_primary_10_1088_1674_4926_45_5_051701 crossref_primary_10_1002_advs_202103443 crossref_primary_10_1103_PhysRevB_110_134437 crossref_primary_10_1002_adma_202108261 crossref_primary_10_1103_PhysRevB_100_155408 crossref_primary_10_1021_acsnano_3c11558 crossref_primary_10_1021_acsnano_3c00670 crossref_primary_10_1021_jacs_2c12780 crossref_primary_10_1063_5_0050979 crossref_primary_10_1103_PhysRevB_105_075408 crossref_primary_10_1126_science_aav4450 crossref_primary_10_1038_s41524_022_00724_8 crossref_primary_10_1039_C9CY00997C crossref_primary_10_1088_1361_648X_ad7acc crossref_primary_10_1002_aelm_201800475 crossref_primary_10_1103_PhysRevApplied_21_044033 crossref_primary_10_1016_j_matt_2022_10_014 crossref_primary_10_1002_admt_201900108 crossref_primary_10_1103_PhysRevB_102_184104 crossref_primary_10_1021_acsnano_2c07281 crossref_primary_10_1002_solr_202300589 crossref_primary_10_1002_aisy_202300009 crossref_primary_10_1002_adfm_202403537 crossref_primary_10_1016_j_surfin_2022_102608 crossref_primary_10_1038_s41699_025_00535_7 crossref_primary_10_1039_D0CP02375B crossref_primary_10_1103_PhysRevB_102_195201 crossref_primary_10_1016_j_ijhydene_2024_06_345 crossref_primary_10_1021_acs_jpcc_3c05148 crossref_primary_10_1063_5_0130587 crossref_primary_10_1021_jacs_9b03201 crossref_primary_10_1021_acs_nanolett_3c04011 crossref_primary_10_1063_5_0188527 crossref_primary_10_1063_5_0096704 crossref_primary_10_1103_PhysRevB_109_125414 crossref_primary_10_1016_j_cjph_2025_01_015 crossref_primary_10_1021_acs_inorgchem_8b00778 crossref_primary_10_1063_5_0186587 crossref_primary_10_1039_D4TC04566A crossref_primary_10_1002_adfm_202108014 crossref_primary_10_1021_acsnano_1c09136 crossref_primary_10_1038_s41524_022_00833_4 crossref_primary_10_1039_D3CP03098A crossref_primary_10_1103_PhysRevB_105_134418 crossref_primary_10_1088_1361_648X_acf260 crossref_primary_10_1103_PhysRevB_110_064417 crossref_primary_10_1038_s41467_019_09669_x crossref_primary_10_1016_j_chip_2023_100080 crossref_primary_10_1016_j_apsusc_2020_148066 crossref_primary_10_1103_PhysRevB_96_235420 crossref_primary_10_1103_PhysRevB_104_064443 crossref_primary_10_3390_molecules28072971 crossref_primary_10_1021_acs_jpcc_3c04287 crossref_primary_10_1103_PhysRevMaterials_6_103403 crossref_primary_10_1063_5_0191917 crossref_primary_10_1063_5_0012039 crossref_primary_10_1021_acsaelm_2c00476 crossref_primary_10_1063_5_0107584 crossref_primary_10_1039_D0NH00255K crossref_primary_10_3389_fmats_2021_816821 crossref_primary_10_1002_adom_202200143 crossref_primary_10_1021_acsami_2c04032 crossref_primary_10_1103_PhysRevLett_123_037601 crossref_primary_10_1021_jacs_1c11953 crossref_primary_10_1038_s41699_024_00490_9 crossref_primary_10_1002_adfm_202307901 crossref_primary_10_1021_acsaelm_3c00671 crossref_primary_10_1063_5_0202871 crossref_primary_10_1002_adfm_202315522 crossref_primary_10_1016_j_vacuum_2023_111804 crossref_primary_10_7498_aps_69_20201433 crossref_primary_10_1002_adma_202103469 crossref_primary_10_7498_aps_69_20201432 crossref_primary_10_1016_j_apsusc_2022_155614 crossref_primary_10_1021_acsnano_1c00968 crossref_primary_10_1038_s41467_022_35490_0 crossref_primary_10_1039_D3CP02844E crossref_primary_10_1039_D2NR00466F crossref_primary_10_1063_1_5129447 crossref_primary_10_1039_C9CP06469A crossref_primary_10_1142_S2010135X23450017 crossref_primary_10_1016_j_vacuum_2024_113275 crossref_primary_10_1021_acs_jpclett_8b03654 crossref_primary_10_1002_pssb_202400013 crossref_primary_10_1021_acs_jpclett_4c00524 crossref_primary_10_1103_PhysRevB_111_045404 crossref_primary_10_1002_adma_202007081 crossref_primary_10_1103_PhysRevB_107_035426 crossref_primary_10_1002_inf2_12341 crossref_primary_10_1103_PhysRevB_104_L060405 crossref_primary_10_35848_1347_4065_acdc72 crossref_primary_10_1007_s12274_022_4171_3 crossref_primary_10_7498_aps_69_20200354 crossref_primary_10_1038_s41565_024_01642_0 crossref_primary_10_1002_adma_202404628 crossref_primary_10_1088_1361_6463_ad865f crossref_primary_10_1016_j_jmat_2024_01_010 crossref_primary_10_1039_D4TC00115J crossref_primary_10_1103_PhysRevB_101_121407 crossref_primary_10_1103_PhysRevB_105_075423 crossref_primary_10_1002_smtd_202401770 crossref_primary_10_1016_j_physrep_2021_07_006 crossref_primary_10_7567_JJAP_57_0902A3 crossref_primary_10_1016_j_scib_2020_09_010 crossref_primary_10_1088_1674_1056_acbaef crossref_primary_10_1039_D3NR06661D crossref_primary_10_1038_s41524_021_00602_9 crossref_primary_10_1088_1361_6528_ab33d2 crossref_primary_10_1038_s41598_019_53986_6 crossref_primary_10_1016_j_mtcomm_2021_102452 crossref_primary_10_1146_annurev_matsci_080921_105501 crossref_primary_10_1007_s12274_020_2860_3 crossref_primary_10_1021_acs_nanolett_3c05024 crossref_primary_10_1038_s41565_022_01257_3 crossref_primary_10_1063_5_0079803 crossref_primary_10_1039_C9NH00208A crossref_primary_10_1016_j_commatsci_2023_112400 crossref_primary_10_1039_D1CP00803J crossref_primary_10_1039_D3TA01479G crossref_primary_10_1021_acsami_3c01886 crossref_primary_10_1038_s41467_024_54205_1 crossref_primary_10_1002_smtd_202401549 crossref_primary_10_1038_s41467_024_51322_9 crossref_primary_10_1103_PhysRevB_108_054440 crossref_primary_10_1002_inf2_12121 crossref_primary_10_1021_acsami_0c20570 crossref_primary_10_1002_adfm_202004206 crossref_primary_10_1039_D2NR04710A crossref_primary_10_1039_D2MH00334A crossref_primary_10_1016_j_rinp_2023_106643 crossref_primary_10_1063_5_0107022 crossref_primary_10_1016_j_mssp_2024_108116 crossref_primary_10_1063_5_0176290 crossref_primary_10_1088_1674_4926_44_12_122101 crossref_primary_10_1088_2053_1591_ad3f78 crossref_primary_10_1103_PhysRevB_98_165134 crossref_primary_10_1016_j_apsusc_2021_150928 crossref_primary_10_1007_s12274_021_3919_5 crossref_primary_10_1103_PhysRevB_104_224102 crossref_primary_10_1103_PhysRevB_109_075417 crossref_primary_10_1038_s41524_023_01178_2 crossref_primary_10_1002_pssr_202200179 crossref_primary_10_1103_PhysRevMaterials_7_084412 crossref_primary_10_1088_1674_4926_40_6_061002 crossref_primary_10_1039_D3TC03410K crossref_primary_10_1002_aelm_201800960 crossref_primary_10_1002_aelm_202101385 crossref_primary_10_1021_acs_nanolett_7b04852 crossref_primary_10_1038_s41467_023_38445_1 crossref_primary_10_1088_1361_6463_ad449e crossref_primary_10_1103_PhysRevB_107_L241107 crossref_primary_10_1021_acs_chemrev_3c00129 crossref_primary_10_1021_acs_nanolett_4c01362 crossref_primary_10_1039_D3NR00522D crossref_primary_10_1088_1361_648X_acef89 crossref_primary_10_1088_1361_648X_ab4ff7 crossref_primary_10_1016_j_colsurfa_2024_135611 crossref_primary_10_1021_acsomega_2c06828 crossref_primary_10_1103_PhysRevB_105_235303 crossref_primary_10_15407_ujpe67_9_671 crossref_primary_10_1002_adma_202106951 crossref_primary_10_1103_PhysRevB_109_085432 crossref_primary_10_1002_adma_202005098 crossref_primary_10_1103_PhysRevB_96_195415 crossref_primary_10_1063_5_0219253 crossref_primary_10_1002_smtd_202101583 crossref_primary_10_1021_acs_jpclett_9b01969 crossref_primary_10_1103_PhysRevB_110_115439 crossref_primary_10_1021_acsami_3c00590 crossref_primary_10_1039_D3MH00743J crossref_primary_10_1021_acs_chemmater_9b03499 crossref_primary_10_1103_PhysRevLett_120_227601 crossref_primary_10_1016_j_rinp_2024_108080 crossref_primary_10_1063_5_0235723 crossref_primary_10_1103_PhysRevB_108_134112 crossref_primary_10_1021_acsami_4c08610 crossref_primary_10_1038_s41524_024_01429_w crossref_primary_10_1021_acs_jpcc_2c09109 crossref_primary_10_1016_j_rinp_2023_106847 crossref_primary_10_1063_5_0072124 crossref_primary_10_1039_C8CP02793E crossref_primary_10_1016_j_mattod_2018_01_031 crossref_primary_10_1016_j_comptc_2025_115195 crossref_primary_10_1002_anie_202015622 crossref_primary_10_1103_PhysRevMaterials_8_054005 crossref_primary_10_1063_1_5123296 crossref_primary_10_1021_acsnano_3c03593 crossref_primary_10_1002_adma_202400655 crossref_primary_10_1016_j_mser_2024_100873 crossref_primary_10_1016_j_scib_2020_04_014 crossref_primary_10_1021_acsnano_3c05771 crossref_primary_10_1039_D1TC02213J crossref_primary_10_1016_j_physleta_2024_129960 crossref_primary_10_1038_s41563_022_01422_y crossref_primary_10_1021_acs_jpclett_4c01693 crossref_primary_10_1103_PhysRevMaterials_3_054407 crossref_primary_10_1063_5_0032790 crossref_primary_10_1021_acs_nanolett_4c05071 crossref_primary_10_1039_D3CP05107B crossref_primary_10_1103_PhysRevB_107_085411 crossref_primary_10_1103_PhysRevMaterials_5_094408 crossref_primary_10_1063_5_0220466 crossref_primary_10_1002_adfm_202421311 crossref_primary_10_1039_D0MH02029J crossref_primary_10_1088_1361_6528_ad0c75 crossref_primary_10_1039_C9NR05404A crossref_primary_10_1016_j_jallcom_2023_169962 crossref_primary_10_1063_5_0136862 crossref_primary_10_1016_j_scib_2020_04_019 crossref_primary_10_1038_s41467_024_49213_0 crossref_primary_10_1088_1361_6463_ad91c3 crossref_primary_10_1002_smll_202105599 crossref_primary_10_1063_5_0068971 crossref_primary_10_1039_D2MH00906D crossref_primary_10_1103_PhysRevB_103_165420 crossref_primary_10_1002_advs_202001367 crossref_primary_10_1002_wcms_1496 crossref_primary_10_1038_s41467_019_10738_4 crossref_primary_10_1002_adma_202109621 crossref_primary_10_1021_acs_jpclett_3c02786 crossref_primary_10_1039_D2NR05344F crossref_primary_10_1103_PhysRevApplied_11_024048 crossref_primary_10_1039_D1CP04233E crossref_primary_10_1038_s41467_019_10693_0 crossref_primary_10_1021_acs_nanolett_3c03926 crossref_primary_10_1021_acs_jpclett_1c03251 crossref_primary_10_1039_C7RA11014F crossref_primary_10_1088_1361_6463_ab5737 crossref_primary_10_1063_5_0168454 crossref_primary_10_1103_PhysRevB_111_125152 crossref_primary_10_1016_j_mattod_2020_10_030 crossref_primary_10_1002_adfm_202212917 crossref_primary_10_1039_C9NR01510H crossref_primary_10_1021_acs_jpclett_3c01463 crossref_primary_10_1021_acs_chemrev_3c00170 crossref_primary_10_1021_acsnano_2c04017 crossref_primary_10_1063_5_0019555 crossref_primary_10_1002_pssb_201900198 crossref_primary_10_1063_5_0221773 crossref_primary_10_1360_TB_2021_1379 crossref_primary_10_1021_acs_jpclett_3c01202 crossref_primary_10_1002_adfm_202004609 crossref_primary_10_1002_adom_202201288 crossref_primary_10_1039_D1NR00369K crossref_primary_10_1021_acsnano_3c03319 crossref_primary_10_1088_1361_648X_ab58f1 crossref_primary_10_1021_acsaelm_9b00699 crossref_primary_10_1021_acsami_4c07562 crossref_primary_10_1021_acs_nanolett_1c04803 crossref_primary_10_1016_j_jallcom_2021_159344 crossref_primary_10_1002_smll_202303026 crossref_primary_10_1002_adma_202302467 crossref_primary_10_3390_s23125413 crossref_primary_10_1103_PhysRevLett_120_207602 crossref_primary_10_1016_j_mtphys_2022_100803 crossref_primary_10_1021_acsanm_3c05953 crossref_primary_10_1002_adma_201908040 crossref_primary_10_1021_acs_jpcc_8b06575 crossref_primary_10_1021_acsnano_8b01810 crossref_primary_10_1021_acs_jpcc_2c00386 crossref_primary_10_1088_1361_648X_ab4c67 crossref_primary_10_1021_acs_jpcc_3c00339 crossref_primary_10_1063_5_0028079 crossref_primary_10_1109_JSEN_2023_3327382 crossref_primary_10_1088_1361_648X_ac8406 crossref_primary_10_1038_s41467_023_44298_5 crossref_primary_10_1039_D3RA04682F crossref_primary_10_1002_aelm_202200210 crossref_primary_10_1103_PhysRevResearch_3_043011 crossref_primary_10_1016_j_cplett_2023_140430 crossref_primary_10_1103_PhysRevB_102_134416 crossref_primary_10_1039_D3CP01828H crossref_primary_10_1088_1361_6463_abdb6b crossref_primary_10_1088_1742_6596_1622_1_012027 crossref_primary_10_1021_acs_nanolett_2c02871 crossref_primary_10_1038_s41699_018_0063_5 crossref_primary_10_1002_aelm_202400528 crossref_primary_10_1063_5_0137508 crossref_primary_10_1103_PhysRevMaterials_5_084405 crossref_primary_10_1109_TED_2021_3059976 crossref_primary_10_1002_smll_202412761 crossref_primary_10_1021_acs_jpclett_2c03226 crossref_primary_10_1016_j_mtelec_2023_100080 crossref_primary_10_1103_PhysRevB_109_235426 crossref_primary_10_1088_1674_1056_ac7f8e crossref_primary_10_1021_acs_jpclett_4c03643 crossref_primary_10_1088_1361_648X_acc561 crossref_primary_10_1103_PhysRevB_106_115403 crossref_primary_10_1039_D1MH00939G crossref_primary_10_1039_D0TA09738A crossref_primary_10_1039_C9CP06023E crossref_primary_10_1039_D3NH00026E crossref_primary_10_1016_j_ijhydene_2024_03_017 crossref_primary_10_1021_acsanm_1c01394 crossref_primary_10_1103_PhysRevB_97_144104 crossref_primary_10_1039_D0NR06054B crossref_primary_10_1103_PhysRevB_105_125142 crossref_primary_10_1103_PhysRevB_108_155431 crossref_primary_10_1038_s41467_021_26200_3 crossref_primary_10_1039_D1NR06906C crossref_primary_10_1002_advs_202205813 crossref_primary_10_1021_acs_nanolett_4c02625 crossref_primary_10_1039_D0NR06609E crossref_primary_10_1038_s41467_023_37239_9 crossref_primary_10_1103_PhysRevB_105_195439 crossref_primary_10_1021_acsnano_4c06619 crossref_primary_10_1021_acsaelm_9b00658 crossref_primary_10_1016_j_surfin_2025_106088 crossref_primary_10_1021_acs_langmuir_3c02297 crossref_primary_10_1021_acs_nanolett_3c03970 crossref_primary_10_1063_5_0149503 crossref_primary_10_1002_smll_202205347 crossref_primary_10_35848_1347_4065_ab8bbf crossref_primary_10_1002_aelm_202200665 crossref_primary_10_1021_acsami_9b19320 crossref_primary_10_1021_acs_jpclett_1c02782 crossref_primary_10_1103_PhysRevB_105_174404 crossref_primary_10_1103_PhysRevB_110_L060406 crossref_primary_10_1038_s41928_019_0338_7 crossref_primary_10_1088_0256_307X_40_4_047701 crossref_primary_10_1016_j_mtnano_2023_100304 crossref_primary_10_1088_1367_2630_ac17b9 crossref_primary_10_1039_C8NR04422H crossref_primary_10_1039_D3CP04656G crossref_primary_10_1088_1674_1056_ac0784 crossref_primary_10_1002_aelm_202200413 crossref_primary_10_1021_acsanm_3c02076 crossref_primary_10_3390_nano12173026 crossref_primary_10_1063_5_0014945 crossref_primary_10_1021_acs_jpclett_2c03270 crossref_primary_10_1103_PhysRevMaterials_6_034006 crossref_primary_10_1039_D3MH00256J crossref_primary_10_1103_PhysRevB_105_115415 crossref_primary_10_1002_cphc_202400538 crossref_primary_10_1007_s11433_022_2056_1 crossref_primary_10_1002_smll_202412320 crossref_primary_10_1038_d41586_018_05807_5 crossref_primary_10_1021_acs_nanolett_2c00930 crossref_primary_10_1039_C9NR05282H crossref_primary_10_1007_s11467_022_1241_7 crossref_primary_10_1039_D1NJ06167D crossref_primary_10_1063_5_0218996 crossref_primary_10_1039_D3TC02841K crossref_primary_10_1002_lpor_202400819 crossref_primary_10_3390_ma16083058 crossref_primary_10_1039_D3NH00154G crossref_primary_10_1002_adfm_202306486 crossref_primary_10_1002_qute_202200169 crossref_primary_10_1039_D4CP01445F crossref_primary_10_1039_D2NR04234G crossref_primary_10_7498_aps_71_20211759 crossref_primary_10_1063_5_0255501 crossref_primary_10_1088_1361_648X_acb89f crossref_primary_10_1103_PhysRevMaterials_6_104404 crossref_primary_10_1021_acsanm_4c04923 crossref_primary_10_1063_5_0181137 crossref_primary_10_1126_sciadv_aar7720 crossref_primary_10_1088_2053_1583_ad4611 crossref_primary_10_3390_ijms25126713 crossref_primary_10_1038_s41699_022_00297_6 crossref_primary_10_1021_acsami_3c07744 crossref_primary_10_1021_acs_jpcc_1c07141 crossref_primary_10_1039_D0TA00854K crossref_primary_10_1002_advs_202200566 crossref_primary_10_1103_PhysRevB_106_195416 crossref_primary_10_1002_smm2_1020 crossref_primary_10_1063_5_0149661 crossref_primary_10_1063_5_0197542 crossref_primary_10_1360_TB_2023_0400 crossref_primary_10_1021_acsami_1c24801 crossref_primary_10_1088_2053_1583_aac479 crossref_primary_10_1063_5_0153917 crossref_primary_10_1021_acsaelm_1c00724 crossref_primary_10_1103_PhysRevB_108_014106 crossref_primary_10_1002_smll_202307346 crossref_primary_10_1103_PhysRevB_109_184106 crossref_primary_10_1038_s41524_023_00999_5 crossref_primary_10_1088_1674_1056_ab820f crossref_primary_10_1063_5_0036302 crossref_primary_10_1063_5_0207639 crossref_primary_10_1088_1361_648X_ac885b crossref_primary_10_1021_acsanm_3c01190 crossref_primary_10_3788_COL202422_013202 crossref_primary_10_1016_j_scib_2024_05_010 crossref_primary_10_1038_s41524_024_01369_5 crossref_primary_10_1002_advs_202410851 crossref_primary_10_1103_PhysRevApplied_19_024024 crossref_primary_10_1021_acs_nanolett_3c01247 crossref_primary_10_1103_PhysRevLett_125_047601 crossref_primary_10_1038_s41699_022_00309_5 crossref_primary_10_3389_fmats_2021_736057 crossref_primary_10_1038_s41524_024_01301_x crossref_primary_10_1109_TED_2023_3269403 crossref_primary_10_1088_1361_648X_ac577d crossref_primary_10_1002_adma_202109889 crossref_primary_10_1039_D0TC03712E crossref_primary_10_1063_1_5100240 crossref_primary_10_1080_03067319_2023_2286314 crossref_primary_10_1021_acs_jpclett_7b01089 crossref_primary_10_1016_j_rinp_2024_107692 crossref_primary_10_1021_acs_nanolett_5c00612 crossref_primary_10_1039_D3CP04855A crossref_primary_10_1039_D3CP01320K crossref_primary_10_1039_D0SE01097A crossref_primary_10_1002_anie_202424058 crossref_primary_10_3390_nano13091533 crossref_primary_10_1002_ange_202300302 crossref_primary_10_1021_jacs_3c10271 crossref_primary_10_1093_nsr_nwab164 crossref_primary_10_1021_acs_jpclett_1c01895 crossref_primary_10_1007_s40820_021_00784_3 crossref_primary_10_1103_PhysRevLett_133_206701 crossref_primary_10_1016_j_apsusc_2021_152311 crossref_primary_10_1016_j_mtcomm_2024_109475 crossref_primary_10_1002_adma_202416480 crossref_primary_10_1002_smtd_202300319 crossref_primary_10_1088_1674_1056_ad74e7 crossref_primary_10_1088_1361_6633_abf1d4 crossref_primary_10_1038_s41578_022_00484_3 crossref_primary_10_1103_PhysRevB_107_155427 crossref_primary_10_1002_adfm_202306682 crossref_primary_10_1088_1674_1056_ad08a4 crossref_primary_10_1016_j_apsusc_2021_149166 crossref_primary_10_1038_s41586_024_08156_8 crossref_primary_10_1088_1361_6463_ab1978 crossref_primary_10_1038_s41467_025_56139_8 crossref_primary_10_1103_PhysRevB_111_024101 crossref_primary_10_3390_nano13091553 crossref_primary_10_1103_PhysRevB_110_224111 crossref_primary_10_1021_acs_jpcc_4c01158 crossref_primary_10_1103_PhysRevB_103_L140104 crossref_primary_10_1002_pssr_202300479 crossref_primary_10_1002_advs_202303447 crossref_primary_10_1103_PhysRevApplied_22_044061 crossref_primary_10_3390_molecules28196858 crossref_primary_10_1080_14686996_2023_2180286 crossref_primary_10_1063_5_0166849 crossref_primary_10_1103_PhysRevB_104_075449 crossref_primary_10_1002_adfm_201808380 crossref_primary_10_1039_D2CP03196E crossref_primary_10_1002_chem_201804360 crossref_primary_10_1002_brx2_24 crossref_primary_10_1080_23746149_2019_1688187 crossref_primary_10_1126_sciadv_ads8786 crossref_primary_10_1002_aelm_201900818 crossref_primary_10_1103_PhysRevApplied_22_054064 crossref_primary_10_1016_j_jallcom_2020_156270 crossref_primary_10_1103_PhysRevB_108_L140412 crossref_primary_10_1002_adfm_202008790 crossref_primary_10_1002_admi_202300081 crossref_primary_10_1039_D2MH00080F crossref_primary_10_1088_1361_648X_ac4401 crossref_primary_10_1063_5_0155960 crossref_primary_10_1039_D1MH01556G crossref_primary_10_1103_PhysRevB_110_125402 crossref_primary_10_1364_OME_9_000449 crossref_primary_10_1103_PhysRevB_105_165301 crossref_primary_10_1103_PhysRevB_105_165302 crossref_primary_10_1103_PhysRevB_110_205421 crossref_primary_10_1063_5_0189709 crossref_primary_10_1039_D4CP00863D crossref_primary_10_1016_j_apsusc_2022_153942 crossref_primary_10_1021_acsnano_9b02764 crossref_primary_10_1002_ange_202316306 crossref_primary_10_1088_1742_6596_2964_1_012081 crossref_primary_10_1021_acsami_3c02680 crossref_primary_10_1021_acs_nanolett_4c05887 crossref_primary_10_1021_acs_nanolett_4c05644 crossref_primary_10_1103_PhysRevB_103_L201405 crossref_primary_10_1002_aelm_202400498 crossref_primary_10_1088_1674_4926_44_4_042101 crossref_primary_10_1039_D5TA00818B crossref_primary_10_1039_D1MH00446H crossref_primary_10_1016_j_matt_2022_05_021 crossref_primary_10_1088_1674_1056_ad1c59 crossref_primary_10_1016_j_physe_2019_113582 crossref_primary_10_1063_5_0249647 crossref_primary_10_1021_acsami_8b17341 crossref_primary_10_1016_j_fmre_2023_02_009 crossref_primary_10_1063_1_5040671 crossref_primary_10_1088_2632_2153_abd87c crossref_primary_10_1103_PhysRevB_108_024305 crossref_primary_10_1016_j_jmmm_2025_172857 crossref_primary_10_1038_s41467_024_48218_z crossref_primary_10_1039_D3DT00234A crossref_primary_10_1007_s12274_020_2640_0 crossref_primary_10_1039_D2MA01079H crossref_primary_10_1002_aelm_202300211 crossref_primary_10_1039_D4CP00558A crossref_primary_10_1021_acs_inorgchem_8b01950 crossref_primary_10_1039_D2TC02721F crossref_primary_10_1103_PhysRevLett_124_237601 crossref_primary_10_1016_j_apsusc_2022_156198 crossref_primary_10_1021_acsami_1c18949 crossref_primary_10_7498_aps_71_20220654 crossref_primary_10_1103_PhysRevLett_133_196801 crossref_primary_10_1103_PhysRevB_96_245136 crossref_primary_10_1109_TED_2024_3462378 crossref_primary_10_1007_s11432_023_4070_8 crossref_primary_10_1063_5_0179956 crossref_primary_10_1002_adts_202200022 crossref_primary_10_1088_0256_307X_38_7_077501 crossref_primary_10_1103_PhysRevB_102_235403 crossref_primary_10_1021_acs_jpcc_1c01800 crossref_primary_10_1016_j_vacuum_2020_109232 crossref_primary_10_1088_1674_1056_ad04c3 crossref_primary_10_1063_5_0036316 crossref_primary_10_1021_acsnano_1c01735 crossref_primary_10_1063_5_0166878 crossref_primary_10_1002_aelm_202300880 crossref_primary_10_1088_1361_6463_ad33f5 crossref_primary_10_1103_PhysRevB_108_104109 crossref_primary_10_1063_1_5097842 crossref_primary_10_1088_2053_1583_ac6191 crossref_primary_10_3390_cryst13060940 crossref_primary_10_1002_adfm_202412332 crossref_primary_10_1038_s41928_020_0441_9 crossref_primary_10_1103_PhysRevB_105_205427 crossref_primary_10_1109_TDMR_2022_3153961 crossref_primary_10_1016_j_commatsci_2024_113463 crossref_primary_10_1021_acsami_2c18812 crossref_primary_10_1063_5_0160084 crossref_primary_10_1063_5_0226732 crossref_primary_10_1088_1361_648X_ab1d0f crossref_primary_10_1002_smll_202405459 crossref_primary_10_1002_wcms_1409 crossref_primary_10_1039_D3CP01523H crossref_primary_10_1038_s41598_019_50293_y crossref_primary_10_1007_s40843_021_1920_9 crossref_primary_10_1021_acsami_4c21092 crossref_primary_10_1016_j_apsusc_2022_156170 crossref_primary_10_1021_acs_nanolett_8b00314 crossref_primary_10_1002_advs_201801572 crossref_primary_10_1021_acs_nanolett_2c04289 crossref_primary_10_1002_aelm_202300642 crossref_primary_10_1063_5_0039842 crossref_primary_10_1002_adfm_202301817 crossref_primary_10_1103_PhysRevB_107_045125 crossref_primary_10_1103_PhysRevMaterials_8_084407 crossref_primary_10_1016_j_ssc_2022_114733 crossref_primary_10_1021_acs_chemmater_2c01169 crossref_primary_10_1103_PhysRevB_102_245417 crossref_primary_10_1016_j_mser_2021_100622 crossref_primary_10_1103_PhysRevResearch_3_L012026 crossref_primary_10_1016_j_jpcs_2022_110887 crossref_primary_10_1002_pssr_202400057 crossref_primary_10_1016_j_physb_2025_416999 crossref_primary_10_1039_D0TC00003E crossref_primary_10_1088_2053_1583_aaf946 crossref_primary_10_1021_acsaelm_4c00205 crossref_primary_10_1021_acs_jpclett_2c00618 crossref_primary_10_1002_adom_202200428 crossref_primary_10_1103_PhysRevB_104_054107 crossref_primary_10_1016_j_commatsci_2023_112311 crossref_primary_10_1016_j_mtquan_2024_100012 crossref_primary_10_1103_PhysRevB_107_115427 crossref_primary_10_1021_acsnano_8b02152 crossref_primary_10_1016_j_vacuum_2024_113144 crossref_primary_10_1016_j_physe_2021_114783 crossref_primary_10_1103_PhysRevB_101_235448 crossref_primary_10_1103_PhysRevB_111_L081407 crossref_primary_10_1038_s41699_025_00531_x crossref_primary_10_1088_1674_1056_aba605 crossref_primary_10_1016_j_surfin_2024_104330 crossref_primary_10_1039_C7NR09006D crossref_primary_10_1103_PhysRevLett_134_016801 crossref_primary_10_1021_acsaelm_9b00146 crossref_primary_10_1007_s40820_020_00584_1 crossref_primary_10_1016_j_commatsci_2021_110819 crossref_primary_10_1016_j_cap_2024_01_003 crossref_primary_10_1063_5_0085128 crossref_primary_10_1063_5_0029646 crossref_primary_10_1039_D0CP00512F crossref_primary_10_1021_acs_nanolett_2c00130 crossref_primary_10_1103_PhysRevB_110_094423 crossref_primary_10_1063_5_0256260 crossref_primary_10_1016_j_surfin_2024_104597 crossref_primary_10_1002_adma_201901300 crossref_primary_10_1021_acs_nanolett_0c03452 crossref_primary_10_1038_s41467_025_57138_5 crossref_primary_10_1002_adfm_202408625 crossref_primary_10_1063_5_0043731 crossref_primary_10_1088_0256_307X_41_5_057501 crossref_primary_10_1103_PhysRevApplied_20_034035 crossref_primary_10_1039_D1NA00805F crossref_primary_10_1021_acsnano_3c08747 crossref_primary_10_7498_aps_73_20231246 crossref_primary_10_1039_D0TC00143K crossref_primary_10_1039_D3CP02616G crossref_primary_10_1103_PhysRevB_109_155418 crossref_primary_10_1103_PhysRevMaterials_8_114001 crossref_primary_10_1021_acs_chemrev_3c00459 crossref_primary_10_1016_j_nanoen_2018_07_010 crossref_primary_10_1021_acsaelm_4c01171 crossref_primary_10_1021_acs_nanolett_0c04531 crossref_primary_10_1103_PhysRevApplied_22_064016 crossref_primary_10_1021_acs_nanolett_0c02357 crossref_primary_10_1063_5_0214718 crossref_primary_10_1002_inf2_12005 crossref_primary_10_1016_j_mtcomm_2024_109857 crossref_primary_10_1103_PhysRevB_108_134430 crossref_primary_10_1021_acs_chemrev_0c00933 crossref_primary_10_1021_acsami_2c03270 crossref_primary_10_1038_s41524_022_00740_8 crossref_primary_10_1021_acssensors_2c02365 crossref_primary_10_1103_PhysRevB_110_094408 crossref_primary_10_1039_D3NR03166G crossref_primary_10_1007_s12274_022_4206_9 crossref_primary_10_1103_PhysRevB_110_094409 crossref_primary_10_1039_C8CP07444E crossref_primary_10_1016_j_commatsci_2023_112599 crossref_primary_10_1021_acsami_0c04173 crossref_primary_10_1088_1361_6528_ab519b crossref_primary_10_1002_aelm_201900981 crossref_primary_10_1103_RevModPhys_93_011001 crossref_primary_10_7498_aps_71_20220815 crossref_primary_10_1063_5_0156566 crossref_primary_10_1002_adfm_202106206 crossref_primary_10_1039_D3CP01942J crossref_primary_10_1002_adma_202400332 crossref_primary_10_1088_1361_648X_ad1301 crossref_primary_10_1063_5_0243242 crossref_primary_10_1088_1361_648X_acdd3e crossref_primary_10_1038_s41467_024_46891_8 crossref_primary_10_1063_5_0188388 crossref_primary_10_1021_acs_nanolett_4c00141 crossref_primary_10_1103_PhysRevMaterials_6_L101402 crossref_primary_10_1002_aelm_201900975 crossref_primary_10_1002_adfm_202106459 crossref_primary_10_1016_j_ijhydene_2022_11_113 crossref_primary_10_1021_acs_jpclett_0c02400 crossref_primary_10_1021_acs_jpcc_3c05991 crossref_primary_10_1002_adfm_201803738 crossref_primary_10_1021_acs_jpclett_5c00082 crossref_primary_10_1038_s41467_023_44453_y crossref_primary_10_1039_D4TA07884E crossref_primary_10_1109_TED_2022_3184621 crossref_primary_10_3390_nano15030163 crossref_primary_10_1016_j_mtchem_2023_101626 crossref_primary_10_1088_1361_648X_aad986 crossref_primary_10_1016_j_apsusc_2022_153505 crossref_primary_10_1103_PhysRevB_108_125302 crossref_primary_10_1039_D2NA00265E crossref_primary_10_1038_s41699_021_00261_w crossref_primary_10_1039_D1NR03886A crossref_primary_10_1016_j_apsusc_2024_161921 crossref_primary_10_1039_D0TC02366C crossref_primary_10_1103_PhysRevB_111_094516 crossref_primary_10_1088_1361_648X_ad154e crossref_primary_10_1002_adfm_202205933 crossref_primary_10_1016_j_optmat_2025_116742 crossref_primary_10_1039_D3CP01616A crossref_primary_10_1002_adts_202100302 crossref_primary_10_1039_D1NR06051A crossref_primary_10_1021_acsanm_0c02513 crossref_primary_10_1002_wcms_1365 crossref_primary_10_1021_acs_nanolett_8b02561 crossref_primary_10_1021_acs_nanolett_9b01907 crossref_primary_10_1002_adma_202210854 crossref_primary_10_1038_s41699_024_00523_3 crossref_primary_10_1038_s41578_021_00304_0 crossref_primary_10_54227_mlab_20220006 crossref_primary_10_1039_D4NH00405A crossref_primary_10_1039_D4CP02278E crossref_primary_10_1002_smll_202307946 crossref_primary_10_1016_j_jpowsour_2023_233439 crossref_primary_10_1002_adfm_202316583 crossref_primary_10_1088_1361_648X_ad2884 crossref_primary_10_1063_5_0135660 crossref_primary_10_1155_2019_2763704 crossref_primary_10_1007_s11467_022_1244_4 crossref_primary_10_1016_j_optlastec_2022_107851 crossref_primary_10_1039_D2CP05581C crossref_primary_10_1016_j_scib_2021_06_020 crossref_primary_10_1039_D1NR02641K crossref_primary_10_1088_1674_1056_ac744e crossref_primary_10_1039_D4NR01441C crossref_primary_10_1038_s41467_021_25426_5 crossref_primary_10_1039_D0CP01797C crossref_primary_10_1038_s41524_022_00773_z crossref_primary_10_1103_PhysRevB_106_125118 crossref_primary_10_1039_C9NR01656B crossref_primary_10_1039_D2TC03343G crossref_primary_10_1103_PhysRevB_108_L081116 crossref_primary_10_1021_acs_jpclett_3c03527 crossref_primary_10_1002_adfm_202210404 crossref_primary_10_1039_D1RA09458K crossref_primary_10_1021_acs_langmuir_4c02588 crossref_primary_10_1007_s11467_023_1369_0 crossref_primary_10_1039_D4TC00631C crossref_primary_10_1021_acs_jpclett_0c03136 crossref_primary_10_1021_acs_jpclett_0c03138 crossref_primary_10_1063_1_5053426 crossref_primary_10_1016_j_physe_2022_115501 crossref_primary_10_1021_acs_jpcc_8b06247 crossref_primary_10_1002_aelm_202400603 crossref_primary_10_1039_D3CP03929C crossref_primary_10_1103_PhysRevB_110_014102 crossref_primary_10_1063_5_0079535 crossref_primary_10_1039_D2CP01492K crossref_primary_10_1002_adma_201907244 crossref_primary_10_1002_smll_202408375 crossref_primary_10_1016_j_cej_2022_139841 crossref_primary_10_1016_j_jallcom_2022_165197 crossref_primary_10_1038_s41598_023_46514_0 crossref_primary_10_1103_PhysRevB_97_075429 crossref_primary_10_1103_PhysRevB_110_045435 crossref_primary_10_1039_D2NH00509C crossref_primary_10_1021_acsaem_2c01274 crossref_primary_10_1016_j_radphyschem_2020_108969 crossref_primary_10_1039_D4MH01087F crossref_primary_10_1002_adma_202301472 crossref_primary_10_1021_acs_nanolett_2c00564 crossref_primary_10_1063_5_0180680 crossref_primary_10_1002_advs_202413808 crossref_primary_10_1038_s41524_024_01237_2 crossref_primary_10_1021_acs_nanolett_7b04797 crossref_primary_10_1016_j_physe_2023_115814 crossref_primary_10_3390_nano15020109 crossref_primary_10_1002_adfm_201808606 crossref_primary_10_1103_PhysRevLett_124_067602 crossref_primary_10_1126_science_abm5734 crossref_primary_10_1021_acsami_1c19062 crossref_primary_10_1039_D1NR06383A crossref_primary_10_1088_2053_1583_ac94e0 crossref_primary_10_1103_PhysRevB_103_214114 crossref_primary_10_1007_s12274_021_3833_x crossref_primary_10_1016_j_surfin_2025_105901 crossref_primary_10_1002_aelm_202200343 crossref_primary_10_1021_acsaelm_3c00919 crossref_primary_10_1063_5_0157258 crossref_primary_10_1103_PhysRevB_110_024115 crossref_primary_10_1021_acs_jpcc_0c02498 crossref_primary_10_1016_j_apsusc_2024_161785 crossref_primary_10_1007_s11433_022_2055_8 crossref_primary_10_1039_D0TA07981B crossref_primary_10_1038_s41699_022_00305_9 crossref_primary_10_1021_acs_jpclett_3c02255 crossref_primary_10_1021_acs_jpcc_1c03548 crossref_primary_10_1021_acs_jpcc_2c01352 crossref_primary_10_1103_PhysRevB_111_104111 crossref_primary_10_1063_5_0051394 crossref_primary_10_1103_PhysRevLett_120_147601 crossref_primary_10_1103_PhysRevB_110_035419 crossref_primary_10_1038_s41467_022_29495_y crossref_primary_10_1039_C8NR08270G crossref_primary_10_1039_D3CP01590D crossref_primary_10_1021_acsanm_3c03646 crossref_primary_10_1039_D1CP03391C crossref_primary_10_3389_fphy_2020_587419 crossref_primary_10_1007_s11432_022_3617_2 crossref_primary_10_1039_C8CS00255J crossref_primary_10_1063_5_0173960 crossref_primary_10_1016_j_physe_2023_115836 crossref_primary_10_1021_acsami_4c06177 crossref_primary_10_1039_D2TC04742J crossref_primary_10_1103_PhysRevB_106_L140505 crossref_primary_10_1002_adma_202108826 crossref_primary_10_1039_D3TA07014J crossref_primary_10_1007_s12274_023_6021_3 crossref_primary_10_1002_adfm_202313010 crossref_primary_10_1038_s41563_024_02082_w crossref_primary_10_2139_ssrn_4121597 crossref_primary_10_1016_j_physleta_2023_128699 crossref_primary_10_1021_acsanm_3c05854 crossref_primary_10_1016_j_physb_2025_417172 crossref_primary_10_1109_TNS_2021_3055615 crossref_primary_10_1088_1361_648X_ab8986 crossref_primary_10_1103_PhysRevB_104_174107 crossref_primary_10_1002_apxr_202200096 crossref_primary_10_1002_aenm_202201199 crossref_primary_10_1039_C8MH00082D crossref_primary_10_1007_s12274_021_3415_6 crossref_primary_10_1063_5_0222926 crossref_primary_10_1021_acsami_0c09247 crossref_primary_10_1016_j_nanoen_2020_104530 crossref_primary_10_1016_j_jcis_2021_03_121 crossref_primary_10_1038_s41524_021_00643_0 crossref_primary_10_1021_acs_nanolett_7b03020 crossref_primary_10_1103_PhysRevApplied_20_064011 crossref_primary_10_1016_j_jcrysgro_2019_125471 crossref_primary_10_1016_j_commatsci_2023_112724 crossref_primary_10_1016_j_apsusc_2023_158084 crossref_primary_10_1021_acs_jpclett_4c00029 crossref_primary_10_1103_PhysRevB_108_085408 crossref_primary_10_1016_j_mtcomm_2023_106400 crossref_primary_10_1021_jacs_2c08827 crossref_primary_10_1016_j_mtchem_2022_100850 crossref_primary_10_1039_D4NR05317F crossref_primary_10_1103_PhysRevB_105_104105 |
Cites_doi | 10.1063/1.2336999 10.1103/RevModPhys.77.1083 10.1103/PhysRev.65.117 10.1103/PhysRevLett.77.3865 10.1021/cr300263a 10.1038/nature01501 10.1126/science.1092508 10.1126/science.aad8609 10.1103/PhysRevB.59.1758 10.1021/acs.jpclett.5b01356 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.47.1651 10.1038/nature12385 10.1002/pssa.2210060134 10.1063/1.3382344 10.1103/PhysRevB.40.3616 10.1021/nn405037s 10.1021/ja406351u 10.1063/1.4792313 10.1038/nphys2942 10.1143/JJAP.37.4264 10.1126/science.aaa6442 10.1038/nature08105 10.1126/science.1098252 10.1038/358136a0 10.1103/PhysRevB.50.17953 10.1103/PhysRevLett.112.157601 10.1126/science.1129564 10.1143/JPSJ.21.1848 10.1107/S0021889879012863 10.1021/nl400888p 10.1143/JPSJ.12.312 10.1063/1.2404663 10.1146/annurev-matsci-070214-021141 10.1126/science.1256815 10.1063/1.1329672 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group Apr 2017 Copyright © 2017, The Author(s) 2017 The Author(s) |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Apr 2017 – notice: Copyright © 2017, The Author(s) 2017 The Author(s) |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1038/ncomms14956 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_6f89bf6113254d0d8ec25239fe110eee PMC5385629 1489368 4321504841 10_1038_ncomms14956 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO AAADF AAPBV AAYJO ADQMX AEDAW AFGXO AFNRJ OIOZB OTOTI ZA5 5PM |
ID | FETCH-LOGICAL-c512t-f7c9689ec1a314986ee6e2a24a28f9effab59d45408cc34356c385fe3c4fa7633 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:32:03 EDT 2025 Thu Aug 21 14:05:34 EDT 2025 Wed Nov 29 06:12:00 EST 2023 Fri Sep 05 09:48:25 EDT 2025 Wed Aug 13 09:42:51 EDT 2025 Tue Jul 01 02:31:39 EDT 2025 Thu Apr 24 23:08:45 EDT 2025 Fri Feb 21 02:39:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c512t-f7c9689ec1a314986ee6e2a24a28f9effab59d45408cc34356c385fe3c4fa7633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE These authors contributed equally to this work. |
ORCID | 0000-0003-2082-857X 000000032082857X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/ncomms14956 |
PMID | 28387225 |
PQID | 1884860304 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6f89bf6113254d0d8ec25239fe110eee pubmedcentral_primary_oai_pubmedcentral_nih_gov_5385629 osti_scitechconnect_1489368 proquest_miscellaneous_1885942427 proquest_journals_1884860304 crossref_primary_10_1038_ncomms14956 crossref_citationtrail_10_1038_ncomms14956 springer_journals_10_1038_ncomms14956 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-07 |
PublicationDateYYYYMMDD | 2017-04-07 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Popović, Tonejc, Gržeta-Plenković, Čelustka, Trojko (CR23) 1979; 12 Onsager (CR13) 1944; 65 Ahn, Rabe, Triscone (CR4) 2004; 303 Osamura, Murakami, Tomiie (CR17) 1966; 21 Jacobs-Gedrim (CR20) 2014; 8 Scott (CR2) 2007; 315 Qian, Liu, Fu, Li (CR10) 2014; 346 Dawber, Rabe, Scott (CR5) 2005; 77 Popović, Čelustka, Bidjin (CR22) 1971; 6 Kresse, Joubert (CR31) 1999; 59 Krukau, Vydrov, Izmaylov, Scuseria (CR33) 2006; 125 King-Smith, Vanderbilt (CR35) 1993; 47 Methfessel, Paxton (CR34) 1989; 40 Henkelman, Uberuaga, Jónsson (CR36) 2000; 113 Xu, Liang, Shi, Chen (CR7) 2013; 113 Zhang (CR28) 2009; 459 Rasmussen, Teklemichael, Mafi, Gu, McCluskey (CR24) 2013; 102 Cohen (CR27) 1992; 358 Shirodkar, Waghmare (CR12) 2014; 112 Lee (CR16) 2015; 349 Perdew, Burke, Ernzerhof (CR32) 1996; 77 CR3 Fong (CR15) 2004; 304 Blöchl (CR30) 1994; 50 Setter (CR1) 2006; 100 Miyazawa, Sugaike (CR25) 1957; 12 Tao, Gu (CR19) 2013; 13 Lin (CR21) 2013; 135 Debbichi, Eriksson, Lebègue (CR26) 2015; 6 Rao, Maitra (CR6) 2015; 45 Grimme, Antony, Ehrlich, Krieg (CR37) 2010; 132 Ye, Soeda, Nakamura, Nittono (CR18) 1998; 37 Kresse, Furthmüller (CR29) 1996; 54 Junquera, Ghosez (CR14) 2003; 422 Xu, Yao, Xiao, Heinz (CR9) 2014; 10 Geim, Grigorieva (CR8) 2013; 499 Chang (CR11) 2016; 353 JF Scott (BFncomms14956_CR2) 2007; 315 G Henkelman (BFncomms14956_CR36) 2000; 113 X Xu (BFncomms14956_CR9) 2014; 10 AV Krukau (BFncomms14956_CR33) 2006; 125 M Dawber (BFncomms14956_CR5) 2005; 77 S Grimme (BFncomms14956_CR37) 2010; 132 G Kresse (BFncomms14956_CR31) 1999; 59 DD Fong (BFncomms14956_CR15) 2004; 304 AM Rasmussen (BFncomms14956_CR24) 2013; 102 PE Blöchl (BFncomms14956_CR30) 1994; 50 N Setter (BFncomms14956_CR1) 2006; 100 RD King-Smith (BFncomms14956_CR35) 1993; 47 S Popović (BFncomms14956_CR22) 1971; 6 AK Geim (BFncomms14956_CR8) 2013; 499 M Methfessel (BFncomms14956_CR34) 1989; 40 M Lin (BFncomms14956_CR21) 2013; 135 Y Zhang (BFncomms14956_CR28) 2009; 459 BFncomms14956_CR3 X Tao (BFncomms14956_CR19) 2013; 13 J Junquera (BFncomms14956_CR14) 2003; 422 JP Perdew (BFncomms14956_CR32) 1996; 77 L Onsager (BFncomms14956_CR13) 1944; 65 M Xu (BFncomms14956_CR7) 2013; 113 L Debbichi (BFncomms14956_CR26) 2015; 6 CNR Rao (BFncomms14956_CR6) 2015; 45 H Miyazawa (BFncomms14956_CR25) 1957; 12 CH Ahn (BFncomms14956_CR4) 2004; 303 K Chang (BFncomms14956_CR11) 2016; 353 J Ye (BFncomms14956_CR18) 1998; 37 SN Shirodkar (BFncomms14956_CR12) 2014; 112 G Kresse (BFncomms14956_CR29) 1996; 54 S Popović (BFncomms14956_CR23) 1979; 12 X Qian (BFncomms14956_CR10) 2014; 346 D Lee (BFncomms14956_CR16) 2015; 349 RB Jacobs-Gedrim (BFncomms14956_CR20) 2014; 8 K Osamura (BFncomms14956_CR17) 1966; 21 RE Cohen (BFncomms14956_CR27) 1992; 358 |
References_xml | – volume: 100 start-page: 051606 year: 2006 ident: CR1 article-title: Ferroelectric thin films: review of materials, properties, and applications publication-title: J. Appl. Phys. doi: 10.1063/1.2336999 – volume: 77 start-page: 1083 year: 2005 end-page: 1130 ident: CR5 article-title: Physics of thin-film ferroelectric oxides publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.1083 – volume: 65 start-page: 117 year: 1944 end-page: 149 ident: CR13 article-title: Crystal statistics. I. A two-dimensional model with an order-disorder transition publication-title: Phys. Rev. doi: 10.1103/PhysRev.65.117 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR32 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 113 start-page: 3766 year: 2013 end-page: 3798 ident: CR7 article-title: Graphene-like two-dimensional materials publication-title: Chem. Rev. doi: 10.1021/cr300263a – volume: 422 start-page: 506 year: 2003 end-page: 509 ident: CR14 article-title: Critical thickness for ferroelectricity in perovskite ultrathin films publication-title: Nature doi: 10.1038/nature01501 – volume: 303 start-page: 488 year: 2004 end-page: 491 ident: CR4 article-title: Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures publication-title: Science doi: 10.1126/science.1092508 – volume: 353 start-page: 274 year: 2016 end-page: 278 ident: CR11 article-title: Discovery of robust in-plane ferroelectricity in atomic-thick SnTe publication-title: Science doi: 10.1126/science.aad8609 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR31 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 6 start-page: 3098 year: 2015 end-page: 3103 ident: CR26 article-title: Two-dimensional Indium Selenides compounds: an study publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01356 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR29 article-title: Efficient iterative schemes for total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 47 start-page: 1651 year: 1993 end-page: 1654 ident: CR35 article-title: Theory of polarization of crystalline solids publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1651 – volume: 499 start-page: 419 year: 2013 end-page: 425 ident: CR8 article-title: Van der Waals heterostructures publication-title: Nature doi: 10.1038/nature12385 – volume: 6 start-page: 301 year: 1971 end-page: 304 ident: CR22 article-title: X-ray diffraction measurement of lattice parameters of In Se publication-title: Phys. Status Solidi A doi: 10.1002/pssa.2210060134 – volume: 132 start-page: 154104 year: 2010 ident: CR37 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 40 start-page: 3616 year: 1989 end-page: 3621 ident: CR34 article-title: High-precision sampling for Brillouin-zone integration in metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.40.3616 – volume: 8 start-page: 514 year: 2014 end-page: 521 ident: CR20 article-title: Extraordinary photoresponse in two-dimensional In Se nanosheets publication-title: ACS Nano doi: 10.1021/nn405037s – volume: 135 start-page: 13274 year: 2013 end-page: 13277 ident: CR21 article-title: Controlled growth of atomically thin In Se flakes by van der Waals epitaxy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja406351u – volume: 102 start-page: 062105 year: 2013 ident: CR24 article-title: Pressure-induced phase transformation of In Se publication-title: Appl. Phys. Lett. doi: 10.1063/1.4792313 – volume: 10 start-page: 343 year: 2014 end-page: 350 ident: CR9 article-title: Spin and pseudospins in layered transition metal dichalcogenides publication-title: Nat. Phys. doi: 10.1038/nphys2942 – volume: 37 start-page: 4264 year: 1998 end-page: 4271 ident: CR18 article-title: Crystal structures and phase transformation in In Se compound semiconductor publication-title: Jpn J. Appl. Phys. doi: 10.1143/JJAP.37.4264 – volume: 349 start-page: 1314 year: 2015 end-page: 1317 ident: CR16 article-title: Emergence of room-temperature ferroelectricity at reduced dimensions publication-title: Science doi: 10.1126/science.aaa6442 – volume: 459 start-page: 820 year: 2009 end-page: 823 ident: CR28 article-title: Direct observation of a widely tunable bandgap in bilayer graphene publication-title: Nature doi: 10.1038/nature08105 – volume: 304 start-page: 1650 year: 2004 end-page: 1653 ident: CR15 article-title: Ferroelectricity in ultrathin perovskite films publication-title: Science doi: 10.1126/science.1098252 – volume: 358 start-page: 136 year: 1992 end-page: 138 ident: CR27 article-title: Origin of ferroelectricity in perovskite oxides publication-title: Nature doi: 10.1038/358136a0 – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR30 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 112 start-page: 157601 year: 2014 ident: CR12 article-title: Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.157601 – ident: CR3 – volume: 315 start-page: 954 year: 2007 end-page: 959 ident: CR2 article-title: Applications of modern ferroelectrics publication-title: Science doi: 10.1126/science.1129564 – volume: 21 start-page: 1848 year: 1966 ident: CR17 article-title: Crystal structures of - and -indium selenide, In Se publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.21.1848 – volume: 12 start-page: 416 year: 1979 end-page: 420 ident: CR23 article-title: Revised and new crystal data for Indium Selenides publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889879012863 – volume: 13 start-page: 3501 year: 2013 end-page: 3505 ident: CR19 article-title: Crystalline−crystalline phase transformation in two-dimensional In Se thin layers publication-title: Nano Lett. doi: 10.1021/nl400888p – volume: 12 start-page: 312 year: 1957 ident: CR25 article-title: Phase transition of In Se publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.12.312 – volume: 125 start-page: 224106 year: 2006 ident: CR33 article-title: Influence of the exchange screening parameter on the performance of screened hybrid functionals publication-title: J. Chem. Phys. doi: 10.1063/1.2404663 – volume: 45 start-page: 29 year: 2015 end-page: 62 ident: CR6 article-title: Inorganic graphene analogs publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070214-021141 – volume: 346 start-page: 1344 year: 2014 end-page: 1347 ident: CR10 article-title: Quantum spin Hall effect in two-dimensional transition metal dichalcogenides publication-title: Science doi: 10.1126/science.1256815 – volume: 113 start-page: 9901 year: 2000 end-page: 9904 ident: CR36 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 37 start-page: 4264 year: 1998 ident: BFncomms14956_CR18 publication-title: Jpn J. Appl. Phys. doi: 10.1143/JJAP.37.4264 – volume: 346 start-page: 1344 year: 2014 ident: BFncomms14956_CR10 publication-title: Science doi: 10.1126/science.1256815 – volume: 422 start-page: 506 year: 2003 ident: BFncomms14956_CR14 publication-title: Nature doi: 10.1038/nature01501 – volume: 349 start-page: 1314 year: 2015 ident: BFncomms14956_CR16 publication-title: Science doi: 10.1126/science.aaa6442 – volume: 459 start-page: 820 year: 2009 ident: BFncomms14956_CR28 publication-title: Nature doi: 10.1038/nature08105 – volume: 65 start-page: 117 year: 1944 ident: BFncomms14956_CR13 publication-title: Phys. Rev. doi: 10.1103/PhysRev.65.117 – volume: 12 start-page: 312 year: 1957 ident: BFncomms14956_CR25 publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.12.312 – volume: 50 start-page: 17953 year: 1994 ident: BFncomms14956_CR30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 12 start-page: 416 year: 1979 ident: BFncomms14956_CR23 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889879012863 – volume: 10 start-page: 343 year: 2014 ident: BFncomms14956_CR9 publication-title: Nat. Phys. doi: 10.1038/nphys2942 – volume: 54 start-page: 11169 year: 1996 ident: BFncomms14956_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 102 start-page: 062105 year: 2013 ident: BFncomms14956_CR24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4792313 – volume: 100 start-page: 051606 year: 2006 ident: BFncomms14956_CR1 publication-title: J. Appl. Phys. doi: 10.1063/1.2336999 – volume: 8 start-page: 514 year: 2014 ident: BFncomms14956_CR20 publication-title: ACS Nano doi: 10.1021/nn405037s – volume: 353 start-page: 274 year: 2016 ident: BFncomms14956_CR11 publication-title: Science doi: 10.1126/science.aad8609 – volume: 135 start-page: 13274 year: 2013 ident: BFncomms14956_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja406351u – volume: 303 start-page: 488 year: 2004 ident: BFncomms14956_CR4 publication-title: Science doi: 10.1126/science.1092508 – volume: 112 start-page: 157601 year: 2014 ident: BFncomms14956_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.157601 – volume: 21 start-page: 1848 year: 1966 ident: BFncomms14956_CR17 publication-title: J. Phys. Soc. Jpn doi: 10.1143/JPSJ.21.1848 – volume: 125 start-page: 224106 year: 2006 ident: BFncomms14956_CR33 publication-title: J. Chem. Phys. doi: 10.1063/1.2404663 – volume: 6 start-page: 3098 year: 2015 ident: BFncomms14956_CR26 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01356 – volume: 77 start-page: 3865 year: 1996 ident: BFncomms14956_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 113 start-page: 9901 year: 2000 ident: BFncomms14956_CR36 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 499 start-page: 419 year: 2013 ident: BFncomms14956_CR8 publication-title: Nature doi: 10.1038/nature12385 – volume: 45 start-page: 29 year: 2015 ident: BFncomms14956_CR6 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070214-021141 – volume: 6 start-page: 301 year: 1971 ident: BFncomms14956_CR22 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.2210060134 – volume: 40 start-page: 3616 year: 1989 ident: BFncomms14956_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.40.3616 – volume: 132 start-page: 154104 year: 2010 ident: BFncomms14956_CR37 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 59 start-page: 1758 year: 1999 ident: BFncomms14956_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 304 start-page: 1650 year: 2004 ident: BFncomms14956_CR15 publication-title: Science doi: 10.1126/science.1098252 – volume: 13 start-page: 3501 year: 2013 ident: BFncomms14956_CR19 publication-title: Nano Lett. doi: 10.1021/nl400888p – volume: 47 start-page: 1651 year: 1993 ident: BFncomms14956_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1651 – ident: BFncomms14956_CR3 – volume: 77 start-page: 1083 year: 2005 ident: BFncomms14956_CR5 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.1083 – volume: 358 start-page: 136 year: 1992 ident: BFncomms14956_CR27 publication-title: Nature doi: 10.1038/358136a0 – volume: 315 start-page: 954 year: 2007 ident: BFncomms14956_CR2 publication-title: Science doi: 10.1126/science.1129564 – volume: 113 start-page: 3766 year: 2013 ident: BFncomms14956_CR7 publication-title: Chem. Rev. doi: 10.1021/cr300263a |
SSID | ssj0000391844 |
Score | 2.6899974 |
Snippet | Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However,... The development of devices based on 2D materials beyond graphene benefits from identifying compounds with diverse functional properties. Here, the authors... |
SourceID | doaj pubmedcentral osti proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14956 |
SubjectTerms | 119/118 639/301/357/1018 639/766/119/996 Ferroelectrics Humanities and Social Sciences MATERIALS SCIENCE multidisciplinary Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yIPgi_sR6d5KD80Uo103SNHn0xOMqKIKe3ltJkwkunq3s9hD_e2fS7rI9D3zxqZAMaZiZZL4hyTeMHTsjHD1wzGURTK4i2NwE7_NSV1pFRXkQvUZ-_0GfX6h3l-XlTqkvuhM20gOPijvR0dg2aiqIXqqAA4IXmDzZCBi4AIB238IWO8lU2oOlxdRFTQ_yCmlOOjTgj3XKB2YhKDH146fHFTVDmTfvSN44KE3x5-wBuz8BR_56nPBDdge6R-zuWEry92P2_eOKjlxIzbyPfInDLTu0AB9-9XkgCv-RfoNHWK36sfjN0q9RkNed-ASSuy7w9ByL13Ut8i-15IiyecCGrw6dlCO2Hd31Cbs4e_v5zXk-FVLIPcbzIY-Vt9pY8AsnUQNGA2gQTignTLQQo2tLG4iLz3gvEUBpL00ZQXoVHW5A8inb6_oOnjGOYwQBiygqzK3QLK4KGAXbRRtchal2yNirjW4bP7GMU7GLqyaddkvT7BgiY8db4Z8jucbtYqdkpK0IMWKnBvSTZvKT5l9-krF9MnGDwILYcT1dI_IDZj4I2LTJ2MHG8s20iNfNwhgq0SULlbGjbTcuPzpTcR3010mmtApxTpWxauYxs-nOe7rlt0TkjcEG4afN2MuNb-38_G89PP8fethn9wQhE7p8VB2wvWF1DYeIq4b2RVpCfwDtACPS priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_qFcEX8RNjq6xQX4Sld5tNsnkQsdLSCB5FrfYtbPajHmpScynif-_MJjmbKj4FkiVZdmZ2fpPZ-Q3AnlZCU4Ejj-dWceldzpU1hidplkovKQ6iauR3y_T4VL49S862YDnWwtCxynFPDBu1bQz9I99fKEX9kjD6fnXxg1PXKMquji009NBawb4MFGM3YBu35GQ-g-2Dw-XJ-81fF-JDV1IOhXrzWO3X-JHv6xAnTFxTYPDHS4OWNkGf189OXkugBr90dAduD4CSve414C5sufoe3OxbTP66D19PWkrF0PKzxrMVvm5Vo2RY97Phlqj9e1oO5l3bNn1TnJVZ40BW1OKDi5muLQtlWqwoCsE_FTFD9M0s3visUXkZYt5ejR_A6dHhxzfHfGiwwA36-Y77zOSpyp1Z6BhXQKXOpU5oIbVQPnfe6yrJLXH0KWNiBFapiVXiXWyk17gxxQ9hVje1ewQM32GFW3iRYczl04XOLHrHalFZnWEIbiN4Ma5taQb2cWqC8a0MWfBYlVcEEcHeZvBFT7rx72EHJKTNEGLKDjea9rwcDK9MvcornBBG3Ym0qJDOCAy-c-8Q-DjnItghEZcIOIg119DxItNhRIRALlUR7I6SLwfjXpd_VDGCZ5vHaJaUa9G1ay7DmCSXiH-yCLKJxkymO31Sr74Egm90QghL8wiej7p15eN_r8Pj_09yB24JwiJ03CjbhVnXXroniKS66ulgHr8BXl4hww priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fi9QwEB70RPBFzl9Y704inC9CcZukafroLXdcBUXQ03sraTLxFrWVbg_xv3eSdpft6YNPpc20DZNJ55tm8g3AsdHchA2OqVg4nUqPZaqdtWmuCiW9DHFQ2I387r06v5BvL_PLiWd7PaVVjpSW8TO9yQ573dLZj3WE87fhji5EHsx5qZbbHyqB6lxLOe3BWwi9e8_M60Ryfjp0NIlmwPJmWuSNtdHocs724f6EFdmbsXcP4Ba2D-HuWD3y9yP49qEPqyxBs6zzbEWPW7WkdDb86lIXWPtHxg3mse-7sd7Nyq5JkFUt_4iCmdaxuAOLVVXF08-VYASsmaMLXwzZJSM4O1roY7g4O_20PE-n2gmpJRc-pL6wpdIl2swI0oBWiAq54dJw7Uv03jR56QL9nrZWEGZSVujco7DSG_rmiCew13YtPgVGz3AcM88LCqe8ykzhyPE1WeNMQdG1S-DVRre1nYjFQ32L73Vc4Ba63hmIBI63wj9HPo1_i52EQdqKBBLseKHrv9aTUdTK67KhDlFAnUtHtoaWU1xdeiRMg4gJHIQhrglLBEJcGzKH7EDBDmE0pRM43Ix8Pc3bdZ1pHapyiYVM4MW2mWZcWEYxLXbXUSYvJUGbIoFiZjGz7s5b2tVV5O4m_0KIs0zg5ca2dl7-tx6e_afcAdzjAW-ElKLiEPaG_hqPCC0NzfM4S_4AkdIX7g priority: 102 providerName: Springer Nature |
Title | Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials |
URI | https://link.springer.com/article/10.1038/ncomms14956 https://www.proquest.com/docview/1884860304 https://www.proquest.com/docview/1885942427 https://www.osti.gov/servlets/purl/1489368 https://pubmed.ncbi.nlm.nih.gov/PMC5385629 https://doaj.org/article/6f89bf6113254d0d8ec25239fe110eee |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB71ISQuiKcwLdEilQuSId611-sDQmnUUEeiqiiB3KzNPiCi2OCkgv57Ztd2VIeKSyytJ7YzD883mZ0ZgCMpqHQFjiEbahHG1mSh0EqFCU95bGMXB7lq5A9n_HQWT-fJfAe6YZwtA1e3hnZuntSsvnz959f1OzT4t03JuHhTomx-rDzU34V9nyhye_hanO9fySzDSMZlmOkwjkJ02qyt1dv6fs87-Sb-eKjQ2HoAdHv75FYO1bumyX2412JKMmqU4AHsmPIh3GmmTF4_gu_ntcvGOAmQypIlXm5ZonDI-ncVatfdv-nMQayp66qZi7NUKyQkeUkvDCOy1MRXapE8z2n4OWcEATjRuPBFIh8Jwt5Gkx_DbHLyaXwatjMWQoWufh3aVGVcZEZFkiEHBDeGGyppLKmwmbFWLpJMuzZ9QimG2IorJhJrmIqtxHcTewJ7ZVWap0DwGpqayNIUwy7LI5lqlMQiWmiZYhSuA3jV8bZQbQNyNwfjsvCJcCaKG4II4GhD_LPpu3E72bET0obENcv2C1X9tWhtr-BWZAt8IAy8k1ijThpFMf7OrEHsY4wJ4MCJuEDM4RrnKrfDSK0xKEIsx0UAh53ki049i0gIN72LDeMAXmxOo2W6dIssTXXlaZIsRgiUBpD2NKb3uP0z5fKb7_GNfgiRaRbAy063btz8Xz48--9POIC71KERt-EoPYS9dX1lniOWWi8GsJvOU_wUk_cD2B-NphdTPB6fnJ1_xNUxHw_8vxQDb09_AcVFJrw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gEaMvxs9YQV0TeDFpoNttu30gRhRyFbgQBeWtbvdDL2qLvSOEf86_zZl-nBSNbzxd0k72tjszO7_Z2ZkBWFOSK0pw9MNNI33hbOpLo7UfxUksnCA_iLKRDybx-Fi8O4lOluBXnwtD1yr7PbHZqE2l6Yx8I5CS-iWh9_3q9KdPXaMoutq30FBdawWz1ZQY6xI79uzFObpws63sLfJ7nfPdnaM3Y7_rMuBrNHZz3yU6jWVqdaBCdBdkbG1sueJCcelS65wqotRQoTqpdYjoItahjJwNtXAKtTPEcW_AsqADlBEsb-9MDt8vTnmo_roUoksM3AzlRokf9WPW-CUDU9h0DMCfCjV7gHav3tW8ErBt7ODuXbjTAVj2upW4e7Bky_tws21pefEAvh3WFPohdrPKsSkONy1REtj8vPINtRJoy4AwZ-u6apvwTPUMCVlW8g82ZKo0rEkLY1mWcf9jFjJE-8zgg08KlYUhxm7V5iEcX8tSP4JRWZX2MTAcw3AbOJ6gj-fiQCUGrXERFEYl6PIbD172a5vrrto5Nd34njdR91DmlxjhwdqC-LQt8vFvsm1i0oKEKnM3D6r6S94peh47mRY4IfTyI2FQAazm6OynziLQstZ6sEIszhHgUJVeTdeZ9Bw9MASOsfRgted83m0ms_yP6HvwYvEatwGK7ajSVmcNTZQKxFuJB8lAYgbTHb4pp1-bguJo9BAGpx6s97J16c__Xocn_5_kc7g1PjrYz_ezyd4K3OaEg-iqU7IKo3l9Zp8iipsXzzpVYfD5urXzNxjGXww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiKcILWCk9oIUbWPn4RwqRGlXDYXVCij0Fhw_YAUkJZuq6l_kVzGTx9ItiFtPkZKR43g8nu-LPTMAm0pyRQGOvtg20g-dTX1ptPajOIlDFxIPomjkt5P44Ch8fRwdr8CvIRaGjlUOa2K7UJtK0z_yUSAl1UtC9j1y_bGI6d74xclPnypI0U7rUE5D9WUWzE6bbqwP8ji052dI5-Y72R7qfovz8f6HVwd-X3HA1-j4Gt8lOo1lanWgBFIHGVsbW654qLh0qXVOFVFqKGmd1Fog0oi1kJGzQodOoaUKbPcarCXo9ZEIru3uT6bvFn98KBe7DMM-SHBbyFGJH_hj3nKUJbfYVg_AS4VWvoR8L5_bvLR52_rE8W241YNZ9rKbfXdgxZZ34XpX3vL8Hnyb1rQNRKpnlWMzbG5W4qxgzVnlGyor0KUEYc7WddUV5JnpOQqyrOTvrWCqNKwNEWNZlnH_YyYYIn9m8MYnhYbDEG93JnQfjq5kqB_AalmV9iEwbMNwGzieIN9zcaASg565CAqjEqT_xoPnw9jmus98TgU4vuftDryQ-QVFeLC5ED7pEn78W2yXlLQQoSzd7Y2q_pL3Rp_HTqYFdggZfxQaNAarORL_1FkEXdZaD9ZJxTmCHcrYq-lok26QjSGIjKUHG4Pm835hmed_zMCDZ4vHuCTQPo8qbXXaykRpiNgr8SBZmjFL3V1-Us6-tsnF0QEiJE492Brm1oWX_z0Oj_7fyadwA600f5NNDtfhJidIRKeekg1YbepT-xgBXVM86S2FweerNs7fagBjUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+intrinsic+two-dimensional+ferroelectrics+in+In2Se3+and+other+III2-VI3+van+der+Waals+materials&rft.jtitle=Nature+communications&rft.au=Ding%2C+Wenjun&rft.au=Zhu%2C+Jianbao&rft.au=Wang%2C+Zhe&rft.au=Gao%2C+Yanfei&rft.date=2017-04-07&rft.pub=Nature+Publishing+Group&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=8&rft_id=info:doi/10.1038%2Fncomms14956&rft.externalDocID=1489368 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |