Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials

Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been report...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 8; no. 1; pp. 14956 - 8
Main Authors Ding, Wenjun, Zhu, Jianbao, Wang, Zhe, Gao, Yanfei, Xiao, Di, Gu, Yi, Zhang, Zhenyu, Zhu, Wenguang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.04.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/ncomms14956

Cover

Abstract Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In 2 Se 3 and other III 2 -VI 3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In 2 Se 3 /graphene, exhibiting a tunable Schottky barrier, and In 2 Se 3 /WSe 2 , showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications. The development of devices based on 2D materials beyond graphene benefits from identifying compounds with diverse functional properties. Here, the authors predict computationally that 2D In 2 Se 3 and related materials are room temperature ferroelectrics with both in- and out-of-plane polarization.
AbstractList Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In 2 Se 3 and other III 2 -VI 3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In 2 Se 3 /graphene, exhibiting a tunable Schottky barrier, and In 2 Se 3 /WSe 2 , showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications. The development of devices based on 2D materials beyond graphene benefits from identifying compounds with diverse functional properties. Here, the authors predict computationally that 2D In 2 Se 3 and related materials are room temperature ferroelectrics with both in- and out-of-plane polarization.
Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. Lastly, these findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.
Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2 Se3 and other III2 -VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2 Se3 /graphene, exhibiting a tunable Schottky barrier, and In2 Se3 /WSe2 , showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.
Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In2Se3 and other III2-VI3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In2Se3/graphene, exhibiting a tunable Schottky barrier, and In2Se3/WSe2, showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.
The development of devices based on 2D materials beyond graphene benefits from identifying compounds with diverse functional properties. Here, the authors predict computationally that 2D In2Se3and related materials are room temperature ferroelectrics with both in- and out-of-plane polarization.
Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However, ferroelectricity, the presence of a spontaneous electric polarization, which is important in many practical applications, has rarely been reported in such materials so far. Here we employ first-principles calculations to discover a branch of the 2D materials family, based on In 2 Se 3 and other III 2 -VI 3 van der Waals materials, that exhibits room-temperature ferroelectricity with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations. The device potential of these 2D ferroelectric materials is further demonstrated using the examples of van der Waals heterostructures of In 2 Se 3 /graphene, exhibiting a tunable Schottky barrier, and In 2 Se 3 /WSe 2 , showing a significant band gap reduction in the combined system. These findings promise to substantially broaden the tunability of van der Waals heterostructures for a wide range of applications.
ArticleNumber 14956
Author Wang, Zhe
Zhang, Zhenyu
Zhu, Jianbao
Xiao, Di
Zhu, Wenguang
Ding, Wenjun
Gao, Yanfei
Gu, Yi
Author_xml – sequence: 1
  givenname: Wenjun
  surname: Ding
  fullname: Ding, Wenjun
  organization: Department of Physics, University of Science and Technology of China, International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China
– sequence: 2
  givenname: Jianbao
  surname: Zhu
  fullname: Zhu, Jianbao
  organization: Department of Physics, University of Science and Technology of China, International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Beijing Computational Science Research Center
– sequence: 3
  givenname: Zhe
  surname: Wang
  fullname: Wang, Zhe
  organization: Department of Physics, University of Science and Technology of China, International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China
– sequence: 4
  givenname: Yanfei
  orcidid: 0000-0003-2082-857X
  surname: Gao
  fullname: Gao, Yanfei
  organization: Department of Materials Science and Engineering, University of Tennessee, Materials Science and Technology Division, Oak Ridge National Laboratory
– sequence: 5
  givenname: Di
  surname: Xiao
  fullname: Xiao, Di
  organization: Department of Physics, Carnegie Mellon University
– sequence: 6
  givenname: Yi
  surname: Gu
  fullname: Gu, Yi
  organization: Department of Physics and Astronomy, Washington State University
– sequence: 7
  givenname: Zhenyu
  surname: Zhang
  fullname: Zhang, Zhenyu
  organization: International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China
– sequence: 8
  givenname: Wenguang
  surname: Zhu
  fullname: Zhu, Wenguang
  email: wgzhu@ustc.edu.cn
  organization: Department of Physics, University of Science and Technology of China, International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China
BackLink https://www.osti.gov/servlets/purl/1489368$$D View this record in Osti.gov
BookMark eNp1kt9rFDEQxxep2Fr75D8Q9EXQ1c3PS14EKVUXCgr-egy57OQu525Sk70W_3unvSLXonmZZPKZb2Ym87g5SDlB0zyl3Wvacf0m-TxNlQoj1YPmiHWCtnTB-MHe_rA5qXXT4eKGaiEeNYdMc71gTB41Pz8XGKKfY04kBxLTXGKq0ZP5KrdDnAAPObmRBCglwwgeAV8RJH1iX4ATlwaS5zUU0vc9a7_3nFy6RAZ0_HBurGRyM5SIuyfNw4AGTm7tcfPt_dnX04_t-acP_em789ZLyuY2LLxR2oCnjmNhWgEoYI4Jx3QwEIJbSjMIKTrtPRdcKs-1DMC9CG6hOD9u-p3ukN3GXpQ4ufLbZhftjSOXlXVljn4Eq4I2y6Ao5UyKoRs0eCYZNwEo7QAAtd7utC62ywkGD9ggN94RvXuT4tqu8qWVmJNiBgWe7QRynaOtPs7g1z6nhJ20VGjDlUboxe0rJf_aQp3tFKuHcXQJ8rZaqrU0ggm2QPT5PXSTtwV_6IYSWnW8E0i93FG-5FoLhL8Z085eD47dGxyk6T0a03TXM4ElxfE_Ma92MRWV0wrKXh7_wP8AzhvW0g
CitedBy_id crossref_primary_10_1016_j_apsusc_2020_145817
crossref_primary_10_1021_acsanm_9b00840
crossref_primary_10_1016_j_apsusc_2023_157642
crossref_primary_10_1021_acs_jpclett_2c03169
crossref_primary_10_1007_s11432_019_2642_6
crossref_primary_10_1021_acs_jpclett_2c03160
crossref_primary_10_1021_acsnano_0c08483
crossref_primary_10_1021_acs_chemrev_4c00631
crossref_primary_10_1039_D3CP00371J
crossref_primary_10_1021_acsaelm_4c01623
crossref_primary_10_1103_PhysRevB_96_235415
crossref_primary_10_1039_C9MH01109A
crossref_primary_10_7498_aps_71_20220349
crossref_primary_10_1021_acs_chemrev_4c00628
crossref_primary_10_1021_acs_nanolett_7b02198
crossref_primary_10_1103_PhysRevB_109_035421
crossref_primary_10_1103_PhysRevB_107_165140
crossref_primary_10_1038_s41467_024_52062_6
crossref_primary_10_1039_D0CP04208K
crossref_primary_10_1039_D4SC00067F
crossref_primary_10_1103_PhysRevB_111_085417
crossref_primary_10_1002_adma_202105190
crossref_primary_10_1007_s11433_022_2000_y
crossref_primary_10_1016_j_apsusc_2023_156557
crossref_primary_10_1002_adma_202203849
crossref_primary_10_1039_C9NR10207H
crossref_primary_10_1103_PhysRevB_107_L121402
crossref_primary_10_1039_D3NR02216A
crossref_primary_10_1088_1674_4926_44_1_011002
crossref_primary_10_1002_aelm_201900089
crossref_primary_10_1021_acs_nanolett_4c05369
crossref_primary_10_1039_D0NR01475C
crossref_primary_10_1016_j_nanoen_2021_105786
crossref_primary_10_1039_D3CP03798C
crossref_primary_10_1007_s11432_022_3695_1
crossref_primary_10_1103_PhysRevB_108_165430
crossref_primary_10_1021_acsnano_3c01311
crossref_primary_10_1016_j_physe_2022_115256
crossref_primary_10_1103_PhysRevB_108_085432
crossref_primary_10_1103_PhysRevB_107_235307
crossref_primary_10_1002_adfm_202409281
crossref_primary_10_1038_s41524_022_00737_3
crossref_primary_10_1002_aelm_202000061
crossref_primary_10_1002_adma_202007503
crossref_primary_10_1021_acs_jpcc_2c02466
crossref_primary_10_1103_PhysRevLett_126_057601
crossref_primary_10_1016_j_jmmm_2022_170297
crossref_primary_10_1063_1_5123487
crossref_primary_10_1088_1361_648X_ab4d60
crossref_primary_10_1103_PhysRevB_108_245416
crossref_primary_10_1093_nsr_nwz169
crossref_primary_10_1002_adfm_202400218
crossref_primary_10_1039_C8CP04200D
crossref_primary_10_1016_j_mseb_2022_115829
crossref_primary_10_1021_acs_nanolett_3c04869
crossref_primary_10_1039_D3CP02466K
crossref_primary_10_1021_acs_jpcc_1c02804
crossref_primary_10_1038_s41524_022_00748_0
crossref_primary_10_1103_PhysRevMaterials_4_124604
crossref_primary_10_1016_j_physe_2024_116093
crossref_primary_10_1039_D1NR00318F
crossref_primary_10_1063_1_5131039
crossref_primary_10_1063_5_0159398
crossref_primary_10_1021_acsaelm_2c01755
crossref_primary_10_1021_jacs_8b06475
crossref_primary_10_1063_5_0196731
crossref_primary_10_1016_j_mattod_2018_03_003
crossref_primary_10_1002_adma_202416595
crossref_primary_10_1016_j_apsusc_2021_149024
crossref_primary_10_1063_5_0146081
crossref_primary_10_1016_j_commatsci_2021_110688
crossref_primary_10_1021_acs_nanolett_3c03787
crossref_primary_10_1063_5_0154934
crossref_primary_10_1088_1361_648X_acd906
crossref_primary_10_1021_acs_nanolett_2c02802
crossref_primary_10_1021_acsaelm_1c00855
crossref_primary_10_1039_C9CP06966F
crossref_primary_10_1002_ange_202015622
crossref_primary_10_1016_j_nanoen_2024_109551
crossref_primary_10_1063_5_0035745
crossref_primary_10_1038_s41524_023_01193_3
crossref_primary_10_1038_s41699_022_00298_5
crossref_primary_10_1002_anie_202316306
crossref_primary_10_1021_acsaelm_2c00419
crossref_primary_10_1021_acsnano_7b07436
crossref_primary_10_1021_acsami_0c13799
crossref_primary_10_1002_lpor_202200429
crossref_primary_10_1016_j_ijhydene_2024_10_315
crossref_primary_10_1103_PhysRevLett_133_126801
crossref_primary_10_1021_acs_nanolett_3c00047
crossref_primary_10_1103_PhysRevLett_123_067601
crossref_primary_10_1039_D3TC04392D
crossref_primary_10_1021_acsnano_2c11925
crossref_primary_10_1002_adfm_202205468
crossref_primary_10_1002_ijch_202100112
crossref_primary_10_1038_s41524_022_00728_4
crossref_primary_10_1016_j_apsusc_2022_154032
crossref_primary_10_1016_j_matdes_2023_111799
crossref_primary_10_1063_5_0116445
crossref_primary_10_1039_D1MA00643F
crossref_primary_10_1063_5_0035515
crossref_primary_10_1063_5_0056695
crossref_primary_10_1063_5_0158281
crossref_primary_10_1088_1361_648X_ada65a
crossref_primary_10_1021_acs_nanolett_4c05165
crossref_primary_10_1103_PhysRevB_108_L060501
crossref_primary_10_1002_ange_202424058
crossref_primary_10_1063_5_0021395
crossref_primary_10_1063_5_0197848
crossref_primary_10_1103_PhysRevB_102_054441
crossref_primary_10_1016_j_apcata_2022_118975
crossref_primary_10_1002_advs_202406242
crossref_primary_10_1039_D2CP01864K
crossref_primary_10_1038_s41524_024_01368_6
crossref_primary_10_1063_5_0172353
crossref_primary_10_1039_D2MH01362B
crossref_primary_10_1021_acsnano_3c05711
crossref_primary_10_1063_5_0067352
crossref_primary_10_1002_adfm_202304139
crossref_primary_10_1039_D1NH00402F
crossref_primary_10_1002_adfm_201901420
crossref_primary_10_1103_PhysRevApplied_10_024043
crossref_primary_10_1063_5_0131838
crossref_primary_10_1021_acs_chemrev_1c00735
crossref_primary_10_1109_TED_2024_3411576
crossref_primary_10_34133_2019_2763704
crossref_primary_10_1063_5_0035764
crossref_primary_10_1103_PhysRevB_103_075436
crossref_primary_10_1016_j_apsusc_2022_156201
crossref_primary_10_1063_5_0217753
crossref_primary_10_1063_5_0200098
crossref_primary_10_1063_5_0001795
crossref_primary_10_1021_acsami_1c21848
crossref_primary_10_1063_1_5038037
crossref_primary_10_1038_s41467_021_23882_7
crossref_primary_10_1103_PhysRevB_109_205409
crossref_primary_10_1103_PhysRevB_101_184426
crossref_primary_10_1007_s40843_019_1212_x
crossref_primary_10_1103_PhysRevB_110_144404
crossref_primary_10_1039_D4CP02985B
crossref_primary_10_1002_sus2_189
crossref_primary_10_1088_2631_7990_ad2e13
crossref_primary_10_1007_s13391_023_00439_y
crossref_primary_10_1039_D3MH01266B
crossref_primary_10_1038_s41524_024_01288_5
crossref_primary_10_1016_j_nxmate_2024_100368
crossref_primary_10_1021_acs_inorgchem_3c02057
crossref_primary_10_1038_s41699_020_00162_4
crossref_primary_10_1016_j_ssc_2023_115175
crossref_primary_10_1002_pssr_202100241
crossref_primary_10_1021_acsaelm_4c00136
crossref_primary_10_1038_s41467_020_19779_6
crossref_primary_10_1109_TED_2024_3514816
crossref_primary_10_1021_acsnano_0c03869
crossref_primary_10_1002_anie_202300302
crossref_primary_10_1016_j_rinp_2023_106831
crossref_primary_10_1021_acsnano_1c03836
crossref_primary_10_1103_PhysRevB_100_235445
crossref_primary_10_1021_acsnano_8b09058
crossref_primary_10_1002_adfm_202009999
crossref_primary_10_3390_solids5010004
crossref_primary_10_1103_PhysRevApplied_15_024057
crossref_primary_10_1063_5_0190609
crossref_primary_10_1103_PhysRevB_101_014105
crossref_primary_10_1039_D3MH02006A
crossref_primary_10_1016_j_jallcom_2024_178077
crossref_primary_10_1038_s41467_022_34104_z
crossref_primary_10_1039_D3CP04408D
crossref_primary_10_7498_aps_67_20180483
crossref_primary_10_1016_j_commatsci_2025_113823
crossref_primary_10_1038_s41467_022_33617_x
crossref_primary_10_1073_pnas_2115703118
crossref_primary_10_1021_acsami_0c19768
crossref_primary_10_1103_PhysRevB_105_094101
crossref_primary_10_1103_PhysRevB_110_L161408
crossref_primary_10_1103_PhysRevB_103_125414
crossref_primary_10_7498_aps_70_20211158
crossref_primary_10_1021_acsnano_2c09267
crossref_primary_10_1021_jacs_8b12102
crossref_primary_10_1016_j_jcat_2024_115699
crossref_primary_10_1021_acsanm_2c00990
crossref_primary_10_1002_smll_202407729
crossref_primary_10_1002_aelm_202101406
crossref_primary_10_1007_s11467_020_0987_z
crossref_primary_10_1007_s11432_019_1474_3
crossref_primary_10_1088_2053_1583_ac1ada
crossref_primary_10_1038_s41524_023_01005_8
crossref_primary_10_1002_advs_202404436
crossref_primary_10_1021_acs_chemrev_3c00618
crossref_primary_10_1021_acsanm_9b01745
crossref_primary_10_1002_adfm_202308129
crossref_primary_10_1038_s41524_023_00972_2
crossref_primary_10_1038_s41467_023_44642_9
crossref_primary_10_1039_D1TA02645C
crossref_primary_10_1016_j_apsusc_2021_150871
crossref_primary_10_1103_PhysRevMaterials_3_111401
crossref_primary_10_1103_PhysRevLett_128_067601
crossref_primary_10_1039_D0MH01863E
crossref_primary_10_1039_D4TC03457K
crossref_primary_10_1038_s41524_022_00953_x
crossref_primary_10_1002_adma_202305044
crossref_primary_10_1103_PhysRevB_103_125426
crossref_primary_10_1021_acsami_8b18582
crossref_primary_10_1103_PhysRevB_105_075402
crossref_primary_10_1016_j_seppur_2021_119355
crossref_primary_10_1103_PhysRevB_106_224108
crossref_primary_10_1063_5_0117355
crossref_primary_10_1016_j_mtcomm_2022_103409
crossref_primary_10_1088_1361_6463_adb9f9
crossref_primary_10_1088_1361_648X_ab87d0
crossref_primary_10_1002_adfm_202310438
crossref_primary_10_3390_coatings12020122
crossref_primary_10_1103_PhysRevB_110_085110
crossref_primary_10_1021_acs_chemmater_1c04245
crossref_primary_10_1039_C9NR02265A
crossref_primary_10_1016_j_mtcomm_2024_108891
crossref_primary_10_1021_acsnano_3c09250
crossref_primary_10_1016_j_cossms_2024_101178
crossref_primary_10_1088_1361_648X_ac145c
crossref_primary_10_1021_acs_nanolett_3c03160
crossref_primary_10_1016_j_mtphys_2024_101607
crossref_primary_10_1021_acs_nanolett_4c02041
crossref_primary_10_1039_D0TC03872E
crossref_primary_10_1016_j_apsusc_2023_157215
crossref_primary_10_1016_j_commatsci_2024_113575
crossref_primary_10_1039_D3CP02428H
crossref_primary_10_1088_1674_4926_45_5_051701
crossref_primary_10_1002_advs_202103443
crossref_primary_10_1103_PhysRevB_110_134437
crossref_primary_10_1002_adma_202108261
crossref_primary_10_1103_PhysRevB_100_155408
crossref_primary_10_1021_acsnano_3c11558
crossref_primary_10_1021_acsnano_3c00670
crossref_primary_10_1021_jacs_2c12780
crossref_primary_10_1063_5_0050979
crossref_primary_10_1103_PhysRevB_105_075408
crossref_primary_10_1126_science_aav4450
crossref_primary_10_1038_s41524_022_00724_8
crossref_primary_10_1039_C9CY00997C
crossref_primary_10_1088_1361_648X_ad7acc
crossref_primary_10_1002_aelm_201800475
crossref_primary_10_1103_PhysRevApplied_21_044033
crossref_primary_10_1016_j_matt_2022_10_014
crossref_primary_10_1002_admt_201900108
crossref_primary_10_1103_PhysRevB_102_184104
crossref_primary_10_1021_acsnano_2c07281
crossref_primary_10_1002_solr_202300589
crossref_primary_10_1002_aisy_202300009
crossref_primary_10_1002_adfm_202403537
crossref_primary_10_1016_j_surfin_2022_102608
crossref_primary_10_1038_s41699_025_00535_7
crossref_primary_10_1039_D0CP02375B
crossref_primary_10_1103_PhysRevB_102_195201
crossref_primary_10_1016_j_ijhydene_2024_06_345
crossref_primary_10_1021_acs_jpcc_3c05148
crossref_primary_10_1063_5_0130587
crossref_primary_10_1021_jacs_9b03201
crossref_primary_10_1021_acs_nanolett_3c04011
crossref_primary_10_1063_5_0188527
crossref_primary_10_1063_5_0096704
crossref_primary_10_1103_PhysRevB_109_125414
crossref_primary_10_1016_j_cjph_2025_01_015
crossref_primary_10_1021_acs_inorgchem_8b00778
crossref_primary_10_1063_5_0186587
crossref_primary_10_1039_D4TC04566A
crossref_primary_10_1002_adfm_202108014
crossref_primary_10_1021_acsnano_1c09136
crossref_primary_10_1038_s41524_022_00833_4
crossref_primary_10_1039_D3CP03098A
crossref_primary_10_1103_PhysRevB_105_134418
crossref_primary_10_1088_1361_648X_acf260
crossref_primary_10_1103_PhysRevB_110_064417
crossref_primary_10_1038_s41467_019_09669_x
crossref_primary_10_1016_j_chip_2023_100080
crossref_primary_10_1016_j_apsusc_2020_148066
crossref_primary_10_1103_PhysRevB_96_235420
crossref_primary_10_1103_PhysRevB_104_064443
crossref_primary_10_3390_molecules28072971
crossref_primary_10_1021_acs_jpcc_3c04287
crossref_primary_10_1103_PhysRevMaterials_6_103403
crossref_primary_10_1063_5_0191917
crossref_primary_10_1063_5_0012039
crossref_primary_10_1021_acsaelm_2c00476
crossref_primary_10_1063_5_0107584
crossref_primary_10_1039_D0NH00255K
crossref_primary_10_3389_fmats_2021_816821
crossref_primary_10_1002_adom_202200143
crossref_primary_10_1021_acsami_2c04032
crossref_primary_10_1103_PhysRevLett_123_037601
crossref_primary_10_1021_jacs_1c11953
crossref_primary_10_1038_s41699_024_00490_9
crossref_primary_10_1002_adfm_202307901
crossref_primary_10_1021_acsaelm_3c00671
crossref_primary_10_1063_5_0202871
crossref_primary_10_1002_adfm_202315522
crossref_primary_10_1016_j_vacuum_2023_111804
crossref_primary_10_7498_aps_69_20201433
crossref_primary_10_1002_adma_202103469
crossref_primary_10_7498_aps_69_20201432
crossref_primary_10_1016_j_apsusc_2022_155614
crossref_primary_10_1021_acsnano_1c00968
crossref_primary_10_1038_s41467_022_35490_0
crossref_primary_10_1039_D3CP02844E
crossref_primary_10_1039_D2NR00466F
crossref_primary_10_1063_1_5129447
crossref_primary_10_1039_C9CP06469A
crossref_primary_10_1142_S2010135X23450017
crossref_primary_10_1016_j_vacuum_2024_113275
crossref_primary_10_1021_acs_jpclett_8b03654
crossref_primary_10_1002_pssb_202400013
crossref_primary_10_1021_acs_jpclett_4c00524
crossref_primary_10_1103_PhysRevB_111_045404
crossref_primary_10_1002_adma_202007081
crossref_primary_10_1103_PhysRevB_107_035426
crossref_primary_10_1002_inf2_12341
crossref_primary_10_1103_PhysRevB_104_L060405
crossref_primary_10_35848_1347_4065_acdc72
crossref_primary_10_1007_s12274_022_4171_3
crossref_primary_10_7498_aps_69_20200354
crossref_primary_10_1038_s41565_024_01642_0
crossref_primary_10_1002_adma_202404628
crossref_primary_10_1088_1361_6463_ad865f
crossref_primary_10_1016_j_jmat_2024_01_010
crossref_primary_10_1039_D4TC00115J
crossref_primary_10_1103_PhysRevB_101_121407
crossref_primary_10_1103_PhysRevB_105_075423
crossref_primary_10_1002_smtd_202401770
crossref_primary_10_1016_j_physrep_2021_07_006
crossref_primary_10_7567_JJAP_57_0902A3
crossref_primary_10_1016_j_scib_2020_09_010
crossref_primary_10_1088_1674_1056_acbaef
crossref_primary_10_1039_D3NR06661D
crossref_primary_10_1038_s41524_021_00602_9
crossref_primary_10_1088_1361_6528_ab33d2
crossref_primary_10_1038_s41598_019_53986_6
crossref_primary_10_1016_j_mtcomm_2021_102452
crossref_primary_10_1146_annurev_matsci_080921_105501
crossref_primary_10_1007_s12274_020_2860_3
crossref_primary_10_1021_acs_nanolett_3c05024
crossref_primary_10_1038_s41565_022_01257_3
crossref_primary_10_1063_5_0079803
crossref_primary_10_1039_C9NH00208A
crossref_primary_10_1016_j_commatsci_2023_112400
crossref_primary_10_1039_D1CP00803J
crossref_primary_10_1039_D3TA01479G
crossref_primary_10_1021_acsami_3c01886
crossref_primary_10_1038_s41467_024_54205_1
crossref_primary_10_1002_smtd_202401549
crossref_primary_10_1038_s41467_024_51322_9
crossref_primary_10_1103_PhysRevB_108_054440
crossref_primary_10_1002_inf2_12121
crossref_primary_10_1021_acsami_0c20570
crossref_primary_10_1002_adfm_202004206
crossref_primary_10_1039_D2NR04710A
crossref_primary_10_1039_D2MH00334A
crossref_primary_10_1016_j_rinp_2023_106643
crossref_primary_10_1063_5_0107022
crossref_primary_10_1016_j_mssp_2024_108116
crossref_primary_10_1063_5_0176290
crossref_primary_10_1088_1674_4926_44_12_122101
crossref_primary_10_1088_2053_1591_ad3f78
crossref_primary_10_1103_PhysRevB_98_165134
crossref_primary_10_1016_j_apsusc_2021_150928
crossref_primary_10_1007_s12274_021_3919_5
crossref_primary_10_1103_PhysRevB_104_224102
crossref_primary_10_1103_PhysRevB_109_075417
crossref_primary_10_1038_s41524_023_01178_2
crossref_primary_10_1002_pssr_202200179
crossref_primary_10_1103_PhysRevMaterials_7_084412
crossref_primary_10_1088_1674_4926_40_6_061002
crossref_primary_10_1039_D3TC03410K
crossref_primary_10_1002_aelm_201800960
crossref_primary_10_1002_aelm_202101385
crossref_primary_10_1021_acs_nanolett_7b04852
crossref_primary_10_1038_s41467_023_38445_1
crossref_primary_10_1088_1361_6463_ad449e
crossref_primary_10_1103_PhysRevB_107_L241107
crossref_primary_10_1021_acs_chemrev_3c00129
crossref_primary_10_1021_acs_nanolett_4c01362
crossref_primary_10_1039_D3NR00522D
crossref_primary_10_1088_1361_648X_acef89
crossref_primary_10_1088_1361_648X_ab4ff7
crossref_primary_10_1016_j_colsurfa_2024_135611
crossref_primary_10_1021_acsomega_2c06828
crossref_primary_10_1103_PhysRevB_105_235303
crossref_primary_10_15407_ujpe67_9_671
crossref_primary_10_1002_adma_202106951
crossref_primary_10_1103_PhysRevB_109_085432
crossref_primary_10_1002_adma_202005098
crossref_primary_10_1103_PhysRevB_96_195415
crossref_primary_10_1063_5_0219253
crossref_primary_10_1002_smtd_202101583
crossref_primary_10_1021_acs_jpclett_9b01969
crossref_primary_10_1103_PhysRevB_110_115439
crossref_primary_10_1021_acsami_3c00590
crossref_primary_10_1039_D3MH00743J
crossref_primary_10_1021_acs_chemmater_9b03499
crossref_primary_10_1103_PhysRevLett_120_227601
crossref_primary_10_1016_j_rinp_2024_108080
crossref_primary_10_1063_5_0235723
crossref_primary_10_1103_PhysRevB_108_134112
crossref_primary_10_1021_acsami_4c08610
crossref_primary_10_1038_s41524_024_01429_w
crossref_primary_10_1021_acs_jpcc_2c09109
crossref_primary_10_1016_j_rinp_2023_106847
crossref_primary_10_1063_5_0072124
crossref_primary_10_1039_C8CP02793E
crossref_primary_10_1016_j_mattod_2018_01_031
crossref_primary_10_1016_j_comptc_2025_115195
crossref_primary_10_1002_anie_202015622
crossref_primary_10_1103_PhysRevMaterials_8_054005
crossref_primary_10_1063_1_5123296
crossref_primary_10_1021_acsnano_3c03593
crossref_primary_10_1002_adma_202400655
crossref_primary_10_1016_j_mser_2024_100873
crossref_primary_10_1016_j_scib_2020_04_014
crossref_primary_10_1021_acsnano_3c05771
crossref_primary_10_1039_D1TC02213J
crossref_primary_10_1016_j_physleta_2024_129960
crossref_primary_10_1038_s41563_022_01422_y
crossref_primary_10_1021_acs_jpclett_4c01693
crossref_primary_10_1103_PhysRevMaterials_3_054407
crossref_primary_10_1063_5_0032790
crossref_primary_10_1021_acs_nanolett_4c05071
crossref_primary_10_1039_D3CP05107B
crossref_primary_10_1103_PhysRevB_107_085411
crossref_primary_10_1103_PhysRevMaterials_5_094408
crossref_primary_10_1063_5_0220466
crossref_primary_10_1002_adfm_202421311
crossref_primary_10_1039_D0MH02029J
crossref_primary_10_1088_1361_6528_ad0c75
crossref_primary_10_1039_C9NR05404A
crossref_primary_10_1016_j_jallcom_2023_169962
crossref_primary_10_1063_5_0136862
crossref_primary_10_1016_j_scib_2020_04_019
crossref_primary_10_1038_s41467_024_49213_0
crossref_primary_10_1088_1361_6463_ad91c3
crossref_primary_10_1002_smll_202105599
crossref_primary_10_1063_5_0068971
crossref_primary_10_1039_D2MH00906D
crossref_primary_10_1103_PhysRevB_103_165420
crossref_primary_10_1002_advs_202001367
crossref_primary_10_1002_wcms_1496
crossref_primary_10_1038_s41467_019_10738_4
crossref_primary_10_1002_adma_202109621
crossref_primary_10_1021_acs_jpclett_3c02786
crossref_primary_10_1039_D2NR05344F
crossref_primary_10_1103_PhysRevApplied_11_024048
crossref_primary_10_1039_D1CP04233E
crossref_primary_10_1038_s41467_019_10693_0
crossref_primary_10_1021_acs_nanolett_3c03926
crossref_primary_10_1021_acs_jpclett_1c03251
crossref_primary_10_1039_C7RA11014F
crossref_primary_10_1088_1361_6463_ab5737
crossref_primary_10_1063_5_0168454
crossref_primary_10_1103_PhysRevB_111_125152
crossref_primary_10_1016_j_mattod_2020_10_030
crossref_primary_10_1002_adfm_202212917
crossref_primary_10_1039_C9NR01510H
crossref_primary_10_1021_acs_jpclett_3c01463
crossref_primary_10_1021_acs_chemrev_3c00170
crossref_primary_10_1021_acsnano_2c04017
crossref_primary_10_1063_5_0019555
crossref_primary_10_1002_pssb_201900198
crossref_primary_10_1063_5_0221773
crossref_primary_10_1360_TB_2021_1379
crossref_primary_10_1021_acs_jpclett_3c01202
crossref_primary_10_1002_adfm_202004609
crossref_primary_10_1002_adom_202201288
crossref_primary_10_1039_D1NR00369K
crossref_primary_10_1021_acsnano_3c03319
crossref_primary_10_1088_1361_648X_ab58f1
crossref_primary_10_1021_acsaelm_9b00699
crossref_primary_10_1021_acsami_4c07562
crossref_primary_10_1021_acs_nanolett_1c04803
crossref_primary_10_1016_j_jallcom_2021_159344
crossref_primary_10_1002_smll_202303026
crossref_primary_10_1002_adma_202302467
crossref_primary_10_3390_s23125413
crossref_primary_10_1103_PhysRevLett_120_207602
crossref_primary_10_1016_j_mtphys_2022_100803
crossref_primary_10_1021_acsanm_3c05953
crossref_primary_10_1002_adma_201908040
crossref_primary_10_1021_acs_jpcc_8b06575
crossref_primary_10_1021_acsnano_8b01810
crossref_primary_10_1021_acs_jpcc_2c00386
crossref_primary_10_1088_1361_648X_ab4c67
crossref_primary_10_1021_acs_jpcc_3c00339
crossref_primary_10_1063_5_0028079
crossref_primary_10_1109_JSEN_2023_3327382
crossref_primary_10_1088_1361_648X_ac8406
crossref_primary_10_1038_s41467_023_44298_5
crossref_primary_10_1039_D3RA04682F
crossref_primary_10_1002_aelm_202200210
crossref_primary_10_1103_PhysRevResearch_3_043011
crossref_primary_10_1016_j_cplett_2023_140430
crossref_primary_10_1103_PhysRevB_102_134416
crossref_primary_10_1039_D3CP01828H
crossref_primary_10_1088_1361_6463_abdb6b
crossref_primary_10_1088_1742_6596_1622_1_012027
crossref_primary_10_1021_acs_nanolett_2c02871
crossref_primary_10_1038_s41699_018_0063_5
crossref_primary_10_1002_aelm_202400528
crossref_primary_10_1063_5_0137508
crossref_primary_10_1103_PhysRevMaterials_5_084405
crossref_primary_10_1109_TED_2021_3059976
crossref_primary_10_1002_smll_202412761
crossref_primary_10_1021_acs_jpclett_2c03226
crossref_primary_10_1016_j_mtelec_2023_100080
crossref_primary_10_1103_PhysRevB_109_235426
crossref_primary_10_1088_1674_1056_ac7f8e
crossref_primary_10_1021_acs_jpclett_4c03643
crossref_primary_10_1088_1361_648X_acc561
crossref_primary_10_1103_PhysRevB_106_115403
crossref_primary_10_1039_D1MH00939G
crossref_primary_10_1039_D0TA09738A
crossref_primary_10_1039_C9CP06023E
crossref_primary_10_1039_D3NH00026E
crossref_primary_10_1016_j_ijhydene_2024_03_017
crossref_primary_10_1021_acsanm_1c01394
crossref_primary_10_1103_PhysRevB_97_144104
crossref_primary_10_1039_D0NR06054B
crossref_primary_10_1103_PhysRevB_105_125142
crossref_primary_10_1103_PhysRevB_108_155431
crossref_primary_10_1038_s41467_021_26200_3
crossref_primary_10_1039_D1NR06906C
crossref_primary_10_1002_advs_202205813
crossref_primary_10_1021_acs_nanolett_4c02625
crossref_primary_10_1039_D0NR06609E
crossref_primary_10_1038_s41467_023_37239_9
crossref_primary_10_1103_PhysRevB_105_195439
crossref_primary_10_1021_acsnano_4c06619
crossref_primary_10_1021_acsaelm_9b00658
crossref_primary_10_1016_j_surfin_2025_106088
crossref_primary_10_1021_acs_langmuir_3c02297
crossref_primary_10_1021_acs_nanolett_3c03970
crossref_primary_10_1063_5_0149503
crossref_primary_10_1002_smll_202205347
crossref_primary_10_35848_1347_4065_ab8bbf
crossref_primary_10_1002_aelm_202200665
crossref_primary_10_1021_acsami_9b19320
crossref_primary_10_1021_acs_jpclett_1c02782
crossref_primary_10_1103_PhysRevB_105_174404
crossref_primary_10_1103_PhysRevB_110_L060406
crossref_primary_10_1038_s41928_019_0338_7
crossref_primary_10_1088_0256_307X_40_4_047701
crossref_primary_10_1016_j_mtnano_2023_100304
crossref_primary_10_1088_1367_2630_ac17b9
crossref_primary_10_1039_C8NR04422H
crossref_primary_10_1039_D3CP04656G
crossref_primary_10_1088_1674_1056_ac0784
crossref_primary_10_1002_aelm_202200413
crossref_primary_10_1021_acsanm_3c02076
crossref_primary_10_3390_nano12173026
crossref_primary_10_1063_5_0014945
crossref_primary_10_1021_acs_jpclett_2c03270
crossref_primary_10_1103_PhysRevMaterials_6_034006
crossref_primary_10_1039_D3MH00256J
crossref_primary_10_1103_PhysRevB_105_115415
crossref_primary_10_1002_cphc_202400538
crossref_primary_10_1007_s11433_022_2056_1
crossref_primary_10_1002_smll_202412320
crossref_primary_10_1038_d41586_018_05807_5
crossref_primary_10_1021_acs_nanolett_2c00930
crossref_primary_10_1039_C9NR05282H
crossref_primary_10_1007_s11467_022_1241_7
crossref_primary_10_1039_D1NJ06167D
crossref_primary_10_1063_5_0218996
crossref_primary_10_1039_D3TC02841K
crossref_primary_10_1002_lpor_202400819
crossref_primary_10_3390_ma16083058
crossref_primary_10_1039_D3NH00154G
crossref_primary_10_1002_adfm_202306486
crossref_primary_10_1002_qute_202200169
crossref_primary_10_1039_D4CP01445F
crossref_primary_10_1039_D2NR04234G
crossref_primary_10_7498_aps_71_20211759
crossref_primary_10_1063_5_0255501
crossref_primary_10_1088_1361_648X_acb89f
crossref_primary_10_1103_PhysRevMaterials_6_104404
crossref_primary_10_1021_acsanm_4c04923
crossref_primary_10_1063_5_0181137
crossref_primary_10_1126_sciadv_aar7720
crossref_primary_10_1088_2053_1583_ad4611
crossref_primary_10_3390_ijms25126713
crossref_primary_10_1038_s41699_022_00297_6
crossref_primary_10_1021_acsami_3c07744
crossref_primary_10_1021_acs_jpcc_1c07141
crossref_primary_10_1039_D0TA00854K
crossref_primary_10_1002_advs_202200566
crossref_primary_10_1103_PhysRevB_106_195416
crossref_primary_10_1002_smm2_1020
crossref_primary_10_1063_5_0149661
crossref_primary_10_1063_5_0197542
crossref_primary_10_1360_TB_2023_0400
crossref_primary_10_1021_acsami_1c24801
crossref_primary_10_1088_2053_1583_aac479
crossref_primary_10_1063_5_0153917
crossref_primary_10_1021_acsaelm_1c00724
crossref_primary_10_1103_PhysRevB_108_014106
crossref_primary_10_1002_smll_202307346
crossref_primary_10_1103_PhysRevB_109_184106
crossref_primary_10_1038_s41524_023_00999_5
crossref_primary_10_1088_1674_1056_ab820f
crossref_primary_10_1063_5_0036302
crossref_primary_10_1063_5_0207639
crossref_primary_10_1088_1361_648X_ac885b
crossref_primary_10_1021_acsanm_3c01190
crossref_primary_10_3788_COL202422_013202
crossref_primary_10_1016_j_scib_2024_05_010
crossref_primary_10_1038_s41524_024_01369_5
crossref_primary_10_1002_advs_202410851
crossref_primary_10_1103_PhysRevApplied_19_024024
crossref_primary_10_1021_acs_nanolett_3c01247
crossref_primary_10_1103_PhysRevLett_125_047601
crossref_primary_10_1038_s41699_022_00309_5
crossref_primary_10_3389_fmats_2021_736057
crossref_primary_10_1038_s41524_024_01301_x
crossref_primary_10_1109_TED_2023_3269403
crossref_primary_10_1088_1361_648X_ac577d
crossref_primary_10_1002_adma_202109889
crossref_primary_10_1039_D0TC03712E
crossref_primary_10_1063_1_5100240
crossref_primary_10_1080_03067319_2023_2286314
crossref_primary_10_1021_acs_jpclett_7b01089
crossref_primary_10_1016_j_rinp_2024_107692
crossref_primary_10_1021_acs_nanolett_5c00612
crossref_primary_10_1039_D3CP04855A
crossref_primary_10_1039_D3CP01320K
crossref_primary_10_1039_D0SE01097A
crossref_primary_10_1002_anie_202424058
crossref_primary_10_3390_nano13091533
crossref_primary_10_1002_ange_202300302
crossref_primary_10_1021_jacs_3c10271
crossref_primary_10_1093_nsr_nwab164
crossref_primary_10_1021_acs_jpclett_1c01895
crossref_primary_10_1007_s40820_021_00784_3
crossref_primary_10_1103_PhysRevLett_133_206701
crossref_primary_10_1016_j_apsusc_2021_152311
crossref_primary_10_1016_j_mtcomm_2024_109475
crossref_primary_10_1002_adma_202416480
crossref_primary_10_1002_smtd_202300319
crossref_primary_10_1088_1674_1056_ad74e7
crossref_primary_10_1088_1361_6633_abf1d4
crossref_primary_10_1038_s41578_022_00484_3
crossref_primary_10_1103_PhysRevB_107_155427
crossref_primary_10_1002_adfm_202306682
crossref_primary_10_1088_1674_1056_ad08a4
crossref_primary_10_1016_j_apsusc_2021_149166
crossref_primary_10_1038_s41586_024_08156_8
crossref_primary_10_1088_1361_6463_ab1978
crossref_primary_10_1038_s41467_025_56139_8
crossref_primary_10_1103_PhysRevB_111_024101
crossref_primary_10_3390_nano13091553
crossref_primary_10_1103_PhysRevB_110_224111
crossref_primary_10_1021_acs_jpcc_4c01158
crossref_primary_10_1103_PhysRevB_103_L140104
crossref_primary_10_1002_pssr_202300479
crossref_primary_10_1002_advs_202303447
crossref_primary_10_1103_PhysRevApplied_22_044061
crossref_primary_10_3390_molecules28196858
crossref_primary_10_1080_14686996_2023_2180286
crossref_primary_10_1063_5_0166849
crossref_primary_10_1103_PhysRevB_104_075449
crossref_primary_10_1002_adfm_201808380
crossref_primary_10_1039_D2CP03196E
crossref_primary_10_1002_chem_201804360
crossref_primary_10_1002_brx2_24
crossref_primary_10_1080_23746149_2019_1688187
crossref_primary_10_1126_sciadv_ads8786
crossref_primary_10_1002_aelm_201900818
crossref_primary_10_1103_PhysRevApplied_22_054064
crossref_primary_10_1016_j_jallcom_2020_156270
crossref_primary_10_1103_PhysRevB_108_L140412
crossref_primary_10_1002_adfm_202008790
crossref_primary_10_1002_admi_202300081
crossref_primary_10_1039_D2MH00080F
crossref_primary_10_1088_1361_648X_ac4401
crossref_primary_10_1063_5_0155960
crossref_primary_10_1039_D1MH01556G
crossref_primary_10_1103_PhysRevB_110_125402
crossref_primary_10_1364_OME_9_000449
crossref_primary_10_1103_PhysRevB_105_165301
crossref_primary_10_1103_PhysRevB_105_165302
crossref_primary_10_1103_PhysRevB_110_205421
crossref_primary_10_1063_5_0189709
crossref_primary_10_1039_D4CP00863D
crossref_primary_10_1016_j_apsusc_2022_153942
crossref_primary_10_1021_acsnano_9b02764
crossref_primary_10_1002_ange_202316306
crossref_primary_10_1088_1742_6596_2964_1_012081
crossref_primary_10_1021_acsami_3c02680
crossref_primary_10_1021_acs_nanolett_4c05887
crossref_primary_10_1021_acs_nanolett_4c05644
crossref_primary_10_1103_PhysRevB_103_L201405
crossref_primary_10_1002_aelm_202400498
crossref_primary_10_1088_1674_4926_44_4_042101
crossref_primary_10_1039_D5TA00818B
crossref_primary_10_1039_D1MH00446H
crossref_primary_10_1016_j_matt_2022_05_021
crossref_primary_10_1088_1674_1056_ad1c59
crossref_primary_10_1016_j_physe_2019_113582
crossref_primary_10_1063_5_0249647
crossref_primary_10_1021_acsami_8b17341
crossref_primary_10_1016_j_fmre_2023_02_009
crossref_primary_10_1063_1_5040671
crossref_primary_10_1088_2632_2153_abd87c
crossref_primary_10_1103_PhysRevB_108_024305
crossref_primary_10_1016_j_jmmm_2025_172857
crossref_primary_10_1038_s41467_024_48218_z
crossref_primary_10_1039_D3DT00234A
crossref_primary_10_1007_s12274_020_2640_0
crossref_primary_10_1039_D2MA01079H
crossref_primary_10_1002_aelm_202300211
crossref_primary_10_1039_D4CP00558A
crossref_primary_10_1021_acs_inorgchem_8b01950
crossref_primary_10_1039_D2TC02721F
crossref_primary_10_1103_PhysRevLett_124_237601
crossref_primary_10_1016_j_apsusc_2022_156198
crossref_primary_10_1021_acsami_1c18949
crossref_primary_10_7498_aps_71_20220654
crossref_primary_10_1103_PhysRevLett_133_196801
crossref_primary_10_1103_PhysRevB_96_245136
crossref_primary_10_1109_TED_2024_3462378
crossref_primary_10_1007_s11432_023_4070_8
crossref_primary_10_1063_5_0179956
crossref_primary_10_1002_adts_202200022
crossref_primary_10_1088_0256_307X_38_7_077501
crossref_primary_10_1103_PhysRevB_102_235403
crossref_primary_10_1021_acs_jpcc_1c01800
crossref_primary_10_1016_j_vacuum_2020_109232
crossref_primary_10_1088_1674_1056_ad04c3
crossref_primary_10_1063_5_0036316
crossref_primary_10_1021_acsnano_1c01735
crossref_primary_10_1063_5_0166878
crossref_primary_10_1002_aelm_202300880
crossref_primary_10_1088_1361_6463_ad33f5
crossref_primary_10_1103_PhysRevB_108_104109
crossref_primary_10_1063_1_5097842
crossref_primary_10_1088_2053_1583_ac6191
crossref_primary_10_3390_cryst13060940
crossref_primary_10_1002_adfm_202412332
crossref_primary_10_1038_s41928_020_0441_9
crossref_primary_10_1103_PhysRevB_105_205427
crossref_primary_10_1109_TDMR_2022_3153961
crossref_primary_10_1016_j_commatsci_2024_113463
crossref_primary_10_1021_acsami_2c18812
crossref_primary_10_1063_5_0160084
crossref_primary_10_1063_5_0226732
crossref_primary_10_1088_1361_648X_ab1d0f
crossref_primary_10_1002_smll_202405459
crossref_primary_10_1002_wcms_1409
crossref_primary_10_1039_D3CP01523H
crossref_primary_10_1038_s41598_019_50293_y
crossref_primary_10_1007_s40843_021_1920_9
crossref_primary_10_1021_acsami_4c21092
crossref_primary_10_1016_j_apsusc_2022_156170
crossref_primary_10_1021_acs_nanolett_8b00314
crossref_primary_10_1002_advs_201801572
crossref_primary_10_1021_acs_nanolett_2c04289
crossref_primary_10_1002_aelm_202300642
crossref_primary_10_1063_5_0039842
crossref_primary_10_1002_adfm_202301817
crossref_primary_10_1103_PhysRevB_107_045125
crossref_primary_10_1103_PhysRevMaterials_8_084407
crossref_primary_10_1016_j_ssc_2022_114733
crossref_primary_10_1021_acs_chemmater_2c01169
crossref_primary_10_1103_PhysRevB_102_245417
crossref_primary_10_1016_j_mser_2021_100622
crossref_primary_10_1103_PhysRevResearch_3_L012026
crossref_primary_10_1016_j_jpcs_2022_110887
crossref_primary_10_1002_pssr_202400057
crossref_primary_10_1016_j_physb_2025_416999
crossref_primary_10_1039_D0TC00003E
crossref_primary_10_1088_2053_1583_aaf946
crossref_primary_10_1021_acsaelm_4c00205
crossref_primary_10_1021_acs_jpclett_2c00618
crossref_primary_10_1002_adom_202200428
crossref_primary_10_1103_PhysRevB_104_054107
crossref_primary_10_1016_j_commatsci_2023_112311
crossref_primary_10_1016_j_mtquan_2024_100012
crossref_primary_10_1103_PhysRevB_107_115427
crossref_primary_10_1021_acsnano_8b02152
crossref_primary_10_1016_j_vacuum_2024_113144
crossref_primary_10_1016_j_physe_2021_114783
crossref_primary_10_1103_PhysRevB_101_235448
crossref_primary_10_1103_PhysRevB_111_L081407
crossref_primary_10_1038_s41699_025_00531_x
crossref_primary_10_1088_1674_1056_aba605
crossref_primary_10_1016_j_surfin_2024_104330
crossref_primary_10_1039_C7NR09006D
crossref_primary_10_1103_PhysRevLett_134_016801
crossref_primary_10_1021_acsaelm_9b00146
crossref_primary_10_1007_s40820_020_00584_1
crossref_primary_10_1016_j_commatsci_2021_110819
crossref_primary_10_1016_j_cap_2024_01_003
crossref_primary_10_1063_5_0085128
crossref_primary_10_1063_5_0029646
crossref_primary_10_1039_D0CP00512F
crossref_primary_10_1021_acs_nanolett_2c00130
crossref_primary_10_1103_PhysRevB_110_094423
crossref_primary_10_1063_5_0256260
crossref_primary_10_1016_j_surfin_2024_104597
crossref_primary_10_1002_adma_201901300
crossref_primary_10_1021_acs_nanolett_0c03452
crossref_primary_10_1038_s41467_025_57138_5
crossref_primary_10_1002_adfm_202408625
crossref_primary_10_1063_5_0043731
crossref_primary_10_1088_0256_307X_41_5_057501
crossref_primary_10_1103_PhysRevApplied_20_034035
crossref_primary_10_1039_D1NA00805F
crossref_primary_10_1021_acsnano_3c08747
crossref_primary_10_7498_aps_73_20231246
crossref_primary_10_1039_D0TC00143K
crossref_primary_10_1039_D3CP02616G
crossref_primary_10_1103_PhysRevB_109_155418
crossref_primary_10_1103_PhysRevMaterials_8_114001
crossref_primary_10_1021_acs_chemrev_3c00459
crossref_primary_10_1016_j_nanoen_2018_07_010
crossref_primary_10_1021_acsaelm_4c01171
crossref_primary_10_1021_acs_nanolett_0c04531
crossref_primary_10_1103_PhysRevApplied_22_064016
crossref_primary_10_1021_acs_nanolett_0c02357
crossref_primary_10_1063_5_0214718
crossref_primary_10_1002_inf2_12005
crossref_primary_10_1016_j_mtcomm_2024_109857
crossref_primary_10_1103_PhysRevB_108_134430
crossref_primary_10_1021_acs_chemrev_0c00933
crossref_primary_10_1021_acsami_2c03270
crossref_primary_10_1038_s41524_022_00740_8
crossref_primary_10_1021_acssensors_2c02365
crossref_primary_10_1103_PhysRevB_110_094408
crossref_primary_10_1039_D3NR03166G
crossref_primary_10_1007_s12274_022_4206_9
crossref_primary_10_1103_PhysRevB_110_094409
crossref_primary_10_1039_C8CP07444E
crossref_primary_10_1016_j_commatsci_2023_112599
crossref_primary_10_1021_acsami_0c04173
crossref_primary_10_1088_1361_6528_ab519b
crossref_primary_10_1002_aelm_201900981
crossref_primary_10_1103_RevModPhys_93_011001
crossref_primary_10_7498_aps_71_20220815
crossref_primary_10_1063_5_0156566
crossref_primary_10_1002_adfm_202106206
crossref_primary_10_1039_D3CP01942J
crossref_primary_10_1002_adma_202400332
crossref_primary_10_1088_1361_648X_ad1301
crossref_primary_10_1063_5_0243242
crossref_primary_10_1088_1361_648X_acdd3e
crossref_primary_10_1038_s41467_024_46891_8
crossref_primary_10_1063_5_0188388
crossref_primary_10_1021_acs_nanolett_4c00141
crossref_primary_10_1103_PhysRevMaterials_6_L101402
crossref_primary_10_1002_aelm_201900975
crossref_primary_10_1002_adfm_202106459
crossref_primary_10_1016_j_ijhydene_2022_11_113
crossref_primary_10_1021_acs_jpclett_0c02400
crossref_primary_10_1021_acs_jpcc_3c05991
crossref_primary_10_1002_adfm_201803738
crossref_primary_10_1021_acs_jpclett_5c00082
crossref_primary_10_1038_s41467_023_44453_y
crossref_primary_10_1039_D4TA07884E
crossref_primary_10_1109_TED_2022_3184621
crossref_primary_10_3390_nano15030163
crossref_primary_10_1016_j_mtchem_2023_101626
crossref_primary_10_1088_1361_648X_aad986
crossref_primary_10_1016_j_apsusc_2022_153505
crossref_primary_10_1103_PhysRevB_108_125302
crossref_primary_10_1039_D2NA00265E
crossref_primary_10_1038_s41699_021_00261_w
crossref_primary_10_1039_D1NR03886A
crossref_primary_10_1016_j_apsusc_2024_161921
crossref_primary_10_1039_D0TC02366C
crossref_primary_10_1103_PhysRevB_111_094516
crossref_primary_10_1088_1361_648X_ad154e
crossref_primary_10_1002_adfm_202205933
crossref_primary_10_1016_j_optmat_2025_116742
crossref_primary_10_1039_D3CP01616A
crossref_primary_10_1002_adts_202100302
crossref_primary_10_1039_D1NR06051A
crossref_primary_10_1021_acsanm_0c02513
crossref_primary_10_1002_wcms_1365
crossref_primary_10_1021_acs_nanolett_8b02561
crossref_primary_10_1021_acs_nanolett_9b01907
crossref_primary_10_1002_adma_202210854
crossref_primary_10_1038_s41699_024_00523_3
crossref_primary_10_1038_s41578_021_00304_0
crossref_primary_10_54227_mlab_20220006
crossref_primary_10_1039_D4NH00405A
crossref_primary_10_1039_D4CP02278E
crossref_primary_10_1002_smll_202307946
crossref_primary_10_1016_j_jpowsour_2023_233439
crossref_primary_10_1002_adfm_202316583
crossref_primary_10_1088_1361_648X_ad2884
crossref_primary_10_1063_5_0135660
crossref_primary_10_1155_2019_2763704
crossref_primary_10_1007_s11467_022_1244_4
crossref_primary_10_1016_j_optlastec_2022_107851
crossref_primary_10_1039_D2CP05581C
crossref_primary_10_1016_j_scib_2021_06_020
crossref_primary_10_1039_D1NR02641K
crossref_primary_10_1088_1674_1056_ac744e
crossref_primary_10_1039_D4NR01441C
crossref_primary_10_1038_s41467_021_25426_5
crossref_primary_10_1039_D0CP01797C
crossref_primary_10_1038_s41524_022_00773_z
crossref_primary_10_1103_PhysRevB_106_125118
crossref_primary_10_1039_C9NR01656B
crossref_primary_10_1039_D2TC03343G
crossref_primary_10_1103_PhysRevB_108_L081116
crossref_primary_10_1021_acs_jpclett_3c03527
crossref_primary_10_1002_adfm_202210404
crossref_primary_10_1039_D1RA09458K
crossref_primary_10_1021_acs_langmuir_4c02588
crossref_primary_10_1007_s11467_023_1369_0
crossref_primary_10_1039_D4TC00631C
crossref_primary_10_1021_acs_jpclett_0c03136
crossref_primary_10_1021_acs_jpclett_0c03138
crossref_primary_10_1063_1_5053426
crossref_primary_10_1016_j_physe_2022_115501
crossref_primary_10_1021_acs_jpcc_8b06247
crossref_primary_10_1002_aelm_202400603
crossref_primary_10_1039_D3CP03929C
crossref_primary_10_1103_PhysRevB_110_014102
crossref_primary_10_1063_5_0079535
crossref_primary_10_1039_D2CP01492K
crossref_primary_10_1002_adma_201907244
crossref_primary_10_1002_smll_202408375
crossref_primary_10_1016_j_cej_2022_139841
crossref_primary_10_1016_j_jallcom_2022_165197
crossref_primary_10_1038_s41598_023_46514_0
crossref_primary_10_1103_PhysRevB_97_075429
crossref_primary_10_1103_PhysRevB_110_045435
crossref_primary_10_1039_D2NH00509C
crossref_primary_10_1021_acsaem_2c01274
crossref_primary_10_1016_j_radphyschem_2020_108969
crossref_primary_10_1039_D4MH01087F
crossref_primary_10_1002_adma_202301472
crossref_primary_10_1021_acs_nanolett_2c00564
crossref_primary_10_1063_5_0180680
crossref_primary_10_1002_advs_202413808
crossref_primary_10_1038_s41524_024_01237_2
crossref_primary_10_1021_acs_nanolett_7b04797
crossref_primary_10_1016_j_physe_2023_115814
crossref_primary_10_3390_nano15020109
crossref_primary_10_1002_adfm_201808606
crossref_primary_10_1103_PhysRevLett_124_067602
crossref_primary_10_1126_science_abm5734
crossref_primary_10_1021_acsami_1c19062
crossref_primary_10_1039_D1NR06383A
crossref_primary_10_1088_2053_1583_ac94e0
crossref_primary_10_1103_PhysRevB_103_214114
crossref_primary_10_1007_s12274_021_3833_x
crossref_primary_10_1016_j_surfin_2025_105901
crossref_primary_10_1002_aelm_202200343
crossref_primary_10_1021_acsaelm_3c00919
crossref_primary_10_1063_5_0157258
crossref_primary_10_1103_PhysRevB_110_024115
crossref_primary_10_1021_acs_jpcc_0c02498
crossref_primary_10_1016_j_apsusc_2024_161785
crossref_primary_10_1007_s11433_022_2055_8
crossref_primary_10_1039_D0TA07981B
crossref_primary_10_1038_s41699_022_00305_9
crossref_primary_10_1021_acs_jpclett_3c02255
crossref_primary_10_1021_acs_jpcc_1c03548
crossref_primary_10_1021_acs_jpcc_2c01352
crossref_primary_10_1103_PhysRevB_111_104111
crossref_primary_10_1063_5_0051394
crossref_primary_10_1103_PhysRevLett_120_147601
crossref_primary_10_1103_PhysRevB_110_035419
crossref_primary_10_1038_s41467_022_29495_y
crossref_primary_10_1039_C8NR08270G
crossref_primary_10_1039_D3CP01590D
crossref_primary_10_1021_acsanm_3c03646
crossref_primary_10_1039_D1CP03391C
crossref_primary_10_3389_fphy_2020_587419
crossref_primary_10_1007_s11432_022_3617_2
crossref_primary_10_1039_C8CS00255J
crossref_primary_10_1063_5_0173960
crossref_primary_10_1016_j_physe_2023_115836
crossref_primary_10_1021_acsami_4c06177
crossref_primary_10_1039_D2TC04742J
crossref_primary_10_1103_PhysRevB_106_L140505
crossref_primary_10_1002_adma_202108826
crossref_primary_10_1039_D3TA07014J
crossref_primary_10_1007_s12274_023_6021_3
crossref_primary_10_1002_adfm_202313010
crossref_primary_10_1038_s41563_024_02082_w
crossref_primary_10_2139_ssrn_4121597
crossref_primary_10_1016_j_physleta_2023_128699
crossref_primary_10_1021_acsanm_3c05854
crossref_primary_10_1016_j_physb_2025_417172
crossref_primary_10_1109_TNS_2021_3055615
crossref_primary_10_1088_1361_648X_ab8986
crossref_primary_10_1103_PhysRevB_104_174107
crossref_primary_10_1002_apxr_202200096
crossref_primary_10_1002_aenm_202201199
crossref_primary_10_1039_C8MH00082D
crossref_primary_10_1007_s12274_021_3415_6
crossref_primary_10_1063_5_0222926
crossref_primary_10_1021_acsami_0c09247
crossref_primary_10_1016_j_nanoen_2020_104530
crossref_primary_10_1016_j_jcis_2021_03_121
crossref_primary_10_1038_s41524_021_00643_0
crossref_primary_10_1021_acs_nanolett_7b03020
crossref_primary_10_1103_PhysRevApplied_20_064011
crossref_primary_10_1016_j_jcrysgro_2019_125471
crossref_primary_10_1016_j_commatsci_2023_112724
crossref_primary_10_1016_j_apsusc_2023_158084
crossref_primary_10_1021_acs_jpclett_4c00029
crossref_primary_10_1103_PhysRevB_108_085408
crossref_primary_10_1016_j_mtcomm_2023_106400
crossref_primary_10_1021_jacs_2c08827
crossref_primary_10_1016_j_mtchem_2022_100850
crossref_primary_10_1039_D4NR05317F
crossref_primary_10_1103_PhysRevB_105_104105
Cites_doi 10.1063/1.2336999
10.1103/RevModPhys.77.1083
10.1103/PhysRev.65.117
10.1103/PhysRevLett.77.3865
10.1021/cr300263a
10.1038/nature01501
10.1126/science.1092508
10.1126/science.aad8609
10.1103/PhysRevB.59.1758
10.1021/acs.jpclett.5b01356
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.47.1651
10.1038/nature12385
10.1002/pssa.2210060134
10.1063/1.3382344
10.1103/PhysRevB.40.3616
10.1021/nn405037s
10.1021/ja406351u
10.1063/1.4792313
10.1038/nphys2942
10.1143/JJAP.37.4264
10.1126/science.aaa6442
10.1038/nature08105
10.1126/science.1098252
10.1038/358136a0
10.1103/PhysRevB.50.17953
10.1103/PhysRevLett.112.157601
10.1126/science.1129564
10.1143/JPSJ.21.1848
10.1107/S0021889879012863
10.1021/nl400888p
10.1143/JPSJ.12.312
10.1063/1.2404663
10.1146/annurev-matsci-070214-021141
10.1126/science.1256815
10.1063/1.1329672
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Nature Publishing Group Apr 2017
Copyright © 2017, The Author(s) 2017 The Author(s)
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Nature Publishing Group Apr 2017
– notice: Copyright © 2017, The Author(s) 2017 The Author(s)
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/ncomms14956
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_6f89bf6113254d0d8ec25239fe110eee
PMC5385629
1489368
4321504841
10_1038_ncomms14956
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
AAADF
AAPBV
AAYJO
ADQMX
AEDAW
AFGXO
AFNRJ
OIOZB
OTOTI
ZA5
5PM
ID FETCH-LOGICAL-c512t-f7c9689ec1a314986ee6e2a24a28f9effab59d45408cc34356c385fe3c4fa7633
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:32:03 EDT 2025
Thu Aug 21 14:05:34 EDT 2025
Wed Nov 29 06:12:00 EST 2023
Fri Sep 05 09:48:25 EDT 2025
Wed Aug 13 09:42:51 EDT 2025
Tue Jul 01 02:31:39 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
Fri Feb 21 02:39:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c512t-f7c9689ec1a314986ee6e2a24a28f9effab59d45408cc34356c385fe3c4fa7633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
These authors contributed equally to this work.
ORCID 0000-0003-2082-857X
000000032082857X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/ncomms14956
PMID 28387225
PQID 1884860304
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_6f89bf6113254d0d8ec25239fe110eee
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5385629
osti_scitechconnect_1489368
proquest_miscellaneous_1885942427
proquest_journals_1884860304
crossref_primary_10_1038_ncomms14956
crossref_citationtrail_10_1038_ncomms14956
springer_journals_10_1038_ncomms14956
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-07
PublicationDateYYYYMMDD 2017-04-07
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-07
  day: 07
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Popović, Tonejc, Gržeta-Plenković, Čelustka, Trojko (CR23) 1979; 12
Onsager (CR13) 1944; 65
Ahn, Rabe, Triscone (CR4) 2004; 303
Osamura, Murakami, Tomiie (CR17) 1966; 21
Jacobs-Gedrim (CR20) 2014; 8
Scott (CR2) 2007; 315
Qian, Liu, Fu, Li (CR10) 2014; 346
Dawber, Rabe, Scott (CR5) 2005; 77
Popović, Čelustka, Bidjin (CR22) 1971; 6
Kresse, Joubert (CR31) 1999; 59
Krukau, Vydrov, Izmaylov, Scuseria (CR33) 2006; 125
King-Smith, Vanderbilt (CR35) 1993; 47
Methfessel, Paxton (CR34) 1989; 40
Henkelman, Uberuaga, Jónsson (CR36) 2000; 113
Xu, Liang, Shi, Chen (CR7) 2013; 113
Zhang (CR28) 2009; 459
Rasmussen, Teklemichael, Mafi, Gu, McCluskey (CR24) 2013; 102
Cohen (CR27) 1992; 358
Shirodkar, Waghmare (CR12) 2014; 112
Lee (CR16) 2015; 349
Perdew, Burke, Ernzerhof (CR32) 1996; 77
CR3
Fong (CR15) 2004; 304
Blöchl (CR30) 1994; 50
Setter (CR1) 2006; 100
Miyazawa, Sugaike (CR25) 1957; 12
Tao, Gu (CR19) 2013; 13
Lin (CR21) 2013; 135
Debbichi, Eriksson, Lebègue (CR26) 2015; 6
Rao, Maitra (CR6) 2015; 45
Grimme, Antony, Ehrlich, Krieg (CR37) 2010; 132
Ye, Soeda, Nakamura, Nittono (CR18) 1998; 37
Kresse, Furthmüller (CR29) 1996; 54
Junquera, Ghosez (CR14) 2003; 422
Xu, Yao, Xiao, Heinz (CR9) 2014; 10
Geim, Grigorieva (CR8) 2013; 499
Chang (CR11) 2016; 353
JF Scott (BFncomms14956_CR2) 2007; 315
G Henkelman (BFncomms14956_CR36) 2000; 113
X Xu (BFncomms14956_CR9) 2014; 10
AV Krukau (BFncomms14956_CR33) 2006; 125
M Dawber (BFncomms14956_CR5) 2005; 77
S Grimme (BFncomms14956_CR37) 2010; 132
G Kresse (BFncomms14956_CR31) 1999; 59
DD Fong (BFncomms14956_CR15) 2004; 304
AM Rasmussen (BFncomms14956_CR24) 2013; 102
PE Blöchl (BFncomms14956_CR30) 1994; 50
N Setter (BFncomms14956_CR1) 2006; 100
RD King-Smith (BFncomms14956_CR35) 1993; 47
S Popović (BFncomms14956_CR22) 1971; 6
AK Geim (BFncomms14956_CR8) 2013; 499
M Methfessel (BFncomms14956_CR34) 1989; 40
M Lin (BFncomms14956_CR21) 2013; 135
Y Zhang (BFncomms14956_CR28) 2009; 459
BFncomms14956_CR3
X Tao (BFncomms14956_CR19) 2013; 13
J Junquera (BFncomms14956_CR14) 2003; 422
JP Perdew (BFncomms14956_CR32) 1996; 77
L Onsager (BFncomms14956_CR13) 1944; 65
M Xu (BFncomms14956_CR7) 2013; 113
L Debbichi (BFncomms14956_CR26) 2015; 6
CNR Rao (BFncomms14956_CR6) 2015; 45
H Miyazawa (BFncomms14956_CR25) 1957; 12
CH Ahn (BFncomms14956_CR4) 2004; 303
K Chang (BFncomms14956_CR11) 2016; 353
J Ye (BFncomms14956_CR18) 1998; 37
SN Shirodkar (BFncomms14956_CR12) 2014; 112
G Kresse (BFncomms14956_CR29) 1996; 54
S Popović (BFncomms14956_CR23) 1979; 12
X Qian (BFncomms14956_CR10) 2014; 346
D Lee (BFncomms14956_CR16) 2015; 349
RB Jacobs-Gedrim (BFncomms14956_CR20) 2014; 8
K Osamura (BFncomms14956_CR17) 1966; 21
RE Cohen (BFncomms14956_CR27) 1992; 358
References_xml – volume: 100
  start-page: 051606
  year: 2006
  ident: CR1
  article-title: Ferroelectric thin films: review of materials, properties, and applications
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2336999
– volume: 77
  start-page: 1083
  year: 2005
  end-page: 1130
  ident: CR5
  article-title: Physics of thin-film ferroelectric oxides
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.1083
– volume: 65
  start-page: 117
  year: 1944
  end-page: 149
  ident: CR13
  article-title: Crystal statistics. I. A two-dimensional model with an order-disorder transition
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.65.117
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR32
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 113
  start-page: 3766
  year: 2013
  end-page: 3798
  ident: CR7
  article-title: Graphene-like two-dimensional materials
  publication-title: Chem. Rev.
  doi: 10.1021/cr300263a
– volume: 422
  start-page: 506
  year: 2003
  end-page: 509
  ident: CR14
  article-title: Critical thickness for ferroelectricity in perovskite ultrathin films
  publication-title: Nature
  doi: 10.1038/nature01501
– volume: 303
  start-page: 488
  year: 2004
  end-page: 491
  ident: CR4
  article-title: Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures
  publication-title: Science
  doi: 10.1126/science.1092508
– volume: 353
  start-page: 274
  year: 2016
  end-page: 278
  ident: CR11
  article-title: Discovery of robust in-plane ferroelectricity in atomic-thick SnTe
  publication-title: Science
  doi: 10.1126/science.aad8609
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR31
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 6
  start-page: 3098
  year: 2015
  end-page: 3103
  ident: CR26
  article-title: Two-dimensional Indium Selenides compounds: an study
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01356
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR29
  article-title: Efficient iterative schemes for total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 47
  start-page: 1651
  year: 1993
  end-page: 1654
  ident: CR35
  article-title: Theory of polarization of crystalline solids
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.1651
– volume: 499
  start-page: 419
  year: 2013
  end-page: 425
  ident: CR8
  article-title: Van der Waals heterostructures
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 6
  start-page: 301
  year: 1971
  end-page: 304
  ident: CR22
  article-title: X-ray diffraction measurement of lattice parameters of In Se
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.2210060134
– volume: 132
  start-page: 154104
  year: 2010
  ident: CR37
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 40
  start-page: 3616
  year: 1989
  end-page: 3621
  ident: CR34
  article-title: High-precision sampling for Brillouin-zone integration in metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.40.3616
– volume: 8
  start-page: 514
  year: 2014
  end-page: 521
  ident: CR20
  article-title: Extraordinary photoresponse in two-dimensional In Se nanosheets
  publication-title: ACS Nano
  doi: 10.1021/nn405037s
– volume: 135
  start-page: 13274
  year: 2013
  end-page: 13277
  ident: CR21
  article-title: Controlled growth of atomically thin In Se flakes by van der Waals epitaxy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja406351u
– volume: 102
  start-page: 062105
  year: 2013
  ident: CR24
  article-title: Pressure-induced phase transformation of In Se
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4792313
– volume: 10
  start-page: 343
  year: 2014
  end-page: 350
  ident: CR9
  article-title: Spin and pseudospins in layered transition metal dichalcogenides
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2942
– volume: 37
  start-page: 4264
  year: 1998
  end-page: 4271
  ident: CR18
  article-title: Crystal structures and phase transformation in In Se compound semiconductor
  publication-title: Jpn J. Appl. Phys.
  doi: 10.1143/JJAP.37.4264
– volume: 349
  start-page: 1314
  year: 2015
  end-page: 1317
  ident: CR16
  article-title: Emergence of room-temperature ferroelectricity at reduced dimensions
  publication-title: Science
  doi: 10.1126/science.aaa6442
– volume: 459
  start-page: 820
  year: 2009
  end-page: 823
  ident: CR28
  article-title: Direct observation of a widely tunable bandgap in bilayer graphene
  publication-title: Nature
  doi: 10.1038/nature08105
– volume: 304
  start-page: 1650
  year: 2004
  end-page: 1653
  ident: CR15
  article-title: Ferroelectricity in ultrathin perovskite films
  publication-title: Science
  doi: 10.1126/science.1098252
– volume: 358
  start-page: 136
  year: 1992
  end-page: 138
  ident: CR27
  article-title: Origin of ferroelectricity in perovskite oxides
  publication-title: Nature
  doi: 10.1038/358136a0
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR30
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 112
  start-page: 157601
  year: 2014
  ident: CR12
  article-title: Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.157601
– ident: CR3
– volume: 315
  start-page: 954
  year: 2007
  end-page: 959
  ident: CR2
  article-title: Applications of modern ferroelectrics
  publication-title: Science
  doi: 10.1126/science.1129564
– volume: 21
  start-page: 1848
  year: 1966
  ident: CR17
  article-title: Crystal structures of - and -indium selenide, In Se
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.21.1848
– volume: 12
  start-page: 416
  year: 1979
  end-page: 420
  ident: CR23
  article-title: Revised and new crystal data for Indium Selenides
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889879012863
– volume: 13
  start-page: 3501
  year: 2013
  end-page: 3505
  ident: CR19
  article-title: Crystalline−crystalline phase transformation in two-dimensional In Se thin layers
  publication-title: Nano Lett.
  doi: 10.1021/nl400888p
– volume: 12
  start-page: 312
  year: 1957
  ident: CR25
  article-title: Phase transition of In Se
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.12.312
– volume: 125
  start-page: 224106
  year: 2006
  ident: CR33
  article-title: Influence of the exchange screening parameter on the performance of screened hybrid functionals
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2404663
– volume: 45
  start-page: 29
  year: 2015
  end-page: 62
  ident: CR6
  article-title: Inorganic graphene analogs
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070214-021141
– volume: 346
  start-page: 1344
  year: 2014
  end-page: 1347
  ident: CR10
  article-title: Quantum spin Hall effect in two-dimensional transition metal dichalcogenides
  publication-title: Science
  doi: 10.1126/science.1256815
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: CR36
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 37
  start-page: 4264
  year: 1998
  ident: BFncomms14956_CR18
  publication-title: Jpn J. Appl. Phys.
  doi: 10.1143/JJAP.37.4264
– volume: 346
  start-page: 1344
  year: 2014
  ident: BFncomms14956_CR10
  publication-title: Science
  doi: 10.1126/science.1256815
– volume: 422
  start-page: 506
  year: 2003
  ident: BFncomms14956_CR14
  publication-title: Nature
  doi: 10.1038/nature01501
– volume: 349
  start-page: 1314
  year: 2015
  ident: BFncomms14956_CR16
  publication-title: Science
  doi: 10.1126/science.aaa6442
– volume: 459
  start-page: 820
  year: 2009
  ident: BFncomms14956_CR28
  publication-title: Nature
  doi: 10.1038/nature08105
– volume: 65
  start-page: 117
  year: 1944
  ident: BFncomms14956_CR13
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.65.117
– volume: 12
  start-page: 312
  year: 1957
  ident: BFncomms14956_CR25
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.12.312
– volume: 50
  start-page: 17953
  year: 1994
  ident: BFncomms14956_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 12
  start-page: 416
  year: 1979
  ident: BFncomms14956_CR23
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889879012863
– volume: 10
  start-page: 343
  year: 2014
  ident: BFncomms14956_CR9
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2942
– volume: 54
  start-page: 11169
  year: 1996
  ident: BFncomms14956_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 102
  start-page: 062105
  year: 2013
  ident: BFncomms14956_CR24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4792313
– volume: 100
  start-page: 051606
  year: 2006
  ident: BFncomms14956_CR1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2336999
– volume: 8
  start-page: 514
  year: 2014
  ident: BFncomms14956_CR20
  publication-title: ACS Nano
  doi: 10.1021/nn405037s
– volume: 353
  start-page: 274
  year: 2016
  ident: BFncomms14956_CR11
  publication-title: Science
  doi: 10.1126/science.aad8609
– volume: 135
  start-page: 13274
  year: 2013
  ident: BFncomms14956_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja406351u
– volume: 303
  start-page: 488
  year: 2004
  ident: BFncomms14956_CR4
  publication-title: Science
  doi: 10.1126/science.1092508
– volume: 112
  start-page: 157601
  year: 2014
  ident: BFncomms14956_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.157601
– volume: 21
  start-page: 1848
  year: 1966
  ident: BFncomms14956_CR17
  publication-title: J. Phys. Soc. Jpn
  doi: 10.1143/JPSJ.21.1848
– volume: 125
  start-page: 224106
  year: 2006
  ident: BFncomms14956_CR33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2404663
– volume: 6
  start-page: 3098
  year: 2015
  ident: BFncomms14956_CR26
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01356
– volume: 77
  start-page: 3865
  year: 1996
  ident: BFncomms14956_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 113
  start-page: 9901
  year: 2000
  ident: BFncomms14956_CR36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 499
  start-page: 419
  year: 2013
  ident: BFncomms14956_CR8
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 45
  start-page: 29
  year: 2015
  ident: BFncomms14956_CR6
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070214-021141
– volume: 6
  start-page: 301
  year: 1971
  ident: BFncomms14956_CR22
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.2210060134
– volume: 40
  start-page: 3616
  year: 1989
  ident: BFncomms14956_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.40.3616
– volume: 132
  start-page: 154104
  year: 2010
  ident: BFncomms14956_CR37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 59
  start-page: 1758
  year: 1999
  ident: BFncomms14956_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 304
  start-page: 1650
  year: 2004
  ident: BFncomms14956_CR15
  publication-title: Science
  doi: 10.1126/science.1098252
– volume: 13
  start-page: 3501
  year: 2013
  ident: BFncomms14956_CR19
  publication-title: Nano Lett.
  doi: 10.1021/nl400888p
– volume: 47
  start-page: 1651
  year: 1993
  ident: BFncomms14956_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.1651
– ident: BFncomms14956_CR3
– volume: 77
  start-page: 1083
  year: 2005
  ident: BFncomms14956_CR5
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.1083
– volume: 358
  start-page: 136
  year: 1992
  ident: BFncomms14956_CR27
  publication-title: Nature
  doi: 10.1038/358136a0
– volume: 315
  start-page: 954
  year: 2007
  ident: BFncomms14956_CR2
  publication-title: Science
  doi: 10.1126/science.1129564
– volume: 113
  start-page: 3766
  year: 2013
  ident: BFncomms14956_CR7
  publication-title: Chem. Rev.
  doi: 10.1021/cr300263a
SSID ssj0000391844
Score 2.6899974
Snippet Interest in two-dimensional (2D) van der Waals materials has grown rapidly across multiple scientific and engineering disciplines in recent years. However,...
The development of devices based on 2D materials beyond graphene benefits from identifying compounds with diverse functional properties. Here, the authors...
SourceID doaj
pubmedcentral
osti
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14956
SubjectTerms 119/118
639/301/357/1018
639/766/119/996
Ferroelectrics
Humanities and Social Sciences
MATERIALS SCIENCE
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yIPgi_sR6d5KD80Uo103SNHn0xOMqKIKe3ltJkwkunq3s9hD_e2fS7rI9D3zxqZAMaZiZZL4hyTeMHTsjHD1wzGURTK4i2NwE7_NSV1pFRXkQvUZ-_0GfX6h3l-XlTqkvuhM20gOPijvR0dg2aiqIXqqAA4IXmDzZCBi4AIB238IWO8lU2oOlxdRFTQ_yCmlOOjTgj3XKB2YhKDH146fHFTVDmTfvSN44KE3x5-wBuz8BR_56nPBDdge6R-zuWEry92P2_eOKjlxIzbyPfInDLTu0AB9-9XkgCv-RfoNHWK36sfjN0q9RkNed-ASSuy7w9ByL13Ut8i-15IiyecCGrw6dlCO2Hd31Cbs4e_v5zXk-FVLIPcbzIY-Vt9pY8AsnUQNGA2gQTignTLQQo2tLG4iLz3gvEUBpL00ZQXoVHW5A8inb6_oOnjGOYwQBiygqzK3QLK4KGAXbRRtchal2yNirjW4bP7GMU7GLqyaddkvT7BgiY8db4Z8jucbtYqdkpK0IMWKnBvSTZvKT5l9-krF9MnGDwILYcT1dI_IDZj4I2LTJ2MHG8s20iNfNwhgq0SULlbGjbTcuPzpTcR3010mmtApxTpWxauYxs-nOe7rlt0TkjcEG4afN2MuNb-38_G89PP8fethn9wQhE7p8VB2wvWF1DYeIq4b2RVpCfwDtACPS
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_qFcEX8RNjq6xQX4Sld5tNsnkQsdLSCB5FrfYtbPajHmpScynif-_MJjmbKj4FkiVZdmZ2fpPZ-Q3AnlZCU4Ejj-dWceldzpU1hidplkovKQ6iauR3y_T4VL49S862YDnWwtCxynFPDBu1bQz9I99fKEX9kjD6fnXxg1PXKMquji009NBawb4MFGM3YBu35GQ-g-2Dw-XJ-81fF-JDV1IOhXrzWO3X-JHv6xAnTFxTYPDHS4OWNkGf189OXkugBr90dAduD4CSve414C5sufoe3OxbTP66D19PWkrF0PKzxrMVvm5Vo2RY97Phlqj9e1oO5l3bNn1TnJVZ40BW1OKDi5muLQtlWqwoCsE_FTFD9M0s3visUXkZYt5ejR_A6dHhxzfHfGiwwA36-Y77zOSpyp1Z6BhXQKXOpU5oIbVQPnfe6yrJLXH0KWNiBFapiVXiXWyk17gxxQ9hVje1ewQM32GFW3iRYczl04XOLHrHalFZnWEIbiN4Ma5taQb2cWqC8a0MWfBYlVcEEcHeZvBFT7rx72EHJKTNEGLKDjea9rwcDK9MvcornBBG3Ym0qJDOCAy-c-8Q-DjnItghEZcIOIg119DxItNhRIRALlUR7I6SLwfjXpd_VDGCZ5vHaJaUa9G1ay7DmCSXiH-yCLKJxkymO31Sr74Egm90QghL8wiej7p15eN_r8Pj_09yB24JwiJ03CjbhVnXXroniKS66ulgHr8BXl4hww
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fi9QwEB70RPBFzl9Y704inC9CcZukafroLXdcBUXQ03sraTLxFrWVbg_xv3eSdpft6YNPpc20DZNJ55tm8g3AsdHchA2OqVg4nUqPZaqdtWmuCiW9DHFQ2I387r06v5BvL_PLiWd7PaVVjpSW8TO9yQ573dLZj3WE87fhji5EHsx5qZbbHyqB6lxLOe3BWwi9e8_M60Ryfjp0NIlmwPJmWuSNtdHocs724f6EFdmbsXcP4Ba2D-HuWD3y9yP49qEPqyxBs6zzbEWPW7WkdDb86lIXWPtHxg3mse-7sd7Nyq5JkFUt_4iCmdaxuAOLVVXF08-VYASsmaMLXwzZJSM4O1roY7g4O_20PE-n2gmpJRc-pL6wpdIl2swI0oBWiAq54dJw7Uv03jR56QL9nrZWEGZSVujco7DSG_rmiCew13YtPgVGz3AcM88LCqe8ykzhyPE1WeNMQdG1S-DVRre1nYjFQ32L73Vc4Ba63hmIBI63wj9HPo1_i52EQdqKBBLseKHrv9aTUdTK67KhDlFAnUtHtoaWU1xdeiRMg4gJHIQhrglLBEJcGzKH7EDBDmE0pRM43Ix8Pc3bdZ1pHapyiYVM4MW2mWZcWEYxLXbXUSYvJUGbIoFiZjGz7s5b2tVV5O4m_0KIs0zg5ca2dl7-tx6e_afcAdzjAW-ElKLiEPaG_hqPCC0NzfM4S_4AkdIX7g
  priority: 102
  providerName: Springer Nature
Title Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials
URI https://link.springer.com/article/10.1038/ncomms14956
https://www.proquest.com/docview/1884860304
https://www.proquest.com/docview/1885942427
https://www.osti.gov/servlets/purl/1489368
https://pubmed.ncbi.nlm.nih.gov/PMC5385629
https://doaj.org/article/6f89bf6113254d0d8ec25239fe110eee
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB71ISQuiKcwLdEilQuSId611-sDQmnUUEeiqiiB3KzNPiCi2OCkgv57Ztd2VIeKSyytJ7YzD883mZ0ZgCMpqHQFjiEbahHG1mSh0EqFCU95bGMXB7lq5A9n_HQWT-fJfAe6YZwtA1e3hnZuntSsvnz959f1OzT4t03JuHhTomx-rDzU34V9nyhye_hanO9fySzDSMZlmOkwjkJ02qyt1dv6fs87-Sb-eKjQ2HoAdHv75FYO1bumyX2412JKMmqU4AHsmPIh3GmmTF4_gu_ntcvGOAmQypIlXm5ZonDI-ncVatfdv-nMQayp66qZi7NUKyQkeUkvDCOy1MRXapE8z2n4OWcEATjRuPBFIh8Jwt5Gkx_DbHLyaXwatjMWQoWufh3aVGVcZEZFkiEHBDeGGyppLKmwmbFWLpJMuzZ9QimG2IorJhJrmIqtxHcTewJ7ZVWap0DwGpqayNIUwy7LI5lqlMQiWmiZYhSuA3jV8bZQbQNyNwfjsvCJcCaKG4II4GhD_LPpu3E72bET0obENcv2C1X9tWhtr-BWZAt8IAy8k1ijThpFMf7OrEHsY4wJ4MCJuEDM4RrnKrfDSK0xKEIsx0UAh53ki049i0gIN72LDeMAXmxOo2W6dIssTXXlaZIsRgiUBpD2NKb3uP0z5fKb7_GNfgiRaRbAy063btz8Xz48--9POIC71KERt-EoPYS9dX1lniOWWi8GsJvOU_wUk_cD2B-NphdTPB6fnJ1_xNUxHw_8vxQDb09_AcVFJrw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gEaMvxs9YQV0TeDFpoNttu30gRhRyFbgQBeWtbvdDL2qLvSOEf86_zZl-nBSNbzxd0k72tjszO7_Z2ZkBWFOSK0pw9MNNI33hbOpLo7UfxUksnCA_iLKRDybx-Fi8O4lOluBXnwtD1yr7PbHZqE2l6Yx8I5CS-iWh9_3q9KdPXaMoutq30FBdawWz1ZQY6xI79uzFObpws63sLfJ7nfPdnaM3Y7_rMuBrNHZz3yU6jWVqdaBCdBdkbG1sueJCcelS65wqotRQoTqpdYjoItahjJwNtXAKtTPEcW_AsqADlBEsb-9MDt8vTnmo_roUoksM3AzlRokf9WPW-CUDU9h0DMCfCjV7gHav3tW8ErBt7ODuXbjTAVj2upW4e7Bky_tws21pefEAvh3WFPohdrPKsSkONy1REtj8vPINtRJoy4AwZ-u6apvwTPUMCVlW8g82ZKo0rEkLY1mWcf9jFjJE-8zgg08KlYUhxm7V5iEcX8tSP4JRWZX2MTAcw3AbOJ6gj-fiQCUGrXERFEYl6PIbD172a5vrrto5Nd34njdR91DmlxjhwdqC-LQt8vFvsm1i0oKEKnM3D6r6S94peh47mRY4IfTyI2FQAazm6OynziLQstZ6sEIszhHgUJVeTdeZ9Bw9MASOsfRgted83m0ms_yP6HvwYvEatwGK7ajSVmcNTZQKxFuJB8lAYgbTHb4pp1-bguJo9BAGpx6s97J16c__Xocn_5_kc7g1PjrYz_ezyd4K3OaEg-iqU7IKo3l9Zp8iipsXzzpVYfD5urXzNxjGXww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiKcILWCk9oIUbWPn4RwqRGlXDYXVCij0Fhw_YAUkJZuq6l_kVzGTx9ItiFtPkZKR43g8nu-LPTMAm0pyRQGOvtg20g-dTX1ptPajOIlDFxIPomjkt5P44Ch8fRwdr8CvIRaGjlUOa2K7UJtK0z_yUSAl1UtC9j1y_bGI6d74xclPnypI0U7rUE5D9WUWzE6bbqwP8ji052dI5-Y72R7qfovz8f6HVwd-X3HA1-j4Gt8lOo1lanWgBFIHGVsbW654qLh0qXVOFVFqKGmd1Fog0oi1kJGzQodOoaUKbPcarCXo9ZEIru3uT6bvFn98KBe7DMM-SHBbyFGJH_hj3nKUJbfYVg_AS4VWvoR8L5_bvLR52_rE8W241YNZ9rKbfXdgxZZ34XpX3vL8Hnyb1rQNRKpnlWMzbG5W4qxgzVnlGyor0KUEYc7WddUV5JnpOQqyrOTvrWCqNKwNEWNZlnH_YyYYIn9m8MYnhYbDEG93JnQfjq5kqB_AalmV9iEwbMNwGzieIN9zcaASg565CAqjEqT_xoPnw9jmus98TgU4vuftDryQ-QVFeLC5ED7pEn78W2yXlLQQoSzd7Y2q_pL3Rp_HTqYFdggZfxQaNAarORL_1FkEXdZaD9ZJxTmCHcrYq-lok26QjSGIjKUHG4Pm835hmed_zMCDZ4vHuCTQPo8qbXXaykRpiNgr8SBZmjFL3V1-Us6-tsnF0QEiJE492Brm1oWX_z0Oj_7fyadwA600f5NNDtfhJidIRKeekg1YbepT-xgBXVM86S2FweerNs7fagBjUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+intrinsic+two-dimensional+ferroelectrics+in+In2Se3+and+other+III2-VI3+van+der+Waals+materials&rft.jtitle=Nature+communications&rft.au=Ding%2C+Wenjun&rft.au=Zhu%2C+Jianbao&rft.au=Wang%2C+Zhe&rft.au=Gao%2C+Yanfei&rft.date=2017-04-07&rft.pub=Nature+Publishing+Group&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=8&rft_id=info:doi/10.1038%2Fncomms14956&rft.externalDocID=1489368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon